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ABSTRACT
Search Ranking and Recommendations are fundamental problems
of crucial interest to major Internet companies, including web
search engines, content publishingwebsites andmarketplaces. How-
ever, despite sharing some common characteristics a one-size-fits-
all solution does not exist in this space. Given a large difference in
content that needs to be ranked, personalized and recommended,
each marketplace has a somewhat unique challenge. Correspond-
ingly, at Airbnb, a short-term rental marketplace, search and recom-
mendation problems are quite unique, being a two-sided market-
place in which one needs to optimize for host and guest preferences,
in a world where a user rarely consumes the same item twice and
one listing can accept only one guest for a certain set of dates. In
this paper we describe Listing and User Embedding techniques we
developed and deployed for purposes of Real-time Personalization
in Search Ranking and Similar Listing Recommendations, two chan-
nels that drive 99% of conversions. The embedding models were
specifically tailored for Airbnb marketplace, and are able to cap-
ture guest’s short-term and long-term interests, delivering effective
home listing recommendations. We conducted rigorous offline test-
ing of the embedding models, followed by successful online tests
before fully deploying them into production.
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1 INTRODUCTION
During last decade Search architectures, which were typically based
on classic Information Retrieval, have seen an increased presence
of Machine Learning in its various components [2], especially in
Search Ranking which often has challenging objectives depending
on the type of content that is being searched over. The main reason
behind this trend is the rise in the amount of search data that can
be collected and analyzed. The large amounts of collected data
open up possibilities for using Machine Learning to personalize
search results for a particular user based on previous searches and
recommend similar content to recently consumed one.

The objective of any search algorithm can vary depending on the
platform at hand. While some platforms aim at increasing website
engagement (e.g. clicks and time spent on news articles that are be-
ing searched), others aim at maximizing conversions (e.g. purchases
of goods or services that are being searched over), and in the case
of two sided marketplaces we often need to optimize the search
results for both sides of the marketplace, i.e. sellers and buyers. The
two sided marketplaces have emerged as a viable business model
in many real world applications. In particular, we have moved from
the social network paradigm to a network with two distinct types of
participants representing supply and demand. Example industries
include accommodation (Airbnb), ride sharing (Uber, Lyft), online
shops (Etsy), etc. Arguably, content discovery and search ranking
for these types of marketplaces need to satisfy both supply and
demand sides of the ecosystem in order to grow and prosper.

In the case of Airbnb, there is a clear need to optimize search
results for both hosts and guests, meaning that given an input query
with location and trip dates we need to rank high listings whose
location, price, style, reviews, etc. are appealing to the guest and,
at the same time, are a good match in terms of host preferences for
trip duration and lead days. Furthermore, we need to detect listings
that would likely reject the guest due to bad reviews, pets, length
of stay, group size or any other factor, and rank these listings lower.
To achieve this we resort to using Learning to Rank. Specifically, we
formulate the problem as pairwise regression with positive utilities
for bookings and negative utilities for rejections, which we optimize
using a modified version of Lambda Rank [4] model that jointly
optimizes ranking for both sides of the marketplace.

Since guests typically conduct multiple searches before booking,
i.e. click on more than one listing and contact more than one host
during their search session, we can use these in-session signals, i.e.
clicks, host contacts, etc. for Real-time Personalization where the
aim is to show to the guest more of the listings similar to the ones we
think they liked since staring the search session. At the same time
we can use the negative signal, e.g. skips of high ranked listings, to
show to the guest less of the listings similar to the ones we think
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they did not like. To be able to calculate similarities between listings
that guest interacted with and candidate listings that need to be
ranked we propose to use listing embeddings, low-dimensional
vector representations learned from search sessions. We leverage
these similarities to create personalization features for our Search
Ranking Model and to power our Similar Listing Recommendations,
the two platforms that drive 99% of bookings at Airbnb.

In addition to Real-time Personalization using immediate user
actions, such as clicks, that can be used as proxy signal for short-
term user interest, we introduce another type of embeddings trained
on bookings to be able to capture user’s long-term interest. Due
to the nature of travel business, where users travel 1-2 times per
year on average, bookings are a sparse signal, with a long tail of
users with a single booking. To tackle this we propose to train
embeddings at a level of user type, instead of a particular user id,
where type is determined using many-to-one rule-based mapping
that leverages known user attributes. At the same time we learn
listing type embeddings in the same vector space as user type
embeddings. This enables us to calculate similarities between user
type embedding of the user who is conducting a search and listing
type embeddings of candidate listings that need to be ranked.

Compared to previously published work on embeddings for per-
sonalization on the Web, novel contributions of this paper are:

• Real-time Personalization - Most of the previous work
on personalization and item recommendations using embed-
dings [8, 11] is deployed to production by forming tables of
user-item and item-item recommendations offline, and then
reading from them at the time of recommendation. We imple-
mented a solution where embeddings of items that user most
recently interacted with are combined in an online manner
to calculate similarities to items that need to be ranked.

• Adapting Training for Congregated Search - Unlike in
Web search, the search on travel platforms is often congre-
gated, where users frequently search only within a certain
market, e.g. Paris., and rarely across different markets. We
adapted the embedding training algorithm to take this into
account when doing negative sampling, which lead to cap-
turing better within-market listings similarities.

• Leveraging Conversions as Global Context - We recog-
nize the importance of click sessions that end up in conver-
sion, in our case booking. When learning listing embeddings
we treat the booked listing as global context that is always
being predicted as the window moves over the session.

