# Master Theorem: GFF Satisfies All OS Axioms ## Mathematical Background The master theorem assembles the individual axiom proofs into a single statement: the Gaussian Free Field with mass $m > 0$ in 4-dimensional Euclidean spacetime satisfies all Osterwalder-Schrader axioms. This is the culmination of the formalization, establishing that the free scalar field defines a consistent Euclidean QFT that can be analytically continued to a physical relativistic quantum field theory via the OS reconstruction theorem. ### Statement For any mass parameter $m > 0$, the GFF probability measure $\mu_{\mathrm{GFF}}(m)$ satisfies: - **OS0** (Analyticity): The generating functional is analytic in the test functions. - **OS1** (Regularity): The generating functional satisfies exponential bounds. - **OS2** (Euclidean Invariance): The measure is invariant under 4D Euclidean transformations. - **OS3** (Reflection Positivity): The quadratic form $\sum_{ij} c_i c_j\ \mathrm{Re}\left(Z[f_i - \Theta f_j]\right) \geq 0$. - **OS4** (Clustering): Distant test functions become statistically independent. - **OS4** (Ergodicity): Time averages of generating-function observables converge to ensemble averages. ## Key Declarations | Declaration | File | Description | |-------------|------|-------------| | [`gaussianFreeField_satisfies_all_OS_axioms`](../OSforGFF/GFFmaster.lean#L48) | `GFFmaster.lean` | **Master theorem**: conjunction of all OS axioms | | [`QFT.gaussianFreeField_satisfies_OS0`](../OSforGFF/OS0_GFF.lean#L1120) | `OS0_GFF.lean` | OS0: $z \mapsto Z[\sum z_i J_i]$ analytic | | [`gaussianFreeField_satisfies_OS1_revised`](../OSforGFF/OS1_GFF.lean#L528) | `OS1_GFF.lean` | OS1: $\lvert Z[f]\rvert \le e^{c\lVert f\rVert_2^2}$ | | [`gaussian_satisfies_OS2`](../OSforGFF/GaussianFreeField.lean#L219) | `GaussianFreeField.lean` | OS2: $Z[g\cdot f] = Z[f]$ for $g \in E(4)$ | | [`QFT.gaussianFreeField_OS3_real`](../OSforGFF/OS3_GFF.lean#L509) | `OS3_GFF.lean` | OS3: $\sum c_ic_j\ \mathrm{Re}\left(Z[f_i-\Theta f_j]\right) \ge 0$ | | [`QFT.gaussianFreeField_satisfies_OS4`](../OSforGFF/OS4_Clustering.lean#L475) | `OS4_Clustering.lean` | OS4: $Z[f+T_ag] \to Z[f]Z[g]$ as $\lVert a\rVert\to\infty$ | | [`OS4_PolynomialClustering_implies_OS4_Ergodicity`](../OSforGFF/OS4_Ergodicity.lean#L1339) | `OS4_Ergodicity.lean` | OS4 Ergodicity: $\frac{1}{T}\int_0^T A(T_s\phi)\ ds \xrightarrow{L^2} \mathbb{E}[A]$ | ## How Each Axiom Feeds In The master theorem in `GFFmaster.lean` is a short assembly file (~80 lines) that imports and combines six independently proved results: ``` GFFmaster.lean | +-- OS0: QFT.gaussianFreeField_satisfies_OS0 m | Source: OS0_GFF.lean | Technique: Holomorphic integral theorem (differentiation under integral sign) | +-- OS1: gaussianFreeField_satisfies_OS1_revised m | Source: OS1_GFF.lean | Technique: Fourier/momentum space bounds on the generating functional | +-- OS2: gaussian_satisfies_OS2 (mu_GFF m) h_gauss h_euc | Sources: GaussianFreeField.lean, OS2_GFF.lean | Technique: Covariance kernel depends only on |x-y|, which is Euclidean-invariant | Gaussianity ensures the full measure inherits this invariance | +-- OS3: QFT.gaussianFreeField_OS3_real m | Sources: OS3_GFF.lean <- OS3_CovarianceRP.lean | <- OS3_MixedRep.lean <- OS3_MixedRepInfra.lean, HadamardExp.lean | Technique: Covariance RP (momentum factorization into |F_omega|^2) | + Hadamard exponential theorem for matrix assembly | +-- OS4 Clustering: QFT.gaussianFreeField_satisfies_OS4 m | Source: OS4_Clustering.lean | Technique: Gaussian factorization Z[f+g] = Z[f]Z[g]exp(-S_2(f,g)) | + cross-covariance decay from propagator decay | +-- OS4 Ergodicity: OS4_PolynomialClustering_implies_OS4_Ergodicity m h_poly_cluster Sources: OS4_Ergodicity.lean, OS4_Clustering.lean Technique: Polynomial clustering (alpha=6) -> variance of time average bounded by O(1/T) -> L2 convergence of time averages ``` ## Assumed Axioms The master theorem depends on 3 axioms declared with the `axiom` keyword in Lean. These are standard mathematical results whose full Lean formalization was deferred. | Axiom | File | Mathematical Content | |-------|------|---------------------| | [`minlos_theorem`](../OSforGFF/Minlos.lean#L77) | `Minlos.lean` | Continuous positive-definite normalized functional on nuclear space $\implies$ characteristic functional of a unique probability measure ($\exists!$) | | [`differentiable_analyticAt_finDim`](../OSforGFF/OS0_GFF.lean#L86) | `OS0_GFF.lean` | Hartogs' theorem: $f : \mathbb{C}^n \supset U \to \mathbb{C}$ differentiable $\implies$ $f$ analytic | | [`schwartz_nuclear`](../OSforGFF/NuclearSpace.lean#L145) | `NuclearSpace.lean` | $\mathcal{S}(\mathbb{R}^n, F)$ is a nuclear TVS | All three axioms are well-established theorems in functional analysis. The Minlos theorem (existence and uniqueness of measures from characteristic functionals on nuclear spaces) is foundational for infinite-dimensional measure theory. Hartogs' theorem is a standard result in several complex variables. Nuclearity of Schwartz space is proved in standard references on topological vector spaces. ## References - R.A. Minlos, "Generalized random processes and their extension to a measure," *Trudy Moskov. Mat. Obshch.* 8 (1959), 497--518. - K. Osterwalder and R. Schrader, "Axioms for Euclidean Green's Functions I, II," *Comm. Math. Phys.* 31 (1973) 42 (1975). - J. Glimm and A. Jaffe, *Quantum Physics: A Functional Integral Point of View*, 2nd ed., Springer, 1987. - F. Treves, *Topological Vector Spaces, Distributions and Kernels*, Academic Press, 1967, Chapter 51 (nuclearity of Schwartz space).