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1 Introduction
Students of Machine Learning are usually introduced to Information Theory
through brief tutorials which are too superficial to really understand what’s
going on. One could always read a specialized book, but this might prove
too much of an effort for someone who doesn’t intend to become an expert in
Information Theory.

This tutorial wants to be a reasoned exposition where everything follows
logically from what precedes it. I hope I succeeded in that.

Because of the intended audience, some theorems are presented without
proof but are thoroughly explained to give a solid intuition of why they’re true.
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To make this tutorial self-contained, I took the liberty of proving some clas-
sical results such as the Inclusion Exclusion Principle and Jensen’s Inequality
as I needed them to prove other results.

Moreover, I decided to conclude this tutorial with two sections about the
celebrated EM Algorithm which I think everyone should know even if they’re
just interested in, say, Deep Learning. I didn’t throw in the EM Algorithm
just for the fun of it: there’s an interesting, if not strong, connection with
Information Theory.

A warning: every derivation is my own so keep your eyes open and let me
know if you find any mistakes!

Part I

The theory
2 Mean or Expected Value
Before we dive into Information Theory, we’d better review the definition and
some important properties of the mean or expected value. We’ll be focusing on
the case of finite discrete random variables here, i.e. random variables which
take only a finite number of values. For the infinite case there are some subtleties
about convergence. Also, for the continuous case one just have to replace all
the sums with integrals.

Definition 1. Let X be a discrete random variable with distribution p. The
mean of X is defined as

EX∼p[X] =
∑
x

p(x)x.

Remark 1. When there is no ambiguity, we can drop the distribution, the vari-
able, or both:

EX∼p[X] = EX [X] = Ep[X] = E[X].

Definition 2. With a slight abuse of notation, if X is a random variable, we
also see X as the set of values which X can take so that we can write, for
instance, ∀x ∈ X, p(x) ∈ [0, 1].

Definition 3. If X is a random variable and f a function, then Z = f(X) is a
random variable such that, for all z,

p(z) = P (Z = z) = P (f(X) = z) = P (X ∈ f−1(z)) =
∑

x:f(x)=z

p(x).

Proposition 1. Let X be a random variable of distribution p and let f be a
function. The mean of the random variable f(X) can be evaluated as follows

Ef(X)[f(X)] = EX [f(X)] =
∑
x

p(x)f(x).
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Proof. Let Z = f(X) and let q be the distribution of Z. Then,

Ef(X)[f(X)] = EZ [Z]

=
∑
z

q(z)z

=
∑
z

 ∑
x:f(x)=z

p(x)

 z

=
∑
z

∑
x:f(x)=z

p(x)z

=
∑
z

∑
x:f(x)=z

p(x)f(x)

=
∑
x

p(x)f(x) = EX [f(X)].

Note that the double sum can be replaced with a single sum over x because
{x1, x2, . . . , xn} =

⋃
z{x|f(x) = z}.

Definition 4. We can generalize definition 1 by considering a list of random
variables X1, . . . , Xn:

EX1,...Xn [f(X1, . . . , Xn)] =
∑
x1

· · ·
∑
xn

p(x1, . . . , xn)f(x1, . . . , xn).

Definition 5. If X1, . . . , Xn are random variables, we can define a correspond-
ing vector random variable as

X = (X1, . . . , Xn) = [X1 · · ·Xn]t.

Proposition 2. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are vector random
variables, i.e. vectors of random variables, then

p(. . . , x, . . .) = p(. . . , x1, . . . , xn, . . .)

p(. . . , x, . . . | . . . , y, . . .) = p(. . . , x1, . . . , xn, . . . | . . . , y1, . . . , ym, . . .),

where x = (x1, . . . , xn) and y = (y1, . . . , yn).

Proof. Let’s try not to be too technical. We’ll indicate events by writing predi-
cates between curly braces. For instance, the event “X takes value x” is written
as {X = x}. Now note that

p(x, y) = p(X = x, Y = y) = P ({X = x} ∩ {Y = y}),

which means that p(x, y) is really the probability of the intersection of the two
events {X = x} and {Y = y}. Therefore, since

X = x ⇐⇒ Xi = xi, i = 1, . . . , n,
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then
{X = x} = {X1 = x1} ∩ · · · ∩ {Xn = xn},

which means that

p(. . . , x, . . .) = P (· · · ∩ {X = x} ∩ · · · )
= P (· · · ∩ {X1 = x1} ∩ · · · ∩ {Xn = xn} ∩ · · · )
= P (. . . , x1, . . . , xn, . . .).

So, basically, a comma in these expressions means “and ” or “intersection”. The
proof for p(. . . , x, . . . | . . . , y, . . .) is analogous.

Remark 2. Thanks to proposition 2, we can always simplify notation by writing
just “X” or “x” instead of “X1, . . . , Xn” or “x1, . . . , xn”, respectively, and we can
generalize results by doing the opposite. For instance,

EX [f(X)] =
∑
x

p(x)f(x)

implies the generalization

EX1,...,Xn [f(X1, . . . , Xn)] =
∑
x1

· · ·
∑
xn

p(x1, . . . , xn)f(x1, . . . , xn).

Note that, to be precise, the f in the generalization is not exactly the same
as the f in the simple case, but we won’t be afraid of abusing notation when
convenient.

Definition 6. The mean of a vector random variable X = (X1, . . . , Xn) is
defined as

E[X] = (E[X1], . . . ,E[Xn]).

In general, if M is an m× n matrix random variable, then

[E[M ]]ij = E[Mij ] i = 1, . . . ,m, j = 1, . . . , n.

Proposition 3. The mean of a constant is equal to the constant itself.

Proof. A constant c can be seen as a random variable X which takes the value
c with probability 1. Thus,

E[c] = EX [X] =
∑
x

p(x)x = c.

Proposition 4. E[·] is linear.
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Proof. If X is a random variable, a, b two constants, and f(x) = a+ bx, then

EX [a+ bX] = EX [f(X)]

=
∑
x

p(x)f(x)

=
∑
x

p(x)(a+ bx)

= a
∑
x

p(x) + b
∑
x

p(x)x

= a+ bEX [X].

Proposition 5. Let X,Y be two random variables. Then

EX,Y [f(X)] = EX [f(X)].

In general, we can drop any random variable the argument to the mean doesn’t
depend on.

Proof. This is easy:

EX,Y [f(X)] =
∑
x

∑
y

p(x, y)f(x)

=
∑
x

∑
y

p(x)p(y|x)f(x)

=
∑
x

p(x)f(x)
∑
y

p(y|x)

=
∑
x

p(x)f(x) = EX [f(X)].

For the general case, we can consider an arbitrary sequence X1, . . . , Xn of ran-
dom variables and prove that we can drop the first variable which doesn’t appear
in the argument to the mean. Since n is finite, by repeating this process we must
be left with a sequence Xi1 , Xi2 , . . . Xik of random variables which all appear in
the argument to the mean.

Remark 3. Thanks to property 5, we can adopt the convention that ifX1, . . . , Xn

are random variables and f is a function which depends on all of them and them
alone, then we can write

E[f(X1, . . . Xn)] = EX1,...,Xn [f(X1, . . . , Xn)].
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Remark 4. Given the notation and the conventions we established, we can easily
conclude that, if L is linear, then E[·] ◦ L = L ◦ E[·]. Indeed,

(E[·] ◦ L)(X) = E[L(X)] =
∑
x

p(x)L(x)

=
∑
x

L(p(x)x)

= L

(∑
x

p(x)x

)
= L(E[X]) = (L ◦ E[·])(X).

For instance, if L(X1, . . . , Xn) =
∑n
i=1 aiXi, where X1, . . . , Xn are random

variables and a1, . . . , an constants, then

(E[·] ◦ L)(X1, . . . , Xn) = E

[
n∑
i=1

aiXi

]

=

n∑
i=1

aiE[Xi] = (L ◦ E[·])(X1, . . . , Xn),

by defining E[·](X1, . . . , Xn) = (E[X1], . . . ,E[Xn]).
We can clean things up by using vectors. If X=[X1, . . . , Xn]T and a =

[a1, . . . , an]T , then our example becomes

(E[·] ◦ L)(X) = E[aTX]

= aTE[X] = (L ◦ E[·])(X).

Definition 7. Let X,Y be two random variables and f a function. The condi-
tional mean of f(X, y) with respect to X given Y is defined as

EX|Y [f(X, y)] =
∑
x

p(x|y)f(x, y),

where y is any fixed real number and not a random variable, so we could define
a new random variable as Z = EX|Y [f(X,Y )]. Note that we didn’t write y, but
Y this time. A more explicit way to write it would be Z = EX|Y [f(X, ·)](Y ),
which makes it clear that we’re transforming the variable Y through the function
y 7→ EX|Y [f(X, y)].

Proposition 6. If X,Y are two random variables, then

EX,Y [f(X,Y )] = EY
[
EX|Y [f(X,Y )]

]
.
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Proof. The proof is easy:

EX,Y [f(X,Y )] =
∑
x

∑
y

p(x, y)f(x, y)

=
∑
x

∑
y

p(x|y)p(y)f(x, y)

=
∑
y

p(y)
∑
x

p(x|y)f(x, y)

= EY
[
EX|Y [f(X,Y )]

]
.

Proposition 7. If X,Y,C are random variables, then, for any fixed c,

EX,Y |C [f(X,Y, c)] = EY |C
[
EX|Y,C [f(X,Y, c)]

]
.

This is just a generalization of proposition 6.