• User Type Embeddings - Previous work on training user
embeddings to capture their long-term interest [6, 27] train
a separate embedding for each user. When target signal is
sparse, there is not enough data to train a good embedding
representation for each user. Not to mention that storing
embeddings for each user to perform online calculations
would require lot of memory. For that reason we propose
to train embeddings at a level of user type, where groups of
users with same type will have the same embedding.

• Rejections as Explicit Negatives - To reduce recommen-
dations that result in rejections we encode host preference
signal in user and listing type embeddings by treating host
rejections as explicit negatives during training.

For short-term interest personalization we trained listing embed-
dings using more than 800 million search clicks sessions, resulting
in high quality listing representations. We used extensive offline
and online evaluation on real search traffic which showed that
adding embedding features to the ranking model resulted in sig-
nificant booking gain. In addition to the search ranking algorithm,
listing embeddings were successfully tested and launched for simi-
lar listing recommendations where they outperformed the existing
algorithm click-through rate (CTR) by 20%.

For long-term interest personalization we trained user type and
listing type embeddings using sequences of booked listings by 50
million users. Both user and listing type embeddings were learned
in the same vector space, such that we can calculate similarities
between user type and listing types of listings that need to be
ranked. The similarity was used as an additional feature for search
ranking model and was also successfully tested and launched.

2 RELATEDWORK
In a number of Natural Language Processing (NLP) applications
classic methods for languagemodeling that represent words as high-
dimensional, sparse vectors have been replaced by Neural Language
models that learn word embeddings, i.e. low-dimensional repre-
sentations of words, through the use of neural networks [25, 27].
The networks are trained by directly taking into account the word
order and their co-occurrence, based on the assumption that words
frequently appearing together in the sentences also share more
statistical dependence. With the development of highly scalable
continuous bag-of-words (CBOW) and skip-gram (SG) language
models for word representation learning [17], the embedding mod-
els have been shown to obtain state-of-the-art performance on
many traditional language tasks after training on large text data.

More recently, the concept of embeddings has been extended
beyond word representations to other applications outside of NLP
domain. Researchers from the Web Search, E-commerce and Mar-
ketplace domains have quickly realized that just like one can train
word embeddings by treating a sequence of words in a sentence
as context, same can be done for training embeddings of user ac-
tions, e.g. items that were clicked or purchased [11, 18], queries and
ads that were clicked [8, 9], by treating sequence of user actions
as context. Ever since, we have seen embeddings being leveraged
for various types of recommendations on the Web, including mu-
sic recommendations [26], job search [13], app recommendations
[21], movie recommendations [3, 7], etc. Furthermore, it has been
shown that items which user interacted with can be leveraged to
directly lean user embeddings in the same feature space as item
embeddings, such that direct user-item recommendations can be
made [6, 10, 11, 24, 27]. Alternative approach, specifically useful
for cold-start recommendations, is to still to use text embeddings
(e.g. ones publicly available at https://code.google.com/p/word2vec)
and leverage item and/or user meta data (e.g. title and description)
to compute their embeddings [5, 14, 19, 28]. Finally, similar ex-
tensions of embedding approaches have been proposed for Social
Network analysis, where random walks on graphs can be used to
learn embeddings of nodes in graph structure [12, 20].

Embedding approaches have had amajor impact in both academia
and industry circles. Recent industry conference publications and



talks show that they have been successfully deployed in various per-
sonalization, recommendation and ranking engines of major Web
companies, such as Yahoo [8, 11, 29], Etsy [1], Criteo [18], Linkedin
[15, 23], Tinder [16], Tumblr [10], Instacart [22], Facebook [28].

3 METHODOLOGY
In the following we introduce the proposed methodology for the
task of listing recommendations and listing ranking in search at
Airbnb. We describe two distinct approaches, i.e. listing embeddings
for short-term real-time personalization and user-type & listing
type embeddings for long term personalization, respectively.

3.1 Listing Embeddings
Let us assume we are given a set S of S click sessions obtained
from N users, where each session s = (l1, . . . , lM ) ∈ S is defined
as an uninterrupted sequence of M listing ids that were clicked
by the user. A new session is started whenever there is a time
gap of more than 30 minutes between two consecutive user clicks.
Given this data set, the aim is to learn a d-dimensional real-valued
representation vli ∈ R

d of each unique listing li , such that similar
listings lie nearby in the embedding space.

More formally, the objective of the model is to learn listing
representations using the skip-gram model [17] by maximizing
the objective function L over the entire set S of search sessions,
defined as follows

L =
∑
s ∈S

∑
li ∈s

( ∑
−m≥j≤m,i,0

logP(li+j |li )
)
, (1)

Probability P(li+j |li ) of observing a listing li+j from the contextual
neighborhood of clicked listing li is defined using the soft-max

P(li+j |li ) =
exp(v⊤li v

′
li+j

)∑ |V |

l=1 exp(v⊤li v
′
l )
, (2)

where vl and v′l are the input and output vector representations of
listing l , hyperparameterm is defined as a length of the relevant
forward looking and backward looking context (neighborhood) for
a clicked listing, andV is a vocabulary defined as a set of unique
listings ids in the data set. From (1) and (2) we see that the proposed
approach models temporal context of listing click sequences, where
listings with similar contexts (i.e., with similar neighboring listings
in search sessions) will have similar representations.

