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GALLOP: Accelerated molecular crystal structure determination 
from powder diffraction data 

Mark J. Spillman,*a and Kenneth Shankland b 

A combined local and global optimisation approach to crystal 

structure determination from powder diffraction data (SDPD) is 

presented. Using graphics processing units (GPUs) to accelerate the 

underpinning calculations, the speed and power of this approach is 

demonstrated with the solutions of two challenging crystal 

structures. In both cases, the frequency with which solutions were 

obtained was improved by an order of magnitude relative to DASH, 

a well-established SDPD program. With complex crystal structures 

increasingly being generated in polycrystalline form, this approach 

is a valuable step-forward in structure determination capabilities. 

Introduction 

Global Optimisation (GO) algorithms have been widely 

employed as a means of crystal structure determination from 

powder X-ray diffraction data (SDPD),1-5 with many programs6-8 

adopting the approach pioneered by DASH,9-11 which combined 

simulated annealing with an efficient figure of merit to assess 

the agreement between observed and calculated diffraction 

data. Steady developments in such programs have maintained 

the relevance of SDPD, despite increasing competition from 

microcrystal X-ray diffraction, crystal structure prediction and, 

most recently, electron diffraction. However, recent work12, 13 

has shown that even with state-of-the-art software and 

hardware, when the number of degrees of freedom to be 

determined by GO increases above ca. 25, the number of 

independent GO runs required to ensure a reasonable chance 

that one of them will return the correct crystal structure can 

become very large. For structures near the upper limits of 

SDPD’s current capabilities, perhaps only 1 in 500 runs may 

return the correct structure. Whilst this low frequency of 

success can be offset by increasing the computational resources 

allocated to the problem via coarse-grained parallel 

processing14-17, beyond a certain point, the computational cost 

becomes prohibitive. With particularly challenging crystal 

structures, investments of several CPU-months may be 

required, with no guarantee of success. Previous work has 

shown that a “multi-start” local optimisation approach to SDPD 

is competitive with existing GO methods18. In a logical extension 

of that work, we present here a GPU-accelerated local 

optimisation and particle swarm approach (GALLOP) that 

significantly improves both the speed of, and frequency of 

success of, complex molecular crystal structure determination. 

Background to the approach 

GALLOP follows the broad strategy for SDPD laid out by DASH: 

powder diffraction intensities (and their associated 

covariances) are first extracted from the diffraction data by 

Pawley refinement, and the geometries of the molecular 

components to be located are described in a Z-matrix format. 

Solving the crystal structure is then a matter of determining the 

set of parameters that describe the position, orientation and 

conformation of these components within the unit cell, such 

that the agreement between calculated and extracted 

intensities (as judged by the well-established correlated 

integrated intensity 2 figure of merit)19 is good enough to 

indicate that the structure has been solved. 

In GALLOP, as in DASH, maximising this agreement equates to 

minimising the 2 value.20 This minimisation of 2 is carried out 

using a combination of (a) a local optimisation algorithm widely 

used in machine learning21 and (b) a particle swarm optimiser.22 

First, a set (typically 1000) of putative crystal structures is 

initialised using randomly generated starting parameters. In this 

work, such a set is referred to as a swarm, whilst each individual 

crystal structure is referred to as a particle. The particles are 

optimised in parallel on a GPU for a fixed number of steps 

(typically 500) using the local optimisation algorithm. The 

optimised parameters and 2 values so obtained are then used 

as the input for a single step of particle swarm optimisation, 

which generates a new set of starting parameters for the local 

optimiser. The combination of the local optimisation steps 

followed by one particle swarm step make up a single GALLOP 

iteration. During SDPD, iterations continue until either a target 

value of 2 is achieved, a set number of iterations has been 

completed, or the user interrupts the program. Whilst GALLOP 

can run entirely on standard CPUs, it is designed and optimised  
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Table 1 The crystal structures used in this study and their CSD refcodes 

 

to run on GPUs and other hardware accelerators such TPUs†, 

which enable several thousand particles, and hence several 

independent swarms, to be optimised simultaneously. 