Proof. This proof can be derived from the proof of proposition 6 just by adding
“|C”, “ |c” and “, c” in the right places:

EX,Y |C [f(X,Y, c)] =
∑
x

∑
y

p(x, y|c)f(x, y, c)

=
∑
x

∑
y

p(x|y, c)p(y|c)f(x, y, c)

=
∑
y

p(y|c)
∑
x

p(x|y, c)f(x, y, c)

= EY |C
[
EX|Y,C [f(X,Y, c)]

]
.

Corollary 1. If X,Y are independent random variables, then

EX,Y [XY ] = EX [X]EY [Y ].

Proof. First of all, because X,Y are independent, in general, for any fixed y,

EX|Y [f(X, y)] =
∑
x

p(x|y)f(x, y)

=
∑
x

p(x)f(x, y)

= EX [f(X, y)].

Now we can conclude the proof:

EX,Y [XY ] = EY
[
EX|Y [XY ]

]
= EY [EX [XY ]]

= EY [Y EX [X]]

= EX [X]EY [Y ].
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3 Entropy
Entropy is a function which assigns single real numbers to finite discrete dis-
tributions. Some people refer directly to the distributions and others to the
random variables associated with them. We’ll be using whatever notation is
more convenient for what we want to say. Be flexible and learn not to be thrown
off by different notations!

In what follows, X,Y, Z are always discrete random variables, p, q, r are
finite discrete distributions, and x, y, z are values taken by the variables X,Y, Z,
respectively.

Definition 8. Self-information
If X follows distribution p, the self-information of x is defined as

I(x) = log2

1

p(x)
= − log2 p(x).

The formula above says that values with high probability have low self-
information, whereas values with low probability have high self-information.
We’ll see later why this makes sense.

Note that I measures the amount of information. We’ll often say just “in-
formation” instead of “amount of information”.

Definition 9. Entropy
The entropy of X is defined as

H(X) = EX [I(X)] = −
∑
x

p(x) log2 p(x).

The entropy is the expected amount of information contained in a random
variable. A variable may assume values x1, x2, . . . , xn and each value may have
a different self-information so it makes sense to summarize the information con-
tained in all the values with the mean.

As always, note that we didn’t write EX [I(x)] with a lowercase x. While
I(x) is just a real number, I(X) is a random variable obtained by applying the
function I to the random variable X.

4 Entropy and Codes
Consider the following scenario. We have a random variable X with distribution
p. We take samples x1, x2, . . . from p and send these values through a channel.
We send the samples as we generate them so this process may go on forever.

To send the samples, we must encode them some way. We can define a code,
i.e. a function C : X → Σ∗ which maps values x to words over an alphabet Σ,
which is just a set of arbitrary symbols. The asterisk is the Kleene star, which
takes a set of symbols and returns the set of all the words (of finite non-negative
length) over those symbols. For instance,

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}
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is the set of all the finite binary strings, including the empty string (denoted by
ε).

The extension of C is defined as follows:

C∗(x1, x2, . . . , xn) = C(x1)C(x2) · · ·C(xn)

where the juxtaposition indicates concatenation of strings. Basically, we encode
sequences of samples xi by concatenating the encoded samples. We say that C
is uniquely decodable if C∗ is injective. Note that if C∗ is not injective, then
there are two different sequences of samples which result in the same encoded
string and thus, given the encoded string, we can’t recover the original sequence
of samples (we can recover both sequences but which one is the right one?).

Theorem 1. Shannon’s Source Code Theorem
Let X be a discrete random variable and C : X → Σ∗ a uniquely decodable

code. If C is optimal, i.e. it minimizes EX [length(C(X))], then

H(X)

log2 |Σ|
≤ EX [length(C(X))] <

H(X)

log2 |Σ|
+ 1.

To understand theorem 1 better, note that if we choose Σ = {0, 1}, i.e. we
encode the symbols as binary strings, then the inequality simplifies to

H(X) ≤ EX [length(C(X))] < H(X) + 1.

We can also be more explicit:

H(X) ≤ min
C

EX [length(C(X))] < H(X) + 1.

So, we can’t do better than H(X): no matter which code we choose, the
expected length of the encoded symbols will be at least H(X). Note, though,
that if the code is optimal then we can’t do worse than H(X) + 1. But where
does that +1 come from? Before finding that out, we must observe a few things.

You should remember that H(X) is the expected self-information, so we can
rewrite the formula above as

EX [I(X)] ≤ min
C

EX [length(C(X))] < EX [I(X)] + 1.

This suggests that I(X) has something to do with length(C(X)). In fact, I(x)
measures the information “contained” in x by counting the number of bits an
optimal code uses to represent x. As we observed before, the definition I(x) =
log2

1
p(x) suggests that an optimal code will use short strings for frequent samples

and long strings for rare samples. (As a side note, observe that if X was a
continuous random variable then any sample x would be infinitely rare and
our reasoning would fall apart!) This explains, at least in part, why the self-
information and the entropy contain a logarithm.

10



If we choose a code which assigns each value x a string whose length is given
by I(x), then the expected length of the encoded samples is H(X). Unfortu-
nately, I(x) is not always an integer, so the best we can do is take the smallest
integer greater than or equal to I(x), which is dI(x)e. We have the following:

I(x) ≤ dI(x)e < I(x) + 1

EX [I(X)] ≤ EXdI(X)e < EX [I(X) + 1] = EX [I(X)] + 1

H(X) ≤ EXdI(X)e < H(X) + 1. (1)

For this derivation to make sense, we should also prove that there exists an actual
(uniquely decodable) code C such that length(C(x)) = dI(x)e, but, lucky for
us, our main goal is just to understand things intuitively!

4.1 Can we do better?
We saw that by encoding one sample at a time we may waste up to one bit
per sample on average since we need to round I(x) up to the nearest integer.
What would happen if we grouped samples in blocks of n samples and encoded
a group at a time?

The easiest way to do this is to define an n-dimensional random variable
Z = (X1, X2, . . . , Xn), where the Xi are independent copies of X. This makes
sense because taking n samples from the same variable X is the same as taking a
single sample from each one of n i.i.d (independent and identically distributed)
variables Xi which follows the same distribution as X.

Because X1, X2, . . . , Xn are independent, p(z) = p(x1)p(x2) · · · p(xn). This
means that

I(z) = − log2 p(z)

= − log2

n∏
i=1

p(xi)

= −
n∑
i=1

log2 p(xi)

=

n∑
i=1

I(xi).
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As a consequence,

H(Z) = EZ [I(Z)]

= EZ

[
n∑
i=1

I(Xi)

]

=

n∑
i=1

EXi [I(Xi)]

=

n∑
i=1

H(Xi)

= nH(X)

thanks to the linearity of E[·] and the fact that the Xi are independent copies
of X.

Thanks to inequality 1, we get the following:

H(Z) ≤
nH(X) ≤

H(X) ≤

EZdI(Z)e
EZdI(Z)e
EZdI(Z)e

n

< H(Z) + 1

< nH(X) + 1

< H(X) +
1

n
.

⇐⇒
⇐⇒

Since EZdI(Z)e is the average number of bits sent for one block of n samples,
by dividing by n we get the average number of bits sent per sample.

As we can readily see, by encoding n samples at a time, we’ve narrowed the
interval by n times. This means that, at least in theory, we can get as close to
H(X) as we like. Equivalently, EZdI(Z)e

n → H(X) as n → +∞. This gives us
another version of theorem 1:

Theorem 2. Shannon’s Source Code Theorem (asymptotic version)
A sequence of n samples generated from a discrete random variable X with

entropy H(X) can be compressed into nH(X) bits on average with negligible
loss as n → ∞. Conversely, no uniquely decodable code can do better without
incurring loss of information.

Note that if n samples can be compressed into nH(X) bits then each sam-
ple is compressed into H(X) on average, thus the theorem is saying the same
thing. Also, some authors prefer to talk about “n i.i.d. random variables
X1, X2, . . . , Xn” instead of “n samples generated from a random variable X”.
As we said before, they’re just two different ways of saying the same thing.

5 Logarithm and probabilities
Is there a way to justify the logarithm in the definition of the self-information
and, as a consequence, of the entropy without having to resort to codes and
lengths of binary strings?
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We know that H(X) wants to be a measure of the (amount of) information
that we acquire, on average, when we observe the value of the random variable
X. For instance, let’s take X ∼ Ber(µ), which means that X = {0, 1} and

p(x) =

{
µ if x = 1

1− µ if x = 0

or, more concisely, p(x) = µx(1− µ)1−x. To generate samples from X we could
use a coin which lands heads with probability µ.

If we flip the coin and observe the outcome, we have acquired, on average,
H(X) bits of information. Now let’s say we flip the coin again and observe the
outcome. What’s the total amount of information we have acquired? Maybe
H(X)2? Or maybe 2H(X)? The latter makes more sense because each toss
gives us, on average, the same amount of information and the two tosses are
independent so they don’t interact in any way and adding them up seems the
more reasonable thing to do.

Now let’s consider Z = (X1, X2) where X1 ∼ Ber(µ), X2 ∼ Ber(µ) and
p(x1, x2) = p(x1)p(x2), i.e. the two random variables are independent. Observ-
ing a sample from Z should give us, on average, the same amount of information
as observing, together, a sample from X1 and a sample from X2.

We can make things even simpler and reason about I. Let’s assume that
we flip the coin twice and we get the values x1, x2. The amount of information
we acquire is I(z) = I(x1) + I(x2), where z = (x1, x2) is the equivalent sample
from Z.

Another important assumption we must make is that the self-information
of each sample only depends on its probability, i.e. I(x) = f(p(x)) for some
function f . In other words, I(x1) = I(x2) ⇐⇒ p(x1) = p(x2).

