
Stochastic continuous-depth neural networks

The candidate advances the understanding of deep neural networks through the investigation of
stochastic continuous-depth neural networks and introduces novel training algorithms based on recent
developments in back-propagation algorithms for stochastic differential equations.

Deep neural networks can represent very complex, nonlinear relationships, while they can still be trained
efficiently. But deep neural networks are difficult to reason about mathematically. And while a trained
neural network provides a strong predictor, assessing the uncertainty of its predictions is difficult.

Recent papers have drawn a connection between ordinary differential equations and residual neural net-
works, a type of deep neural networks. See for example Haber and Ruthotto (2018), Chen, Rubanova,
Bettencourt, and Duvenaud (2018) or Ruthotto and Haber (2018). In these networks each single net-
work layer only brings about a gradual change to the output of the preceding layers. In the limit of many
layers of infinitesimal changes they can be described by a differential equation. Such continuous-depth
networks share the expressiveness of DNNs and can be trained efficiently through backpropagation.
Their analytical structure also brings new ways to mathematically reason about them.

The efficient training of continuous-depth neural networks from Chen, Rubanova, Bettencourt, and Du-
venaud (2018) requires solving an augmented system backwards in time. van der Meulen and Schauer
(2017) introduces a corresponding adjoint method for nonlinear stochastic differential equations allow-
ing the candidate to extend the work of Chen, Rubanova, Bettencourt, and Duvenaud (2018) to the
continuous-depth neural networks with stochastic regularisation considered in Wang, Yuan, Shi, and
Osher (2018). Through the intrinsic noise, such a model is naturally regularised and gives principled
uncertainty quantification. The candidate investigates the theoretical and computational merits of this
approach.
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