Time required to compute gradient ∇L of the objective function
in (1) is proportional to the vocabulary size |V|, which for large
vocabularies, e.g. several millions listing ids, is an infeasible task. As
an alternativewe used negative sampling approach proposed in [17],
which significantly reduces computational complexity. Negative
sampling can be formulated as follows. We generate a set Dp of
positive pairs (l , c) of clicked listings l and their contexts c (i.e.,
clicks on other listings by the same user that happened before and
after click on listing l within a window of lengthm), and a set Dn
of negative pairs (l , c) of clicked listings and n randomly sampled
listings from the entire vocabularyV . The optimization objective
then becomes

argmax
θ

∑
(l,c)∈Dp

log
1

1 + e−v′cvl
+

∑
(l,c)∈Dn

log
1

1 + ev′cvl
, (3)

Figure 1: Skip-gram model for Listing Embeddings

where parameters θ to be learned are vl and vc , l , c ∈ V . The
optimization is done via stochastic gradient ascent.

Booked Listing as Global Context. We can break down the
click sessions setS into 1) booked sessions, i.e. click sessions that end
with user booking a listing to stay at, and 2) exploratory sessions,
i.e. click sessions that do not end with booking, i.e. users were
just browsing. Both are useful from the standpoint of capturing
contextual similarity, however booked sessions can be used to adapt
the optimization such that at each step we predict not only the
neighboring clicked listings but the eventually booked listing as
well. This adaptation can be achieved by adding booked listing as
global context, such that it will always be predicted no matter if
it is within the context window or not. Consequently, for booked
sessions the embedding update rule becomes

argmax
θ

∑
(l,c )∈Dp

log
1

1 + e−v′c vl
+

∑
(l,c )∈Dn

log
1

1 + ev′c vl
+ log

1

1 + e
−v′lb

vl
,

(4)
where vlb is the embedding of the booked listing lb . For exploratory
sessions the updates are still conducted by optimizing objective (3).

Figure 1 shows a graphical representation of how listing embed-
dings are learned from booked sessions using a sliding window of
size 2n + 1 that slides from the first clicked listing to the booked
listing. At each step the embedding of the central listing vl is being
updated such that it predicts the embeddings of the context listings
vc from Dp and the booked listing vlb . As the window slides some
listings fall in and out of the context set, while the booked listing
always remains within it as global context (dotted line).

Adapting Training for Congregated Search. Users of online
travel booking sites typically search only within a single market,
i.e. location they want to stay at. As a consequence, there is a high
probability that Dp contains listings from the same market. On
the other hand, due to random sampling of negatives, it is very
likely that Dn contains mostly listings that are not from the same
markets as listings in Dp . At each step, for a given central listing l ,
the positive context mostly consist of listings from the same market
as l , while the negative context mostly consists of listings that are
not from the same market as l . We found that this imbalance leads
to learning sub-optimal within-market similarities. To address this
issue we propose to add a set of random negatives Dmn , sampled
from the market of the central listing l ,

argmax
θ

∑
(l,c )∈Dp

log
1

1 + e−v′c vl
+

∑
(l,c )∈Dn

log
1

1 + ev′c vl

+ log
1

1 + e
−v′lb

vl
+

∑
(l,mn )∈Dmn

log
1

1 + ev
′
mn vl

. (5)

where parameters θ to be learned are vl and vc , l , c ∈ V .



Figure 2: California Listing Embedding Clusters

Figure 3: Similar Listings using Embeddings

Cold start listing embeddings. Every day new listings are
created by hosts and made available on Airbnb. At that point these
listings do not have an embedding because they were not present
in the click sessions S training data. To create embeddings for new
listings we propose to utilize existing embeddings of other listings.

Upon listing creation the host is required to provide information
about the listing, such as location, price, listing type, etc. We use
the provided meta-data about the listing to find 3 geographically
closest listings (within a 10 miles radius) that have embeddings,
are of same listing type as the new listing (e.g. Private Room) and
belong to the same price bucket as the new listing (e.g. $20 − $25
per night). Next, we calculate the mean vector using 3 embeddings
of identified listings to form the new listing embedding. Using this
technique we are able to cover more than 98% of new listings.

Examining Listing Embeddings. To evaluate what character-
istics of listings were captured by embeddings we examine the
d = 32 dimensional embeddings trained using (5) on 800 million
click sessions. First, by performing k-means clustering on learned
embeddings we evaluate if geographical similarity is encoded. Fig-
ure 2, which shows resulting 100 clusters in California, confirms
that listings from similar locations are clustered together. We found
the clusters very useful for re-evaluating our definitions of travel
markets. Next, we evaluate average cosine similarities between

Figure 4: Embeddings Evaluation Tool

listings from Los Angeles of different listing types (Table 1) and be-
tween listings of different price ranges (Table 2). From those tables
it can observed that cosine similarities between listings of same
type and price ranges are much higher compared to similarities
between listings of different types and price ranges. Therefore, we
can conclude that those two listing characteristics are well encoded
in the learned embeddings as well.

While some listing characteristics, such as price, do not need to
be learned because they can be extracted from listing meta-data,
other types of listing characteristics, such as architecture, style
and feel are much harder to extract in form of listing features. To
evaluate if these characteristics are captured by embeddings we can
examine k-nearest neighbors of unique architecture listings in the
listing embedding space. Figure 3 shows one such case where for a
listing of unique architecture on the left, the most similar listings
are of the same style and architecture. To be able to conduct fast
and easy explorations in the listing embedding space we developed
an internal Similarity Exploration Tool shown in Figure 4.