Here’s what we can conclude about f for now:

I(z) = I(x1) + I(x2) ⇐⇒
f(p(z)) = f(p(x1)) + f(p(x2)) ⇐⇒

f(p(x1)p(x2)) = f(p(x1)) + f(p(x2)).

The values p(x1) and p(x2) are not completely arbitrary (p(x1), p(x2) ∈ [0, 1]
and p(x1) + p(x2) ≤ 1) but, for simplicity, let’s pretend they are. We can
conclude that

∀x, y ∈ R, f(xy) = f(x) + f(y).

Another reasonable assumption is that I(1) = 0 because if, for instance, a
coin lands heads with probability 1, then tossing the coin and observing the
outcome (heads) doesn’t tell us anything we didn’t already know. This means
that f(1) = 0.

We should also assume that f is strictly decreasing, i.e.

x < y =⇒ f(x) > f(y)

because the rarer and thus more surprising the event, the higher the amount of
information acquired by observing that event.
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It turns out that the logarithm is the only strictly increasing function g :
(0,+∞)→ R such that g(1) = 0 and ∀x, y ∈ R, g(xy) = g(x) + g(y). Since −f
is strictly increasing, this means that

−f(x) = logb x ⇐⇒
f(x) = − logb x =⇒
I(x) = − logb p(x).

We can choose b = 2 which corresponds to measuring the amount of information
in bits.

Intuitively, we can say that the logarithm makes sense because probabilities
multiply while amounts of information add up and what better way to transform
products into sums than using the logarithm?

6 Jensen’s Inequality
Jensen’s Inequality is a very useful and powerful tool. It has to do with convex
and concave functions so let’s talk about convexity first.

6.1 Convexity
Definition 10. If x1, . . . , xn are some points in a vector space (e.g. Rn), then
a convex combination of them is any point xα defined as follows:

xα =

n∑
i=1

αixi, α > 0,

n∑
i=1

αi = 1,

where α = (α1, . . . , αn) and α > 0 ⇐⇒ (αi > 0, i = 1, . . . , n). Note that α
can be interpreted as a finite discrete distribution.

Definition 11. A set is convex if and only if any convex combination of any of
its points is in the set.

Proposition 8. A set is convex if and only if any convex combination of any
pair of its points is in the set. See picture 1.

Proof. Let’s call a convex combination of n points an n-combination. Basically,
we want to prove that definition 11 doesn’t need to consider n-combinations
with n > 2. To do this, it’s enough to prove that any n-combination can be
seen as a sequence of 2-combinations.

We can prove this by induction. The case for n = 2 is trivial, and assuming
this is true for n, we can prove this is also true for n+ 1:

n+1∑
i=1

αixi = (1− αn+1)

[
n∑
i=1

αi
1− αn+1

xi

]
+ αn+1xn+1.

14



Convex Set Non-Convex Set

Figure 1: Example of convex and non-convex sets.

Definition 12. A function is convex if and only if the region above its graph
is a convex set. See picture 2 for the unidimensional case.

Proposition 9. A function is convex if and only if all the planes tangent to it
are completely below it. See picture 4 for an example.

Definition 13. A function f is concave if and only if −f is convex.

6.2 Definition and proof of Jensen’s Inequality
We know that Var[X] ≥ 0 for any random variable X. We can use this fact to
prove a particular case of Jensen’s Inequality:

0 ≤ Var[X] = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E

[
X2
]
− 2E[X]E[X] + E[X]2

= E
[
X2
]
− E[X]2

which implies that
E
[
X2
]
≥ E[X]2.

Note that f(x) = x2 is a convex function. In general, we have the following
result.
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Figure 2: Example of a convex function. Note that the region above the graph
is a convex set (even if unbounded).

Proposition 10. (Jensen’s Inequality) If f is a convex function and X a ran-
dom variable, then E[f(X)] ≥ f(E[X]). The equality holds if and only if f is
linear or X is constant.

Proof. For an intuitive understanding of why the inequality holds, see picture 3.
Let’s consider the unidimensional case first. Let f : R → R be a convex

function. Let’s define a function L(x) = ax+b, where a and b are real constants,
such that L(x) ≤ f(x) for all x ∈ R and L(E[X]) = f(E[X]). See figure 4.

Since f(x) ≥ L(x) for all x ∈ R, we can take the mean of both sides:

E[f(X)] ≥ E[L(X)]

= E[aX + b]

= aE[X] + b

= L(E[X])

= f(E[X]).

If X is constant with p(x0) = 1, then f(x0) = E[f(X)] ≥ f(E[X]) = f(x0),
therefore the equality holds. Also, if f is linear, then E and f , both linear, can
be exchanged (see remark 4) and the equality holds again.

It’s easy to generalize the result to the case of f : Rn → R by defining

16



L(x) = aTx+ b, where a is a fixed n-dimensional vector and b is a fixed scalar:

E[f(X)] ≥ E[L(X)]

= E[aTX + b]

= E

[
n∑
i=1

aiXi + b

]

=

n∑
i=1

aiE[Xi] + b

= aTE[X] + b

= L(E[X])

= f(E[X]).

7 Maximum Entropy
We’ve seen that I(x) = 0 when p(x) = 1. This means that if X can take only
one value x0 then H(X) = EX [I(X)] = I(x0) = − log2 p(x0) = − log2 1 = 0.
But when is H(X) maximum?

Let X be a random variable which takes values x1, x2, . . . , xn with probabil-
ities p1, p2, . . . , pn, respectively. Then

H(X) = EX [I(X)] = −
n∑
i=1

pi log2 pi.

We want to find

argmax
p1,p2,...,pn

−
n∑
i=1

pi log2 pi.

Since log is concave (i.e. −log is convex) we can use Jensen’s Inequality:

H(X) = E
[
log2

1

p(X)

]
≤ log2 E

[
1

p(X)

]
= log2

n∑
i=1

pi
1

pi

= log2 n.

Also, the equality holds when the random variable, i.e. 1
p(X) , is constant, which

means that p1 = p2 = . . . = pn = 1
n . Note that we used proposition 1 in the

derivation above.
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(x1, f(x1))

(x2, f(x2))

(x3, f(x3))

(x4, f(x4))

(x5, f(x5))

X∼U[(X, f(X))]

(X∼U[X], f(X∼U[X]))

Remember that [(X, Y)] = ([X],[Y])

{
X∼ p[(X, f(X))] | p is a distribution

}{
(X∼ p[X], f(X∼ p[X])) | p is a distribution

}

Figure 3: This figure shows Jensen’s Inequality in action.
First of all, note that f is convex. In this example, all the distributions are
defined over the five points (xi, f(xi)), i = 1, . . . , 5. In particular, U is the
Uniform distribution.
Note that v = EX∼U [(X, f(X))] = (EX∼U [X],EX∼U [f(X)]) is a convex combi-
nation of the five points and, thus, v must be in the convex set shown in the
figure. (We chose p = U , but this is true for all distributions.)
Since w = (EX∼U [X], f(EX∼U [X])) must be on the red curve (a portion of f)
and vx = wx, it follows that vy ≥ wy, i.e. EX∼U [f(X)] ≥ f(EX∼U [X]).
Now observe that if X is a constant then the five points are all equal, i.e. they
become a single point. As a consequence, the convex set and the red portion of
f collapse into a single point and the equality holds.
Also, if f is linear than its graph is a straight line and, thus, the red portion of
f coincides with the convex set. Therefore, the equality holds once again.
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x=[X]

L(x)

f(x)

Figure 4: L(x) ≤ f(x) for all x ∈ R and L(E[X]) = f(E[X]).

8 Specifying the distribution
Sometimes it’s useful or even necessary to indicate the distribution of a variable
explicitly. Let X be a discrete random variable and p a distribution for X. Then
we may write:

I(x) = Ip(x) = − log2 p(x)

H(X) = H(p) = EX∼p[I(X)] = −
∑
x

p(x) log2 p(x).

9 Chain rule
The chain rule for the entropy is very simple and shouldn’t surprise you. It
derives directly from what we could call the self-information chain rule:

I(x, y) = I(x|y) + I(y) = I(y|x) + I(x). (2)

This derives directly from

p(x, y) = p(x|y)p(y) = p(y|x)p(x). (3)

In fact, by taking the logarithm and negating 3 we get

− log2 p(x, y) = − log2 p(x|y)− log2 p(y) = − log2 p(y|x)− log2 p(x)

I(x, y) = I(x|y) + I(y) = I(y|x) + I(x).
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Now we can take the mean of equality 2:

EX,Y [I(X,Y )] = EX,Y [I(X|Y )] + EX,Y [I(Y )]

= EX,Y [I(Y |X)] + EX,Y [I(X)]⇐⇒
H(X,Y ) = H(X|Y ) +H(Y )

= H(Y |X) +H(X).

Of course, if X and Y are independent we simply have

I(x, y) = I(x) + I(y)

H(X,Y ) = H(X) +H(Y ).

H(X,Y ) is usually called the joint entropy of X,Y , while H(X|Y ) is called
the conditional entropy. Note that we can define the latter in two ways:

H(X|Y ) = EX,Y [I(X|Y )] = EY [H(X|Y )] =
∑
y

p(y)H(X|y).

Pay particular attention to the term H(X|y) and note that the y is lowercase.
This is short for H(X|Y = y) which means that Y is fixed and equal to y. Also,
the first H(X|Y ) is a scalar, while the one inside EY [·] is a random variable
obtained by transforming Y through the function y 7→ H(X|y).

In accordance with the product rule for the mean (see proposition 6), we
must have

H(X|y) = EX|Y [I(X|y)] = −
∑
x

p(x|y) log2 p(x|y).

