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Note: Starred and Formal Schemes questions have been skipped since for the most part we skipped those
in class.
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1 I. Varieties

1.1 I.1x
1.1.1 Ex, I.1.1 gx

I.1. {a) Let Y be the plane curve v = x* {i.e.. Y is the zero set of the polynomial [ =
1 — x%). Show that A(Y) is isomorphic to a polynomial ring in one variable
over k.

We have k [z,y] / (y — 2%) ~ k [z, 2] by plugging in z? to y.

1.1.2 b.xg

(b) Let Z be the plane curve x1- = 1, Show that A{Z) is not isomorphic to a poly-
nomial ring in one variable over &,

A(z) =klz,y] [ (xy = 1) = k [z, ;]

*ic) Let f be any irreducible quadratic polynomial in k[ x.y], and let W be the
conic defined by f. Show that 4(W)is isomorphicto 41 Y )or 4(Z). Whichone
is it when'!

1.1.3 Ex,1.1.2xg

1.2, The Twisted Cubic Curve. Let Y = Atbetheset Y = [(r.i”.?)|r e A}l Showthat ¥
is an alfine variety of dimension 1. Find generators for the ideal 1Y), Show that
41Y) 1s 1somorphic to a polvnomial ring in one variable over k. We say that ¥
Is given by the paramerric represemtation x = 1.y = 1*,2 = . \‘

Since we assume algebraically closed, £ is infinite, then to see irreducible, since k is integral domain, if
fgeI(Y),then f(z,2% 23) g (x, 2% %) = 0.

Thus f or g must be zero, so one of f,g € I (Y), i.e. it is prime.

Clearly dimension 1 since parametrized by ¢, the ideal is generated by y — 2,z — 2 and then A(Y) =
klr,y, 2]/ (y — 2%z — 2®) = k [x, 2%, 23] = k [x]

114 Ex,1.1.3xg

1.3. Let Y be the algebraic set in A* defined by the two polynomials x* — y= and
vz — x. Show that Y is a union of three irreducible components. Describe them
and find their prime ideals.

If 2 =0, then z = 0 and y is anything. So we have y-axis.
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Prime ideal is (z, x)

If 2 # 0, then we have 22 = ay for a € k so we have a parabola.
Prime ideal is (z — k,y — kz?)

If x =0, then z is anything, and y = 0. This is z axis.

Prime ideal is (z,y)

1.1.5 Ex,1.14xg

1.4. [fweidentify A° with A' = A" in the natural way, show that the Zariski topology
on A? is not the product topology of the Zariski topologies on the two copies of A,

he set V (y — x) is the diagonal it’s closed in Zariski topology.

Now a closde base for the product topology on A! x A! would be products of sets closed in the Z-topology
on both factors. Closed sets in Alare just points and the whole space. So closed sets in A' x A! product
topology should be finite unions of horizontal or vertical lines and points. The diagonal is not such.

1.1.6 Ex, L.1.5x

1.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some algeg-
braic set in A", for some n, if and only if B is a finitely generated k-algebra with né
nilpotent elements.

Clearly if B is an affine coordinate ring then it’s finitely generated, no nilpotents.
If B is f.g. no nilpotents, let x1, ..., z, a set of generators.

Then B = k[x1,...,x,] /J where J is reduced since no nilpotents.

Thus I (V' (J)) = J thus B is coordinate ring of V' (I).

1.1.7 Ex,1.1.6xg

1.6. Any nonempty open subset of an irreducible topological gpace i1s dense and
irreducible. If Y is a subset of a topological space X. which fis irreducible in its
induced topology, then the closure Y is also irreducible.

U dense

Assume to contrary U is not dense.

Let V =X\U .

Then X = U°U V¢ but X was supposed irreducible.
—> U dense.

U irreducible

Assume to contrary that U is not irreducible, U = Y] [[ Y, Y; closed.

For X;, Xy C X with Y; =UNX; , then (X, UX,)UU®=X = X irreducible.
Contradiction. = U irreducible.

closure irreducible

Suppose Y is irreducible, but Y = Y [] Ya.

Then Y = V1NY)U (YanY)= Y =(Y;NY)foroneofi=12.

Y the smallest closed subset of X containing Y =Y =Y; = Y is irreducible.
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1.1.8 Ex, 1.1.7 x

1.7. (a) Show that the following conditions are equivalent for a topological space X
(i) X is noetherian: (i) every nonempty family of closed subsets has a minimal
element: (i) X sausfies the ascending chain condition for open subsets:
{iv) every nonempty family of open subsets has a maximal element.

Since it holds from the equivalent conditions for noetherian modules since ideals correspond to submodules.

1.1.9 b. x

A & R = T
{b) A noetherian topological space 18 quasi-compact, 1.e.. every open cover has a
finite subcover.

Apply part (a) to the cover Uy, Uy U Uy, Uy UUs U Us, ... .

1.1.10  (c) x.

{c) Any subset of a noetherian topological space 15 noethernian mn its induced
topology.

follows from part (a).

1.1.11 dx

{d) A noetherian space which is also HausdorfT must be a finite set with the discrete
topology.

Argue as in the proof of the baire category theorem.

Ex, I.1.8 x g and below

1.8. Let ¥ be an affine variety of dimension r in A". Let H be a hypersurface in A",
and assume that ¥ £ H. Then every irreducible component of ¥ ~ H has
dimension » — 1. (See (7.1} for a generalization,)

Note irreducible components of Y N H correspond to minimal prime ideals of height 1.
Now use dim R/p + height p = dim R.

Ex, I.19x g

19, Let o= 4 = k[x,..... v, ] be an ideal which can be generated by r elements.
Then every irreducible component of Zia) has dimension = n — .
Each f; € a from i = 1 to r defines a hypersurface.
Apply the previous excercise r times.
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1.1.12 Ex, I.1.10 x

1.10. (a) If Yis any subset of a topological space X.thendim V' < dim X,

Any chain of irreducible closeds in Y extends to a chain in X.

1.1.13 (b). x g and 1.2.7.a

iby If X 15 a topological space which is covered by a family of open subsets [ L, ].
thendim A = supdim L.
By (a) sup dim U; < dim X.
Let {pt} = Xy C ... C X, is a chain of irreducible closed subset of X
Let U 5 X,. By 1.6, X; N U is irreducible and dense in X; so the strict inclusions are maintained.
Thus XoNU C ... C X, NU is a chain and dim (X) < dim U < sup dim U;.

1.1.14 c. x

ic) Give an uxampiu.nf a wp'n]mgicul space X and a dense open subset U with
dim L' < dim X,
Consider X = {0, 1} with open sets (), {1}, X.

1.1.15 d. x

(d) If' Y is a closed subset of an irreducible finite-dimensional topological space X,
and ifdim ¥ = dim X.then Y = X.

If Y # X, then to any chain in Y we add X to get a longer chain in X so their dimensions are not the
same.

1.1.16 e. x

{ed Give an example of a noetherian 1opological space of infinite dirL']enfainn.

Let X be the positive integers with closed sets like {1,...,n}.

Ex, 1.1.11*

*L.11. Let ¥ = A? be the curve given parametrically by x = r*, v = 1%, = = t*. Show
that {(Y) is a prime ideal of height 2 in k[ x,1.z] which cannot be generated by
2 elements. We say Y is not o local complete imersecrion—cf. (Ex. 2.17)

Ex, 1.1.12 x.

1.12. Give an example of an irreducible polvnomial [ = R[x. v]. whose zero set
Z(f)in Ag is not irreducible (cf. 1.4.2),
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Consider y? + (22 — 1)° .
The point is that it only factors over C [z, y], but it has two real roots.

1.2 1.2x

1.2.1 1.2.1 x homogenous nullstellensatz

2.1. Prove the "homogeneous Nullstellensatz,” which savs if o = § is a homogeneous
ideal, and if / € § is a homogeneous polyvnomial withdeg / = 0, such that f1P) =0
forall P e Z(a)in P", then f“ € afor some ¢ = 0. | Hini: Interpret the problem in
terms of the affine in + 1)-space whose affine coordinate ring is §, and use the
usual Nullstellensatz. i 1.3A).]

This follows by looking at the affine cone and using the affine nullstellensatz.

1.2.2 1.2.2 projective containments x

2.2, For a homogeneous ideal a = §, show that the following conditions are equi-
valent:

i1 Zia) = & ithe empty set):
(i) o = either 5 or theideal S, = (D,., 8,
(i a = S, for some d = (.

Assume (i). Then in A" Z (a) is either empty or (0, ...,0) so v/a is either S or 45054
Assume (ii). If \/a contains z; then z; € a™ for all 4.

Since z}" divides monomials of degree m (n + 1), then S,,41) D a.

Assume (iii). If @ D S; then ¢ € a have no zeros.

[.2.3

1.2.3 1.2.3.a. containments. x

2.3. (a) Il T, = T, are subsets of §". then Z(T ) = Z(T,).

Trivial.

1.24 b. x

(b) If ¥, = }'z_ure subsets of P, then I(Y,)|= i };) h

trivial

1.25 c. x

LL(‘LL[lLFJD}JM&JJthJ_E_m'? of PNV, 0 Yoy = HY o~ IV

trivial
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1.2.6 d. x

_'a_l'ﬂ'\r_?_.fﬂ'ﬁ'.ir\t'.'l_j1.l_1 Lo ) = AT ¥y = :_-_.ll LA LR ey I
(d) Ifa = §is a homogeneous ideal with Zia) # @. then lZ(a)) = | o
I(Z (a)) is the set of f vanishing on the zero set of a.
By nullstellensatz, such f are in /7.

Now let f € \/a = mpez(a) (Xl - P, X, - Pn)

Note that

Z (a) is the set of P where every g € a vanishes.

So I (Z (a)) is the set of h which vanish at all P where every g € a vanishes.
So we have the reverse containment.

1.2.7 e. x

pray waon B e 8 A Ry - e e

le) Forany subset ¥ = P, Z{[{Y)) = Y.

part 1 Z(I(Y))CY B

Z (I1(Y)) is closed set containing Y = Z (I (Y)) DY, the smallest closed set containing Y.
part 2Y C Z(I(Y)). B B

Suppose p ¢ Y so [ (Y) pyi (Y U P) since some polynomials vanishing on Y don’t vanish at P.
— P¢Z(I(Y)).

I1.2.4 a x

2.4. (a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in
P". and homogeneous radical deals of § not equal to 5, given by Y — (Y}
and a— Zia). Nore: Since 5. does not oceur in this correspondence, 1t is
sometimes called the ivrelevant maximal ideal of 5.

By 2.3 and 2.2.

1.2.8 b. x g and below

(b} An algebraicset ¥ = P"is irreducible if and only if 1Y} is a prime ideal.

Suppose that I (Y') is prime.

FY =Y1UYs, then I(Y) =1 (Y1)NI(Yy)DI(Y1)I(Ya). Thus I(Y) =1 (Y1) or I(Ya).
If Y is not prime, then there are ab € I (Y') with both a,b ¢ I (Y').

Thus Y is a union of Y N Z (a) and Y N Z (b) and is not irreducible.

1.29 c. xg

’7ch Show that P itsell 1s irreducible.

Since I (P") = 0 which is prime, so use part (b).

22



1.2.10 125 (a) x g

2.5, (a) P"is a noetherian topological space.
Irreducible closed chains in P" corresponds to ascending chains of primes in k [z, ..., z,,] by Ex. 2.3

Note that k [z, ..., 2, is noetherian by hilbert basis theorem.

1.2.11 (b). x

L=

(by Every algebraicset in P"can be written uniquely as

a finite union mfirreducih]L
algebraic sets, no one containing another. These are called its .'.--.":J:Im-fh.fF

FAral R NaTR T LR
T T

By proposition 1.5, and part (a).

1.2.6 x

2.6. If Y is a projective variety with homogeneous coordinate ring 5(Y ), show that
dim S1Y) = dim ¥ + 1. [Hinr: Let ;: U; — A" be the homeomorphism of (2.2),

let Y, be the affine variety @ {Y ~ L)), and let 4(Y;) be its affine coordinate ring.

Show that A(Y,) can be identified with the subring of elements of degree 0 of the
localized ring S(Y),. Then show that 5(Y), = A(¥)[x.x; "] Now use (1[),
{1.8A), and (Ex 1.10}, and look at transcendence degrees. Conclude also that

dim Y = dim Y, whenever Y, is nonempty.]

S (Y)(s, is the coordinate ring of the cone of Y; if ¥; is nonempty.
So degree 0 part of S (Y'), is the coordinate ring of the cone with z; = 0 which is isomorphic to Y;.

= S(Y),, = AY) |z, xi} . Comparing transcendence degrees gives the result.

1.2.12 1.2 7a.xg

2.7.1a) dim P" = n.

This follows from 1.10.b, using the standard affine cover.

1.2.13 b. x
by If ¥ = P"is a quasi-projective variety, then dim
[ Hine: Use (Ex. 2.6) to reduce to (1.10).]

"=dim }.

This follows from the proof of 1.10 and using the affine cone.

1.2.14 1.2.8xg

2.8. A projective variety ¥ = P" has dimension n — 1 if and only if it is the zero set of
a single irreducible homogeneous polynomial f of positive degree. Y is called a

hypersurfuce in P7,
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Since irreducible homogeneous polynomial correspond to minimal prime ideals of height 1, then using the
height / dimension formula gives Y has dimension n — 1.

Conversely suppose Y has dimension n — 1.

= dim k[Y]=dimY +1=n (by 1.2.6).

So the ideal of Y can have height at most 1 by the height / dimension formula.

1.2.15 IL[.2.9x

2.9. Projective Closure of an Affine Variery. If' Y = A" 15 an affine vanety, we identify
A" with an open set U, = P" by the homeomorphism ¢,. Then we can speak of

Y, the closure of Y in P", which is called the projective closure of Y.

{a}) Show that I(Y) is the ideal generated by fil{Y)), using the notation of the
proof of (2.2).

1. I(Y)DB(I(Y))
If fel(Y),then B(f)=f(1,21,...,2,) vanisheson Y C A" = f e I(Y).

2. B(I(Y)) > I(T). B -
If homogeneous h vanishes on Y, and h (1, z1, ...,z,) = g, then h = 3 (g) so I (Y) is generated by (I (Y)).

(b) Let Y = A* be the twisted cubic of (Ex. 1.2). Its proje¢ctive closure ¥ = P’
is called the rwisted cubic curce in P2, Find generators for [(Y)and I{Y), and
use this example to show thatif f. ..., f. generate I(Y)), then (/). ..., ftf)
do not necessarily generate [(Y ).

1.2.16 1.2.10 x

Sometimes we consider the projective closure C(Y ) of C{Y)in P""'. This is called

the projective cone over Y.

mﬁ
- - ' ;
-:"Hfﬂ C/ . P2 -_f’:#’
—~— I'I # _,f’fﬂ
- e

Figure 1. The cone over a curve in P2,



210, The Cone Over a Projective Variety (Fig. 1). Let ¥ = P be a nonempty eil%chni ic

set, and let :A"" " — (0, ....01] — P" be the map which sends the point with
affine coordinates {dy.....,) to the pomt with homogeneous coordinates
(thge - s a,). We define the affine cone over Y 1o be

ClYy=0"4Yyu l10,..., 0.

]

{a) Show that C(Y) is an algebraic set in A""', whose ideal is equal ta I(Y).
considered as an ordinary ideal in k[ x,, ... . ¥ )

this is clear.

1.2.17 b. x

[ (b) CL¥)is irreducible if and ¢nly if ¥ is.

Since they have the same ideal. (prime iff the ideal is irreducible was a previous excercise).

1.2.18 c. xg

ic) dmCiY)=dimY + 1. —‘

D orsnn nd ot s anrsm arvinscidas tha memia

By 2.6.

1.2.19 I1.2.11 x g (use p2)

211, Linear Varieties in P". A hypersurface defined by a linear polynomial is called a
hyperplane.
{a) Show that the following two conditions are equivalent for a variety Y in P
(1 NY)ycan be generated by linear polynomials.
(i1} Y can be written as an intersection of hyperplanes.
In this case we say that Y s a linear caricty in P,

Trivial.

{b) If ¥ 1s a linear variety of dimension + in P", show that I{Y) is minimally gen-
erated by n — i linear polynomials.

Y is intersection of hyperplanes by (a), each corresponding to homogeneous primes of height 1.
Each additional hyperplane increases the height of the ideal by 1.

1.2.21 «x.

(¢) Let Y.Z belinear varieties in P", withdim ¥ = o+, dimZ = 5. Ify + 5 — n = 0,
then Y~ Z # . Furthermore, if Y nZ £ 7, then Y n 2 is a linecar
variety of dimension = r + s — n. (Think of A" ' as a vector space over k,

and work with its subspaces.)
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by projective dimension theorem...

1.2.22 c. x

fc) Let Y.Z be linear varieties in P, withdim Y = rodimZ = s Il + 5 —n = 0,
then ¥~ Z # 1. Furthermore, il Y n 2 # @, then Y~ 2 is a linear
variety of dimension = » + s — n. (Think of A"™' as a vector space over k.
and work with 1ts subspaces.)

By the projective dimension theorem.

1.2.23 1.2.12 x g and below

2.12. The d-Uple Embedding. For given ne = O, let My M, ... .} M, be all [I'!]L‘ mono-
mials of degree J in the n + 1 variables x,, ... .x,. where N = (";%) - 1. We
define a mapping p,:P" = P by sending the point P = (ag. .. . .,) to the point
o Py = (Myla), ... M y(a)) obtained by substituting the a, in the monoguals M .
This is called the d-uple embedding of P*in P*, Forexample,ifn = 1,d + 2, then
N = 2 and the image Y of the 2-uple embedding of P! in P is a conic.
(a) Let &:&k[yq,..., vx] = k[xg.....x,] be the homomorphism defined by

sending v, to M, and let a be the kernel of {1, Then a is a homogenegus prime
ideal. and so Z(a)is a projective variety in P,

f maps into an integral domain so the kernel is prime.
Any monomial of degree i maps under 6 to one of degree d -7 which shows that the kernel is homogeneous.

1.2.24 .b. x g and above and below (part d)

(b} Show that the image of p, is exactly Z{a). (One inclusion is casy. The other wil
require some calculation.)

If f e Ker(¢), then f(Mo,...,M,)=0so f vanishes on (M, (a),..., M, (a)) so Im (vg) C Z (a).
Conversely, if f € I (Im(vg)) , then f(x) =0 for all z € I'm (vg) .

— f(My,...,M,) =0.

Thus f € ker ¢. So ker ¢ D I (Im vy).

So Z (a) C Im v,.

1.2.25 c. x

{¢) Now show that g, is a homeomorphism of P" onto the projective variety Zla),

vg is an injective isomorphism with image equal to Z (a).

1.2.26 d. x g and above

1% EVLFYY SEILFYY LLNCAR J."r] L IJ'_-’IJI\rLrI.LI'a.rl.I.'IJJ-.'I‘JI.I LRSI ALY L J.-'I \.r.|\.r‘-|.|'r\.- VAL MWL Y L1,
_ : : oy .

id) Show that the twisted cubic curve in P* (Ex. 2.9) is equal to the 3-uple embed-
ding of P! in P2, for suitable choice of coordinates.

Take the projective closure of the twisted cubic, (zy, 2%, z3)
to get the 3-uple embedding (x5, 22z, xox?, 23)
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1.2.27 1213 x¢g

2.13. Let Y be the image of the 2-uple embedding of P* in P*. This is the Veronese
surface, WZ = Yisa closed curve (a curre is a variety of dimension 1), show that
there exists a hypersurface V' = P* such that I'~ Y = 2.

A curve in P? is defined by f (x,y, z) = 0 for homogeneous f.
f? =g (2% y? 2%, zy, 2z, yz) for some g.
Sow (Z(f)=VnY =72

1.2.28 1.2.14x g

214, The Segre Embedding. Let :P° x P* — P* be the map defined by sending lfru
ordered pair {ag, . ...,) ¥ ibg,... b)) 10 (. ...4b,, ...} in lexicographic order.
where N = rs + r + 5. Note that v is well-defined and injective. It 1s called the
Segre embedding. Show that the image of i is a subvariery of PY. [Hinr: Let the
homogencous coordinates of P¥ be [z i = 0,. ... roj=0... . v, and let a be

the kernel of the homomorphism k[ {1z, 1] — k[ xg. oo o000 v, | which sengis
z,, to x,v,. Then show that Im = Z{a).]

Let ¢ : P"xP* — PY defined by (aq, ..., a,) x (bg, ..., bs) = (..., a;b;, ...) in lexicographic order (i.e. a;b; is left
of apby iff i < kori=kandj <1, soit’slike (apby, aghy, agbs, ..., a1bo, arby, ...)) where N = (r+1)(s+1)—1 =
rs+r+ s. Note that ¢ is well-defined and injective. It is called the Segre embedding. Show that the image
of 1 is a subvariety of PV .

Note that any point of ¢ (P" x IP®) satisfies (..., a;b;,...) (..., axby, ...) = (..., a:by, ...) (oo agby, ...).

Conversely, if P € PV with coordinates a;b; satisfies the above relation, then there is some point @ in
P" x P* mapping to it. Since we are in projective space, a;b; # 0 for some 7, j. In affine space with a;b; = 1,
then we have aib, = (axb;) (a;b;). Thus we choose ) to have coordinates a; = a;b; and b = (a;b;) so that it
gets mapped to P under .

In this manner, we know that ¢ (P" x P®) is described by the vanishing of the equations (a;b;) (axb;) —
(aiby) (axb;) and is thus a subvariety of PV.

1.2.29 1.2.15x g

2.15. The Quadric Surfuce in P* (Fig. 2). Consider the surface Q (a surfuce is a variety of
dimension 2) in P* defined by the equation vy — -w = 0.
{al Show that @ is equal to the Segre embedding of P' =< P' in P, for suitable
choice of coordinates.

Recall that ¢ (P" x IP*) is described by the vanishing of the equations (a;b;) (axb)) — (a;b;) (axb;) and is
thus a subvariety of PV.
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1.2.30 b. x

(b} Show that @ contains two families of lines (a line is a linear variety of dimen-
sion 1) | L,}.1M,}. each parametrized by t € P*. with the properties that if
L #L,.then Lnl =@:if M 2M, M,nM, =&, and for all r.i.
L, ~ M, = one point.

Lines are given by ¢ (P* x {P}) and ¢ ({P} x P!).
From the picture of a cone, you can see the required properties.

1.231 c.xg
e e e
i) Show that @ contains other curves besides these lines, and deduce that the
Zariski topology on Q is not homeomorphic via i to the product topology on
P! % P! (where each P' has its Zariski topology).

Look at the curve z = y.

1.2.32 1216 x g

2.16. (a) The intersection of two varieties need not be a variety. For example, let Q,
and Q, be the quadric surfaces in P? given by the equations x* — yw = 0
and x 1 — ow = 0, respectively. Show that @, ~ Q, is the union of a twisted
cubic curve and a line.

If P=(z,y,z,w) € Q1 NQs then z* = yw, zy = zw
— y*w = yr? = 2wz
= w=0=uzory? = a2

1.2.33 b.xg

{b) Even if the intersection of two varieties is a variety, the ideal of the inter-
section may not be the sum of the ideals. For example, let C be the conic in
P? given by the equation x* — vz = 0. Let L be the line given by y = (.
Show that C ~ L consists of one point P, but that (C) + (L) # N P).

Looking at the affine picture, L N C is the origin.
But I (L) +1(C) = (a%y) # (x,y).

1.2.34 1.2.17 x g complete intersections and below

2.17. Complere intersections. A variety Y ol dimension r in P" is|a (strict) complete
imtersection i 1Y) can be generated by n — relements. Y is & ser-theoreric com-
plete intersection 1l Y can be written as the intersection of n|— r hypersurfaces.
(a) Let ¥ be a variety in P", let ¥ = Z(a): and suppose that p can be generated

by ¢ elements. Then show thatdim ¥ = n — .
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By 1.8, the intersection of g-hypersurfaces has dim at least n — ¢ . If it’s generated by ¢ elements, then
the zero set is the intersection of ¢ hypersurfaces.

1.2.35 b. xg

(b} Show that a strict complete intersection is a set-theoretic complete inter-
section.

If 1 (Y) is generated by f; , then Y =nNZ (f;) .

1.2.36 starred.

*{c) The converse of (b) is false. For example let Y be the twisted cubic curve in
P* (Ex. 2.9). Show that I{Y) cannot be generated by two elements. On the
other hand, find hypersurfaces H,.H, ol degrees 2,3 respectively, such that
Y = H, ~H,.

1.3 I1.3x
1.3.1 I31xg

3.1. (a) Show that any conic in A° is isomorphic eitherto A' or A' "0 (ef. Ex. 1]}

By ex 1.1 since affine varieties are isomorphic iff coordinate rings are.

1.3.2 b.xg
(b) Show that A" 1s not isomorphic to any proper open subset of itself. ( This result
is generalized by (Ex. 6.7) below.)

The coordinate ring of a proper subset has units not in k.

1.3.3 c. xg

Ly L e g E e T i
. ¥ . . ; ’
() ﬂuny Cconic Im F' 5 IS‘.?IT'IL"]I']‘I]"IIL’ to P

A conic has genus 0 by the degree genus, and taking a point gives an embedding to P! since the degree is
> 2g = 0. (You may have to look ahead for this).

134 d. xg

id) We will see later (Ex. 4.8) that any two curves are homeomorphic. But show
now that A? is not even homeomorphic to P2

In P2, and two lines intersect by ex 3.7a, but not in A2

20)



1.35 e.xg

(¢) Ifan affine variety is isomorphic to a projective variety, then it consists of only
TITE PO,

By 3.4, the regular functions on a projective variety are k.
This is only possible for an affine variety if it is a point, by 1.4.4

1.3.6 1.3.2 g bijective, bicontinuous but not isomorphism. x

3.2. A morphism whose underlying map on the topological spaces 1s a homeomor-
phism need not be an isomorphism.

fa) For example, let : A" — A? be defined by 1 — (17.0%). Show that |p defines a
bijective bicontinuous morphism of A’ onto the curve ¥ = x%, byt that ¢ 1s

ol an 'i:a.r'nr'l'll_r'-l"r\hi'..1‘|'|

Any inverse is a polynomial in  and y with (z,y) — £ since (t*, %) — .
Note ¢ is bijective to the cusp and continuous, as it is defined by polynomials.

1.3.7 b. frobenius not isomorphism. x g

(bt For another example. let the characteristic of the base field k be p = 0, and
definea mapg:A' — A by r— " Show that o is bijective and bicontinuous
but not an somorphism. This s called the Foobenius mocphism.

No inverse since it would need f () = t.
Injectivity follows from definition in characteristic p.
Surjectivity is because k is a perfect field, being algebraically closed.

1.3.8 1.3.3a. x

. . - .
I3TaT Cet g & — 1 be a morpmsm. Then for each P = X, @ induces 4 homomor-
phism of local rings ¢f:€ _p, = (p .

If f is regular, then f o ¢ is regular on a neighborhood ¢! (V') of p.
Then we have a map Oy y to Op x which is a homomorphism.

1.3.9 b. x

(] () o e op r.w

(b} Show that a morphism ¢ is an isomorphism if and only if ¢p 1s a homeomaor-
phism. and the induced map f on local rings is an isomorphism. for all P e X.

The fi direction is clear.
Now if ¢ is an isomorphism, then topologically it is a homeomorphism, and by part (a), the induced map
on local rings is an isomorphism.




1.3.10 c. x
e e e e . Coe
ic) Show that if ¢ X ) 1s dense in ¥, then the map o s injective for all P;%: X
If ¢7 (f) = 0 then f vanishes on the dense set ¢ (X)NV.
Continuity of f implies that it is 0.

1.3.11 L34xg

A4, Show that the d-uple embedding of P" (Ex. 2.12) 1s an isomorphism onto ils
Image.

Note that v;': (zg: -1 @) (xngO sl ngla:n) which is regular.

1.3.12 L35xg

3.5. By abuse of language, we will say that a varjety “is afline”™ if it 1s isomorphic to
an afline variets. If H < P" 15 any hypersdrface. show that P — H 1s afline.
[Hinr: Let H have degree o, Then consider| the d-uple embedding of P" in P
and use the fact that P* minus a hy perplane ‘s afline.

Note that PV — hyperplane is affine and is the same as P* — H under v,.

1.3.13 L36xg

3.6. There are quasi-affine varieties which are not aftine. For example, show that
N = A% — (001} is not afline. [Hinr: Show that ¢ (X) = A[~x.1] and use (3.5).
See (111 Ex. 4.3 for another proof.|

Note that an affine variety should have Oy equal to the coordinate ring.
But regular functions on A% — (0, 0) look like % with (f) + (¢9) = 1.

g can only vanish along f or at (0,0) and thus has a finite number of zeros.
Thus ¢ is constant so the regular functions are just k [z, y].

Since k [z,y] # A% — {(0,0)} this is a contradiction.

1.3.14 1.3.7ax. g

3.7, ta) Show that any two curves in P° have a nnmmpu intersection.

L T e —— ) | PR I T S T b | R P R —_— S

By the projective dimension theorem.

1.3.15 b. x

(b More generallyv. show that if ¥ < P" is a4 projective variety of dimension = 1.
and if H is a hyvpersurface, then ¥ ~ H % 4. | Hinr: Use (Ex. 3.5) and (Ex

Iler See (7.2 fora generalization, :
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Also by the projective dimension theorem

1.3.16 L3.8xg

3.8. Let H, and H, be the hyperplanes in P* defined by v, = fland x, = O, with i # |
Show that any regular function on P" — (H, ~ H ) 1s ¢onstant. (This gives an
alternate proof of (3.4a) in the case ¥ = P

f € Ox looks like f;/a{) = f; /a9
SO fil';leg(fj) — fjl’?eg(fi)-

Since z; 1 x; then xfeg(fi)|fi so that f; = xfeg(fi) so the function is constant.

1.3.17 L39xg

3.9. The homogeneous coordinate ring of a projective variets s not finvariant under
isomorphism. For example, let X' = P, and let Y be the 2-uple embedding of
P'inP°. Then X = V¥ (Ex. 341 But show that (X} # St}

S(X) = klz,yl.

k [Y] =k [xvyu Z] / (fI?y - ZQ)‘

Now look at m/m? for m = (z,y, 2).

It is a 3-dimensional vector space, but there are no such in S (X).

1.3.18 1.3.10 x

L0, Subvarictios. A subset of a topological space is locally clised 3 1t is an open
subset of its closure. or. equivalently, if it 1s the intersection of an open set with
a Closed sel
[T X is @ quasi-afline or quasi-projective variety and Y is an irreducible locally
closed subset. then ) s also a quasi-athine (respectively. guasi-projective) variety.
by virtue of being a locally closed subset of the same athine or projective space,
We call this the induced stroctore on Yoand we call Y oa subeerieny of X,

Now let ¢: X = Y be a morphism, let ' = X and ¥ = Y be irreducible
locally closed subsets such that @ X') = ¥ Show that ¢|y, : X" — Y is a4 mor-
phism,

Note that locally regular implies regular.

1.3.19 I1.3.11 x

3.11. Let X be any variety and let P e X. Show there s a -1 correspondence between
the prime ideals of the local ring ¢ p and the closed subvarieties of X' contaming P.

This follows from properties of localization of the coordinate ring.




1.3.20 IL.3.12x g

3.12. If P is a point on a variety X, then dim ¢, = dim X. [Hinr: Reduce 1o the
affine case and use (3.2¢). |

dim X =dim A=dim A/p+ ht p=0+ ht p (since A/p is a field)
=dim O, .

1.3.21 1313 xg

313, The Local Ring of « Subrariety Let ¥ = X be a subvariety, Let ¢, be the sel
of equivalence classes (L.f) where ' 2 X s open. L n ¥ # &I and f| 1s a
regular function on U, We say (U1 > isequivalent to by if f = yon Ul L
Show that ¢, ; 15 a local ring, with residue field K(}' ) and dimension = dim [\’ —
dim ¥ It s the local ring of Y on X, Note if ¥ = P s a point we get ¢ p. gqnd of
Y = X we get K(X). Note also that1if ¥ 15 not a point, then K{Y ) 1s not plge-
braically closed. so in this way we get local rings whose residue fields arg not

algebraically closed.

Oy x is clearly a ring.

The set of functions vanishing on Y is the maximal ideal.

Quotienting gives the residue field, which is the invertible functions on Y. Since this is a field, we have
confirmed the idea was maximal.

Now dim X =dim k[X]|/I(Y)+ht I (Y)=dimY +ht [ (Y)=

1.3.22 1.3.14 x g (and below) projection from point

314, Projection from o Poini. Let P* be a hyperplane in P*7 ! and let Pe P! P
Define a mapping ¢:P"" " — | P — P" by () = the intersection of the unigque
line containing P and O with P"
{a) Show that ¢ is a morphism.

Let P = (1,0,...,0), P" := (zq # 0) C P
The line through P and z = (zg: ---: x,) meets P* at (0:xy :---: x,) which is a morphism in a neigh-
borhood of P".

1.3.23 b.xg
(b} Let ¥ = P be the twisted cubic curve which is the image of the 3-uple em-
bedding of P' {Ex. 2.12). If r.u are the homogeneous coordinates on P'. we
sav that Y is the curve given parametrically by (x.v.zw) = (22w ). Let
P = {0,0.1.0), and let P? be the hyperplane - = (. Show that the projection of
Y from P is a cuspidal cubic curve in the plane. and find its equation.

We have 7 : (3, t2u, tu®, u?®) — (3, t?u, u?).
We have x = 3, y = t?u, z = u?.
3

Recall that the cuspidal cubic is given by 2%z — y3.

24



Note that plugging in gives: t%u® — t%u3 = 0 so this is the cuspidal cupic.

1.3.24 1.3.15x

315, Products of Affine Varier

s, Let X = A"and ¥ = A™ be affine varieties.
jal Show that X' = Y o

A" ™ with its induced topology is irreducible. [ Hin:
———Suppose—that—=r—— is a union of two closed subsets Z, w Z,. Let X, =
xeXlx x Y= Z), i=12 Show that X = X, v X, and X,.X, are
closed. Then X = X, or X, 50 X x ¥V =2, or Z,.] The affine variety
X x Yis called the product of X and Y. Note that its topology is in general
not equal to the product topology (Ex. 1.4).

See Gathman’s notes.

1.3.25 b. x

TbY Show that ATX = ) = A(X) &, A1 1.

The universal property of fiber product agrees with the universal property of the tensor product for finitely
generated algebras.

1.3.26 c. x

ic) Show that X = Y i1s a product in the category of varieties, ie., show (1) the
projections X« Y = X and X = ¥ —= Y are morphisms, and (1) given a
vartety Z. and the morphisms Z — X, Z — ¥ there 1s a unique morphism
Z — X = Y making a commutative diagram

Given a a variety Z with morphisms ¢,, ¢, to X and Y we can take (¢, ¢,) : Z - X XY .

1.3.27 d. xg

idy Show that dim X' = Y = dim X + dim }.

Suppose that f (z1,..., Tk, Yks1, -, Yn) = 0 gives a relation on the combined generators x;, y; of X,Y.

On X, f(—,Yks1, -, Yn) = 0 gives a relation on the algebraically independent x generators and a similar
thing happens on Y.

Hence f is a trivial relation and the combined generators of X,Y are basis for X x Y .




1.3.28 1.3.16 x g

316, Products of Quasi-Projective Varieties. Use the Segre embedding (Ex. 2,14 o
identify P* = P™ with its image and hence give it a structure of projective variety.
Now for any two quasi-projective varieties X <= P and Y = P consider
X« ¥VzP =P
(a) Show that X = ¥ is a quasi-projective variety.

XxY=(XxPYNnP"xY)=n,"(X)Nm,

m

L(Y) where m,,,, : P" x P™ — P™ P" are the projections.

1.3.29 b. x

. o ——m e e e

(by I X.Y arc both projective. show that X' = Y is projective,

similar.

*¢) Show that X = Y is a product in the category of varieties.

1.3.30 L3.17x. g

317, Normal Varieties. A variety Y is norml o a point P e ¥V if ¢ 5 1s an integrally
closed ring. Y is normad if it 1s normal at every point.
{a) Show that every conic in P* is normal.

By a previous excercise conics in P? are isomorphic to P! which is smooth.

1.3.31 b.xg

{b) Show that the quadric surfaces @,.Q, in P? given by equations @, :xy = Zw:
0,:xy = =* are normal (cf (1. Ex. 6.4) for the latter.)

For ()1 we can use the jacobian criterion since nonsingular implies normal.

For @2 we just need to see that the local ring at the cone point is normal.

klx,y,z]/(2* — zy). Note that zy is square free, so by I1.6.4, we are done.

This can be given by

1.3.32 c.xg

llr_r:..'l| = s Cror T e (i . §ooe.

{c) Show that the cuspidal cubic yv* = x*in A” Is not nor

]ul.

For curves, normal and nonsingular are equivalent. (Use DIRP)

1.3.33 d. x

e e T L

idi If ¥ is athine. then Y i1s normal == A{Y |15 integrally closed.

If A is an integral domain integrally closed then so is each localization. The converse also holds (Atiyah-

Macdonald 5.12) Thus X is normal.
Normal is when each local ring is an integrally closed integral domain.
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1.3.34 e. x.

fe) Let Y be an affine variety. Show that there is a normal athine variety Y, and a
morphism m; ¥ = ¥ with the property that whenever Z is a normal variety.
and ¢:Z — Y is a dominaon morphism (Le, ¢ £} is dense in Y, then there is
a unique morphism :Z — Ysuchthatp = n (1 T is called the normaliza-

tior ol ¥ Yoo wall need 13950 abhooe

Let Y be the affine variety with & [Y/] the normalization of k [Y].
In other words, we take all monic polynomials in &k [Y] and all their solutions in k (Y). Corresponding to
the inclusion 0" : k [Y] — k [f/] we have #:Y — Y .

Note that k [}7} is finite by 3.9A and unique since the integral closure is unique.

1.3.35 1.3.18.a x

318, Projectively Normal Varieties. A projective variety Y = P"is projectively normal
iwith respect to the given embedding) if its homogeneous coordinate ring 5(1)
15 integrally closed.
ia) Il Y 1s projectively normal. then Y i1s normal.

Assume Y projectively normal.

Then k [Y] is integrally closed.

Since the localization of an integrally closed domain is integrally closed (we used this above), then each
local ring is integrally closed.

—> Y is normal.

1.3.36 b. xg

(b} There are normal varieties in projective space which are not prpjectively
normal. For example. let Y be the twisted quartic curve in P? giyen para-
metrically by (x. o) = (e a?), Then Y ois normal but not pl'[

— o See T s S e e es:

yectively

Another criterion for projectively normal is that H' (P3, Iy) = 0.

i (31
h(IED,O(l))_( : >_4<
5— ( e ) — 1O (P, Opr (4)) = 1O (Y, Oy (1)).

Also note we have normal since P! is nonsingular and twisted quartic is image of P!.

1.3.37 c. x

(¢} Show that the twisted quartic curve Y above is isomorphic to P'. which is
projectively normal. Thus projective normality depends on the embedding

It is just the image of vy : P! — P3,

Rird



Note that ! (P!, 0 (1)) = 0.

1.3.38 1.3.19 x

9. Awromorphisis of A" Let ¢: A" — A" be a morphism of A" to A" given by n
polvnomials f,. ... . f, of n variables x,,.... v,. Let J = det|cf, '‘x;| be the
Jucobhian polynomial of .

{a} If ¢ 15 an isomorphism {in which case we call ¢ an cutomorphism of A") show

n-

that J 15 a nonzero constant polynomial.

If any f; € k then ¢ would not be surjective.
Now computing the derivative of a linear, nonconstant polynomial gives a jacobian in k£*.

*#h) The converse of (a) 1s an unsolved problem| even for n = 2, See, for example.

Vitushkin [1].
SKIP

1.3.39 1.3.20 x g and below

3.20. Let Y be a variely of dimension =2, and let P £ Y be a normal point. Let [ be
a regular functionon ¥ — P,
fa) Show that f extends to a regular function on ¥

Since projective space is proper this works.

1.3.40 b.xg

ibl Show this would be false for dim Y = [
See (11 Ex. 3.5 for generalization,

Consider a single variable complex function with a pole.

1.3.41 I.3.21a. x

321, Group Varieties. A groupyvariety consists of a variety Y together with a ]T‘t}‘\l'[’]hlﬁm
Y Y < ¥osuch that the set of points of ¥ with the operation given py s a
group. and such that the inverse map v — v~ ' is also a morphism ol ¥ + ¥
tal The additive group G, is given by the varietv A" and the morphism p: .‘F - A’

—defimed bt =+ Showtis e groupvarete

Note that A! is a group under addition, and the inverse map is given by y +— —v.

1.3.42 b. x

i = T

= =T T — 7
by The mulriplicative geoup G, is given by the variety A' — [0)! and the mor-
phist gta i = ab, Show st o group variety.

Clear.




1.3.43 c. x

fcr G a group variety. and X 1s any variety. show that the set HnnJI_".'.E_r'] hasa
natural group structure.

Since we can add morphisms

1.3.44 d. x

- A
id) For any variety X. show that Homi X .G, is isomorphic to ¢ (X) as a group
under addition,

If f e O(X)is regular, then f: X — A! and adding functions is compatible with this.

1.3.45 e. x

(e} Forany vanety X, show that Hom( X .G, ) is isomorphic to the group of units

in ¢ (X)L under multiplication.

m

If fe O(X)", then f: X — A'\0 and this correspondence preserves multiplication of f-g for g € O (X)™.

1.4 x
1.3.46 I4lxg

4.1. Il f and g are regular functions on open subsets I/ and 7 of a variety X, and if
1 =ygon U ~ F show that the function which 1s f on U and g on V is a regular
function on L'« ¥, Conclude that if /15 a rariong! function on X, then there is
a largest open subset U of X on which [ 1s repr¢gsented by a regular function.
LY

SEPSCRTRE B PSS WP (T SPPRTR SN ) SHENETS (P W |
LA A L B T TR AL R T T ) L=y L wg A v

Define a new function which is f on U and g on V.
Continue in this manner until you have defined on all such sets.

1.3.47 1.4.2x

4.2. Same problem for rational maps. If ¢ is a rational map a}t‘ X to Y, show there
15 4 largest open set on which ¢ is represented by a morphism. We say the ra-
tional map is defined at the points of that open set.

see 4.1

1.3.48 1.4.3 x g and below

4.3. (a) Let [ be the rational function on P? given by [ = x,/x,. Find the set of poinis
where f 1s defined and describe the corresponding regular function.
— 21 3
f= o s defined where xq # 0 .

This set isomorphic to A? |, f is projection to first coordinate.
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1.3.49 bx. g

- . s S —
{b) Now think of this function as a rational map from P* to A'. Embed A" in P,
and let @ :P* — P' be the resulting rational map. Find the set of points wher
¢ 15 defined. and describe the corresponding morphism.

We can take the projection (xg,x1,z2) — (xo, 21).
Not defined at (0,0,1) since [0,0] ¢ P* .

1.3.50 1.4.4 x g all parts

4.4. A variety Y is rarional 1f 1015 birationally equivalent to P for some n (or, equiva-
lently by (4.5), if K{Y') is a pure transcendental extension of k).
(a) Any conic in P* is a rational curve.

By 1.3.1.b, conics are P!,

1.3.51 b.xg

(b) The cuspidal cubic 1* = x*¥ is a rational cur\la.

Define ¢ — (¢*,#°) and an inverse (z,y) — £ between the cuspidal cupic and A’
Note A is birational to P! .

1.3.52 c. xg

L rae mspten sueae 0 — e w s s v

{c) Let ¥ be the nodal cubic curve 12z = x%(x + z} in P2 Show that the pro-
jection ¢ from the point P = {0,0.1) to the line - = 0 (Ex. 3.14) induces a
birational map from ¥ to P'. Thus ¥ 1s a rational curve.

The projection gives (z:y: 2) +— (z:y), P2 =Y .

The inverse is given by (z:y) — ((v* —2?)z: (y* —2?)y : 2%), Y — P2
That’s (y2r — 2% : y® — 2%y : 2°)

(since y*z — 22 = 2z (y* — 2%) = 23 on the curve)

1.3.53 L45xg

4.5. Show that the quadric surface @:x1 = =w in P? is birational to P, but not
isomorphic to P* {cf. Ex. 2.15).

see V.4.1 to see birational, and compute the canonicals to see they are not isomorphic.
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1.3.54 1.4.6 x g and below

4.6. Plane Cremona Transformations. A birational map of P? intq itself is called a
plune Cremona transformation. We give an example, called a quadratic transfor-
marion. 1t is the rational map ¢:P? — P? given by (ag.a,.0,5) 1 (0, 030060 5,804 )
WhHen 1o Two of iy« dre K

cI.F ‘ihmn. that ¢ is b]ldllﬂ-l‘hl] .md is u~. own invdrse,

———

Let U, V be the sets {(z:y: z) \xyz # 0}

@ maps U to V: (z,y,2) — (yz, 2z, zy)

p* i (2,9, 2) = (v2wy, yzay, yzaz) =(z,y,2) on U, V.

1.3.55 b.xg

ik Find nrlu] wels 11 PY wuch that g2l — I is an ’Hu]'t‘il'll]rhhﬂ'l
LetU:V:{[x:y:z]|xyz7é0}.
Then ¢ : U — V, and ¢? is the identity on U.

1.3.56 c. x

(c [ ind the l]'l'!l.._.ﬂ sels W 11u_u_ in l!'ll'.|. g ' are defined. and describe the correspond-
ing morphisms, See also (V. 4.2.3).

From V.4.2.3 we see they are defined on the complment of (1,0,0),(0,1,0),(0,0,1).

1.3.57 1.4.7x

4.7. Let X and } be two vaneties. Suppose there are points Pe X and @ £ Y such
that the local rings ¢,y and ¢ ,, are 1somorphic as k-algebras. Then show
that there are open sets Pl = X and Q= 1= Y and an somorphism of
L to b which sends P o Q.

The isomorphism of local rings induces an isomorphism of k (X) ~ k(Y) via 1.3.2 we have a birational
map on neighborhoods of P, Q) .

1.3.58 L48xg

4.8, 1a) Show that any variets of positive dimension over & has the same cardinglity as
ho [ Hines: Do A" and P first, Then for any X, use induction on the dimension
i, Use (4.9 10 make N birational to a hvpersurface H = P ', Use (B 3.7)
1o show that the projection of H to P from a point not on H is finite-to-one

and surjective. |

Base Case:
Any curve X is birational to a plane curve so | X| < |P?| = |k| since P? is a 2-manifold.

On the other hand, picking a point not on X and projecting to P! gives a surjective morphism from X to
P! so | X| > |PY = k.

A1



Thus | X| = k.

Inductive Step.
Embed X as a hyperplane in P**! by the primitive element theorem.

1.3.59 b.xg

L%—H“&we—mwmﬁ—kmﬁww#rﬁﬁ—h%mmmﬁrphic fef Ex. 30

cf example 3.7, since any two curves have the same cardinality they are homeomorphic in the finite
complement topology.

1.3.60 L49xg

-

4.9, Let & be a projecunve varets of dimension - m PYowith o = 0 + 20 Show that
= P, the projection from P to
PV EL 31 induces o Rirgtional morphism of \ onto its image ¥ = P°
Y ou will need to use 14641 (4.7A)L and (48A) This shows in particular that the

Birational map of (491 can be obtamed by a limte number of such projections.

for suitable chowe of P ¢ X, and a hinear P

We can find a linear space generated by xg, ..., x, disjoint from X defines a surjective projection to P" |
and thus an inclusion of function fields k (X) — &k (P") .

Then & (X) is a finite algebraic extension of k (P") generated by 1, ..., Z,.

By theorem of primitive element, k (X) is generated by > a;x;.

We have X — P"\M — Z (> a;z;) thus k (P") — k(Z (F)) — k(X) and there is an open set U C P"\ M
where all fibers have cardinality 1 on which the projection is birational.

1.3.61 1.4.10x g

410, Let Y be the cuspidal cubic curve +F = % in A%, Blow up the point @ = (0.0
let E be the esceptional curve, and let } be the strict transform of ¥ Show that
E meets ¥ in one point. and that ¥ = A'. In this case the morphism ¢: ) — ¥
i bijectine and bicontinuous, but it s not an isomorphism

Your blown up thing lives on the blow-up surface which is the set of points and lines through origin (p, p)
in A" x P"! (in other words, if we have some lines intersecting, so a singularity, then now we have distinct
tangent directions in the blow up).

Using determinant has to be rank one, and the fact that (zi,...,x,) is on the line (y; : ... :y,) only
if (x1,...,2,) is a multiple of (yi,...,y,) we see that the blow up surface is described by the conditions
1 ... Tp
Y - Yn
each patch of P"~! we can actually see what the blow-up surface looks like. (see figure 3)

It is thus clear the exceptional divisor meets Y at points corresponding to singularities of Y. There is only
one such on the cusp.

Now the blow up is the blow up surface and the projection 7 : A" x P»~! — A" . The projection is a
birational map onto A™ — 0. The preimage of 0 is 77 (0) = 0 x P"~! is the exceptional curve. (To do the
same things for your variety, just restrict to your variety).

Since the cusp is not isomorphic to Al, ¥ % Al.

rank < 2, i.e. all minors vanish, i.e. z;y; — x;4; = 0 for all 7, j. Looking at the equations for
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14 15x

O/

Node Triple point Cusp Tacnode

Figure 4.  Singularites of plane curves.

1.4.1 I.5.l.ax

5.1. Locate the singular points and sketch the following curves in A® (assume char
k 5 2). Which is which in Figure 47

¥ 3 i
lal x° = x7 + 171

The jacobian is 0 at the origin. Graphing gives tacnode.

1.4.2 1.5.1.b. x g what kind of singularities

v [
L | Kl

b = g 5
LI B T = _'|

The jacobian is 0 only at origin.
The lowest multiplicity term is like xy = 0 so it’s normal crossings and thus the node.

1.43 c. x

4 el 2 ot Y
fc) x* = y° + x* + 17

Cusp since the lowest terms are y* — x°.

1.4.4 d. x g what kind of singularity

(dy x7) r vt = x4 1%
By plugging in (¢, mt) — (z,y), t*m -t +tm?t* = t* + m** we can factor out a line with multiplicity three.
So it must be a triple point.
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1.4.5 1.5.2a. x pinch point x

Conical double point Double line Pinch polint
Figure 5. Surface singularities.

5.2. Locate the singular pomnts and describe the singulanities of the following sur-
faces in A (assume char k # 2). Which is which in Figure 57
k. 3
(&) x1= = ==

Checking the jacobian gives singular points along z-axis so we have the pinch point.

1.4.6 b. x conical double point

§own . - n
¥

(b} x* + ¢* = 2%

Check jacobian gives singularity at 0.

1.4.7 c. x

— -
c) xr +x" + 17 =0

Check jacobian gives singularity along z .
This is double line.

