
1©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved.

THE BLACKBOX OF DPAPI

The Gift That Keeps on Giving



2©  Mandiant, a FireEye Company.  All rights reserved.

About the Speaker

 Bart Inglot (@BartInglot)

 Senior Consultant, Mandiant

 Incident Responder

 Rock Climber

 Globetrotter

- 1 year in Brazil

- 8 years in the UK 

- recently married and relocated to Singapore



3©  Mandiant, a FireEye Company.  All rights reserved.

Presentation Overview

 Introduction to DPAPI.

 3 case studies:

1) Interesting example of using DPAPI by Mandiant.

2) Not-so-effective DPAPI use by an APT group.

3) Replaying RDP session.

 Q&A.



4©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

INTRODUCTION TO DPAPI

Peeking into the Blackbox



5©  Mandiant, a FireEye Company.  All rights reserved.

What is Data Protection API (DPAPI)?

 A special data protection interface, introduced in Windows 2000, aims to protect secrets on disk.

 Goals

- Tie encryption key to a particular user or system, with an optional salt.

- Use strong and standardised cryptographic algorithms (PBKDF2, AES, SHA, etc.).

- To be transparent to the user.

 Key features

- Simple to use: CryptProtectData() & CryptUnprotectData().

- Technical implementation is complicated and not well documented by Microsoft.

- Widely used as a cryptographic blackbox: Internet Explorer, Outlook, Skype, EFS, KeePass, etc.

 First analysed in 2003, a commercial recovery application available since 2005.

 Python library (DPAPIck) available since 2010, last commit March 2017.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



6©  Mandiant, a FireEye Company.  All rights reserved.

How it works?

Encrypt Decrypt  .

Application

DPAPI

User Secrets

Data BLOB

Application

CryptUnprotectData()

DPAPI

Data BLOB

User Secrets

CryptProtectData()

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



7©  Mandiant, a FireEye Company.  All rights reserved.

.NET Wrapper – ProtectedData Class

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



8©  Mandiant, a FireEye Company.  All rights reserved.

.NET Wrapper – Example

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



9©  Mandiant, a FireEye Company.  All rights reserved.

WinApi – CryptProtectData()

BOOL WINAPI CryptProtectData(

_In_            DATA_BLOB  *pDataIn,

_In_opt_     LPCWSTR szDataDescr,

_In_opt_     DATA_BLOB *pOptionalEntropy,

_Reserved_ PVOID pvReserved,

_In_opt_     CRYPTPROTECT_PROMPTSTRUCT *pPromptStruct,

_In_            DWORD dwFlags,

_Out_         DATA_BLOB *pDataOut

);

https://msdn.microsoft.com/en-us/library/aa380261(vs.85).aspx

User data to be encrypted

Optional description

Optional entropy (salt)

Optional password prompt 

Flags (user/system/local machine scope)

Encrypted BLOB

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay

https://msdn.microsoft.com/en-us/library/aa380261(vs.85).aspx


10©  Mandiant, a FireEye Company.  All rights reserved.

WinApi – CryptUnprotectData()

BOOL WINAPI CryptUnprotectData(

_In_            DATA_BLOB *pDataIn,

_Out_opt_  LPWSTR *ppszDataDescr,

_In_opt_     DATA_BLOB *pOptionalEntropy,

_Reserved_ PVOID pvReserved,

_In_opt_     CRYPTPROTECT_PROMPTSTRUCT *pPromptStruct,

_In_            DWORD dwFlags,

_Out_         DATA_BLOB *pDataOut

);

https://msdn.microsoft.com/en-us/library/aa380882(v=vs.85).aspx

BLOB to be decrypted

Optional description

Optional entropy (salt)

Optional password prompt 

Flags (user/system/local machine scope)

Plaintext secret

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay

https://msdn.microsoft.com/en-us/library/aa380882(v=vs.85).aspx


11©  Mandiant, a FireEye Company.  All rights reserved.