This tells us the amount of information, after we’ve already observed that
Y = y, acquired on average by observing the value of X. In general, this amount
depends on the particular value y observed. If we want a measure independent
of y, we can take the mean with respect to Y ending up with

H(X|Y ) = EY [EX|Y [I(X|Y )]] = EX,Y [I(X|Y )],

which tells us the amount of information, after we’ve already observed the value
of Y (whatever the value), acquired on average by observing the value of X.
Again, note that this measure doesn’t depend on the particular value of Y . In
fact, we average over all the possible values of Y to compute a “summary”.

10 Cross Entropy
The cross entropy of two distributions p, q for the discrete random variable X
is defined as

H(p, q) = EX∼p[Iq(X)] = −
∑
x

p(x) log2 q(x).
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Note that this has nothing to do with the joint entropy H(X,Y )!
What’s the meaning of cross entropy? Iq(x) is the self-information of x

assuming that X ∼ q, so what’s the meaning of taking the mean with respect
to p rather than to q? This time it’s better to think about codes.

If Cq : X → {0, 1}∗ is an optimal code for X assuming that X ∼ q, then
length(Cq(x)) ≈ Iq(x). Now we can rewrite the cross entropy as

H(p, q) = EX∼p[length(Cq(X))]

which is the number of bits required on average to transmit each sample x from
X ∼ p, using a code optimized for the case when X ∼ q. It’s clear that

H(p) = H(p, p) ≤ H(p, q)

because Cq is not the optimal code for X ∼ p.
In other words, H(p, q) is the expected number of bits (per sample) required

to transmit samples from X ∼ p when using a code optimized for X ∼ q. More
concisely, H(p, q) is the number of bits required for X ∼ p when optimizing
for X ∼ q. We could also choose better names for the formal parameters (this
is programming lingo) for the cross entropy: H(real, optimize_for). That is,
the transmitted values follows the real distribution, but we’re optimizing for the
optimize_for distribution instead so, if real 6= optimize_for, we lose efficiency
and waste bits.

Please note that the following is false, in general:

H(q) = H(q, q) ≤ H(p, q) (THIS IS WRONG!!!)

As a counterexample, consider p(x) ∼ Ber(0.1) and q(x) ∼ Ber(0.2). We have:

H(q, q) = −
∑
x

q(x) log2 q(x) = −0.2 log2 0.2− 0.8 log2 0.8 ≈ 0.722

H(p, q) = −
∑
x

p(x) log2 q(x) = −0.1 log2 0.2− 0.9 log2 0.8 ≈ 0.522.

11 Kullback-Leibler Divergence
The Kullback-Leibler Divergence (KL Divergence) is often used to measure the
distance between two distributions, but it’s not a real distance. In fact, it isn’t
even symmetric, as we’ll see.

The KL Divergence between two distributions p and q of a variable X is
defined as

KL(p||q) =
∑
x

p(x) log2

p(x)

q(x)
.
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We can rewrite this in many ways:

KL(p||q) = EX∼p
[
log2

p(X)

q(X)

]
= EX∼p[log2 p(X)− log2 q(X)]

= EX∼p[Iq(X)− Ip(X)]

= EX∼p[Iq(X)]− EX∼p[Ip(X)]

= H(p, q)−H(p, p)

= H(p, q)−H(p).

The final expression, KL(p||q) = H(p, q) − H(p), tells us that KL(p||q) is
the price we pay when we transmit samples generated from X ∼ p by using an
optimal code for q rather than for p, measured in bits wasted. It’s intuitively
clear that KL(p||q) ≥ 0, but maybe we should try to prove it.

Once again, we can use Jensen’s Inequality by noticing that −log is a convex
function:

KL(p||q) = EX∼p
[
log2

p(X)

q(X)

]
= EX∼p

[
− log2

q(X)

p(X)

]
≥ − log2 EX∼p

[
q(X)

p(X)

]
= − log2

∑
x

p(x)
q(x)

p(x)

= − log2 1

= 0.

Also, since −log2 is not linear, the equality holds if and only if q(X)
p(X) is a

constant random variable, which requires that q(x) = Kp(x) for all x ∈ X and
some constant K. By summing up, we get

1 =
∑
x

q(x) = K
∑
x

p(x) = K

and so q = p.
In conclusion, KL(p||q) ≥ 0 and KL(p||q) = 0 ⇐⇒ p = q.

12 Mutual Information

12.1 Definition
The mutual information between two random variables X and Y measures the
amount of information we learn about one variable by observing the other.
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Let X,Y be two independent random variables, i.e. p(x, y) = p(x)p(y) for all
x ∈ X, y ∈ Y . It seems logical to require that the mutual information between
X and Y be 0, since X tells nothing about Y and vice versa.

Now consider two random variables X,Y where Y = X. The mutual infor-
mation between X and Y should be maximum because one completely deter-
mines the other. Note that, in this case, p(x, y) = p(x) = p(y) for x = y, and 0
otherwise.

Intuitively, the mutual information should be related to the distance between
p(x, y) and p(x)p(y):

1. if X,Y are independent, the distance between the distributions p(x, y) and
p(x)p(y) should be 0;

2. if X = Y , the distance between p(x, y) and p(x)p(y) should be maximum.

Let’s see if we can use the KL Divergence for this. We’ll use I(X;Y ) to de-
note the mutual information between X and Y , and abuse notation a little by
specifying the arguments of the three p(·) in order to tell them apart:

I(X;Y ) = KL(p(x, y)||p(x)p(y))

= H(p(x, y), p(x)p(y))−H(p(x, y))

=
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)
.

In section 11 we proved that

KL(p||q) = 0 ⇐⇒ p = q,

which means that I(X;Y ) = 0 if and only if X,Y are independent, so our first
requirement is met.

Now we need to check whether I(X;Y ) is maximum when Y = X. As we’ve
already said, if Y = X then

p(x, y) =

{
p(x) if x = y

0 otherwise.

Therefore

I(X;Y ) =
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑
x

∑
y:y=x

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑
x

p(x) log2

p(x)

p(x)2

= −
∑
x

p(x) log2 p(x) = H(X).

23



Note that I(X;Y ) = H(X) = H(Y ) because we can repeat the derivation by
keeping y instead of x. This means that X reveals, on average, H(Y ) bits of
information for Y which corresponds to all the information contained in Y .
Of course, the same is true for Y and H(X). In fact, note that I(X,Y ) is
symmetric.

So it seems our definition is promising; in fact, this is exactly how mutual
information is defined in the literature.

12.2 Alternative formulation and interpretation
We saw that I(X;Y ) is the amount of information about one variable acquired,
on average, by observing the other variable. Can’t we measure that by using
entropy directly?

We know that H(X) is the amount of information acquired, on average,
by observing X and that H(X|Y ) is the amount of information acquired, on
average, by observingX when we have already observed Y . It’s as ifX contained
a certain (expected) amount of information and Y revealed a portion of that
information. Thus, H(X|Y ) is the information in X not revealed by Y . As a
consequence, the expected amount of information about X revealed by Y should
be H(X)−H(X|Y ).

Indeed,

I(X;Y ) =
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑
x

∑
y

p(x, y) log2

p(x|y)

p(x)

= EX,Y [− log2 p(x)]− EX,Y [− log2 p(x|y)]

= H(X)−H(X|Y ).

12.3 Mutual Information VS Correlation
Why do we need mutual information? Can’t we use correlation instead?

The correlation between two random variables X and Y is defined as

ρXY =
Cov[X,Y ]√
Var[X]Var[Y ]

.

The denominator is just used to normalize the correlation so that it’s in [−1, 1].
If X and Y are independent then Cov[X,Y ] = 0. This is easy to prove.

First, let’s write the usual definition of the covariance and then “simplify” it:

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])]

= E [XY −XE[Y ]− E[X]Y + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ].
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By corollary 1, we know that if X and Y are independent then E[XY ] =
E[X]E[Y ] and we must also have Cov[X,Y ] = 0.

So independence implies zero covariance. But what about the converse?
Does zero covariance implies independence like mutual information does?

The answer is no and here’s a counterexample. Let X,Y be two random
variables such that X ∈ {−1, 1} with p(x) = 0.5 for both x ∈ X, and such that
Y = X2. Then

Cov[X,Y ] = E[XY ]− E[X]E[Y ]

= E[X3]− E[X]E[X2]

= 0

because X ∼ X3 (i.e. they’re identically distributed) and both have zero mean.
The problem with covariance and correlation is that they only measure linear

dependence. In fact, in the counterexample above, Y does depend on X, but
not linearly.

12.4 Linear Regression
Here’s a way to see why covariance only measures linear dependence. Let X
and Y be random variables.

We want to find a, b such that the linear function f(x) = ax + b describes
as closely as possible the relation between X and Y . To do this, we’ll minimize
the mean squared error :

L(a, b) = EX,Y
[

1

2
(f(X)− Y )2

]
.

We can use Calculus to minimize L(a, b):

∂L(a, b)

∂a
=

∂

∂a
E
[

1

2
(f(X)− Y )2

]
= E

[
1

2

∂

∂a
(f(X)− Y )2

]
= E[(f(X)− Y )X]

= aE
[
X2
]

+ bE[X]− E[XY ] = 0 (4)

∂L(a, b)

∂b
=

∂

∂b
E
[

1

2
(f(X)− Y )2

]
= E

[
1

2

∂

∂b
(f(X)− Y )2

]
= E [f(X)− Y ]

= aE[X] + b− E[Y ] = 0. (5)
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By combining equations 4 and 5, we get

a =
E[XY ]− E[X]E[Y ]

E [X2]− E[X]2
=

Cov[X,Y ]

Var[X]
.