1.4.8 L53xg

5.3, Multiplicities. Let ¥ = A? be a curve defined by the equation fix,)) = 0. Le
P = {(a,b) be a point of A®. Make a linear change of coordinates so that P be
comes the pomt (0,0). Then write f as asum [ = f, + f, + ... + f,. wher
f; 1s a homogeneous polynomial of degree i in x and . Then we define the multi
plicity of P on Y, denoted up(Y), to be the least r such that f, # 0. (Note tha
PeY¥ <= pplY) = 0) The linear factors of f, are called the rangent direction
at P
(a) Show that yp(Y) = 1 = P is a nonsingular point of Y.

A nonsingular point is when at least one of the partials of f is nonzero, so f must have a degree 1 term
in x or 1, so the multilpicity is 1.

A4



1.49 b.xg
(b} Find the n'L-LI-|I]'F]|I'L‘I1}-' of each of the sin:_gularlpmntﬁ in (Ex. 5.1) above.

The multiplicity at the origin is the smallest degree term that appears.
To see why this may be so, consider trying to factor out a linear term.

1.4.10 L54xg

S4. Intersection Multiplicity. 1f ¥,7] = A* are two distinct curves, given by equations
T=U g =0 and il "€t r Z, we define the imrersection nudtipliciey (Y - £)p
of Y and # at P to be the length of the ¢ .-module ¢ .\ fg).

(a) Show that (Y - 2, is finite, and (Y - Zhp = 4l Y- ppl Z)

Let U an affine neighborhood where P is the only intersection of f,g.

By nullstellensatz, I}, C (f,g) for some r >0 .

As Op =k[U],, = mp C(f,9) - o
Note that Op/m’, has finite length since it has a filtration by powers of m which are < r and m’/m**! is

finite dimensional.
Thus (Y.Z)p is finite.

Note that multiplicity at a point can be described by the lowest term in an equation for the curve.
Comparing with bezout’s theorem gives (Z2.Y), > pp (Y) .up (2).

1.4.11 b. xg

by IT P e ¥ show that for almost all lines . through P (i.e. all but a finite numper),
(.- ¥ip = ppl ¥}

Bezout since the general element of a linear system of lines through P is going to meet Y transversely.

1.4.12 c¢. x

{c) If Y is a curve of degree  in P?, and if L 15 a line in P2, L. # Y, show that
(L-Y)=d Here we define il.- ¥) = Y(L-Y), taken over all points [Pe
L~ Y. where(L - V), is defined using a suitable affine cover of P2

see b.

1.4.13 L1.5.5x

5.5. For every degree d = 0, and every p = 0 or a prijne number, give the equation
of a nonsingular curve of degree o in P over a feld &k of characteristic p.

If the characteristic doesn’t divide d , then 2¢ + y? + z¢.
Else, zyd~! 4+ yz@ ! + 2271 = 0.




1.4.14 L56xg

5.6. Blowing Up Curve Singularitios. )
fa) Let ¥ be the cusp or node of (Ex. 5.1). Show that the curve ). obtained by
blowing up Y at O = (0,0} 1s nonsingular (¢f. (4.9.1) and (Ex. 4.10)).

1 LR LI (1] i ] 11 i in

The cusp was y?> — 23 + z* + y*.

The blop is defined by ys — 2t so on t = 1, ys = x and y? (1 — yt3 + y*t* + y?) = 0.

Then 1 — yt3 + y3t* + y? . The jacobian criterion shows it’s nonsingular.

On s=1,y =zt and 2% (1> — z + 2* — t*2?) = 0. Again using the jacobian criterion gives nonsingularity.

1.4.15 b. xg

(b} We define a node (also called ordinary double poinr) to be a double point
(i.e., a point of multiplicity 2) of a plane curve with distinet tangent directions
(Ex. 5.3). 1T P is a node on a plane curve Y, show that ¢~ '(P) consists of two
distinct nonsingular points on the blown-up curve Y. We say that “blowing
up P resolves the singularity at P”.

Your blown up thing lives on the blow-up surface which is the set of points and lines through origin (p, D)
in A" x P"! (in other words, if we have some lines intersecting, so a singularity, then now we have distinct
tangent directions in the blow up)

1.4.16 c. xg

* -

{c) Let P e Y bethe tacnode of (Ex. 5.1). If¢: Y — Y is the blowing-up at P, shoy
that o " P)is a node. Using (h) we see that the tacnode can be resolved b
two successive blowings-up.

—————— e —_————

Recall the tacnode is defined by x? = 2% + ¢*.

The blowup surface is defined by xs — yt in A% x P!,

On the patch s = 1, z = yt and 2% = z* + y* so y? (12 — y?t* —4?) =0 .

The lowest degree terms, t2 — y? of the strict transform factor linearly, so we get a node.
On t =1, we have y = xs and 2% = 23 + y* so 22 (1 — z — 2%s?). The strict is nonsingular.

1.4.17 d. xg

N . S

(d) Let Y be the plane curve 1 = x°, which has a “highgr order cusp™ at 0. Show
that © 15 a triple point: that blowing up O gives risg to a double point (what
kind?) and that one further blowing up resolves the singularity.

Note: We will see later (V, 3.8) that any singular point of a plane curve can be

resolved by a finite sequence of successive blowings-up.

We can use zu = yt for new coordinates in A? x P! .
So 2 (x> —u?) = 0 on ¢t = 1, which gives a cusp. One more blowing up gives a smooth one.
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1.4.18 I1.5.7 x

5.7. Let ¥ < P2 be a nonsingular plane curve of degree = 1, defined by the equatigpn
flx,nz) =0, Let X < A be the affine variety defined by f (this is the cone
over Y see (Ex. 2.10)). Let P be the point (0.0.0). which is the rertex of the core.
Let ¢: X — X be the blowing-up of X at P.

{a) Show that X has just one singular point, namely P.

We can just use the jacobian criterion.

1.4.19 b. (important) x g

(b) Show that X is nonsingular (cover it with open affines).

The blow-up hypersurface in A3 x P? is defined by z1us = zou1, T1us = w311, and Tous = T3uUs.
On uy = 1, the equations become T1 = XUy, T1Uz = T3U, and z3 = xous.
If X has multiplicity d at 0, then X is defined by f (zou1, 2o, 2ous) = 0 = 29 f (u, 1, us).

The Jaacobian is just ( A9 o AL ) which has rank 1 as f is nonsingular.

8114 8’LL3
On u; = 1...
On uz = 0...
1.4.20 c. x

e
Fic] Show that ¢ '(P) is isomorphic to ¥,

In the above problem we defined ! (P) by f (1, ug,us), f (u1,1,us), and f (uy,us, 1) .

1.4.21 I1.5.8x

58. Let ¥ = P" be a projective variety of dimension r. Let f..... fes =
K[ xg,....x,] be homogeneous polynomials which generate the wdeal of Y. Let
P e Y be a point, with homogeneous coordinates P = (awg. ..., i,). Show that

P is nonsingular on Y if and only if the rank of the matrix [|[(7f, /7 x Wag, . . . o, )|
is i1 — r. [Hint: {a) Show that this rank is independent of the homogeneous
coordinates chosen for P: (b) pass to an open affine L', © P" containing P and
use the affine Jacobian matrix: (¢) you will need Euler’s lemma. which says that
if f 1s a homogeneous polvnomial of degree d, then Ex,[{}"h.] =d- /]

The hint is the answer.

1.4.22 1.5.9x

5.9. Let fek[x 2] be a homogeneous polynomial, let ¥ = Z(f) = P* be the
algebraic set defined by f, and suppose that for every P e Y, at least one of
(e f CXNPYLACE YR (CF T2 P)Y 1s nonzero. Show that f is irreducible {and hence
that ¥ is a nonsingular variety). [Hinr: Use (Ex. 3.7).]

If f(P)=g(P)h(P)=0 then taking 2, 8%, and 2 and using the product rule shows all partials must
vanish. (contradiction)
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1.4.23 1.5.10 x g:a,b,c

5.10. For a point P on a variets X, let m be the maximal ideal of the local ring ¢ ;.
We define the Zariski tangent space Tpi X of X at P to be the dual A-vector space
of m m?.
(a) For amy point Pe X, dim T, X) = dim X. with equality if and only if P is
nonsingular.

This is clear geometrically, since the number of independent directions you can go in on the manifold
corresponds to the number of tangent directions. A singular point means there are too many tangent directions
compared to the one point.

1.4.24 b. x
(b} For any morphism ¢: X — Y there is a natural induced A-linear map T plop):
TelX) = T, pYL

Since the tangent space at P is just the dual of mp/m% we can just take the dual of the natural map
M(p) /M2, p) — Mp/mp .

1.4.25 c. x
Y o B T T o N
(ch W is the vertical projection of the parabola x = 1 onto the v-axis, show that
the induced map T o) of tangent spaces at the origin is the zero manp.

Note that on the parabola, x € m?,,.

1.4.26 1.5.11 x

S.11. The Ellipric Quartic Carve in PP, Let Y be the algebraic set in P* defined by the
equations x° — xz — v =0 and 12 — xw — 2w = 0. Let P be the point
(x, o) = (0,0,0.1). and let ¢ denote the projection from P to the plane w = 0.
Show that ¢ induces an isomorphism of ¥ — P with the plane cubic curve
iz = x' 4+ x2% = 0 minus the point (1.0.—1). Then show that Y is an irre-
ducible nonsingular curve. It is called the elliptic gquartic curce in P*. Since it
1s defined by two equations it 1s another example of a complete intersection
(Ex. 2.17).

Define ¢ : (z,y, z,w) — (x,y, 2).

Let fiy~2%z-x"3+x*2"2;

Let [ = I=ideal(x"2 - x*z - y*w)
J=ideal(y*z-x*w-z*w)

%l=y ~2*z-x*y*w-y*z*w;

%I =-x"34+x*z" 2-+x*y*wx*w 24z w " 2;
Now f%1 / J =y

Also f%J /1 = -z-x

Hence we should have

A8



cxpand (y - (y- = — 2w — 2 -w) + (~2 ) (2 — 2 — y )
=z +y*z— a8

Hence ¢ (V) C Z (y*z — 23 + x2?).
Solving for w in Y gives w = ’”2% , W=

We define o' : (z,y,2) — (x,y,z, %) = (m,y,z
Clearly this is not defined at (1,0, —1).

1.4.27 1.5.12 x

4

5.12. Quudric Hypersurfaces, Assume char & # 2. and let [ be a homogeneous poly-

nomial of degree 21n x,,. . . .. L
fa) Show that after a suitable linear change of variables. f can be brought into the
formf = x3+ ... + x* forsome 0 < ¢ < n.

Any conic is the determinant of a n X n matrix. Ex.

A B D x
[xyz]BFC’ y | =0
D C G z

Diagonalize this matrix by a lienar transformation.

1.4.28 b. x

b} .‘-ihm-;. that {15 irreducible if and onlvatr = 2.

If r =1 it is clear since sum of squares.
On the other hand, for larger r, any factors must be linear, but then multiplying the two factors together
will create terms of higher than degree 2.

1.4.29 c. x
{c) Assume r = 2, and let Q be the quadric hypersurface in P" defined by f. Show
that the singular locus Z = Sing @ of @ is a linear variety (Ex. 2.11) of dimen-
sionn — r — 1. In parucular, @ 1s nonsingular if and only if r = n.

Singular locus is where partial derivatives are all 0.

Since it’s a conic, partials are linear.

The number of partials taking into account r is n —r — 1.

This is because it’s the dimension of dim k [z, ..., x,] / (zo, ..., 1) — 1

1.4.30 d. x.

{d) In case r = n, show that 0 is a cone with axis Z over a nonsingular guadric
hypersurface @ = P. (This notion of cone generalizes the one defined in
(Ex. 2,100 If Y is a closed subset of P, and if Z is a linear subspace of dimen-
sion n —r — 1 P, we embed P" in P" 50 that P" ~ 2 = 7, and define
the cone over Y with axis Z to be the union of all ines joining a pomnt of ¥
to a point of Z.)
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As an example, in P? this is obvious since the singular locus of the quadric is a point when taking affine
coordinates. So we are looking at the set of lines between something on the plane and a single point. This
gives the the cone yx — 22 = 0.

Now let Z = Sing Q a linear variety as in C' (in P? it’s just that point).

If Q) is a cone, then Q = x3 + ... + 22 defines a quadric hypersurface @’ in P".

Then Z = sing @ is n — r — 1 dimensional and linear by (c).

Embed P" into P" to not intersect Z C P" .

If b € Sing @, then the first r coordinates are 0 by examining the partials.

If a € Q, then a satisfies 23 + ... + 22 = 0.

The line between a, b is given by ta + sb with s, t € P .

Note that ) is made up of such lines since points in P" lying on )" must exactly satisfy first r coordinates
fit 23 + ... + 22 = 0 and last n — 7 — 1 coordinates satisfy whatever.

1.4.31 1.5.13 x

5.13. It is a fact that any regular local ring is an integrally closed domain {Matsumura
[2. Th. 36, p. 121]). Thus we see from (5.3) that any variety has a nonempty
open subset of normal points (Ex. 3.17). In this exercise. show directly (without
using (5.3)) that the set of nonnormal points of a variety is a proper closed sub-
set (you will need the finiteness of integral closure; see (3.9A)).

Assume X affine.

Integral closure is f.g by f;, i=1,..,n.

O, is integrally closed iff image of f; is in O, for all i.

A finite intersection of nonempty opens is nonempty open, and rational functions are defined on such.
The normal locus is therefore nonempty open.

1.4.32 1.514xg

514, Analvtically Isomorphic Singularities
ja) If P e Y and Q e Z are analytically isomorphic plane curve singularities, show
that the multiplicities upl V') and pgt Z) are the same (Ex. 5.3).

The isomorphism between local rings must map linear terms to linear terms + higher order terms.

1.4.33 b. x

(b} Generalize the example in the text (5.6 3)toshow thatd f = f, + /,., + ... €
k[[x.x]]. and if the leading form f, of f factors as f;, = g.h,. where g,.h, are
homogeneous of degrees s and ¢ respectively, and have no common linear
factor, then there are formal power series

o= e T

hh=h +h., +...

i k[[x.1]] such that f = yh

Construct g, h following hartshorne’s example.
fri1 = higsi1 + gshyyq since s+t =r and g,, hy generate the maximal ideal of k [[z, y]] .




1.4.34 c. x

ic) Let ¥ be defined by the equation fix,v) = 0in A% and let P = (0,0) be a point
of multiplicity » on ¥, so that when f 1s expanded as a polynomial in x and 1,
we have | = f, + higher terms. We sav that P is an ordinary - fold point if
{, 15 a product of r distinet lincar factors. Show that any two ordinary double
points are analytically isomorphic. Dnitto for ordinary triple points. But show
that there is a one-parameter family of mutually nonisomorphic ordinary
d-fold points.

- L i g i [ . "

For double points see part (d).

For triple points write f = f3 + h.o.t , g = g3 + h.o.t.

In P! and 3 pairs of lines can be interchanged by a linear transformation, but not for 4 pairs.
Now factoring f3, g3 into 3 linear terms we get the result.

1.4.35 d (starred)

AL R LT

“id) Assume char & # 2. Show that any double point of a plane curve s analy-

tically isomorphic to the singularity at (0,0) of the curve y* = x" for a uniquely

determined v = 2. Ifr = 21t 15 a node (Ex. 3.6 I r = 3 we call it a cusvp:
iFr = 4ataenode, See (V. 3.9.5) for further discussion,

Show any double point of plane curve is analytically isomorphic to singularity at (0,0) of curve y* = z"
for uniquely determined r > 2.

If r =2, it’s a node. If r = 3, it’s a cusp. If r = 4 it’s a tacnode. Etc.

(Following Wall - Plane Curve Singularities, Chapter 2)

Change coordinates linearly so that f (0,y) = y™A (y) where A (0) # 0.

In this way we may use the Weierstrass preparation theorem to write f (z,y) = U (z,y) {y* + a (z) + b ()}
where a, b are weierstrass polynomials and U has nonzero constant term. Thus C'is given by y*+a (z) +b ().

Via another linear coordinate change we plug in y =3/ — %a (), 2 =9y" —a(x)y + %a (z)?

which gives

Cisy” —a(x)y + ja(e) +a()y ~ b () +b(x)

which is ¥ — a (2)” + b (2) and let ¥/ (z) = (2)*> + b (z) the new constant term in y.

Thus we have reduced to y? + ' (x) = 0.

If o = 0 then we have C is y"? = 0.

Otherwise b’ has order k some k > 2 (so it’s a polynomial function of z, and we already have squared
terms and we don’t have cancellation).

Also the weierstrass preparation gives the constant term of the a (x) are 0.

Now it is a general fact that an order n power series like b’ may be written as 2™ for some 2’ a convergent
power series in x of order 1.

Thus changing coordinates to (z’,y’) we are done.

—i4
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1.4.36 1.5.15 x g:a,b

5.15. Families of Pline Curres. A homogeneous polynomial f of degree d in three
variables x.y. has (“17) cocflicients. Let these coeflicients represent a point in
P'. where N = ("31%) — 1 = §did + 3.
{a) Show that this gives a correspondence between points of P and algebraic
sets in P¥ which can be defined by an equation of degree d. The correspondence
is 1-1 except in some cases where f has a multiple factor.

Note the homogeneous monomials of degree d are like %y’2¢ with a + b+ ¢ = d.

There are ( d+2

9 ) — 1 of them so we have a clear correspondence.

1.4.37 b. x

{b) Show under this correspondence that the (irreducible) nonsingular curves of
degree o correspond 1-1 to the points of a nonempty Zanski-open subset of

PY. [Hints: (1) Use elimination theory (5.7A) applied to the homogeneous
polynomials of «xy,, L f ©x,212) use the previous (Ex. 5.5, 5.8, 5.9) above. |

If f has no multiple factors, this is clear.
If f is reducible, by elimination theory, points in PV with f # 0, and partials nonzero are in 1-1 corre-
spondence with the nonzero locus of a finite set of polynomials defining an open set in PV.

1.5 1.6x
1.5.1 I.6.1 x g:a,b,c

6.1. Recall that a curve is rarionael if it 1s birationally equivalent to P' (Ex. 4.4). Let ¥
be a nonsingular rational curve which is not isomorphic to P'.
{a) Show that Y is isomorphic to an open subset of A',

As Y is isomorphic to an open subset of projective space, then it is isomorphic to a proper open subset of
P!

1.5.2 b. x
(b} Show that Y is affine.
Since Y is A! minus a finite number of points, Y =V (y (z — Py) - - - - - (x — P,)).
1.5.3 c. x

(c) Show that 4(Y) is a unique factorization domain.

By (b), A(Y) =0O(Y) =k[yl;_p,+p,. ) which is the localization of a UFD.




1.5.4 L62xg

6.2. An Elliptic Curre. Let Y be the curve v = ¥ — x in A°, and assume that the
characteristic of the base field k15 # 2. Inthis exercise we will show that Y 1s not a
rational curve, and hence K(Y) is not a pure transcendental extension of k.

(a) Show that Y is nonsingular. and deduce that 4 = A(Y) = k[ x.p]/(y" — x + x)
15 an integrally closed domain.

A nonsingular curve is normal. Thus by the jacobian criterion, A is integrally closed.

1.5.5 b. x

(b) Let k[ x] be the subring of K = K(Y) generated by the image of x in 4. Show
that k[ x] is a polynomial ring. and that A4 is the integral closure of k[ x] in K.

As y* € k[z], thus y satisfies 22 — y?, thus y € k [z]
k

Thus A C k[z]. On the other hand k [2] C A so k[z] C A.

15,6 c. x

ic) Show that there is an automorphism 7: 4 — 4 which sends 1 to — 1 and leaves
x fixed. For any a € A, define the norm of a to be Nija) = « - ala). Show that
Nia) € k[ x]. N(1) = 1,and Ni{ab) = Nia) Nib) for any a.b € A.

Writing f € Aas y-g(x) +h(x) , then N (f) = (h(z) +yg () (h(z) - yg (z)) € k[z].
By easy computation N (1) =1, N (ab) = N (a) - N (b).

1.5.7 d. x

{d) Using the norm, show that the units in 4 are precisely the nonzero elements of
k. Show that x and y are irreducible elements of A. Show that A is not a
unique factorization domain,

Units

If a is a unit, then N (a) has inverse N (a™') by (c). so N (a) € k*.

If @ is nonuit, @ = yf (z) + g (x) as in (c), then N (a) = g (x)* — f (2)* (z® — ) .

If f is nonzero then comparing degrees we see the norm is nonconstant, contradiction.
— g% is constant = a is constant.

irreducible
If 2 =abis, N(z) = N(a)N(b) = 2* so N (a) or N (b) is a linear polynomial if a,b are not in k.
Contradiction.

Not UFD
z|y? and y # ur = not UFD.




1.5.8 e. x

o Rt i e mam—. e

(e) Prove that ¥ is not a rational curve (Ex. 6.1). See (I1. 8.20.3) and (III. Ex. 3.3)
for other proofs of this important result.

Since nontrivial and not UDF then by 6.1, Y is not rational.

1.5.9 1.6.3 x

6.3. Show by example that the result of 6.8) is false if either (a)dim X = 2, or(b) Y is
not projective.

For (a) map A%\ (0,0) to P! by (z,y) — (x :y) , for (b) map P'\co to A by (z:y) — z/y .

1.5.10 L6.4xg

6.4. Let Y be a nonsingular projective curve. Show that every nonconstant rational
function {on Y defines a surjective morphism ¢: ¥ — P'.and that forevery P e P',
@ '(P) s a finite set of points.

f induces a map Y — Al by z + f (z) and therefore ¢ : Y — P

As f is nonconstant and Y irreducible, im (¢) = P! and ¢ is dominant, so induces k (Y) < k (P').

If p e P!, then ¢! (P) is closed by continuity and finite since it’s a proper subset of Y with closure not
Y as ¢ is nonconstant.

1.5.11 IL.6.5x

6.5, Let X be a nonsingular projective curve. Suppose that X is a (locally closed)
subvariety of a variety Y (Ex. 3.10). Show that X is in fact a closed subset of Y.
See (11, Ex. 4.4) for generalization

Note that the image of a projective variety X under a regular embedding X — Y is closed.

1.5.12 1.6.6 x g:a,c

6.6. Auromorphisms of P'. Think of P' as A' w |« |. Then we define a fractionul
linear transformation of P! by sending x s (ax + bplex + d), for abod ek,
g — he £ (L
(a) Show that a fractional linear transformation induces an automorphism of P!
(i.e., an isomorphism of P' with itself). We denote the group of all these
fractional hinear transformations by PGLIT)

Since ad — bc # 0 means the determinant of a 2 X 2 matrix is nonzero , this matrix therefore has an inverse.
Since FLT is a group action, the inverse matrix gives the inverse of the action.




ib) Let Aut P! denote the group of all automorphisms of P!, Show that Aut P! =
Aut kix), the group of k-automorphisms of the field k(x).

For p € Aut (PY) , (f + fop) € Aut k().
If ¢ € Aut k(x) , ¢ induces an auto-birational (is this a word?) map of P!, a nonsingular curve.

1.5.14 c. x

{c) Now show that every automorphism of k(x) is a fractional linear transforma-
tion, and deduce that PGL(1) — Aut P' is an isomorphism.

¢ € Aut k (x) maps = — % for coprime f, g .
Injectivity of ¢ = f, g are linear: f (z) =ax +b, g(x) = cx + d say.
Since f, g are coprime , then ad — be # 0.

1.5.15 L6.7xg

o B o P,.Q,.....0, bedistinct points of A'. ITA' — [P,..... P, is isomor-

phic to A' — [Q,.....0Q,!, show that r = 5. Is the converse true? CF. (Ex. 3.1),

We can extend any map between the two curves to a map P! — P

Since P; must map to @), thus r = s.

The converse is only true for » < 3 by virtue of the fact that mobius transformations can take at most 3
distinct points in P! to any other 3 distinct points.

1.6 I1.7x
1.6.1 L71xg

‘ 7.1, (a) Find the degree of the d-uple embedding of P* in P (Ex. 2.12). [Answer: o"]

Note dk; ") = % + O (d" k)

This is the dimension of the space of monomials of degree d.

1.6.2 b. xg

‘ (b) Find the degree of the Segre embedding of P* x P* in P* (Ex. 2.14). [Answer:
il

The subring of & [z, ..., Zr, Yo, ..., Ys] generated by polynomials of degree 2k half x;’s and half y;’s has dim

k+s kE+r r+s rts s
DGO GR
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1.6.3 1.7.2 x g arithmetic genus of projective space.

7.2. Let Y be a variety of dimension » in P", with Hilbert polynomial P,. We define
the arithmetic genus of Y to be p(Y) = (= 1VP,i0) — 1). This is an important
invariant which (as we will see later in (111, Ex. 5.3)) is independent of the projective
embedding of ¥

(a) Show that piP") = O

Since the hilbert poly of P" is x (Opn (k)) = ( " j; K )
Then p, (P") =(-1)"(1-1)=0

1.6.4 b.xg

(b) If Y is a plane curve of degree «, show that p (Y = 3 — 1Hd — 2

af i

lermLamm—(0;2)_<0—g+2>_1_(2;d)_1_04y<d;1)

1.6.5 c. x g important

B LB
d =l
3

(c \Imt generally, if H i1s a hypersurface of degree o in F [th I |Hh = (",

As in 1.7.6.d, Wegetthatx(l):(n-l—l > _(n—i—l—d) .

n n
Then p, (X) = (=1)""" (1 — x (0)) and computing this gives the result.

T e BT — i o et T o - T
(d) If Yis a complete intersection (Ex. 2.17 7) of surfaces of degrees a.h in P?, thun
pA¥Yy = Yubio + h — 4) + 1.

We have the standard four term exact sequence
0= 8@, = 5P, @5, = S[P), = 5(X), =0

sommXU%:(l?3)_<l+§_a)_(l+§—b>+<l+3;a—b)

Writing this out and solving gives the solution.

1.6.7 e. x

e} Let Y" = P'. Z2* = P" be projective varieties, and embed Y x Z € P" x
P — P" by the Segre embedding. Show that

PlY % )= pAYiplZ) + (=1Pp, Y ) + (=1piZ)

Note that the hilbert polynomial of Y x Z is the product of the hilbert polynomials of Y and Z since
tensor products multiply dimensions.




1.6.8 L73xg

7.3. The Duad Curve. Let Y < P2 be acurve. We regard the set of lines in P* as another
projective space, (PYy*, by taking (ag.,.0,) as homogeneous coordinates of the
line L:ugxy + 0,x, + asxy = (0 For each nonsingular point P Y, show that
there 1s a unique line Tp(Y ) whose intersection multiplicity with ¥ at P s = 1.
This is the rangent line to Y at P. Show that the mapping P+ T Y) defines a
morphism of Reg Y (the set of nonsingular points of Y} into {P*y*. The closure of
the image of this morphism is called the dual curve Y* < (PY)* of ¥,

The tangent line to a curve Y defined by a polynomial f at P = (ag,a1,as) is given by % (x —ag) +
g—;(y—al)+%(z—a2):0.

If P is nonsingular, then at least one partial is nonzero so it’s well-defind hence unique.

If we assume P is at zero and the curve is affine, then the tangent line is given by taking partials and then
substituting 0, and so we see the linear term is just the above line.

We further assume f (z,y) =y + h.o.t since and P = (0,0,) € A? since P is nonsingular.

The only line with higher intersection multiplicity at P is the z-axis, which incidentally is the linear part.

1.6.9 1.74x

7.4. Given a curve Y of degree d in P*, show that there is a nonempty open subset U of
{P2)* in its Zariski topology such that for each L € U, L meets Y in exactly o points.
[Hint: Show that the set of lines in (P*)* which are either tangent to Y or pass
through a singular point of ¥ is contained in a proper closed subset.] This result
shows that we could have defined the degree of ¥ to be the number o such that
almost all lines in P* meet ¥ in d points, where “almost all” refers to a nonempty

open set of the set of lines. when this set is identified with the dual projective space

(P?)*.

Using bezout, lines which meet Y transversely at smooth points meet in degree Y = d points.
By noetherianness, the singular locus is a finite set of points on Y.

The lines meeting one of these are a proper closed subset of P?* .
By 7.3, the tangent lines are contained in a proper closed subset of P* ( C Y x P! )

1.6.10 1.7.5 x g:a,b upper bound on multiplicity x

7.5. (a} Show that an irreducible curve Y of degree d = 1 in P* cannot have a point of
multiphcity = o (Ex. 5.3).

The degree can be read off of the lowest term in the equation if the point is at (0, 0).
If all terms have degree d, then it can’t be irreducible of degree > 1.

1.6.11 b. x

iby If Y is an irreducible curve of degree « = 1 having a point of multiplicity
o — 1. then Y is a rational curve (Ex. 6.1

Assume Y is defined by f (z,y) + g (x,y) =0, with deg f =d—1,deg g=4d .



Ift = % , = (z,y) — <yt, %) which is projection from a point gives an inverse rational map to A!

1.6.12 1.7.6 x Linear Varieties x

7.6. Linear Varieties. Show that an algebraic set Y of pure dimension r (ie., every
irreducible component of ¥ has dimension r) has degree | if and only if ¥ is a
linear variety (Ex. 2.11). [ Hint: First, use (7.7) and treat the case dim ¥ = 1. Then
do the general case by cutting with a hyperplane and using induction. |

If Y has pure dimension r , then by 7.6b, Y is irreducible.

The hilbert polynomial of a linear variety has a leading term which gives linear degree.

If on the other hand Y has degree 1 , then for any hyperplane H not containing Y , Y N H has degree 1
and is thus linear.

1.6.13 L1.7.7x

7.7. Let Y beavariety of dimension rand degreed > 1inP". Let P £ Y bea nonsingular
point. Define X to be the closure of the union of all lines PO, where Qe Y. Q # P.
(a) Show that X 1s a variety of dimension r + 1.

Choose a hyperplane H in P" not containing P or Y.

If PQ is a line from with endpoints in Y, then map P() to the line through () and the vertex of the cone
over Y.

A rational inverse takes the line through the vertex of the cone over Y and @ to PQ.

Note that the cone has dimension r + 1 .

1.6.14 b. x

(b) Show that deg X < o [Hinr: Use induction on dim Y]

If dim Y =0, then Y has d points and X has d — 1 lines.
If dim Y = r and H is a hyperplane containing P but not Y, then by Thm 7.7, 7.6b, deg X "H = deg X.
By induction deg X N H <deg Y N H < deg Y =d.

1.6.15 1.7.8 x contained in linear subspace. x

7.8. Let Y™ = P"bea variety of degree 2. Show that ¥ is contained in a linear subspace
L of dimension r + 1 in P". Thus ¥ is isomorphic to a quadric hypersurface in
P Ex 5.12). '

ex. 1.7.7 gives Y is in degee 1 variety of dim r 4+ 1 in P".
By Ex 1.7.6, this is linear, and thus isomorphic to P! .




2 II Schemes

2.1 II.1x
2.1.1 x II.1.1 Constant presheaf

L.1. Let A be an abelian group, and define the constant presheaf associated to A on
the topological space X to be the presheaf U — A for all U # &7, with restriction
maps the identity. Show that the constant sheal .« defined in the text is the sheaf
assoclated to this presheaf.

Let . denote the constant presheaf.

Let .Z T the sheaf associated to this preshealf.

FT(U), is then the maps s : U — Upey Fp satisfying certain conditions.
(see

We have a map AP™® — &/ by taking a € A to the constant map U — A.
It is easy to check that this is an isomorphism on the stalks.

21.2 II.l2xg

1.2. {a) Forany morphism of sheaves g :.# — %, show that for each point P, (ker @)p =
ker(gp) and (im ¢)p = 1migp).

Filtered colimits (like the stalk) commute with finite limits (like the kernel).
—see Vakils notes for this terminology
Also since the cokernel is range / image, then image is the kernel of 4 — coker .

2.1.3 b. x

{b) Show that ¢ is injective (respectively, surjectivel if and only if the induced man-

on the stalks @p 1s injective (respectively, surjective) for all P. ‘ <
These follow from part (a).
214 c. x.

(¢c) Show that a sequence ... &' '“— # 5 7' & of sheaves and mor-
phisms is exact if and only if for each P € X the corresponding sequence of
stalks 1s exact as a sequence of abelian groups.

X

This follows from the definition of exactness and part (a).

2.1.5 II.1.3x surjective condition. x

1.3. (a) Let ¢:# — % be a morphism of sheaves on X. Show that ¢ 1s surjective 1if
and only if the following condition holds: for every open set U = X, and for
every s € 4(U), thereisa covering | U, of U, and there areelements 1, € #(U}),
such that g(r,) = sf, forall .

To show ¢ is surjective, we need to show it’s surjective on stalks.
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We have a diagram:

pru)
—

T(U) > b6(u)

!
\ f
j L'
\ b
{
< 5 6
g

For some s, € ¥, pull back to s.
Now find ¢; € .% (U;) using the assumptions of the problem.
The converse follows by 1.2.b. Since surjective iff surjective on stalks.

2.1.6 2.1.3.b. x g Surjective not on stalks x

(b) Give an example of a surjective morphism of sheaves ¢:.# — %, and an
open set U such that (U): 5 (U) — %(LU) 15 not surjective,
Let .Z the sheaf of holomorphic functions on C\0
consider ¢ : f — exp (f).
Note we can write holomorphic functions locally as a logarithm,
= ¢ is surjective on stalks.
Globally this doesn’t work

2.1.7 II.14x

1.4. (a) Let ¢: % — % be a morphism of presheaves such that (U ): #F (L) — %(U)
is injective for each U/, Show that the induced map ¢ ' :.F " — %" of asso-
ciated sheaves 1s injective.

T ] i [l - o LI | oW

Use 1.2.b, since sheafification preserves stalks.

e S
(b} Use part (a) to show that if ¢:F# — % is a morphism of sheaves, then im g
can be naturally identified with a subsheaf of %. as mentioned in the text.

Note that sheafification preserves injective morphisms such as im?P™© ¢ — 9.

2.1.9 xIIL1.5

1.5. Show that a morphism of sheaves is an isomorphism if and only if it is both
injective and surjective.

2.1.1 is isomorphism via stalks and
Excercise 1.2. b says injective / surjective iff
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stalks are injective / surjective.

2.1.10 II.1.6.a x map to quotient is surjective

1.6. (1) Let #" be a subsheaf of a sheaf #. Show that the natural map of .# 1o the
quotient sheaf # #" 15 surjective. and has kernel #°. Thus there 15 an exact
sequence
= #F = F o F. 3" 50,
Sheafification is left adjoint (vakil notes), it preserves colimits and thus surjections.
We can also just look at the stalks. %, — % /.7 is surjective then using 1.2, F — F [.F' is surjective.

2.1.11 II.1.6.b x

(b} Conversely, if 0 - #" — # — #" — ) is an exact sequence, show that #’
is isomorphic to a subsheaf of # _ and that # is isomorphic to the quotient of
# by this subsheaf.

In vakil’s notes we see that forgetful functor is right adjoint to sheafification.
Thus sheafification preserves kernels, and so the left most map is injective as presheaf maps.

2.1.12 II.1.7x

1.7. Let ¢:5# — % be a morphism of sheaves.
{a) Show that im ¢ = F ker .

By 1.6 and 1.4.b

2.1.13 II.1.7.b x

—— - ¥

(b} Show that coker p = %/im ¢.

Again, by 1.6 and 1.4.b.

2.1.14 IL.18xg

1.8. For any open subset U = X, show that the functor I'1U.-) from sheaves on X 1o
abelian groups is a left exact functor, 1e, if 0 — #F — #F — F7 15 an exact
sequence of sheaves, then 0 — MU.#F') — NUF) - NMUF") 1s an exact
sequence of groups. The functor [(LU.") need not be exact: see (Ex. 1.21) below.

If0—.2' 5% - .Z"  then ker p =050 ker p(U)=0.
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2.1.15 1II.1.9 x Direct sum of sheaves x g

1.9. Direct Sum. Let # and % be sheaves on X. Show that the presheaf U — # (L) @
%(U) is a sheaf. [t is called the direct sum of # and %, and is denoted by .# @ 4.
Show that it plays the role of direct sum and of direct product in the category of
sheaves of abehan groups on X,

Since the forgetful functor preserves limits and the direct sum is a limit.
(See the first chapter in Vakil’s notes)

2.1.16 1II.1.10 x Direct Limits x

1.10. Direcr Limir. Let | #,} be a direct system of sheaves and morphisms on X. We
define the direct limir of the system |.7 |, denoted lim # . to be the sheafassociated
to the presheaf U+ lim .# (U). Show that this is a direct limit in the category
of sheaves on X, i.e., that it has the following universal property: given a sheaf &,
and a collection of morphisms .#, — %, compatible with the maps of the direct

system, then there exists a unique map lim #, — % such that for cach i, the original
map .#, — % is obtained by composing the maps #, — lim #, — %

Since sheaficication is left adjoiint and preserves direct limits
(see the first chapter in Vakil’s notes)

2.1.17 1I.1.11 x

1.11. Let | #,| be a direct system of sheaves on a noetherian topological space X. In
this case show that the presheaf U+ lim # (U) is already a sheal. In particular,
[X.hm# ) =hm HX.#)

Suppose U is open, U; a finite cover since noetherian, and U;; = U; N U;
Let J be the category whose objects are U; and U;; , and morphisms are inclusions of U; N U; in U; and
U;.
The sheaf axioms is that the limit of the functor U +— lim.%, (U) restricted to J must be isomorphic to
%

lim%, (U) .
—

We have lim <lim ﬂn> (Ui;) = lim <limﬁn (U,y)) =
lim (lim Fn, (Uij)> =lim %, (U) =
= n \ < ij - n

lim %, (U).

n

2.1.18 1I.1.12 x

112, fnverse Limir. Let | # ) be an inverse system of sheaves on X. Show that the pre-
sheaf U — lim .# (L) is a sheaf. It is called the inverse limit of the system | .# |,
and is denoted by lim.#,. Show that it has the universal property of an inverse
limit in the category of sheaves.

As in the previous.
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2.1.19 1II.1.13 Espace Etale x

113, Espunce Etale of « Presheaf. (This exercise is included only to establish the con-
nection between our definition of a sheal and another definition often found in
the literature. See for example Godement [ 1, Ch. 11, §1.2].) Given a presheaf #
on X, we define a topological space Spel # |, called the espuce éralé of F, as
follows. Asaset. Spél.#) = i_q_',l,,, v #e. Wedefine a projection map m:Spél.# ) — X
by sending s £ #,to P. For each open set U = X and each section s & # (L), we
obtain a maps: L — Spé(.# ) by sending P~ sp. its germ at P. This map has the
property that 1 3 = 1d, . in other words, 11 15 a “section” of m over U, We now
make Spé(.# | into a topological space by giving it the strongest topology such that
all the maps 5:U0 — Spét# ) for all U, and all s #(LU), are continuous. Now
show that the sheaf # © associated to # can be described as follows: for any
open set U = X, # 7(U)1s the set of continuous sections of Spel.# ) over U. In
particular, the original presheafl # was a sheal if and only if for each U, #(U) is
equal to the set of all continuous sections of Spé(.#) over L.

Suppose s € Z1 (U) ,

we have 5: U — Spec (F) sending P +— sp which is continuous (by strongest topology ...) and we need s
to be continuous.

IfV C Spe(Z)isopenand P € s (V), = s(P)e Fp = PeU.

Let U’ an open neighborhood of P, t € .% (U’) such that s|y» = t is continuous.

Then s|;; (V) =t~ (V) is an open neighobrohood of P contained in s~! (V) (by srongest topology ..)

Hence each point in s7'V has an open neighborhood contained in the preimage so s is continuous.

Conversely if s : U — Spec (%) is continuous , V is open, and ¢t € # (V) then for z € t7! (s (U)) we
must have s (z) = ¢ (x) so there is an open W with s|y = t|w.

Thus W C ¢t (s (U)).

Since we are using the strongest topology such that ¢ is continuous, then t~'s (U) is open in U for t € .Z (U)
= s(U) is open in Spe (F).

Now if z € U , then s(x) is equal to a germ (¢, W) in Z,.

Continuity of s gives s~! (¢ (W)) is open (by the same reasoning as above ¢ (W) is open)

so on an open W’ C W we have t|y = s|y , and thus s locally gives a section of .Z.

Thus s gives a section of Z 1 .

2.1.20 II.1.14x g

1.14. Support. Let # be asheafon X, and let 5 € #(U') be a section over an open set [/,
The support of s, denoted Supp s. is defined to be [P e Ulsp # 0}, where sp
denotes the germ of s in the stalk .#p. Show that Supp s is a closed subset of U.
We define the support of #, Supp # . to be |Pe X|#, # 0], It need not be a
closed subset.

If P is not in the support, then the germ of s in the stalk at p is zero.
Thus there is a neighborhood where s vanishes. Hence the complement of the support is open.

Note that 19.b. gives an an example of non-closed support.
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2.1.21 1II.1.15 Sheaf Hom x: g

1.15. Sheaf #om. Let #, % be sheaves of abelian groups on X, Forany openset U € X,
show that the set Hom(# |, /%], ) of morphisms of the restricted sheaves has a
natural structure of abelian group. Show that the presheafl U — Hom(# | %|,)
15 a sheall It s called the sheaf of local morphisms of # into %, “sheafl hom™ for
short, and 1s denoted #oml(.# %).

presheaf

Let U open.

Clearly Hom (Z|y,¥|v) is an abelian group and the obvious restriction maps give a presheaf ' : U —
Hom (ﬁhj, g‘U)

identity

Let {U;} an open cover of U.

If se F(U)=Hom (F|y,¥|v) satisfies s|y, = 0 for all i , then since .# is a sheaf, there is f € ¥ (U)
with s (f) =0 on U.

Hence s|y = 0.

glueing

similar.

2.1.22 1II.1.16 g Flasque Sheaves x

1.16. Flasque Sheaves. A sheafl .# on a topological space X is flasque if for every in-
clusion V' = U of open sets, the restriction map #(U) — F (V) is surjective.
(a) Show that a constant sheaf on an irreducible topological space is flasque. See
(1, £1) for irreducible topological spaces.

a1 meE ol - . ora -

All the restriction morphisms are identity.

2.1.23 b. x

(b) T 0 = # " — F# - F" = 0 is an exact sequence of sheaves, and 1If #' is
flasque, then for any open set U, the sequence 0 — #F'(U)— #F(U) —
FUIU) — 0 of abelian groups is also exact. ‘

Exc. 1.8 gives left exactness, so we just need to show .7 (U) — .Z" (U).

Ift € #” (U) , then by surjectivity of .# — F" | there is an open cover U; of U on which ¢ lifts to elements
On UiﬂUj , ti—tj =Ty Gﬁ’(UiﬂUj).

Since .7’ has surjective restrictions, we can extend ry; to rj; € F' (U;).

(ti - ’”gj)

vinu; = tilu,no; so if we replace t; by ¢; — rgj then we have defined a lifting of ¢ on U; N U; .

2.1.24 c. x

S S
(€} M0 = #" — # - F" — 0is an exacl sequence of sheaves, and if #' and #
are flasque, then #" 1s flasque.

T v TR T = T - — = e =

5 lemma
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2.1.25 d.xg

- i i ey
(d) I f:X — Y is a continuous map, and if # is a flasque sheal on X, then [, #

is a flasque sheaf on Y,

Since continuous maps preserve inclusions.

2.1.26 e. x sheaf of discontinuous sections

(e} Let . be any sheaf on X. We define a new sheafl %, called the sheaf of discon-
tinuous sections of # as follows. For each open set ' = X, %(L7) is the set of

maps s: U — UFEL' Fp such that for each P e U, s(P)e #p. Show that %
is a flasque sheaf, and that there is a natural injective morphism of # 10 %.

Let I C J be sets of points in open sets U C X.

This inclusion gives a natural categorical surjection [[pc; Fp — [oe; Zo-

For U C X open, define # (U) - 4 (U) by x — (P — xp).

We show the kernel is trivial.

If P+ x, is zero for x € % (U) , then there is a neighborhood Up of P such that x|y, = 0.
The Up cover U so by the identity sheaf axiom, z = 0.

2.1.27 1II1.1.17 x g skyscraper sheaves (important)

1.17. Shvscraper Sheaves. Let X be a topological space. let P be a point, and let 4 be an
abelian group. Define a sheafl ig(4) on X as follows: jpA)NL) = A if Pe L, 0
otherwise. Verily that the stalk of ig(4) 15 4 at every point Q= (P}, and 0
clsewhere, where | P~ denotes the closure of the set consisting of the point P.
Hence the name “skyscraper sheal” Show that this sheaf could also be described
as i l4). where 4 denotes the constant sheaf 4 on the closed subspace | P}, and
i:!P!7 — X is the inclusion,

Taking limits of open sets containing P , we see the stalk at @ € {P}~ is A and taking limits of Q ¢ {P}~
we see the stalk is 0 elsewhere.

Now if P ¢ U then i~' (U) = 0 so i, (A) (U) = 0.

If PeU,theni, (A)(U)=AG"'U)=A({P} ) =T(A{P})=A

Hence i, (A) is the skyscraper sheaf.

2.1.28 1II.1.18 x g Adjoint property of f~(-1)

1.18. Adjoint Property of {7 ' Let f:X — Y be a continuous map of topological spaces.
Show that for any sheaf .# on X there is a natural map f 1f*.f — #_ and for
any sheal % on Y there is a natural map % — f, f~'%. Use these maps to show
that there 1s a natural bijection of sets, for any sheaves # on X and % on Y,

Homy( [ '% %) = Homy%, [, 7).

Hence we say that /' is a left adjoinr of f,, and that [ is a right adjoint of 1.

Suppose that o € Homx (f~'9, 7).
If U C X is open, then we have an induced map ¢y : limy-p0)9 (V) — Z (U).
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If W C Y is open, then we define o (p) : 4 (W) & lim% (V) — F(f1(W)) = f.(F)(W), o :

Homx (f7'9, ) — Homy (9, [.F).
conversely
Let ¢ : 9 — f..# a sheaf morphism.
For V C Y open, with f (U) C V, then U C f~* (V) so we have maps ¢ (V )—>3"( Yv)—Z ().
The restriction maps and taking the limit over f (U) C V give lim% (V) = % (U) for each U .

7 (
Using the sheaf axioms gives a sheaf map 7 (¢)) : [~ (9) — F , 7 : Homy (4, f. (F)) = Homx (f1(9),7F)
. Note that coT =td and To0 =1d .

[

2.1.29 II.1.19 x g Extending a Sheaf by Zero (important?)

1.19. Exrending o Sheaf by Zero, Let X be a topological space, let Z be a closed subset,
let i:Z — X be the inclusion, let U = X' — Z be the complementary open subset,
and let ;U — X be its inclusion.

(a) Let & beashealon Z. Show that the stalk (i, #)p of the direct image sheaf on
XisF ilPe Z WfP¢ Z. Hencewecalli,# thesheaf obtained by extending
# by zero outside Z. By abuse ol notation we will sometimes write # initcad
of i, f dnd say LL]I’['\IdLr # asa u.hl.at"un X.” when we mean mnudu: )

IfP¢Z, then we can ﬁnd an open nelghborhood V contalnlng P not intersecting Z.
Thus (i..7) (V) = 0.
If j: P— Z,then (i,.%), =T (i*j* (i.7)) =T (j*F) = Fp.

2.1.30 b. g x extending by zero

{b) Now let & be a sheafon U. Let ji(.#) be the sheal on X associated to the pre-
sheal Vi F(V)if V = U, Vi 0 otherwise. Show that the stalk (j{.#))p 15
equal to #Fpif Pe U, 01f P ¢ U, and show that j..# is the only sheaf on X which
has this property, and whose restriction to L' 1s #. We call j.# the sheaf
obtained by extending # by zero outside U.

If P ¢ U, then since the stalk (ji (%)) is index by opens containing P , we see that it is zero.
If PeU,and (s,V) € p,then P V' CU and on Fp, (s,V) = (s|y,V’) .

2.1.31 c.x
(c) Now let F be a sheaf on X. Show that there 1s an exact sequence of sheaves
on X,
00— ,".[.‘S'Elt | = F = .f*[.'i;l;] - (],

This follows from a,b

thttp://sierra.nmsu.edu/morandi/notes /sheafcohomology.pdf
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2.1.32 1II.1.20 x Subsheaf with Supports

1.20. Subsheaf with Supports. Let Z be a closed subset of X, and let # be a sheafon X,
We define I',(X . # ) to be the subgroup of NN . # ) consisting of all sections whose
support (Ex. 1.14) is contained in Z.

(a) Show that the presheafl V— [, (V.| )15 a sheall It is called the subsheaf
of .# with supports in Z, and is denoted by # 5(.# ).

identity.

Follows since .% is a sheaf.

gluing.

If U is open, let U; be an open cover.

Suppose that s; € I'zay, (Us, #|u,) satisfies si|p,nu; = 55
As .7 is a sheaf there is s € .F (U) with s|y, = s; .
Suppose P € U\Z.

Pick ¢ with P € U; so that s|y, = s; and thus sp = (s;)p = 0.
Thus we know s has support inside Z so s € I'zqy (U, Z|p).

UZ'I"IUJ‘ .

2.1.33 b. x

bt Let ' = X — Z,and let i: L' — X bhe the inclusion. Show there 15 an exact
sequence of sheaves on X

Furthermore, it # is flasque, the map .# — [ (F| ) is surjective.

By (a) and definition of J#) (%), injectivity on the left is clear.

For open V, Z (UNV) = Zlp(UNV) = Zly (571 (V)) = j.F|v (V) so we obtain the second map on
open V',

hence we have .7 — j. (Z|v).

Note that if .7 is flasque, then the restrictions are surjective so we will have surjectivity on the second
term.

2.1.34 1II.1.21 g sheaf of ideals x

1.21. Some Examples of Sheares on Varieties. Let X be a variety over an algebraically
closed field k. as in Ch. I. Let ¢, be the sheaf of regular functions on X (1.0.1).
fa) Let ¥ be a closed subset of X. For each open set U= X, let .#,(U) be

the ideal in the ring ¢ (') consisting of those regular functions which vanish

at all points of ¥ mn U. Show that the presheaf U+ .#,(U) 1s a sheal. It 1s
called the sheaf of ideals .#, of ¥, and it 15 a subsheafl of the sheaf of rings ¢ .

glueing

If U; is an open cover of U and f; € Sy (U;) satisty fi|v,nv; = fjlv,nu; then we can find f € Ox (U) such
For P € Y NU choose i with P € U; .

flu, = fi so that f (P) = f; (P) = 0 since f; € Sy (U;).

So f vanishes at P, and since P was arbitrary, f € %y (U) .

identity
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Follows since its a subpressheaf of a sheaf (see Vakil’s notes)

2.1.35 b.xg

by If ¥ 1s a subvariety. then the quotient sheaf ¢ | 7, is isomorphic to i ().
where i1 Y — X is the inelusion. and ¢ 1s the sheaf of regular functions on Y,

If Uis open, f € Ox (U) , then f|yny gives a section of Oy (UNY) =i, (UNY).

Define ¢ : Ox — 1,0y to be this restriction.

For P ¢Y, (i.Oy)p is zero.

If PeY,then g € (i.0y), has no pole at P and thus there is h € Ox p with ¢p (h) = g, ¢p being the
induced map on stalks.

Thus ¢p is surjective.

We therefore have an exact sequence 0 — %y — Ox — 1,0y — 0.

