Appendix

The detailed proofs for Theorem 1, 2, and 3, and the RMSE results are shown in the following.

Proof of Theorem 1

Consider the characteristic of normal distribution that the sum of variable from normal distribution is also distributed as normal distribution (Eisenberg and Sullivan 2008), it is obvious that both of $\sum_{i \in \mathcal{R}_{s,j}} \mathbf{c}_{ij_s}$ and $\sum_{i \in \mathcal{R}_{n,j}} \mathbf{c}_{ij_n}$ are distributed as N(0, 1). Then based on Lemma 1, we know $\sum_{i \in \mathcal{R}_{s,j}} \mathbf{x}_j^i$ and $\sum_{i \in \mathcal{R}_{n,j}} \mathbf{y}_j^i$ are distributed as $Lap(\frac{2\Delta\sqrt{K}}{\epsilon_s})$ and $Lap(\frac{2\Delta\sqrt{K}}{\epsilon_n})$. Let $\epsilon_s = (1 + \beta)\epsilon$, $\epsilon_n = (\frac{1}{\beta} + 1)\epsilon$, and c is distributed

Let $\epsilon_s = (1 + \beta)\epsilon$, $\epsilon_n = (\frac{1}{\beta} + 1)\epsilon$, and c is distributed as N(0, 1). Since every user keeps the same \mathbf{h}_j when updates \mathbf{v}_j in each iteration, the summation of these random noise vector for sensitive and non-sensitive ratings can be calculated as

$$\begin{split} \mathbf{p}_{j} &= \sum_{i \in \mathcal{R}_{s,j}} \mathbf{x}_{j}^{i} + \sum_{i \in \mathcal{R}_{n,j}} \mathbf{y}_{j}^{i} \\ &= \frac{2\Delta\sqrt{2K\mathbf{h}_{j}}}{\epsilon_{s}} \sum_{i \in \mathcal{R}_{s,j}} \mathbf{c}_{ij_{s}} + \frac{2\Delta\sqrt{2K\mathbf{h}_{j}}}{\epsilon_{n}} \sum_{i \in \mathcal{R}_{n,j}} \mathbf{c}_{ij_{n}} \\ &= 2\Delta c\sqrt{2K\mathbf{h}_{j}} \left(\frac{1}{\epsilon_{s}} + \frac{1}{\epsilon_{n}}\right) \\ &= 2\Delta c\sqrt{2K\mathbf{h}_{j}} \left(\frac{1}{(1+\beta)\epsilon} + \frac{1}{(\frac{1}{\beta}+1)\epsilon}\right) \\ &= \frac{2\Delta\sqrt{K}}{\epsilon_{s}} \sqrt{2\mathbf{h}_{j}}c \end{split}$$

Then each element in $\mathbf{p}_j = \{p_{j1}, p_{j2}, ..., p_{jl}, ..., p_{jK}\}$ is distributed as $Lap(\frac{2\Delta\sqrt{K}}{\epsilon})$ based on Lemma 1, which is equal to that we randomly picked each p_{jl} from the $Lap(\frac{2\Delta\sqrt{K}}{\epsilon})$ distribution, whose probability density function is $Pr(p_{jl}) = \frac{\epsilon}{4\Delta\sqrt{K}} e^{-\frac{\epsilon|p_{jl}|}{2\Delta\sqrt{K}}}$. Let D_1 and D_2 be two datasets only differ from one product

Let D_1 and D_2 be two datasets only differ from one record \mathbf{R}_{ab} and $\tilde{\mathbf{R}}_{ab}$, which can be sensitive or non-sensitive. From the different inputs D_1 and D_2 , we obtain the same output, i.e., the same derived \mathbf{V} . Since the derived \mathbf{V} are the optimized result after convergence, we then have $\frac{\partial \mathcal{J}(D_1)}{\partial \mathbf{v}_j} = \frac{\partial \mathcal{J}(D_2)}{\partial \mathbf{v}_j} = 0$ as $\mathbf{E}_{\mathbf{r}}(\mathbf{0})$, which then same has formulated as

 $\frac{\partial \mathcal{J}(D_2)}{\partial \mathbf{v}_j} = 0$ as Eq.(8), which then can be formulated as,

$$2\sum_{i=1}^{n}\mathbf{I}_{ij}(\mathbf{u}_{i}^{T}\mathbf{v}_{j}-\mathbf{R}_{ij})\mathbf{u}_{i}+\mathbf{p}_{j}=2\sum_{i=1}^{n}\mathbf{I}_{ij}(\mathbf{u}_{i}^{T}\mathbf{v}_{j}-\tilde{\mathbf{R}}_{ij})\mathbf{u}_{i}+\tilde{\mathbf{p}}_{j}$$
(11)

As ratings in D_1 and D_2 only differs from \mathbf{R}_{ab} and \mathbf{R}_{ab} , then we can get

$$\mathbf{p}_j - \tilde{\mathbf{p}}_j = 2\mathbf{u}_i(\mathbf{R}_{ab} - \mathbf{R}_{ab})$$

Considering $|\mathbf{R}_{ab} - \tilde{\mathbf{R}}_{ab}| \leq \Delta$ and $||\mathbf{u}_i|| \leq 1$, it's obvious $||\mathbf{p}_j - \tilde{\mathbf{p}}_j|| \leq 2\Delta$.