Demonstration video of this tool, which is available online at
https://youtu.be/1kJSAG91TrI, shows many more examples of
embeddings being able to find similar listings of the same unique ar-
chitecture, including houseboats, treehouses, castles, chalets, beach-
front apartments, etc.

https://youtu.be/1kJSAG91TrI


Table 1: Cosine similarities between different Listing Types

Room Type Entire Home Private Room Shared Room

Entire Home 0.895 0.875 0.848
Private Room 0.901 0.865
Shared Room 0.896

Table 2: Cosine similarities between different Price Ranges

Price Range <$30 $30-$60 $60-$90 $90-$120 $120+

<$30 0.916 0.887 0.882 0.871 0.854
$30-$60 0.906 0.889 0.876 0.865
$60-$90 0.902 0.883 0.880
$90-$120 0.898 0.890
$120+ 0.909

3.2 User-type & Listing-type Embeddings
Listing embeddings described in Section 3.1. that were trained using
click sessions are very good at finding similarities between listings
of the same market. As such, they are suitable for short-term, in-
session, personalization where the aim is to show to the user listings
that are similar to the ones they clicked during the immanent search
session.

However, in addition to in-session personalization, based on
signals that just happened within the same session, it would be
useful to personalize search based on signals from user’s longer-
term history. For example, given a user who is currently searching
for a listing in Los Angeles, and has made past bookings in New
York and London, it would be useful to recommend listings that are
similar to those previously booked ones.

While some cross-market similarities are captured in listing
embeddings trained using clicks, a more principal way of learn-
ing such cross-market similarities would be to learn from ses-
sions constructed of listings that a particular user booked over
time. Specifically, let us assume we are given a set Sb of book-
ing sessions obtained from N users, where each booking session
sb = (lb1, . . . , lbM ) is defined as a sequence of listings booked by
user j ordered in time. Attempting to learn embeddings vlid for
each listinд_id using this type of data would be challenging in
many ways:

• First, booking sessions data Sb is much smaller than click
sessions data S because bookings are less frequent events.

• Second, many users booked only a single listing in the past
and we cannot learn from a session of length 1.

• Third, to learn a meaningful embedding for any entity from
contextual information at least 5 − 10 occurrences of that
entity are needed in the data, and there are many listinд_ids
on the platform that were booked less than 5 − 10 times.

• Finally, long time intervals may pass between two consecu-
tive bookings by the user, and in that time user preferences,
such as price point, may change, e.g. due to career change.

To address these very common marketplace problems in practice,
we propose to learn embeddings at a level of listinд_type instead of
listinд_id . Givenmeta-data available for a certain listinд_id such as
location, price, listing type, capacity, number of beds, etc., we use a

Table 3:Mappings of listingmeta data to listing type buckets

Buckets 1 2 3 4 5 6 7 8

Country US CA GB FR MX AU ES ...
Listing Type Ent Priv Share
$ per Night <40 40-55 56-69 70-83 84-100 101-129 130-189 190+
$ per Guest <21 21-27 28-34 35-42 43-52 53-75 76+
Num Reviews 0 1 2-5 6-10 11-35 35+
Listing 5 Star % 0-40 41-60 61-90 90+
Capacity 1 2 3 4 5 6+
Num Beds 1 2 3 4+
Num Bedrooms 0 1 2 3 4+
Num Bathroom 0 1 2 3+
New Guest Acc % <60 61-90 >91

Table 4: Mappings of user meta data to user type buckets

Buckets 1 2 3 4 5 6 7 8

Market SF NYC LA HK PHL AUS LV ...
Language en es fr jp ru ko de ...
Device Type Mac Msft Andr Ipad Tablet Iphone ...
Full Profile Yes No
Profile Photo Yes No

Num Bookings 0 1 2-7 8+
$ per Night <40 40-55 56-69 70-83 84-100 101-129 130-189 190+
$ per Guest <21 21-27 28-34 35-42 43-52 53-75 76+
Capacity <2 2-2.6 2.7-3 3.1-4 4.1-6 6.1+
Num Reviews <1 1-3.5 3.6-10 > 10
Listing 5 Star % 0-40 41-60 61-90 90+
Guest 5 Star % 0-40 41-60 61-90 90+

rule-based mapping defined in Table 3 to determine its listinд_type .
For example, an Entire Home listing from US that has a 2 person
capacity, 1 bed, 1 bedroom & 1 bathroom, with Average Price Per
Night of $60.8, Average Price Per Night Per Guest of $29.3, 5 re-
views, all 5 stars, and 100% New Guest Accept Rate would map into
listinд_type = US_lt1_pn3_pд3_r3_5s4_c2_b1_bd2_bt2_nu3. Buck-
ets are determined in a data-driven manner to maximize for cover-
age in each listinд_type bucket. The mapping from listinд_id to a
listinд_type is a many-to-one mapping, meaning that many listings
will map into the same listinд_type .

To account for user ever-changing preferences over time we
propose to learn user_type embeddings in the same vector space
as listinд_type embeddings. The user_type is determined using a
similar procedure we applied to listings, i.e. by leveraging meta-
data about user and their previous bookings, defined in Table 4. For
example, for a user from San Francisco with MacBook laptop, Eng-
lish language settings, full profile with user photo, 83.4% average
Guest 5 star rating from hosts, who has made 3 bookings in the past,
where the average statistics of booked listings were $52.52 Price
Per Night, $31.85 Price Per Night Per Guest, 2.33 Capacity, 8.24
Reviews and 76.1% Listing 5 star rating, the resulting user_type is
SF_lд1_dt1_f p1_pp1_nb1_ppn2_ppд3_c2_nr3_l5s3_д5s3.When gen-
erating booking sessions for training embeddings we calculate the
user_type up to the latest booking. For users who made their first
bookinguser_type is calculated based on the first 5 rows from Table
4 because at the time of booking we had no prior information about
past bookings. This is convenient, because learned embeddings for
user_types which are based on first 5 rows can be used for cold-
start personalization for logged-out users and new users with no
past bookings.