2136 c.xg

ic) Now let X = P'. and let Y be the union of two distinet points P.Q € X. Then
there is an exact sequence ol sheaves on X, where # = i (. @i, 0,

”-r .i-‘b *{’.'. r.?‘_ *[]

Show however that the mduced map on global sections VX0 )= TN, #)
is not surjective. This shows that the global section functor FiX -} is not exact
(cf. (Ex. 1.8} which shows that it is left exact).
WLOG assume P = (0,1) and Q = (1,1).
On the open set 1 #0 , then P =0, Q = 1.
By definition of the skyscraper sheaves, # (U) = 1.0p®i,.Oq (U) = 0for U # P, Q, and & (U) = Ox (U).
This gives exactness away from P, () .
We also have Ox g = {§|g(1) =+ 0}, Iy = {ﬁ]g (q) #0,f(1) = 0}, and the map given by evaluation
at 1 gives an exact sequence
0— ijQ — OX7Q — ﬂQ — 0.
The same thing happens at P.
On global sections however, we have 0 - 0 -k — k& k — 0.

2137 d.xg

id)y Again let X = P'. and let ¢ be the sheaf of regular functions. Let .4 be the
constant sheal on X associated to the function field K of X. Show that there
1sa natural injection ¢ — ¥, Show that the quotient sheaf . # ¢ is isomorphic
to the direct sum of sheaves E, s ipllp)l, where I, is the group K ¢, and
ipl ! p) denotes the skvscraper sheal (Ex. 1.17) given by [, at the pont P.

Iff € Ox (U), then f is given by a system of regular functions f; on U; such that f;
globally f is a rational function such that f|y, = fi.

The f; define a section of & (U).

Given f € . (U) , then quotient defines f € Y ip (£ /Op) .

On stalks, we have a sequence 0 — Op — K — K/Op — 0 which is clearly exact.

U;nU; = i U;nU; and

AR



2.1.38 e. x

(e I:"inilllj.' show that in the case of (d) the suquc?‘mu
D-TIXL) - TIXH)Y-»TIX. 8 )= 0

1s exact. (This s an analogue of what 1s called the “first Cousin problem™ in
several complex variables. See Gunning and Rossi [ 1. p. 248].)

In the case of (d) we have X = PL.
note that H! = 0 by cech cohomology.

2.1.39 II.1.22 x g Glueing sheaves (important)

1.22. Glueing Sheaves. Let X be a topological space, let Il = [ U] be an open cover of
X. and suppose we are given for each i a sheaf . #  on U, and for each i, an 1s0-
morphism ¢, 0 # |, . = .# | ¢, such that (1) for each i ¢, = id. and (2} for

each i, ik, oy = @, ¢, on U, U ~nU,. Then there exists a unique sheafl
# on X. together with isomorphisms 0. # |, = # such that for each i/, ¢, =
@, oon U n U Wesay loosely that # is obtained by glueing the sheaves #,

via the isomorphisms o, .

For i; : U; = X, 155 : U; N U, — X define we have morphisms induced by restriction:
i (F5) = tikw (F5|Usk)-

The inverse limit of the sheaves in the above morphism has morphisms # — i;.(.%;).
On stalks we have .7 |y, — 9|v, = Z;

So the idea is to define .# to be the above inverse limit.

2.2 1II.2
2.2.1 IL.2.1x

2.1. Let Abearing let X = Spec 4. let f € 4and let Dif) = X be the open comple-
ment of F((f)). Show that the locally ringed space (D(1 ). € y|p,,) 15 1somorphic
to Spec 4.

As topological spaces, they are clearly the same, as the primes of Ay are the primes of A not containing
f. The isomorphism of sheaves is from 2.2. b

2.2.2 II.2.2 x g induced scheme structure.

2.2, Let(X.(y) be ascheme, and let I' = X be any open subset. Show that (L{,¢ [, )
is a scheme. We call this the induced scheme structure on the open set U, and we
refer ta (L0 ¢ ) as an open subscheme of X,

For a cover U; = Spec A; of X,

we can intersect U;’s and cover the intersections with affine opens.
By II.2.1, then the affine opens are Spec Ay .

So it’s a scheme.
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2.2.3 1I1.2.3 a. x reduced is stalk local x

2.3. Reduced Schemes. A scheme (X0 ) is reduced if for every open set U < X, the
ring ¢ (L) has no nilpotent elements. _

ia) Show that (X.( )15 reduced 1t and only if for everv P £ X, the local nng ¢,

has no nilpotent elements.

(X, Ox) is reduced = Ox (U) no nilpotents.

For P € X, let (U, s) an element of the stalk.

If (U, s) is nilpotent, then find a neighborhood V' of P and n such that s" =0 on V.
But Ox (V) no nilpotents, so (V,s|y) = (U, s) = 0.

Suppose each stalk no nilpotents.

If s € Ox (U) has s" =0, n > 0, then the germ of s is zero at each point in U.
Then the stalk of s must vanish at each such point (since no nilpotents)

But then s = 0 by separatedness.

2.2.4 b. reduced scheme x

associated to the presheal
by A,.4 the quotient of A
"y is a scheme. We call
the veduced woheme g by X ;. Show that thereis
a morphism of schemes X, — X. which 1s a homeomorphism on the under-
lying topological spaces.

(b} Let (X,€ ) be a scheme. Let (¢}, be the sheaf
U+ (0 (U),eq. where for any ring 4, we denotg
by its ideal of nilpotent elements, Show that (X |

L gt iy P L) R TEI DSOS T o= N T ElalE AT ATl Eo

First suppose X = Spec A is affine, and let A,.q = A/nil (A).

Since nil (A) is the intersection of primes of A, then sp Spec (A) = sp Spec Areq-

We have a cover of open affines given by Ogpec(a,..) (D (f)) = (A/nil (4)) ;.

Thus on each basic open affine U, Ogpec(a,.,)lv = O(spec A)md’U since localization commutes with quotient.
Thus Spec (Area) = (X, (Ox),.,) since we have a cover of basic open affines.

If X is a scheme, then cover X with open affine schemes Spec A; .

For the morphism X,.q — X , we can glue the morphisms induced by A; — A;/nil (4;) from quotienting.

225 c¢. x

ic) Let /:X — Y bea morphism of schemes, and assume that X 15 reduced. Shnw|
that there is 4 unique morphism ¢: X' — Y}, such that f 15 obtained by com-

posing g with the natural map Y, — ¥

Define g : X — Y,.q by taking the continuous map ¢g = f and the sheaf map Oy, (U) — ¢.Ox from (b),
i.e. induced by the affine ring homomorphisms on global sections to the reduction. These are unique since
they factor uniquely through the reduction. Patching together gives X — Y. — Y.
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2.2.6 II.24x

2.4, Let 4 be a ring and let (X.( ) be a scheme. Given a morphism f[X — Spec A.
we have an associated map on sheaves 1 ¢, — [,¢ . Taking global sections
we obtain a homomorphism 4 — X ). Thus there is 4 naturaj map

x: Hom; (X.Spec 41 — Homy,  (4.70X.C )

Show that = 15 byective (¢l {1 3.3) Tor an analogous statement about varieties).

Let U; an affine cover of X.

We have by hypothesis A — T' (X, Ox), and by restriction I' (X, Ox) — ' (U;, Oy,).
Thus we obtain a map U; ~ Spec (I (U;, Oy,)) — Spec A.

By glueing we obtain an inverse map X — Spec A to a.

2.2.7 IL25xg

2.5. Describe Spec Z. and show that it 15 a final object for the category of schemes.
1.e., each scheme X admits a unique morphism to Spec Z.

Spec Z is (0) (open) and (p) closed. (since prime is maximal in commutative pid)
Since rings have unique morphism to Z,

and morphisms are in 1-1 correspondence with ring homomorphisms

(for affine scheme) we're done.

228 II.26xg

2.6. Describe the spectrum of the zero ring, and show that it is an initial object for
the category of schemes. {According lo our conventions, all ring homomorphisms
must take | to 1. Since 0 = | in the zero ring, we see that each ring R admits a
unique homomorphism to the zero ring, but that there 1s no homomorphism
from the zero ring to R unless 0 = 1in R

Spec 0 has no points since there are no prime ideals.
Since there are no points, there is a unique morphism of topological spaces to any X.
Since there is a unique trivial map from 0 to any X, then it’s initial.

2.2.9 IL2.7xg

2.7. Let X beascheme. Forany x e X.let ¢, be the local ring at x, and m, its maxima
ideal. We define the residue field of x on X to be the field kix) = ¢, m,. Now
let K be any field. Show that to give a morphism of Spec K to X it is equivalen
to give a point x € X and an inclusion map k(x) - K.

given a point + inclusion gives morphism

1 : Spec K — X | given by identifying the point of Spec K with one z € X gives a continuous morphism.
1+Ospec i 18 skyscraper sheaf with ring of sections K.

If U is open, U > z , define i : Ox — i.O0spec x by Ox (U) = Ox.» — k(2) = K = i.08pec x (U).
given morphism gives point + inclusion
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Clearly p = i((0)) is the point, and if p € U = Spec A, then if ¢ : A — K is the corresponding ring
homomorphism, then p is the kernel of ¢ , so k () = A,/pA, — K gives the inclusion.

2.2.10 1II.2.8 x g Dual numbers + Zariski Tangent Space

2.8. Let X be a scheme. For any point x € X, we define the Zariski tangent space T,
to X at v to be the dual of the k(x)-vector space my, m>. Now assume that X is
a scheme over a field k, and let A[«]/c” be the ring of dual mumbers over k. Show
that to give a A-morphism of Spec h[«] 7 to X 15 equinalent to giving a point
v e X, rational over k (i.e., such that kix) = k). and an element of T,.

Since the assertion is local, we assume X is affine.

Zariski Tangent Space corresponds to derivations

First we show that T, &~ Der (Op, k) , the vector space of derivations.

We have £ = Op fﬁﬁp) k is the identity map = Opx~k@np, f < (f(P),f— f(P)) .
If D:Op — k is a derivation, then D is zero on k and n% by the product rule.

Therefore D defines a k-linear map np/n% — k .

On the other hand if f : np/n% — Op , then Op
Derivations Correspond to Dual Numbers
If a:Op — k[X]/(X)?is alocal homomorphism of k-algebras, then o (a) = ag+ Dq (a) € , € = X +(X?).
As « is a homomorphism of k-algebras, a +— ag is the quotient map Op — Op/m = k.

Also a (ab) = (ab)y, + D, (ab) € and a (a) o (b) = (ag + Dq (@) €) (bg + Dy (b) €) =

aogbo + € (ag Dy, (b) + by Dy, (a)) so that D, satisfies the product rule, and thus gives a derivation Op — k.
On the other hand all derivations arise in this manner.

B

J o
f*’(_f)P np/n% — k defines a derivation.

2.2.11 1II.2.9 x g Unique Generic Point (Important)

2.9, If X is a topological space, and Z an irreducible |closed subset of X, a generic
paint for 2 1s a point £ such that Z =[] 7. Il X|is a scheme, show that every

monempty ] irreducible closed subsel has a umique generic point.

First we reduce to the affine case, Z = Spec A, A =k|[zy,...,x,| /a a f.g. algebra .
If U C Zisopen and ¢ € U with {(}” = U then {(} = Z since Z is irreducible.
As Z is irreducible, = nil (a) has a unique minimal prime whose closure is X.

2.2.12 II.2.10x g

2.10. Describe Spec R[ x]. How does its topological space compare to theset R? To C?

Irreducibles give points corresponding to prime ideals.

Such are either (0), (z — a) for a € R, or (z* + az + b) for an irreducible quadratic.
(0) is the generic point and the other types of points are maximal ideals.

The closed sets are finite collections of points.

2Milne, AG
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2.2.13 1II.2.11 x g (Spec Fp important)

2.11. Let k = F, be the finite field with p elements. Describe Spec k[x]. What are
the residue fields of its points? How many points are there with a given residug]
tield?

Spec k[z] = {0} U{(f)} , f an irreducible monic polynomial.
The residue field of a point corresponding to one of the f’s of degree d is the finite field with p? elements.
If f is one such, then the isomorphism F), [z] / (f (x)) = F,a gives o € Fpn.

Conversely, given o € [F,;» not contained in a subfield, gives a minimal polynomial of degree d, Hf:_ol <x — apl)

Thus we count elements of FP" not contained in any subfield, and this number is given by the mobius
inversion formula. (see Apostol intro analytic number theory).

2.2.14 1I.2.12 x g Glueing Lemma

212, Gluving Lemma, Generalize the glueing procedure described in the text (2.3.5) as
follows. Let | X,} be a family of schemes (possible infinite). For each i # |
suppose given an open subset U, = X, and let it have the induced scheme
structure (Ex. 2.2). Suppose also given for each i # | an isomorphism of schemes
@;: U, = U, such that (1) for each ij. ¢, = ¢, ', and (2) for each i jk.
phlUyn Uy = Uil and @ = @4 @, on U, n L. Then show that
there is a scheme X, together with morphisms X, — X for each i, such that
(1} y; is an isomorphism of X, onto an open subscheme of X (2) the (X, ) cover
XoB3h Uy = o dX ) e 0X D and () o, = ;o on U, We say that X is
obtained by glueing the schemes X along the isomorphisms @,,. An interesting
special case 1s when the family X, is arbitrary, but the U, and ¢,, are all empty.
Then the scheme X is called the disjoint union of the X, and is denoted || X .

Define an equivalence relation by z ~yifx € U;; C X; ,y € U;; C Xj and ¢jj0 =y . Let X =[] X;/ ~
with the quotient topology.

Now glue the sheaves 1,Ox, using 1.1.22 to get Oy.

Then (X, Ox) clearly satisfies (1) and (2).

For (3), note that ¢ (U;;) C ¢; (X;) N, (X;) and conversely that if x € ¢; (X;) N, (X;) , then there are
x; € X, x; € X; with x; ~x;. Thus z € Y;,U;; = ¢ (Uy;) = ¥ (X;) N, (X).

(4) is similar.

2.2.15 1II.2.13 x quasicompact vs noetherian. a

2.13. A topological space 15 quasi-compact if every open cover has a finite subcover.
ia) Show that a topological space is noetherian (1, §1} if and only if every open
subset is quasi-compact.

If X is noetherian, then any open U C X is noetherian (I.1.7¢) and 1.7.b gives that U is quasi-compact.

If every open U is quasi-compact, and we have an ascending chain of opens U; C Uy C ... (descending
chain of closeds), then U = |JU; is covered by a finite subset of U;.

Then the chain must stabilize.
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,,,,, S
{b) If X 1s an affine scheme. show that sp(.X ) is quasi-compact. but not in general
noetherian. We say a scheme X 18 guasi-compact if sprX ) s,

Let {U}, an open cover. V; = X\U; define ideals [; C I' (Ox, X).
UU; =X = 1=>a;f; with f; € I, and the sum is finite.
non-noetherian affine scheme is Spec k [z1, xo,...] .

2.2.17 c. x

——— i i "y ' y

.

{c) If 41sanoetherian ring. show that spiSpec 1)is a noctherian topological space,

A decreasing sequence of closed subsets corresponds to an increasing sequence of ideals.

2.2.18 d. x

nilJ e ainiaieiin ~ 3 | R y e S
(d) Giveanexample to show that spiSpec 4)can be noetherian even when A4 is m:’;.

Find a space with one prime ideal but which has an increasing chain of ideals. (e.g. p-adic integers or
k [33'1, Ta, ] / ({E%,Z‘%, ) .

2.2.19 II.2.14 x

2.14. (a) Let S be a graded ring. Show that Proj § = & ifand only if every clement of
5. s nilpotent.

If every element of S, is nilpotent then p D S, since every prime ideal contains every nilpotent. Thus
Proj S ={.

If Proj S=10,and s € S, , for any prime ideal p C S, then >, pN Sy C p is prime. Now D, (s) =0
so all homogeneous prime ideals contain s = s nilpotent. -

2.2.20 b. x

(b} Let@:S — T bea graded homomorphism of graded rings (preserving d{:gru]'ﬁ.].
Let U = |pe Proj T|p2 @(5,);. Show that U/ is an open subset of Proj| T,
and show that ¢ determines a natural morphism f: U — Proj 5.

Suppose S, # 0. If p C U is prime, there is f € S, with ¢ (f) ¢ p .

Thus there is a homogeneous component f; with ¢ (f;) ¢ p.

Thus there is a principal open p € D, (¢ (f;)) C U .

These principal opens cover U, and since U is a union of opens, U is open in Proj T .
For the morphism, define f :p+— ¢ ' (p), f: U — Proj S .

This takes closed sets to closed sets, and is thus continuous.

A sheaf morphism is given by S,-1, — Tj,.
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2.2.21 c. x

(¢} The morphism [ can be an isomorphism even when ¢ is not. For example,
suppose that ¢, 5, — T, is an isomorphism for all d = d,. where o, 1s an
integer. Then show that U = Proj T and the morphism f:Proj T — Proj §
1S an isomorphism.

Let p € Proj T, p D ¢ (S}) . If t € T, , since g is an iso for d > d; , we can find s € Seq, With @ g
. Thus @eq,s = t% € p which is prime, thus must contain ¢. As p C T, , then p can’t be contained in Proj T
by definition of Proj T as the set of homogenoeus prime ideals not containing 7', = @®4-¢Ty. so it’s not in
v (54) -

Next we show f is surjective. If p € Proj S, let q = \/{(pp) the radical of the homogeneous ideal generated
by ¢p the image of p. Note that o='q D p. On the other hand if a € ¢~ 'q , then pa™ € (pp) so pa™ = > b;ps;
for b, € T" and s; € p . For large m, every monomial in b; is in 75,4, so we get an isomorphism Ty ~ Sy for
large d. Thus (> b;s;)™ is a polynomial in @s; with coefficients in ¢; € S where p lives. Thus pa™™ € pp so
a™ € psoa € p. Thus in total ¢~ 'q = p . Using similar reasoning, we can see that q is prime so in fact we
get f is surjective.

Next we need injective. If f(p) = f(q) , then o~ 'p = p~1q. For t € p, for large enough d, then there
is s € S with s = t% by assumption. Then ps = t% € q As q is prime it contains ¢ thus p C q and by
symmetry p = ¢.

Now consider the induced map on structure sheaves. As D, (s) = D, (s) cover Proj S for i > dy , then
f7'D, (s') = Dy (t) C Proj T for some ¢t. We want that Sy — Ty is an isomorphism. Let s = s'. If
si,n — 0, then 0 =t"pf = ¢ (s™) @f for large m, so s™f € ker . For large enough powers of s f, Sy — Ty
is an isomorphism so s™f = 0 so Sin = 0 so we know S5y — Ty is injective. By taking large degrees we can
show easily surjective.

2.2.22 d. x

.......... N
(d) Let V" be a projective variety with homogeneous coordinate ring S(1.§2). Show
that (V) = Proj 5.

By 11.4.10

2.2.23 II.2.15x g (important)

2.15. {a) Let V be a variety over the algebraically closed field k. Show that a point
P e 1) s a closed point if and onlv if its residue field is k.

Let P € t (V) closed. Residue field has transcendence degree 0 in an algebraically closed so it’s k.
If P €t (V) has residue field k, but is not closed, then irreducible closed subset Z corresponding to P has
dimension > 1 = tr.deg > 1 contradiction.

2.2.24 b. x

(b) W X = Yisa mE}Tphi:ﬂT‘l of schemes over &, and if P& X is a point|with
residue field k., then f{P) e Y also has residue field k.

f*: Oy — f.Ox gives a morphism of residue fields k (f (P)) — k (P).

k= k(f(P)) = k(P)=Ek.
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2.2.25 c. x

(c) Now show that if W are any two varieties over h, then the natural map

Hom, (VW) — Hom_  ,(r(V )W)

is bijective. (Injectivity is easy. The hard part is to show it is surjective.

The natural map is given by ¢ — ¢* .

By (b) closed points map to closed points, so ¢* (p) = ¢ (p).

If Y is an irreducible subvariety, ¢* (Y) = ¢ (Y).

The maps on schemes over k are extensions of ¢ : V' — W and so we get injectivity.

For surjectivity, if ¢* : t(v) — t (W) , then ¢* takes closed points to closed points, and thus define
p=¢"|v.

For regularity of ¢ , let ¢ (P) = @ and choose U = Spec A > p.

Then p € U’ = spec A’ C f~1(U).

Thus f|y: : Spec A — Spec A is induced by the map on rings, and this gives regularity.

2.2.26 1II.2.16 x

2.16. Let X be a scheme, let f e [(X.(y). and define X, to be the subset of points
x e X such that the stalk f, of f at x is not contained in the maximal ideal m,

of the local ring (¢ .

{a) If U’ = Spec B is an open affine subscheme of X, and il f e B = MUy ) 18

the restriction of f, show that U ~ X, = Dif). Conclude that X, is an open

subset of X

We trivially have D (f) = U N X; so UN X; is open in U .

(D(f)={zecU:fé¢a}={zeU:f, ¢m,})
Furthermore, an affine open cover {U;} of X , we have Xy = J, (U; N X) is the union of opens.

2.2.27 b. x

(b) Assume that X is quasi-compact. [Let 4 = I'X (), and let a€ 4 be an
L element_whose resiriction 1o X 15 ). Show that for some n = 0, f"a = 0.
[ Hint: Use an open affine cover of X ]

By quasi-compactness, find an finite open cover of U; = Spec A; .
Then aly,nx, = a]spec(Ai)f is zero for ecah i.

Thus f"a =0 in A; for some n; (by theorem).

For a large enough n, then f"a = 0 in each Spec A;.

By the sheaf axioms, then f"a = 0.

2.2.28 c¢. x

(c) Now assume that X has a finite cover by open affines U, such that each inter-
section U, m U, is quasi-compact. (This hypothesis is satisfied, for example,
if spl.X') is noetherian.}) Let he I'lX ¢y ). Show that for some n = 0, f"h 15
the restriction of an element of A.
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If U; = Spec 4; blx,rv, = ;—;V for each 1.

On the overlaps, b; — b;|v,~v, vanishes = f (b; —b;) = 0.
Using the sheaf axiom, lift f™b; on U; to a global section s on X.
s — fNTMp restricts to fMb; — fMb; =0 on U; N X,

= "M} is the restriction of a global section.

2.2.29 d. x

(d) With the hypothesis of (), conclude that I'(X .0y ) = 4.

Let o : A; =T (Xf,OXf) be ¢ :a/f" — ;'j(‘f
The kernel is trivial since a/f" = 0 implies it’s zero on Ay .
For a section s on X, f™s is the restriction of a global section.

This gives surjectivity.

2.2.30 II1.2.17 Criterion for affineness x

217, A Criterion for Affineness.
(a) Let /X — Y be a morphism of schemes, and suppose that Y can be covered
by open subsets U,, such that for each i, the induced map f~Y(U;) — U, is an
isomorphism. Then [ 1s an 1somorphism.

The condition f~! (U;) ~ U; implies for open V. .C X, f (V)= f (VN f~1(U;)) is open.

—> f is homeo.

Since any p € U; some i , the map on stalks is an iso.

Together we have a homeomorphism and an isomorphism and gluing along double intersections of the U;
will give an isomorphism of schemes.

2.2.31 b. x
(hy A scheme X is affine if and only if there 1s a linite set of elements TR Ie
4 = I'(X.C ) such that the open subsets X o are afline, and f,. ... |\, generale
the nnef deal 1 !_H"r'n:' Jlgpdbxy 2 v andibx 2 |l '1Hrn'|=]
setup

If A is affine, we let f1 =1 .

Conversely, suppose fi, ..., f,. generate the unit ideal.

Since f; generate A, D (f;) cover Spec A .

We need to show that D (f;) =~ Spec Ay is isomorphic to X; ~ Spec A; so that by (a), X — Spec A is an
isomorphism.

Cousider ¢; : I' (X, Ox),, — I' (X}, Ox).

injective

If % c ke’l"@i , then % =0 on Spec (jilj)f2 = sz M ij in the domain.
Hence f"a =0 in A; for some n; , and for a large N, fNa=0= f%
surjective

If a € im (y;) , then as Ox (Xy,y,) = (45), = a|ijfi = beJJ for b, € A; .

Choose N > n; for all nj so on Xy, 5, we have b; —b, = fNa— fNa=0.

Thus f;"" (bj — bx) = 0 on Xy, . For M > myy, all j, k , there is thus fMb; in X, agreeing with f/¥*"a
on Xfi .
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Using the global generation lemma, gives a global section d restricting to fN

; aon Xy . Thean;iM
maps to a by ; .

2.2.32 II.2.18 g x

induced morphism of the spectra of the rings.
(a) Let Abearing, X = Spec 4, and f € 4. Show that /15 nilpotent if and only 1f
Dif)is empty. [

2.18. In this exercise, we compare some properties of a ring hmtmmnrphiﬁvT to the

Since the nilradical is the intersection of the prime ideals.
If f is nilpotent, then it’s in all the prime ideals so it vanishes at every p.

2233 b.gx

(b) Let ¢:4 — B be a homomorphism of rings, and let [:Y = Spec B - X =
Spec 4 be the induced morphism of affine schemes. Show that o is injective if
and only if the map of sheaves % :( y = (0 1s injective. Show furthermore
in that case [ is dominani, ie., f{Y)is dense in X.

Injective

If the sheaf map is injective then A ~ T' (X, O0x) — ' (X, f.Oy) = B is injective.

If A — B is injective, then for p € Spec A, (fOspec B)p ~ B ®a A, as it is the colimit of Ogpec B
evaluated on D (a) , a & p .

Thus we have an injective morphism A, = B ®4 A,.

Dominant

The largest open set not intersecting the image is covered by D (f) with f € ¢~'p , p € Spec B .

For each f, ¢f € p for all p € Spec B so ¢f is in their intersection and is thus nilpotent.

Injectivity of ¢ implies f is nilpotent and thus D (f) is empty.

2.2.34 c¢. x g (important)

{c) With the same notation, show that if o 15 surjective, then f is a homeomor
phism of ¥ onto a closed subset of X, and /70y — J 'y is surjective.

By ring theory, primes of A containing I = ker ¢ correspond to primes of A/I.
Now D (f) pulls back to D (f 4+ I) in Spec (A/I) .

This shows that the map is open, since we have a distinguished base.

The map is clearly continuous, and checking the stalk gives surjectivity.

2.2.35 d. g x

{d) Prove the converse to (¢l namelv. il {:Y — X is a homeomorphism onto a
closed subset. and f*:¢, — {.( is surjective. then ¢ is surjective. |Hint:

Consider X' = Speci 4 ker ) and use (hy and (c). |

We have f# is surjective on each stalk so if b € B, there is

faﬁi € Ay, on a principle open set D (f;) > p;

mapping to the germ of b at each p; € Spec A.
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By quasi-compactness, Spec A = Ji_, D (fi)so1=>"g:f"N., g € Aand b= g;fNb = S gifN a; € im .

2.2.36 11.2.19x g

2.19, Let 4 be a ring. Show that the following conditions are equivalent:

{10 Spec A4 1s disconnected:
{ii) there exist nonzero elements ¢,.¢; € 4 such that ¢ ¢; = 0, ¢] = ¢,. €3 = e3.
¢, + ¢ = | (these elements are called orthogonal idempatents):
(111} A 1s isomorphic to a direct product 4, x 4, of two nonzero rings.

(i) = (iii) Suppose Spec A=U][V , for two closed sets U = Spec A/I , V = spec A/ J .
Then Spec A+ Spec AJ/I x A/Jso A=A/Ix AlJ .

(i) = (ii) for e; = (1,0), es = (0,1).

(i) == (i) For any p, e;es = 0 so either e; € p or ey € p.

Then V ((e;)),V ((e2)) covers Spec A .

IfpeV((e)NV((ez)) thenl =e;+eyep = p=A = Spec A=V ((e1)) [V ((e2)) -

23 II.3x
2.3.1 IL.3.1x

3.1. Show that a morphism f:X — ¥ s locally of finite type|if and only if for every
open affine subset ¥ = Spec Bol ¥, /7 '(V) can be covered by open affine subsets
U; = Spec A;, where each A, is a finitely generated B-algebra,

Suppose f: X — Y is locally of finite type.

Then there is V; = Spec B; a covering of Y by open affine subschemes such that f~1V; is covered by open
affines Spec A;; , each A;; an f.g. B, -algebra.

The intersections V; N B are open in B; , as well as the union of the open sets Spec (Bi>fi,-'

If fi; is considered as an element of A;; under B; — A;; , then p~'Spec (Bi)fij = Spec (Az‘j)fik , and thus
each (A;;), isanfg. (B;); -algebra.

Now cover Spec B with open affines Spec C; whose preimages are covered with open affines D;; , each D;;
an f.g. C;-algebra.

For p € Spec B, p € Spec C; for some i. So p € By, C Spec C; .

If gyis associated with its image under B — C; — D;; , then Spec (C’i)gp ~ Spec B,,, and taking the
preimage gives Spec (Dij)gp.

(Dij)gp is an f.g. By, -algebra, hence an f.g. B-algebra, and the Spec (Dij)gp cover Spec B .

2.3.2 II.3.2x

3.2. Amorphism f: X — Y of schemes is guasi-compact if there is a cover of ¥ by open
affines ¥, such that f~ " F)) is quasi-compact for each i Show that [ is quasi-
compact if and only il for everv open affine subset V' = Y. [ 7'V} 1s quasi-compact.

First note that if a topological space has a finite cover made up of q.c. open sets, then it is q.c. For if U;
is an open cover with each U; g.c. and Vj is a cover for X, then V; N U; is an open cover of U; which has a
finite subcover. ...

Now suppose f is quasi-compact, Spec B; is an open affine cover of Y and f~!'Spec B; is q.c.
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If Spec V C Y is an arbitrary open affine, then each intersection Spec B; N Spec C' is covered by basic
open affines for Spec B; .

Then Spec B; cover X so also Spec C' .

By I1.2.13.b, there exists a finite subcover of Spec C, of the for D (by), by € B, .

By quasicompactness of f, cover each f~' Spec B; with a finite number of Spec A;; . The preimage of
D (bg) in Spec A, ; is Spec (Aikj)bk and the union of these is a cover of f~'Spec C' by open affines. By
I1.2.13b, the open affines are quasi-compact, so by the first paragraph, we are done.

2.3.3 IL.33x

3.3 (a) Show that a morphism f:X — Y s of finite type if and only if 1t 1s locally of
finite type and quasi-compact.
If f is ft and qc, then by definition we can cover Y with Spec B; and f~! (Spec B;) is covered by a finite
number of Spec A;; . By a previous excercise, the Spec A;; are qc. Combining quasicompact covers, gives qc
on the whole space.

234 b.x

R T o

ib) Conclude from this that f is of finite tvpe if and only if for ererv open atling
subset V' = Spec B of Y. / 'V} can be covered by a finite number of open
atfines L, = Spec 4, where each A, s a finitely generated B-algebra.

By the previous exercises in this section.

2.3.5 c. x
e e e e — N
{¢) Show also if f is of finite type, then for erery open afline subset V' = Spl:ulﬂ =
Y. and for erery open affine subset U = Spec 4 = [ YV}, A is afinitely gener-
ated B-algebra. [

Suppose finite type, cover f~1 (V) with U; = Spec A; , A; an f.g. B -algebra.
Using quasicompactness, let Spec (A4;) ! finite cover of U by principal opens basic in U;. Each A; is an
f — g B algebra, — (Ai>gi = Ay, some f; is an f.g. B-algebra = A is a finitely generated B-algebra.

2.3.6 IL.34x

3.4. Show that a morphism f:X — Y s finite ifand only if for erery open affine subset
V= Spec Bol Y./ 'iV)is affine. equal 1o Spec 4, where 4 1s a finite B-module.

Suppose f is finite. Let U = f~'V = f~1Spec B

There is at least one affine cover by V; = Spec B; of Y such that each preimage f~'V; = U; = Spec A; is
affine with each A; an f.g. B;-module.

We can cover the intersections U N U; with distinguished opens D (f;;) = (Bi)fij , and the preimage of
D (fi;) = Spec (Ai)fij , [ij is associated with its image in A; .

Since A; is an f.g. B;-module, then (Ai)fij is an f.g. (Bi)fij -module by basic localization properties.

We have a cover of V' by principal open affines Spec B,, with preimages Spec C; , C; an f.g. B;-module.

By exc. 11.2.17, since Spec B is affine, by exc 2.2.13b, it is q.c.
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Thus there are a finite number of Spec B, covering V.
Thus ) g;7; = 1 so the image in I (U, Op) generates the unit ideal.

f1Spec By, = Ug(gy » s0 by affine criterion, U = Spec A some f.g. B-algebra.
Note that if fi,..., f, € B generate the unit ideal and Ay, is an f.g. By-module for each i , then A is

actually finitely generated as a B-module.

2.3.7 IL35xg

{a) Show that a finite morphism is quasi-finite

3.5. A morphism j:X — } is guasi-frnite if for every point ve Y./ ' vhis a finite set.

Let p a point in Y |, we want to show the preimage is a finite number of prime ideals.
Since the assertion is local, by finiteness we assume X = Spec A, Y = Spec B , A is an f.g. B-module.

A®pk(p)is an f.g. k(p)-module, and a field-module is a vector space.

A vector space is artinian, so there are a finite number of prime ideals in A ®p k (p) .

238 b.xg

{b) Show that a finite morphism is closed, Le., the image of any closed subsel|

closed.

3

A subset of a topological space is closed iff it is closed in every element of an open cover.

Thus we assume X = spec A, Y = spec B , with A an f.g. B-module.
f(X) is closed if the complement is open.

Thus we want to show if y € f(X), then there is g € k[Y] with g (y) =1 and f(X) C Z(g) .

Let A=Fk[Y],B =k[X], m the maximal ideal of A correspnoding to y.

The nullstellensatz gives since y ¢ f (X), then f*(m) B = B so by Nakayama, k [X] annihilates f*(g) .

239 c. x

be finite.

{c) Show by example that a surjective, finite-tvpe, quasi-finite morphism need no

|

You can check that Spec k[t,t71] & k [t, (t — 1)71} — Spec k [t] is finite-type, finite fibers, surjective but

not module-finite.

2.3.10 1II.3.6 x g Function Field

3.6. Let X be an integral scheme. Show that the local ring ¢ ; of the generic point £
of X is a field. It is called the funcrion field of X, and is denoted by K(X'). Show
also that if L' = Spec A4 is any open affine subset of X, then K(X)1s isomorphic

to the quotient field of 4.

If U = Spec A is an open affine subset of X, then by definition, A is an integral domain so (0) is a prime

ideal.

V' (I) contains (0) iff (0) contains I so the closure of (0) is V ((0)) = Spec A .

By uniqueness, (0) is the generic point 1 of X .
Ox (U) gy = Oy is the fraction field of Ox (U) .
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2.3.11 1II.3.7 x

3.7. A morphism f:X — Y. with Y irreducible. is generically finite if £ () is a finite
set, where ] is the generic point of ¥. A morphism f: X — Y is dominant if fiX)
is dense in ¥, Now let f:X — Y be a dominant. generically finite morphism of
finite type of integral schemes. Show that there is an open dense subset U = ¥
such that the induced morphism (L'} — U 1s finite. [ Hint: First show that the
function field of X is a finite field extension of the function field of Y]

First we show that &k (X) is a finite field extension of &k (Y") as in the hint.

Choose an open affine Spec B =V C Y , and an open affine Spec A = U C f~1V such that A is an f.g.
B-algebra.

Since X is irreducible, so is U, so A is integral.

Since A is finitely generated over B, so is k (B) @3 A~ B7'A .

Noether normalization, says there is an integer n such that B~ A is finite over k (B) [t1, ..., t,] .

Since B~'A is integral over k (B) [t1, ..., t,] , the induced morphism of affine schemes is surjective.

By going up, Spec B~'A — Spec k (B) [ti, ..., t,] is surjective so that n = 0 and B~'A is integral over
k(B).

Finite-type gives that B~ A is finite over k (B). Clearing denominators, k (B~1A) = k (A) is finite over
k(B).

Now we show for the affine case and leave the patching.

Let X = Spec A, Y = Spec B assume {a;} generate A over B.

As elements of k (A) , the a; satisfy f; (a;) =0 for f; € k(B), since k (A) is finite over k (B).

Clearing denominators of f; gives g; with coefficients in B.

If b is the product of the leading coefficients of these polynomials, then image of g; in By, A, are monic.

So Ay is f.g. over B, Hence Ay is integral over By , and is thus an f.g. By-module. Then U = D (b)

2.3.12 1I1.3.8 x Normalization

3.8, Normalization. A scheme is normal if all of its local rings are mtcgru]l_‘l closed
domains. Let X be an integral scheme. For each open affine subset U =| Spec A4
of X, let A be the integral closure of A in its quotient field, and let U = Spec 4.
Show that one can glue the schemes U to obtain a normal integral scheme X,
called the normalizarion of X Show also that there 1s a morphism X — X| hav ing
the following universal property : for every normal integral scheme Z, and forevery
dominant morphism f :Z — X, { factors uniquely through X. If X is of finjite type
over a field . then the morphism ¥ — X is a finite morphism. This gereralizes
(. Ex. 3.17)

Normalization

Let U and V two open affine subschemes of X.

Let U = Spec A, V = Spec B .

In order to glue, we must find an isomorphism ¢ : U’ — V' where U’ is the inverse image of U NV in U
and V' is the inverse image of U NV in V.

Assume WLOG that U,V are open affines on some common affine scheme W = Spec C', A =Cy , B =C,
, with f,g € C.

By localizing minimal polynomials we find, flf is integral over Ay .

If u belongs to integral closure of Ay , then u is root of monic polynomial h with coefficients in Ay .
Clearing denominators, flu € A for some .

Thus if A is the integral closure of A | then flf is the integral closure of Ay .
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Thus we can glue U to get a scheme X, and the inclusions A < A induce U — U C X so there is an
induced morphism X — X .

Dominant Morphism / factors uniquely

If there is a dominant morphism from a normal schemeZ — X | then for open affine U, and preimage 7
we have a dominant morphism Zy — U .

Assume WLOG X, Z are affine.

We want to show that if f: A < A and and g : A — B is any ring homomorphism, then we have a
morphism A — B.

We have a morphism A — frac (B) , and as an element of the image is integral over im (A) , then it is

integral over B.
Thus 1m (fl) lies in B as B is integrally closed.
X of finite type

If X is finite type, then we want to show the morphism is finite. But the integral closure of a finitely
generated k-algebra A is a finitely generated A-module.

2.3.13 1II1.3.9 x g Topological Space of a Product

39, The Tapological Spuce of a Product. Recall that in the category of varieties. the
Zanski topology on the product of two varieties is not equal to the product
topology (1. Ex. 1.4). Now we see that in the category of schemes, the underlying
point set of a product of schemes is not even the product set.

{a) Let A be a field. and lev A, = Spec k[ x] be the affine line over k. Show that
A, %geer A = A7 and show that the underlying point set of the product is

not the product of the underlying point sets of the factors (even if & is algebrai-
cally closed).

If A' x A' ~ Spec k[z] ® k [x] =~ Spec k [x,y] .
Note that p = (z — y) € sp Spec k[z,y] is sent to (0) by the projections, but (0) # (z,y).
On the other hand, ((f),(g)) € sp Spec k [x] x sp Spec k [y] maps to (f) and (g) by the projections.

2.3.14 b. gx

(b) Let k be a field. let s and ¢ be indetermuinates over k. Then Spec k(s). Spec k().
and Spec k are all one-point spaces. Describe the product scheme Spec
AS) X gpec s Spec Ki1).

Note that k (s) x k (t) is S~k [s,t] where S is generated by products of irreducible polynomials in s and
irreducible polynomials in ¢.

Thus, elements of k:( ) ® k (t) are written as

®d(t)(2al() b; (t)) for a;,c € k|x] and b;,d € kt] .

In other words, the holomorphic functions with poles along horizontal and vertical lines.

Points of Spec k (s) ®x k (t) are points of Spec k[s,t] that aren’t in the preimage of the projections (i.e.
poles along horizontal and vertical lines).

Now take the induced structure sheaf.
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2.3.15 1II.3.10 x g Fibres of a morphism

3.10. Fibres of a Morphism.
ja) If f2X — Yisamorphism, and v € Y a point, show that spi X, ) i homeomor-
phic to f '(y) with the induced topology.

Note that X, ~ X xy Spec k (y) = [~ (V) Xspec 4 Spec k (y) where y € V = Spec AC Y.
If f_1 (V) = U Spec Bz ’ then f_l (V> XSpec A Spec k (y) ~ USpeC (Bz ®A k (y)) . K

Now if y =p € Spec A =

Spec (B @4 (A/p),) ~ Spec (By @4 Afp) = Spec (By/pBy) .
By~ {3ld¢ [ (p).d€ [(A)} = Spec B, ={q € Spec B|f " (q)

C
Hence Spec (By/pBy) ~ {q € Spec BIf ™ (y) Cp,q D f(p)}t = f""(p
By x we have sp X, ~ [~ (p).

p}.
).

2.3.16 b. x

(b} Let X = Speck[si] (s — ") let ¥ = Speck[s].and let /X — Y be the mor-
phism defined by sending s — s. If v € Y is the point a € k with a # 0, show
that the fibre X consists of two points, with residue field & Il v € Y cor-
responds to 0 € k, show that the fibre X, is a nonreduced one-point scheme.
If 1 15 the generic point of ¥, show that X is a one-point scheme, whose residue
tield is an extension of degree two of the residue field of 5. (Assume k alge-
braically closed.)

a is nonzero

X, = X, ~ Spec ks, t] | (s — t*) Xspee kjz] SpEC k(@) ~

~ Spec (k[s,t] /(s —t*) @ k[s] /(s —a)) = Spec k[s,t] / (s — t*,s — a).
s = t?> = a so that the elements are ay + a1t .
Ast?=a,if a# 0, then we have k[s,t] /(s —t*,s —a) ~ k& k by
(1,0) ¢ 5=t + 5 and (0,1) > —575t + 5 .

Note that k & k has two points. Each point has residue field k.

a is zero

If a =0, then k[s,t] /(s —t?,5s —a) =~ k[t] / (t?) which is the dual numbers.
generic point.

X, ~ Spec k[s,t] [ (s —t*) @y k (s) =~ Spec k (s) [t] / (s — t?).

k(s)[t] /(s —t?) is a field and s — t* has degree 2 in t.

2.3.17 1II.3.11 x g Closed subschemes

311, Closed Subschemes.
{a) Closed immersions are stable under base extension: if ;Y — X is a closed
immersion, and if X' — X 1s any morphism, then /1Y %, X' = X' isalso a
closed immersion.

Denote Y/ =Y xx X', and let g : X’ — X be any morphism.

First replace X’ with an affine open neighborhood U’ of f’'(Y’) by basic closed immersion conditions.
Similarly, assume U’ C ¢! (U) , where U C Y is an affine open.

If U' = Spec A’ and U = Spec A , then since f is a closed immersion, f~! (U) ~ Spec A/I .

Thus f~1(U’) ~ Spec (A’ @4 A/I) = Spec (A'/IA’) so that f': Y’ — X' is a closed immersion.
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2.3.18 b. (Starred)

*b) If Y is a closed subscheme of an affine scheme X = Spec A, then Y is also
affine, and in fact Y is the closed subscheme determined by a suntable ideal
a = A as the image of the closed immersion Spec A/a — Spec A. [Hints: First
show that Y can be covered by a finite number of open affine subsets of the
form D(f;) ~ Y. with f; € A. By adding some more f; with ()~ ¥ = &,
if necessary, show that we may assume that the D{ f;) cover X. Next show that
fi.. ..., generate the unit ideal of 4. Then use (Ex. 2.17b) to show that ¥
15 affine, and (Ex. 2.18d) to show that ¥ comes from anideala = A4.] Nore: We
will give another proof of this result using sheaves of ideals later (5.10).

2.3.19 c.x

(c) Let Y be a closed subset of a scheme X, and give Y the reduced induced sub-
scheme structure. If ¥ is any other closed subscheme of X with the same
underlying topological space, show that the closed immersion ¥ — X factors
through Y'. We express this property by saying that the reduced induced
structure 1s the smallest subscheme structure on a closed subset.

Suppose firstX,Y are affine. Let f : Y’ — X a closed immersion.

As a map on topological spaces, f: Y’ —Y — X gives sp(Y) ~ sp(Y) = sp(V (a)) C sp(X) .

For an open U C V (a) C X ,since Y =V (a), U open in Y, then Ox — f,.Oy extends to Ox — f.Oys —
f*OY .

If X,Y are not affine, then glue together open affines to achieve the result.

2.3.20 d. x g scheme-theoretic image

(d) Let f:£ — X be a morphism. Then there is a unique closed subscheme Y of
X with the following property: the morphism [ factors through ¥, and if ¥~
is any other closed subscheme of X through which f factors, then ¥ — X
factors through Y also. We call Y the scheme-theoretic image of . If Z 15 a
reduced scheme, then Y is just the reduced induced structure on the closure of
the image f(Z).

Suppose Z reduced. By (c), f factors through the reduced induced structure on f (Z). If Z is non-reduced,
we have a factorization Z — Z,..;, — X , and the scheme-theoretic image is given by the the closure of image
of Zred-

2.3.21 1II.3.12 x Closed subschemes of Proj S

3.12. Closed Subschemes of Proj 5.
fa) Let @:5 = T be a surjective homomorphism of graded rings, preservin
degrees. Show that the open set U of (Ex. 2.14) 15 equal to Proj T, and th
morphism [:Proj T — Proj § is a closed immersion.
Clearly ¢ (S;) =T, so that {p € Proj Y|p 2 ¢(Sy)} =U = Proj T .
We have T' ~ S/ker ¢ and homogeneoeus prime ideals of S/ker ¢ correspond to homogeneoeus ideals of
S which contain ker ¢ hence f (Proj T) = f (Proj S/ker ¢) =~V (ker ¢).

Q5



On stalks, we have S -1(,)) — T{,) induced by ¢ which is surjective since ¢ is . Thus the sheaf homomor-
phism is surjective.
By closedness and surjectivity, we have a closed immersion.

2.3.22 b. x

{b) If I = § is a homogeneous ideal, take T = §5/1 and let Y be the closed sub-
scheme of X' = Proj § defined as image of the closed immersion Proj §/7 — X.
Show that different homogeneous ideals can give rise to the same closed jub-
scheme. For example, let dy be an integer, and let I' = (3, 1,. Show that
[ and I' determine the same closed subscheme.

We will sec 1ater (5. 1) thal every closed subscheme of X comes irom a ho-
mogeneous ideal [ of § (at least in the case where § is a polynomial ring over S,,).

Let ¢ : S/I' = S/I = (S/I') /] ®%, I; the natural projection homomorphism.
@ is a graded homomorphism of graded rings, with o, the identity for d > d; .
By exc. 11.2.14¢, ¢ induces an isomorphism f : Proj S/I — Proj S/I" .

2.3.23 1II1.3.13 x g Properties of Morphisms of Finite Type

3.13. Properties of Morphisms of Finite Tvpe.

1 5

Suppose f:Y — X is a closed immersion.

Let U; = Spec A; be an open affine cover of X.

Then f~'U; — U is a closed immersion, and by exc. 11.3.11.b., f~1U; = Spec B; for some finitely generated
algebra B;.

We have a surjection (4;), — (Bi)f,l(p) on all the localizatons at prime ideals, thus A; — B; is surjective
(See Liu chapter 1). Hence each B; is an f.g. A;-module.

2.3.24 b.xg

| (b} A quasi-compact open immersion (Ex. 3.2) i.\:-:}f finite type.

Let 2 : U — X a q.c. open immersion.

Let Spec A; an open affine cover of X.

i restricts to open immersions U; — Spec A .

Each U; is covered by basic open affines D (f;;) = Spec (A;)
Each (A4;) fis is a finitely generated A; algebra.

Thus ¢ is locally of finite type

By exc 11.3.3.a, ¢ is finite type.

fi; -~

2.3.25 c.x

(€) A composition of two morphisms of finite type is of finite type.

This is follows from the definitions.

6B



2.3.26 d. x

R e e e e T T e e e
(d) Morphisms of finite type are stable under base extension. —n‘

Suppose that f:Y — X is finite type we want to show that the projection X’ xx Y — X' is finite type.
o If X' XY are affine, then A ®¢ B is an f.g. B-algebra if A is an f.g. C-algebra.

e If X', X are both affine, then any finite open affine cover U; C Y gives a finite open affine cover U; X x X’
of Y xx X', so by the first case we finish.

e If X is affine, then let V; an open affine cover of Y/ . Each V; X x Y is finite type over V; . Since they
cover X', and V; xx Y is the preimage of V; then X’ x x Y is finite type over X' .

e If X is covered by open affines U; = Spec A; and g : X’ — X, then ¢7'U; xy, f~'U; is finite type over
g U; by previous case. Thus ¢~ 'U; xx Y — ¢~'U; is finite type. So f’ is finite type on an open cover
of X’ and thus is finite type.

2.3.27 e . x

R
’—fu? If X and Y are schemes of finite type over 5, then X' x ¢ Y s of fintte type u!,n-v:;'
Y

¢ @

X XgY — S can be factored X xgY - Y — S.

This is finite type since X — S is finite type, and thus by base extension (d), X xgY — Y is finite type.
The second map is finite type by assmption.

By (¢) the composition is finite type.

2.3.28 f. x

() IfX 5 Y5 Zare two morphisms, and if f is quasi-compact, and ¢ [ is of
finite type, then f is of finite type.

Pick C C Z , Spec B C g (Spec C) , X D Spec A C f~! (Spec B) nonempty open sets.
By exc 3.3¢, as Spec A C h™! (Spec C) , then A is an f.g. C-algebra, and there is a morphism C' — B — A

If {a;};_, generate A as a C'—-algebra, then C [z, ..., z,] - A.
Since this map factors through B [zy,...,x,] , then Bz, ...,x,] = A is surjective.
Thus A is an f.g. B -algebra.

Now use quasicompactness on a cover Spec C; of Z.

2.3.29 g. x

{g) If f:X — Y is a morphism of finite type, and if Y is noetherian, then X is
noetherian.

For V; = Spec B; a finite affine cover of Y, by finite type hypothesis, there are U;; = Spec A;; a finite
cover of f~'V; each A;; a finitely gnerated B;-algebra.

Y noetherian = Each B, is noetherian = by Hilbert basis, A;; are noetherian — X is locally
noetherian.

Q7



Consider a finite open affine cover {U;} of X.

f finite type = q.c. by exc 1.3.3.a.

Thus f~1U; is q.c. exc 1.3.2.

If {V;} is an open cover of Y, taking preimages gives an open cover of f~'U; for each i.
Each such f~1U; is q.c., so there is a finite cover.

The union of the subcovers is finite and is still a cover.

Thus X is q.c., hence noetherian.

2.3.30 II.3.14x g

3.14. If X is a scheme of finite type over a field, show that the closed points of X are
dense. Give an example to show that this is not true for arbitrary schemes.

We must show every open set in a basis contains a closed point.

Every affine open set contains a closed point, since it’s an f.g. algebra.

A closed point is closed in the whole subscheme since closed points correspond to points where k (x) /k is
finite.

example

Spec k[X],y = {0, ()} Since (z) is a closed point and 0 is not.