If Var[X] = 1 the slope of the line that best captures the linear dependence
between X and Y is exactly Cov[X,Y ]. Since the regression line isn’t capable
of capturing nonlinear dependences between X and Y , neither is the covariance
nor the correlation (note that if Var[X] = Var[Y ] = 1 then a = ρXY so, as we
said before, the correlation is just a covariance normalized).

13 A Set Theoretic view of Information Theory
During our discussion about entropy and related measures, we used some ex-
pressions such as “the information contained in [. . .]” which might reminds us
of Set Theory. Let’s see if we can indeed view Information Theory through the
eyes of a set theorist.

Let A be a random variable. We know that H(A) measures the amount
of information contained in A, so maybe we could view A as a set and H(A)
as some kind of “cardinality” of A. The usual cardinality counts the number
of elements in a set, while our cardinality might count the number of bits of
information in the set. In agreement with our intuition, let’s adopt the following
notation:

|A| = H(A)

If two random variables A,B are independent, one doesn’t tell anything
about the other so we could say that they share no information, i.e. |A∩B| = 0.

We saw that, in general, H(A,B) = H(A|B) + H(B), but, if A and B are
independent, then H(A,B) = H(A) + H(B). Doesn’t this remind you of the
Inclusion Exclusion Principle (IEP)?

In its simplest form, the IEP says that

|S ∪ T | = |S|+ |T | − |S ∩ T |,

where this time | · | denotes proper cardinality and S, T are two real sets. The
idea behind the formula is that if S and T have elements in common, then
|S ∪ T | counts them only once whereas |S|+ |T | counts them twice, so we must
subtract |S ∩ T | to compensate for the double counting.

Returning to our random variables A,B and entropy, we can say that if A,B
are independent, i.e. A ∩B = ∅, then

H(A,B) = H(A) +H(B)

= |A|+ |B| = |A ∪B|.

In general,
H(A,B) = |A ∪B| = |A|+ |B| − |A ∩B|.
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As a consequence,

H(A,B) = H(B) +H(A|B)

= |B|+ (|A| − |A ∩B|),

which means that

H(A|B) = |A| − |A ∩B| = |A \B|,

which makes a lot of sense because H(A|B) is the amount of information in A
not in B, i.e. not explained by B.

Moreover,

I(A;B) = H(A)−H(A|B)

= |A| − |A \B| = |A ∩B|,

which, again, makes perfect sense! In fact, I(A;B) can be seen as the (amount
of) information shared by A and B.

In conclusion:

• H(A) = |A|

• H(A,B) = |A ∪B|

• H(A|B) = |A \B|

• I(A;B) = |A ∩B|

See figure 5 for a visual depiction of this interpretation.
From this, one might think that the generalization to the multivariate case

is straightforward. For instance: I(A;B;C) = |A∩B∩C|. Unfortunately, while
this is certainly possible, there are problems of interpretation because I(A;B;C)
may be negative!

13.1 The Inclusion Exclusion Principle
Before talking about the multivariate case, it’s better to properly introduce the
Inclusion Exclusion Principle.

Let A,B be two finite sets and let’s indicate the cardinality (i.e. the number
of elements) of a set X as |X|. As we saw, |A∪B| = |A|+ |B|− |A∩B| because
if A and B have elements in common, then |A|+ |B| counts those elements twice
and subtracting |A ∩B| compensates for that.

The case with 3 variables is similar:

|A ∪B ∪ C| = |A|+ |B|+ |C|
−|A ∩B| − |A ∩ C| − |B ∩ C|
+|A ∩B ∩ C|

See picture 6 to see the Inclusion Exclusion Principle for 3 sets in action. The
generalization to n sets is easy:
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H(A|B) H(B|A)I(A;B)

A B

H(A) = H(A|B) + I(A;B)

H(B) = H(B|A) + I(A;B)

H(A,B) = H(A) +H(B|A)

= H(B) +H(A|B)

H(A|B) = H(A)− I(A;B)

H(B|A) = H(B)− I(A;B)

I(A;B) = H(A)−H(A|B)

= H(A) +H(B)−H(A,B)

= H(B)−H(B|A) = I(B;A)

Figure 5: Information Diagram for visualizing Information Theory relations.
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1. We add the cardinalities of all the n sets (i.e. |X1|, |X2|, . . . , |Xn|).

2. We subtract the cardinalities of all the possible intersections of 2 sets (i.e.
|X1 ∩X2|, |X1 ∩X3|, . . . , |X2 ∩X3|, |X2 ∩X4|, . . . . . . , |Xn−1 ∩Xn|).

3. We add the cardinalities of all the possible intersections of 3 sets (i.e.
|X1 ∩X2 ∩X3|, |X1 ∩X2 ∩X4|, . . . , |Xn−2 ∩Xn−1 ∩Xn|).

4. ... and so on...

5. ... until we add/subtract |X1 ∩X2 ∩ · · · ∩Xn|.

Written in formula, this becomes∣∣∣∣∣
n⋃
i=1

Xi

∣∣∣∣∣ =

n∑
i=1

(−1)i+1
∑

J:J⊂{1,...,n}∧|J|=i

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
where ∧ means “and”. We can also lump the two sums together:∣∣∣∣∣

n⋃
i=1

Xi

∣∣∣∣∣ =
∑

J:∅6=J⊂{1,...,n}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣ . (6)

This shouldn’t be too hard to prove by induction. First of all, note that the
sum in expression 6 has 2n − 1 terms because the subsets of {1, . . . , n} are 2n

(i.e. the number of all possible binary strings of length n where 1 means taken
and 0 means not taken) and we’re excluding ∅.

Let Sn be the collection of all the non empty subsets of {1, . . . , n}. It’s easy
to see that

Sn+1 = Sn ∪ {K ∪ {n+ 1}|K ∈ Sn} ∪ {{n+ 1}}. (7)

In fact, |Sn+1| = (2n − 1) + (2n − 1) + 1 = 2n+1 − 1, as it should.
Let’s try to carry out the inductive step:∣∣∣∣∣

n+1⋃
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣
(

n⋃
i=1

Xi

)
∪ {Xn+1}

∣∣∣∣∣
=

∣∣∣∣∣
n⋃
i=1

Xi

∣∣∣∣∣+ |Xn+1| −

∣∣∣∣∣
(

n⋃
i=1

Xi

)
∩Xn+1

∣∣∣∣∣
=

∣∣∣∣∣
n⋃
i=1

Xi

∣∣∣∣∣+ |Xn+1| −

∣∣∣∣∣
n⋃
i=1

(Xi ∩Xn+1)

∣∣∣∣∣ .
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Before proceeding, let’s simplify the last term:∣∣∣∣∣
n⋃
i=1

(Xi ∩Xn+1)

∣∣∣∣∣ =
∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

(Xj ∩Xn+1)

∣∣∣∣∣∣
=
∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

 ∩Xn+1

∣∣∣∣∣∣
= −

∑
J∈{K∪{n+1}|K∈Sn}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣ .
Now, by using equality 7, we can conclude our proof:∣∣∣∣∣

n+1⋃
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣
n⋃
i=1

Xi

∣∣∣∣∣+ |Xn+1| −

∣∣∣∣∣
n⋃
i=1

(Xi ∩Xn+1)

∣∣∣∣∣
=

∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
+ |Xn+1|

+
∑

J∈{K∪{n+1}|K∈Sn}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
=

∑
J∈Sn∪{K∪{n+1}|K∈Sn}∪{{n+1}}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
=

∑
J∈Sn+1

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣ .
13.2 Cardinality of Intersections
The Inclusion Exclusion Principle is perfect for evaluating the cardinality of
unions, but can we use it for computing |

⋂n
i=1Xi| instead? We could transform

unions in intersections (and vice versa) by using the two De Morgan’s Laws:(
n⋃
i=1

Xi

)C
=

n⋂
i=1

XC
i(

n⋂
i=1

Xi

)C
=

n⋃
i=1

XC
i

where XC denotes the set complement of X, i.e. Ω\X, where Ω is the Universe,
i.e. a set with includes all the elements. Basically, XC is the set of all the
elements not in X.
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Now we can try to evaluate the cardinality of an intersection:∣∣∣∣∣
n⋂
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣∣
(

n⋃
i=1

XC
i

)C∣∣∣∣∣∣ = |Ω| −

∣∣∣∣∣
n⋃
i=1

XC
i

∣∣∣∣∣
= |Ω| −

∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

XC
j

∣∣∣∣∣∣
= |Ω| −

∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣∣
⋃
j∈J

Xj

C
∣∣∣∣∣∣∣

= |Ω| −
∑
J∈Sn

(−1)|J|+1

|Ω| −
∣∣∣∣∣∣
⋃
j∈J

Xj

∣∣∣∣∣∣


= |Ω| − |Ω|
∑
J∈Sn

(−1)|J|+1 +
∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋃
j∈J

Xj

∣∣∣∣∣∣ .
(8)

To complete our derivation, we’ll need to simplify the first sum:∑
J∈Sn

(−1)|J|+1 =
∑

J∈Sn−1∪{K∪{n}|K∈Sn−1}∪{{n}}

(−1)|J|+1

=
∑

J∈Sn−1

(−1)|J|+1 +
∑

J∈{K∪{n}|K∈Sn−1}

(−1)|J|+1 + (−1)1+1

=
∑

J∈Sn−1

(−1)|J|+1 +
∑

J∈Sn−1

(−1)|J∪{n}|+1 + 1

=
∑

J∈Sn−1

(−1)|J|+1 −
∑

J∈Sn−1

(−1)|J|+1 + 1 = 1.