DPAPI Blob: Full view of encrypted text file

Cipher text (154 bytes):

Plain text (11 bytes):

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



12©  Mandiant, a FireEye Company.  All rights reserved.

DPAPI Blob: Partial view of encrypted “cmd.exe”

Cipher text (345,234 bytes):

Plain text (345,088 bytes):

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



13©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

CORRUPTING EXFIL

Example of Legitimate Use of DPAPI



14©  Mandiant, a FireEye Company.  All rights reserved.

Background

 The client was notified they are compromised.

 Mandiant was engaged to perform Incident Response.

 Within first few days we discovered a legacy system (Windows 2000) with GBs of staged exfil.

 The files were encrypted RAR files.

 Action plan:

- Buy time by corrupting the staged data and allow them to steal that.

- Do not tip off the attackers.

 Key features:

- Efficiently corrupt the files but make sure they’re not recoverable.

- Cover the tracks by faking the file timestamps (aka “timestomping”).

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



15©  Mandiant, a FireEye Company.  All rights reserved.

Challenges

 Efficiently corrupt the files but make sure they’re not recoverable.

- Encrypted RAR file with and without header.

- Corner cases: very small / large files.

- Double-XOR == plaintext.

 Cover the tracks by faking the file timestamps (aka “timestomping”)

- All 4 timestamps (MACB)?

 Bonus points: different file formats, reversible corruption, monitoring staging dirs (e.g. WMI trigger),

decent logging (can be your enemy).

 Other archive formats: CAB, 7zip, Zip (inc. Office files).

 Treat differently?   file creation VS file rename VS file copy

 The file has a lock?   still writing or already stealing

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



16©  Mandiant, a FireEye Company.  All rights reserved.

Recipe

 Keep the secret.

- Split parts of the encryption key between the application and the config.

- DPAPI encrypt the config on 1st execution.

- Initiate PRNG with the key.

- Use PRNG for byte positions and XOR values.

 Monitor pre-defined list of folders for changes.

- __InstanceCreationEvent (WMI).

- System.IO.FileSystemEventHandler (.NET).

 Corrupt the file.

- Keep trying to open the file (sleep).

- XOR bytes:   ( buffer[pos] ^ rnd.Next() ) + 1

- Update Modification timestamp.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



17©  Mandiant, a FireEye Company.  All rights reserved.

DEMO

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



18©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

PROTECTING MALWARE PAYLOAD

A Little Less Legitimate Use of DPAPI



19©  Mandiant, a FireEye Company.  All rights reserved.

Background

 Mandiant was engaged to perform Incident Response (APJ region).

 State-sponsored attacker (most likely APT17).

 We identified a legit Windows service (“FastUserSwitchingCompatibility”) that was re-purposed.

- Service DLL: C:\windows\system32\adb.dll

- Mysterious: C:\Windows\System32\adb.nls

 Submitted for analysis to the FLARE team and the report was surprisingly short:

- Malware is a loader, likely for a HIGHNOON family.

- It expects to load as a service and has a non-standard ServiceMain function.

- It uses DPAPI to protect data and tie it to the system (and maybe user) that runs the malware.

- “Attempting to decrypt this will fail on systems other than the one it was installed on, unless

some research is done to try to obtain the necessary crypto material from the compromised 

system.”

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



20©  Mandiant, a FireEye Company.  All rights reserved.

Challenge

 Modular backdoor used by some APT groups with a rootkit capability.

 Installers – x86 & x64, require password as the argument.

 Drops a launcher (.DLL) and payload (usually .DAT), attempts to hijack an existing “netsvc” service.

 The payload is stored on disk in a DPAPI encrypted format.

 Capabilities:

- Proxying network connections.

- Concealing network connections.

- Loading memory-resident DLL modules.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



21©  Mandiant, a FireEye Company.  All rights reserved.

Action Plan

 Determine DPAPI encryption scope (user VS system) used to protect malware.

 Decode the encrypted payload offline.

 Create IOCs where possible:

- Loader

• Hijacked services.

• Non-standard ServiceMain().

• Static file analysis, etc.