2.3.31 1II.3.15 x

3.15. Let X be a scheme of finite type over a field k (not necessarily algebraically closed)
(a) Show that the following three conditions are equivalent (in which case we say
that X is geometricallv irreducible).
(i) X =,k is irreducible, where k denotes the algebraic closure of k. (By
abuse of notation, we write X =,k to denote X xg,., Spec k)
(il) X x, k, is irreducible. where k, denotes the separable closure of k.
(i) X =, K is irreducible for every extension field K of k.

See Liu, section 3.2.2.

2.3.32 b. x

(b} Show that the following three conditions are equivalent (in which case we say X
is geometrically reduced).
(i) X =,k is reduced.
(1) X =, k,1s reduced. where &, denotes the perfect closure of £,
() X =, K is reduced for all extension fields K of k.

2.3.33 c. x

(c) We say that X is geometrically integral if X' = k is integral. Give examples of
integral schemes which are neither geometrically irreducible nor geometrically
reduced.

R



2.3.34 1II1.3.16 x g Noetherian Induction

3.16. Noetherian Induction. Let X be a noetherian topological space, and let 2 be a
property of closed subsets of X. Assume that for any closed subset Y of X, if #
holds for every proper closed subset of ¥, then # holds for Y. {In particular, 2
must hold for the empty set.) Then # holds for X.

Suppose there are closed subsets where &2 doesn’t hold.

Since X is noetherian, there is a smallest on Z.

Since Z is minimal, there can be no proper closed subsets of Z not satisfying &.
But then we have a contradiction as Z it self must satisfy Z.

2.3.35 1II1.3.17 x Zariski Spaces

AT, Zariski Spaces. A topological space X is a Zariski space if it is noetherian and
every (nonempty) closed irreducible subset has a unique generic point (Ex. 2.9).
For example, let R be a discrete valuation ring, and let T = spiSpec R). Then
T consists of two peints 1, = the maximal ideal, t, = the zero ideal. The open
subsets are 71, |1, ], and T. This is an irreducible Zariski space with generic point
ty.
{a) Show that if X' is a noetherian scheme, then sp(X') is a Zariski space.

Note by 3.1.1 sp (X) is noetherian, so we need to show each closed irreducible subset has a unique generic
point.

For a closed irreducible Z , and open U either U contains the generic point or does not intersect 7 .

Thus the result holds iff it holds for an open affine U.

Suppoes then that X is affine.

Then irreducible closed subsets correspond to, by the nullstellensatz to prime radical ideals.

Let p the generic point for V (p).

If p, q are two generic points for a closed determined by an ideal I , then p = /p = VI = V4 =q.

2.3.36 b. xg

(b} Show that any minimal nonempty closed subset of a Zariski space consists of
one point. We call these closed points.

Minimal closed subsets are irreducible, and thus has a unique generic point by definition of a Zariski space.
For another point in the minimal closed set, by minimality, the closure is the whole thing. By uniqueness of
generic point, we are done.

2337 c.xg

(c) Show that a Zariski space X satisfies the axiom T,:given any two distinct
points of X, there i1s an open set containing one but not the other.

Let v #ye X ,U=X\{z} .
If y € U we are done, else y € {x} , but then y is the generic point of {x}~ so x = y.

Q0



2.3.38 d.xg

PrOfEIELS LrL SR o BBl e L GLED LI DL L'l.”""ﬂ-lllll.ls. LFLES LPLIL LELPL LIS LILIEC) -
(d) If X 1s an irreducible Zariski space, then its generic point is contained in every
nonempty open subset of X.

If n ¢ U, then n € U*, closed. By irreducibleness, X = {n}.
So U is empty.

2.3.39 e. x g specialization

S ——
{e) If xq4,x, are pomts of a mpaluglcal space X, and if x, € {x,] ", then we :,aj
that x, specializes to xg, written x,~— x,. We also say x, 15 a spec mh.,atmq{!

—@LxTrgr—L!:m—.\:,-ia-a-g«u@u‘;@Wow let X be a Zariski space. Show

that the minimal points, for the partial orderingdetermined by x, > x4 if v, s~
Xg. are the closed points, and the maximal points are the generic points of the
irreducible components of X. Show also that a closed subset contains every
specialization of any of its points. (We say closed subsets are stable under
speciclization.) Similarly . open subsets are stable under generization.

Let X = UZ; the expression of X as union of maximal irreducible closed subsets.

Let n; the generic point of Z; and n; € {z;}~ .

Then Z; C {x;}~ and since the Z; are maximal, Z; = {z;} .

Generic points of irreducible closed subsets are unique by previous =— n; = z; .
= 7); is maximal.

Conversely, suppose 1 maximal.
Then n € {n;}” and n=rn; .

The “also” part
If Z is a closed subset and z € Z is a point, then since {2}~ is the smallest closed subset containing z ,
and Z contains z , = {2} C Z .

2.3.40 f. x

iy Let ¢ be the functor on topological spacL]' introduced in the proof of (2.6).
If X is a noetherian topological space. show that 1(X') is a Zariski space.
L Furthermere S iselbsa-Lanslpaecidnd only if the map 2 X — (X)) 15

a homeomorphism.

noetherian
The lattice of closed subsets of ¢ (X) is the same as the lattice of closed subsets of X = t(z) is
noetherian.

unique generic points

If n a generic point in a closed irreducible subset Z of X.

The closure {n}~ in ¢t (X) is the smallest closed subset of X containing 7 .
n is a closed subset of X = that {n} =17

If i’ is a generic point for {n}~ then {n}” ={n'}" = n=19".

“furthermore” part
If X is a zariski space, then there is 1-1 correspondence between points and irreducible closed subsets.
Hence o : X — t(X) is a bijection on udnerlying sets.
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The inverse is clearly continuous .

2.3.41 1II1.3.18x Comnstructible Sets

3.18. Constructible Sers. Let X be a Zariski topological space A constructible xuhs:}*r
of X 1sa subset which belongs to the smallest family & of subsets such that (1) evefy
open subset is in 4, (2) a finite intersection of elements of & is in &, and (3) the
complement of an element of ¥ is in .

{a) A subset of X is locally closed il it is the intersection of an open subset with|a
closed subset. Show that a subset of X is constructible if and only 1f it can fpe
wrilten as a finite disjoint union of locally closed subsets.

Consider [[ Z; N U; C X finite disjoint union locally closed.
Suppose that this coproduct satisfies 1,2,3.

Conditions 1 and 3 imply closed subsets of X are in § .
Conditions 2 and 3 imply finite unions of elements of § are in § .
Thus if Z; N U; are djsoint, then [[Z;NU; =UZ;NU; € F .

Consider a collection §’ of such coproducts. We want to show they satisfy 1,2,3.
1is since U N X = U and X is closed.

2 just take intersections of them and get another similar coproduct

3 is by induction.

Thus any such § =§ .

On the other hand, let §,, C § the collection of subsets of X which can be written as finite disjoint union
of n locally closed, thus U, §, = § .

The itnersection of elements of §,, and §,, is in § as in 2 above.

fSeg,S=UnNZand S=UnZ)=0UzZ=U°[][(Z°NU)in § .

We proceed by induction showing that S € §,, satisfies complements.

Se€Fn,S=5,1][S1,and Sc=S55 ,NS.

But Sy, and S{ are in § by induction, and their intersection is in their by 2.

Thus we have shown that § is the locally closed coproducts as aabove.

2.3.42 b. x

e

{b) Show that a constructible subset of an irreducible Zariski space X is denslﬂ if
and only if it contains the generic point. Furthermore, in that case it contajins
a nonempty open subset.

Suppose S € § is constructible. Let n the generic point and suppose it’s in .S

S>{n}  =X. = Sis dense.

Suppose that S € § is dense. S =[], Z; N U; by part (a).

Note that UZ; D S so UZ; D S since the Z; are closed, and the union is finite.

Thus UZ; DS =X .

X irreducible — Z;, = X some 1.

Thus S = U, [T (I}5) ZiN ;) .

As X is a zariski space, by exc 11.3.17.d the generic point is contained in every nonempty open subset of

So U, contains generic point so S contains generic point.
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2.3.43 c. x

{c) A subset § of X 1s closed if and only if 1t i1s constructible and stable under
specialization. Similarly, a subset T of X is openifand only if it 1s constructible
and stable under generization.

closed = constructible and stable under specialization is clear.

Suppose S is constructible, thus by (a) S =[], Z; N U; and is stable under specialization.
if 7; is generic point of irreducible comonent of Z; intersecting U; nontrivially.

S stable under specialization implies S contains every point in {x}~ .

= S contains every point of every irreducible component of each Z; .

= SO U%.

Consider = € S . Suppose x € Z; (it is for some i).

= SclUZ.

= § =J Z; since we’ve shown both containments.

— S is closed as the Z; are .

2344 d. x

(d) If f:X — Y is a continuous map of Zariski spaces, then the inverse image of
any constructible subset of Y 15 a constructible subset of X.

A constructive set looks like [, Z;NU;
Note fTY(IIZnU;) =11f"Zn f'U; .
By continuity, the preimages f~'Z; and f~U; are closed and open respectively.

2.3.45 1II.3.19 x

3.19. The real importance of the notion of constructible subsets derives from the follow-
ing theorem of Chevalley—see Cartan and Chevalley [1, exposé 7] and see also
Matsumura [2, Ch. 2,§6]:let /: X — Y be a morphism of finite type of noetherian
schemes. Then the image ol any constructible subset of X is a constructible
subset of Y. In particular, f1.X'), which need not be either open or closed, 1s a
constructible subset of ¥, Prove this theorem in the following steps.

(a) Reduce to showing that f{.X) itself is constructible, in the case where X and ¥
arc affine. integral noetherian schemes, and f is a dominant morphism.

reduce to affine

We want to show that it is possible to reduce (we don’t actually have to show the result in this case).

If {V;} is an affine cover of Y, and {Uj;} is an affine cover for each f~* (V;) , then if f (U;;) is constructible
each i, j , then f (X) = Uf (Uj;) is constructible, so we assume X,Y are affine.

reduce to irreducible

If {Vi} are irreducible components of Y, and {U;;} irreducible components of f~!(V;), then if f (U;;) is
constructible for each ¢, 5 , then f(X) = Uf (Uj;) is constructible, so we can assume X, Y are irreducible.

reduce to integral

WLOG we can assume reduced topologically, so irreducible 4 reduced gives integral.

reduce to dominant
Suppose f (X) is constructible for each dominant morphism.
We have induced morphism [’ : X — f (X)) which is also dominant so f’ (X) is constructible.

g9



Thus f'(X) C f(X)is [[U; N Z; by (a) of previous problem.
f(X) closed = Z;closed in Y.

Ui =V,N f(X) for V; C Y open under the induced topology.
Then f(X)=][UiNZ; =[[Vin f(X) N Z, is constructible.

2.3.46 b (starred)

*(b) In that case, show that f{.X) contains a nonempty open subset of ¥ by using
the following result from commutative algebra: let 44 = B be an inclusion of
noetherian integral domains, such that B is a finitely generated A-algebra.
Then given a nonzero element b e B, there 1s a norzero element a € A with
the following property:if ¢: 4 — K is any homomorphism of A to an algebrai-
cally closed field K, such that pla) £ 0, then ¢ extends to a homomaorphism
@ of B into K, such that ¢@'th) # 0. [Hin: Prove this algebraic result by
induction on the number of generators of B over 4. For the case of one
generator, prove the result directly. In the application, take b = 1.]

2.3.47 c. x

{c} MNow use noetherian induction on Y to complete the proof.

By (b), Ja € A with D (a) C f(X) .

We show f(X) NV (a) is constructible in Y, assuming it’s nonempty

Assume V (a) = Spec (A/ (a)) so we have an induced map f': Spec B/aB — Spec A/ (a) with image
f(X)NV(a).

A — B injective = A/ (a) — B/aB injective = f’ dominant.

As both rings are noetherian, (a) = Np; , p; primary ideals by primary decomposition.

VP are prime and \/(a) = Ny/p; = V (a) = UV (p;) .

For each /p; B, we have B/q; — Spec A/\/p; for q; € Spec B .

Each image contains a nonemprt subset by (b), and hence is constructible in V' (p;) by noetherian induction.

A locally closed subset of V' (p;) is also a locally closed subset of Spec B,

— images of Spec B/q; — Spec are constructible in Spec B .

2348 d.xg

D ] ; T EIS 0 = T Ees OveTr alT &
closed field &, to show that f1X) need not he either open or closed.

We can map A! — P? by x — (z,1,0) .
f (Al) is neither open nor closed since (x,1,0) nor its complement are varieties.

2.3.49 1II.3.20 x g Dimension

3.20. Dimension. Let X be an integral scheme of finite type over a field k (not necessarily
algebraically closed). Use appropriate results from (I, §1) to prove the following.

{a) Forany closed point P e X,dim X = dim ¢, where for rings, we always mean
the Krull dimension.

g3



dim X =dim A= ht m+dim A/m = ht mA, = dimOp .

2.3.50 b. xg

{b) Let K{X) be the function field of X (Ex. 3.6). Then dim X = tr.d. K(Xyk.

This follows from Thm 1.8A .

2351 c.x

e e e e e e e e e ———— e e

’_1:] IT ¥ is a closed subset of X, then codim{ Y.X') = infidim (/P € Y]

codim (Y, X) = codim (spec A/I, Spec A)
= infyor (Spec A/I, Spec A) = infy5rht (p)
= z'nfpeydim Op,X .

2352 d.xg
Lol me s e e e e e e s mamraaes saen s e meees — page - -
{d) If Yis a closed subset of X, then dim ¥ + codim(¥.X) = dim X.
If Y is irreducible, this is 1.8.A.

If YV is reducible, and Z C Y is an irreducible closed subset of largest dimension, then dim Y +
codim (Y, X)=dim Z +dim (Z,X) =dim X .

2353 e.xg

’_1:.:] If U is a nonempty open subset of X, then dim U = dim X.

Since they have the same function fields, we can use (d).

2.3.54 f. x

¥ e e ; ; ) ) I
(f) Ifk = k' is a field extension, then every irreducible component of X' = X =, &k
has dimension = dim X.

dim X' = Dim (X Xy 2') = dim X + dim k = dim X since a field has dimension 0

2.3.55 1I.3.21 x

3.21. Let R be a discrete valuation ring containing its residue field k. Let X =
Spec R[] be the affine line over Spec R. Show that statements (a), (d), (¢) of
(Ex. 3.20) are false for X.

(e), the nonempty open set Spec R [t], C Spec R [t] with mp = (u).
dimensions are 1 and 2 respectively.

(a)

Now consider the maximal ideal (ut — 1) .
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Then R[t]/ (ut — 1) ~ Q(R) as t = v~ modulo (ut — 1).
R [t] is factorial domain, so principal prime ideals have height 1.
Hence P = (ut — 1) is a closed point where dim Op < dim X .

(d). HY =V (P), then 0+ 1# 2. sodim Y + codim Y, X # dim X .

2.3.56 I1.3.22* (Starred)

*3.22. Dimension of the Fibres of o Morphism, Let f: X — ¥ be a dominant morphis
of integral schemes of finite type over a field k.
{a) Let ¥’ be a closed irreducible subset of ¥, whose generic point 5’ 1s contain
in f(X). Let Z be any irreducible component of f~'(Y"), such that ' e f(Z
and show that codim(Z.X) < codim( Y'Y

MISS

(b) Lete = dim X — dim Y be the relative dimension -&JI’ X over Y. For any point
v £ fiX), show that every irreducible component of the fibre X' has dimen-
sion ze. [Hint: Let Y' = | v} . and use (a) and (Ex. 3.20b). ]

MISS

[—1

{¢c) Show that there is a dense open subset U < X, such that for any y e f{l).
dim U, = e. [Hint: First reduce to the case where X and Y are affine, say
X =5SpecAd and Y = Spec B. Then 4 15 a finitely generated B-algebra.
Taket,, ..., t. € A which form a transcendence base of K(X) over K(Y), and
let X, = Spec B[1,..... t.]. Then X, is isomorphic to affine e-space over ¥,
and the morphism X — X, is generically finite. Now use (Ex. 3.7) above.]

MISS

(d) Going back to our original morphism f:X — ¥, for any integer h, let E; be
the set of points x € X such that, letting v = fix), there 1s an irreducible com-
ponent Z of the fibre X, containing x, and having dim Z = h. Show that
i1) E, = X (use (b) above); (2) if h = ¢, then E, is not dense in X (use (c)
above); and (3) E; 15 closed, for all h {use induction on dim X).

MISS

{e) Prove the following theorem of Chevalley—see Cartan and Chevalley [1.
expose 8]. For each integer hi, let C, be the set of pointg 1 € ¥ such that dim
XA, = . Then the subsets €, are constructible, and C, contains an open
dense subset of Y.

MISS

2.3.57 1I.3.23 x

323 If V. W are two varieties over an algebraically closed field k, and if 1 x W is
their product, as defined in (I, Ex. 3.15, 3.16), and if | is the functor of (2.6),
then t(V x W) =ull) =, , i)

By I1.4.6.d, t (V) x t (W) is separated.
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k is algebraically closed so by 4.10, t (V) x, t (W) is integral and finite type.

So this is an integral sepated scheme of finite type over an algebraically closed field k.
Thus a variety.

Thus ¢ (V) xx t (W) =t (Y) for a variety Y.

Then Y must be V' x W by the universal property of ¢.

2.4 11.4 x stopped g’ing here

2.4.1 1II.4.1 x g Nice example valuative crit

4.1. Show that a finite morphism is proper.

Let f: X — Y finite.
Properness is local on the base and f is finite so take X, Y affine.
f :spec B — Spec A .
If R is an arbitrary valuation ring with quotient field K , consider
Spec K —— Spec B

.
Spec R—"= Spec A

This corresponds to

| ]

in terms of rings.

A — B finite and B integral over A = u (A) — v (V) is integral (Atiyah Mac p 60)
R a valuation ring = R integrally closed.

u(A) C R and R integrally closed = v(B) C R.
Now the result follows by valuative crit of properness.

24.2 II4.2x

4.2. Let 5 be a scheme, let X be a reduced scheme over S, and let Y be 4 separated
scheme over 5. Let J and g be two S-morphisms of X to ¥ which agree on an
open dense subset of X. Show that f = y. Give examples to show that this

result fails if either (a) X is nonreduced, or (b} ¥ is nonseparated. [ Himt: Consider
the map hi: X — ¥ x Y obtamed from f and g. ]

Let U dense open on X where f, g agree. We have

1] [l] where the middle is pullback of ¢ .
Z X

s

Y —2Y xgY

Y separated = A is closed immersion.
I1.3.11 = closed immersions stable under base extension —> Z — X is closed immersion.
f,g agree on U = im (U) is contained in diagonal, and so topolgocaily the pullback is U.
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—> U — X factors through 7 .

Image is closed subset of X. U dense, — sp Z =sp X .

Z — X is a closed immersion = Ox — Oy is surjective.

For X DV = Spec A open affine, Z|,, — X|y =V is a closed immersion.

— Z|y is affine, homeomorphic to V', and therefore ~ Spec A/I.

As Spec A/I — Spec A is a homeomorphism, then [ is contained in the nilradical, which is 0 as A is X
is reduced by assumption.

Hence Z|y = Z as schemes, = Z~ X .

hence f, g agree on all of X so they are in fact the same.

(a)X nonreduced counterexample

Let X =Y = Spec k[z,y] / (2%, zy)

If f is identity, and g maps z to 0, then f, g agree on the complement of the origin. However, the map on
global sections disagree.

(b) Y is non-separated counterexample.

Let X,Y be the affine line with two origins.

Let f, g be the distinct open inclusions of the affine line which agree outside of the double origin, but send
the origin to different places.

243 II43xg

4.3. Let X be a separated scheme over an affine 5|‘hcmu 5. Let U and V' be open
affine subsets of X, Then U ~ Vs also affine, GGive an example to show that this
farls if X' 15 not separated.

Cousider
UNV —U xgV

L,

X—- X xg X
X separated over S = J is a closed immersion by definition.
By exc I1.3.11, closed immersions are stable under base extension.
Hence UNV — U x gV is a closed immersion.
As U xg V is affine (defined by a tensor of f.g. algebrae), then UNV — U x5V is a closed immersion
into an affine scheme, hence U NV is affine by exc 11.3.11.b.

Nonseparated
Consider affine plane with two origins, and let U,V be the two distinct affine planes . U NV is A2 — {0}
which is not affine.

244 Il44x

44. Let f: X — Y be a morphism of separated schemes of finite tvpe over a noetherian
scheme 5. Let # be a closed subscheme of X which is proper over 5. Show that
f1Z)1s closed in ¥, and that f{Z) with its image subscheme structure (Ex. 3.11d)
is proper over 5. We refer to this result by saying that “the image of a proper
scheme is proper.” [ Hint: Factor [ into the graph morphism I' ;X — X x4 ¥
followed by the second projection p,. and show that I'; is a closed immersion. |

image is closed
Note that as Z — S is proper and Y — S is separated, by 11.4.8.e, Z — Y is proper so f (Z) is closed.
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In order to show f(Z) is proper, we must, by definition, show separated, finite-type, and universally
closed.

separated

Note the diagonal Y — Y x5 Y is a closed immerson by separatedness of Y . By base extension f(Z) —
f(Z) x5 f(Z) is a closed immersion.

finite type

Note that closed subschemes of finite type schemes are finite type.

universally closed.

Let T — S another morphism. Base extension of Z — f(Z) gives f' : T'xsZ — T xg f(Z) . If
x € T xg f(Z), then under the base extension this corresponds to 2’ € f (Z) with k (') C k (x) . Surjectivity
of Z — f(Z) implies there is 2" € Z with k(z") D k(2') . If k(x),k(2") C k then we have morphisms
Spec k — T xg f(z) and spec k — Z which agree on f (Z) and thus lift to spec k — T xg Z , so there is a
point in T' X g Z mapping to x. Hence T' xg Z — T Xg f (Z) is surjective.

If W C T xg f(Z) is closed, then (/)" W is closed and ' o f’ ((f’)_1 W) is closed. f’ surjective implies
F () (W) =W so that s’ o f' ((f) W) =8 (W). Thus T xg f (Z) is closed in 7.

2.4.5 1II.4.5 x g center is unique by valuative criterion

4.5. Let X be an integral scheme of finite type over a field &, having function field K.
We say that a valuation of K k (see 1, §6) has center x on X if its valuation ring R
dominates the local ring ¢ _ .

(a) If X is separated over k, then the center of any valuation of K/k on X (if it
exists) is unique.

Let R a valuation ring on K with center at x.
Then O, x C R C K and mp, lies over m, in O, x.
Thus we have a diagram:

U X  where U = Spec K, T = Spec R.

e

T —— Spec k
Comparing with the valuative criterion of separatedness shows that the diagonal morphism is unique, i.e.
the inclusion O, x C R C K is unique, i.e. the center at = is unique.

24.6 b.x

(b} If X is proper over k, then every valuation of K/k has a unique center on X.

— I g =

see part a.

2.4.7 (starred)

*(c) Prove the converses of (a) and (b). [Hinr: While parts (a) and (b) follow quite
easily from {4.3) and (4.7), their converses will require some comparison of
valuations in different fields. |

MISS

[0}



24.8 d. x

S S—

(d) If X is proper over k, and if k is algebraically closed, show that I(X.( y) = k.
This result generalizes (I, 3.4a). |Hint: Let a e NX.€ ), witha ¢ k. Show that
there i1s a valuation ring R of K/k with a~ ' € mg. Then use|(b) to get a con-
tradiction. |

Note, If X i1s a variety over k, the criterion of (b) is sometimes|taken as the de-

| finition ol a complate variety

As in the hint, let a € I' (X, 0,), a ¢ k .

Let b be the image of a € k .

k is algebraically closed = b is transcendental over & = k[b™!] is a polynomial ring.
Consider & [b™'] ;-1 , a local ring contained in K.

Let R C K be a valuation ring dominating & [b~"] ).

mrp Nk [bil](b,l) = (bil) — ble mg .

By the valuative criterion of properness, we have a unique map I' (X, Ox) — R :
K<—T(X,0x)

]

R k

Then b € R so vg (b) > 0.

Then b=! € mp so vg (b7') >0 .

But the valuation of a unit should be 0 so this is a contradiction which resulted from assuming a ¢ k .

2.4.9 I14.6xg

4.6. Let /: X — Y be a proper morphism of affine vaneties over k. Then / 1s a finite
morphism. [ Hinr: Use (4.11A).]

Let f: Spec A — Spec B finite.

Let ¢ : B — A be the map on global sections, a ring morphism.

Let K =k (A) .

By the valuative criterion of properness, we have, for K O R D ¢ (B), R valuation ring as in 4.5,
Spec K —— Spec A

|

Spec R—— Spec B

By I1.4.1TA, the integral closure of ¢ (B) in K is the intersection of all valuation rings of K containing
v (B).

The map Spec R — Spec A gives an inclusion of A in every such valuation ring, and thus A is integral
over B.

As f is finite type, f is therefore finite.
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2.4.10 1I1.4.7 x R-scheme

4.7. Schemes Over R, Hor any scheme X, over R let X = X, xpC. Let 2:C —+ Cbe
complex conjugation, and let 5: X' — X be the automorphism obtained by keeping
X, fixed and applying x to C. Then X is a scheme over C, and ¢ 1s a semi-linear
automorphism, in|the sense that we have a commutative diagram

]

X > X

Spec C — 2 Spec C.

Since a* = 1d. we call @ an invedution.

{a) Now let X be a separated scheme of finite type over C, let ¢ be a semilinear
involution on X, and assume that for any two points v,.v. € X, there is an
open affine subset containing both of them. (This last condition 1s satisfied
for example if X 15 quasi-projective.) Show that there is a unique separated
scheme X, of finite type over R, such that X; =g C = X, and such that this
isomorphism identifies the given involution of X with the one on X, x, C
described above.

This follows from Milne AG, theorem 16.35.

24.11 b. x

For the following statements, X, will denote a separated scheme of finite
tvpe over R, and X,s will denote the corresponding scheme with involution
over C.

(b} Show that X', is affine if and only if X 1s.
X affine implies Xy xg C =~ X is affine.
If X = Spec A is affine, then Xy = Spec A? , A being fixed by the involution.

2412 c. x

(c) 1f X,.Y, are two such schemes over R, then to give a morphism f,: X, — Y,
15 equivalent to giving a merphism f:X — Y which commutes with the n-
volutions, 1e, f oy = ay [

Suppose we have f that commutes with o .

If X = Spec A, Y = Spec B, then we have an induced morphism A% — B? .
This gives Xy — Yj .

X,Y not affine, then take cover of X by open affines U; preserved by o .

For each i tlet Vj; an open affine cover of f~'U; and preserved by o .

If 7:Y — Y, is the projection , this is affine by (b).

Then we can glue 7 (V;;) — 7 (U;) to get a morphism Y, — X,.
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2.4.13 d. x
VOILLIONS, LE., | 0y = 0y

() IEX > AL then X, = Ay, '

By case II of ( )

24.14 e. x

e} If X = P~ then either 1.',. =~ Pg.or 1!.,;, :um:murphmm the conic in Pg given
by the homogeneous equation x;; + vy + v3 = (0,

We proceed by cases.

If o has no closed fixed points, then for z € X ~ P! a closed point, let U = X\ {z, 0z} .

Let f send (z,0x) to (0,00) . Assume z, and ox are 0 and oo so that U ~ Spec C[t,t7!] .

The lift of o is C -semilinear and o induces an invertible semilinaer C-algebra homomorphism on C [¢,¢™!]

The element ¢ is sent under o to at* for k € Z . As 0? = 1, then k ~ +1 .

If k=1, then o would fix C[t], so k must be —1.

tot = a is fixed by o. Since o acts by conjugation, then a € R .

If a is positive, then the ideal (t — y/a) is fixed. Thus a € R

Now change coordinates from ¢ to \/%7 , so the involution becomes t — —t~1 .

o _ . . c[¥%.Z] C[£,£] _
Writing t = £ , —t~! = Z | we have isomorphisms —%X24 ~ C[—t] , and vyl ~ CltY],
. G = Gty =
—t 1= % , 0 switches % and % and conjugates scalars.

Writing U = 3 (X +Y) ,V=1(Y - X) , we get

9~ ij% ~ Proj &[f,fzzg]) ~ P{ ~ X where o acts by conjugating scalars.

Thus Xo ~ 2o & Proj ey |

If on the other hand ¢ has at least one fixed point, then o restricts to a semilinear automorphism of the
complement of the fixed point, which is an open set Spec C[t] C P{ . Since o is invertible, ¢ gets sent to
something of the form at + b. B changing coordinates to s = ¢t + d with o0s = s , we have a ¢ -invariant
isomorphism X ~ P} ®p C .

2.4.15 1II.4.8x

4.8. Let # be a property of morphisms of schemes such that
{a) a closed immersion has #;
(b) a composition of two morphisms having # has #:
{c) " is stable under base extension.
Then show that:
{d) a product of morphisms having # has .#:

Let f: X —Y and g: A — B two morphisms having .
We want to show that f x g has &2 .

By base change, X x A - Y x A has &7 .

Also by base change, Y x A — Y x B has Z.

By composition, X x A - Y x A — Y x B has &.

But this is f x g.
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2.4.16 e. x

‘ fey if X = Y and g: Y — Z are two morphisms, and if ¢/ has # and g is
separated, then / has +#;
Note this morphism first in the vertical left hand side of the following diagram:

Note top right has it by separated since closed immersion
Note the top left is the base change since X xxy X ~ X and X xx (Y xzY)~ X xz Y .
LHS bottom is also base change.

2417 f. x
(f) 1 £:X — Y has #, then /. » Y _ has 2. J
_EH.MLFL&LM‘JMLA_UJL_EMWMJA 1d note that

it is obtained by base extension from the diagonal morphism 4:Y — Y x, Y]

Consider the fiber product:
X’r’ed

TE€ id

fYEed Xy red_>X7“ed

| |

Y;“ed Y
Xyea — X — Y (top and righ) is a composition of a closed immersion and morphism with &2, so it has &.
Thus Y,eq Xy X,eq is a base change of morphism with & so has it by assumption.
Note if I'y,_, , the graph, has &7 , then f,.4 is a composition of morphisms with property & .
But the graph is the following base change
Xred }/’T‘Bd
I !
Xred Xy Yred — Yrea Xy Yrea
AS Yieq Xy Yieq = Yyeq and A = id , then A is closed immersion and I" thus has property .

2.4.18 1II.4.9 x g important - used stein factorization

4.9. Show that a composition of projective morphisms is projective. [Hinr: Use the
Segre embedding defined in (1. Ex. 2.14) and show that it gives a closed immersion
P" x PP — P*"""*] Conclude that projective morphisms have properties
(al—(f) of (Ex. 4.8) above,

Let X — Y — Z projective. We have
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idXxg"

X—Lpr xy 9 s x 2

~d L,

Y P x Z
\ l
Z
f", ¢ and id x ¢ are closed immersions.
Now using segre embedding, P" x P* x Z — Z factors like
PrxPsx Z 5Pstts x 7 — 7
Since segre embedding is closed immersion, then have closed immersion X — P™*"* which factors as

gof.

2.4.19 11.4.10 Chow’s Lemma (starred)

4.0, Chow's Lemma. This result says that proper morphisms are fairly close to pro-
jective morphisms. Let X be proper over a noetherian scheme S. Then there is
a scheme X' and a morphism ¢: X" — X such that X" 1s projective over §, and
there is an open dense subset " = X such that y induces an isomorphism of
¢ "(Uyto U. Prove this result in the following steps.
(a) Reduce to the case X irreducible.

2.4.20 b part of starred

(b) Show that X can be covered by a finite number of opensubsets Ui = 1,. ... ",
L each ofwhich o guasiaroiactive pyer & Lot [T L P be an open immersion
of L. into a scheme P. which is proiective over 5.

2.4.21 c. part of starred

(c) Let L' = [|U,. and consider the map
U= X xsPy x5 x5 P

deduced from the given maps L' — X and U — P,. Let X' be the closed image
subscheme structure (Ex. 3.11d) f{L'y . Let y: X' — X be the projection ontp
the first factor, and let ' X' — P = P, x5... x¢ P, be the projection ontp
the product of the remaining factors. Show that h is a closed immcrﬁimf
hence X' 1s projective over §

n

2.4.22 d. part of starred

L B el = a o L B

{d) Show that ¢~ '(L') — U is an isomorphism. thus completing the p!"m:ul'.
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2.4.23 11.4.11 x

4.11. If you are willing to do some harder commutative algebra, and stick to noetherian
schemes, then we can express the valuative criteria of separatedness and properness
using only discrete valuation rings.

{a) If ¢, m is a noetherian local domain with quotient field K, and if L is a finitely

| generated field extension of K. then there exists a discrete valuation ring R of |

L dominating ¢. Prove this in the following steps. By taking a polynomial
ring over ¢ . reduce to the case where L is a finire extension field of K. Then
show that for a suitable choice of generators x|, . .. x,of m, the ideal a = (x,)
in ¢ =C([vsv,..... ¥, ¥, ] is not equal to the unit ideal. Then let p|be a
minimal prime ideal of a. and let ¢, be the localization of { " at p. Thijis a
noetherian local domain of dimension | dominating ¢. Let ¢ be the integral
closure of ¢ ,in L. Use the theorem of Krull-Akizuki (see Nagata [7, p. | 15])
to show that ¢ is noetherian of dimension 1. Finally, take R to be a lpcal-

ization of (_at one of its maximal ideals
Let y1, ..., y, transcendental elements of L over K such that L is finite over K (y1,...,yn) -
Thus extension of m in O [y, ..., y,] is not the whole ring so we localize at a prime ideal lying over m.
Assume WLOG that L is finite field extension of K.
Let x4, ..., x, a system of parameters for m .
As x4, ..., x, are algebraically independent over K | the extension of m in O [za, ..., z,] (z1) 18 (x1), which is
not the whole ring.
Let p a minimal prime lying over (z1).
By KPIT, p has height 1.
If B is the localization of O’ at p, then B is a noetherian local domain of dimension 1.
By DIRP, the integral closure of B in L is noetherian, dimension 1.
Localizing the integral closure at a maximal ideal gives a DVR in L dominating O.

2.4.24 b. x

{b) Let j:X — Y be a morphism of finite type of noetherian schemes. Show that
{ 1s separated (respectivelv, proper) if and only if the criterion of (4.3) (respec-
tively, i4.7)) holds for all discrete valuation rings.

By part (a), we only have to consider discrete valuation rings. Thus this follows from Thm 1.6.1A

2.4.25 1I.4.12 x Examples of Valuation Rings

4.12. Examples of Valuation Rings. Let k be an algebraically closed field.
ja) IT K is a function field of dimension 1 over k (I, §6), then every valuation ring
of K/k (except for K itsell) is discrete. Thus the set of all of them 1s just the
abstract nonsingular curve Cy of (1. §6).

Let R C K be a valuation ring. If mg is principal, then by thm 1.6.2A the valuation ring is discrete.

For t € mg, and (t) # mg , let s € mp)\ (¢) .

If ¢ is not transcendental then >  a;t* = 0 with a constant term, then ag = ¢ a;t" ! and so ag € (¢)
which must be K. Contradiction.

Thus, since K has dimension 1, and ¢ is transcendental, K is a finite algebraic extension of k () .

As s ¢ (t) , then s is algebraic over k. Thus > a;s' =0 .
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Thus ap = s 3 a;s"!, and ag = 29 so % =s5> a;s so f(t)=g(t)sd a;s! and thus f(t) € (s) C

g(t)
mR\ (t)
Ast € mg , then ag = 0 or else, ap € mp .

Thus ¢ € (s) .
If (s) = mp the we are done, other wise take an ascending chain and use noetherianness.

2.4.26 b. (1) x

iby If K k15 a function field of dimension two, there are several different kinds of

valuations. Suppose that X is a complete nonsingular surface with function
field K.

i1y If ¥ is an irreducible curve on X, with generic point x,, then the local ring

R = (, s adiscrete valuation ring of K k with center at the (nonclosed)

point x, on X,

Let U = Spec A be an open affine. Then x; corresponds to a prime ideal p C A of height 1 and Ox ., ~ A,,
a noetherian local ring of dimension 1. As X is nonsingular, and a curve so normal then so is A, A,. By
DIRP, A, is a DVR, which must have center ;.

2.4.27 (2) x

- R

(2) If /1 X' = X is a birational morphism, and if Y' is an irreducible curve in
X" whose image in X 1s a single closed point x,, then the local ring R of
the generic point of ¥ on X' is a discrete valuation ring of K k with center
at the closed point x, on X.

If X’ is smooth, then by (1), R is DVR.
f induces an inclusion Oy, < R, so R dominates Ox 4, .
Recall this means R has center x.

2.4.28 (3) x

(3) Let v, = X be a closed point. Let /:X,; = X be the blowing-up of x,
(I.§4 and let E, = [ '{x,) be the exceptional curve. Choose a closed
point x, € E,. let fi:X, = X, be the blowing-up of x;, and let E, =
13 'x,) be the exceptional curve. Repeatl. In this manner we obtain a
sequence of varieties X, with closed points x, chosen on them, and for
each i, the local ring ¢, ., dominates ¢  y. Let Ry = ',u,,‘f,, €. x.
Then R, 15 a local rning, so it 1s dominated by some valuation ring R of
K/k by (1, 6.1A). Show that R is a valuation ring of K/k. and that it has
center x, on X. When is R a discrete valuation ring?

Nore. We will see later (V. Ex. 5.6) that in fact the R, of (3} 1s already a valuation
ring itself, so R, = R. Furthermore, every valuation ring of K k {except for K
itsell) is one of the three kinds just described.

This is clear.
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25 II.bx
2.5.1 II.5.1gx

5.1. Let{XN.( ) bearinged space. and let £ be a locally free ¢ ,-module of finite rank
We define the chi{u' of &, denoted £, to be the sheal #om, AL )
(a) Show that (£)7 = &, )
Let ¢ : & = H o, (&,0x) be defined by evaluation.
If U is open and V' C U , then for s € & (U) define t € homo, (& (V),0x (V)) — Ox (V) by evaluation
at S|V .
If & is locally free, then this is an isomorphism on the stalks.

2.5.2 (b)gx

(b} Forany ( y-module #, #om, (&,7) = & @, F.
Let U be an open set where & is gree.
Define ¢ : #ome, (@@|U, (’)X|U) Qo) F (U) = Homo, (&|u, F|v) by mapping
fa— (z— f(x)a).
Define ¢ : Some, (&, F) |y — [#om (E,0x) ®oy F||v by mapping
[ Z?:l e; @ f(e) -

Now check that these are inverse bijective homomorphisms.

253 (c)xg

¢c) For any ¢ y-modules .#.%, Hom, (& @& #.,%) =~ Hom, (F ¥om, (£%))

We take the sheafification of Hom (M ® N, P) ~ Hom (M, 7€ om (N, P)), AM p 28

2.5.4 (d) x g Projection Formula

(d) (Projection Formula). If {:(X.C ) - (Y.0 ;) is a morphism of ringed spaces, if
F 1san (" y-module, and if £ is a locally free ¢ y-module of finite rank, then|there
1s a natural isomorphism /(# &, [*8) = [0F) @, 8.

We havef, (¥ ®o, [*O}) = [ (F Q0 O%) = f.(F Qo, Ox)" , since right adjoints commute with
limits, lefts with colimits (finite direct sums).

~f(F)' = [ (F)ROL = [, (F) R, & .

Now if & is locally free, procedd in the same manner on an open cover where &y, is free, and then glue
the results.

2.5.5 11.5.2 (a) x

5.2. Let R be a discrete valuation ring with quotient field K. apd let X' = Spec R.
la) To give an ¢ y-module 15 equivalent to giving an R-module M, a K-vector
space L, and a homomorphism p: M @, K — L.

Spec R has two nontrivial open subsets, the total space and the generic point.
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By definition, .# is an Ox module, if .Z is an Ox (X) = R-module M and there is a Ox (U) = K -module
L and a restriction morphism M — Lg, Li being L considered as an R-module.

Restriction and extension of scalars are adjoint, so the R-module homomorphism represented by restriction
gives the K-module homomorphism of extension M ®r K — L by adjunction.

2.5.6 (b) x

(b} That ¢ y-module 1s quasi-coherent if and only if p is an isomorphism.

If .7 is q.c. , then locally .Z ~ M .

R has a unique closed point and the neighborhood is the whole space.
Thus .# ~ M globally.

ThusL%?(U) %M(O) ~M®rK .

On the other hand, if p: M ®xg K — L is an isomorphism,

By (a),weknowﬁzMiﬁ'LzMO. But L~ M ®r K = M .

2.5.7 IL.5.3xg

5.3. Let X' = Spec A be an affine scheme, Show that the functors ™ and [ are adjoint,
in the following sense: for any 4-module M. and for any sheaf of ¢ y-modules #,
there is a natural isomorphism

Hom (M, (X, #)} = Hom, (M.#).

Clearly f : M — .% gives a map on global sections M (X) — .% (X) , which is M — T'(X,.7) .
On the other hand, given f: M — T'(X,.%) , define f* on the distingushed base, D (f) by f*ps (%) >

(;”). Glueing gives an f* = f on X. Thus f — f* € Hom (M, ﬁ) is injective. If f* induces f , then clearly
f induces f* , so that f +— f* is surjective.

—~

2.5.8 II.54x

5.4. Show that ;i}«-hcaf of (" y-modules .# on a scheme X is quasi-coherent il and only
if every poirt of X has a neighborhood U, such that #|; is isomorphic to a
cokernel of a morphism of free sheaves on U. If X is noetherian, then .# is co-
herent if and only if it is locally a cokernel of a morphism of free sheaves of finite
rank. (These properties were originally the definition of quasi-coherent and
coherent sheaves.)

First note that locally free implies q.c.
Basically if we have locally free, then we know .Z|y, ~ (Ox)" some index set K.

~ \K
By I1.5.2, Of ~ (OX> , and since Oy is itself a sheaf, and the associated sheaf is uniquely isomorphic
as a sheaf, Ox =~ Ox .

Now suppose .Z is q.c. Let U a neighborhood of a point, U = Spec A, such that F|y ~ M. (This is thm
I1.5.4). Folliwing Eisenbud, page 17, let m,,_, a generating set for the Ox|y-module M (we can at least take

the m, to be the elements of M). Let B index the kernel so that O%U LN (934(|U 2 M — 0 is exact.
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As M = coker (¢) ~ O§|U/im (V) =~ O;‘}'U/k:er () =~ O§|U/O§|U , the same sequence as above, sheafified,
is exact by I1.5.2.a. Note that O)A;lU and O)B(‘U are free by above.
As exact functors preserve cokernels, we have the result in one direction.

Conversely, if Z|y, U = Spec A is the cokernel of a morphism of free sheaves on U, then it is a cokernel
of locally free sheaves on U. We know that locally free implies q.c., thus it is a cokernel of q.c. sheaves on U.
Now using I1.5.7, the cokernel of q.c. is q.c. so |y is q.c.

2.5.9 II5.5(a)xg

5.5, Let f: X — Y be a morphism of schemes.
(a) Show by example that if # is coherent on X, then f,# need not be coheren
on Y. even if X and Y are varieties over a field k.

Let f: X = Spec k(t) =Y = Spec k .

Note that Ogpec k() is coherent on k (t) , but k (¢) is not finitely generated as a k-module, since it contains
1t 2, ..

Thus the pushforward is not coherent.

2.5.10 b. x g closed immersion is finite.

(b) Show that a closed immersion 1s a finite morphism (§3).

Let f:Y — X closed immersion.
For an open affine cover U; of X, the restrictions are closed immersions f : U; — U;. (by definition of
closed immersion).

By Ex, I1.3.11.b, these are Spec (A;/I;) — Spec(A;) and each A;/I; is f.g.

2.5.11 (c)xg

{c) If f 15 a finite morphism of noetherian schemes, and if # is coherent on X.
then f,# 1s coherent on Y.

Let {Spec B;} an open affine cover of Y.

f finite implies f~'Spec B; ~ Spec A; , A; an f.g. B;-module.

% coherent, and X noetherian — % ~ M; an f.g. A;-module.
By 11.5.2.d, fiZ|spec B, = (5, M;)” , and g, M, is an f.g B;-module.

2.5.12 II.5.6 (a) x g

5.6, Support. Recall the notions of support of a section of a sheal, support of a 5h|‘a[
and subsheal with supports from (Ex. 1.14) and (Ex. 1.20).
{a) Let 4 be a ring, let M be an A-module, let X' = Spec 4, and let .# = M.
Foranv me M = I X &) show that Supp m = V{Ann m), where Ann #1 1s
the annihilaior of m = fac .-1|:mr = 0.

peV(Annm) = pDAnmnm = sm#0fors¢p = my #0 = p € Suppm .
peSuppm = sm=0somes¢p — ppAnnm — p¢&V (Ann m) .
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2.5.13 (b) x g

b awam o LA A e
|.'|Lr|.}n||.' - — ¥ ATIrIY

{b) Now suppose that 4 1s noetherian, and M finitely generated. Show that
o . .
F

Let m; a set of generators for M.

Ann M = NAnn m; .

Supp F ~ Supp M =~ {p € Spec A|M, # 0} .

Then M, # 0 iff m; # 0 in M, for some ¢ iff Ann(m;) Cpiff V (Ann M) >p

2.5.14 (c)x g

‘ =y R e e

i¢) The support of a coherent sheal on a noetherian scheme is closed.

The support is the union of supports of sheaf of each element.
On an an open affine cover U; with .Z# |y, = M, , then by (b), the support is closed on U; , and thus on X.

2.5.15 (d) x

{d) For any ideal a = 4, we define a submodule I'yM) aof M by I'jM) =
ime .-”|ﬂ"m = 0 for some n = 0!, Assume that A4 is noetherian, and M any
A-module. Show that M) = #5(#), where Z = Kla) and F = M.
(A Use (EX. 1 207and (3.8 1o show a prioti that # 317 ) is quasi-coherent.
Then show that I'iM) = I',(#).]

Let U=X -7, j:U — X the inclusion.

Let U=V (a)°.

exc I11.1.20b gives 0 — 0 (F) — F — j.F .

Thm [.5.8.c gives j,.% is q.c.,

As S0 (F) is kernel of q.c. sheaves, 7 (F) is q.c.
Dy (M)" ~ A9 (F) M Ty (M) = T (F)

Note m € I'z (%) iff Supp m C V (a).

From a previous excercise, this is equivalent to V (Ann m) C V (a).
By nullstellants equivaltn to \/a C v/ Ann m.

By noetherian equivalent to a” C Ann m .

By definition equivalent to m € T'y (m) .

2.5.16 (e) x

(e} Let X be a noetherian scheme, and let Z b a closed subset. If # is a quasi-
coherent (respectively, coherent) ¢ -moduyle, then #3(.F) is also guasi-
coherent (respectively, coherent).

Since X is noetherian, if .|y, &~ M; for U; = spec A, Z = Spec A/a; an open affine cover, then by (d),
‘%%0 (ﬁ) |Ui ~ Fui (MZ)N
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2.5.17 1I.5.7 x

5.7. Let X be a noetherian scheme, and let .# be a coherent sheaf.
ia) Il the stalk .7, is a free ¢ -module for some point x £ X, then there is a neigh-
borhood U of x such that .# | is free.

Let X = Spec A, .F = M , M is generated by my, ..., my,.
We have .7, ~ M, ~ Ayx1 + ... + Ay, , p € Spec A , and z; sections on a principal open set D (f) .
In M, , write the image of m; as - lxl +ot g ding .

Writing g = [, ; gij , We see that mZ are spanned by z; on D (fg) .

If h = fg then Mh = AhJZl + ...+ Ahl‘n . ~

x; linearly independent in M, == ; linearly independent in M, — ff|D(h) ~ M, is a finite direct
sum.

2.5.18 b. x

o e o i - J

(hy .+ |& IcJL illy free il and only Jr]lh stalks # are free ¢ -modules for all x e r

- = FIRS B e 1 M. P o S N T e P e I | - -———a |

If .7 is locally free, then by definition stalks are free.
If the stalks are all free, then each point has a neigborhood .. use part (a)

2.5.19 (c) x

fc} # isinvertible (i.e., locally free of rank 1) if and only if there is alcoherent sheaf
% such that # & % = ;. (This justifies the terminology inveftible: it means

that % is an invertible element of the monoid of coherent sheaves under the

Anaratinan &0

If .7 is invertible, then JZom (F,0x) ® F ~ Ox via the evaluation morphism is surjective, since .# is
locally free rank 1, it is an isomorphism.

Conversely, suppose # R 4 ~ Oy .

For z € X , then (Z, ®oy, %) Qo k(z) = (Fs oy, k(7)) Q@) (% ®oy, k() = k() .

Thus .7, ®oy, k (1), 9. ® k () are dimension 1 .

Let U be a set where .Z|y ~ M ,and 4 ~ N, p~m, .

#, <% coherent = M, N are f.g, so from a set of generators of ., ® k () =~ M, ® k (x) we obtain a set

of generators for M, via nakayama.

As Z, ® k (z) is a one-dimensional vector space, M, is generated by m € M as an A,-module, and N, is
generated by n.

As M, ® N, is therefore generated by m®mn .

Define f : A — M, by ¢ = 2m , and an inverse by = — = @n > ¢

This rnorphlsm gives 7, ~ OXJ .
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2.5.20 1II.5.8 x

5.8. Again let X be a noetherian scheme, and .# a coherent sheal on X. We will
consider the function
plx) = dimy,, #, &, kix),

. %

where k(x) = (¢ /m, is the residue field at the point x. Use Nakayama’'s lemma

to prove the following results,

(a) The function @ is upper semi-continuous, 1.e., for any neZ, the set {xe X |p(x)=n|
is closed.

Using properties of the induced topology, we only need to check that ® (n) = {z € X : ¢ () > n} is closed
on open affines of a cover.

Let z € ® (n)° so that m = dimy,) M, /pM, <n ,p € Spec A= X , p correpsonds to z, and M =T' (X, .F)
. By Nakayama’s lemma, M, is generated by less than n elements m; € M as well.

Let n; a generating set for M.

In M, ,n;, =), Zij] , and if s = [] s4; , then sn; = ) aj;m; for some aj; .

By definition of localization s ¢ p, so that p € D (s).

If g€ D (s) then s ¢ ¢ = s invertiblein A; = n; =) %mj there.

n; generate M, , and since m; generate n; , then m; generate M, .

Thus M, is generated by < n elements, and thus so is My/qM, .

Thus g € ® (n)°, so that D (s) C ® (n)° as q was arbitrary, is an open neighborhood of p. Thus ® (n) is
open.

2.5.21 (b) x

ib) If # is locally free. and X is connected, then o is a constant function.

If .Z is locally free then every point has a neighborhood where ¢ is constant.

Then ¢ (n) = {x : ¢ () > n} is a union of open sets and therefore open, but also closed by (a), thus the
whole space or empty since X is connected.

Pick some n such that ¢ (n) is empty. Now for one larger n...

2.5.22 (c) x

‘ {c) Conversely, if X is reduced, and ¢ is constant, then .# is locally free.

Let z € X , x € U = Spec A, and p correspond to x.

Let M correspond to .%|spec 4 , a finitely generated A module, as .% is assumed coherent.

