# Dimension Dependence This document inventories where the spacetime dimension $d = 4$ (and spatial dimension $d-1 = 3$) enters the proofs. The project defines `STDimension := 4` in `Basic.lean` changing this value would require updates to every file listed below as **essential** or **spatial**. ## Classification - **Essential (d=4):** The mathematical formula is specific to $d = 4$. Generalizing requires deriving the analogous formula in dimension $d$. - **Spatial (d=3):** Uses the spatial dimension $d - 1 = 3$ explicitly, typically for integrability estimates. - **Structural:** References `STDimension` or `SpaceTime` but the proof works for any $d$ without change (beyond updating the abbreviation). ## Essential (d=4) These files contain formulas that evaluate differently in other dimensions. ### `CovarianceMomentum.lean` - **Heat kernel normalization:** `heatKernelPositionSpace` uses $(4\pi t)^{-d/2}$, which evaluates to $1/(16\pi^2 t^2)$ for $d=4$. - **Bessel representation:** `freeCovarianceBessel` gives $C(x,y) = \frac{m}{4\pi^2 r} K_1(mr)$, the closed-form specific to $d=4$. - **Schwinger evaluation:** `covarianceSchwingerRep_eq_besselFormula` connects the proper-time integral to the Bessel form. - **Regulated convergence:** `freeCovariance_regulated_tendsto_bessel` and domination bounds use the $d=4$ Bessel form. ### `Parseval.lean` - **Plancherel scaling:** The factor $(2\pi)^d$ appears in `regulated_fubini_factorization`, `parseval_covariance_schwartz_regulated`, and the change-of-variables between physics and Mathlib Fourier conventions. ### `OS3_MixedRepInfra.lean` - **Heat kernel 4D expansion:** `heatKernelPositionSpace_4D` converts $(4\pi t)^{-d/2}$ to $1/(16\pi^2 t^2)$. - **Schwinger proper-time integral:** Uses the $d=4$ heat kernel in the Laplace $s$-integral. ### `OS3_MixedRep.lean` - **Normalization identity:** Uses $(2\pi)^4 / (2\pi) = (2\pi)^3$ to factor the mixed representation. - **Schwinger-to-Bessel reduction:** Dimension-specific simplifications throughout. ### `BesselFunction.lean` - **$K_1$ definition and bounds:** The modified Bessel function $K_1$ is the kernel that appears in $d=4$. In general dimension $d$, the covariance involves $K_{d/2-1}$. ## Spatial (d=3) These files use the spatial dimension $d-1 = 3$ for integrability. ### `FunctionalAnalysis.lean` - **`polynomial_decay_integrable_3d`:** $(1+\|x\|)^{-4}$ is integrable in $\mathbb{R}^3$ because the decay rate $4 > d-1 = 3$. In general dimension, the required decay rate would be $> d-1$. ### `SchwartzProdIntegrable.lean` - **`SpatialCoords3`:** Defined as `EuclideanSpace ℝ (Fin 3)`. Spatial marginal integrals use this type. - **Spatial marginal bounds:** The linear vanishing bound `spatialNormIntegral_linear_bound` uses 3D spatial integrals. ### `OS1_GFF.lean` - **Local integrability:** Uses `locallyIntegrable_of_rpow_decay_real` with $\alpha = 2 < d = 4$ and $d \ge 3$. In general dimension $d$, the singularity is $\|x\|^{-(d-2)}$, so the condition becomes $d-2 < d$, which always holds. ### `OS4_Clustering.lean` - **Norm decomposition:** `Fin.sum_univ_four` expands $\|k\|^2 = k_0^2 + k_1^2 + k_2^2 + k_3^2$, coupling to $d=4$. ## Structural (dimension-agnostic) These files reference `STDimension` or `SpaceTime` but work for any $d \ge 2$. | File | Usage | |------|-------| | `Basic.lean` | Defines `STDimension`, `SpaceTime`, `getTimeComponent`, `SpatialCoords`, `spatialPart`, `E` | | `OS_Axioms.lean` | OS axiom definitions (quantify over test functions on `SpaceTime`) | | `Euclidean.lean` | Euclidean group $E(d) = O(d) \rtimes \mathbb{R}^d$ | | `DiscreteSymmetry.lean` | Time reflection matrix in $O(d)$ | | `TimeTranslation.lean` | Time translation $T_s$ (shift index 0) | | `SpacetimeDecomp.lean` | Decomposition $\mathbb{R}^d \cong \mathbb{R} \times \mathbb{R}^{d-1}$ | | `ComplexTestFunction.lean` | Complex test function operations | | `PositiveTimeTestFunction_real.lean` | Positive-time support predicate | | `Schwinger.lean` | Schwinger $n$-point functions | | `SchwingerTwoPointFunction.lean` | Distributional 2-point function | | `Covariance.lean` | Bilinear covariance form (uses Parseval, so inherits d=4) | | `CovarianceR.lean` | Real covariance, Hilbert space embedding | | `GaussianFreeField.lean` | GFF measure construction via Minlos | | `GFFMconstruct.lean` | Measure construction infrastructure | | `GFFIsGaussian.lean` | Gaussianity verification | | `GaussianMoments.lean` | Moment computations | | `Minlos.lean` | Minlos theorem (axiom, dimension-independent) | | `MinlosAnalytic.lean` | Analytic continuation of characteristic functional | | `OS0_GFF.lean` | OS0 proof (analyticity) | | `OS2_GFF.lean` | OS2 proof (Euclidean invariance) | | `OS3_CovarianceRP.lean` | Covariance RP (uses mixed rep, inherits d=4) | | `OS3_GFF.lean` | OS3 assembly (includes RP bridge to real formulation) | | `OS4_MGF.lean` | MGF infrastructure for OS4 | | `OS4_Ergodicity.lean` | Ergodicity from polynomial clustering | | `L2TimeIntegral.lean` | $L^2$ time integral estimates | | `GFFmaster.lean` | Master theorem assembly | | `FourierTransforms.lean` | 1D Fourier transform identities | | `LaplaceIntegral.lean` | Laplace/Glasser integrals | | `HadamardExp.lean` | Hadamard exponential | | `SchurProduct.lean` | Schur product theorem | | `FrobeniusPositivity.lean` | Frobenius inner product positivity | | `PositiveDefinite.lean` | Positive-definite function theory | | `GaussianRBF.lean` | Gaussian RBF positive definiteness | | `QuantitativeDecay.lean` | Polynomial decay estimates | | `SchwartzTranslationDecay.lean` | Bilinear translation decay | | `SchwartzTonelli.lean` | Tonelli for spacetime integrals | ## Generalization Notes To port the project to a different dimension $d$: 1. Change `STDimension` in `Basic.lean`. 2. Replace the Bessel $K_1$ representation with the general $K_{d/2-1}$ form. 3. Update the heat kernel normalization $(4\pi t)^{-d/2}$. 4. Update Plancherel scaling factors $(2\pi)^d$. 5. Verify spatial integrability: decay rate must exceed $d-1$. 6. Replace `Fin.sum_univ_four` with the appropriate `Fin.sum_univ` variant.