- Encrypted payload

• DPAPI encrypted BLOB in unusual locations.

• DPAPI optional description.

- Plaintext payload

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



22©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: DPAPI Encryption Scope

 “Programs running under the built-in system accounts, such as Windows services running as 

LocalSystem, cannot use DPAPI with user-specific keys.”

 Load the BLOB with DPAPIck and inspect the flags.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



23©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Signaturing Encrypted BLOBs

 DPAPI encrypted BLOB.

- Trial & Error: Compared several payloads, used 24 first bytes.

 DPAPI Optional Description.

rule DPAPI_Desc_is_ABC {

meta:

created = "<REDACTED>"

md5 = "<REDACTED>"

strings:

$desc = {65 00 66 00 67 00 00 00}      // hex values for “ABC”

condition:

uint32(0x2c) == 0x00000008 and $desc at 48

}

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



24©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Offline DPAPI Decryption

 Necessary to decrypt system secrets:

- Registry Hives – SYSTEM & SECURITY

- System’s Master Keys (“C:\Windows\System32\Microsoft\Protect\*”)

 Necessary to decrypt user secrets:

- User SID

- User’s Master Keys (“%APPDATA%\Microsoft\Protect\{SID}\*”)

- Logon password used to unlock the master key – "SHA1(UTF16LE(user_password))"

• Alternatively SYSKEY, SECURITY

• Or brute-force the password of the CREDHIST file

• Or extract the SHA1 from a memory dump (“lsass.exe”), see "getcredentialsha1.py" 

from DPAPIck

 Optional for both: Entropy data.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



25©  Mandiant, a FireEye Company.  All rights reserved.

DEMO

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



26©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

RDP KEYS EXTRACTION

Not So Secret Anymore



27©  Mandiant, a FireEye Company.  All rights reserved.

Background

 The attackers accessed a domain controller via Remote Desktop (RDP).

 There’s little evidence on the host but the client has a full packet capture (PCAP).

 If we could peek into the RDP session, we’d find out what happened. 

 Information available:

- Hostname, keyboard layout, clipboard, file transfer, screen rendering, etc.

 The concept of RDP replay isn’t new but until recently it wasn’t widely available.

- Thank you Context IS for “RDP-Replay”, an open-source tool based on FreeRDP.

- Great introduction into RPD replay at https://contextis.com/resources/blog/rdp-replay/.

 Two variants of encryption: 

- RC4 (All OS)

- SSL (Vista+, preference)

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay

https://contextis.com/resources/blog/rdp-replay/


28©  Mandiant, a FireEye Company.  All rights reserved.

Challenges

 Identifying locations of encryption keys.

 Extracting them offline (think “enterprise forensics”).

 Convert them to a format that we can use.

 Supporting both RC4 and SSL.

 Replay RDP traffic with RDP-Replay.

 Tackle the problem of Diffie-Hellman Key Exchange.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



29©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Extracting RDP Keys on Active Systems (Vista+)

 Jailbreak by iSEC Partners

- Launches “mmc.exe” with Certificates snap-in and hooks two Crypto API libraries.

 Mimikatz 

- Example with v2.1, built 6 May 2016.

- Context IS suggested successful use with PsExec.

- Break the private key out of the PFX file:

• $ openssl pkcs12 -in file.pfx -nodes -out x509.pem

• Use password:  mimikatz

• Get out the x509 private key.

- If you want to view a x509 PEM private key:

• $ openssl rsa -noout -in x509.pem –text

 Both require local admin privileges.

mimikatz # crypto::capi

Local CryptoAPI patched

mimikatz # privilege::debug

Privilege '20' OK

mimikatz # crypto::cng

"KeyIso" service patched

mimikatz # crypto::certificates 

/systemstore:local_machine /store:"Remote 

Desktop" /export

* System Store  : 'local_machine' (0x00020000)

* Store:  […]

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



30©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Locations of RDP Keys

Pre-Vista

 RC4

- LSA Secret named “L$HYDRAENCKEY_28ada6da-d622-11d1-9cb9-00c04fb16e75”   (380 bytes, plaintext)

Vista+

 RC4

- SYSTEM\CurrentControlSet\Control\Terminal Server\RCM\Secrets   (DPAPI encrypted)

• L$HYDRAENCKEY_52d1ad03-4565-44f3-8bfd-bbb0591f4b9d   (380 bytes)

• L$HYDRAENCKEY_28ada6da-d622-11d1-9cb9-00c04fb16e75   (1,340 bytes)

 SSL

- One key in Windows certificates store and marked as non-exportable.

