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Week 9 - Exercise 
Problem: 
The cumulative particle size distribution 𝑁(𝐿) has been measured for two different MSMPR 
crystallization processes (𝐴 and 𝐵) and is reported in the figure below. Both processes are 
producing the same compact crystals, under different residence times and temperatures. The 
growth rate is known to be independent from both temperature and composition (𝐺 =
𝑐𝑜𝑛𝑠𝑡). The nucleation rate 𝐽 instead depends exponentially on the inverse of the 
temperature through an Arrhenius-like expression (𝐽 = 𝐴 exp(−𝐵/𝑇), where 𝐴 and 𝐵 are 
constants). 
 

 
 
 

Tasks: 
(a) Compute and plot the number density, length, area, and normalized mass distribution 

for these two processes. Use the dataset provided. 
 

(b) Compute the dominant length 𝐿! obtained from both processes. 
 

(c) Can you say anything about the residence time in the two crystallizers? 
 

(d) Which process is operating at the highest temperature? 
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(a) Compute and plot the number density, length, area, and normalized mass distribution for these 
two processes. Use the dataset provided. 
First, we need to fit the data to an equation, from the steady state number population density: 
 

𝑑𝑁(𝐿)
𝑑𝐿 = 𝑛(𝐿) = 𝑛! ∙ exp ,−

𝐿
𝐺𝜏0 

 

→ 𝑁(𝐿) = −𝑛! ∙ 𝐺𝜏 ∙ exp ,−
𝐿
𝐺𝜏0 + 𝑘 

 
Because we assume that the growth rate, G, is independent from the crystal size, L, → 𝐺𝜏 = 𝑐𝑜𝑛𝑠𝑡. 
 
Let 𝑌 = 𝐺𝜏, 

→ 𝑁(𝐿) = −𝑛! ∙ 𝑌 ∙ exp ,−
𝐿
𝑌0 + 𝑘 

 
We will fit the data to the equation above, but first we need to find 𝑛!. By definition, 
 

𝑑𝑁
𝑑(𝐿 = 0) = 𝑛! 

 
Therefore, from the data given we can approximate 𝑛! as the derivative close to 𝐿 = 0, 
 
For Process A: 

𝑛!,# =
413.25 − 32.366

0.3 − 0 = 1269.6133	𝜇𝑚$%𝑑𝑚$& 

For Process B: 

𝑛!,' =
404.64 − 114.95

0.6 − 0 = 482.8167	𝜇𝑚$%𝑑𝑚$& 

 
Now, by trial and error, we an estimate parameters 𝑌#,' and 𝑘#,', by using 2 values from the data 
sets, and solving two equations simultaneously, and see how the parameters fits with the data. We 
will use the parameters that, when plotted, give the line of best fit. 
 
For process A: 
Take the initial value, 𝑁#(𝐿 = 0) = 32.366	𝑑𝑚$& 
Take a value from the end of the data set, 𝑁#(𝐿 = 14.4) = 3889.9	𝑑𝑚$& 
 
Formulate the two equations, 
 

−(1269.6133) ∙ 𝑌# + 𝑘# = 32.366 
 

−(1269.6133) ∙ 𝑌# ∙ exp ,−
14.4
𝑌 0 + 𝑘# = 3889.9 

 
Solving in GAMS gives: 

• 𝑘# = 3925.4457	𝑑𝑚$& 
• 𝑌# = 3.0664	𝜇𝑚 

 
- By trial and error, these two values best fit the data. 

(Eq. 1) 

(Eq. 2) 
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For process B: 
Take the initial value, 𝑁'(𝐿 = 5.4) = 1731.4	𝑑𝑚$& 
Take a value from the end of the data set, 𝑁'(𝐿 = 26.7) = 3294.1	𝑑𝑚$& 
 
Formulate the two equations, 
 

−(482.8167) ∙ 𝑌' ∙ exp ,−
5.4
𝑌 0 + 𝑘' = 1731.4 

 

−(482.8167) ∙ 𝑌' ∙ exp ,−
26.7
𝑌 0 + 𝑘' = 3294.1 

 
Solving in GAMS gives: 

• 𝑘' = 3380.2863	𝑑𝑚$& 
• 𝑌' = 7.2171	𝜇𝑚 

 
- By trial and error, these two values best fit the data. 

 
As can be seen from the figure below, the two theoretical equations using the estimated parameters 
fit the experimental data reasonably well: 
 

 
 
Now we can use the parameters and plot the number density using: 
 

𝑛(𝐿) = 𝑛! ∙ exp ,−
𝐿
𝐺𝜏0 = 𝑛! ∙ exp ,−

𝐿
𝑌0 

 
This is plotted for both processes on the figure below. 
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From the number density we can find all the rest. 
 
The total length of particles per unit volume of liquid phase with size smaller or equal than size 𝐿 is 
given by: 

𝐿()((𝐿) = G 𝐿𝑛 ∙ 𝑑𝐿
*

!
= G 𝐿 ,𝑛! ∙ exp ,−

𝐿
𝑌00 ∙ 𝑑𝐿

*

!
 

Integrating by parts: 
 

G𝑢𝑑𝑣 = 𝑢𝑣 −G𝑣𝑑𝑢 

𝑢 = 𝐿 → 𝑑𝑢 = 1 
 

𝑑𝑣 = 	𝑛! ∙ exp ,−
𝐿
𝑌0 → 𝑣 = −𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 

 

G𝐿 ,𝑛! ∙ exp ,−
𝐿
𝑌00 ∙ 𝑑𝐿 = −𝐿𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 − G−𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 𝑑𝐿 

 

→ G 𝐿 ,𝑛! ∙ exp ,−
𝐿
𝑌00 ∙ 𝑑𝐿

*

!
= J−𝐿𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 − 𝑛!𝑌

+ ∙ exp ,−
𝐿
𝑌0K!