Training Procedure. To learn user_type and listinд_type em-
beddings in the same vector space we incorporate the user_type



Figure 5: Listing Type and User Type Skip-gram model

into the booking sessions. Specifically, we form a set Sb consist-
ing of Nb booking sessions from N users, where each session
sb = (utype1ltype1 , . . . ,utypeM ltypeM ) ∈ Sb is defined as a se-
quence of booking events, i.e. (user_type , listinд_type) tuples or-
dered in time. Note that each session consists of bookings by same
user_id , however for a single user_id their user_types can change
over time, similarly to how listinд_types for the same listing can
change over time as they receive more bookings.

The objective that needs to be optimized can be defined similarly
to (3), where instead of listing l , the center item that needs to be
updated is either user_type (ut ) or listinд_type (lt ) depending on
which one is caught in the sliding window. For example, to update
the central item which is a user_type (ut ) we use

argmax
θ

∑
(ut ,c )∈Dbook

log
1

1 + e−v′c vut
+

∑
(ut ,c )∈Dneд

log
1

1 + ev′c vut
, (6)

where Dbook contains the user_type and listinд_type from recent
user history, specifically user bookings from near past and near
future with respect to central item’s timestamp, while Dneд con-
tains randomuser_type or listinд_type instances used as negatives.
Similarly, if the central item is a listinд_type (lt ) we optimize the
following objective

argmax
θ

∑
(lt ,c )∈Dbook

log
1

1 + e−v
′
c vlt

+
∑

(lt ,c )∈Dneд

log
1

1 + ev
′
c vlt

. (7)

Figure 5a (on the left) shows a graphical representation of this
model, where central item represents user_type (ut ) for which the
updates are performed as in (6).

Since booking sessions by definition mostly contain listings from
different markets, there is no need to sample additional negatives
from same market as the booked listing, like we did in Session 3.1.
to account for the congregated search in click sessions.

Explicit Negatives for Rejections. Unlike clicks that only re-
flect guest-side preferences, bookings reflect host-side preferences
as well, as there exists an explicit feedback from the host, in form
of accepting guest’s request to book or rejecting guest’s request
to book. Some of the reasons for host rejections are bad guest star
ratings, incomplete or empty guest profile, no profile picture, etc.
These characteristics are part of user_type definition from Table 4.

Host rejections can be utilized during training to encode the host
preference signal in the embedding space in addition to the guest
preference signal. The whole purpose of incorporating the rejection
signal is that some listinд_types are less sensitive to user_types
with no bookings, incomplete profiles and less than average guest

Table 5: Recommendations based on type embeddings

User Type
SF _lд1_dt1_f p1_pp1_nb3_ppn5_ppд5_c4_nr3_l5s3_д5s3
Listing Type Sim
U S_l t1_pn4_pд5_r5_5s4_c2_b1_bd3_bt3_nu3 (large, good reviews) 0.629
U S_l t1_pn3_pд3_r5_5s2_c3_b1_bd2_bt2_nu3 (cheaper, bad reviews) 0.350
U S_l t2_pn3_pд3_r5_5s4_c1_b1_bd2_bt2_nu3 (priv room, good reviews) 0.241
U S_l t2_pn2_pд2_r5_5s2_c1_b1_bd2_bt2_nu3 (cheaper, bad reviews) 0.169
U S_l t3_pn1_pд1_r5_5s3_c1_b1_bd2_bt2_nu3 (shared room, bad reviews) 0.121

star ratings than others, and we want the embeddings of those
listinд_types and user_types to be closer in the vector space, such
that recommendations based on embedding similarities would re-
duce future rejections in addition to maximizing booking chances.

We formulate the use of the rejections as explicit negatives in
the following manner. In addition to sets Dbook and Dneд , we
generate a set Dr e j of pairs (ut , lt ) of user_type or listinд_type
that were involved in a rejection event. As depicted in Figure 5b (on
the right), we specifically focus on the cases when host rejections
(labeled with a minus sign) were followed by a successful booking
(labeled with a plus sign) of another listing by the same user. The
new optimization objective can then be formulated as

argmax
θ

∑
(ut ,c )∈Dbook

log
1

1 + exp−v′c vut
+

∑
(ut ,c )∈Dneд

log
1

1 + expv′c vut

+
∑

(ut ,lt )∈Dr e ject

log
1

1 + expv
′
lt
vut

. (8)

in case of updating the central item which is a user_type (ut ), and

argmax
θ

∑
(lt ,c )∈Dbook

log
1

1 + exp−v
′
c vlt

+
∑

(lt ,c )∈Dneд

log
1

1 + expv
′
c vlt

+
∑

(lt ,ut )∈Dr e ject

log
1

1 + expv
′
ut vlt

. (9)

in case of updating the central item which is a listinд_type (lt ).
Given learned embeddings for all user_types and listinд_types ,

we can recommend to the user the most relevant listings based
on the cosine similarities between user’s current user_type embed-
ding and listinд_type embeddings of candidate listings. For exam-
ple, in Table 5 we show cosine similarities between user_type =
SF_lд1_dt1_f p1_pp1_nb3_ppn5_ppд5_c4_nr3_l5s3_д5s3 who typi-
cally books high quality, spacious listings with lots of good reviews
and several different listinд_types in US. It can be observed that
listing types that best match these user preferences, i.e. entire home,
lots of good reviews, large and above average price, have high co-
sine similarity, while the ones that do not match user preferences,
i.e. ones with less space, lower price and small number of reviews
have low cosine similarity.

