% based on Ch. 2 of "Systematic Design of Anlog Integrated Circuits: % Using Pre-Computed Lookup Tables" by Paul G.A. Jespers and Boris Murmann \begin{axis}[ xlabel=$q$ %normalized mobile charge density , ylabel=$\mathrm{IC}\equal\nicefrac{I_{\mathrm{D}}}{I_{\mathrm{S}}}$ % normalized drain current , xmode=log , ymode=log , xmin=0.01 , xmax=100 , ymin=0.001 , ymax=1000 , grid=both , width= 12cm , extra x ticks={0.2,5} , extra x tick labels={0.2,5} ] \addplot[ mark=none , domain=0.01:60 , samples=50 , smooth , thick] {x^2+x}; \addplot[ mark=none , domain=0.03:30 , samples=50 , smooth ] {x^2}; \addplot[ mark=none , domain=0.01:100 , samples=2 , smooth ] {x}; \draw[dashed] (axis cs:0.2,0.001) -- (axis cs:0.2,1000); \draw[dashed] (axis cs:5.0,0.001) -- (axis cs:5.0,1000); \draw[{Latex[round,scale=0.9]}-] (axis cs:0.3,0.09) -- (axis cs:0.4,0.02) node[ anchor=north , fill=white , inner sep=1pt , text width=1.2cm , align=center ] {$\mathrm{IC}\equal q^2$ \\ drift}; \draw[{Latex[round,scale=0.9]}-] (axis cs:10,10) -- (axis cs:13,3) node[ anchor=north , fill=white , inner sep=1pt , text width=1.2cm , align=center ] {$\mathrm{IC}\equal q$ \\ diffusion}; \draw[{Latex[round,scale=0.9]}-] (axis cs:1,2) -- (axis cs:0.75,15) node[ anchor=south , fill=white , inner sep=1pt , text width=2.3cm , align=center ] {$\mathrm{IC}\equal q^2+q$ \\ drift+diffusion}; \node[fill=white] at (axis cs:1,600) {moderate (M.I.)}; \node[fill=white] at (axis cs:22,600) {strong (S.I.)}; \node[fill=white] at (axis cs:0.045,600) {weak (W.I.)}; \end{axis}