
Appendix
The detailed proofs for Theorem 1, 2, and 3, and the RMSE
results are shown in the following.
Proof of Theorem 1
Consider the characteristic of normal distribution that the
sum of variable from normal distribution is also distributed
as normal distribution (Eisenberg and Sullivan 2008), it is
obvious that both of
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Let ✏s = (1 + �)✏, ✏n = ( 1� + 1)✏, and c is distributed
as N(0, 1). Since every user keeps the same hj when up-
dates vj in each iteration, the summation of these random
noise vector for sensitive and non-sensitive ratings can be
calculated as
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Then each element in pj = {pj1, pj2, ..., pjl, ..., pjK}
is distributed as Lap( 2�
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✏ ) based on Lemma 1, which
is equal to that we randomly picked each pjl from the
Lap( 2�

p
K

✏ ) distribution, whose probability density func-
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Let D1 and D2 be two datasets only differ from one record
Rab and R̃ab, which can be sensitive or non-sensitive. From
the different inputs D1 and D2, we obtain the same output,
i.e., the same derived V. Since the derived V are the op-
timized result after convergence, we then have @J (D1)

@vj
=

@J (D2)
@vj

= 0 as Eq.(8), which then can be formulated as,
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As ratings in D1 and D2 only differs from Rab and R̃ab,
then we can get

pj � p̃j = 2ui(Rab � R̃ab).

Considering |Rab � R̃ab|  � and ||ui||  1, it’s obvious
||pj � p̃j ||  2�.

We then formulate the probability that we get the same
derived V with the different datasets D1 and D2 after con-

vergence. For each vector vj of V, we have
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So, we obtain the conclusion.
Proof of Theorem 2.
With the characteristic of normal distribution and Lemma 1,
we know 2
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Let D1 and D2 be two datasets only differ from one record
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the same output, i.e., the same derived U. Since the derived
U is the optimized results after convergence, then we know
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as,
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As there’s only one difference for D1 and D2, then we can
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We then formulate the probability that we get the same
derived U with the different datasets D1 and D2. For each
ui of U, we have
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So, we obtain the conclusion.
Proof of Theorem 3.
We combine the rating model and social relation model to-
gether in Eq.(7). Since we don’t jointly optimize Eq.(7) w.r.t.
V and U, we then optimize Eq.(7) w.r.t. V and U separately
with Eq.(8) and Eq.(9).

For V, the only difference of derivative of Eq.(5) and
Eq.(8) w.r.t. vj is the regularization 2�vj . Then we should
add 2�vj on both sides of Eq.(11). Since both datasets get
the same vj , then the results won’t change. The derived V

still satisfies ✏-differential privacy.
For U, because of the difference of derivative and Eq.(6)

and Eq.(9) w.r.t. ui, we need to add 2
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change, thus the derived U still satisfies ✏-differential pri-
vacy.

In general, Algorithm 1 satisfies ✏-differential privacy,
which means attackers can’t learn users’ sensitive ratings or
other user’ latent profile in the whole process.