Let n = dim M, ® k (p) , and choose, by Nakayama’s lemma, a set of n generators, m,; for M,.

Then we can write a finite set of generators n; for M in M, as n; = > %mj . For s =[] s;; , we have a
short exact sequence

0 — ker p — A®" 5 M, — 0

which also holds on A4, , q € D (s).

¢ constant by assumption, implies each M, ® k(q) has dimension n , so k(q) ® ker ¢ = 0 for all such
q€ D(s),

Thus for any y € ker ¢ , y is the sum of elements of qA; for all ¢ € D (s) , which are therefore in the
nilradical. But A, is reduced as X is reduced so ker ¢ = 0, and thus M, is free.
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2.5.23 1I.5.9 x

5.9. Let 5 be a graded ring, generated by S, as an S;-algebra, let M be a graded S-
module, and let X = Proj S. )
{a) Show that there is a natural homomorphism x: M — I' (M),

m € Mg has degree zero in M (d) ;) =T (D4 (f), M (n)”) , and thus defines a section on each D, (f) .

These sections agree on intersections and give a global section, so we obtain a: M — T, (]\7[ ), which is a
homomorphism of groups.

If s€S.,me My, then sa(m) € T, (]\7[) is defined as the image of m® s in I' (X, M (d)” ® Ox (e)) =
DX, M(d+e)).

Thus « gives a morphism of graded modules.

2.5.24 (b) x

— e S —— -

(b} Assume now that S, = A is a finitely generated k-algebra for some ﬁell‘l k,
that §, is a finitely generated 4-module, and that M is a finitely genergted
S-module. Show that the map « is an isomorphism in all large enojgh
degrees, i.e., there is a d, € Z such that for all d = dy, %,: My — FX, M d))
is an isomorphism. | Hint: Use the methods of the proof of (5.19).]

(EGA) Note that T (X,M(d)) is a quasi-finitely generated graded S-module.  Define «, : M, —

['(X,M (n)”) by m+— m/1. Note that M — T, (M) and ', (F)” — % are adjoint functors with counit

e: I (F) = F given by ep, (5 (%) v (% . m\D+(s)) , where v : .# (0) — % is the canonical isomorphism.
As the composite of & with e is the identity, then & is the unit. Note that .# quasi-coherent implies the
counit is an isomorphism by thm I1.5.15. Note further that as the twisting functor is exact, a morphism
of quasi-finitely generated modules is a quasi-isomorphism iff the morphism on associated modules is an
isomorphism.

2.5.25 (c) x

(c) With the same hypotheses, we define an equivalence relation = on graded
S-modules by saying M = M’ if there is an integer J such that M., = M. .
Here M., = P, =4 M,. We will say that a graded S-module M is guasi-
finitely generated 1f 1t 1s equivalent to a finitely generated module. Now show
that the functors ~ and T, induce an equivalence of categories between the
category of quasi-finitely generated graded 5-modules modulo the equivalence
relation =, and the category of coherent ¢ y-modules.

By (b), M is equivalent to T, (Z\Z/> if M is finitely generated. By I1.5.15, I', (%)™ is isomorphic to .% for

F quasicoherent.

Thus we want to show that for q quasi-finitely generated graded S-module M, then M is coherent, and
for coherent sheaf . | I', (%) is quasi-finitely generated.

suppose g-f- generated

Suppose first that M is quasi-finitely generated. Let M’ an f.g. S-module with Ms4 ~ M., for some d.

mfe

Then for any f € 5, My ~ M(’f) , since £ = 757 - M’ finitely generated implies M(’f) is finitely generated.

As S is generated by S as an Sp-algebra, then M) cover X = Proj S for various f. On such a cover M
is locally equivalent to a coherent sheaf.
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suppose coherent

If 7 is coherent, by thm 11.5.17, .% (n) is generated by a finite number of global sections for large enough
n . If M’ is the submodule of I, (%) generated by these sections, then M’ < I, (%) ~ .Z via th 11.5.15.

By exactness of twist we get M’ (n) < . (n) which is an isomorphism since .% (n) is gbgs in M’ .
Tensoring with O (—n) gives M’ ~ .7 .

As M’ is f.g, then by (b) for large enough d, My ~ T" (X, .%# (d)) which shows quasi-finite generation.

2.5.26 11.5.10 x

5.10. Let A be aring, let § = A[x,....,x, ] and let X = Proj 5. We have seen that a
homogeneous ideal I in § defines a closed subscheme of X (Ex. 3.12), and that
conversely every closed subscheme of X arises in this way (5.16).

{a) For any homogeneous ideal I = §, we define the satwrarion I of I to be
fse S|for each i = 0,....r, there is an n such that x{s e I|. We say that I is
saturated if I = 1. Show that T is a homogeneous ideal of S.

I is clearly an ideal.

Write I © s = g + ... + s with each s; homogeneous of degree i .

x; homogeneous of degree 1 = ux;s; is homogeneous of degree n + k .
I homogeneous ideal and z's € I = a}'s, € 1 .

— Sk € 1.

— ] homogeneous.

2.5.27 (b) x

(b) Two homogeneous ideals I and I, of § define the same closed subscheme of
X if and only if they have the same saturation.

Suppose that I; and I, define the same closed subscheme of X.

By thm I1.5.9, they define the same q.c. sheaf of ideals .# on X.

If s € I, is homogeneous of degree d , then = is a section of & (D (z;)) .

As I and I, define the same ideal sheaf, then for each i , there is t; € Iy, homogeneous of degree d with
= %, which implies 2" (s — t;) = 0 for some n;. Since t; € Iy, so is x;'t; = x"s, thus s is in the saturation

S
2
of I, hence I, C I,. Since the operation of saturation is idempotent, I, = I, .

2.5.28 (c) x

(¢) If Y is any closed subscheme of X, then the ideal I ( #y) is saturated] Hence
it is the largest homogeneous ideal defining the subscheme ¥

Let s € ', (&) , bar stands for saturation.

By definition, for each i there is n with z7's € ', (Hy)

Choose N larger than all such n.

We claim that s|y, is in ' (U;, Hy (d)) .

AszVs el (X, # (d+ N)) ,z;"®@azls € L (U;, #y (d+ N) @ O (—N)) ~ T (U;, #y (d)) with image s.
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2.5.29 (d) X
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id) Ihen, 15 a 1 | correspondence between saturated ideals u!' § and closed sub-
schemes of X.

Homogeneous ideals of S correspond to q.c. sheaves of ideals via I', (—) and sheafification.

Quasi-coherent sheaves of ideals correspond, 1-1, via taking the ideal and Prop I11.5.9 to closed subschemes
of X.

As there is a unique saturated homogeneous ideal in the preimage of each sheafification by (b), then by
(c) we get a bijection as I, is the inverse.

2.5.30 II5.11xg

5.11. Let § and T be two graded rings with S, = T, = A. We define the Cartesian
product S x T to be the graded ring @9 S ®, T,. If X = Proj § and

Y = Proj T, show that Proji§ x , T} = X x, Y, and show that the sheaf (1)

on Proj(§ = , T} is isomorphic to the sheal p¥(€ (1)) & p¥Cy(1)) on X x ¥

The Cartesian product of rings is related to the Segre embedding|of projective

spaces (I, Ex. 2.14} in the following way. If x,, ... x, is a set of gengrators for §,

over A, corresponding to a projective embedding X o P/, and if yy,....v, 18

a set of generamrs for T, corrﬁpondmg to a pmpctwa embe:dmg Yo P,

an cfines a projective

embedding ProjiS x , T) o P}, with N = rs + r + 5. This is just the image
of X x Y = P' x P*in its Segre embedding.

Let o, ..., o and Sy, ..., Bs be the generators of the A-modules S and T', respectively. Then «o; ® 3; become
generators of S; @4 Ty and S x4 T = Ao ® 3] . As SXaT(a,08;) R S(ay @aT(p) forall0 <i<r,0<j<s
, then Dy (o ® B;) = Spec S(a;) X4 Spec Tig,) = Dy (a;) x Dy (ﬁj) Thus PTO] SxaT =X xy Y

The second property follows from the fact that 11.5.12.c, and the universal property of the cartesian
product.

2.5.31 1II5.12x g

5.12. (a) Let X be a scheme over a scheme ¥, and let &, . # be two very ample invertible
sheaves on X. Show that # ® . # is also very ample. [Hinr: Use a Segre
embedding. |

Nakai moisheazon. Or take the segre product of the two closed embeddings.

2.5.32 (b)xg

orannnrE

{b) Let f:X — Yand g: ¥ — Z be two morphisms of schemes. Let & be a very
ample invertible sheaf on X relative to ¥, and let . # be a very ample invertible
sheafon Y relative to Z. Show that ¥ @ f*. # 1s a very ample invertible shedf
on X relative to Z.

By assumption, there is a closed immersion i : X — Py" with ¢* <OP;1 (1)) ~ .2, and a closed immersion

PN x 7

idXxj 1/)><zd

j oY = Py with j*Opna (1) & 4 . Consider the composition X LPmxy " Pux P2 x Z
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with N = ning + ny + no and 1 the segre embedding. We have ¢* ((’)PJZV (1)) ~ % ® f*.# which is what we

wanted to show.

2.5.33 1II.5.13 x

§.13. Let S be a graded ring, generated by §, as an 8,-algebra. For any integer d > 0,
let $'*' be the graded ring (}),., 8" where §i" = §,,. Let X = Proj S. Show
that Proj §' = X, and that the sheal ¢ (1) on Proj §' corresponds via this
isomorphism to ¢ y(d).

This construction is related to the d-uple embedding (1, Ex. 2.12) in the fol-
lowing way. If x,, ... x, 15 a set of generators for §,, corresponding to an em-
bedding X < P, then the set of monomials of degree o in the x, is a set of
generators for 81" = §,. These define a projective embedding of Proj §'" which
is none other than the image of X under the d-uple embedding of P',.

As S is generated by S; over S, , then S(@ is generated by Sfd) =S4 over Sy . Thus the open sets Dy (f)
, f € Sy cover both Proj S and Proj S . The identity map f% — fin identifies S(y) and S((?g so that
Spec Sy =~ Spec S((;l; , and glueing gives Proj S ~ Proj S . The same maps give S (d) s = S(d) (1) 4 so
that O (1) and Oy (d) correspond.

2.5.34 1II.5.14 x

5.14. Let 4 be a ring, and let X be a closed subscheme of P,. We define the homo-
geneous coordinate ring S(X ) of X for the given embedding to be A[x,, ... .x,]/1,
where [ 1s the ideal I (.7 ;) constructed in the proofl of (5.16). (Of course if 4 15
a field and X a variety, this coincides with the definition given in (1. §2)!) Recall
that a scheme X is normal 1f 1ts local rings are integrally closed domains. 4 closed
subscheme X < P, is projectively normal for the given embedding, if its homo-
geneous coordinate ring S(X) is an integrally closed domain (cf. (1. Ex. 3.18)).
Mow assume that k 1s an algebraically closed field, and that X 15 a connected,
normal closed subscheme of P}. Show that for some d = 0, the d-uple embedding
of X is projectively normal, as follows.

(a) Let §be the homogeneous coordinate ringof X, and let S" = &),z o T(X,C x(n) ).
Show that § is a domain, and that §" is its integral closure. [Hinr: First show
that X is integral. Then regard §° as the global sections of the sheaf of rings
¥ = (5,20 Cxin) on X, and show that ¥ is a sheal of integrally closed
domains. ]

As O, x are integral domains, then X is reduced.

Since X is by assumption normal, X is irreducible, and S is a domain.

If .Z is the sheaf ®,>0Ox (n) , then %, = ®,>05 (n)(p) = {% € Sldeg s > deg f} . Then %, is integrally
closed since an elemeent integral over .7, is integral over S, which is integrally closed since X is normal. On
the other hand only elements which have positive degree can be integral over .Z,.

Taking global sections is left exact so I' (X,.Z) =~ @,>[' (X, Ox (n)) = 5’ , which is integrally closed. As

in thm I1.5.19, S’ is contained in the integral closure of S, so S' = S.
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2.5.35 (b) x

TE S LN R LR

(b) L aelh W] to ah{m '[hd'[ ‘3.1 = .':. fcnr all wfﬂcmmly Iarged

By 5.9b, since S ~ Oy .

2.5.36 (c) x

{¢) Show that 5 is integrally closed for sufficiently large d, and hence conclude
that the d-uple embedding of X is projectively normal.

For d >0, S,q = S, by (b).

Ifse K (S(d)) is integral over S(@ | it lies in S"¥ | the integral closure of S,

Hence the homogeneous coordinate ring is integrally closed.

2.5.37 (d) X

e S e e s © s e e S

id) Af-. a mm]lar} of (a), shcm that a closed subscheme X < P, is projectively
normal if and only if it is normal, and for every n = 0 the natural mag
F(P.C pdn) ) — FiX . ¢in)) 1s surjective.

X projectively normal = S integrally closed by definition.
= S =~ 9, the integral closure.
= S, =1'(X,0x (n)) for all n by (a).

If T = Alxo, ...,a,] then T,, = I’ (P, Op, (n)) by (a) and this surjectcs onto I' (X, Ox (n)).

If (P, Opr (n)) > I'(X,0x (n)) , then S = 5" when S is normal by (a).

2.5.38 I1.5.15 x Extension of Coherent Sheaves

5.15. Extension of Coherent Sheaves. We will prove the following theorem in several
steps: Let X be a noetherian scheme, let U be an open subset, and let & be a
coherent sheaf on U'. Then there is a coherent sheaf # on X such that #'|, = #.
(a) On a noetherian affine scheme, every quaﬁi—mherent sheaf is the union of its

coherent subsheaves. wWe say a sheal
if for every open set U, [he group ?‘[L'} |s the union ﬂflhe Subgmups :F (v).

If X is affine, then a q.c. sheaf is a module, and a coherent sheaf is an f.g. module.

Note that an A-module is a union of its finitely generated submodules.

2.5.39 (b) x

Lol B L I T L T L B L
(b) Let X be an affine noetherian scheme, U’ an open subset, and # coherent on
U. Then there exists a coherent sheal & on X with #'|, = #. [Hint: Let
i:U = X bethe inclusion map. Show that i_# is quasi-coherent, then use (a). ]

e il iy TR e o e

Using 11.5.8.¢c, i,..# is q.c. By (a) i.% = % . 9. =~ NJ is a coherent subsheaf of i,.% .
But then .#’ is a coherent subsheaf of i,. %

noetherian, this union has a maximal element, | J N, ~ i*F' .

and .# |U F .
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2.5.40 (c) x

{c) With XU, # as in (b), suppose furthermore we are given a quasi-coherent
sheal % on X such that # = %|;. Show that we can find # a coherent sub-
sheaf of @, with #'|, = #. [Hin: Use the same method, but replace i, #
by ¢~ i, # ). where p is the natural map % — i {%|,).]

Consider p~! (i,.#) C ¢ which is the pullback of q.c., thus is q.c. As p7! (i, %) |y ~ Z , then as in (b),

we find F'|y = Z.

2.5.41 (d) x
o r e e e : e e
(d) Now let X be any noetherian scheme, U an open subset, # a coherent sheaf
on U, and % a quasi-coherent sheaf on X such that # = %|.. Show that there
1sa coherent subsheal #' = % on X with #'|p = #. Taking¥ = i_# proves
the result announced at the beginning. [ Hint: Cover X with open affines, and
extend over one of them at a time. |

Let Uy, ..., U, be an open affine cover of X. Using (b), (c), extend .Z#|y,~v to a coherent sheaf F#' C ¥|y,

, and glue .# and %’ on the open set U; N U to get a coherent sheaf .% on U N Uy
but with X’ = U; and U' = U; N (U U U;). And repeat.

. Now do the same thing

2.5.42 e. x

{e) As an extra corollary, show that on a noetherian scheme, any quasi-coherent
sheal # is the union of its coherent subsheaves. [Hint: If s is a section) of #
over an open set U, apply (d) to the subsheafl of 5|, generated by s.]

If s is a section of % , we apply d to Z |y generated by s.

This gives for each open U and s € .% (U) a coherent subsheaf 4 of .% where s € 4 (U) .

Now take the union of the ¥4.
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2.5.43 1II.5.16 xc a. g Tensor Operations on Sheaves

5.16. Tensor Operations en Shearves, First|we recall the definitions of various tensor
operations on a module, Let 4 be 4 ring, and let M be an A-module. Let TM)
be the tensor product M & ... ® M of M with itself n times, for n = 1. For

= 0 we put TYM) = A. Then TIM) = @Hﬂ T" M) 15 a (noncommutative)
A-algebra, which we call the rensgr algebra of M. We define the symmetric
algebra SIM) =3, S"(M) of M to be the quotient of TIM) by the two-sided
ideal generated by all expressions x @ v — v & x, for all x,y e M. Then S(M)
15 a commutative A-algebra. Its component 8" M) in degree » 1s called the nth
symmetric product of M. We denote the image of x & v in S(M) by xy, for any
X,y € M. Asan example, note that iff M 15 a free A-module of rank r, then S(M) =
Alx,. . ox ] L
We define the exterior algebra f\{M) —f_j,;r, AMM) of M to be the quo-
tient of T(M) by the two-sided 1d1’d1 generated by all expressions x & x for
x & M. Note that this ideal containg all expressions of the form x ® v + v ® x,
m that f\[if] 15 a eru commutatiye graded A-algebra. This means that if ue
’i A u_u_A_J = (—1)*r ~» u (here we denote by ~ the
ITH.1||.I|J|IL.ETH'}[] in this algebra: so the image of x ® v In f\z!."-ﬁ'} 15 denoted by
x A y). The nth component A"M) is called the nth exterior power of M.
Now let (X,(y) be a ringed space, and let # be a sheafl of ¢ y-modules. We
define the tensor algebra, symmetric algebra, and exterior algebra of % by taking
the sheaves associated to the presheaf, which to each open set U assigns the
corresponding tensor operation applied to #F(U) as an ¢, (U)}module. The
results are ¢ y-algebras, and their components in each degree are (' ,-modules.

(a) Suppose that 5 is locally free of rank n. Then T"(.% ), 87(# ). and /\”[.F] are

also locally free, of ranks n". (*; 77 "), and (7) respectively.

F locally free of rank n implies there are ey,...,e, such that on some open cover {U} , % (U) ~
Ox (U),, luv @+ @ Ox (U) ey, ie. we can the e; are basis global sections.

Then the presheaves U — T7.% (U) , U — S"% (U), U — A% (U) are free with basis global sections
{ey @ ®@e; |1 <y, i, <n}, {eg e |1 <ip <...<i.<n},and {e; N... A€ |0 <iy <...<i, <n}
respectively. Note that free presheaves are sheaves, and on the cover U , each of the above presheaves is free
with the rank of the basis. Fach basis can be calculated to have the required dimension.

2.5.44 (b) xcg

(b) Again let # be locally free of rank n. Then the multiplication map A"# &
ATTF = N F is a perfect pairing for any r, i.c., it induces an isomorphism
of A'F with (A" #)" ® A\"#. As a special case, note if # has rank 2
then # = # - @ \°F.

Let eq, ..., e, be basis elements.

The pairing defined by w ® A — w A A gives an isomorphism Ox — A7, f— f(e1 A ... Neyp).

If X\ is a global section of A"~ ".% | then X defines a morphism A".# — A"% ~ Ox by w — wA X .

On the other hand given a morphism of Ox-modules A".% — A".% ~ Ox , we have a morphism on
global sections ¢ : I'( X, \".#) — ' (X, A"Z) = I'(X,Ox) . Then a global section of A" "% is defined by
S (1)@ (e, Ao Nei)ej, Ao Aej, ., where j; are elements of {1,...,n}\ {i;} .

The operations defined in the two preceeding paragraphs are inverses so A”.7% ~ (A" " #)" @ A.F
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2.5.45 (c) cx

(c) Let 0 = # — # — F" = 0 be an exact sequence of locally free sheaves
Then for any r there is a finite filtration of §71.7),

Gl AR e s B = e

with guotients
FP/FP*! = SP(F') @ 8~ H(F")

for each .

Let U be an open set where the sheaves .%,. %', F" are free.
Note that 7|y ~ 7’|y @ .#" |y implies that
"y~ By (ST @ ST )

Set F"™! = 0 as in the hypothesis, and assume that we have chosen, F* such that F'/F* ~ S'.%"|; ®
Sr—z‘yuw , i> j

Suppose that x; are a basis of .#’|y and y; are a basis for .F"|y

Ifyi+c; , ¢; € F'|y are another basis for #”|y , then x; ® (y; + c]) = Ty i) = xyyymod FI = STF |

Thus the lift of a basis for S".% |/ F is independent of splitting, and so we define FV~! to be such a lift.

2.5.46 (d) x

(d) Same statement as (c), with exterior powers instead of symmetric powers. | In
particular, if . F' FF ]w ve ranks n'nn” respectively. there is an isomorphism

NF = N"F @ A\
As in (c).

2.5.47 (e) xc
L) — Y
fe) Let f:X = Y be a morphism of ringed spaces, and let .# be an ¢ y-module.
Then f* commutes with all the tensor operations on #. ie., f¥S8"F)) =
S°f*.# ) ete.

For n = 0 this is clear.

Note that T" f*F ~ f*F Qo, T" ' f*F by definition.

That is (f 1.7 ®;-10, Ox) ®Ox f*TL.Z by definition.

That is [T'.F ®@-10, f*T"'.F by rules of tensor.

That is f~'.7 @10, (f_l,?@”_l) ®-10, Ox by induction.
Which is f*T™.Z as colimits (f~!)commute with left adjoints (® ).
Thus tensor algebra commutes with pullback.

Suppose .Z is the subsheaf defined by

0= —>T"% = S"F —0.

Pullbacks are left adjoint thus right exact, and tensor commutes with pullback so we get
0— f*I — f*T"F — f*S"F — 0.

By above, thisis 0 — f*.% — T"f*% — f*S".F — 0.

But then S™f*% ~ f*S".%.

Dido A.
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2.5.48 1I1.5.17 x Affine Morphisms

5.17. Affine Morphisms. A morphism f: X — Y of schemes is affine if there is an open
affine cover | V| of Y such that /™ '(V) is affine for each i.

(a) Show that /X — Y is an affine morphism if and only if for ervery open affine
Ve Y. f HViisaffine. [Hint: Reduce to the case Y affine, and use (Ex. 2.1 70.]

Suppose that f: X — Y is affine. Let {V}, an open affine cover of Y such that f~'V; is affine for all 7 .
Given another open affine subset V' C Y |, then V NV; is covered by D (d;;) which are distinguished on V;.

Let A, =T (V;,0y), B; =T (f~'V;,Ox) denote the rings of sections on these affine sets.

Then f|;-1y, : f7'Vi = Vi is induced by ¢ : A; — B; and f~!|;-1v, D (f;;) = D (¢f3;) is also affine.

The open sets D (f;;) for a cover of V' with affine preimages.

Thus f|;-1v; is affine. Thus we have reduced to the case where Y = Spec B is affine and f is affine.

By definition, there is an open cover Spec B; of Y where the preimages f~1Spec B; are affine subschemes
of X. Let {D (f;)} be a refinement to distinguished open affines with affine preimages.

As Y is affine, it is quasi-compact, so there is a finite subcover of {D (f;)} . Thus > )"  a;f; = 1 and
f71D (f;) are open affines. so >_a;f*(f;) =1 € I'(X,Ox), where f*: Oy — f.Ox. Furthermore, restricting
to an open affine cover of X gives that X,, = f~'D (f;).

Thus we have shown that X is affine. As open immersions are perserved by base change, then morphisms
between affine schemes are preserved under base change, thus the preimage f~'U = U xx Y with U affine is
affine.

2.5.49 (b)xg
|'+ Affine Morphisms. A morphism /: X — Y of schemes is affine if there is an open
affine cover | V| of ¥ such that (V) is affine for each i.

L Ll

‘ (b} An affine morphism is quasi-compact and separated. Any finite morphism 1s
affine.

Suppose f: X — Y is affine. Let V; an open affine cover of Y.

By (a), f~'V; is affine, and thus quasi-compact.

Thus f is quasi-compact.

By 4.1, each restriction f~!(V;) — V; is affine, and so by thm I1.4.1, these restrictions are separated. The
diagonal X — X xy X factors through the restrictions, and is thus separated.

Note by definition that a finite morphism is proper and affine.

2.5.50 (c) x g (used for stein factorization)

{¢) Let ¥ be a scheme, and let .o/ be a quasi-coherent sheaf of ¢ j-algebras (1.6, a
sheafl of rings which is at the same time a quasi-coherent sheaf of ¢ ,-modules).
Show that there is a unique scheme X, and a morphism [ X — ¥, such that
for every open affine V = Y. /1 (V) = Spec (V). and for every inclusion
U o V of open affines of Y, the morphism /= U) o f (V) corresponds to
the restriction homomorphism .o/(V) — &/(U). The scheme X is called
Spec /. [Hinr: Construct X by glueing together the schemes Spec .o/( V),
for V open affine in ¥

We will define X as the Spec &7 (U) glued together.
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If U = Spec A, V = Spec B have nonempty intersection, then we can cover U NV by open sets
W; = Spec C; distinguished in both U and V.

Since &7 is an Oy-module, then there is a restriction pyy : &7 (U) — o (W) .

W; being distinguished in U,V , = (' is a localization of A and B, and by quasi-coherence, o/ (W) is
a localization of &7 (U) and &7 (V'). Thus we identify <7 (U), o/ (V) along &/ (W) . Let g : Spec &7 (U) — U
,and h : Spec o/ (V) — V be the induced morphisms.

The isomorphisms given by the distinguished covering of U NV glue together to give an isomorphism
g1 (UNV)~h ' (UNV) and agree on triple overlaps since the restriction maps on a sheaf do. Glueing
together gives X.

Now we wish to define f : X — Y. We glue the maps 7 (U) — U on all open affines since they are
compatible on the overlaps. If U C V C Y , then f~' (U) — f~' (V) comes from the restriction morphism
pvu as above.

For uniqueness, suppose there is another such scheme X', with a morphism f’: X’ — Y. But then glueing
morphisms on Spec o7 (U) gives an isomorphism X' — X .

2.5.51 d. x

(d) If .= is a quasi-coherent ( y-algebra. then j:X = Spec .o/ — Y is an affihe
maorphism, and ./ = f.{y. Conversely, if /X — ¥ is an affine morphisin,
then &/ = f,(y is a quasi-coherent sheaf of ¢ y-algebras, and X = Spec 4/

f is affine since for each open affine U C Y, f~1(U) ~ Spec < (U).

If U CY is open, then f,Ox (U)=0Ox (f~1(U)).

If U is affine or contained in an open affine, then this is clearly <7 (U).
Otherwise, cover Y with open affines U; .

Then Ox (f~1(UNU;)) ~ « (UNU;), and patching gives an isomorphism on U.
Thus o/ ~ f,Ox since it is true on any open set.

On the other hand, if f : X — Y is affine, then &/ = f,Ox satisfies for any open set U C Y | &/ (U) =
Ox (f~1(U)) . Thus there is a morphism Oy (U) — Ox (f~(U)) so & (U) has the structure of an Oy (U)-
module.

If V. C U, then Ox (f~1(U)) = Ox (f~'(V)) is an Ox (U)-module homomorphism, so &/ is an Oy
-module which we claim is quasi-coherent as an Oy-algebra.

If U = Spec A CY is affine, then by (a) f~! (U) = Spec B is an affine, where B is an A-module.

As o |y ~ B, then < is a quasi-coherent sheaf of Oy -algebras.

We next claim that X ~ Spec «/. If V C U is open and affine, then f~ (V) — f~1(U) is induced from
the ring map &7 (U) — o/ (V) . Then X ~ Spec <7 by (c).

2.5.52 e. x

—— S S —— S

(e) Letf:X — Y beanaffine morphism, andlet &/ = f,( y. Show that f_ induces
an equivalence of categories from the category of quasi-coherent ¢ y-modules
to the category of quasi-coherent .o/-modules (i.e., quasi-coherent ¢ ,-modules
having a structure of .o/-module). [Hinr: For any quasi-coherent .o/-module
4, construct a guasi-coherent ¢ -module .#., and show that the functors Ia
and are inverse to each other.

Let .4 q.c. as in the hint.
If U,V CY are open and affine , then U NV is covered by open sets that are distinguished in both U and
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The correspondence of sections between elements of localized modules on the intersections U NV gives an
isomorphism between .# (U) and 4 (V) on UNV .

By exc I1.1.22, we can glue the Ox (f~! (U))-modules .# (U)™ as U ranges over all open affines of Y to
get an Ox-module .Z" .

Following the hint, we claim that ~ and f, are inverse to each other hand thus give an equivalence of
categories.

Let % a q.c. Ox -module. Then (f,.#)” is isomorphic to % on an open affine cover, and so by thm
1155, (fo.7) ~ F .

On the other hand, f*.///~ ~ M .

2.5.53 1I1.5.18 x Vector Bundles

5.18. Vecror Bundles. Let ¥ be a scheme. 4 (geometric) vector bundle of rank i over
¥ is a scheme X and a morphism [: X — Y together with additional data con-
sisting of an open covering |U,,} of ¥, and isomorphisms ;:f ~ '(U,) — A} .
such that for any i,j, and for any open affine subset V' = Spec 4 = U, ~n U .
the automorphism W =, ¥ ' of A} = Spec A[x.....x,] is given by a
linear automorphism ¢ of A[x,,. ... ¥, ), 1e, Ba) = a for any a e 4, and O(x,) =
Z”u-"'j for suitable a,; & 4.

An isomorphism g:(X_ LU ) = (X0 U L)) of one vector bundle

ol rank n to another one is an isomorphism ¢: X — X' of the underlving schemes.

such that f = " ¢, and such that X/, together with the covering of ¥ con-

sisting of all the U; and U, and the isomorphisms ; and W, ¢, is also a vector

bundle structure on X.

{a) Let# bealocally free sheaf of rank i on a scheme Y. Let 5(#) be the symmetric
algebra on &, and let X' = Spec 5(#£). with projection morphism f: X — Y.
For each open affine subset U = Y for which &|. is free, choose a basis of £,
and let i/~ ") — A} be the 1somorphism resulting from the identification
of S(A(U)) with C{U [ vy, ..., v,]. Then (X, f, U!l.1)is a vector bundle of
rank n over ¥, which (up to isomorphism} does not depend on the bascs of
& chosen. We call it the geometric vector hundle associated to &, and denote
it by V(&)

(b) For any morphism f:X — ¥, a section of f over an openset U = Visa mor-
phism 5:U" — X such that {* + = id,. It is clear how to restrict sections
smaller open sets, or how to glue them together, so we see that the preshegl
U —+ jset of sections of [ over U] 15 a sheal of sets on ¥, which we denote by
AN Y)Y Show that if /X — Y s a vector bundle of rank n, then the shehf
of sections (X Y} has a natural structure of ¢ ,-module. which makes it ¢
locally free ¢ y-module of rank n. [Hine: It is enough to define the modu e
structure locally, so we can assume Y = Spec 4 is affine,and X = A}. Thenp
section s: Y — X comes from an 4-algebra homomorphismil: A x ... .. v, |
A. which in turn determines an ordered n-tuple {0(x,), . ... flix,)» of elements
of 4. Use this correspondence between sections » and ordered n-tuples of
elements of 4 to define the module structure. |
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(c) Again let & be a locally free sheaf of rank non ¥, let X' = V(#£). and let ¥ =
S{X Y ) be the sheal of sections of X over Y. Show that % = &7, as follows.
Given a section 5 € ' V&™) over any open set V, we think of 5 as an element of
H{:m[a‘?h-.ﬁ v b So s determines an (' p-algebra homomorphism S(€1,) — (.
This determines a morphism of spectra V' = Spec (. — Spec §5(4|,) =
YV, which is a section of X/Y, Show that this construction gives an iso-
morphism of £ " to &,

{d) Summing up, show that we have established a one-to-one cnrruspnndcrtce
between 1somorphism classes of locally free sheaves of rank n on ¥, and i50-
morphism classes of vector bundles of rank n over ¥, Because of this, we
sometimes use the words “locally free sheal™ and “vector bundle™ inter-

L___changeahly 1l no coolusion seems hkely 1o resals

For this excercise I will give the natural 1-1 correspondence between vector bundles and locally-free sheaves
over an algebraically closed field.

Assume E is a vector bundle. Define a sheaf & by letting & (U) be the set of sections of & over U. This
gives a module structure on the fiber by adding together sections or multiplying them with functions. We
also have a restriction map since if U C V and s € & (U), then s|y is a section on V' so there is a map
& (U) — & (V) satistying the requirements for the restriction morphism of a sheaf.

Now let U; be a covering on which E satisfies 7! (U;) ~ U; x A”. Write a section as s = Y f;r; where z;
are the coordinate sections x; : U; — U; x A" definde by z; : p — (p, (0, ..., 1,...,0)) with 1 in the i** place.
Then & (U;) — (O (U;))" defined by s — (fi, ..., f») gives an isomorphism so that & is locally free.

Conversely, suppose that & is a locally free sheaf. Define E to be {(P,t)|P € Y,t € &p/mpép} , where
mp is the maximal ideal of the local ring Op . Define a projection m : £ — Y by projecting to the first
coordinate.

On an open covering U; where & (U;) = (Oy (U;))" , then &p/mpép = A" since k is algebraically closed.
Thus we have trivializations ¢,

On U; N U; the transition functions of (Oy (U; NU;))" = & (U;NU;) = & (U;NU;) = (Oy (U; N U;))" are
given by matrices and reducing modulo the maximal ideal gives an element of the general linear group so that
we have transition functions ¢;p; " = (id, ¢;;) where ¢;; are invertible matrices.

If f is a mpa of locally free sheaves then reduce modulo P on the fiber to get a map of bundles.

If g is a map of vector bundles, then composing with a sections gives a morphism of locally free sheaf
which is compatible with restrictions.

2.5.54 b. x

see part a

2.5.,55 c. x

see part a

2.5.56 d. x

see part a
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2.6 1II.6 x Divisors
2.6.1 II.6.1xg

6.1. Let X beaschemesatisfving(=). Then X' x P"alsosatisfies (=) and CliX = P') =
(ClY) x Z

By thm I1.6.6, X x P! is noetherian integral and separated and further X x A! is regular in codimension
1. As two X x Al cover X x P!, then X x P" satisfies ( ).

Now consider the exact sequence Z — Cl (X x P & CI(X) — 0 of thm I1.6.5. where i : n+ nZ , and
Z corresponds to m, 0o C X x P! and j : C1(X x P') — CI(X x A') =~ ¢l (X). Note that j is split by the
map k : cl (X) — ol (X x PY) sending Y n;Z; to > nymy ' Z;.

We claim that ¢ is also split. The map k sends £ — & — kj& in the kernel of j so in the image of i by
exactness. We claim that i is injective. If nZ ~ 0 for n € Z , then Z is 7,10, m : X x P! — P!,

On X x A' | then Z is embedded at the origin as X. Thus the local ring of Z in K (¢ ) i K[ ](t). nZzZ ~0

— 3f € K (t) with vz (f) =n and vy (f) = 0 for every other prime divisor Y. Thus f = , g, h e Kt

and ttg(t),h(t).

If the degrees of g, h are 0, then changing coordinates t — t~! | we get vy (f) = —n , Y a copy of X
embedded at the origin or infinity which is opposite to Z. If g or h has positive degree, then it has an
irreducible factor in K [t] corresponding to a prime divisor p, %z for z € P! with f (S (f) #0 . Thus there

is no rational function (f) = nZ so i is injective.
As both 7 and j are split, Cl (X x P}) ~ Cl(X) x Z

2.6.2 1II.6.2 (starred) Varieties in Projective Space

*6.2. Varieties in Projective Space. Let h be an algebraically closed field, and let X
be a closed subvariety of P{ which is nonsingular in codimension one (hence
satisfies (#)). For any divisor D = lu,}] on X, we define the degree of D to be
> m deg Y, where deg Y, is the degree of Y,, considered as a projective variety
iself (1, $7).

{a) Let ¥ be an rreducible hypersurface in P" which does not contain X, and let
Y, be the irreducible components of 1 '~ X. They all have codimension 1 by
(I. Ex. 1.8). For each i, let f, be a local equation for V' on some open set U, of
P" for which ¥, » U, # @, and let n, = 1, | f,l. where [ is the restriction of
fito U, m X. Then we define the divisor VX to be ) n,Y,. Extend by linearity,
and show that this gives a well-defined homomorphism from the subgroup of
Div P consisting of divisors, none of whose components contain X, to Div X,

MISS

ib) 1T Dis a principal divisor on PY, for which DX 1s defined as in(a). show that D
is principal on X. Thus we get a homomorphism Cl P* — Cl X,

MISS
c) Show lhd[ 1]1-::|me.gern dtfmed I mm th:: same ._1».thc* intersection m Llll]p!ll.l.i".
(X} ¥ defined in (1, §7). Then use the generalized Bezout theorem (1, 7

to show that for any dn isor D on P”. none of whose components contain .h.
deg(D.X) = (deg D) - 1deg X1

MISS
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(d) If D is a principal divisor on X, show that there is a rational funcuon f on ]‘T
such that D = (/).X. Conclude that deg D = 0. Thus the degree functior
defines a homomorphism deg:Cl X' — Z. {This gives another proof of (6.10)
since any complete nonsingular curve is projective.) Finally, there is a com
mutative diagram

ClP" ——— Cl X
| |

= deg |deg
+ ’

7 ——deg X) 5

and in particular we see that the man CTPY 0 X b mjectie

MISS

I1.6.3 Cones (starred)

*6.3. Cones. In this exercise we compare the class group of a projective variety V1o
the class group of its cone (1. Ex. 2,100, So let 17 he a projective variety in P, which
is of dimension =1 and nonsingular in codimension 1. Let ¥ = CiF) be the
affine cone over V' in A" ', and let X be its projective closurc in P"* ' Let Pe X
he the vertex of the cone.

(2) Let m: X — P — IV be the projection map. Show that ¥ can be covered by
open subsets U, such that =~ {U,) = U, = A' for each i, and then show as
in {66) that #*:ClV - CHXY — P is an isomorphism. Since C1 X =
CHX — P), we have also C1 V = C1 X.

MISS

(b) We have V' = X as the hyperplane section at infinity. Show that the class of
the divisor V' in Cl X is equal to x* (class of V.H) where H is any hyperplane
of P"notcontaining I, Thus conclude using (6.5) that there s an exact sequence

0=Z-ClV -ClX -0,
where the first arrow sends 1+ FH. and the second is 7% followed by the
restriction to X — P and inclusion in X. (The injectivity of the first arrow
follows from the previous exercise.)

MISS

{c) Let Si¥) be the homogencous coordinate ring of ¥ (which 1s also the affine
coordinate ring of X'). Show that 5t 115 a unique factorization domain jf and
onlyif{1) Vs projectively normal (Ex. 5.14),and (2) Cl V' = Z and is gengrated
by the class of V.H.

MISS

YOI CROSS O P
id) Let ¢ . be the local ring of P on X. Show that the natural restriction map in-

duces an isomorphism Cl X' — Cl{Spec (' ).

MISS
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2.6.3 II.64x

6.4. Let k be a field of characteristic #£2. Let fek[x,,.... v,] be a square-free
nonconstant polynomial, 1e., in the unique lactorization of f into irreducible N
polynomials, there are no repeated factors. Let 4 = k[x,,... . .= )= = £
Show that 4 is an integrally closed ring. [Hint: The quotient field K of 4 is
just k(xy. ..o [2] 022 = £ Itis a Galois extension of kix,, . .. .x,) with Galois
group £ 2Z generated by =+ =z fax = ¢ + hze K. where ghe hix,,.. .. %, )
then the minimal polynomial of = s X° — 29X + (¢ — I*f). Now show
that x is integral over k[x,, ..., x,] if and only if g.he k[x,,.... x,]. Conclude
that 4 is the integral closure of k[ x,.. .. . v, | in K]

In K = frac A we have nglzh g:zz ;22 since 22 = f in A.

Let B =k|[xy,...,x,] and L = frac (B)

Thus every element of K can be wrriten as ¢’ + zh' with ¢', h’ quotients of polynomials. Thus K =
L[z]/ (2% — f) a degree 2 extension of L which is galois. If « = g + hz € K, then o has minimal polynomial
X?—2gX +(g? — h%f) so that « is integral over k [z1, ..., z,,] iff the coefficients 2g, (¢> — h?f) are in B. Which
happens iff 2¢g, h2f € B.

If « is integral over B, then g € B and thus h?f € B. If h has a nontrivial denominator, then h%f ¢ B
since f is square-free so that h € B and thus a € A.

If, on the other hand, o € A then 2¢, h2f € B so « is integral over B thus A is the integral closure of B
so is integrally closed.

I1.6.5 (Starred) Quadric Hypersurfaces (starred)

*6.5. Quadric Hypersurfaces. Let ch lr.fn # 2. andlet X be the affine quadric hyvpersurface
Speec k[xq. .. .. \:JIJ (xg + x7 + ...+ x7)1—cf (I Ex. 5.12).
{a) Show that X is normal if r EE= 2 (use (Ex. 6.4)).

(k) Show by a suitable linear change of coordinates that the euation of X could
be written as x,¥, = ¥3 + ... + x;. Now imitate the method of (6.5.2) to
show that:
iy Ifr=2thenCl X = Z27.:

(23 Ifr =3 thenCl X Liuse (6.6.1)and (Ex. 6.3) above):
i3 Ifr = d4thenCl X = 0,

e ne

part of starred

{c} Now let Q be the projective quadric hypersurface in P" defined by [the same
equation. Show that:
(1 Ifr = 2,C1Q = Z. and the class of a hyperplane section Q.H is|twice the
generator;
(2) Ifr =3 ClIQ =
(30 1y }—J—(—l—é;?%!—&em—m&@d—ha—g—}—!—
part of starred

'+J
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=4, andf Yisan irre

variety of codimension 1 on Q. then there is an irreducible |
V-= P such that V'~ @ = Y. with multiplicity ane. In other w

{d) Prove Klein's theorem. which says that if r

nate ring S{0) = K x,.... v, ixg + ... + x21isa UFD)

complete intersection. (First show that for r = 4. the homogeneous coordif

ducible suh-
ivpersurfacs
ords. Yois &

part of starred

e so wts irreducible hypersurface on a quadric is complete intersection with r» > 4.

— klxo, .oy p) [ (22 + ... + 22) is a UFD why??
*

UFD implies?

x divisors are principle in UFD...

* 50 Y would be a divisor on the UFD @), and thus principal ideal.. generated by a single element.

a complete intersection...

the homogenous ideal would be generated by two elements:
principal ideal....

so codim of Y is going to be... well @) has codim 1, and Y codim 1 on @), so codim 2 in total? so

(22 + ... + 2?) and the thing from the

2.6.4 I1.6.6xg

6.6. Let X be the nonsingular plane cubic curve v-z = x* — 2% of (6.10
(a) Show that three points P,Q.R of X are collinear if and only if P <

b
2.

0+ R=0

in the group law on X, (Note that the pomnt P, = ((L1.0) is the 3

ero element

T T Er OO ST OC O O A

Assume P, (), R are on the line L.

By bezout, LN X ={P,Q, R} .

Now arguing as in example I1.6.10as L~ (z =0) = P+ Q+ R
= (P—P)+(Q—F)+(R-FR)~ (R — 1) =0.

N3P0

Conversely, if P+ (Q + R = 0 in the group law, and assume WLOG P, @, R are distinct.

Consider L through P and Q.

Let T be the (from bezout) third intersection point with X.

Then P+ @Q + T ~ 3P, geometrically.

Thus P+ Q + 7T =0 in the group lawon X so R=—-P—-Q ="1T.

2.6.5 (b)xg

(b) A point P e X has order 2 in the group law on X if and only if the t'n{ngenl

line at P passes through P,.

Assume P has order 2 in group law.

By exc 1.7.3, Tp (X) intersects X at P with multiplicity > 1.

If P = P, , then tangent line passes through F, clearly.

Otherwise, Tp (X) intersects X in three points by bezout, so in one
Thus 2P + ) = 0 since they are on a line, and by previous.

additional point besides P, named Q).

As P has order 2, then @) = 0, so the tangent line passes through F.
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On the other hand, suppose T (X) passes through P, .

Fy is identity on group law so P has order 2 if equal to Fj.
Otherwise, Tp (X) intersects X in P, P, P, .

Thus 2P + Py = 0 so P has order 2.

2.6.6 (c)xg

{c) Apoint P € X hasorder 3in the grouplaw on X ifand only if P1 1S !n inflection

point. (An inflection point of a plane curve is a nonsingular pn nt P of the
—ewae—w—h&ﬁw—g&a{—h—&&ﬂ—ﬂ—?%—hw%&eﬂew&&mﬁmhy =3 with

the curve at P.)

P an inflection point = T (X).X = 3 by bezout and definition of inflection point.
Thus 3P = 0 in the group law.

Conversely, if 3P = 0, by part (a) there is an L such that LN X = P, L.X = 3.

2.6.7 (d). x

{d) L(:tk =C. bhow that the points of X with coordinates in ) form a subgroup

of the group X. Can vou determine the structure of this subgroup explicitly?

By mordell-weil theorem.
Generators are (0,1,0), (1,0,1), (=1,0,1), (0,0,1) .

2.6.8 II.6.7 (starred)

*6.7. Let X be the nodal cubic curve v*z = x* + x*z in P2 Imitate (6.11.4) and show
that the group of Cartier divisors of degree 0, CaCl° X, is naturally isomorphic
to the multiolicative groun G...

2.6.9 I1.6.8 (a) x g (use easier method)

‘ 6.8, (a) Let /1 X — Y be a morphism of schemes. Show that % +~ f*% induces a

homomorphism of Picard groups, /*:Pic ¥ = Pic X

Method 1. (easier)
By I1.5.2.e, f* takes locally free sheaves to locally free sheaves of the same rank.

Locally we have f* (X @ M) ~ f* (M@ N) ~ f* (M Q5 N) ~
(M®B®A) " ~(M®A)® (N ®A))” using IL1.5.2.

This is f* (1) @ £ (N) = f* (£) @ f* (40).

So f* preserves the group structure.

Method 2 (which I will follow for subsequent parts)
Notation:

For a morphism f : (X,Ox) — (Y, Oy) of ringed spaces and V C Y , let fi, map (f’1 (V),Ox|s-

(V:Ov) -
Let € the counit adjunction natural transformation.
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Let n the unit adjunction natural transformation.
Let h* = Hom (A, —).

We have Homo, (f*F,G) =~ Homoe, (G, f.F) by adjunction.
Then (using the module version of Hartshorne I1.5.1.¢),

Home, (f*M ®0, f*N,P)~ Home, (f*N, Home, (f*M, P)).
By adjunction, this is & Homoe, (N, fiHomo, (f*M, P)) .

For any ¢ € Homo, (f*M, P)|;-1(v) where MV is open in Y, we have that (fv), v € Homo, (fif*M, f.P) |1y
We thus have a canonical morphism « : f,Home, (f*M, P) — Homo, (f.f*M, f.P). Then eok : fuHomo, (f*M, I
Homeo, (M, f*P) gives a natural transformation. This commutes with the usual adjunction and hence gives
a natural isomorphism. (a natty ice for short)

Now we have

Homo, (N, fiHomo, (f*M, P)) =~ Home,, (N, Homo, (M, f.P)) ~

Homo, (M ® N, f,P) ~ Homo, (f*(M ® N), P).

Yoneda’s lemma states that Nat (hA, F) ~ F (A), in other words, the natural transformations from h4 to
F : C — set (afunctor) are in 1-1 correspondence with the elements of F' (A). Hence Nat (Home, (f* (M ® N),—)

Homo, (f* (M@ N), f*M ® f*N) ~ Homo, (f* (M @ N), f*(M @ N)).

2.6.10 (b) x

(b) If { is a finite morphism (:Fn::miingu]ﬂr curves, show that this hnmnmﬂrp}J ism
corresponds to the homomorphism f*:Cl ¥ - Cl X defined in the [exi[ via
the isomorphisms of (6.16).

(continuing the notation from part a).

Theorem I1.6.16 states: If X is a noetherian, integral, separated, locally factorial scheme then there is
a natural isomorphism C1(X) ~ Pic(X) . We are given X,Y nonsingular curves. By definition, X,Y are
separated and integral and finite over an algebraically closed field. As they are finite over a field k = spec (k)
, then by I1.3.13.g, we have that XY are noetherian. Also by definition they are regular of dimension 1.
Using 11.3.20, and 1.6.2.A, all the local rings are DVR’s, which are then UFD’s, which by Lang(algebra) XII.6
are factorial. Thus we can use 11.6.16 on X, Y.

Notation: CI(X) := Div (X) /prin (X) the group of divisors mod principal divisors. This is isomorphic
to Pic(X) by above. CaCl(X) := the group of cartier divisor classes modulo principal diviors (divisors of
functions ) by 6.11 in the case of this problem, Div (X) ~ CaCl(X) and principals correspond to principals
under this isomorphism.

Machinery:

e Using the proof of 6.11, we can convert a Weil divisor in C1(X) to a cartier divisor in CaCl(X) . Let
D € Cl(X). For any point in X, D, must be principal by 11.6.2. Thus D, = (f,), f. € K . We can
find an open neighborhood U, so that D and (f,) has the same restriction to U, .

e In order to convert a Weil divisor to a Cartier divisor, let {(U;, f;)} denote the cartier divisor, {U;} is
an open cover of X. Basically, we just let C1(X) > D = > vy (f;) Y on X taken over prime divisors Y
on X. By 6.11, the sum is finite. Note that on the intersections, it is well-defined by linear equivalence

since vy (}0—) =0.
J

e (6.13) To convert from a Cartied divisor D to an invertible sheaf, Oy, — £ (D) |y, defined by 1 — fi
is an isomorphism.

e (6.13) To convert from the invertible sheaf .Z (D) to D , let f; on U; be the inverse of a local generator.
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e (Ha page 137) f*: CL(Y) — Cl(X) is defined by f*Q = >_;p)_qvp (t) - P where tis a local parameter
(element of K (Y) with vg (t) =1 ). f is a finite morphism, so this is a closed sum. Compute first for
points () and then extend by linearity to f*: Cl(Y) — Cl(X).

Let @ € Y and then @ considered as a subscheme (using 11.3.2.6) is closed, integral and codimension 1 (every
Oq (U) is integrally closed and the curves are assumed to have codimension 1 local rings). Let ¢t € Og be a
local parameter at @, i.e. ¢ is an element of K (Y) with vg (1) =1 .