- %ALLUSERSPROFILE%\Application Data\Microsoft\Crypto\RSA\MachineKeys

• Files have embedded name, search for “TSSecKeySet1”

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



31©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Extracting RDP Keys Offline

 Use-case: a forensic image or host agent.

 Pre-Vista

- SYSTEM and SOFTWARE hives.

 Vista+

- (registry hives as above)

- System’s Master Keys for DPAPIck.

• C:\Windows\System32\Microsoft\Protect\*

- SSL key

• %ALLUSERSPROFILE%\Application Data\Microsoft\Crypto\RSA\MachineKeys\*

• Extract the private key – find the first DPAPI header and read until the next header.

- Magic bytes: \x01\x00\x00\x00\xD0\x8C\x9D\xDF …

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



32©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Interpreting Exported RDP Keys

 The files appear to be in PRIVATEKEYBLOB format (aka PVK), however…

 OpenSSL and Dr Stephen Henson’s “PVK to PEM conversion tool” failed

 The reason:

- No PUBLICKEYSTRUC.

- Values are zero-padded.

- Extraneous zero-padded footer.

 After fixing the PVK structure, borrow CryptImportKey() from CryptoUnLocker.py

by Kyrus.

- Bug? The bytes_to_long() needs to be reversed.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



33©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Getting Around DH Key Exchange

 The SSL protocol can use the Diffie-Hellman key exchange, which can provide
Perfect Forward Secrecy.

- “PFS is a way for two nodes to cryptographically agree upon a key that can not later 
be calculated, even if you get the private keys of both nodes.”

 To check in WireShark, search for “Server Hello” message in the SSL handshake

- Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (Default, Win7 SP1)

- Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (FIPS compliant, Win7 SP1)

 Bad solution

- Change the supported crypto – https://www.nartac.com/Products/IISCrypto

• Disable ECDHE key exchange.

• Reorder cipher suites to make RSA default.

 Terrible solution

- Configure the RD Session Host server to use FIPS as the encryption level.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay

https://www.nartac.com/Products/IISCrypto


34©  Mandiant, a FireEye Company.  All rights reserved.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



35©  Mandiant, a FireEye Company.  All rights reserved.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



36©  Mandiant, a FireEye Company.  All rights reserved.

Recipe: Decrypting RDP Traffic

 Open the PCAP in Wireshark 2.0

 Right click a packet of the RDP session, and select “Decode As...”

- TCP port: “3389”.

- Current decoding: “SSL”.

 Right click a packet of the RDP session, and select “Protocol Preferences -> RSA keys list…”

 Add a key with the following properties:

- IP Address: <RDP server's IP>

- Port: 3389

- Protocol: tpkt

- Password: <empty>

 Right click a packet of the RDP session, and select “Follow -> SSL Stream”.

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



37©  Mandiant, a FireEye Company.  All rights reserved.

Solution: rdpkeys.py

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay

 https://volatility-labs.blogspot.sg/2016/12/results-from-2016-volatility-plugin.html

https://volatility-labs.blogspot.sg/2016/12/results-from-2016-volatility-plugin.html


38©  Mandiant, a FireEye Company.  All rights reserved.

DEMO

Introduction Case #1: Corrupting exfil Case #2: Malicious payload Case #3: RDP replay



39©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

QUESTIONS?

bartosz.inglot@mandiant.com



40©  Mandiant, a FireEye Company.  All rights reserved.©  Mandiant, a FireEye Company.  All rights reserved. 

THANK YOU