By substituing back into equation 8, we get∣∣∣∣∣
n⋂
i=1

Xi

∣∣∣∣∣ =
∑
J∈Sn

(−1)|J|+1

∣∣∣∣∣∣
⋃
j∈J

Xj

∣∣∣∣∣∣ . (9)

13.3 Multiple Mutual Information
There have been various attempts to generalize the concept of Mutual Informa-
tion to 3 or more terms.

One generalization is the so-called Multiple Mutual Information (MMI ), In-
teraction, or Co-information, defined as follows:

I(X1; . . . ;Xn;Xn+1) = I(X1; . . . ;Xn)− I(X1; . . . ;Xn|Xn+1) (10)
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Figure 6: Inclusion Exclusion Principle for 3 sets in action. The numbers tell
how many times each region is counted. Our goal is to compute |X ∪ Y ∪ Z|
which requires counting each region exactly once.
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where

I(X1; . . . ;Xn|Xn+1) = EXn+1
[I(X1; . . . ;Xn|Xn+1)] (11)

There’s a subtlety here which we’ve already come across before. Indeed,

EXn+1 [I(X1; . . . ;Xn|Xn+1)] =
∑
xn+1

p(xn+1)I(X1; . . . ;Xn|Xn+1 = xn+1)

so, I(X1; . . . ;Xn|Xn+1) inside EXn+1
[·] is actually the random variable f(Xn+1)

where f is the function x 7→ I(X1; . . . ;Xn|Xn+1 = x). The same thing happened
before when we wrote

H(X|Y ) = EY [H(X|Y )] =
∑
y

p(y)H(X|Y = y). (12)

Also, basically, I(X1; . . . ;Xn|Xn+1 = x) can be obtained from I(X1; . . . ;Xn)
by replacing any p(·) and p(·|·) with p(·|Xn+1 = x) and p(·|·, Xn+1 = x), respec-
tively. For instance,

I(X;Y ) = H(X)−H(X|Y )

= −
∑
x

p(x) log2 p(x) +
∑
x

∑
y

p(x, y) log2 p(x|y) =⇒

I(X;Y |Z = z) = H(X|Z = z)−H(X|Y, Z = z)

= −
∑
x

p(x|Z = z) log2 p(x|Z = z)

+
∑
x

∑
y

p(x, y|Z = z) log2 p(x|y, Z = z).

Let’s go one step further and write the expression for I(X;Y |Z):

I(X;Y |Z) =
∑
z

p(Z = z)I(X;Y |Z = z)

= −
∑
z

p(Z = z)
∑
x

p(x|Z = z) log2 p(x|Z = z)

+
∑
z

p(Z = z)
∑
x

∑
y

p(x, y|Z = z) log2 p(x|y, Z = z)

= −
∑
x

∑
z

p(x, z) log2 p(x|z) +
∑
x

∑
y

∑
z

p(x, y, z) log2 p(x|y, z)

= H(X|Z)−H(X|Y,Z). (13)

See picture 7 for a visualization of I(X;Y |Z).
If we interpret I(X) and I(X|Y ) as H(X) and H(X|Y ), respectively (which

makes perfect sense), then definition 10 is also valid for the two-variable case.
Note that we defined I(x) as the information contained in x ∈ X, so it makes
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sense to define I(X) as H(X). Basically, by convention, something of the form
I(X1; . . . ;Xk|Y1, . . . , Yh) becomes H(X1|Y1, . . . , Yh) when k = 1. Note that this
makes definition 12 a particular case of definition 11.

According to definition 10, and by our derivation 13 of I(X;Y |Z), the MMI
of three variables is

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z)

= H(X)− [H(X|Y )]− [H(X|Z)] + [H(X|Y,Z)]

= H(X)− [H(X,Y )−H(Y )]− [H(X,Z)−H(Z)]

+ [H(X,Y, Z)−H(Y, Z)]

= H(X) +H(Y ) +H(Z)

−H(X,Y )−H(X,Z)−H(Y, Z)

+H(X,Y, Z). (14)

Let’s rewrite all that in the language of set theory:

|X ∩ Y ∩ Z| = |X ∩ Y | − |(X ∩ Y ) \ Z|
= |X| − [|X \ Y |]− [|X \ Z|] + [|X \ (Y ∪ Z)|]
= |X| − [|X ∪ Y | − |Y |]− [|X ∪ Z| − |Z|]

+ [|X ∪ Y ∪ Z| − |Y ∪ Z|]
= |X|+ |Y |+ |Z| − |X ∪ Y | − |X ∪ Z| − |Y ∪ Z|+ |X ∪ Y ∪ Z|.

This is exactly formula 9 for 3 sets!
See picture 7 for a visualization of I(X;Y ;Z) and the various terms with 3

random variables. Also, look at picture 8 to see equality 14 “in action”.
This is not apparent from our discussion, but the MMI of 3 or more variables

may be negative, which makes its interpretation less intuitive. That’s probably
why MMI is not very popular in Machine Learning.

Thanks to equality 9, we can generalize equality 14 as

I(X1; . . . ;Xn) =
∑

J:∅6=J⊂{1,...,n}

(−1)|J|+1H(XJ),

where if J = {j1, . . . , jm}, then H(XJ) = H(Xj1 , Xj2 , . . . , Xjm).
The mutual information may also be computed between a set of variables

X1, . . . , Xn and another variable Y . This is called Joint Mutual Information
and is defined as

I(X1, . . . , Xn;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y )

= −
∑
x1

· · ·
∑
xn

p(x1, . . . , xn) log2 p(x1, . . . , xn)

+
∑
x1

· · ·
∑
xn

∑
y

p(x1, . . . , xn, y) log2 p(x1, . . . , xn|y).
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H(X|Y, Z) H(Y|X,Z)I(X; Y|Z)

H(Z|X, Y)

I(X;Z|Y) I(Y;Z|X)

I(X; Y;Z)

X Y

Z

H(X|Z) = H(X|Y,Z) + I(X;Y |Z) ⇐⇒
|X \ Z| = |X \ (Y ∪ Z)|+ |(X ∩ Y ) \ Z|

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) ⇐⇒
|(X ∩ Y ) \ Z| = |X \ Z| − |X \ (Y ∪ Z)|
I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) ⇐⇒
|X ∩ Y ∩ Z| = |X ∩ Y | − |(X ∩ Y ) \ Z|

Figure 7: Information Diagram for 3 random variables.
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Figure 8: The numbers indicate how many times a subset is counted. By
adding H(X), H(Y ), H(Z) we overcount some subsets, so we must compensate
by subtracting H(X,Y ), H(X,Z), H(Y,Z), but now we undercount, so we add
H(X,Y, Z) and, finally, we get I(X;Y ;Z), i.e. |X ∩ Y ∩ Z|. (Remember that,
for any X,Y, Z, H(X,Y ) = |X ∪ Y | and H(X,Y, Z) = |X ∪ Y ∪ Z|.)
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The set theoretic interpretation is

|(X1 ∪ · · · ∪Xn) ∩ Y | = |X1 ∪ · · · ∪Xn| − |(X1 ∪ · · · ∪Xn) \ Y |.

In general, any union of variables Xi can be represented as a single variable
X which has the variables Xi as components: X = (X1, . . . , Xn). For instance,
with the appropriate definitions,

H(X1, . . . , Xn) = H(X)

H(X1, . . . , Xn|Y ) = H(X|Y )

I(X1, . . . , Xn;Y ) = I(X;Y )

I(X;Y1, . . . , Yn) = I(X;Y )

I(X1, . . . , Xn;Y1, . . . , Ym) = I(X;Y )

I(X1, . . . , Xn;Y1, . . . , Ym;Z1, . . . , Zk) = I(X;Y ;Z).

Basically, we may replace, for instance, “X1, . . . , Xn” with “X” wherever it
appears inside H or I.

Of course, this implies an analogous simplification for formulas with explicit
sums over distributions. For instance, here’s the Joint Mutual Information
again:

I(X1, . . . , Xn;Y ) = I(X;Y )

= H(X)−H(X|Y )

= −
∑
x

p(x) log2 p(x) +
∑
x

∑
y

p(x, y) log2 p(x|y).

In this case, we replaced “X1, . . . , Xn” with “X” and “x1, . . . , xn” with “x”. If
you think you’re having a deja vu, that’s because this is related to proposition 2
and remark 2.

13.4 KL Divergence and Total Correlation
As we saw, the mutual information between X and Y is the KL Divergence
between p(x, y) and p(x)p(y). The MMI defined above, though, loses such a
simple interpretation. If we generalize mutual information through the KL
Divergence we get something simpler:

I(X1; . . . ;Xn) = KL(p(x1, . . . , xn)||p(x1) · · · p(xn))

=
∑
x1

· · ·
∑
xn

p(x1, . . . , xn) log2

p(x1, . . . , xn)

p(x1) · · · p(xn)

= H(X1) + . . .+H(Xn)−H(X1, . . . , Xn)

which is called Total Correlation. This quantity is always non negative and 0
if and only if the variables are all independent, of course. Note that in this
formulation k-way “interactions”, with 1 < k < n, are completely ignored.
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Part II

Applications of Information Theory
to Machine Learning
14 Loss function: from KL Divergence to Cross

Entropy to Log Likelihood

14.1 Supervised Learning
Let’s assume we have some data D = {(x1, y1), . . . , (xn, yn)} where each pair
(xi, yi) is a sample generated from an unknown distribution p(x, y). Note that
D is a multiset because it might contain multiple occurrences of the same pair.
In Supervised Learning we’re mainly interested in determining p(y|x) so that we
can predict y given x.

