Learned Point Cloud Compression for Classification

Mateen Ulhaq and Ivan V. Bajić

MMSP 2023 Poitiers, France

https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification

Learned compression

- Ballé *et al.* proposed a "factorized prior" entropy model where each channel of the quantized latent \hat{y} is encoded using a channel-specific distribution.
- Rate is $R = -\log_2 p_{\hat{\boldsymbol{y}}}(\hat{\boldsymbol{y}})$.
- Distortion is $D(\boldsymbol{x}, \hat{\boldsymbol{x}})$ between the input \boldsymbol{x} and reconstructed input $\hat{\boldsymbol{x}}$.
- Loss is $\mathcal{L} = R + \lambda \cdot D(\boldsymbol{x}, \boldsymbol{\hat{x}})$ where λ is a trade-off hyperparameter.

Codec architectures

Fig. 1. High-level comparison of codec architectures.

Input data formats

<u>P × 3 matrix</u>

 $\begin{bmatrix} (x_1, y_1, z_1), \\ (x_2, y_2, z_2), \\ \dots \\ (x_{\Box}, y_{\Box}, z_{\Box}) \end{bmatrix}$

Point list PointNet, PointNet++

Very light MLP-based architectures. No worthwhile canonical ordering of points. Challenges: order-invariance, finding 3d metric structure aware operations.

Voxel grid VoxNet, 3D ShapeNet, 3D conv-based models

 $O(n^3)$ memory. Limits resolution: $1024 \times 1024 \times 1024 \Rightarrow 4$ GB per float32 tensor! 3D convs are computationally heavy. Empty space \Rightarrow wasted computation.

Octree OctNet, VoxelContextNet, OctAttention, octree context modeling

More "compact" than voxels. Large region of empty space represented by a single "0" node.

PointNet

input permutation-invariant function f

$$f(x_1,\ldots,x_n)=(\gamma\circ\pi)(h(x_1),\ldots,h(x_n))$$

Architecture Multiply by reparameterized gain vector for faster convergence, where $\alpha = 10$. EncoderBlock EncoderBlock EncoderBlock EncoderBlock EncoderBlock $N \times P$ NN3 imes PNPool Entropy ~ MLP xyY model axis=2 $\blacktriangleright R$ αv NTABLE I EncoderBlock LAYER SIZES AND MAC COUNTS FOR VARIOUS PROPOSED CODEC TYPES Proposed Encoder Decoder Encoder Decoder Conv1d; k = 1codec layer sizes layer sizes MAC/pt MAC BatchNorm1d 64 64 64 128 1024 full 512 256 40 150k 670k lite 8 8 16 16/2 32/4 512 256 40 0.47k 160k ReLU micro 16 512 256 40 0.048k 150k

*Format: "out channels/groups"

Experimental setup

- Dataset: sampled point clouds from ModelNet40 object meshes.
- Loss: $\mathcal{L} = R + \lambda \cdot D(\boldsymbol{t}, \boldsymbol{\hat{t}})$

ModelNet40 object meshes (before sampling).

Trained separate models for various tuples (λ , *P*, Architecture):

- Varying R-D tradeoff $\lambda \in [10, 16000]$
- Number of input points $P \in \mathcal{P} = \{8, 16, 32, 64, 128, 256, 512, 1024\}$
- "full", "lite", "micro" architecture sizes

PointNet missing data ratio

The PointNet paper indicates that a model trained on P = 1024 points degrades in accuracy as the number of points P' in the input point cloud decreases.

To avoid this, we trained models specialized for each P' of randomly-sampled input points, so that P = P'. We measured a sizeable improvement by doing so.

(e.g., inputting a P' = 64 point cloud into a P = 1024 trained model results in a 65% reduction in accuracy; whereas, inputting a P' = 64 point cloud into a P = 64 trained model results in a 3% reduction in accuracy.)