Now let Ug be a neighborhood such that ¢ is only 0 at (). We can do this since there are only finitely many
points where ¢t has a pole or zero. (See Ha 1.6.5 or I1.6.1 to deal with the poles and to deal with the zeros
look at % ). Then D = {(Ug,t),(Y —Ug, 1)} € CaCl is the associated Cartier divisor, and by definition,

f*D = Zf(P):QVPEf,l(UQ)UP (tof) - P+ Zf (P)=@.Pef1(Y U )vp (to f)- P is the pullback to X. Go-
ing back to Cartier divisor and then picard group we get: f*D ~ {(f~! (Ug,to f),(fT' (Y —Ug),1))} =~
f(f*D) ’f—l(U ) which is Oy|f ( Q) and g (f*D) |f—1<Y7UQ) ~ Oy‘f_l(nyQ) .

example from sﬂverman

Let f : P! — P! be defined by ¢ ([X,Y]) = [X?(X —Y)*,Y?]. Let @ = [0,1] which ramifies into
¢ 'Q = {[0,1],[1,1]}. Then we can let ¢ ([z,y]) = [z, x] so that t (P) =t ([0,1]) = [0,0] which has vp (t) = 1.
Then f*Q = pey-1(q)vr (1) P = v [z, 2]) [0, 1] + vpr,qy ([, 2]) [1,1] = [0,1] 4+ O[1, 1]

D={(B([0.1,3).1),(1,Y = B(0,1],7))}

What is D™! € CaCl(Y)? We must have it be linearly equivalent D to a principal divisor. So we
could write it as D™! = {(UQ7 %) (Y = Uy, 1)} . We can then calculate the associated invertible sheaf
Z (D7') € Pic(Y). This sheaf is given by £ (D) |y, = tOy|y, and £ (D7) |x—v, = Oy|x-v,- Now we
must pull back the invertible sheaf . (D™'). T want to show that f*.Z (D) ®e, Z (f*D) =~ Ox. Note that
restricted to f~1 (Y — Ug)this is clearly the case since we have [*Z (D7) Qo £ (f*D) =~

f*10Y|f71(Y7UQ) ®f’10Y|f71(y vo) Ox ® Ox and using a tensor simplification this is just Ox. Restricted

to f~' (Ug) (use Grillet Abstract Algebra XI.4.6) we also have
[0y v, ®j-10y 1y, Ox ® 20x =~ Ox . Since f*Z (D) is inverse to &£ (f*D), the pullback homomor-
phisms correspond.

2.6.11 (c) x
fc) If X 15 a Iom!lu ’r..wmrl.,il mtegrdl closed subscheme of P, and if f: X — P"is
the inclusion map, then f* on Pic agrees with the homomorphism on divisor
class groups defined in (Ex. 6.2) via the isomorphisms of (6.16).

The homomorphisms on divisor class grups in ex 6.2 is defined as follows: Let V' be an irreducible
hypersurface in P" which does not contain X, and let Y; be the irreducible components of VN X (X is a
closed subvariety nonsingular in codimension one). Let f; be a local equation for V' on some open set U; of
P" for which Y; N U; # (). Let n; = vy, (E) where ﬁ is the restriction of f; to U; N X . Then the divisor V.X

is YonYi = Y vy, (fi) = X vy (filvinx)-

Assume X is not contained in the hyperplane o = 0 (this is V') whose cartier divisor is H = { (DJr (xi, i—)) }
The associated sheal £ (H) satisfies £ (H) |p, (xy) = £ Opn|p, (z;) by definition. The pullback sheaf f*.2 (H) ~
2 (H) ®10,, Ox satisfies f*Z (H) |f-1p, () = 0y (Same logic as in (b) ) associated cartier is

{(f‘l (D4 (x0)) ,f*i—‘f)} = {(D+ (x;) N X, @>} (f is just inclusion in this case ) . The Weil divisor associ-

ated here is ZDAL ZP€D+ (z:) VP ( ) P which is the same as taking f* in the other way.
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2.6.12 1II1.6.9 (starred) Singular Curves (starred)

*6.9. Singular Curves. Here we give another method of calculating 11Jt: Picard group
of a singular curve. Let X be a projective curve over k, let X be it¢ normalization,
and let m: X — X be the projection map (Ex. 3.8). For each point Pe X, let
(', be its local ring, and let EP be the integral closure of ('p. We ujse a * to denote
the group of units in a ring.

{a) Show there is an exact sequence

0— Ppex OF/C¢ - Pic X 5 Pic X - 0.

[ Hint: Represent Pic X and Pic X as the groups of Cartier divisors modulo
principal divisors, and use the exact sequence of sheaves on [X

0—n, 0F/0F - X*[0F - X*/n,0F - 0]
MISS

(b) Use (a) to give another proof of the fact that if X 1s a plane cuspidal cubic
curve, then there i1s an exact sequence

0-G,—-PicX -Z -0,
and if X is a plane nodal cubic curve, there 1s an exact sequence
0-G,—PicX 20
MISS

2.6.13 1II.6.10 x g The Grothendieck Group K(X)

6.10. The Grothendieck Group K(X). Let X be a noetherian scheme. We define K(X)
to be the quotient of the free abelian group generated by all the coherent sheaves
on X, by the subgroup generated by all expressions # — #F' — #", whenever
there is an exact sequence 00 =+ #F' — F — #" — () of coherent sheaves on X.
If # is a coherent sheaf, we denote by y(5) its image in K(X).

(a)y IT X = A, then K(X) = Z.
If .7 is a coherent sheaf, then .# corresponds to an f.g. k [t|] -module M.
Let k[t]°" — k[t]®™ — M — 0 be a presentation of M, where the first morphism is injective, as k [t] is a

PID. (commutative algebra fact)

This gives an exact sequence 0 — 0" — OY" -+ .F — 0 .
Thus in K (X) we have v (%) =~ (m —n) v (Ox).

Thus the map Z — K (X) , n — nvy (Ox) is surjective.
This morphism splits via the rank homomorphism from (b).

2.6.14 (b) x

(b) If X is any integral scheme, and & a coherent sheaf, we define the rank of #
to be dimy &, where ¢ is the generic point of X, and K = ¢ is the function

field of X. Show that the rank function defines a surjective homomorphism
rank: K(X) - Z.

Let 0 = F' — F — %" — 0 be an s.e.s. of coherent sheaves.
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Localizing at the generic point, §, gives an s.e.s. as well, and so dimg F¢ = dimyx F¢ + dimy F; and thus
the rank homorphism is well-defined.
Note further that v (Ox) — 1 so that rank is surjective.

2.6.15 (c) x

ic) Il Y 1s a closed subscheme of X, there 1s an exact sequence
KiY)i— KX = KX = Y)—=|0

where the first map is extension by zero, and the segond map is restriction.
[ Hint: For exactness in the middle, show that if # is|a coherent sheal on X,
whose support is contained in ¥, then there 1s a finitg filiration # = #, =
#,2...2 #, =0 such that cach #,/# ., 15 an ( .-module. To show
surjectivity on the right, use (Ex. 5.15).]

For Turther information about K{X'). and its applications to the generalized
Riemann-Roch theorem, see Borel-Serre [1]. Mamn [1]. and Appendix A

Surjectivity on the right is easy since if .% is coherent on X — Y | then by exc I1.5.15, .# is extendable to
a coherent sheaf .7’ on X such that #'|x_y ~ Z.

Now suppose % is in the kernel of the second map. Claim: there is a finite filtration % = %, O .%; D

.. D Z, = 0 such that each .%;/. %, is the extension by zero of a coherent sheaf on Y.

Let i : Y — X . The functors ¢* and i, are adjoint so there is a natural morphism n : . F# — i, *.% :
Coh (X) — Coh (X). Let U = Spec (A) an open set where # |y = M~ . Then Y N Spec A ~ Spec A/I so
that 7 is induced by M — M/IM on U. Thus 7 is surjective. Let .#; = .% and define .%; inductively as
F; = ker (#,_1 — i,i*.%#;) . By definition, each .#;/.%#, ., is the extension by zero of a coherent sheaf on Y
so we have a filtration satisfying the requried conditions.

We must now show this filtration is finite. We have .%;|;; = I[?M. The support of M~ is contained in
Spec AJT =V (I) so by exc I1.5.6.b, v/Ann M D /I D I . A noetherian implies I is finitely generated. Thus
there is N with Ann M D IV (as in exc I1.5.6.d). Thus 0 = I M. As X is noetherian, we may cover X with
finitely map U and choose a maximum such N to see the filtration is finite. Thus we have proven the claim

Now we have 7 (%) = 7 (Finr) + 7 (Fi/ Finr) in K (X) 50 7 (F) = XI5 (F1/ Fir1) . Thus 7 (F) is
in the image of K (Y) — K (X) . The other half is obvious.

I1.6.11 (Starred) The Grothendieck Group of Nonsingular Curve (starred)

¥6.11. The Grothendieck Group of @ Nonsingular Curre, Let X be a nonsingular curye

over an algebraically closed field k. We will show that K(X) = Pic XY & Z. In

several sieps.

(a) Forany divisor D = Y, P on X, let ytD) = > nyikiP;)) e K(X), where L‘LI]I|
is the skyscraper sheaf k at P, and 0 elsewhere. If D is an effective divisor, et
(¢ ;, be the structure sheal of the associated subscheme of codimension 1, anfd
show that y(D) = (¢ ;). Then use (6.18) to show that for any D, (D} depends
only on the linear equivalence class oD, so i defines a homomorphis
W:ClX — KiX).
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{b) For any coherent sheaf # on X, show that there exist locally free sheaves &
and &, and an exact sequence ) — &, — &, = # — (. Lt r, = rank &£,
r, = rank & .anddefinedet # = (/N6 ) @ (/\"¢ 17" e Pic X. Here A de-
notes the exterior power (Ex. 5.16). Show that det # is independent of the
resolution chosen, and that it gives a homomorphism def: K(X) — Pic X.
Finally show thatif D is a divisor, then det(y( D)) = Z(D).

starred

fc) If.# isany coherent sheaf of rank r, show that there is a divisor D on X and an
exactseguence e 2M® o F o 7 . (L whbre 7 isatorsion sheal. Con-
clude that if # is a sheaf of rank r, then 7(#) — rp(@y) € Im .

starred

N T DAY ¥ ety Ty ¥ T X r Ll L
(d) Using the maps ¢. det, rank, and 1 — 3(C y)from £ — K{A]},show that K(X') =
PicX @ Z

starred

2.6.16 II.6.12 x g:1st paragraph

6.12. Let X be a complete nonsingular curve. Show that there is a unique way to define
the degree of any coherent sheaf on X, deg # € Z. such that:

(1) 1f D is a divisor, deg (D) = deg D;

(20 If # 1s a rorsion sheaf (meaning a sheaf whose stalk at the generic point is zero),
thendeg # = E,,; y length (.#;); and

(3) M0 = F — F = F" = 0 1s an exact sequence, then deg # = deg #' +

deg #".

Let D a divisor. As K (X) =~ Pic X ®Z then and an invertible sheaf corresponds to a weil divisor written
as > n,;P; gives an integer Y n; we have a map K (X) — Z which satisfies (1) for the degree. (3) is clear by
definition of grothendieck group.

Now suppose .Z is a torsion sheaf, v (.#) ~ v (Op), D = > n; P, . The stalk of Op at P, is k™ which has
length n; as a k-module.

k -algebraically closed implies k& — Op, and Op,/mp = k. Thus a filtration of k™ as an Op,-module can
be extended to a k-filtration. Thus the afore-mentioned stalk has length as an Op, module at most equal to
it’s length as a k-module.

Now suppose that there is a maximal k-filtration of £™ . Such a filtration has simple quotients.

Let M =~ (a) a simple nonzero module, M ~ Ann A ~ Op,, and Ann a C mp so that mp/Ann a = 0
as this is a submodule of M. Thus M ~ mp/Ann a =~ k so that the filtration has simple quotients as an
Op,-module. This is the opposite inequality.

To see uniqueness, if a sheaf has rank 0, then it is torsion, so (2) gives uniqueness, for rank 1, (1) gives
uniqueness, for rank n > 2 , then use an exact sequence and induction.
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2.7 1II.7 x Projective Morphisms
271 II.71xg

7.1. Let {X.( y) be a locally ringed space, and let f: % — .4 be a surjective map of
invertible sheaves on X. Show that f is an isomorphism, [Hinr: Reduce to a
question of modules over a local ring by looking at the stalks. ]

By another excercise, we can check that f is an isomorphism on the stalks, which since the sheaves are
invertible, are local rings.

Suppose f: A — A is a surjective morphism of A-modules, A being a local ring.

Let f(¢)=1. Thencf(1)=1s0 f(1)=c".

Then an inverse to f is given by a +— a - c .

2.72 IL.7.2x

7.2. Let X be a scheme over a field &, Let 2 be an invertible sheaf on X, ;m]lj let
the

b 1]

Sape e, and frg.o.out, ) be two sets of sections of ¥, which gl.‘tll_‘t'slul

same subspace V' = I'(X,%), and which generate the sheal ¥ at every ppint.
Suppose n < m. Show that the corresponding morphisms ¢ X — Pyand . X —
P} differ by a suitable linear projection P" — L — P" and an avtomorphism of

P", where L is a linear subspace of P" of dimensionm — n — L.

Write s; = > a;;t; .

Choose a;; to fill out an invertible matrix.

Then U; = Z ;5 T; are global sections of O (1) on P™ and qb*uz = Qb* Z Q5 = Z aijqb*xj = Z aijtj = S; .
If L=2(uy,...,up) , then p: P\ L — P" satisfies po ¢ = ¢ by I1.7.1.

Note that L is a linear subspace, and p is the linear projection, and the a;; define an automorphism.

273 IL.73x

7.3 Let o P! — P be o morphism. Then:
1a) either P") = pt or m = nana dim @(P") = n;

Following Hartshorne II.7, note that ¢ : P* — P™ is determined by an invertible sheaf £ and m + 1
global sections on P" which are s; = ¢* (x;) for x; homogeneous coordinates of P . We have further that
K = QD*O[pm (1) .

We know all the invertible sheaves on P™ are Opx (d), d € Z .

If d <0, then there are at most only trivial sections so that ¢ must be constant.

On the other hand, if d > 1, then using example 7.8.3, the sections s; are homogeneous polynomials of
degree d. Id est, s; = 2 - - - 2'm | where Y 1; = d. Thus suggests the d-uple embedding.

The d-uple embedding v sends the degree d homogeneous polynomial u{ - - - uim to the linear form u;,..;, €

PV | where N = " Z d _ 1 . Note dimension here comes from fact that there are ( d j; " ) different

homogeneous polynomials of degree d in P" . Thus we have embedded Opn (d) in Opn (1). As the d-uple
embedding is a closed immersion, dimension is preserved from P to P . v (P") is thus generated by n linearly
independent linear forms L; corresponding to the s; .

If F is defined by L; = 0, Vj , then the projection PN — E — P is finite. After an isomorphism, we can
ensure that x; € P™ pulls back to s; thus regaining ¢ via a decomposition ¢ .

Every ¢ can be obtained in this manner. If n < m , then as the maps are finite, dim (P") = dim (¢ (P")).
As the composition of finite morphisms is finite and finite maps have finite fibers, the fibers must be finite.
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On the other hand, if m < n , we know that L is generated by the global sections s; = ¢* (x;) yet now there
are < n . As we know all invertible sheaves are O (d) , and we know the number of generating sections for
O (d) (not (n+ 1)!), so ¢ must in this case be constant.

274 b.x
{b) in the second case. ¢ can be obtained as the composition of (1) a d-uple em-
bedding P" — P* for a uniquely determined o = 1, (2) a linear projection
P' — L — P" and (3) an automorphism of P™. Also, ¢ has finite fibres.
See above

275 II.74a.xg

T4, (a) Use (7.6) to show that if X is a scheme of !'mijr type over a4 noetherian ring A,
and if X admits an ample invertible sheaf, the r X 1s separated.
If X admits ample invertible sheaf . , then Xadmits closed immersion to some P" .
Projective space is separated over spec A , and thus X — Spec A is separated.

2.7.6 b. x

b} Let X be the affine line over a field k with the origin doubled (4.0.1). Calculate
Pic X'. determine which invertible sheaves are generated by global sections.
and then show directly (without using (a)} that there is no ample invertible
sheaf on X

Let X the affine line over £ with origin doubled.

Let Uy, Uy be the two open copies of affine line.

Pic X is then the set of pairs (.Z, Z") of invertible sheaves on A! which have equal restriction to A\ {0}.

By thm I1.6.2, 11.6.16, Pic A’ =0 so any A =~ (L, M) ~ (Op1,041) .

Claim Pic X = Z with elements (Og1,.Z (n - 0)).

For A4 € Pic X , A as ./ is isomorphic to the structure sheaf, 4" is determined by Oy, |v,, = A |1, =~
OUI |U10 .

By 11.6.16, Pic Uy = 0 and so %, ~ Op,, and therefore the isomorphism is an automorphism of k [z, z 7]
as a module over itself. Such automorphisms correspond to the polynomials az™ for a unique n € Z.

The .4 is determined by this isomorphism so that Pic X ~Z .

Write %, for 4. Then to give a global sections of (Oy1,.%,) it is equivalent to give f € T'(A',Oy)
and g € T'(A', %,) such that fan(oy = glangoy - Thus f = g and therefore the global sections lie in the
intersection which is k [t] for n > 0 or (¢7') C k[t] for n < 0 . Thus an element of k [t] and of ¢~'k [¢t] which
agree on Uy NU; . An element of t~"k [t] must have a homogeneous component of nonnegative degree so if
n > 0, then the local ring at the origin of U; is not generated by a global esction. Thus .Z,, , n > 0 are not
gbhgs. If n < 0 clearly %, are not gbgs. Finally .7 is gbgs. As %, ® %, ~ %, we see that there are no
ample %, since large powers will not be ghgs.
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2.7.7 IL75x¢g

7.5. Establish the following properties of ample and very ample invertible sheaves on
a noetherian scheme X. ¥« will denote invertible sheaves, and for (d), (e) we
assume furthermore that X is of finite type over a noetherian ring 4.
fa) If &' is ample and # is generated by global sections, then # & # is ample.

Note the tensor of sheaves which are gbgs is gbgs.
Thus .Z™ is gbgs.

For arbitrary .# € coh (X), % ® £ is gbgs n > 0 .
Then ¥ @ (L Q@ M)" ~ (L @ L™) Q@ M™ is ghgs.

278 b.xg

e e

oy = o e x T o e i = "
LMJL'Liumm:LmLJLEMJJhﬁLm},Lhnn W7 I iw:anwm;irm_w;l.

£

As A is at least coherent, £™ ® .4 is gbgs some m.
For arbitrary .# € Coh (X) , % ® £" is ghgs.
Thus F @ (M @ LP) = (F QL") R (M L") @ LP™ " for large enough p.

279 c.xg

ic) If ..« are both ample, 5015 2 & . #.
The geometric definition of ample is that it intersects every curve positively.

2.710 d. xg

o

(d) f ¥ is very ample and . # is generated by global sections, then ¥ ® . # is
very ample.

Let 9. , ¢.4 the corresponding morphisms to P* , P™ respectively, where ¢%, (O (1)) = £ and ¢*, (O (1)) =
M.
The product p¢ X ¢ 4 in the segre embedding satisfies ¢* (O (1)) = £ ® .4 which is an immersion since

SO 1S Yo .

2.7.11 x g ample large multiple is very ample. x
very wep

e} If ¥ is ample, then there is an n, = Osuch that #"is very ample for all n = n,,.

=

If ™ is very ample and .Z? is gbgs for all d > d; , then take m + dy and use part (d) .
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2.7.12 1II.7.6 x g The Riemann Roch Problem

1.6. The Riemunn-Roch Problem. Let X be a nonsingular projective variety over an
algebraically closed field, and let D be a divisor on X. Forany n > 0 we consider
the complete linear system |nD. Then the Riemann-Roch problem is to deter-
mine dim{nD| as a function of n, and, in particular, its behavwor for large n. If
# 15 the corresponding ivertible sheal, then dimnD| = dim I'(X . #") - L, so
an equivalent problem is (o determine dim (X" as a function of n.

(a) Show that if D s very ample. and if X' < P] is the corresponding embedding
in projective space, then for all n sufficiently large, dimnD| = Pyn} — 1.
where Py is the Hilbert polynomual of X (1, §7). Thus m this case dim/nD| 1s a
nulmmﬂml 1’umtmn of n.for n large

Usmg the given embeddmg, we assomate 3 Wlth S (1)™, where S is the homogeneous coordinate ring of
the variety.

Usingexc 11.5.9.b, S,, = I' (X, S (n)”) =~ I' (X,£") is an isomorphism for large enough n.

By definition, we have dim |nD| =dim I'(X,£") —1=dim S, — 1 = ¢ (n) — 1, where ¢ is the hilbert
function of X.

Now recall that the hilbert function equals the hilbert polynomial on integers for large enough n.

2.713 b. x

(hy If D corresponds to a torsion element of Pic X, of order r, then dim I-1!_J| =0

il rin, — 1 otherwise. In this case the function is periodic of period r.

It follows from the general Riemann- Roch theorem that dimnD! is a|polyno-
mial function for n large, whenever D is an ample divisor. See t1V, 1.3.2)[(V, 1.6),
and Appendix A. In the case of algebraic surfaces, Zariski [ 7] has shown for any
—efhectrredivisor Bt there s afimmtesetofpodymormiads P - h[.l'l.'_'i'l][]'lill for
all nsufficiently large. dim|nD| = P, (n), whereiimye [1,2,.. . .r|isa function of n,

Suppose D is torsion of order r. If rjn , nD = 0 so nD is trivial. Thus dim|nD| = 0. If r { n , and
there is an effective divisor F lienarly equivalent to nD , then 0 ~ rnD ~ rE > 0 contradiction. Thus
dim |nD| = —

2.7.14 II.7.7 x g Some Rational Surfaces

7.7. Some Rutional Surfuces. Let X = P{, and let |D| be the complete hnear system
of all divisors of degree 2 on X (comics). D L-.:rn.wp-.mdi to the invertible sheaf
("(2), whose space of global sections has a basis v, % z% xv.xz vz, where x,v.2
are the homogeneous coordinates of X
{a) The complete linear system |D| gives an embedding of P¥ in P*. whose image

15 the Veronese surface (1. Ex. 2.13).

Let ¢ : P — P° correspond to the linear system |D| since there are 6 global sections. As in thm II.7.1,
define ¢ : P2 — D, (y;), s; the (i + 1) basis vector of |D|. If sy = 22 the morphism from P2 is given by

. . . xQ .
Spec |72, 721 — Spec |2, .., %] which on global sections is (£,.., %) — (-3 #o3 #032 #1352 ) - Ag this
zo’ Xo Yo Yo Yo Yo 7 T3 7 7

agrees with v, and on each other open set we have similar agreement, then by exc [1.4.2, the morphisms
agree.
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2.7.15 b. x

(b) Show that the subsystem defined by x*,v2.2%, viv — =)L 1x — 1)z gives a closed
immersion of X into P*. The image is called the Veronese surface in P*,
CrIV.Ex. 3111

Recall closed immersion iff separates points and tangent lines.

claim: points are separated by the linear system.

Let Py = (ap: bo : cp) , and P, = (ay : by : ¢1) two points.

If ap = 0 and a; # 0, then 22 separates points.

If ap = a; = 0, then the sections are 32, 2%, yz which generate Op: (2) which is very ample. Similarly
for the other coordinate hyperplanes. Thus we assume that the distinct points are not contained in any
coordinate hyperplanes.

Thus consider two points (a, b) , (¢,d) on D (x).

Then y? —a? (1) and 2% — b? (1) separate all points except at the roots (c,d) = (£a, +b) . For (—a, —b) we
can separate points with y — yz — (a — ab) (1) and similarly for other cases.

Claim: tangent lines are separated.

On z = 1 we have 1,2%,y* 2y — y,x —y . Assume P = (a,b). If a # 0, then z —y — (a — b) (1) and
z? — a? (1) have no tangent lines in common. If b # 0, then x —y — (a — b) (1) and y? — b* (1) have no tangent
lines in common. In the last case, if a = b = 0, then xy —y and z —y have different tangent lines at the origin.
Thus tangent lines are separated. On y = 1 the situation is similar. On z = 1 we have 1,2, 2%,y —yz, 2 — yz
and y — yz and z — yz have different tangent lines at the origin.

2.7.16 c. x

— . : | . :
(c) Letd = |D|be the linear system of all conics passing through a fixed point P.
Then b gives an immersion of L' = X — Pinto P*. Furthermore, if we blow
X in P*. Show that X 1s a surface of degree 3 in P* and that the lines in X
through P are transformed into straight lines in X which do not meet. X is the
union of all these lines. so we say X 1s a ruled surface 1V, 2.19.1),

up P. to get a surface X. then this map extends to giT a closed immersion of

Let P € P? be given by (zg,z;) so on D, (x9), Dy (71), and D, (z3) — P C P? | the linear system
with basis vectors 22, 22, o, 172, Tor2 maps U homeomorphically onto an open subset of closed subvariety
V=V (y2ys — YoYa, Y1Y3 — Y2ya)- ~ - }

The image of X is closed and U = 7! is dense in X so the closure U is the image of X .

A global section yy of O (1) corresponds to the divisor V (yo,y1,v2) + V (Yo, vy2,v3) + V (Yo, Y3, ya) which
has degree 3.

Any line of X through P can be written as axg+ bx; =0 .

It’s image in U C P? has as closure the line V (ayy + bys, ay; + bys, ays + bys) . Two distinct such lines do
not meet since the ratio of their coefficients are different.

2.7.17 1II.7.8 x sections vs quotient invertible sheaves

7.8. Let X be a noetherian scheme, let & be a coherent locally free sheaf on X, and
let m:Pi&) — X be the corresponding projective space bundle. Show that there
1s a natural 1-1 correspondence between sections of @ (Le., morphisms a: X —
P(#)such that m ¢ = idy) and quotient invertible sheaves & — ¥ — 0 of &.

By 7.12, we have a 1-1 correspondence between sections of 7 and surjections & — .2 — 0.

138



2.7.18 IL79xg

1.9, Let X be a regular noetherian scheme, and & a locally free coherent sheaf of rank
=2on X.
4} Show that Pic Pi&) = Pic X = £

Define «: Pic X X Z — Pic P (&) by (Z,n) = (L) 2 O (n) .

Let r be the rank of & . If 1 € X, x € U = Spec A , where &|y ~ Ox|j; then we have 771U = P}, ! so
there is an embedding Z = IPZ(_;) — Pt = P(&). As Ops) (n) |v & Oy (n), then this gives a left inverse to
Z — Pic P (&) .

Claim: « is injective.

Suppose 7.2 ® O (n) ~ Opw) . By IL7.11, m ("2 ® O,) = Ox , so by the projection formula,
Z @m0 (n) ~ Ox . As m,0 (n) is the degree n part of the symmetric algebra, and rank & > 2, then n =0
so X~ Ox .

Claim « is surjective.

If U; gives an open cover of X on which & is trivial, and each U; is integral and separated, (as X is regular,
and affine schemes are separated) , then V; := P (&|y,) &~ U; x P"~! cover P (&).

As X is regular so are U; thus satisfy (*) so by exc I11.6.1, Pic V; = Pic U; X Z .

For £ € Pic P(&) , we obtain an element O; (n;) ® m;.%; € Pic V; = Pic U; X Z together with transition
isomorphisms a;; : (O; (n;) @ m;.%4) lv,, = (0; (n;) ® 73.%;) |v,, satisfying the cocycle condition. Using the
projection formula gives m.ay; : T,.0; (n;) |v;;, ® £ — m.0;(ny) v, ® &5 . As in IL7.11, n; = n; and by
definition of P (&) , O;(n)|v,; = Oij (n) so we have O;; (n) @ 7} Ly, = Oy (n) @ 7;.%Z|v,, . Tensoring
with Oy (—n) and using the projection formula with I1.7.11 gives isomorphisms Zj|y,; ~ Zj|v,; satisfying the
cocycle condition. Glueing gives a sheaf .# such that 7*.# ® O (n) ~ £ on any component of X.

2.7.19 b. x
%Wﬁﬁmﬁrfmxﬁﬁﬁﬁmﬁﬁ?%ﬁ%f%w

ifand only i there s an inveruble sheal 7 on X such that £ = & @
Suppose that f: P (&) = P(&”). By (a), f*O' (1) = O (1) @ n*.& for £ € Pic X. Using exc projection
and thm I1.7.11, & =7, (O’ 1) =mn. (O(1) @1 L) =m.0(1) L =R L .
On the other hand if & ~ & ® . , then by thm I1.7.11.b, there is a surjection 7*&’ =~ 71" ® L —»
O (1)®7n*¥, and thus a map P (&) — P (&’) by thm I1.7.12. An inverse is given by considering & ~ &' @ %!

2.7.20 1II.7.10 x P"n Bundles over a Scheme

T0, P-Bundles Over a Scheme, Let X be a noetherian scheme
() By analogy with the definition of a vector bundle (Ex. 5.18) define the notion
of a projective n-space hundle over X, as a scheme P with a mprphismm: P — X

such that Pas locally isomorphicto L = P*. L' = X open, jand the transition
automorphisms on Spec 4« P"are given by 4-hinear autgmorphisms of the
homogeneous coordmate ring Al v,, ... .6 ] feg, v, = Ya, v, a4, € Al

s

See Gathmann’s notes.

2.721 b.xg

= A U

ib) 118 s a locally free sheal of rank #r + 1 on X, then Pi¢ ) 1s a P-bundle over X

139



X is covered by open affines U; = Spec A; where & ~ (’)@(”H),

Let 7 : P (&) — X the projection.
Then 77'U; =~ Proj % (&) (U;) ~ Proj % ((’)lez(nﬂ)) (U;)

~ I <O[§?(n+1)> (U) = Proj Alxg,....,x,) = P} .

Thus we have the trivializations needed for a P" -bundle.

On V = U;NU; , by definition of P (&) we have an automorphisms 1) = 1; o ;" defined via OF|y, ~
Ogjllv coming from the restriction morphisms & (U;) — & (V) < & (U;) -

¥le)y Assume that X o regular, and show that every P™-bundle P over X is 1so-
morphic to Pty lor some locally free sheal @ on X [Hine: Let U = X be an
open set such that # YU = U o« P"oand let ¥, be the invertible sheafl ¢ (1)
on = P" Show that ¥, extends to an imvertible sheal @ on P Then show
that 7, 2" =4 15 a locally free sheaf on X and that P = Pi#).] Can you
weaken the hypothesis “ X regular™?

MISS (starred)

2.722 d. x

iy Conclude tm the case X regular) that we have o 1-1 correspondence Juuw.::un
P"-bundles over X, and equivalence classes of locally free sheaves & |of rank
o+ 1 under the eguivalence relaton & ~ & ifand only if &7 = & & 4 for
some invertible sheaf # on X

This follows from (b), (¢), and exc I1.7.9.

2.7.23 IL.7.11 x

7.11. On a noethenan scheme X different sheaves of ideals can give rise 1o isomorphic
blown up schemes
L 1T # 1s any coherent sheaf of ideals on Y. show that blowing up #¢ for any
o = 1 gives a scheme isomorphic (o the blowng up ol # fef. Ex. 5.13).

By exc I1.5.13, we have Proj @,s0 .2 (U)" = Proj @®nso.# (U)" .
Now if ¢ : T"— S is a morphism of graded rings, then as in 11.5.13, we have a commutative diagram:
Proj S Proj T so the given isomorphism is natural and thus on intersections U; N U; we have

J |

Proj 89 —— Proj T'9
isomorphisms.
Now glueing gives the result.

2.7.24 b. x

= i s i i

(hy If . # s any coherent sheaf of ideals. and 1f 7 15 an wmvertble sheafl of ideals,
then # and ¥ - ¥ give isomorphic blowings-up.

By lemma I1.7.9

— m— T
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2.7.25 c. x

s . — T L= T
e 1M X 15 regular, show that 17,17y can be strengthened as follows, Let U = X

be the largest open et such that fof "0 — U is an isomorphism. Then #
can be chosen such that the corresponding closed subscheme Y has support

cgual to XV —

If f:Z — X is birational, then E = Exc(f) = Z — f~' (U) is a divisor (see Debarre Higher Dimensional
Algebraic Geometry 1.40). Pushing forward to X the corresponding ideal sheaf gives the required .#.

2.726 II.7.12x g

7.12. Let X be a noetherian scheme. and let ¥, # be two closed subsche¢mes, neither
one containing the other. Let X be obtaned by blowing up ¥ ~ ¥ (defined by
the ideal sheal .#, + .#,). Show that the strict transforms ¥ and £ of ¥ and Z
in X do not meet.

If PeY NZ,then 7 (P) is contained in an open affine U = Spec A C X .

Then 77U = Proj @, (Iy + I2)* with Iy = % (U), I, = 9, (U) .

Then Y NU = Spec A/ly , ZNU = Spec A/I.

Then 7= (UNY) = Proj @0 (Iy + Iz) (A/y))* C Y, and 7= (UNZ) = ... .

Themap 7~ (UNY) — 7~ (U) is given by @40 (Iy + I2)* = Gaso (Iy + 12) (A/Iy))* and 7= (U N Z) —
71 (U) is given by ....

Then the kernel of each of these ring homomorphisms is ®gsol¢, Gasoll .

A nonempty intersection gives a homogeneous prime ideal of @450 (Iy + [Z)d containing @dzglg, @dz()@
. This is a contradiction.

2.7.27 11.7.13 A Complete Nonprojective Variety *

*T.13. A Complete Nonprojective Variety. Let k be an algebraically closed [field of
char # 2. Let C = P} be the nodal cubic curve y*z = x* + x*z. If P, < (00.1)
1s the singular point, then C — P, 1s isomorphic to the multiplicative group
G, = Spec k[t '] (Ex. 6.7). For each ak, a # 0, consider the translgtion of
G, given by 1+ ar. This induces an automorphism of C which we denote by ¢,,.

Now consider ¢ = (P' — {0}) and C = (P! — {=}). We glue the'r open
subsets C x (P' — {0, x}) by the isomorphism o: {Pu>— (o (P> for
PeCoueG, = P' — {0,%}. Thuswe obtain a scheme X, which is our egample.
The projections to the second factor are compatible with ¢, so there is a [natural
morphism . X — P
(a} Show that mis a proper morphism, and hence that X is a complete|variety

over k.

MISS

L B =8 I b

(b) Use the method of (Ex. 6.9) to show that Pic(C x A') =G, = Z and
PioC < (A" = [0} =G, « Z <« Z [Hin: Il 4 is a domain and if *
denotes the group of units, then (A[u]* = A* and (Afun "T* = 4* < Z.]

MISS
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(c}) Now show that the restriction map Pic(C = A") = Pic{C = (A' = [0})
is of the form {r.n) ¥ 1.0, and that the automorphism g of C x (A" — {0
induces a map of the form {r.d.n> — {1 d + nad on its Picard group.

- ey

-

E

e e e e e s

I A 1 L] il L n (]

MISS

i § T T - ]

(d) Conclude that the image of the restricion map Pic X — Pic((" = {0})
consists entirely of divisors of degree 0 on C. Hence X is not projective
over k and = 1s not a projective morphism.

MISS

2.7.28 IL7.14x g

.14, (4) Give an example ol a noetherian achmjw X and a locally free coherent sheaf £,
such that the invertible sheaf ¢ (1) on lTlr‘- 118 ot very ample relative to X

Consider X =P (O (1)) =~ P! .
If O(1) on X was very ample, then it would give a closed immersion to P", where the pullback of Opn (1)
would be Op1 (—1) , which is not effective, contradicting negativity.

2.7.29 b. x

{b) Let j: X — ¥ be a morphism of finite type, let % be an ample invcrtih]r}
sheal on X, and let %" be a sheal of graded ¢ y-algebras sausfying (t). Le
P = Proj &. let m:P — X be the projection, and let { g(1) be the associatec
invertible sheaf, Show that foralln > 0,the sheafl { p(1) ® =*#" 15 very ampl
on Prelative to Y. [Hinr: Use (7.10) and (Ex. 5.12).]

£ is ample relative to U , and for n > 0, £" is v.a. on X relative to Y.
If 7 : P — X is projection, then by thm I1.7.10, for large enough m, Op (1) ® 7*.£™ is very ample on P
relative to X. By exc I1.5.12, for n fixed, and m > 0, Op (1) ® Z™" is very ample on P relative to Y.

2.8 1II.8 x Differentials
2.8.1 II.8.1 x

8.1 Here we will strengthen the results of the text to include imformation about the
sheaf of differentials at a not necessarily closed point of a scheme X
(a) Generalize (8.7) as follows. Let B be a local ring containing a field k, and
assume that the residue field AM{B) = B m of B 1s a separably generated ex-
tension of k. Then the exact sequence of (8.4A),

0 = mom® Qur B KB — py — 0

is exact on the left also. [ Hinr: In copying the proof of (8.7). first pass to B'm?,
which is 4 complete local ring. and then use (8.25A) to choose a field of repre-
sentatives for Bm* ]

Injectivity of the first map is equivalent to surjectivity of homyp) (2, ® k (B) , k (B)) ~ Dery, (B, k (B)) —
homy (m/m? k (B)).
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Note that if d : B — k(B) is a derivation, then §* (d) is the restriction to m with d (m?) = 0 by the
product rule.

If h € Hom (m/m? k(B)) and b = ¢+ A € B, A\ € k(B),c € m (using thm I1.8.25A), then define
db = h(c mod m?).

Then d is a k (B) derivation and 6* (d) = h.

2.8.2 b. x

{h) Generalize (8.8) as follows. With B, k as above, assume furthermore that ; 15
perfect, and that B is a localization of an algebra of finite type over k. Then
show that B is a regular local ring if and only if Qg , is free of rank = dim B +
tr.d. k(B)/k.

Suppose Qg is free of rank= dim B +tr.d. k(B) /k .
By thm I1.8.6.a, dim Qg /, = tr.d. k (B) [k, so using

0 — m/m? LN Qp/ @k (B) = Qe — 0 from (a), dim m/m? = dim B so B is regular.
Conversely, suppose B is regular.

Then similarly, dimyp)Qp, @ k(B) = dim B +tr.d. k(B) /k .

Recalling the proof of thm I1.8.8, we just need to show that dimgQpg/ is dim B +tr.d.k(B) /k .
We have QB/k (%9):) K = QK/k using thm I1.8.2A.

As k is perfect, by thm 1.4.8A, K is separably generated so dimgQg/, = tr.d.K/k by thm I1.8.6.A.
Thus dimgQpp ® K = tr.d. K/k.

As B = A, for p € Spec A , then Frac A = Frac B and ht p =dim B .

By thm L.1.8A, tr.d. tr.d.K/k = dim A= ht p+dim A/p =

dim B+ dim A/p = dim B +tr.d.Frac(A/p) [k =

dim B +tr.d. k(B) .

283 c¢. x

(c) Strengthen (8.15)as follows. Let X be an rreducible scheme of finite tvpe over
¢ perfect field &, and let dim X = n. For any point x € X, not pecessarily
L closedshovwthat the local mine 0w resplar localring—Handlonly if the

stalk (£2y ), of the sheafl of differentials at x 1s free of rank n.

Let € U = Spec A. By (b), Ox, is a regular local ring iff Q4 /i = Q4 =~ (Qx/k)x is free of rank equal
to dim A, +tr.d. k(Ay) [k =dim A=dim X .

284 d.xg

(dh St rcng[ﬁ;}n- (8.16) as follows. I X 1s a variety over an algebraically closed field
k.then U = [x e X|( 18 a regular local ring] is an open dense subset of X.

By I1.8.16, U is dense since it contains any open dense subset V' C X which is smooth.

If x € U, Qxyy is locally free by (c), so b exc 11.5.7.a, there is an open neighborhood W > x where Qx 5|w
is free of rank n.

At each w € W the stalks are free of rank n , so by part (¢) w € U .
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2.8.5 II.8.2x

8.2, Let X bea variety of dimension n over k. Let £ be a locally free sheaf of rank = n
on X, and let I = X&) be a vector space of global sections which generate
¢i. Then show that there is an element s € ¥, such that for each x € X, we have
s, ¢ & . Conclude that there is a morphism ( ; — & giving rise to an exact
sequence

Do, =& 8& S0

where &' 15 also locally free. | Hinr: Use a method similar to the proof of Bertini's
theorem (8.18).]

Define Z C X x V by {(z,s) |s, € m,;&,} and define p;, ps : X X V|7 as the projections.

A fiber of p; over xy consists of all sections vanishing at xo which is the kernel of V ® k (z9) — &, ®o,,
k(20) & Eny ®0,, Ouy/May = Epy [Myy6ry - As & is gbgs, then this map is surjective.

Since & is rank r, dim V — dim ker = rké&,, = r by rank nullity.

Thus dim ker =dim V —r . Thus dim Z =dim X +dim V —r .

But then as r > n we must have dim Z < dim V so ps is not surjective.

For the second part if s therefore satisfies s, ¢ m,&, then O, — & is given by xs . By exc I1.5.7.b, the
cokernel of this map is locally free of rank 7k & — 1 .

2.8.6 II.8.3 x g Product Schemes

8.3. Product Schemes.

{a) Let X and Y be schemes over another scheme §. Use (8.10) and (8.11) to show

That 2y y5 = Piidxs @ Patly s
I1.8.10 says (writing S for Y and Y for Y’ ) that if f : X — S is a morphism, and g : ¥ — S is

another morphism, and f': X xgY — Y is obtained by base extension, then Qxxsy/y =Pl (Qx/s) and also
Qxxsy/x = Py (QY/S) .

I1.8.11 gives that (writing S for Z, X for Y, and X xgY for S)

Qxwsy/y =~ D] (QX/S) — Qxxsv/s = Qxxgy/x & Ps (QY/S) — 0

and similarly,

P (Qy/s) = Qxxyys = piQlxys = 0

are exact sequences.

From here, you just need to show, using both sequences, that the first sequence splits, so that 2x,y/s =~
P1€x/s @ p5Llyys.

28.7 b.xg

(b) If X and Y are nonsingulaf varieties over a field k, show thatm, _ , = pfo, ®

iy,

Let dim (X)=m ,dim (Y)=n.

Using definition of the canonical sheaf, wxyy = A"™*"Qxyy which is A™" (p} (Qx) & p5 (Qy)).
Now using exc I1.5.16.d, e, and thm II.8.15, we see that

A (pr (2x) © p3 (Qy)) = A™pp () @ A™p; () ~

pi (A™Qx) ® p5 (A"Qy).
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288 c. xg

{c} Let Y be a nonsingular plane cubic curve, and let X be the surface ¥ = Y.
Show that p(X) = 1 but p,{X) = —1 (L Ex. 7.2). This shows that the arith-
metic genus and the geometric genus of a nonsingular projective variety may
be different.

From exc 1.7.2.b, p, (Y) = 1. From (e), with Y we get p, (Y xY) = —1.

Now using ex. 11.8.20.3 gives Oy ~ wy . Using (b) gives wyxy ~ pjOy ® piOy .

This is Oy «y by definition.

As Y is projective, thus complete, thus proper, we can use exc 11.4.5.d to see that T' (Y x Y, Oyyy) = k
which has dimension over k equal to 1. By definition geometric genus is p, = dimy, I' (X, wx) which is 1.

2.8.9 1I1.8.4 x Complete Intersections in Pn

8.4, Complete Intersections in P". A closed subscheme Y of P} is called a (strici, glohal)
complete intersection if the homogeneous ideal [ of ¥ in § = k[x,, ..., x,] can

be generated by r = codim( ¥,P") elements (I, Ex. 2.17).

{a) Let Y be a closed subscheme of codimension r in P". Then Y is a complete
intersection 1f and only if there are hypersurfaces (1.e., locally principal sub-
schemes of codimension 1) H ... .. H_ suchthat Y = H, ~ ...~ H_as schemes,
Le, fy = JFy 4+ ...+ Fy . [ Hint: Use the fact that the unmixedness theorem
holds in § (Matsumura [ 2, p. 107]).]

If Iy = (f1,.... fr) then Y =N_H; , H; = Z (f;) as in chapter 1.

On the other hand, if Y = NH,, is an intersection of integral hypersurfaces, then as H; are irreducible
(Ip,) is a prime ideal in the coordinate ring S = k [z, ..., x,] of P" .

Thus Ipy,,, is not a zero divisor mod Iy so that (Ig,,...,/y,) forms a regular sequence and the ideal is
contained in Iy

As S/ (Iy,, ..., In,) has degree > deg H; by bezout, then (Ip,,...,Iy,) = I N J where codim J > 2.

Using the unmixedness theorem, primary components of (Ig,,..., Iy, ) are codim < 1 thus J = () so

Iy =gy, In,) .

2.8.10 b.xg

—— T S S | e
{b) If ¥ is a complete intersection of dimension =1 in P", and if ¥ is norma
Y is projectively normal (Ex. 5.14). [ Hint: Apply (8.23) to the affine con
Y]
As Y is normal, then Sing Y, Sing C (Y') have codimension > 2. Thus the homogeneous coordinate ring
of S(C(Y)) is integrally closed by thm I1.8.23.b. And thus so is S (Y) . Thus Y is projectively normal.

. then

- OVEr

e T S e i e E ] N L |
(] f Y is a complete intersection of dimension =1 in P*, and if ¥ is normal,
L
{¢) With the same hypotheses as (b), conclude that for all | = 0, the natural map
F(P".( pall}) — FIY.0.(0) ) is surjective. In particular, taking [ = 0, show that
Y is connected.
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Since Y is projectively normal, the natural map is surjective by definition.
When [ =0, then k£ — I' (Y, Oy) gives dim I' (Y, Oy) < 1, so the number of components is <1 .

28.12 d.xg

{d) Now suppose given integersd,. .. ., d, = 1,withr < n. Use Bertini's theorem
(8.18) to show that there exist nonsingular hypersurfaces H,, ... . H in P,
with deg H, = d,,such that thescheme Y = H ~ ...~ H_ isirreducible and
nonsingular of codimension » in P,

Assume that k is algebraically closed so we can use Bertini.

By bertini, the general element of a free linear series is smooth.

Thus, if H is a hyperplane, |dH| has a smooth element H' of degree d.

Now P"| g &~ P"~! . If we repeat this r times, we get a copy of P"~" which is nonsingular and irreducible
and codimension 7.

28.13 e. xg

JL\“'..'H.J.IEL‘IH.I R R AL RN RL R LY LR A P R .
(e} If Y is a nonsingular complete intersection as in (d), show that w, =
Colddy —n — 1),

Suppose Y = H,N...N H,.

Adjunction formula gives wy, ~ Opn (—n — 1) ® Oy, (d1) = Oy, (dy —n — 1) where d; = deg H;, and
Opn (—n — 1) represents the canonical of P".

By thm 11820, We Wi nH, ~ WH, X OHﬂTHQ (Hlﬂg)

Note that Hy.Hs corresponds to Oy, (d2) and thus in total

Winis ~ Omnm, (di +dy —n —1).

Now repeat this step by step.

2.8.14 f. xg

L=l

(fy fYisa nmnaing.umr hypersurface of degree d in P". use (c) and (e) above o
show that p (Y) = (* ") Thus p(Y) = p(Y) (I, Ex. 7.2). In particular, if|¥
is a nonsingular plane curve of degree d, then p,(Y) = 3(d — 1)d — 2).
By adjunction Ky ~ (—n—1+4d) H.
Taking global sections of 0 — Zy — Opn — Oy — 0 gives, by part (c) a s.e.s. on global sections, thus
R (P, Opn (d—n —1)) =h° (Y, Zy (d —n—1)) + h° (Y, Oy (d — n — 1)).
Note that the LHS is n—i—d;n—l .
Recall p, = h% (Y,wy) = h° (Y, Oy (d —n —1)).
Now deg Y = d > d —n — 1 so that there are no sections vanishing on Y of degree d — n — 1 so
Y (Y, Zy (d —n—1)) = 0.
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28.15 g.xg

(g) If Yisanonsingularcurvein P?, which is a complete intersection of nonsingular
surfaces of degrees d.e.then p(Y) = tdeld + ¢ — 4) + 1. Again the geometric
genus is the same as the arithmetic genus (1, Ex. 7.2).

Note that for a curve we have p, (Y) = p, (Y).

We have an exact sequence

0= 5@ 5 5@ esE) 5 5@ - 51" =0
where P — (gP, fP) and (P,Q) — fP — ¢gQ and the third map is obvious.

Now x (1) = (l_g?)) — <l—|—i;—d) - (l+§—e)+(l+3;d—e) and thus x (0) = 1 —

(3)-(3) ()

2.8.16 1II.8.5 x g Relative Canonicals Important!

8.5. Blowing up a Nonsingulur Subvariery. As in (8.24), let X be p nonsingular variety.,

et e I[Lljl;‘si.ll_gu];il .'-uuilhullciy ofcodrersiomT—=—2+ lel ?I:.l': + X be the

blowing-up of X along Y. and let ¥ = =~ '{Y).

(a) Show that the maps 7*: Pic X — Pic X, and Z — Pic X defined by n s class
of nY", give rise to an isomorphism Pic X=PicX®Z

By thm 11.8.24, X is nonsingular so that Pic (X) ~ cl <)~()
Thm I1.6.5 gives Z — Pic (X) — Pic(U) ~ Pic(X) — 0, U = X\Y".

(The second equality is since exceptional divisors are contracted).
By thm 11.8.24, O (—nY) = Oy (—n) so if O¢ (nY’) is trivial, then n = 0 so that we actually have an

s.e.s. 0 > Z — Pic (f() — Pic(X) — 0.
This is split by 7* .

2.8.17 b.xg

(b) Show that wy = [Fmy @ Z((r — 1Y) [Hine: By (a) we can wrile in any
casemy = [* & & (Y Morsomeinvertible sheal . # on X. and some integer
. By restricting to X — Y = X — Y.showthat . # = . To determine 4.
proceed as follows. First show that ex,. = f*my ® ¢ .(—¢g — 1). Then take
aclosed point "€ Y and let Z be the fibre of Y over . Then show that «, =
¢ ,0—gq — 1). ButsinceZ = P~ ' wehavew, = (,(—rLs0g =r — 1]

By (a) we write wg = f*(£) ® O (nY’), £ invertible.

If j: U < X then j*f* is identity on Pic(X) ~ Pic(U), U = X\Y".
Then j* (wg) rwy = £~ wx .

Using adjunction wy: ® wg @ Oy (V') = ffux @ Oy (n+1)Y")

At aclosed y € Y' | let Y a fiber. By exc I1.8.3.b,

wyr & Tjwy ® mwyr & 70, @ 15 (f*wx @ Oy (—n — 1))

~ Oy ® W;Oy/ (—n — 1) ~ Oyy (—n — 1)

As Yy = P! then wyy ~ Oy (—n) son =7 — L.
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2.8.18 II.8.6 x Infinitesimal Lifting Property

8.6. The Infinitesimal Lifting Property. The following result is very important in study-
ing deformations of nonsingular varieties. Let k be an algebraically closed field.
let A be a finitely generated k-algebra such that Spec A is a nonsingular variety
over k. Let 0 = | = B" = B — 0 be an exact sequence, where B' is a k-algebra,
and I is an ideal with /* = 0. Finally suppose given a k-algebra homomorphism
f:A4 = B. Then there exists a k-algebra homomorphism ¢:4 — B' making a
commutative diagram

L~
i
)
L= e = Il = - B i B o ==

We call this result the infinitesimal lifting property for A. We prove this result

in several steps.

(a)} First suppose thatg: 4 — B’ isa given homomorphism lifting f. Ifg":4 — B
is another such homomorphism, show that @ = g — g’ is|a k-derivation of 4
into I, which we can consider as an element of Hom (€2, [f}. Note that since
I* = 0, I has a natural structure of B-module and hence also of 4-module.
Conversely, for any # € Hom 4(Q,,./).g" = g + 0 is another homomorphism
lifting /. (For this step, you do not need the hypothesis about Spec 4 being
nonsingular.)