4 EXPERIMENTS
In this section we first cover the details of training Listing Em-
beddings and their Offline Evaluation. We then show Online Ex-
periment Results of using Listing Embeddings for Similar Listing
Recommendations on the Listing Page. Finally, we give background
on our Search RankingModel and describe how Listing Embeddings
and Listing Type & User Type Embeddings were used to implement
features for Real-time Personalization in Search. Both applications
of embeddings were successfully launched to production.



4.1 Training Listing Embeddings
For training listing embeddingswe created 800million click sessions
from search, by taking all searches from logged-in users, grouping
them by user id and ordering clicks on listing ids in time. This
was followed by splitting one large ordered list of listing ids into
multiple ones based on 30 minute inactivity rule. Next, we removed
accidental and short clicks, i.e. clicks for which user stayed on the
listing page for less than 30 seconds, and kept only sessions con-
sisting of 2 or more clicks. Finally, the sessions were anonymized
by dropping the user id column. As mentioned before, click ses-
sions consist of exploratory sessions &. booked sessions (sequence of
clicks that end with booking). In light of offline evaluation results
we oversampled booked sessions by 5x in the training data, which
resulted in the best performing listing embeddings.

Setting up Daily Training. We learn listing embeddings for
4.5 million Airbnb listings and our training data practicalities and
parameters were tuned using offline evaluation techniques pre-
sented below. Our training data is updated daily in a sliding window
manner over multiple months, by processing the latest day search
sessions and adding them to the dataset and discarding the old-
est day search sessions from the dataset. We train embeddings for
each listinд_id , where we initialize vectors randomly before train-
ing (same random seed is used every time). We found that we get
better offline performance if we re-train listing embeddings from
scratch every day, instead of incrementally continuing training on
existing vectors. The day-to-day vector differences do not cause
discrepancies in our models because in our applications we use the
cosine similarity as the primary signal and not the actual vectors
themselves. Even with vector changes over time, the connotations
of cosine similarity measure and its ranges do not change.

Dimensionality of listing embeddings was set to d = 32, as
we found that to be a good trade-off between offline performance
and memory needed to store vectors in RAM memory of search
machines for purposes of real-time similarity calculations. Context
window size was set tom = 5, and we performed 10 iterations over
the training data. To implement the congregated search change to
the algorithm we modified the original word2vec c code1. Training
used MapReduce, where 300 mappers read data and a single reducer
trains the model in a multi-threaded manner. End-to-end daily data
generation and training pipeline is implemented using Airflow2,
which is Airbnb’s open-sourced scheduling platform.

4.2 Offline Evaluation of Listing Embeddings
To be able to make quick decisions regarding different ideas on
optimization function, training data construction, hyperparameters,
etc, we needed a way to quickly compare different embeddings.

One way to evaluate trained embeddings is to test how good
they are in recommending listings that user would book, based on
the most recent user click. More specifically, let us assume we are
given the most recently clicked listing and listing candidates that
need to be ranked, which contain the listing that user eventually
booked. By calculating cosine similarities between embeddings of
clicked listing and candidate listings we can rank the candidates
and observe the rank position of the booked listing.

1https://code.google.com/p/word2vec
2http://airbnb.io/projects/airflow

Figure 6: Offline evaluation of Listing Embeddings

For purposes of evaluation we use a large number of such search,
click and booking events, where rankings were already assigned
by our Search Ranking model. In Figure 6 we show results of offline
evaluation in which we compared several versions of d = 32 em-
beddings with regards to how they rank the booked listing based
on clicks that precede it. Rankings of booked listing are averaged
for each click leading to the booking, going as far back as 17 clicks
before the booking to the Last click before the booking. Lower val-
ues mean higher ranking. Embedding versions that we compared
were 1) d32: trained using (3), 2) d32 book: trained with bookings
as global context (4) and 3) d32 book + neg: trained with bookings
as global context and explicit negatives from same market (5).

It can be observed that Search Ranking model gets better with
more clicks as it uses memorization features. It can also be observed
that re-ranking listings based on embedding similarity would be
useful, especially in early stages of the search funnel. Finally, we
can conclude that d32 book + neg outperforms the other two
embedding versions. The same type of graphs were used to make
decisions regarding hyperparameters, data construction, etc.

4.3 Similar Listings using Embeddings
Every Airbnb home listing page3 contains Similar Listings carousel
which recommends listings that are similar to it and available for
the same set of dates. At the time of our test, the existing algorithm
for Similar Listings carousel was calling the main Search Ranking
model for the same location as the given listing followed by filtering
on availability, price range and listing type of the given listing.

We conducted an A/B test where we compared the existing sim-
ilar listings algorithm to an embedding-based solution, in which
similar listings were produced by finding the k-nearest neighbors in
listing embedding space. Given learned listing embeddings, similar
listings for a given listing l were found by calculating cosine similar-
ity between its vector vl and vectors vj of all listings from the same
market that are available for the same set of dates (if check-in and
check-out dates are set). The K listings with the highest similarity
were retrieved as similar listings. The calculations were performed
online and happen in parallel using our sharded architecture, where
parts of embeddings are stored on each of the search machines.