Exemplars 

Two published crystal structures, previously solved from PXRD 

data (Table 1), were chosen as examples of SDPD with reported 

low frequencies of success. The published structures were first 

validated by periodic dispersion-correct DFT (DFT-D) 

calculations, following the approach of van de Streek. 26, 27 The 

PXRD data were then Pawley fitted using DASH (Table 2) and the 

resultant fit files used as input for GALLOP. Z-matrices for CT-

DMF2 were generated from its Cambridge Structural 

Database28 (CSD) entry, whilst those for selexipag were supplied 

by M. Husak (personal communication). GALLOP was run using 

a single cloud-based Nvidia Tesla V100 GPU with 16 GB of 

memory to perform the local optimisation. The GPU was 

accessed via Google Colaboratory,29 a service that provides both 

free and paid-for access to GPU-equipped virtual machines. 

Table 2 Crystallographic details of the structures used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nref = no. of reflections in Pawley fit; DoF = degrees of freedom. Frequency for CT-

DMF2 comes from reference 12; that for selexipag from reference 25. 

Each GALLOP iteration made use of 500 local optimisation steps, 

and a total of 100 GALLOP iterations were performed by each 

independent swarm. The size of each swarm was set to 1000 

particles; hence each swarm performed 50 x 106 2 evaluations. 

Currently, as is the case in DASH, the 2 calculations involve only 

the non-hydrogen atoms of the structure. Runs, each consisting 

of N independent swarms, were carried out such that the GPU 

memory was close to fully utilised (ca. 14 GB in each case), 

which maximised the efficiency with which the 2 evaluations 

were executed. The maximum number of independent swarms 

that could be accommodated in the GPU memory varied with 

each structure (selexipag N = 9; CT-DMF2 N = 20) due to 

differences in the number of reflections, atoms and degrees of 

freedom. In order to obtain results from at least 100 

independent swarms for each structure, the runs were 

repeated 12 times for selexipag and 5 times for CT-DMF2. All 

runs were allowed to go to completion and the best solutions 

found by each independent swarm were examined using the 

‘Crystal Packing Similarity’ tool in Mercury.30 Only those 

solutions that gave 15/15 molecules in common with the 

reference crystal structure (30% tolerances; H atoms ignored) 

were considered to be solved to a level of accuracy at which 

subsequent Rietveld refinement and/or DFT-D optimisation 

would be straightforward for someone familiar with refining 

molecular crystal structures against PXRD data. Henceforth, the 

term ‘RMSD’ refers to the 15 molecule root mean square 

deviation of ‘Crystal Packing Similarity’. As reported elsewhere 

for CT-DMF2, there are three orientations of each -SO2NH2 

group that give rise to similar 2 values, as the X-ray scattering 

power of -NH2 is on a par with that of each O atom. Thus a CT-

DMF2 solution might differ from NILSEH in the orientation of 

one or both of the -SO2NH2 groups but otherwise be in excellent 

agreement with NILSEH. In the current context, such a solution 

is considered to be correct.‡ Thereafter, to facilitate a 

meaningful ‘Crystal Packing Similarity’ comparison with NILSEH, 

one or both -SO2NH2 groups in the GALLOP solution was rotated 

to match the orientation in NILSEH if required. Similar 

arguments apply to each -SO2CH3 group of selexipag. 

Results and discussion 

DFT-D validation of the published crystal structures returned 

RMSD values of 0.046 Å for CT-DMF2 and 0.115 Å for selexipag, 

the latter value in good agreement with the value of 0.129 Å 

published by Husak et al.25 Assessment of GALLOP crystal 

structure solutions against the published crystal structures is, 

therefore, a valid measure of solution accuracy. As can be seen 

from Table 3, each crystal structure was solved quickly and 

accurately – the frequencies of success with which solutions are 

found are at least an order of magnitude higher than those 

reported for DASH (Table 2), even when the enhanced 

simulated annealing parameters in DASH are employed.12 The 

low RMSD values for the solutions obtained demonstrate that 

GALLOP is returning solutions that lie very close to the published 

crystal structures, leaving little work to be done in the final 

refinement stage; see, for example, Figure 1, which shows the 

excellent agreement obtained for selexipag.  