To make things more concrete, let’s assume that the xi are images (raw
pixels) and the yi are the corresponding labels which describe the content of the
images.

We can use a convolutional neural network (ConvNet) with a final softmax
layer. Let θ be the weights of the ConvNet and fθ the function computed by
the ConvNet with weights θ.

Each pair (xi, yi) can be seen as a Multinoulli (or generalized Bernoulli or
categorical) distribution di over Y |X = xi which puts all its probability mass
on Y = yi, whereas fθ(xi) is the distribution over Y |X = xi computed by the
ConvNet.

The optimal value for θ can be computed as follows:

θ∗ = argmin
θ

n∑
i=1

KL(di||fθ(xi))

= argmin
θ

n∑
i=1

[H(di, fθ(xi))−H(di)]

= argmin
θ

n∑
i=1

H(di, fθ(xi)) (15)

where we dropped the entropy H(di) because it doesn’t depend on θ. So, we’re
left with just the cross entropy.

Please note that swapping di and fθ(xi) in the cross entropy would be a
mistake because we’re optimizing with respect to fθ(xi). In fact, while we saw
that minqH(p, q) = H(p, p) = H(p) and so we’re forcing q to “converge” to p,
we can’t do the same with minqH(q, p), which is, in general, not equal to H(p).
If this isn’t obvious to you, you should reread section 10.

As we already said, di puts all the probability mass on Y = yi, so we can
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simplify expression 15 as follows:

θ∗ = argmin
θ

n∑
i=1

(
−
∑
y

di(y) log2 fθ(y|xi)

)

= argmin
θ

n∑
i=1

(− log2 fθ(yi|xi))

where fθ(y|xi) is syntactic sugar (again, programming lingo) for fθ(xi)(y).
It’s easy to see that this corresponds to maximizing the Log Likelihood :

θ∗ = argmin
θ

n∑
i=1

(− log2 fθ(yi|xi))

= argmax
θ

n∑
i=1

log fθ(yi|xi)

= argmax
θ

log

n∏
i=1

fθ(yi|xi)

= argmax
θ

log

n∏
i=1

P (yi|xi; θ)

= argmax
θ

logP (y1, . . . , yn|x1, . . . , xn; θ)

= argmax
θ

logL(θ).

14.2 Density Estimation
Now let’s consider another case. We have a dataset D2 = {x1, . . . , xn}. Let’s
assume that the xi are all samples from a random variable X. We want to fit a
Gaussian to the data. To do this, we define a family of Gaussians:

F =
{
N
(
x|µ, σ2

)
| µ ∈ R, σ2 ∈ R+

}
.

Let p̂ be the (empirical) distribution represented by D2 and let’s introduce
pθ ∈ F where θ =

(
µ, σ2

)
. We want to find θ so that pθ is as close as possible

to p̂. We can find the optimal parameters by minimizing the KL Divergence
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between p̂ and pθ:

θ∗ = argmin
θ

KL(p̂||pθ)

= argmin
θ

[H(p̂, pθ)−H(p̂)]

= argmin
θ

H(p̂, pθ)

= argmin
θ

EX∼p̂[Ipθ (X)]

= argmin
θ

∑
x

p̂(x)(− log pθ(x))

= argmax
θ

n∑
i=1

1

n
log pθ(xi)

= argmax
θ

n∑
i=1

log pθ(xi)

= argmax
θ

log

n∏
i=1

pθ(xi)

= argmax
θ

logP (x1, . . . , xn|θ)

= argmax
θ

logL(θ).

Once again, the KL Divergence and the cross entropy are equivalent to the
maximum log likelihood.

Note that:

• The self-information I contains a log because, as we saw, we want to
transform products of probabilities into sums of amounts of information.

• The log is used in the log likelihood because we want to simplify calcula-
tions and sums are easier than products.

Different reasons, same result.
The appealing of cross entropy and log likelihood when using a final softmax

layer is that they undo the exp of the softmax and so we get a better performance
with Stochastic Gradient Descent (SGD) because the risk of saturation (i.e. the
gradient becoming 0 and the units stopping learning) is reduced.

Note that while maximum log likelihood and cross entropy are equivalent,
from a theoretical point of view, the log in the cross entropy has more justifica-
tion because it comes from the additivity of the information rather than being
just a convenient trick to simplify calculations.

15 Feature selection
There are two ways to reduce the dimensionality of a dataset:
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feature selection Only a subset of relevant features is retained and the other
features are filtered out.

feature extraction The set of original features is transformed into a reduced
set of features.

Here we’re going to talk about feature selection.

15.1 Information Gain
Let’s assume we have a dataset D = {(x(1), y(1)), . . . , (x(N), y(N))} where x(i) ∈
Rn and y(i) ∈ R. We want to learn the mapping x 7→ y.

The dataset can be seen as generated by n+1 random variables: X1, . . . , Xn,
and Y . Information Gain represents one of the easiest ways to do feature selec-
tion. Very simply, we grade each feature Xi according to I(Xi;Y ). The more
information about the label Y we gain, on average, by observing Xi, the more
useful Xi is deemed.

Let’s define

D{cond} = {(x, y) ∈ D|cond((x, y)) is true},

i.e. D{cond} is the set of all the pairs for which the condition cond (about the
random variables X1, . . . , Xn, Y ) is true. In this particular case, the Information
Gain is defined as follows:

IG(D, s) = I(Xs;Y )

= H(Y )−H(Y |Xs)

= −
∑
y∈Y

p(y) log2 p(y) +
∑
x∈Xs

∑
y∈Y

p(x, y) log2 p(y|x)

= −
∑
y∈Y

|D{Y = y}|
|D|

log2

|D{Y = y}|
|D|

+
∑
x∈Xs

∑
y∈Y

|D{Y = y ∧Xs = x}|
|D|

log2

|D{Y = y ∧Xs = x}|
|D{Xs = x}|

.

The main advantages of Information Gain are simplicity of implementation
and low computational cost. The most obvious drawback is that the dependency
between features is completely ignored, so some of the features selected because
of their high score may carry redundant information. For instance, if X1 has one
of the highest scores among the variables and X2 = X1, then, probably, both X1

and X2 will be selected even though they contain the exact same information
about Y .

15.2 Joint Mutual Information
A better way to choose the best k features consists in maximizing the Joint
Mutual Information. In theory, we’d like to grade a subset of features F =
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(F1, . . . , Fk) by

I(F1, . . . , Fk;Y ) = H(F1, . . . , Fk)−H(F1, . . . , Fk|Y )

or, equivalently,
I(F ;Y ) = H(F )−H(F |Y ).

Unfortunately, this requires the estimation of a high-dimensional probability
density function, which is very expensive and requires lots of data.

Some methods try to approximate the Joint Mutual Information, while oth-
ers try to approximate even more general measures[1].

16 EM Algorithm

16.1 Bonus
The EM Algorithm seems completely unrelated to Information Theory, but
there’s an interesting connection that will be revealed at the end. I don’t know
whether this connection is strong enough to warrant two sections about the EM
Algorithm. In case it isn’t, take this part as a bonus!

16.2 Definition
Let’s assume we want to fit a model to some data by maximizing the log likeli-
hood. We have a sample x ∈ X, which represents our dataset, and we want to
find

θ∗ = argmax
θ

L(θ;x) = argmax
θ

log p(x|θ).

Sometimes, the model can be simplified by introducing a latent (i.e. unob-
servable) random variable Z:

L(θ;X) = log p(x|θ) = log
∑
z

p(x, z|θ). (16)

We may try to find a closed-form formula for θ∗ or, if not possible or conve-
nient, we could use an iterative optimization algorithm like (Stochastic)Gradient
Descent. The problem is that L(θ;X) and ∇θL(θ;X) may be very difficult to
compute. Often, p(x, z|θ) factorizes so the log, if only it was inside the sum,
would transform multiplications into additions simplifying computations con-
siderably.

The EM Algorithm solves the problem by working with the complete data
log likelihood :

L(θ;X,Z) = log p(x, z|θ).

This is similar to bringing the log inside the sum in equation 16 which, as we said,
may simplify computations. Since we don’t really have a sample z ∈ Z, being
Z unobservable, L(θ;X,Z) is really a function of Z and θ. The EM Algorithm
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gets rid of Z by computing the expectation of L(θ;X,Z) with respect to Z and
then maximizing the resulting function with respect to θ.

We set θ1 to some initial value and then we repeat two steps, which give the
name to the algorithm, until convergence:

1. initialize θ1

2. for t = 1, 2, . . ., until convergence:

(a) Expectation (E) Step:
Q(θ|θt) = EZ|X,θt [L(θ;X,Z)] =

∑
z p(z|x, θt) log p(x, z|θ)

(b) Maximization (M) Step:
θt+1 = argmaxθ Q(θ|θt)

16.3 Example
Let’s try to fit a mixture model to a dataset D = {x1, . . . , xn} generated from
n i.i.d. (independent and identically distributed) random variables. In other
words, X = (X1, . . . , Xn) where Xi ∼ Xj for all i, j and p(x) = p(x1) · · · p(xn).
Thus,

L(θ;X) = log p(x|θ)

= log

n∏
i=1

p(xi|θ)

=

n∑
i=1

log p(xi|θ)

and, if Z = (Z1, . . . , Zn),

L(θ;X,Z) = log p(x, z|θ)
= log p(x1, . . . , xn, z1, . . . , zn|θ)

= log

n∏
i=1

p(xi, zi|θ)

=

n∑
i=1

log p(xi, zi|θ).