3https://www.airbnb.com/rooms/433392

https://code.google.com/p/word2vec
http://airbnb.io/projects/airflow
https://www.airbnb.com/rooms/433392


The A/B test showed that embedding-based solution lead to a
21% increase in Similar Listing carousel CTR (23% in cases when
listing page had entered dates and 20% in cases of dateless pages)
and 4.9% increase in guests who find the listing they end up booking
in Similar Listing carousel. In light of these results we deployed the
embedding-based Similar Listings to production.

4.4 Real time personalization in Search
Ranking using Embeddings

Background. To formally describe our Search Ranking Model, let
us assume we are given training data about each search Ds =

(xi ,yi ), i = 1...K , where K is the number of listings returned by
search, xi is a vector containing features of the i-th listing result and
yi ∈ {0, 0.01, 0.25, 1,−0.4} is the label assigned to the i-th listing
result. To assign the label to a particular listing from the search
result we wait for 1 week after search happened to observe the final
outcome, which can be yi = 1 if listing was booked, yi = 0.25 if
listing host was contacted by the guest but booking did not happen,
y = −0.4 if listing host rejected the guest, yi = 0.01 is listing was
clicked and yi = 0 if listing was just viewed but not clicked. After
that 1 week wait the set Ds is also shortened to keep only search
results up to the last result user clicked on Kc ≤ K . Finally, to form
dataD =

⋃N
s=1 Ds we only keep Ds sets which contain at least one

booking label. Every time we train a new ranking model we use
the most recent 30 days of data.

Feature vector xi for the i-th listing result consists of listing fea-
tures, user features, query features and cross-features. Listing
features are features associated with the listing itself, such as price
per night, listing type, number of rooms, rejection rate, etc. Query
features are features associated with the issued query, such as num-
ber of guests, length of stay, lead days, etc. User features are features
associated with the user who is conducting the search, such as
average booked price, guest rating, etc. Cross-features are features
derived from two or more of these feature sources: listing, user,
query. Examples of such features are query listing distance: distance
between query location and listing location, capacity fit: difference
between query number of guests and listing capacity, price differ-
ence: difference between listing price and average price of user’s
historical bookings, rejection probability: probability that host will
reject these query parameters, click percentage: real-time memo-
rization feature that tracks what percentage of user’s clicks were
on that particular listing, etc. The model uses approximately 100
features. For conciseness we will not list all of them.

Next, we formulate the problem as pairwise regression with
search labels as utilities and use dataD to train a Gradient Boosting
Decision Trees (GBDT) model, using package 4 that was modified
to support Lambda Rank. When evaluating different models offline,
we use NDCG, a standard ranking metric, on hold-out set of search
sessions, i.e. 80% of D for training and 20% for testing.

Finally, once the model is trained it is used for online scoring of
listings in search. The signals needed to calculate feature vectors xi
for each listing returned by search query q performed by user u are
all calculated in an online manner and scoring happens in parallel
using our sharded architecture. Given all the scores, the listings are
shown to the user in a descending order of predicted utility.
4https://github.com/yarny/gbdt

Table 6: Embedding Features for Search Ranking

Feature Name Description

EmbClickSim similarity to clicked listings in Hc
EmbSkipSim similarity to skipped listings Hs
EmbLongClickSim similarity to long clicked listings Hlc
EmbWishlistSim similarity to wishlisted listings Hw
EmbInqSim similarity to contacted listings Hi
EmbBookSim similarity to booked listing Hb

EmbLastLongClickSim similarity to last long clicked listing

UserTypeListingTypeSim user type and listing type similarity

Listing Embedding Features. The first step in adding embed-
ding features to our Search Ranking Model was to load the 4.5
million embeddings into our search backend such that they can be
accessed in real-time for feature calculation and model scoring.

Next, we introduced several user short-term history sets, that
hold user actions from last 2 weeks, which are updated in real-time
as new user actions happen. The logic was implemented using
using Kafka 5. Specifically, for each user_id we collect and maintain
(regularly update) the following sets of listing ids:

(1) Hc : clicked listing_ids - listings that user clicked on in last
2 weeks.

(2) Hlc : long-clicked listing_ids - listing that user clicked and
stayed on the listing page for longer than 60 sec.

(3) Hs : skipped listing_ids - listings that user skipped in favor
of a click on a lower positioned listing

(4) Hw : wishlisted listing_ids - listings that user added to a
wishlist in last 2 weeks.

(5) Hi : inquired listing_ids - listings that user contacted in
last 2 weeks but did not book.

(6) Hb : booked listing_ids - listings that user booked in last 2
weeks.

We further split each of the short-term history sets H∗ into
subsets that contain listings from the same market. For example, if
user had clicked on listings from New York and Los Angeles, their
set Hc would be further split into Hc (NY ) and Hc (LA).

Finally, we define the embedding features which utilize the de-
fined sets and the listing embeddings to produce a score for each
candidate listing. The features are summarized in Table 6.

In the following we describe how EmbClickSim feature is com-
puted using Hc . The rest of the features from top rows of Table 6
are computed in the same manner using their corresponding user
short-term history set H∗.

To compute EmbClickSim for candidate listing li we need to
compute cosine similarity between its listing embedding vli and
embeddings of listings in Hc . We do so by first computing Hc
market-level centroid embeddings. To illustrate, let us assume Hc
contains 5 listings fromNY and 3 listings from LA. This would entail
computing two market-level centroid embeddings, one for NY and
one for LA, by averaging embeddings of listing ids from each of
the markets. Finally, EmbClickSim is calculated as maximum out of

5https://kafka.apache.org

https://github.com/yarny/gbdt


Figure 7: Partial Dependency Plots for EmbClickSim, EmbSkipSim and UserTypeListTypeSim

two similarities between listing embedding vli andHc market-level
centroid embeddings.