Compound 2D structure 23 REFCODE Ref 

Chlorothiazide 

DMF (1:2) 

solvate 

[CT-DMF2] 

 

NILSEH 24 

Selexipag 

(form I) 

 

VOHVIA 25 

Parameter Selexipag  CT-DMF2 

Space group P21/c P21/c 

a / Å 37.962 12.355 

b / Å 6.110 8.560 

c / Å 22.473 37.298 

β / ° 98.33 92.88 

V / Å3 5158 3940 

Z 2 2 

λ / Å 0.39986 1.54056 

2max 10.800 36.993 

Nref 556 292 

Resolution / Å 2.1245 2.4280 

DoFposition 6 18 

DoForientation 6 18 

DoFtorsion 26 6 

DoFtotal 38 42 

Published DASH frequency of 

success / % 

0.5 1 
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Table 3 Key indicators of GALLOP performance  

Run times quoted are for one run of 9 and 20 swarms for selexipag and CT-DMF2 

respectively. P(success ǀ run) represents the probability of obtaining at least one 

correct solution in a single run comprising the number of swarms stated above. 

In addition to the frequency with which the global minimum is 

located, it is also worth noting the speed with which solutions 

are returned; median solution times for these complex 

structures are of the order of tens of minutes, rather than tens 

of hours or days12, 25. Figure 2 shows that most of the successful 

swarms required fewer than half of the allotted GALLOP 

iterations in order to locate the global minimum. 

Conclusions and availability 

The use of GPUs for processing diffraction data has been 

steadily increasing, with several examples of their use in powder 

diffraction.31-34 In this work, we have combined a local 

optimiser, originally developed for machine learning 

applications and tuned to run on GPUs, with a particle swarm 

global optimiser to create a new and powerful method for 

solving molecular crystal structures from powder diffraction 

data. The two components of the GALLOP algorithm work in 

tandem; GPU-accelerated local optimisation provides rapid and 

efficient improvement of the χ2 figure of merit for each particle, 
 

Fig. 1 The Z’ = 2 asymmetric unit of selexipag, viewed down the b axis. The reference 

structure (CSD refcode VOHVIA) is shown in red, the GALLOP structure in blue. Hydrogen 

atoms have been omitted for clarity. RMSD = 0.164 Å. 

Fig. 2  A box plot of the number of iterations required to reach the global minimum 
for each structure. 

 

 

whilst the particle swarm optimiser aggregates information 

from a large number of optimised particles, allowing it to 

initialise new starting points for the local optimiser in promising 

regions of the hypersurface. 

The results presented here show that it considerably 

outperforms DASH in terms of speed and frequency of success 

for high-complexity problems that are increasingly typical of the 

polycrystalline materials now being generated, particularly by 

mechanochemistry. We envisage that the GALLOP approach will 

be of particular interest to crystallographers and material 

scientists working in high-throughput environments, where a 

rapid turnaround of results is of paramount importance. At 

present, our implementation of GALLOP is able to make use of 

diffraction data that has been Pawley fitted using DASH or 

GSAS-II.35 Users interested in applying GALLOP to their own 

problems need not invest in dedicated GPU hardware in order 

to take advantage of this new approach; several cloud-based 

providers offer free or low-cost access to GPU-equipped virtual 

machines on which GALLOP can be rapidly deployed. To 

facilitate collaboration and further improvements to the 

approach, the full Python source code for GALLOP and 

instructions for its use are freely available at 

https://www.github.com/mspillman/GALLOP. The program can 

be operated through a versatile browser-based graphical user 

interface that provides control over the inputs, run setup 

parameters and allows visualisation of the best structure during 

each iteration, plus the ability to download the best CIFs during 

the runs. Alternatively, a Python API can also be used, which 

allows for seamless interaction with other libraries in the 

Python ecosystem. 

 

 

 

Parameter Selexipag  CT-DMF2 

Swarm frequency of success / % 18 55 

Run time / mins  116 104 

Median solution time / mins 41 11 

Best solution RMSD / Å 0.164 0.162 

Average solution RMSD / Å 0.192 0.175 

P(success ǀ run)  0.84 > 0.99 

https://www.github.com/mspillman/GALLOP
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† Tensor processing unit: Google’s proprietary hardware for rapid 
training of neural networks. The latest TPU chips offer more on-
board memory and performance compared to the latest Nvidia 
GPUs but are only publicly accessible via Google Cloud products. 

‡ With a novel crystal structure determination, the actual 
orientation of a group such as -SO2NH2 can typically be deduced 
from one or more of the following: hydrogen-bonding 
considerations, Rietveld refinement and DFT-D crystal structure 
optimisation. 
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