IMPORTANT: From now on, until otherwise indicated, x will refer to
individual samples and not to the entire dataset.

A mixture model is an average of models:

p(x|θ) =
∑
z

p(x, z|θ) =
∑
z

p(z)p(x|z, θ) = EZ [p(x|Z, θ)].

Let’s assume we’re averaging K models. Then Z must take K different
values, which means that Z ∼ Multinoulli(π1, . . . , πK). We may assume that
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the K models have K different parameters φ1, . . . , φK . In other words, for
i = 1, . . . ,K, the i-th model has density p(x|φi).

Let’s define θ = (φ, π) and compute Q(θ|θt):

Q(θ|θt) = EZ|X,θt [L(θ;X,Z)]

= EZ|X,θt

[
log

n∏
i=1

p(xi, Zi|θ)

]

= EZ|X,θt

[
n∑
i=1

log p(xi, Zi|θ)

]

=

n∑
i=1

EZ|X,θt [log[p(Zi|π)p(xi|Zi, φ)]]

=

n∑
i=1

EZi|Xi,θt [log[p(Zi|π)p(xi|Zi, φ)]]

=

n∑
i=1

K∑
j=1

p(Zi = j|xi, θt) log[p(Zi = j|π)p(xi|Zi = j, φ)]

=

n∑
i=1

K∑
j=1

p(Zi = j|xi, θt) log[πjp(xi|φj)].

Each term rij = p(Zi = j|xi, θt) is called responsibility because it measures
how much each of the K models is responsible for (generating) xi. We can
compute rij by using Bayes’ Rule:

rij = p(Zi = j|xi, θt)

=
p(Zi = j, xi|θt)∑K
j=1 p(Zi = j, xi|θt)

=
p(xi|Zi = j, φt)p(Zi = j|πt)∑K
j=1 p(xi|Zi = j, φt)p(Zi = j|πt)

=
p(xi|φtj)πtj∑K
j=1 p(xi|φtj)πtj

.

Basically, the algorithm is as follows:

1. initialize φ, π

2. until convergence:

(a) for (i, j) ∈ {1, . . . n} × {1, . . . ,K}:

rij ← p(xi|φj)πj∑K
j=1 p(xi|φj)πj

(b) (φ, π)← argmaxφ,π

[∑n
i=1

∑K
j=1 rij log[πjp(xi|φj)]

]
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As we said before, depending on the form of the K models, we may be able
to find closed-form formulas for the optimal values of the parameters. If that’s
not possible, we can use an iterative optimization method such as (Stochastic)
Gradient Descent. Either way, we’ll need to compute or approximate∇θQ(θ|θt).

17 EM Algorithm: why does it work?
The EM Algorithm maximizes EZ|X,θt [L(θ;X,Z)], but we should be maximizing
L(θ;X) instead. The reason the EM Algorithm works is that EZ|X,θt [L(θ;X,Z)]
is a lower bound of L(θ;X) so maximizing it has the effect of maximizing L(θ;X)
as well.

The EM Algorithm is a particular instance of a method called MM Algo-
rithm, which stands for Majorization Minimization in case of minimization and
Minorization Maximization in case of maximization.

17.1 The MM Algorithm
As we said, the MM Algorithm may be used for both minimization and maxi-
mization but since we’re interested in maximizing L(θ;X) here, we’ll focus on
the maximization version which consists of two steps:

1. Minorization

2. Maximization

Let f(θ) be the function we want to maximize with respect to θ. We say that
a function Q(θ|θ0) minorizes f(θ) if

∀θ ∈ Dom(f), Q(θ|θ0) ≤ f(θ)

Q(θ0|θ0) = f(θ0).

In words, Q minorizes f if Q is a lower bound of f and touches f in one point.
For an example, go back to section 6 and observe that we used minorization

to prove Jensen’s Inequality. In particular, see picture 4.
The MM Algorithm is simple:

1. initialize θ

2. until convergence:

(a) Minorization Step:
“Compute” Q(t|θ) such that Q ≤ f and Q(θ|θ) = f(θ)

(b) Maximization Step:
θ ← argmaxtQ(t|θ)

The maximization step never decreases f . Indeed, if θ∗ = argmaxtQ(t|θ), then

f(θ∗) ≥ Q(θ∗|θ) ≥ Q(θ|θ) = f(θ)
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Figure 9: Intuition behind the MM Algorithm.

Moreover, if Q(θ∗|θ) > Q(θ|θ), then we have an actual increase in f . See
picture 9.

Let’s make two important observations:

1. Each Minorization Step may compute different functions Q: they don’t
have to have the same form.

2. The MM Algorithm works even if we don’t maximize Q(t|θ) in the Maxi-
mization Step, but just increase it.

The second observation is important because, usually, we’re only able to find
local maxima.

17.2 EM is an instance of MM
By proving that the EM Algorithm is an instance of the MM Algorithm, we
prove that the EM Algorithm works.

The E step of the EM Algorithm computes

Q(θ|θt) = EZ|X,θt [L(θ;X,Z)] =
∑
z

p(z|x, θt) log p(x, z|θ)

and the M step maximizes it with respect to θ. We can prove that Q(θ|θt) is a
lower bound of L(θ;X), but they don’t touch as required by the MM Algorithm.
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Nonetheless, we can prove that optimizing Q(θ|θt) is equivalent to optimizing a
lower bound Q(q, θ|θt) that does touch L(θ;X) at θt.

Since log is concave (i.e. − log is convex), we can use Jensen’s inequality (see
section 6) to push the log inside the sum in L(θ;X) by introducing a distribution
q(z|θt) which depends on the parameters at time t:

L(θ;X) = log p(x|θ)

= log
∑
z

p(x, z|θ)

= log
∑
z

q(z|θt)p(x, z|θ)
q(z|θt)

= logEZ∼q
[
p(x, Z|θ)
q(Z|θt)

]
≥ EZ∼q

[
log

p(x, Z|θ)
q(Z|θt)

]
= Q(q, θ|θt).

This derivation is valid for any positive q (it must be positive because it appears
in the denominator). We saw that Jensen’s Inequality becomes an equality when
the random variable is constant, i.e. when

p(x, z|θ)
q(z|θt)

= c,

where c is a constant. Let’s assume that θ = θt and solve for q(z|θ):

p(x, z|θ) = cq(z|θ)∑
z

p(x, z|θ) = c
∑
z

q(z|θ)

p(x|θ) = c

thus
q(z|θ) =

p(x, z|θ)
c

=
p(x, z|θ)
p(x|θ)

= p(z|x, θ).

It’s easy to verify that Q(q, θt|θt) = L(θt;X) for q = p(z|x, θt):

Q(p(z|x, θt), θt|θt) = EZ∼p(z|x,θt)
[
log

p(x, Z|θt)
p(Z|x, θt)

]
= EZ∼p(z|x,θt)

[
log p(x|θt)

]
= log p(x|θt) = L(θt;X).

This means that we can optimize L(θ;X) by doing coordinate ascent (i.e.
optimizing with respect to one coordinate at a time) on Q(q, θ) (we dropped
“|θt” for convenience):

1. initialize θ
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2. until convergence:

(a) E Step / Minorization:
q ← argmaxq Q(q, θ) [equivalent to: q ← p(z|x, θ)]

(b) M Step / Maximization:
θ ← argmaxθ Q(q, θ)

As we can see, the E Step of the EM Algorithm is equivalent to optimizing with
respect to q. In fact, in the EM Algorithm we compute rc = p(Z = c|x, θt),
where the vector r is the optimum value for q under the current parameter θt.
This is also equivalent to the Minorization step in the MM Algorithm. In fact,
now Q(r, θ) touches L(θ;X) at the point θ (which we also called θt).

The problem is that the EM Algorithm doesn’t seem to useQ(q, θ|θt). Indeed
(see 2a),

Q(θ|θt) = EZ|X,θt [L(θ;X,Z)]

is different from

Q(r, θ|θt) = EZ|X,θt
[
log

p(x, Z|θ)
p(Z|x, θt)

]
= EZ|X,θt [L(θ;X,Z)] +H(r).

By noticing that H(r) doesn’t depend on θ, we can conclude that

θ∗ = argmax
θ

Q(θ|θt) = argmax
θ

Q(r, θ|θt)

so it’s as if the EM Algorithm was using Q(r, θ|θt).

17.3 Information Theory interpretation
We proved that Q(q, θ|θt) ≤ L(θ;X) and Q(q, θt|θt) = L(θt;X) when q =
p(z|x, θt). This last equality has a nice interpretation:

L(θt;X)−Q(q, θt|θt) = log p(x|θt)− EZ∼q(z|θt)
[
log

p(x, Z|θt)
q(Z|θt)

]
= log p(x|θt)− EZ∼q(z|θt)

[
log

p(Z|x, θt)p(x|θt)
q(Z|θt)

]
= log p(x|θt)− EZ∼q(z|θt)

[
log

p(Z|x, θt)
q(Z|θt)

]
− log p(x|θt)

= EZ∼q(z|θt)
[
log

q(Z|θt)
p(Z|x, θt)

]
= KL(q(z|θt)||p(z|x, θt)),

so maximizing the lower bound is equivalent to minimizing the KL Divergence
between q(z|θt) and p(z|x, θt). In the E step of the EM Algorithm, we find the
optimum q = p(z|x, θt), but in some cases computing p(z|x, θt) is intractable.
A practical solution consists in constraining q to be of a particular tractable
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form (e.g. factorized) and then minimizing the KL Divergence or, equivalently,
maximizing Q(q, θ) with respect to q.

The M step can be generalized as well by just increasing Q(q, θ) with respect
to θ without necessarily finding the optimum.
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