Suppose first g : A — B’ lifts f ...

Asg— g lifts f — f =0, then 0 liesin I C B’

Further 6 : 1 — 0. Thus 6 is 0 on k.

Then 6 (ab) = g (ab) — ¢’ (ab) =

g(a)g(b) —g'(a)g (b).

Now add (¢’ (a) g (b) — ¢’ (a) g (b)) and factor the @ (ab) into
g(b)0(a)+g (a)d (D).

Thus 6 satisfies the liebniz rule.

Conversely, if 0 € Hom 4 (QA/M, I) then fod: A— I — B’ gives a k-linear morphism.

Note that 0 — I — B’ — B — 0 exact implies this is in the kernel of B’ — B.

Thus g + 0 is a k-linear homomorphism lifting f.

A simple computation shows that g (ab) + 6 (ab) = (g (a) + 6 (b)) (g (b) + 6 (b)) so that g + 0 is actually a
k-algebra homomorphism.
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2.8.19 b. x

(h) NowletP = kfx,,.... x, | be a polynomial ring over kjof which A4 is a quotient,
and let J be the kernel. Show that there does exist a hamomorphismh: P — B
making a commutative diagram,

0 0

— oty o e

Y

= o

[
l
B
l
0
g2

and show that h induces an A-linear map h:J/J* = .

A k-homomorphisms h is determined by the images of the z;.

For each i , let b; be a lift of f (x;) in B’

Thus define h : z; — b; as a k-algebra homomorphism.

Forae P ,ifa € J, then h(a) is 0 by commutativity, so that h (a) € I .
Also if a € J? then h(a) € I? = 0 so our map descends to h: J/J? = I .
As h preserves multiplication & is A-linear.

2.8.20 c. x

—

{c) Now use the hypothesis Spec 4 nonsingular and (8.17) to obtain an exa¢
sequence
ﬂ — J‘;Z —_ E'JP‘-l': @I 4 —* f'z.‘l'k — “

[3]

Show furthermore that applying the functor Hom ( -.J) gives an exacl sequena
0 — Hom 4(22,,..J) = Hompl 2, ,.0) — Hom I JiJ3 0 — 0.

Let € Homp(2,,.7) be an element whose image gives h e Hom ,(J/J% 1|\
Consider (1 as a derivation of P to B'. Then let &' = h — #, and show that §
15 a homomorphism of P — B such that h'(J) = 0. Thus k" induces thg
desired homomorphism g: 4 — B r‘

By 11.8.17, 11.8.3A, we have an exact sequence on global sections 0 — J/J? — Qpy @ A — Qa — 0.
A nonsingular implies Ext’ (QA/k, I) =0forz>0.

Taking the LES associated to the dual gives therefore a surjection hom (Qpj ® A, I) — hom (J/J?, I).
There is therefore 6 : wp/, — I with image h by (b).

If we define 6" as P — Qp/, — I — B’ this gives a k-derivation.

i =h—0,andbe J, then b (b) = h(b) —0(b) = (b) — T (b) = 0.
Thus A’ gives a morphism ¢ : A — B’ lifting f by (a).

also HS def theory
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2.8.21 1II.8.7 x

8.7. As an application of the infinitesimal lifting property, we consider the following
general problem. Let X be a scheme of finite type over k, and let # be a coherent
sheal on X. We seek to classify schemes X' over k, which have a sheaf of ideals
# such that #? = Qand (X',0y./#) = (X,0y), and such that .# with its resulting
structure of ¢y-module is isomorphic to the given sheaf . Such a pair X',
we call an infinitesimal extension of the scheme X by the sheaf #. One such

extension, the triviul one, is obtained as follows. Take . = 'y @ F as sheaves
of abelian groups, and define multiplication by (a @ ) (a @ ') = wa’ D
{af " + a'f). Then the topological space X with the sheaf of rings € ,. is an in-
finitesimal extension of X" by #.

The general problem of classifying extensions of X' by # can be quite com-
plicated. So for now, just prove the following special case: if X is affine and
nonsingular, then any extension of X by a coherent sheaf # is isomorphic to
the trivial one. See (1I[, Ex. 4.10) for another case.

Let A//I~A,I~M,I[*?=0.

We must show that A’ ~ (A @ M, +) where + is defined by (a,m) (a’,m') — (ad’,am’ + a'm).

The infinitesimal lifting property gives a morphism A — A’ and thus we have A ® M ~ A’ by associating
M with I as an A-module.

If a € A then (a,0) (a',m’)

= (ad’,am’) by the A-module structure on A , and since M ~ I .
ImeM%I,then( m) (a',m

) (0,a'm) since mm’ € I* .

2.8.22 1I.8.8 x

8.8. Let X be a projective nonsingular variety mer k. For any n = 0 we define the
nth plurigenus of X to be P, = dim (X .w¥"). Thus in pafticular P, = %
Also, for any ¢, 0 < ¢ < dim X we define an integer h*°|= dim, (X £ ,)
where 4, = /\"2,, is the sheal of regular g-forms on X. [n particular, for
g = dim X, we recover the geometric genus again. The integgrs h%" are called
Hodge mimbers.

i_.lning e rrethodof 8 TS show i £, anmd 1 are dirarional invariants of
X, ie.if X and X' are birationally equivalent nonsingular projective varieties,
then P 1X) = P(X")and h*°(X) = H*"(X").

As in 11.8.19.

2.9 1I.9 Formal Schemes - skip
I1.9.1

9.1. Let X be a noetherian scheme. Y a closed subscheme, and X the completign of
X along Y. We call the ring I'(X.C ¢) the ring of formal-reqular funcrions gn X
along Y. In this exercise we show that if Y is a connected, nonsingular, positive-
dimensional subvariety of X = P} over an algebraically closed field k. |then
MNX.oy =k
fa) Let .# be the ideal sheaf of ¥ Use (X.13) and (8.17) to show that there 5 an

inclusion of sheaves on Y, # 9% & (¢, (—1)"""

MISS
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{b) Show that forany r = 1. I(Y.7". 7" ") = 0.
MISS

(¢} Use the exact sequences

0= JF a7y 9" =0

and induction on r to show that I'(¥,(','#") = k for all r = 1. (Use (8.21Ae).)

MISS

(d) Conclude that (X0 z) = k. (Actually, the same result holds without the
hypothesis Y nonsingular, but the proof is more difficult—see Hartshorne
[3.17.3)])

MISS

I1.9.2

9.2. Use the result of (Ex. 9.1) to prove the following geometric result. Let Y = X =
P! be as above, and let [:X — Z be a morphism of k-varieties. Suppose that
T 715 @ SINEIE closed point P & Z. (hen 14 = P aiso.

MISS

I1.9.3

9.3. Prove the analogue of (5.6) for formal schemes, which says, if X is an affine ﬁ}rmlal
scheme. and if
0% -=5—-8 -0
is an exact sequence of ¢ ,-modules. and if & is coherent, then the sequence of
global sections
0= NEF) = TEF - TXF) -0

1s exact. For the proof. proceed in the following steps.
{a) Let 3 be an ideal of definition for X, and for each n = 0 consider the exaltt
sequence

ﬂ — ﬁ*llagnﬁ.l — ﬁ_."laﬂﬁr — ﬁr.- — {]

Use (5.6), slightly modified. to show that for every open affine subset U < [,
the sequence

0= FUF IF) = TULFIE) = FUFE) -0
15 exact.
MISS

R . -
and that the sequence of global sections above is exact.

(b Now pass to the limat, using (9.1),(9.2h, and (9.6). Coneclude that § = lim & 3%

MISS
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11.9.4

9.4. Use (Ex. 9.3) to prove that if

15 an exact sequence of ¢, -modules on a noethenan formal stheme X, and if [§.5%

I 1

are coherent, then & is coherent also.
MISS

I1.9.5

9.5

. 11 % 1s a coherent sheal on a noetherian formal scheme X, which can be generated
by global sections, show n fact that 1t can be generated by a finite number of s
global sections.

MISS

I1.9.6

9.6. Let X be a noetherian formal scheme, let 3 be an ideal| of definition, and for each
1, let ¥, be the scheme (X0, 3"). Assume that the|inverse system of groups

lﬂ Y..(y )) satisfies the Mittag-Leffler condition. Then prove that Pic ¥ =

lim Pic ¥, As in the case of a scheme, we define Pic § to be the group of locally

free (' ,-modules of rank 1 under the operation &. Progeed in the following steps.

(a) Use the fact that ker(I'(Y,. [ Ly, )= T(Y,.Cp 1) 19 a nilpotent 1deal to show
—that-themrversesystei s

spective rings also satisfies

(ML}

MISS

{b) Let % be a coherent sheaf of ,-modules, and assume that forleach n, there is

some isomorphisme,: & 3"% = (. Thenshow that there is §n isomorphism
& = (',. Be careful. because the ¢, may not be compatible with the maps in

the two mverse systems (¥ Sv) and (' )T Conclude that the natural map
Pic X — lim Pic Y, 15 injective.

MISS

fc) Given an invertible sheaf &, on ¥, for each n, and given 1somorphisms %,

- ""__'_'R__' =

a1 '@
(y, = ¥, construct maps !’,,- — 'f‘ for each n” = n s0 as to make an ifiverse
system. and show that ¥ = lim ¥ is a coherent sheal on X. Then shoy that
s locally free of rank 1., and t 1hu~. conclude that the map Pic X — lim Pic 1,

Is surjective. Again be careful, because even though each ¥, is !L}LJI!} rec of

rank 1. the open sets needed to make them [ree might get smaller and smaller
with n.

MISS

(d) Show that the hypothesis "(I'(Y,.(, )) satisfies (ML)” is satisfied if either X i

affine, or each Y, is projective over a field k.
Note: See (111, Ex. 11.5-11.7) for further examples and applications.
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MISS

3 III Cohomology

3.1 III.1

no questions.

3.2 III.2 x
3.2.1 Ill.2.l.axg

\—Zﬂ—rﬂ—hﬁ——ﬁfhrrhtﬂﬂ%nﬂwrmrﬁn—mﬁwh&d—k—kﬁ be distinct closed
points of X, and let U' = X — |P.Q!. Show that HY(X.Z,) # (.

We have an s.e.s. 0 = Zy — Z — ipZ @ igZ — 0.
(see Ex.2.1.17)
LESis0>1'(X,Z) > Z —>Z&®Z — ---

Since Z cannot surject to Z2, H' # 0.

*(b) "vlore generally, If:t YeX = Ak bf: the unmn]of n+1 h}perpldnes in suit-
L abbrgeneralpesitienandlet e Shew that H'(X,Z,) # (0. Thus the
result of (2.7) is the best possible.

MISS

3.2.2 III.2.2 x flasque resolution g

. o . . |
2.2. Let X = P, be the projective hne over an algebraically closed field k. Show that
the exact sequence 00 = (¢ — ¥ — ¥ ¢ — 0 of (I, Ex. 1.21d) i1s a Aagque res-
olufion of T, Conclude Trom (1T, Ex. T.2ZTe) that HTX (| = Oforall 7 = 0.

By 11.21.d, £ /0 is > ip (Ip) , the sum of skyscraper sheaves.
The constant sheaf is flasque as P! is connected. (use 11.1.16)
Applying the LES in cohomology gives the desired vanishing in cohomology.

3.2.3 1III.2.3 x Cohomology with Supports

2.3. Cohamology with Supports (Grothendieck [7]). Let X be a topolofgical space, let
Y be a closed subset, and let .# be a sheaf of abelian groups. Let I;(X..# ) denote
the group of sections of # with support in ¥ (11, Ex. 1.20).
{4) Show that I'y(X,-) is a left exact functor from 20 .X) to b,
We denote the right derived functors of I'y(X.-) by Hy(X.-)} They are the
coliomology groups of X with supports in Y, and melﬁcn,m:, in a given sheaf.

Let 0 » .7 —.% — F" — 0 an s.es.

We have I'y (X, #') C I'y (X,.%) and we need to show exactness on the right. Let s be in the kernel of
the second map. This s gives rise to an element in the kernel of I' (X, .#) — I' (X,.Z#") . By left exactness of
[, there exists s’ mapping to s. We want to show s/, = 0 for z € X\Y. This follows by checking the stalks.
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3.2.4 b. x Flasque Global sections are exact
i e e e e raers g e da e eEEA M AEE L SEE b et s e
(b) If } = #" = .# - #" =0 is an exact sequence of sheaves, with #' flasque.
show that
0= Ty X, FN= T F) =Ty X, F)1=0
1S exact.
We know from (a) it’s left exact.
So we need to show the RHS is surjective.
For s e Ty (X, #") , s e T (X, F").
We have exactness on open sets by 11.1.16.b.
Thus choose t € I' (X, .#) in preimage of s.
Atz € U = X\Y, then ¢, — s, = 0, so by exactness of stalks, we have a, € %, mapping to t,.
Now find a small neighborhood U, and a section a mapping to t|y, .
Find an open cover of such U,.
note that the u,t restricted to such an open cover agree
Using sheaf axioms and flasqueness we find a global a mapping to ¢t on U.
t—avwr s,and on U, t —a is zero so t — a is supported on Y.

3.2.5 IIl.2.2.c x

See the proof of Prop. I11.2.5, Flasque Vanishing Theorem

3.2.6 x

(d) If # is flasque, show that the sequence

0= MyX.F) = X F) = [(X = Y.#) =0

15 guact

easy
Apply the global sections functor to the sequence of 11.1.20.b.

3.2.7 x

fe) Let U =X — Y. Show that for any #, there is|a long exact sequence of
cohomology groups

0 = HYX.F) — HYX F) - HYU.F|p) —
- HUX . F) = HY(X F) - H(U. F|,) —
s HI{X.F) = ..

Let .Z* be an injective resolution of .%#.
Now apply the sequence of part (d) to .F to get the long exact sequence.
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3.2.8 excision x

(f) Excision. Let V be an open subset of X containing Y. Then the'e are natural
functorial isomorphisms, for all i and #.

WX #) = Hy (V.7

There is an isomorphism I'y (X, . %) — I'y (V,.Z]|v) (to see this it may be helpful to consider the espace
etale of %) where V' is an open subset containing Y.

Now if I* is an injective resolution for .%, then I’y is an injective resolution for Z|y, so the stated
isomorphism gives an isomorphism in cohomology.

3.2.9 1II.2.4 x Mayer-Vietoris

2.4, Maver Vietoris Sequenee. Let Y.Y; be two closed subsets of X. Then there 1 @
long exact sequence of cohomology with supports

e Hllun \'JX,aFi - H!I'|IX"§T} $ HJTJ{X"FI - JT: U"z{x*'jrj i
— H!* ! [

[ LIS -

We have the following diagram:

The columns are exact by flasqueness and I11.2.7.d. The middle row is obviously exact, and the bottom
row is exact by sheaf axioms. Using the 9 lemma or a spectral sequence gives the top row exact. Now take
the LES of the top row.
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3.2.10 III.2.5 x

2.5, Let X be a Zariski space (11, Ex. 3.17). Let Pe X be a closed point, gnd let X,
be the subset of X consisting of all points Q € X such that P [Q] . Wecall X,
the local space of X at P, and give it the induced topology. Let j: X, < X be the
inclusion, and for any sheafl # on X, let #, = j*#. Show that for all i, #, we
have

lel'X_jFl = HI‘;[XP,_-F]!:L

Since H' results from taking cohomology of the global sections functor, we claim that I'p (X, .#) ~
Fp (Xp, gzp) .
The morphism I' (X, .#) — I'(Xp, #p) = im F (U) = Fp induces a morphism on the localization

= peU

f : Fp (X,gz) — Fp(Xp,ﬁp).

We just need this to be a bijection.

Suppose that f(t) = f(s) in I'p (Xp,.-Zp). Thus sp = tp since f sends elements to their germs. Since
they agree on every stalk, then s = t. Thus f is injective.

Now suppose s € I'p (Xp, Fp) = Fp .

Thus we can find a neighborhood U > P and sy € .% (U), by definition of compatible germs, such that
Sy represents s.

If necessary shrink U so that (sy), = 0 for @ # P .

Then if V.= X\ P ,sy|unvy = 0 so that sy and 0 glue to give a global section with support in P. Thus f
is surjective.

3.2.11 III.2.6 x

2.6. Let X be a noetherian topological space, and let |.4,],, , be a direct system of
injective sheaves of abelian groups on X. Then lim |7, is also injective. [ Hints:
First show that a sheal . is injective if and only if for|every open set U = X, and
for every subsheal # = Z;. and for every map f:3# — .#, there exists an ex-
tension of f to a map of Z,. — 7. Secondly, show tlfﬁlit any such sheaf 4 is finitely
generated. so any map # — lim .#, factors through one of the .#,. |

Note that a sheaf .7 is injective iff for each open set U C X and for every subsheaf #Z C Zy and for every
map [ : #Z — & , there exists an extension of f to a map Zy — # . This is essentially the definition of
injective in any algebra book.

Now suppose #Z C Zy . If U = [JU; is a decomposition of U into connected components, then by
noetherianity of X, |JU; = U,,.

For each i, Z (U;) C Zy (U;) = Z are subgroups generated by s; so that finitely many s; generate Z.

For a map f: % — li_?;ﬂfa , then f(s;) =t;, € A, (U;) .

This is a direct system, so the morphism factors as #Z — ., — li_r)nfa for some b.

IfU C X and Z C Zy , then f factors through f, : Z — %,
By the hint, .%, is injective gives f;, extends to Zy — %, and thus we give an extension Zy — %, — lim.%,
%

of f. So lim .#, is injective.
—

3.2.12 x ITI.2.7a g Cohomology of circle

2.7. Let §' be the circle (with its usual topology), and let Z be the constant sheaf Wl'
{a] Show that H'{§'Z) >~ Z. using our definition of cohomology.
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It’s a lot easier to just use hurewicz theorem since 7 (S') is Z.

3.2.13 b. x

| (b} Now let # be the sheaf of germs of continuous real-valued functions 1’|-n ol
Show that HY{§ 25 = 1.

If 2 is the sheaf of all real-valued functions, then we get a LES.

0— H°(S'\, %) — H° (S, 2) % H° (S, 2/%) — H' (S", %) — 0 as H' (S',2) = 0 since Z is flasque.

Let s = {(Us,s:)}_, € H°(S', 2/%) since S' is compact, and write r; = ;41 — s; extend by zero so r; is
defined on U;. Wlog by shrinking assume (U; N U;11) N (U1 NUjpo) =0 .

Thus if r = {(U;,7;)} then on U; N Uj, r; — 141 = 714

Thus r € H°(S*, 2/ %) .

Now let t; = s;+71; , t = {(Ui,t;)} sot : S' = R, and t € H° (S, 2) since t;|u,nv,,, = Si + Sig1 — 8 =
Si+1 = tis1|vinvs., - Also t is mapped to itself in H° (S*, 2/%) so that t is in the image of a .

If ' € H°(S', 2) satisfies 7'|p,np,,, = 7 on U; N Uz and 0 elsewhere, then 7/ + r so r is in the image of
a. Thus s =t — r is in the image of a. So a is surjective.

3.3 IIL.3 x Cohomology of a Noetherian Affine Scheme
3.3.1 IIL.3.1x

3.1. Let X be a noetherian scheme. Show that X is affine if and only if X', (11 Ex. 2.3}
is affine. [Hint: Use (3.7}, and for any coherent sheaf # on X, consider the filtra-

tion # = .4 -.# = +*.# = ..., where .1 is the sheal of nilpotent elements
on X.]

Suppose X is affine. Then X,.; = Spec(A/N) , N is the nilradical of A = I'(X,0x). So X,eq =
Spec (A/N).

Now suppose X4 is affine. If X is dimension 0, then each point is in an affine neighborhood so X is
affine.

Now let .4 be the sheaf of nilpotents on X, by noetherianity, .#¢ = 0 for d > m.

Consider the Ox,_, —module 9y = N F | N4 . F . By theorem 111.3.7, H' (X,9;) = H' (X,cq, %) =0
so we have a surjection

0=H' (X, V/"TF) - H' (X, V°F).

By induction, H' (X, #/*ZF) =0for k <d .

Thus H' (X,¥,;) = 0 so .Z is affine.

By thm 3.7, this is equivalent to X affine.

3.3.2 IIL.3.2 x

3.2. Let X be a reduced noetherian scheme. Show that X is affine if and opnly if cach
irreducible component is affine,

If X is affine, then by exc II.3.11.b, every irreducible component is affine.

If every irreducible component is affine, and Y7, Y5 is an arbitrary closed subscheme, Y5 an irreducible
component of X, then consider 0 — Hy,uy, = Hy; — Hyiny, — 0, 71 Yo — X. We have by thm I11.3.7,
H' (X, i.%,ny,) = H' (Ya, #y,ry,) = 0 so there is a surjection H' (X, Hy,.y,) - H' (X, .%y,). Continuing in
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this manner step-by-step, we achieve a surjection H' (X, #,0v,0..0y,) = H' (X, %, ). Eventually, Y; U ...
Y, = X so that 0 = H' (X, #x) - H' (X, #,) and thus by thm I11.3.7, X is affine.

3.3.3 1III.3.3 I, is left exact. x

3.3. Let 4 be a noetherian ring. and let a be an ideal of 4.
{a) Showthat I (-)(I1, Ex. 5.6) is a left-exact functor from the category of 4A-modules
to itsell. We denote its right derived functors, calculated in Yod(A), by H(-).

Consider 0 -+ N — E — M — 0.

We have 0 — Ty (N) — Ty (F) as T'y (P) C P for A-mdoules P.

If e € ker (T'y (E) — Ty (M)) , then a‘e = 0 some ¢. (defintion of Ty).

Since global sections are left exact, then there is n +— e

Then a'n — 0.50 n € T'y (N).

Thus we have shown that the kernel of the second map is contained in the image of the first map.
The opposite inclusion is clear.

3.34 b.x

| (b} Now let X = Spec A. ¥ = Via). Show that for any A-module M,

Hi(M) = Hy(X. M),
where Hi(X.-) denotes cohomology with supports in ¥ (Ex. 2.3).

We show that T, (1) =Ty (X,7) .

Let M arbitrary. If m € T';, (M) then a"m = 0 for some n.
If pe X isnot in Y, then p B a so there is a € a not in p.
Then a"m ¢ p so a"m = 0 and thus m =0 in M, .

Thus m € I'y (X, M"™).

Next suppose m € I'y (X, M)

Thus Supp m =V (Ann m) C V (a) and thus v Ann m D a by thm I1.2.1 .

A is noetherian, so a = (f1, ..., f,) and f" € v/ Ann m and thus f/"% € Ann m.
If N =]]nij; then f¥ € Ann m for all i.

Choosing a large enough N’ , then a®¥' C Ann m and thus m € T'y (M) .

3.3.5 x
|

{cf Forany 4 show thatl 1, (T = 11 17T

Lo (H:(M)) C Hi (M) by definition.

Let 2 € H: (M).

Take T', of an injective resolution I; for M to see that H! is a quotient of T', (I;).
Thus H: (M) C T, (H: (M)) .
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3.3.6 1III.3.4 x Cohomological Interpretation of Depth

3.4. Cohomological Inmterpretation of Depth. If 4 is a ring, o an ideal, and M an A-
module, then depth, M 1s the maximum length of an M-regular sequence x,, .. .. ¥
with all x, € a. This generalizes the notion of depth introduced in (11. §8},

{a) Assume that 4 is noetherian. Show that if depth, M = 1, then [, (M) = {0,
and the converse is true if M is finitely generated. [Hint: When M is finitely
generated. both conditions are equivalent to saying that a 1s not contained in
any associated prime of M.

Suppose depth,M > 1 then there is x € a such that x is not a zero-divisor for M. Then neither is 2" for
any n. Thus a” can not annihilate any element so I'y (M) = 0.

Now suppose I'y (M) = 0 for M finitely generated. For m € M and n > 0 then there is an z € a” with
xm # 0 .

Then a is not contained in any associated prime so by prime avoidance, a is not in the union of associated
primes of p which is the set of zero divisors of M. Thus depth,M > 1 .

3.3.7 b. x

{b) Show inductively, for M finitely generated, that for any » = 0, the following
conditions are equivalent:

1) depth, M = n:
() HM)y=0foralli < n

For more details, and related results, see Grothendieck | 7]

Suppose the statement is true for n.

Choose M with depth,M > n + 1.

If x1,...,2,41 € ais an M-regular sequence then we have

o= HVYN (Mo M) — HY (M) =5 0 (M) — - -

By induction, H*™' (M /z1 M) = 0.

Thus the induced map xx; should be injective, thus by exc I11.3.3.c, H? (M) =0 .

On the other hand if H: (M) =0 for i <n+ 1, then the LES we have H! (M /z,M) = 0 for i < n.
Now by induction, depthyM /x1M >n —1 = depthM > n .

3.3.8 III.3.5 x

3.5. Let X be a noctherian scheme, and let P be a closed point of X. Show that the
following conditions are equivalent:

(1) depth 0, = 2;
{uy if U 1s any open neighborhood of P, then every section of (' y over U — P
extends uniquely to a section of ¢ y over U,

This generalizes (1, Ex. 3.20), in view of (11, 8.22A).

For U 5 P, every section of Ox over U— P extends to a section of Ox over U iff I' (U, Ox) ~ T' (U — P,Ox)
which, computing cohomology, by exc I11.2.3(e) is the same as Hp (U, Ox|y) ~ Hp (U, Ox|y) = 0. By exc
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I11.2.5 this is equivalent to H® (Spec Op, Ogpec 0p) = Hp (Spec Op, Ogpec 0,) = 0 . Now use exc 111.3.3.b,
and exc II1.3.4 to see this is equivalent to depth,Op > 2 .

3.3.9 IIL.3.6 x

3.6. Let X be a noctherian scheme.
(a) Show that the sheaf % constructed in the proof of (3.6) is an injective object|in
the category Qeo{ X)) of quasi-coherent sheaves on X. Thus QeofX') has enough

injectives.

¢ is constructed by covering X with open affines U; = Spec A; for i = 1,n and let Z|y, ~ M;. If M; is
embedded in an injective A;-module [; , then for each i, let f; : U; — X and define ¥ = @ f, (1:1>

To prove injective, given 0 = ' — F# and ' — ¢ we want to lift this to a morphism # — ¢ .
Note that by injectivity of I;, any f : F' — fi.l; gives #'|y, — I; which lifts to f : F[y, — [; . Thus
fixI; is injective now the lifts commute with direct sums.

*(b) Show that any injective object of LeolX) is Hasque. [ Hinrs: The method of
proof of (2.4) will nor work, because (", is not quasi-coherent on X in general.
Instead, use (11, Ex. 5.15) to show that if # ¢ Qeo(X) is injective, and iIf U € X
15 an open subset, then .#|; is an injective object of Qeo(l'). Then cover X

ol —— o |
WIURT LR TS .J

starred

3.3.10 partc. x

ic) Conclude that one can compute cohomology as the derived functors of I'(X, ),
considered as a functor from Qeol( X) to Ab.

Using part (b), we see injective resolutions are flasque.

3.3.11 IIIL.3.7 x

3.7. Let A be a noetherian ring, let X = Spec A, let a = 4 be an idefal, and let U = X
be the open set X — Via).
{a) For any 4-module M, establish the following formula of Defligne:

[}

r
Iy

=
i,

B Doemen BN cpme ot ALY
== T ol g e el
/
1

'
L=

Note that A is noetherian, so a = (fy, ..., f,) is f.g.
Also U is covered by D (f;) so s € I’ (U, M) is 3 ra; € My, .

On the other hand if > %ai € ®Mjy, and is sent to 0 by localization at f; , then it’s actually in T’ <U, M)

N 4

Thus we have an induced g : lim hom (a”", M)
- n

If ¢ : a” — M define f (¢) by ((ﬁ(f{) ¢(f;)>. This defines a section, and it’s well-defined by calculation.

Note that if g (¢ = 0) ,then ¢(J£> =0¢e My so f'g(f) =0 € M some s; . Choose one s to work for all

of them. Thus if a”**")*! is generated by ¥ so that ¢ (f7") = 0. So g is injective.
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Now suppose f €T’ (U, ]\7[), f defines <}’i},..., ;Z’,iz)

SmwfEF(MNO,mw(ﬁﬂﬁﬁﬁmf—ﬁmQZOEA[

If s > s;; , then define m} = ffm; and if r > r; then (f{**f —m}) |ps,) =0so f{*°f =m}on U.
For R > n (r + s) , aft is generated by f/1*.

Define ¢ : aft — M sending Y a;fi+* to (3 a;ml) |-

Check that this is well-defined and the image of ¢ is (m—/l m, ) = f . This gives surjectivity.

n
flr+sv LS fﬁ+s

3.3.12 b. x

ib) Apply this in the case of an injective A-module I, to give another pruut‘uf{li].

Let UDV with U =X — V(a)and V = X — V (b) .

As in (a), assume a, b are radical.

Thus V (a) CV (b) = b Ca.

Thus b"™ C a™ so that Homa (a",1) — Hom 4 (b",I) is surjective.
Thus lilnHomA (a", 1) — l@ln Homy (b™,1) so by (a), I™ is flasque.

3.3.13 III.3.8 x Localization not injective non noetherian.

3.8, Without the noetherian hypothesis. (3.3) and (3.4) are false. Lep 4 =F&[xq.x,x5.... ]
with the relations xix, =0forn= 1,2 ... . Let [ be an injgctive 4-module con-
taining 4. Show that I — I is not surjective.

If I — I, is surjective, find m € I with z{ (zom — 1) = 0.
Thus z™m = 8.

Multiplying both sides by z,41 shows that z§z,.; = 0.
(use the given relation).

However this ring doesn’t have this relation.

3.4 III.4 x Cech Cohomology
3.4.1 1III.4.1 x g pushforward cohomology affine morphism

4.1. Let f:X — Y bean affine morphism of noetherian separated schemes (I, Ex. 5.17).
Show that for any quasi-coherent sheal # on X, there are datural isomorphisms
foralli = 0,

Hi X, #) = H(Y [ F).
[Hint: Use (11, 5.8).]

Consider {V;} an affine cover of Y.

Since f is affine, f~! (V) are affine cover of X.

By separatedness and an excercise in (I1.37) the intersections of the preimages are affine.
Since .# is q.c., on the intersections of the preimages, .7 |—1(y;)n... & M.

Since f is affine, the pushforwards of such are also of M"’s (see ex 11.5.177)

Now taking cech complexes, and applying I11.4.5, the result follows.
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3.4.2 III.4.2 x

4.2, Prove Chevalley's theorem: Let f:X — Y be a finite surjective morphism o]
noetherian separated schemes, with X affine. Then Y 15 afhine.
(a) Let f:X — Y be a finite surjective morphism of integral noetherian schemes.
Show that there is a coherent sheaf .# on X, and a morphism of sheaves
a:0% — f,. # for some r = (), such that = is an isomorphism at the gr:nl.'rif-‘
point of ¥

Apply #om (;,.%) to a gives a morphism Som (f..H#,F) — Hom (O}, F) which is an isomorphism
at the generic point.

We have an isomorphism J#om (O}, %) ~ .F .

By exc 11.5.17, since S€om (f..# ,.F) is q.c., there is a q.c. ¥ with Som (f.. 4, F) ~ f.9 .

343 b.x

(b) For any coherent sheal .# on Y, show that there 15 a coherent sheal % on X,
and a morphism fi: [.% — #" which 1s an 1somorphism at the generic point
of ¥. [Hint: Apply # om(-.#)to = and use (1], Ex. 5.17e).]

(following http://mathramble.wordpress.com/2013/03/14/chevalleys-theorem/ )

Let L the function field of X and K the function field of Y. The morphism f gives an inclusion K — L.

f finite implies there is a basis {ej, ..., e, } for L over K, where e; is represented by a s; € I' (U, Ox). If
&; is the coherent sheaf s; - Oy, , and 7; : U; — X , then (7;), (&}) is quasi-coherent since U; are noetherian,
and since f is finite this sheaf is coherent.

For # = @ (7;), (&) , the generators e; of f,.# give a morphism o : Oy — f..# which is an isomorphism
K" =~ L at the generic point of Y.

Now take = #om («, . F) so that 8 : Som (fo M, F) — Hom (O}, .F) . Note that #om (O, F) ~
F" and Hom (f.t ,.F) is an f,Ox-module. By exc I1.5.17, for f affine, f, : €oh (Oy) =~ Qcobh (f.Ox) so
that om (fot ,.F) ~ f.9 , 94 a coherent Ox -module. Thus 5 : f,9 — F" . As taking s#om commutes
with taking stalks, then [ is an isomorphism at the generic point.

344 c. x

(¢c) Now prove Chevalley's theorem. First use (Ex. 3.1) and (Ex. 2.2} to reduce to
the case X and Yintegral. Then use (3.7), (Ex. 4.1), consider ke ff and coker fi,
and use noetherian induction on ¥

By a previous excercise, we may assume X,Y are irreducible. Suppose that Y is not affine, and let X
(by the previous excercise) are not affine. Let Z < X a minimal element of X, Z is reduced. f is finite, so
WLOG let f := f|f-1(z) since finite morphisms are stable under base-change. Thus as Z is minimal, and we
are base changing from Y to Z, we can assume that proper closed subschemes of Y are affine.

If # € €obh(X), then by (b) we can find 4 € €oh(X) and 5 : f,4 — F" which is an isomorphism
at the generic point. If 2 = ker § then 2 € Qcob (Supp Z). Since Z is minimal Supp 2 is affine, so by
thm II1.3.7, 2 is acyclic. As a finite morphism is affine, then f,¥ is acyclic. Taking LES in cohomology of
0— 92— f.9 — Z" — 0 and using induction gives .Z#" , hence .7 is acyclic so that Y is affine.
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3.4.5 1III.4.3 g nice x

4.3, Let X = A] = Speck[x,v],andlet U = X — [(0,0)]. Using |I. suitable cover of
L' by open affine subsets, show that H'(U,( ;) is isomorphic to|the k-vector space
spanned by [x'1Y|i,j < 0]. In particular, it is infinite-dimensipnal. (Using (3.5),
this provides another proof that U is not affine—<cf. (1, Ex. 3.6).)

Let U, = Spec k[z,y,27'], U, = Spec k[z,y,y '] . Then U,, = U, NU, = Spec k[z,y,2~ y~']. The
cech complex is therefore

0= klz,y,z ' |®klr,y,y ] = klz,y, 27,y = 0.

The differential is given by d (f1, f2) = fi — fo-

Then H (U, Oy) = ker d =~ k [z, y].

HYis klz,y,a7 Ly /D ax'y?| i > 0 or j > 0}.

Thus H' is generated by monomials with negative degree in both z and v.

3.4.6 IIl.4.4x

4.4. On an arbitrary topological space X with an arbitrary abelian sheaf #, Cech
cohomology may not give the same result as the derived functor cohomology. But
here we show that for H', there is an isomorphism if one takes the limit over a(l
coverings.

(a) Let I = (U';);; be an open covering of the topological space X. A refinemer
of 11 1s a covering B = (V) ., together with a map /:J — [ of the index sets,
such that foreach je J, V, < U, . 11 Wis a refinement of 1, show that ther
is a natural induced map on Cech cohomology, for any abehian sheafl .#, and
for each i,

——

[1]

AHIOLF) - HYB, 7).

The coverings of X' form a partially ordered set under refinement, so we can
consider the Cech cohomology in the limit

lim fLF).

If p> 0, then for each (p+ 1)-tuple j € Js, there is an induced morphism from restriction .7 (Uy(j)) —
Z (V;) and hence an induced morphism C? (U,.%) — C? (0, .#) . After some manipulation of indices, we find
that for any i, , @ € C? (\'"*lda); = (da),; = ... = (d\a) . This gives a commutative
square

Cr (U, F) —2L= Pt (4,.Z) and thus a morphism C* (U4,.%) — C* (U, .7) .

b1
l/\z l)\iJrl

cr (ma ﬁ) —d> C’p+1 (ma ﬁ)

0)---A(dp+1) |Vj0~~~3'p+1 Jo---Jp+1

3.4.7 b. x
(b} For any abelian sheaf # on X, show that the natural maps (4.4) for each
covering

HF) — HIX.F)

are compatible with the refinement maps above.
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Let 0 — % — Z° be an injective resolution of .# which gives a unique up to homotopy map C* (4, %) —
#* . The X" from (a) are induced by maps of chain complex, and by uniqueness, C* (4, F) — C* (0, F) —
&* is homotopic to C* (U,.7) — #* and since homotopic maps give the same thing on cohomology, we have

H (W, F)— H (U,.7)

. |

H' (X, .F)

3.4.8 c.x

(c) Now prove the following theorem. Let X be a topological space, % a sheaf of
abelian groups. Then the natural map

lim H'(U#) -+ HYX.F)
e
is an isomaorphism, [Hinr: Embed # in a lasque sheal %, and let # = 4,7
50 that we have an exact sequence
0= F %40
Define a complex D) by
O — CLF) — CILE — D) = 0,

Then use the exact cohomology sequence of this sequence of complexes, and
the natural map of complexes

Dl — C(ILA#),

and see what happens under refinement. |

Weibel 5.8.3 gives a spectral sequence H" (X, H* (F)) — H'™**(X,.#). Now H°(X,H'(Z)) = 0 by
Milne, Etale 10.5.
Hence H° (X, H* (%)) = 0 so we have the required equality.

3.4.9 III.4.5x

4.5. For any ringed space (X.( ;). let Pic X be the group of isomorphism classes of
invertible sheaves (11, §6). Show that Pic X = H'(X (%), where (¥ denotes the
sheafl whose sections over an open set U are the units in the ring I'(LU.€ ). with
multiplication as the group operation. [Hini: For any invertible sheal ¥ on X,
cover X by open sets U, on which & is free, and fix isomorphisms @ (. = #|, .
Then on U, n U, we get an immuvrphism o, " @;of ¢ ., withitselfl. These
isomorphisms give an element of HY(ILC¥). Now use (Ex. 44).]

Since this is the case that’s important to me, I will assume % is a holomorphic line bundle. (You can
recall from an excercise in chapter 2 that vector bundles correspond to locally free sheaves so line bundles to
invertible sheaves).

Let U; an open covering of X on which .Z is trivial.

Then gap, : (U, N U) xC — (U, N Uy) xC gives a section of O such that g.pgp, = 1 and gupgpeges = 1. In the
language of cech cohomology, a cocycle in 7 € C* (U, O*) must be a collection of sections in 7;; € O (U; N U;)
such that 793 — 713+ 12|y, nvenu, = 0, or in multiplicative notation (since we are dealing with O* | 13731712 = 1
. Thus {ga} is a cocycle in C! (U, O*) and thus gives a cohomology class in H' (X, O0*) .
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Now we want to show that if £ ~ # , then £ ® .#* gives a cech coboundary. Recall that to have
a cech coboundary 7 , we need o € CY (U, O*) represented by a collection o; € O* (U;) such that doy; =
(07 — 0i) lirw; € O (UsNU;) and such that do = 7 or in multiplicative notation we need -2 = 7;;. In other
words, 7 is in the image of the boundary map.

Soif & ~ A , then X ® A* is trivial, so there are transition functions {74 := gup/ha} for £ & A*
which give a nowhere vanishing section o. Let o, : U, — C* the restriction of ¢. On U, N U, we therefore
have 42 . g, = o}, or ZL: = Tu = g—z so Ty defines a cech coboundary. Thus two invertible sheaves are the

R, a
same iff their difference is a cech coboundary.

3.4.10 III.4.6 x

4.6. Let (X .( y) be a ringed space, let .# be a sheaf of ideals with #° = 0, and let X|,
be the ringed space (X0 y/.#). Show that there 1s an exact sequence of sheaves of
abelian groups on X,

075 a0t —~(% —0,
where ( § (respectively, ( §, ) denotes the sheaf of (multiplicative) groups of unity
in the sheal of rings ¢ y (respectively, ¢ y ): the map & — ('} is defined by u—p

1 + «, and .# has its usual (additive) group structure. Conclude there is an exacy
sequence of abehan groups

» HYX.5) = Pic X — Pic X, » HIAX.7) > ... .

Use the stalks to check exactness.
Take the long exact sequence, and then use I11.4.5

3.4.11 1I1.4.7 x

4.7. Let X be a subscheme of P; defined by a single homogeneous equation
flxp.x,.x5) = 0 ofdegree d. (Do not assume [ is irreducible.) Assume that (1,0,0)
is not on X. Then show that X can be covered by the two open affine subsets
U=Xnix, #0 and ¥V = X n [x, # 0]. Now calculate the Cech complex

FUC L) @ TV ) = TU A V)
explicitly, and thus show that

dim HY X 0 y) = 1,

1
dim HY(X (' x) = < (d = Id = 2.

The standard cover of P? consisting of U; = D (x;) gives an open cover of X as well. Closed subschemes
of affine schemes are affine, so this is an affine cover. Removing Uy N X from the cover we still have an affine
cover.

Writingu =2 ,v=2 =2 and y = £ We have a cech complex:
T 1 2 2
Ruo] o klay] _, Klews”]

flu,1,v) ® f(z,y,1) — f(z,y,1) where (g (u,v) ) h (Iv y)) = <gwy—1,y71) —h (IL‘, y) :

For (g, h) in the kernel, g — h € (f (z,y,1)) so g —h = f'f for f' € k[z,y,y'] . Since (1,0,0) ¢ X then
f (1) = 3 icicaocjcq @'y’ with ags = 1 (so when we plug in (1,0,0) to f it doesn’t give 0). Write
f' = fo + fi + fo where the monomial terms x4y’ of f; have i < —d — j, of f; have 57 > 0, and of f, have
i > —d — j so that the monomial spanning the image in f’(ciulvi) of fof and the image of fif in % overlap
at the constant term.
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Note that f,f is in the image of the boundary of the cech complex so either i +d < —j or 7 > 0. But then
g = fof +go and h = —f1 f + hy where go, ho are constants. Thus (g, h) gives the same element in the kernel
as if g, h are constant and thus as if g = h. Hence the kernel is (a,a) for a € k so that dim H® (X,Ox) = 1.

Now f in the cokernel is a polynomial in k [z, y,y~!]. Any monomial 'y’ with j > 0 is zero in the cokernel
since there is (0, 2%, ¢/ ) mapping to it. Similarly, if j > 7, then (uv?~*,0) maps to it and it is likewise 0. Thus
write f =37 o jaga'y’ . (1,0,0) is not a point so f (zo, 1, 72) = f + apzd for ag nonzero. (Thus when we
plug in (1 0,0) it won’t satisfy f (..) = 0). Assume ay is 1 since scaling by units doesn’t change anything. Thus

we have 24 = — f (x,y,1) where f (z,y,1) satisfies 0 < i < d, 0 < j. Thus we can rephrase the cokernel as the
sums of monomials a;;z'y’ with 1 <i < d and —i < j < 0. Thus dim H' (X,0x) < 5 (d — 1) (d — 2) since

that is how many there are. Note that polynomials with 1 <7 < d and —i < j < 0 are not in the image of the
boundary map by what we have just said. On the other hand, if the are in (f (z,y,1)) = (xd + f(z,y, 1))7

then they should have some i > d . Thus dim H' (X,0x) =3 (d—1)(d—2) .

3.4.12 1II1.4.8 x cohomological dimension

4.8. Cohomological Dimension (Hartshorne [3]). Let X be a noetherian separated
scheme. We define the cohomological dimension of X, denoted cd{ X ), to be the
least integer n such that H{X ,#) = 0 for all quasi-coherent sheaves .# and all
i = n. Thus for example, Serre’s theorem {3.7) says that ed{X) = 0 if and only
if X 15 affine. Grothendieck’s theorem (2.7) implies that cd{ X'} = dim X.

{a) In the definition of cd(X'), show that 1t 1s sufficient to consider only coherent
sheaves on X, Use (11, Ex. 53.15) and {2.9).

Suppose that cd (X) = n and assume that .7 is q.c.
By exc I1.5.15.a, = lzm/a , F, are coherent subsheaves of .%.

By thm I11.2.9 we get H' (X, %) ~ H* (X, lim§a> ~ limH" (X, %#,) ~ lim 0 for i > n.
— —

—

3.4.13 b. x

{b) Il X is quasi-projective over a field k. then it 1s even sufficient to consider only
locally free coherent sheaves on X, Use (11, 5.18).

Thm I1.5.18, gives that . € €oh (Z7) is a quotient of a finite rank locally free sheaf, 0 - ¥ — & — .7,
& is fiite rank locally free. This gives a LES in cohomology --- — H* (X, &) — H' (X, %) - H" (X,9) —
H™ (X, &) —

For ¢ > n if the theorem holds for locally free, then the outer terms of above are 0 so the inner terms are
equal. By Grothendieck’s theorem, H* (X,%) = 0 for i > dim X so H' (X, #) =0 for i > n.

3.4.14 c x.
LA N B L S Ly P LN L =00 T i w o iy Y A Y ds s 4y
(c) Suppose X hasacovering by r + 1 open affine subsets. Use Cech cohomology

to show that odiX) < r

Using 4.5, since X is separated, we can compute using cech complex of r + 1 affines.
ThenC’T“—OandSOH’(X F)=0fori>r.

*(d) If X is a quasi-projective scheme of dimension r over a field k, then X can be
covered by r + 1 open affine subsets. Conclude (independently of (2.7)) that
cdiX) < dim X,
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starred

3.4.15 e. x

(e) Let Y be a set-theoretic complete intersection (1, Ex. 2.17) of codimension
in X = P;. ShowthatediX — V) <r - L

By exc 1.2.17, Y = HiNn.. N H, . By exc 1.3.5, X — H, is affine, for each i, and thus X — Y =
(X — Hy)U...U (X — H,) which is covered by r open affines. Using (c), then ¢d (X —Y) <r — 1.

3.4.16 1II.4.9 x

4.9. Let X = Spec k[x,,x,.,¥;,x,] be affine four-space over a field k. Let Y, be the
plane x; = x; = Oandlet ¥; bethe planex; = x; = 0. Showthat Y = ¥, u Y2
15 not a set-theorelic complete interseciion in X. Iherelore the projective closure

Y in P} is also not a set-theoretic complete intersection. [Hints: Use an affine
analogue of (Ex. 4.8¢). Then show that H3{X — Y.('y) # 0, by using (Ex. 2.3)
and (Ex. 24). If P = Y, n Y,, imitate (Ex. 4.3) to show H{X — P ,) # 0.]

Via exc I11.4.8.e, we can show H?(X —Y,Ox_y) # 0. If Z C X is closed, then by exc II1.2.3.d,
we have an exact sequence H' (X,0x) — H' (X — Z,0x_5) — H ' (X,0x) — H™ (X, Ox). Using 3.8,
H (X,0x) = H" (X, Ox) so the middle terms are equal. In this manner, H? (X —Y,Ox_y) ~ H} (X, Ox).
and same for Y] .
Mayer-vietoris gives Hy. (X,0x) @ Hy, (X,0x) — Hy (X,0x) — Hy,y, (X,0x) — Hy, (X,0x) @
Hy (X,0x) . Now X — Y is a complete intersection of codimension 2 and thus cd (X —Y;) < 1 by
(e) of the last exercise. Thus Hy. (X,0x) = H*(X —Y3,0x_y,) = 0. Similarly, H* (X —Y5,0x_y,) =
H? (X —Y5,0x_y,) = 0. The mayer-vietoris sequence gives us that H; (X, Ox) ~ Hy,qy, (X, Ox).
If P =YNY, = {(0,0,0,0,0)} then by mayer vietoris, we must show that Hp (X,Ox) = H3 (X — P,Ox_p) #
0. By cech cohomology on the cover U; = D (x;) using the complex k [:vl, Ta, T3, T4, :El_l} ®---Dk [351, T, T3, T4, $Zl] -

-1 -1 -1 ..-11 4d
k[$1,$2,$3,l‘4,[l§'1 , Ty }@--~@k[:ﬁ1,x2,x3,x4,x3 , Ty } =

-1 -1, -1 -1 oGkl L
k[x1,$2,$3,$4,$1 Ty Ty Ty ] we have H3 (X—P,OX,p):{xﬁxéx§x4.z,j,k,l<0}7ﬁ0.

3.4.17 TII1.4.10 (starred)

#4.10, Let X be a nonsingular variety over an algebraically closed field k, and let # be a
coherent sheaf on X. Show that there is a one-to-one correspondence between
the set of infinitesimal extensions of X' by # (11, Ex. £.7) up to isomorphism, and
the group H'(X.# ® .7 ), where .7 is the tangent sheaf of X (11.§8). [Hini: Use
(11. Ex. 8.6) and (4.5).]

MISS
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3.4.18 1II.4.11 x

4.11. This exercise shows that Cech cohomology will agree with the usual cohomology
whenever the sheal has no cohomology on any of the open sets. More precisely,
let X be a topological space, .# a sheaf of abelian groups, and !l = (U,) an open
cover. Assume for any finite intersection V = U, n...n U, of open sets of the
covering, and for any k = 0, that HYV,#|,;) = 0. Then prove that for all p = 0,
the natural maps

HP, 7 ) — HA X, #)

of (4.4) are isomorphisms. Show also that one can recover (4.5) as a corollary of
this more general result.

Let 0 — % — .#° an injective resolution of .% . We will compute the spectral sequence associated
to By = Hi0<._.<ip IP (Uio,..iq). For any open U and i, the sheaf .#%|; is injective and the restriction
0 — Fly — F*|y is an injective resolution of #|y . Thus EP? := H? (EJ?) are C1(%,4) for p = 0 and
0 otherwise by assumption, i.e. the cohomology of 7|y . Eg’q — E(‘j’Jrl give are the usual differentials on
C4(F,4) and thus EY? := H(EP*) is H? (%, 4) for p = 0 and 0 otherwise.

Next we will compute the spectral sequence going in the counterclockwise direction. This direction will
give the cech cohomology of #7 . .# are flasque by thm II1.2.4, so HY(Ey®) = T'(X, #7) for ¢ = 0 and 0
else. On the next page we get , H? (E},q) = H1(X, %) for ¢ = 0 and 0 otherwise.

Thus the cohomology of the total complex is isomorphic to both H* (X,.%) and H* (§,.%) by computing
first clockwise and then counterclockwise.

3.5 III.5 x Cohomology Of Projective Space
3.5.1 IIL5.1xg

5.1. Let X be a projective scheme over a field k, and let # be a coherent sheaf on X
We define the Euler characteristic of 5 by

HF) = Y(—1)dim, H(X 7).
If

0= F -F > F" =0

is a short exact sequence of coherent sheaves on X, show that 7(#) = y(.F') +
#F").

Let ¢ be the map induced on cohomology between .#' and % , and v* the map for .# — .Z" and §' the
coboundary. .
X(F)=>",(-1)dim H (X, ZF) =

Yoo (fl)i (dim kerd® + dim kery)') =
> (—1)" (dim kerd' + dim kery' + dim ker¢' — dim ker¢') =
> (=1)" (dim ker¢! + dim kery?) +

—1)"(

ST (=1)" (dim kerd® — dim ker¢') =
X (F)+x(F").
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3.5.2 IIL.5.2 x

5.2. {(a) Let X be a projective scheme over a field k, let (7,(1) be a very ample invertible
sheal on X over k, and let % be a coherent sheaf on X, Show that there is a
polynomial P(z) € Q[z]. such that x(5#(n)) = P(n) for all ne Z. We call P
the Hilbert polynomial of F with respect to the sheaf €'y(1). [Hinrs: Use
induction on dim Supp #, general properties of numerical polynomials
(I, 7.3), and suitable exact sequences

0=F = F(-1)=F =+ 2-10]

First replace .# by j..# so that we may assume X = PP}, . Dimensions of cohmology are preserved under
change of base by the flat base change theorem, so we assume £ is algebraically closed, and thus infinite. We
induct on the dimension of the support of .%. If this dimension is 0, then P (z) = 0 satisfies the requirements.