More generally EmbClickSim can be expressed as

EmbClickSim(li ,Hc ) = max
m∈M

cos(vli ,
∑

lh ∈m,lh ∈Hc

vlh ), (10)

whereM is the set of markets user had clicks in.
In addition to similarity to all user clicks, we added a feature that

measures similarity to the latest long click, EmbLastLongClickSim.
For a candidate listing li it is calculated by finding the cosine simi-
larity between its embedding vli and the embedding of the latest
long clicked listing llast from Hlc ,

EmbLastLonдClickSim(li ,Hlc ) = cos(vli , vllast ). (11)

User-type & Listing-type Embedding Features. We follow
similar procedure to introduce features based on user type and
listing type embeddings. We trained embeddings for 500K user
types and 500K listing types using 50 million user booking sessions.
Embeddings were d = 32 dimensional and were trained using a
sliding window ofm = 5 over booking sessions. The user type and
listing type embeddings were loaded to search machines memory,
such that we can compute the type similarities online.

To compute the UserTypeListingTypeSim feature for candidate
listing li we simply look-up its current listing type lt as well as
current user type ut of the user who is conducting the search and
calculate cosine similarity between their embeddings,

UserTypeListinдTypeSim(ut , lt ) = cos(vut , vlt ). (12)

All features from Table 6 were logged for 30 days so they could be
added to search ranking training set D. The coverage of features,
meaning the proportion of D which had particular feature popu-
lated, are reported in Table 7. As expected, it can be observed that
features based on user clicks and skips have the highest coverage.

Finally, we trained a new GBDT Search Ranking model with
embedding features added. Feature importances for embedding
features (ranking among 104 features) are shown in Table 7. Top
ranking features are similarity to listings user clicked on (EmbClick-
Sim: ranked 5th overall) and similarity to listings user skipped
(EmbSkipSim: ranked 8th overall). Five embedding features ranked
among the top 20 features. As expected, long-term feature UserType-
ListingTypeSim which used all past user bookings ranked better
than short-term feature EmbBookSimwhich takes into account only
bookings from last 2 weeks. This also shows that recommendations

Table 7: Embedding Features Coverage and Importances

Feature Name Coverage Feature Importance

EmbClickSim 76.16% 5/104
EmbSkipSim 78.64% 8/104
EmbLongClickSim 51.05% 20/104
EmbWishlistSim 36.50% 47/104
EmbInqSim 20.61% 12/104
EmbBookSim 8.06% 46/104

EmbLastLongClickSim 48.28% 11/104

UserTypeListingTypeSim 86.11% 22/104

based on past bookings are better with embeddings that are trained
using historical booking sessions instead of click sessions.

To evaluate if the model learned to use the features as we in-
tended, we plot the partial dependency plots for 3 embedding fea-
tures: EmbClickSim, EmbSkipSim and UserTypeListTypeSim. These
plots show what would happen to listing’s ranking score if we fix
values of all but a single feature (the one we are examining). On
the left subgraph it can be seen that large values of EmbClickSim,
which convey that listing is similar to the listings user recently click
on, lead to a higher model score. The middle subgraph shows that
large values of EmbSkipSim, which indicate that listing is similar to
the listings user skipped, lead to a lower model score. Finally, the
right subgraph shows that large values of UserTypeListingTypeSim,
which indicate that user type is similar to listing type, lead to a
higher model score as expected.

Online Experiment Results Summary. We conducted both
offline and online experiments (A/B test). First, we compared two
search ranking models trained on the same data with and without
embedding features. In Table 8 we summarize the results in terms
of DCU (Discounted Cumulative Utility) per each utility (impres-
sion, click, rejection and booking) and overall NDCU (Normalized
Discounted Cumulative Utility). It can be observed that adding em-
bedding features resulted in 2.27% lift in NDCU, where booking
DCU increased by 2.58%, meaning that booked listings were ranked
higher in the hold-out set, without any hit on rejections (DCU -0.4
was flat), meaning that rejected listings did not rank any higher
than in the model without embedding features.



Table 8: Offline Experiment Results

Metrics Percentage Lift

DCU -0.4 (rejections) +0.31%
DCU 0.01 (clicks) +1.48%
DCU 0.25 (contacts) +1.95%
DCU 1 (bookings) +2.58%

NDCU +2.27%

Observations from Table 8, plus the fact that embedding features
ranked high in GBDT feature importances (Table 7) and the find-
ing that features behavior matches what we intuitively expected
(Figure 7) was enough to make a decision to proceed to an online
experiment. In the online experiment we saw a statistically sig-
nificant booking gain and embedding features were launched to
production. Several months later we conducted a back test in which
we attempted to remove the embedding features, and it resulted in
negative bookings, which was another indicator that the real-time
embedding features are effective.

5 CONCLUSION
We proposed a novel method for real-time personalization in Search
Ranking at Airbnb. The method learns low-dimensional representa-
tions of home listings and users based on contextual co-occurrence
in user click and booking sessions. To better leverage available
search contexts, we incorporate concepts such as global context
and explicit negative signals into the training procedure. We eval-
uated the proposed method in Similar Listing Recommendations
and Search Ranking. After successful test on live search traffic both
embedding applications were deployed to production.
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