function [p0,err,k,y]=Newton_Iteration(f,df,p0,delta,epsilon,max1) %Input - f is the object function % - df is the derivative of f % - p0 is the initial approximation to a zero of f % - delta is the tolerance for p0 % - epsilon is the tolerance for the function values y % - max1 is the maximum number of iterations %Output - p0 is the Newton-Raphson approximation to the zero % - err is the error estimate for p0 % - k is the number of iterations % - y is the function value f(p0) % f=@(x) x*exp(x)-1; df=@(x) exp(x)*(x+1); % p0=1; delta=1e-4; epsilon=1e-3; max1=500; % Newton_Iteration(f,df, p0, delta, epsilon, max1) %If f and df are defined as M-file functions use the @ notation % call [p0,err,k,y]=newton(@f,@df,p0,delta,epsilon,max1). %If f and df are defined as anonymous functions use the % call [p0,err,k,y]=newton(f,df,p0,delta,epsilon,max1). % NUMERICAL METHODS: Matlab Programs % (c) 2004 by John H. Mathews and Kurtis D. Fink % Complementary Software to accompany the textbook: % NUMERICAL METHODS: Using Matlab, Fourth Edition % ISBN: 0-13-065248-2 % Prentice-Hall Pub. Inc. % One Lake Street % Upper Saddle River, NJ 07458 for k=1:max1 p1=p0-f(p0)/df(p0); err=abs(p1-p0); relerr=2*err/(abs(p1)+delta); p0=p1; y=f(p0); if (err