We then formulate the probability that we get the same derived V with the different datasets D_1 and D_2 after con-

vergence. For each vector \mathbf{v}_j of \mathbf{V} , we have

$$\frac{Pr[\mathbf{v}_j|D_1]}{Pr[\mathbf{v}_j|D_2]} = \frac{\prod_{l \in \{1,2,\dots,K\}} Pr(p_{jl})}{\prod_{l \in \{1,2,\dots,K\}} Pr(\tilde{p}_{jl})}$$
$$= e^{-\frac{\epsilon \sum_l |p_{jl}|}{2\Delta\sqrt{K}}} / e^{-\frac{\epsilon \sum_l |\tilde{p}_{jl}|}{2\Delta\sqrt{K}}} = e^{\frac{\epsilon \sum_l (|p_{jl}| - |\tilde{p}_{jl}|)}{2\Delta\sqrt{K}}}$$
$$\leq e^{\frac{\epsilon \sqrt{K \sum_l (p_{jl} - \tilde{p}_{jl})^2}}{2\Delta\sqrt{K}}} = e^{\frac{\epsilon \sqrt{K}|\mathbf{p}_j - \tilde{\mathbf{p}}_j||}{2\Delta\sqrt{K}}} \leq e^{\epsilon}$$

So, we obtain the conclusion.

Proof of Theorem 2.

With the characteristic of normal distribution and Lemma 1, we know $2\sum_{f\in\mathcal{F}_i} \mathbf{q}_i^f \sim Lap(\frac{2\sqrt{K}}{\epsilon})$. Let D_1 and D_2 be two datasets only differ from one record

Let D_1 and D_2 be two datasets only differ from one record \mathbf{u}_i^f and $\tilde{\mathbf{u}}_i^f$. From the different inputs D_1 and D_2 , we obtain the same output, i.e., the same derived U. Since the derived U is the optimized results after convergence, then we know $\frac{\partial \mathcal{J}(D_1)}{\partial \mathbf{u}_i} = \frac{\partial \mathcal{J}(D_2)}{\partial \mathbf{u}_i} = 0$ as Eq.(9), which can be formulated as,

$$\mathbf{q}_{i}^{f} + 2\sum_{f \in \mathcal{F}_{i}} S_{if}(\mathbf{u}_{i} - \mathbf{u}_{f}) = \tilde{\mathbf{q}}_{i}^{f} + 2\sum_{f \in \mathcal{F}_{i}} S_{if}(\mathbf{u}_{i} - \tilde{\mathbf{u}}_{f})$$
(12)

As there's only one difference for D_1 and D_2 , then we can get $\mathbf{q}_i^f - \tilde{\mathbf{q}}_i^f = 2 \sum_{f \in \mathcal{F}_i} S_{if}(\mathbf{u}_f - \tilde{\mathbf{u}}_f)$. Considering $|S_{if} - S'_{if}| \le 1$ and $||\mathbf{u}_f|| \le 1$, it's obvious $||\mathbf{q}_i^f - \tilde{\mathbf{q}}_i^f|| \le 2$.

We then formulate the probability that we get the same derived U with the different datasets D_1 and D_2 . For each \mathbf{u}_i of U, we have

$$\begin{aligned} \frac{P[\mathbf{u}_i|D_1]}{P[\mathbf{u}_i|D_2]} = & \frac{\prod_{l \in \{1,2,\dots,K\}} p(q_{il}^l)}{\prod_{l \in \{1,2,\dots,K\}} p(\tilde{q}_{il}^f)} \\ = & e^{-\frac{\epsilon \sum_l |q_{il}^f|}{2\Delta\sqrt{K}}} / e^{-\frac{\epsilon \sum_l |\tilde{q}_{il}^f|}{2\Delta\sqrt{K}}} = e^{\frac{\epsilon \sum_l (|q_{il}^f| - |\tilde{q}_{il}^f|) - |\tilde{q}_{il}^f|}{2\Delta\sqrt{K}}} \\ \leq & e^{\frac{\epsilon \sqrt{K \sum_l (q_{il}^f - \tilde{q}_{il}^f)^2}}{2\Delta\sqrt{K}}} = e^{\frac{\epsilon \sqrt{K}||\mathbf{q}_i^f - \tilde{\mathbf{q}}_i^f||}{2\Delta\sqrt{K}}} \le e^{\epsilon} \end{aligned}$$

So, we obtain the conclusion.

Proof of Theorem 3.

We combine the rating model and social relation model together in Eq.(7). Since we don't jointly optimize Eq.(7) w.r.t. V and U, we then optimize Eq.(7) w.r.t. V and U separately with Eq.(8) and Eq.(9).

For **V**, the only difference of derivative of Eq.(5) and Eq.(8) w.r.t. \mathbf{v}_j is the regularization $2\lambda \mathbf{v}_j$. Then we should add $2\lambda \mathbf{v}_j$ on both sides of Eq.(11). Since both datasets get the same \mathbf{v}_j , then the results won't change. The derived V still satisfies ϵ -differential privacy.

For U, because of the difference of derivative and Eq.(6) and Eq.(9) w.r.t. \mathbf{u}_i , we need to add $2\sum_{j=1}^m \mathbf{I}_{ij}(\mathbf{u}_i^T\mathbf{v}_j - \mathbf{R}_{ij})\mathbf{v}_j + 2\lambda\mathbf{u}_i$ on both sides of Eq.(12). Since D_1 and D_2 are only different at \mathbf{u}_f and $\tilde{\mathbf{u}}_f$, then $||\mathbf{q}_i^f - \tilde{\mathbf{q}}_i^f||$ won't change, thus the derived U still satisfies ϵ -differential privacy.

In general, Algorithm 1 satisfies ϵ -differential privacy, which means attackers can't learn users' sensitive ratings or other user' latent profile in the whole process.