*

 

 
Expanding and rearranging, we obtain the final expression for the total length: 
 

𝐿()((𝐿) = 𝑛!𝑌+ − 𝑛!𝑌 ∙ (𝐿 + 𝑌) ∙ exp ,−
𝐿
𝑌0 
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Plotting 𝐿()( vs 𝐿 for both processes gives: 
 

 
 
The total area of particles per unit volume of liquid phase with size smaller or equal than size 𝐿 is 
proportional to:	

𝐴 ∝ G 𝐿+𝑛 ∙ 𝑑𝐿
*

!
= G 𝐿+ ,𝑛! ∙ exp ,−

𝐿
𝑌00 ∙ 𝑑𝐿

*

!
 

Integrating by parts: 

G𝑢𝑑𝑣 = 𝑢𝑣 −G𝑣𝑑𝑢 

𝑢 = 𝐿+ → 𝑑𝑢 = 2𝐿 
 

𝑑𝑣 = 	𝑛! ∙ exp ,−
𝐿
𝑌0 → 𝑣 = −𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 

 

→ G𝐿+ ,𝑛! ∙ exp ,−
𝐿
𝑌00 ∙ 𝑑𝐿 = −𝐿+𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 + 2𝑌G𝐿 ,𝑛! ∙ exp ,−

𝐿
𝑌00 𝑑𝐿 

 
From before: 

2𝑌G𝐿 ,𝑛! ∙ exp ,−
𝐿
𝑌00 ∙ 𝑑𝐿 = −2𝐿𝑛!𝑌+ ∙ exp ,−

𝐿
𝑌0 − 2𝑛!𝑌

& ∙ exp ,−
𝐿
𝑌0 

 
Therefore: 
 

G 𝐿+ ,𝑛! ∙ exp ,−
𝐿
𝑌00 ∙ 𝑑𝐿

*

!
= J−𝐿+𝑛!𝑌 ∙ exp ,−

𝐿
𝑌0 − 2𝐿𝑛!𝑌

+ ∙ exp ,−
𝐿
𝑌0 − 2𝑛!𝑌

& ∙ exp ,−
𝐿
𝑌0K!

*

 

 
Expanding and rearranging, we obtain the final expression for the area: 
 

𝐴(𝐿) ∝ 2𝑛!𝑌& − 𝑛!𝑌 ∙ (𝐿+ + 2𝐿𝑌 + 2𝑌+) ∙ exp ,−
𝐿
𝑌0 
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Plotting the expression above we obtain the cumulative particle area distribution shown in the 
figure below: 
 

 
 
The normalized mass distribution is the cumulative mass of crystals of size smaller than or equal to 
size 𝐿, as a fraction of the total, using dimensionless crystal size (𝑥), is given by: 
 

𝑀(𝑥) =
𝑀(𝐿)
𝑀,

=
∫ 𝑥& exp(−𝑥) 𝑑𝑥-
!

∫ 𝑥& exp(−𝑥) 𝑑𝑥.
!

= 1 − ,1 + 𝑥 +
1
2𝑥

+ +
1
6𝑥

&0 exp(−𝑥) 

 
- where 𝑥 = *

/0
= *

1
 

 
A graph resulting from plotting this adimensional mass distribution for both processes results in a 
figure below: 
 

 
 
As expected, the two curves coincide with each other. 
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(b) Compute the dominant length 𝐿2 obtained from both processes. 
The most probable, often referred to as the modal or dominant particle size, corresponds to the 
peak of the differential-mass distribution, and is given by: 
 

𝐿2 = 3𝐺𝜏 = 3𝑌 
 
Therefore, for Process A:  

𝐿2,# = 3𝑌# = 3 ∗ 3.0664 = 9.199	𝜇𝑚 
 
Similarly, for Process B: 

𝐿2,' = 3𝑌' = 3 ∗ 7.2171 = 21.65	𝜇𝑚 
 
 
(c) Can you say anything about the residence time in the two crystallizers? 
The growth rate is known to be independent from both temperature and composition (i.e., 𝐺 =
𝑐𝑜𝑛𝑠𝑡), therefore, 𝐺# = 𝐺', and hence: 
 

𝑌'
𝑌#
=
𝐺𝜏'
𝐺𝜏#

=
𝜏'
𝜏#
=
7.2171
3.0664 = 2.3536 

 
à The residence time of Process B is about 2.4 times larger than the residence time of Process A. 
 
 
(d) Which process is operating at the highest temperature? 
The nucleation rate 𝐽 instead depends exponentially on the inverse of the temperature through an 
Arrhenius-like expression: 

𝐽 = 𝐴 exp(−𝐵/𝑇) 
- where 𝐴 and 𝐵 are constants 

 
Also, 

𝐽 = 𝑛!𝐺 
 

→
𝐽#
𝐽'
=
𝑛!,#𝐺
𝑛!,'𝐺

=
𝑛!,#
𝑛!,'

=
1269.6133
482.8167 = 2.6296 

 
Then, 

𝐽#
𝐽'
=
𝐴 exp(−𝐵/𝑇#)
𝐴 exp(−𝐵/𝑇')

= exp ,
𝐵
𝑇'
−
𝐵
𝑇#
0 = 2.6296 

 
Rearranging we obtain: 
 

𝐵
𝑇'
−
𝐵
𝑇#
= ln(2.6296) = 0.9668	(𝑖. 𝑒. , +𝑣𝑒) 

Therefore, 
𝐵
𝑇'
>
𝐵
𝑇#
→ 𝑇# > 𝑇' 

 
à This shows that Process A is operating at a higher temperature than Process B. 