Results: rate-accuracy curves

(a) "full" codec

(b) "lite" codec

Results: rate-accuracy curves

(c) "micro" codec

(d) input compression codecs

		Codec	Max acc (%)	BD rate (rel %)	BD acc (%)
		Input compression			
		TMC13 [25]	88.5	0.0	0.0
		OctAttention [12]	88.4	-13.2	+2.1
		IPDAE [13]	87.0	-23.0	+3.6
		Draco [26]	88.3	+780.7	-4.2
	ſ	Proposed (full)			
Fncoder		P = 1024	88.5	-93.8	+16.4
		P = 512	88.0	-93.7	+15.9
150 kMAC/pt	J	P = 256	87.6	-93.3	+15.4
	1	P = 128	87.1	-92.7	+14.9
Decoder:		P = 64	86.1	-91.1	+13.2
670 kMAC		P = 32	81.8	-90.6	+9.3
070144110		P = 16	70.4	-86.8	-2.3
	C	P = 8	46.8	-88.5	-25.3
	ſ	Proposed (lite)			
Fncoder		P = 1024	85.0	-93.0	+13.5
		P = 512	85.5	-92.8	+14.2
0.47 KMAC/pt	J	P = 256	84.4	-92.4	+12.8
- 1	1	P = 128	84.0	-91.6	+12.5
Decoder:		P = 64	81.3	-88.5	+9.8
160 kMAC		P = 32	76.3	-88.7	+4.9
		P = 16	66.2	-86.1	-4.1
	C	P = 8	43.6	-90.2	-28.0
	ſ	Proposed (micro)			
Fncoder		P = 1024	83.6	-91.8	+12.7
		P = 512	82.5	-91.6	+11.6
0.048 KMAC/pt	J	P = 256	81.6	-91.1	+11.0
- 1	1	P = 128	80.1	-90.9	+9.9
Decoder:		P = 64	76.6	-89.9	+6.5
150 kMAC		P = 32	70.3	-89.0	+0.1
200 100000		P = 16	59.4	-87.6	-10.8
	L	P = 8	41.9	-88.3	-28.8

Results

 TABLE II

 BD metrics and max attainable accuracies per codec

P is the number of points in the input \boldsymbol{x} . The BD metrics were computed using the TMC13 input compression codec as the reference anchor.

Reconstruction network (for visualization only)

We trained an auxiliary reconstruction network on the loss $\mathcal{L} = D(\boldsymbol{x}, \hat{\boldsymbol{x}})$, where *D* is Chamfer distance. Note that these gradients are not propagated to $\hat{\boldsymbol{y}}$.

Critical point set

For a specific codec, the **critical point set** is a minimal subset of the input point cloud that generates the exact same compressed bitstream as the input point cloud.

Critical point set (formally)

Definition. For any given point cloud \boldsymbol{x} , let $\boldsymbol{x}_C \subseteq \boldsymbol{x}$ denote a *critical point set*. Then, $g_a(\boldsymbol{x}_C) = g_a(\boldsymbol{x}) = \boldsymbol{y}$, and there is uniquely one valid critical point set $(\boldsymbol{x}_C)_C$ for \boldsymbol{x}_C , and it is itself.

A critical point set may be computed by

$$oldsymbol{x}_C = igcup_{1 \leq j \leq N} rgmax_{oldsymbol{x}_i \in oldsymbol{x}} (h(oldsymbol{x}_i))_j,$$

where $\{h(\boldsymbol{x}_i) : 1 \leq i \leq P\}$ represents the entire set of generated latent vectors immediately preceding max pooling.

Reconstructions

Our codecs achieve 80% accuracy at:

Codec	Rate
full	30 bits
lite	40 bits
micro	50 bits

100% accuracy lower bound on rate for 40 balanced classes:

 $\log_2(40)pprox 5.3 ext{ bits}$

Recall: h(x) is applied to each point independently. No information mixing, except for the max pooling operation!

Contrast with traditional MLP classifier that mixes information to achieve low rate.

Fig. 4. Reconstructions of a sample airplane 3D model from the Model-Net40 test set for various codecs and bitrates. For each reconstruction, its corresponding reference point cloud is marked with *critical points* in red.

Discussion

$$H(oldsymbol{x}) = I(oldsymbol{x};oldsymbol{x}) \geq I(oldsymbol{x};oldsymbol{\hat{y}}) = H(oldsymbol{\hat{y}}) - H(oldsymbol{\hat{y}} \mid oldsymbol{x}) = H(oldsymbol{\hat{y}})$$

Thus, on average, \hat{y} must be at least as compressible as x.

In fact, since \hat{y} is the same when generated from the critical point set $x_C \subseteq x$, $H(x) \ge H(x_C) \ge H(\hat{y})$.

Furthermore, $|\boldsymbol{x}_C| \leq N$ = 16 and 32 for the "lite" and "micro" codecs. Their $H(\hat{\boldsymbol{y}})$ is upper bounded by the entropy of the critical points.

This explains why the rate is so low. (But surprisingly, the accuracy is still good!)

Conclusion

- New codec for point cloud classification.
- Our "full" codec achieves great rate-accuracy performance vs "traditional" methods.
- Our "lite" and "micro" codecs achieve comparable gains in rate-accuracy performance, while consuming minimal edge-side computational resources.
- Helps progress towards achieving more capable end devices.

Future work:

- Other point cloud tasks (e.g. segmentation, object detection).
- Complex tasks involving larger models and point clouds from real-world datasets.
- Scalable and multi-task point cloud compression.

Thank you