Now we want to find z € I' (X, Ox (1)) such that the map .# (—1) = .Z is injective (or just injective on
an affine base). For such injectivity, we can consider a finitely generated module over a noetherian ring, and
by primary decomposition theorems, we must avoid finitely many asociated primes to get injectivity (zero
divisors are set of union of associated primes). Thus we want to find a hyperplane missing all of the finitely
many associated primes of the finitely many elements of the open cover, since our field is infinite.

Note for example if all hyperplanes pass through finitely many points, and we have an open affine such
as Spec Sym V* with basis zo, ...,z, € V* | x, = £ gives the spectrum of k [z, ..., x,_1] . Here hyperplanes
are given by elements of V* which are k-linear combinations of x,...,z, 1 and z, = 1. For ax,, a € k if all
hyperplanes pass through finitely many points, then one of these points contains a nonzero multiple of z,, = 1
which contradicts the fact that this point should be a prime ideal of the ring.

In this manner we achieve an z € I' (X, Ox (1)) such that .# (—1) = % is injective. Therefore we achieve
an exact sequence 0 — .% (—1) 5 .# — ¢ — 0. This gives (since by a previous problem Euler characteristic
is additive on S.E.S. that x (X, .% (m)) = x (X, ¥ (m)) + x (X,.Z# (m — 1)) . Thus we are done if the support
of ¥is smaller than the support of .#. But since ¥, ~ .%,/x.%, is trivial if z is a unit in = ¢ p, we have
supp 4 = suppZ NV (x) so by Hauptidealsatz, dim Supp¥ = dim Supp# — 1 .

353 b.xg

(b) Nowlet X = Pj,andlet M = I' (#),considered asa graded § = k[x,,....x,]-
module. Use (5.2) to show that the Hilbert polynomial of # just defined is
the same as the Hilbert polynomial of M defined in (I, §7).

By 111.5.2, H (X,.% (n)) = 0 for i > 0 and n > 0.
Thus x (Z (n)) = dim (H° (X, Z (n))) = dim M,,.
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3.5.4 III.5.3a. x Arithmetic genus

5.3. Arithmetic Genus. Let X be a projective scheme of dimension r over a field k. We
define the arithmetic genus p, of X by
PAX Y = =1zl )=1).
Note that it depends only on X, not on any projective embedding.
{a) If X is integral, and k algebraically closed, show that H%X (04 = k, so that

r=1

pdX) = ¥ (— 1) dim, H {(X,0).

i=0
In particular, if X is a curve, we have
piX) = dim, H(X,0y).
[Hint: Use (1, 3.4).]
Projective = integral = variety (11.4.10) = H°(X,0x) =k (1.3.4.a)

3.5.5 III.5.3.b. x

e e ey . — _
(b) If X is a closed subvariety of P}, show that this p,(X) comncides with the one

defined in (1, Ex. 7.2), which apparently depended on the projective embedding.

So (—1)" (x (Ox) — 1) is the new one , ¢f (—1)" (Py (0) — 1) for the old one. Now just use IT11.5.2.a and
note that x (F (n)) = P (n) for all n € Z.

3.5.6 c¢. x g Important genus is birational invariant for curves!!

(c) If X is a nonsingular projective curve over an algebraically c]}ascd field k, show
that p,(X) is in fact a birational invariant. Conclude that a ronsingular plane
curve of degree d = 3 is not rational. (This gives another p}ﬂuf of (11, 8.20.3)
where we used the geometric genus.)

Using, for instance, the valuative criterion, a birational map between projective curves gives an isomor-
phism, since whereever the map is not defined, we can extend the map. Thus birational = isomorphic
— arithmetic genus is the same. Now using genus degree, g = 3(d—1)(d—2) > 3(3—-1)(3—-2) =
% (2:)1 =1 > 0 for a plane curve of degree > 3. But a conic, which is rational by chapter 1 is degree 2 and

by g =3 (d—1)(d — 2) has genus 0.

1154 xg

5.4, Recall from (11, Ex. 6.10) the definition of the Grothendieck group K(X) of a
noetherian scheme X.

(a) Let X be a projective scheme over a field k, and let @,{1) be a very ample
invertible sheaf on X. Show that there is a (unique) additive homomorphism

P:K(X)— Q[z]

such that for each coherent sheaf # on X, P(y(#)) is the Hilbert polynomial
of # (Ex. 5.2).
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Note that the hilbert polynomial is additivity on short exact sequences. Thus the map taking a coherent
sheaf to its hilbert polynomial is compatible with the structure of the grothendieck group.

3.5.7 b. x

ib) Nowlet X = P,. Foreachi = 0,1,... r let L, bealinear space of dimension
iin X. Then show that

(1) K(X)is the free abelian group generated by {7, )i =0,....r], and
{2) the map P:KiX) — Q] is injective.

[Hint: Show that (1) = {2). Then prove (1) and (2) simultaneously, by induc-
tion on r. using (11, Ex. 6.10¢).]

First we show (1) = (2).
For a linear embedding i : P? < P" | then Of, = 1,Ops.

Now y (Os (m)) = (7™ ) s0 S amy (01) = Y a; ( e ) under P.

Anything in the kernel of this map must have all a; = 0 by induction on the coefficients.
So P is injective.

Now we do (1) by induction, using that (1) = (2) for smaller . Note r = 0 is the trivial base case.

Then exc I1.6.10 gives us a right exact sequence K (P"!) — K (P") — K (P" — P"~!) — 0 from extension
by zero.

Suppose L; satisfies L; C L,_q for i <r .

P factors as K (P"™') — K (P") — Q2] which is injective for i < r by induction, so that K (P™1) —
K (P7) is injective.

Thus by assumption of (1) and induction, K (P") has a subgroup Z" with basis Oy, , i =0, ..., — 1 which
is the kernel of the second map K (P") — K (P" — P" 1) &~ K (A") =~ v (Oyr) - Z via the method of exc 11.6.10.

Thus K (P") is an extension of Z by Z" .

By basic properties of projective modules, Ext! (Z,Z) = 0 which means only extensions are trivial so that
K (P) ~ Z""! which is generated by ~ (Op,) for i =0, ...,r .

3.5.8 IIL55xg

5.5. Let k be a field. let X = P, and let ¥ be a closed subscheme of dimension g = 1,
which is a complete intersection (11, Ex. 8.4). Then:
(a) for all n e Z, the natural map

HY X, 0yn)) = HYY.0yn))

is surjective. (This gives a generalization and another proof of (11, Ex. 8.4c),
where we assumed Y was normal.)

We induct on the codimension » =n — q of Y. If the codimension of Y is 0, then

H° (X,0x (n)) = H° (Y, Oy (n)) is clearly surjective.

Now suppose that for all complete intersections Y’ of codimension 0 < i < r — 1 we have shown that
H°(X,0x (n)) — H°(Y’,Oy/ (n)) is surjective. Assume that Y has codimension r. Since Y is a complete
intersection, then using [1.8.4, Y = H;N...N Hy where H; are hypersurfaces. Then Z = H;N...N H,_; is also
a complete intersection. Z has codimension less than r, so by the induction hypothesis, H° (X, Ox (n)) —
HY(Z,0z (n)) is surjective. Thus we only have to show that H° (Z, Oz (n)) — H° (Y, Oy (n)) is surjective.

If H,has degree d then there is an exact sequence of sheaves:
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0= 0z (n—d)— Oz(n) = Oy (n) — 0 and taking cohomology gives

0— HY(Z,0z(n—d)) — H°(Z,0z(n)) = H*(Y,0y (n)) — ...

By (c) all higher cohomology is 0 so the H° form a short exact sequence.

Hence H° (Z,04(n)) — H° (Y, Oy (n)) is surjective so that H° (X, Ox (n)) — H® (X, Ox (n)) is surjec-

tive.

359 b.xg

(b) Y is connected ;

By 11.5.3.a, H° (X, Ox) ~ k.

By part a. of this problem, then H° (X, Ox) — H° (Y, Oy) is surjective.

By I11.2.6.1, the cohomology groups are k-modules.

Thus if H° (Y, Oy) # 0, then H° (Y, Oy) = k.

The rank of H° (Y, Oy) counts the number of connected components so there is only one component.

3.5.10 c. x g complete intersection cohomology.

c) HYYO m)=0forD =i <gandallneZ;

If Y has codim 0, then Y = P} . The result is then IIL.5.1.b.

Suppose we have proven H' (Y, Oy (n)) = 0 up to codimension r — 1.

By I1.8.4, Y is a complete intersection of codimension r in P} iff there are hypersurfaces Hy, ..., H, such
that Y = HiN..NH, . Assume Y = H; N ...N H, each H; has degree d; .

Then HiN..NH;isaci. forl <i<r sosetting Z=H,N..NH,_;,then Zis ac.i.

We have the short exact sequence of (a):

0—=>0z(n—d) — Oz(n) = Oy (n) = 0 and associated long exact sequence:

o> H(Z,07(n—d)) = H (Z,04(n)) = H (Y,0y (n)) — ...

Using induction, since the left hand terms are zero, the right hand terms are zero for relevant ¢ , and the
result follows.

3511 d.xg

(d} pJY) = dim, HYY.( y).

[Hint: Use exact sequences and induction on the codimension, starting firom
the case ¥ = X which is (5.1).]

Recall p, (X) = (=1 (x (Ox) = 1) , X (F) = X (=1)' dimy H' (X, 7).

Then p, () = (~1)" (x (Oy) — 1) =

(=17 |(Z (1) dimy H (v, 01)) = 1] =

(=17 [((—=1)° dim, H° (Y, Oy) — 1) + (—=1)? dim, H? (Y, Oy )| =

(=17 (dimk — 1) + (1) dim, H? (Y, Oy)] =

[0+ dimpH (Y, Oy)] =

dimpH? (Y, Oy).
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3.5.12 III.5.6 x curves on a nonsingular quadric

5.6. Curves on a Nonsingular Quadric Surfuce. Let Q be the nonsingular quadric sur-
face x1 = zw in X = P{ over a field k. We will consider locally principal closed
subschemes Y of (). These correspond to Cartier divisors on Q by (11, 6.17.1).
On the other hand, we know that Pic Q = Z @& Z, so we can talk about the
type (a,b) of ¥ (11, 6.16) and (11, 6.6.1). Let us denote the invertible sheaf #(Y) by
C gla.b). Thus for any ne Z, € gln) = Cylnn).

(a) Use the special cases (g,0) and (0,9), with ¢ > 0, when Y is a disjoint union of g
lines P! in Q, to show:

(1} if ja = b| < 1, then H'Q,0yla.b)) = 0;
(2) ifa,h < 0, then HY(Q.0hlab)) = 0,
(3) Ifa £ —2,then HY(Q.,0,(a0)) # 0.

For (3) we will consider the LES associated to 0 — Og (—¢,0) = Og — Oy — 0.

HO

By chapter 1, H° (Q, Og) = k and thus H° (Q, Og (—¢,0)) = 0 since the only constants in k vanishing on
Y (note Og (—q,0) is the ideal sheaf of Y) are constants. As Y is a disjoint union of P¥s, H® (Q, Oy) = k%1,

Hl

Ex I11.5.5.b, gives H' (Q, Og) = 0, since it’s a disjoint union, and from known cohomology of P" (see the
version in stacks), H' (Q,Oy) = 0 since it is generated by monomials with negative degree.

H2

By serre duality, and using the that p, (Q) = 0 from exc 1.7.2, then H? (Q, Og) = 0 . Thus using exactness
we can finish the sequence:

H% 00—k — k%2

H': k%@ 50505

H? H?(Q,00(—q,0)) = 0 = H(Q,0y) 20

Clearly all H? terms are 0.

Thus H! (Q,Oqg (a,0)) = kYD £ 0 a < -2

For (1)

Let a € Z anc consider the LES associated to 0 — Ops (—2 + a) — Ops (a) = Og (a) = 0 .

From the known cohomology of P? | and exactness we find H* (Og (a)) =0

Now consider the LES associated to 0 — Og (a — 1,a) — Og (a) = Oy (a) = 0 .

Since H' (Og (a)) = 0 and the surjection H° (Q,Og (a)) — H° (Y, Oy (a)) follows from considering the
degree a part of the coordinate rings for the quadric, and Y which is writen as a quotient of @), ¥ =
Proj (k[z,y,z,w] / (xy — 2w, x, 2))

Exactness gives H' (Og (a — 1,a)) = 0 and similarly H' (Og (a,a — 1))

=0
For (2) consider the LES associated to 0 — Og (—a,—a —n) — Og(—a) — Oy (—a) — 0. Now use
exactness and the fact that Y is a disjoint union of copies of P!.
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3.5.13 b. x

(b) Now use these results to show:

(1) if ¥ 15 a locally principal closed subscheme of type (ab), with ab = 0,
then Y is connected;

(2) now assume k is algebraically closed. Then for any a,b = 0, there exists an
irreducible nonsingular curve Y of type (a.b). Use (II, 7.6.2) and (11, 8.18).

{3) an wrreducible nonsingular curve Y of type (a,b), a.b = 0 on Q 15 projec-
tively normal (II, Ex. 5.14) if and only if |a — b < 1. In particular, this
gives lots of examples of nonsingular, but not projectively normal curves
in P?. The simplest is the one of type (1,3), which is just the rational
guartic curve (I, Ex. 3.18),

(1). The LES associated to Iy has H° (Iy) =0, H° (Q,Og) = k,and by (a), H' (Q,Zy) = H* (Q, Og (—a, —b)) -
0. Now use exactness of 0 — 0 — k — H° (Oy) — 0.

(2) Thm I1.7.6.2 says that Og (—a, —b) is associated to a closed immersion P! x P! = @ — P* x P*. By
Bertini, we can find H in P* x P® which is a nonsingular hyperplane section of the embedding. Pulling back
gives a smooth curve Y of type (a,b) in Q C P3. Y is ample hence connected by lefschetz hyperplane theorem
and thus irreducible by Bertini.

(3) Note that Q ~ P! x P! is locally isomorphic to A’ x Al ~ A? which is normal. Thus by 11.8.4, since
Q is a complete intersection, @ is projectively normal, i.e. H'(Q,Zy (n)) = 0, n > 0 . Consider the LES
associated to 0 — Zy (n) — Og (n) — Oy (n) . Note that Zy (n) ~ Og (—a,—b) (n) = Og (n —a,n —b) .
For [a—bl=|n—a—(n—"0)| <1, wehave H' (Q,Og (—a,—b) (n)) =0 by (a) so Y is projectively normal.
For |a — b > 1, then Og (—a, —b) (a) = Og (0,a — b) and now use (a).

3.5.14 c. x

ic) If Y is a locally principal subscheme of type (a.b) in Q, show that p(Y) =
ah —a — b + 1. [Hint: Calculate Hilbert polynomials of suitable sheaves,
and again use the special case (¢,0) which is a disjoint union of ¢ copies of P,
See (V, 1.5.2) for another method. |

WLOG Y looks like Y = Y; [[ Y2 which is a copies of one P! and b copies of the other P! making up Q.
Note Iy, is flat so we have an SES 0 — Zy, ® Zy, — Iy, — Oy, ® Iy, — 0 which is 0 — Og (—a, —b) —
Og (0,—b) = Oy ® Og (0,—b) — 0 . There are no global sections in cohomology by (a) as a,b > 0 and
similarly no H' of the first term by (a).

As in previous part, H' (Q,Oq (0, —b)) = k%Y and H?(Q,Og (0,—b)) = 0 . By the method of (a),
H'(Q,0y ® Og (0, —b)) ~ k®s=1_ Thus we have an LES in cohomology

H' :0 — po0—1)  p@alb-1)

H?* H?(Q,0q(—a,—b)) - 0—0.

Now x (Og (—a —1b)) =h*(Q,0q (—a,=b)) =a(b—1)—(b—1)=ab—a—b+1.

3.5.15 IIL5.7xg

5.7. Let X (respectively. Y) be proper schemes over a noetherian ring A. We denote by
%' an invertible sheaf
{a) If ¥ is ample on X.and Y is any closed subscheme of X, then i*#"is ample on
Y. where i: ¥ — X is the inclusion.
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For an arbitrary coherent sheaf .7, by I11.5.3, H' (X, i,.7 ® £") is 0 for n sufficiently large.
Thus 0 = H' (X,i,.7 @ L") ~ H (X,i, (F @ i* ")) ~ H (Y,.F ® i*.£™) via the projection formula.
By AMVCCAQ it follows that i*.Z is ample.

3.5.16 x g ample iff red is ample

1 WITCTC T —F 7 I O oo s o

(b) #isampleon X ifandonlyif ¥, = ¥ & i£21r+|‘sle on X, .

- -1 — ror

£ ample = %4 is ample follows from part (d).

Assume %4 is ample on X4 . For F € €oh (X) , let A the nilradical of Oy .

There is a filtration # D AN D AN2F D DN - F =0.

The quotients A . F | N TLF are coherent Oy, -modules so that since %4 is ample, H? (X, [/ F | N T F| &
0 for 5 > 0 and m sufficiently large.

By decreasing induction using the LES associated to 0 — A F — N'F — N F /N TTF — 0 we
find that H’ (X, /".F @ £™) =0 for j > 0 and m sufficiently large.

3.5.17 c.xg

e — e i o o e

{c} Suppose X 15 reduced. Then # is ample on X if and only if & & (' s
ample on X, for each wrreducible component X, of X.
Let X = XjU...UX, be all the irreducible components. Assume .Z |, is ample for each i. If .# € €ob (X)
and Z is the ideal sheaf of X; in X , then we have an exact sequence
02 - F - F|IF - 0.
The first term is supported on X, U ... U X, and the last term on X; .
By induction on the number of irreducible components, then H’ (X, Z.% @ ™) = H) (X, (F /I.7) @ L™) =
0forj>0and m>0.
By the exact sequence, H' (X,.7 @ Z*™)=0for j >0and m >0 .
The reverse direction is a consequence of (d).

3.5.18 d. x g finite pullbacks ampleness

e T e i T T
id) Let f:X — Y be a finite surjective morphism, and let % be an im'Lrtih]c sheal
on Y. Then ¢ is ample on Y if and only if f*% is ample on X. || Hints: Use
(5.3) and compare (Ex. 3.1, Ex. 3.2, Ex. 4.1, Ex. 42). See also|Hartshorne

[5. Ch. 1 §4] for more details. ]

Suppose that £ is ample on X. For % € €oh (X), RIf. (F @ f*£™) = 0 for j > 0 by finiteness of f.
Thus by exc I11.8.1, H' (X,.7 @ f*£™) ~ H (Y, f.7 ® £™) = 0 by ampleness of .Z.

On the other hand, suppose f*.Z is ample on Y.

Then we can write [, ¢ (f= )" W = deg(W = V) - Jya ()%™ V by the projection formula, so by
Nakai-Moishezon we are done.
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3.5.19 IIL.5.8.axg

5.8. Prove that every one-dimensional proper scheme X over an algebraically closed
field k is projective.
{a) If X is irreducible and nonsingular, then X is projective by (I1, 6.7).

As X is proper, it’s separated, thus complete. By nonsingularity, and thm I1.6.7, then X is projective.

3.5.20 b. x

S

(b) IfX isintegral, let X be its normalization (11 Ex. 3.8). Show that ¥ is complete
and nonsingular, hence projective by (a). Let f: X — X be the projection. Let
# be a very ample invertible sheaf on X. Show there is an effective divisor
D = Y P,on X with #(D) > #, and such that f(P,} is a nonsingular point of
X, foreachi. Conclude that there isan invertible sheaf 2, on X with f*%, =
<. Then use (Ex. 5.7d), (IL, 7.6) and (11, 5.16.1) to show that X is projective.

To see nonsingular, note that normal = regular in codimension 1.

Completeness follows as in (a) Thus we have projective.

Assume f: X — X is the projection.

For the next part, suppose that . is very ample on X, then % gives an embedding .% < P" and so &
looks like .2 (D) for an intersection of X with a hyperplane in P”. By Bertini or some such we can choose
this hyperplane missing a finite set of points, and the singular locus is a finite set of points. The existence of
such a very ample .Z implies that X is projective since it gives an embedding into P™.

3.5.21 c.xg

—— e ———— —_—

ic) If X is reduced, but not IILL{.‘SSM[I‘- Irr Edumblc let X, . X, be the irre-
ducible components of X. Use (Ex. 4.5) to show Pic JL’ — .jl Pic X, is sur-
jective. Then use (Ex. 5.7¢) to show X is projective.

Consider two components. From a previous example Pic(X) ~ H' (X, 0%). Taking cohomology og the
ses 1 = Oy — Ok, x Ox, = O%,nx, — 1 gives

1 = k*— O (X)) xO" (Xy) =" O (X1 N X3) = Pic(X) — Pic(X;)x Pic(X3) — 1 since the skyscraper
is supported at points so has c¢d = 0.

Surjectivity of the map O* (X;) x O* (X3) —=* O (X; N X5) implies our desired surjectiity.

Now an induction argument will give for r > 2.

Now by (b) the X; are projective so have very ample sheaves, and pulling back these very ample sheaves
gives very ample by 5.7.c which gives a projective embedding.

3.5.22 d. x

e s e e s s

(d) I-m.iI]} if X i1sany one- d]anHIUﬂdlpﬁ_‘lle‘RLhEn‘JL over k,use (2. Tiand (Ex.[4.6)
to show that Pic X — Pic X, is surjective. Then use (Ex. 5.7b) to shoy X
is projective.

The second part is clear. For the first part, see Bosch, Neron Models, 9.2.
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3.5.23 1III.5.9 x g Nonprojective Scheme

5.9. A Nonprojective Scheme. We show the result of (Ex. 5.8) is false in dimension 2.
Let k be an algebraically closed field of characteristic 0, and let X' = P;. Let
be the sheaf of differential 2-forms (I1. §8). Define an infinitesimal extension X
of X by o by giving the element £ e H'(X,m ® 7) defined as follows (Ex. 4.10).
Let x,,.%,.x; be the homogeneous coordinates of X, let U,.L";.U; be the standard
open covering. and let &, = (x, v,)dix; x,). This gives a Cech I-cocycle with
values in Q1. and since dim X = 2, we have 0 ® .7 = Q' (I, Ex. 5.16b). Now
use the exact sequence

v HY(X.1) — Pic X' — Pic X 5 H3X.m)— ...

of (Ex. 4.6) and show 4 is injective. We have v = ¢ y(=3) by (11, 8.20.1). ¢
H3X.on = k. Since char h = 0, you need only show that o(¢ (1}) # 0, which can
be done by calculating in Cech cohomology. Since H'(X,o = 0, we see that
Pic X' = 0. In particular, X' has no ample invertible sheaves, so it is not pro-

jective.

The only parts of the hint which is not clear is that 0 (O (1)) # 0 which we need in order to show that
§ is injective. The point is that cohomology of X = P? is known (use duality since it’s w = Ox (=3) to get
H? (X,0x (-3)) = H°(X,Ox) ~ k. Again by duality, H' (X,w) = 0.

Thus we have 0 — Pic X' — Pic X — 6 k —777.

So if we show that ¢ is injective, then Pic X' =0 .

Since O (1) is a generator, then if it’s nonzero, (O (1)) is nonzero so we get injectivity.

Essentially we should compute cech cohomology of X w'r't’ w .

Our cech complex looks like 0 — k [to, t1, tg](to) d ()

For a possibly easier example of a nonprojective surface see http://math.stanford.edu/~vakil /0506-216/216class4
for a much easier example of showing (ex 5.8) is false in dimension 2.

3.5.24 1III.5.10x g

5.10. Let X be a projective scheme over a noetherian ring 4, and let #' — #* - | =
#" be an exact sequence of coherent sheaves on X. Show that there is an integer
iy, such that for all n = n,. the sequence of global sections

NX.FYm) = DX 7)) — ... = DX #F(n))

15 exact,

If r =3, then we have a short eact sequence. Now the result follows from Serre vanishing applied to the
LES.
By induction suppose the result holds for r — 1.

We can break 0 — F! — ... — g2 L gn-1_, gn
Thus we can split into two sequences:

()—M?l—>--~—>ﬁ”*2i>cok:e7“f—>0and0%cokerf—>f”*1—h@”—)O.
Now use induction hypothesis on both of these sequences. ..
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3.6 1II.6 x Ext Groups and Sheaves
3.6.1 III.6.1x

6.1. Let (X.0y) be a ringed space, and let # . € Mod(X). An extension of F" by
F#" 15 a short exacl sequence

0 F' s F o F' a0

in Mod(X). Two extensions are isomorphic if there is an isomorphism of the
short exact sequences, inducing the dentity maps on &' and F". Given an
extension as above consider the long exact sequence arising from Hom(.#",-), in
particular the map

T

d:Hom(F' F") = ExtY(F" %,

and let ¢ e Ext!{#",#') be d(1 ,.). Show that this process gives a one-to-one
correspondence between isomorphism classes of extensions of #" by #', and
elements of the group Ext(#" #'). For more details, see, eg., Hilton and
Stammbach [ 1, Ch. TII].

I solve this in SummerStudyChallenge2.pdf under the section “Ext” (it was a problem given in Dan’s class).

3.6.2 III.6.2.a. x

6.2, Let X = P!, with k an infinite field.
(a) Show that there does not exist a projective object # € Wod(X), together with a
surjective map # — 'y — 0. [Hint: Consider surjections of the form ¢, —
kix) — 0, where x € X is a closed point, V¥ is an open neighborhood of x,
and € = ji(("x|y), where j: ¥ — X is the inclusion.]
Solution: Suppose to the contrary that P € 900 (X) is projective and there is a surjective map P —
OX — 0.
First I recall some definitions. For any = € X, k (z) denotes the residue field Ox ,/m,. We can make a
sheaf out of k (x) using the skyscraper sheaf so

k(z) PeU
0 P¢U’

For P = z, I will abuse the notation and write k (z) for the sheaf i, (k (z)). Recall that Oy = 7 (Ox|y), for
7 :V —= X the inclusion of an open subset, is the sheaf defined by

Ox|v(U) UcV

Gd@z{o Ugv

where Ox|y is the sheaf j7'Ox = lim Ox (V).
VDj(U)

Now that we have made some definitions, the proof will proceed as follows: (1) use the assumed projectivity
of P to create a diagram of sheaves involving an arbitrary open set U, (2) show that this diagram cannot
commute at the level of the abelian group P (U) whenever P (U) — k(x) (U) is nonzero. As P — Ox — 0
is a surjection, surely there must be some U with P (U) — k(x) (U) not the zero map. Thus we will get a
contradiction to the assumption that P — Ox — 0 is a surjection.

If U C X is arbitrary and x € U, then we can choose a distinguished open neighborhood V' > z properly
contained in U. Clearly k (x) — 0 makes a surjective sheaf morphism. Since Oxy is affine, then Oxy (U)

on the induced topology for V' is the set of functions s : U — [[ ¢y 4p. Also, if nonzero, k () (U) will be
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Oxo/my = Ay /m,. So take the map defined by projection of s to A, composed with the quotient map (or
perhaps in the other order). This defines a morphism of sheafs since we have commutativity of

OVfU) —k (961 o) .
Oy (V') —Fk () (V')

So now we have

Oy = k(x) =0

and
P—)OX—>0

surjective (check the stalks). Also,
Ox = k(x)—0

and therefore
P—k(x)—0

are surjective. We therefore have
Oy

)

P k(z)—=0

commutative since P is projective. If we evaluate this diagram of sheaves at U, this is

Oy (U) =0

T

PU)—k(x)(U)=k(x)—=0

so that whenever P (U) — k() (U) is nonzero, the diagram will not commute. Since U has been chosen
arbitrarily, this contradicts the definition of P — k (z) being surjective since k (x) # 0.

3.6.3 b.x

(b) Show that there does not exist a projective object 2 in either Qeo( X) or €oh( X)
together with a surjection # — 'y — 0. [Hint: Consider surjections of the
form ¥ — % @ k(x) — 0, where x £ X isa closed point, and % is an invertible
sheaf on X ]

Solution: Assume P 5 Ox — 0. By definition, the ker (@) is a subsheaf of P. Also, the kernel of a
morphism of Ox modules is an Ox-module by definition. Using 1.6, 1.7, and the definitions of a quotient of
Ox-modules, we see that

0— ker(p) = P35 0x =0

is exact. In the case of P € Coh (X), we note that by I1.5.7, ker (¢) will be coherent. Also, in the case that
P € Qcoh (X), then we can use 11.5.15 to write P as an ascending union of coherent sheaves, P = |J, P, and
get an exact sequence

0 — ker(¢) > P, — Ox — 0

for some ¢ since Ox = |J, ¢ (P;) , which is an ascending union.
In any case, now we take the associated long exact sequence and get:

0 — H° (ker (¢)) — H*(P) — H° (Ox) — H" (ker (¢)) — --- .
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Using I11.5.2, since ker () will be coherent, we can find n such that H' (ker () (n)) = H* (P (n)) = 0. Thus
H° (P (n)) — H°(Ox (n)) is a surjection. Using I11.2.2 and TI1.1.4, this implies that T' (P (n)) — T'(Ox (n))
is a surjection.

Recall that twisting a skyscraper sheaf gives an isomorphic skyscraper sheaf. Since Ox — k(z) — 0 is
exact (look at the stalks), we get a commutative diagram:

OX (—n — 1)

|

k(z) ——=0

P

via the composition P — Ox — k(x). Using projectivity and twisting by n , since twisting is an exact
function, we get the diagram:
Ox (—1)

A

P(n) k(x) 0

The global section zj in I' [Ox (n)] is nonzero at x, so since I' [P (n)] — I' [Ox (n)] is surjective, we can find
s € I'[P (n)] which maps to P (n). However there are no global sections in Ox (—1) so the diagram will not
commute.

3.6.4 IIl.6.3.a. x

6.3. Let X be a noetherian scheme, and let .#.% & Wi Y |,
fa) Il 7 % are both coherent, then & xt'(#.%) 15 coherent, forall i = 0,

Since &xt’ (F,9) is coherent iff for every open affine subset U = Spec A Extly (F,9) v = Extl; (Fluv, Y|v)
by thm II1.6.2, we assume X = Spec A is affine. Then .%#, ¢ will correspond to finitely generate A-
modules M,N . &ty (M N) — Eat', (M,N) by exc 1IL6.7 . Thus &t (M, N) is q.c. Since M is
f.g. and A is noetherian, there is a resolution of M by finite rank free A-modules A". Then Extly (M, N) =
ht (homa (A", N)) by definition of ext, which is ' (N™*). The N™ are f.g. since N is so that h' (N™) =
Ext'y (M, N) . Thus &xt’y (]\7[, N) = FExt'y (M,N)" is q.c.

3.6.5 b.x

(b) If # is coherent and % is quasi-coherent, then &x1'(.# %) is quusi-céhcrunt.
foralli = 0.

=

by (a) proof.

3.6.6 III.6.4 x

6.4. Let X be a noetherian scheme. and suppose that every cgherent sheaf on X is a
quotient of a locally free sheaf. In this case we say Cobi X ) has enough locally frees.
Then for any % 3Nod( X)), show that the d-functor (& v - 7% ) from QoY) to
SIRODI V). 15 i COnTravariant unisersal a-functor. | i Show ¢ xir't-.4) is coefface-
able (§1) for i = 0.]
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By thm II1.1.3.A, we need to show &zt (-4) is coeffaceable. Assume to make things easier that all
F € Coh (X) is the quotient of a locally free sheaf of finite rank, .. The we can reduce to showing that
Ext' (L,9) =0 for £ locally free, finite rank. By thm I11.6.2, we need only show &xt' (ZL|y,, ¥ |v,) = 0 for
a collecton U; = Spec A; covering with Z|y, = &7_,Op,. For an injective resolution 0 — 4|y, — &* , we
have é"xti‘( 1100, 9v,) = h' (&), # om (O, ) =

b bt (Hom (Oy,, I°)) = @b (F°) =0,i>0.

3.6.7 III.6.5 x

6.5. Let X be a noetherian scheme, and assume that Cob(X') has enough locally frees
(Ex. 6.4). Then for any coherent sheaf # we define the homological dimension
of #,denoted hd(# ), to be the least length of a locally free resolution of # (or + x
if there 15 no finite one). Show: .
{a) # is locally free = &xi'(#.%) = O for all 4 WMod( X):

Suppose .Z is locally free finite rank. By thm I11.6.5, &zt (#,4) =0 for i > 0 and & €Mod (X) .

On the other hand, if &xt' (F,9) = 0 for all ¢ € Mod (X), Thm II1.6.8 gives 0 = Sxt! (F,9), ~
Euxté, (F4,%,) on the stalks. Thus %, is projective and f.g. + projective gives free, so .7, is free = .7 is
locally free by exc IL.5.7.b.

3.6.8 b. x

’—llﬂ hdi( ) = mes S FG) = 0foralli = mand all % & WMod{ X):

If hd (%) < n then there is a locally free resolution of .% of length n. Using thm II1.6.5 we can find
Ext' (F,9)=0,1i>n.

Suppose &zt (F,9) =0 for i > n and ¥ € Mod (X).

For n = 0, argue as in (a).

% is a quotient of a locally free sheaf: 0 = 7 — & — % — 0, J the kernel.

The LES - -+ — &xt" (£,9) — Ext™ (H,9) — Ext" ™ (F,9) — - - - gives, using (a), that Eat" (A, 9) ~
Ext" (F,9) . Thusfori >n—1,Ext" (H#,9) = 0,47 >n—1. The inductive hypothesis gives hd 7# < n—1
. Thus 4 has a locally free resolution of length n — 1 . Composing this with Z — & gives the desired
resolution of length n.

3.69 c. x

fct hdi.#) = sup, pd,, #..
Let & — .# — 0 be a locally free resolution of length n.
This gives a projective resolution on the stalks of length < n.
Thus hd (F) > sup,pdo,F: .
If hd (F) > sup,pdO,.F, , then by thm IIL6.10A, Ext' (%#,,N) = 0 for all z, all i« > hd.# , and all
O,-modules 4.
Thus &zt' (F,9) =0 for i > hd.# and Ox-modules 4 which is a contradiction by (b).
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3.6.10 1III.6.6.a x

6.6. Let A be a regular local ring, and let M be a finitely generated A-module. In this
case, strengthen the result (6.10A) as follows.
(a) M is projective if and only if Ext(M.4) = 0forall i = 0. [Hinr: Use (6.11A)
and descending induction on i to show that Ext{M,N) =0 for all i = 0 and
all finitely generated A-modules N. Then show M is a direct summand of a
free A-module (Matsumura [2, p. 129]).]

M projective implies Ext’ (M, A) = 0,7 > 0 by properties of projective and hom (—, A) .

On the other hand, if Ext' (M, A) = 0 for i > 0, and N is an f.g. A-module, then we have an exact
sequence 0 — K — A" — N — 0, and we get a LES in ext. Note that Ext' (M, A") = 0 by computing via
induction on 0 — A" ! — A" — A — 0.

Note that Ext' (M, N) =0, i > dim A for all f.g. A-modules N by thm II1.6.11.A. Using the isomorphisms
Ezt™™ (M, N) — Ext' (M, K) we see the same is true for 7 — 1 . By induction the same holds for i > 1 .

Note that Ezt! (M,K) = 0 so Ext’ (M, A") — Ext° (M, M) is surjective. Thus M — M factors as
M — A" — M so M is a direct summand of A™ so M is projective.

3.6.11 b. x

o L

- S — —
(b) Use (a) to show that for any n, pd M < n if and only if Ext'(M.4) =0 for all

i = n

For pd M < N , and projective resolution of length < n computes Ext’ (M, A) which must therefore be
zero for i > n.

Conversely, suppose Ext' (M, A) =0, i > n. We will proceed by induction on n. If n = 0, then pd M <0
by (a). '

Otherwise,assume Ext' (M, A) =0 for i > n — 1 implies pd M <n—1.

M is finitely generated so there is an exact sequence 0 — N — A*¥ — M — 0 some k which gives

— Bt (A%, A) = Ext'™* (N, A) — Ext' (M, A) — - in LES of ext.

AF free implies Ext’ (A%, A) =0, > 0so Ext'™' (N, A) ~ Ext' (M, A) fori > 1.

Thus Ext' (N, A) =0, i > n — 1 therefore gives pd N < n — 1 by induction.

Thus N has a projective resolution of length n — 1 which gives by the S.e.S. above, a projective resolution
of M of length n.

3.6.12 III.6.7 x

6.7. Let X = Spec A be an affine noetherian scheme. Let M, N be 4A-modules, with M
finitely generated. Then
ExtyiM.N) = Ext'{M.N|
and

ExiNNY = Ext,(M.N1™.

Let A™ a finite free resolution of M. Then Ext’y (M, N) are the left derived functors of h’ (hom 4 (A™, N)) .
~ is an exact equivalence so by I11.1.4 is a universal é-functor. Exactness of hom 4 (A", -) gives this is also a uni-
versal d-functor since A-mod has enough injectives and hom (-, I) is exact and thus h* (hom4 (A", -)) are ef-

faceable. On 0-degree terms we have Ext% (M, N) ~ homa (M, N) and h° (homa (A", N)) &~ homs (M, N).
Using A" gives a finite free resolution of M so by thm II1.6.5 we compute &xt. M noetherian and f.g
gives homy (M, N)™ ~ S om (M,N) . Thus &xt’ (]\Zf, N) ~ h' (%ﬂom (A”')) ~ h' (homy (A", N)™) ~
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h' (homa (A" N))~ ~ Ext'y (M,N)".

3.6.13 III.6.8 x

6.8. Prove the following theorem of Kieiman (see Borelli [1]): if X is a noetherian.
integral, separated, locally factorial scheme, then every coherent sheaf on X is a
quotient of a locally free sheaf (of finite rank).

{a) First show that open sets of the form X, for various s € I'| X ,.%#), and various
invertible sheaves % on X, form a base for the topology of X. [ Hint: Given 4
closed point x € X and an open neighborhood U of x, to show there is an .
such that x e X, = U, first reduceto thecasethat Z = X — Uis irreducible.
Then let J be the generic point of Z. Let f & K(X) be a rational function with
fed, . /¢, LetD ={(f),.andlet & = (D), s NX.ZD)) correspond
to D (1, §6).]

Let x € X , and U an open neighborhood. If Z =X —U, Z = Z,U---U Z, the irreducible components.
We reduce to the case Z is irreducible since we can take the product of sections in each component . Thus
we can assume Z corresponds to a prime weil divisor. By thm I1.6.11 this gives a cartier divisor D given by

{1, fi)}, f—] € O%(U), and f; € myOx p iff Z/ = Z. By thm 11.6.13, the fi generate an invertible sheaf

Z (D) and fif;t € T (U;, £ (D)) glue to give s € T'(X,.Z (D)) under the ff;' <+ f . As s|y, <+ fi then
Xs=Usoxe X, CU.

3.6.14 b. x

(b} Now use(ll, 5.14) to show that any coherent sheal is a quotient of a|direct surm
&) 7 for various invertible sheaves ¥, and various integers n,.

If 7 € Cobh (X) , then U; = Spec A; covers X with 7|y, ~ M; for f.g. A;-module M;.

Thus Fy, is generated by a finite number of m;; € M; =T (U, F|y,) -

Now take a refinement of the cover U; given by X, C U;, sy, € I' (X, Z,) for some .Z; .

By thm I1.5.14, s;”m;; extends to a global section of £"* @ .F .

The global section gives a morphism Oy — £"* ® % | twisting gives a morphism to .%# and taking a
direct sum of the morphisms gives a morphism to .%.

On X, , my; is in the image of £ "4 — .7 which gives surjectivity.
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3.6.15 1III.6.9 x

6.9. Let X be a noetherian, integral, separated, regular scheme. (We say a scheme 15
regular if all of its local rings are regular local rings.) Recall the definition of
the Grothendieck group K(X) from (II, Ex. 6.10). We define similarly another
group K ,(X ) using locally free sheaves: it is the quotient of the free abelian group
generated by all locally free (coherent) sheaves, by the subgroup generated by all
expressions of the form & — & — &”, whenever 0 5 & =& = &" -0 15 2

short exact sequence of locally free sheaves. Clearly there is a natural group
homomorphism & K,(X) — K(X). Show that ¢ is an isomorphism (Borel and

Serre [ 1, §4]) as follows.
{a) Given a coherent sheaf #, use (Ex. 6.8) to show that it has a locally free resolu-

tion £ — F — 0. Then use (6.11A) and (Ex. 6.5) to show that it has a finite
locally free resolution

0n &, —...+& =8y — F =0

Exc II1.6.8 gives coherent sheafs are quotients of locally free sheaves of finite rank. Thus €obh (X) has
enough locally free sheaves so by exc I11.6.5.c, we have hd.# = sup,pdo,F,.

Regularity of X gives that pd %, < dim Ox, < dim X via exc I[I1.6.11.A .

Thus hd ¥ = sup,pdo, F. < dim X.

Thus there is a finite locally free resolution of .%.

3.6.16 b. x
ib) For each .#, choose a fimte locally free resolution &, — # — 0, and let
A(F) = Y (—1)9{&,)in K,(X). Show that (.#) is independent of the resolu-
tion chosen, that it defines a homomorphism of KiX) to K,(X), and finally,
that it is an inverse to £

This is given in Borel, Serre - Theoreme de Riemann-Roch.

3.6.17 II1.6.10 x Duality for Finite Flat Morphism

6.10. Dualiry for a Finite Flar Morphism.
fa) Let :X — Y be a finite morphism of noetherian schemes. For any quasi-
coherent ('y-module %, #omy(f, 0y, %) is a quasi-coherent f_ ¢ y-module,
hence corresponds to a quasi-coherent ¢ y-module, which we call [ % (Il
Ex. 5.17¢).

Let .Z represent f,Ox ~ N~ € €oh (Y) and 4 ~ M~ € Qco (Y).
Write a presentation Oy — Oy — % — 0.

Applying Somy (—,9) gives #omx (F,9) as the kernel of a map
G — 4™ of quasi-coherent sheaves. (This functor is left exact)
Homx (#,9) =~ #om (N~,M~) € Qco(Y).

Thus by thm I1.5.5, Homx (N~,M~) ~ Hom (N, M)".
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3.6.18 b. x

(b) Show that for any coherent # on X and any quasi-coherent % on ¥ there is a
natural somorphism

f o Homy F [ 4) = #Homyl [,F %)

We have amap o : fo.€omx (F, f'G) — Homy (f.F, f.f'9) which is defined by ¢ € Homoy |yt (F |1,
maps to ¥ € Homoy |, (f+.Z, [ ['9) , where Yy « F (f7'W) — f'G (f'W) is defined by ¢ -1y for open
W cuU.

~ and f, give an equivalence of categories, and thus f, f'¢ ~ s#omy (f.Ox,9) so 3 : S omy (f*gf, f*f!%) e
Homy (foF, #omy (f.Ox,9)) .

As f.Ox is an Oy -algebra, and we have an evaluation map s#omy (f.Ox,9) — Homy (Oy,9) =94 ,
and thus v : om (f.F, #Homy (f.Ox,9)) = Homy (f.F,9) .

Now  := a — [ — 7 gives a natural morphism f,70omyx (ﬁ’, f!%) — Homy (f.#,9) . Suppose we
are mapping between open affines Y = Spec A, X = Spec B so that % = M and G = N, where M, N
are f.g. B, A modules respectively. Then 6 maps ¢ € Homp (M, Homa (B, N)) — Homy (M ®p B, N) by
¢ (m®1— ¢(m)(1l)) . By previous problem, this is an isomorphism. Thus ¢ is locally an isomorphism.

3.6.19 c. x

ic) Foreachi = 0,there is a natural map
¢, EXU(F . [%) — Exti|f,.# %)

[ Hine: First construct a map

Extl#.{ 4] — Extif A [, %)

Then compose with a suitable map from f, % to 4]

By assumption .Z € €obh (X), ¥ € Qcoh (V).

The map from (b) given by f.Zomx (F,5) — Homy (f.F, f.7€) is natural in 2.

Therefore we have a natural transformation. Composing it with I' gives

Homx (#,—) — Homy (f«.7, f.—) *.

Note that Homy (f..%, f.—) is the pushforward f,, composed with the 0-part of Exti (f,.#,—) which is
a universal 0 -functor.

By properties / definition of universal § fucntor, Homy (f..%, f.—) is that same 0O-part.

On the other hand, Homyx (%, —) is the Opart of the derived functor which is the universal delta functor
Ext', (F,-) .

Thus % gives a map of ¢ functors Extly (#,—) — Extl (f..Z, fo—) which is the one desired by the hint
after plugging in f'9Y .

By the technique of (b), we have a natural map f,f'Y ~ #om (f.Ox,9) — 4. By functoriality, this
gives a natural map Exty, (f.Z, f.f'9) — Ext}, (f..#,%) and composing this with x gives the map we need.
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3.6.20 d. x

(d) Now assume that X and Y are separated, €ob{X ) has enough|locally frees, and
assume that f_('y is locally free on Y (this is equivalent to saying f flat—see
£9). Show that ¢, is an isomorphism for all i, all # coherent on X and all %
quasi-coherent on Y. [Hints: Firstdoi = 0. Thendo # = (|y, using(Ex. 4.1}.
Then do # locally free. Do the general case by induction o i, writing # as

o a H 11 i k il
R II'E_U{_J_]'E!LML_‘- (L == Y| =i Yy

First assume .# = Ox . Then by thm I11.6.3.c, Extl (Ox, f'9) ~ H' (X, /'¥9).

As f is affine, exc IIL4.1 implies H (X, f'¢) ~ H' (Y, f.f'Y) ~ H' (Y, #om (f.Ox,¥)). As f.Ox is
locally free, then by exc IL5.1.b, H (Y, #omy (f.Ox,9)) ~ H' (Y, (f.0x)" ®¥9) .

By thm IIL.6.3, thus H' (Y, (f.Ox)" ® 9) ~ Ext} (f.Ox,¥) . Composing these isomorphisms gives ;.
WLOG we have shown for .# locally free finite rank.

Note €ob (X) has enough locally frees and thus there is a locally free sheaf & and an s.es. 0 > % — & —
Z — 0 for some kernel Z. The right adjoint of f, is f' and so 0 = f.Z — f.& — f..Z — 0is exact by flatness
of f,. The maps Homyx (?, f!%) — Homy (f«.7,9) give a morphism of the two LES in ext. By previous,
the degree 0 maps are isomorphisms. Also since & is locally free, the map Ext) (é", f!%) — Exty (f*é", f!%)
is an isomorphism. By the 5-lemma, therefore, map Ext (F, f'9) — Ext} (f.F, f'¥) is an isomorphism,
and by similar logic, Extk (%, f!%) ~ Extl, (f*,%’, f!%). We can repeat this argument in higher degrees.

3.7 III.7 x Serre Duality Theorem
3.7.1 III.7.1 x g Special Case Kodaira Vanishing

T.1. Let X be an integral projective scheme of dimension =1 over a field k, and let
2 be an ample invertible sheal on X. Then HYX,% ') = 0. (This is an ecasy
special case of Kodaira’s vanishing theorem.)

Suppose to the contrary that £ has a global section s.

Let Z be the vanishing set of s.

let C' some curve intersecting Z.

Then by ampleness of .Z, C intersects both . and £V positively.

3.7.2 IIL.7.2 x

7.2, Let f: X — Y be a finite morphism of projective schemes of the same dimension
over a field k. and let «y be a dualizing sheaf for Y.
la) Show that | o) 15 o dualizing sheaf for X, where | is defined as in (Ex. 6,100

By thm 11811, we have f*Qy — Qx — QX/Y — 0.

Qx is locally free rank n and Qy is locally free rank n so f*Qy is locally free rank n since f*Oy ~ Ox .
Since f is proper, K (X) /K (Y) is a finite separable extension, which gives Qg (x)/k(y) = 0 (basically since
a separable minimal polynomial has every element 5 a minimal poly P withP (8) = 0 but dP () # 0, but
dP () = (dB) - P (/) by the product rule, which is 0 so d must be 0. ). Thus Q2x,y is a torsion sheaf.

This gives (for some kernel) an exact sequence at any P € X:

0— Jp = O0p =0 — (Uxv), = 0.

Note p is torsion, since after tensoring with K (X), we get

dimK(X)%ﬂa ® K (X) =-—n+m-+ dimK(m) (QX/Y)P ® K (X) =0.
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Since #p C Op , where Op is a domain, then % = 0. Thus we have 0 — f*Qy — Qx — Qx/;y — 0.
Hence Q% ~ f*Q} @ Z (R) x where R is the ramification divisor Qx/y .

On the other hand, the trace map t : f,Ox — Oy gives t' : Ox — f'Oy whose cokernel .Z fits in an exact
sequence 0 — Ox — f'Oy — # — 0. Taking highest exterior powers and using that the sequence splits since
Z is invertible gives f'Oy ~ % (R) . Thus f'Oy ® f*Q% ~ £ (R)® f*Qf . This gives f'Q}f ~ f*Q 2.2 (R).
Combining with % gives that wy ~ flwy .

3.7.3 III.7.3 x Cohomology of differentials on Pn

13, Let X = P{. Show that H{X 2% = Oforp # g. hkforp = 4,0 = p, g < n.

Consider the filtration .Z? for AO (—1)""" from exc 11.5.16(d) with .Z?/ZP* ~ QP @ A"P(. Note
ANPO =0,r—p#0,1and A" PO ~ O for r —p = 0,1 then FP ~ FP™ p #4 r.r —1 . Thus we
have A"O (—=1)"*' o #7 > F"t!1 = 0. Then F7/F ' = F" is isomorphic to Q" ® A" "0 ~ Q. The
quotient .F"1/FT x AT (O (=1)") /7 is Q1@ A0DO &~ Q71 Thus we have an exact sequence

r

@

0= QO = AO (=)™ = Q1. Now ALY ~ (£%) ( m ) (one way of showing this is to take a
trivializing cover, choose a local basis, and then look at the transition morphisms) and so our exact sequence
is

0= Q = O(=r)® = Q! = 0 for suitable N that we don’t care about. This gives rise to a long
exact on cohomology. Since H' (X,0(—r)) = 0fori < norr < n+1 (by thm IIL.5.1), we therefore have
isomorphisms H* (X, Q") ~ H=' (X, Q" Y for 1 <iifr <n+1.Ifr > n+1 then we still have isomorphisms
but only for 1 <i<n.

Now we know that H° (X,Q°%) ~ H°(X,Ox) ~ k (thm IIL.5.1) and so using these isomorphisms we see
that H' (X, Q%) &~ k for 0 < i < n . Again, using thm IIL5.1, we know the cohomology of Q" =~ O (—n — 1),
and in particular, that H' (X, Q") ~ 0 for i < n. Using our isomorphisms above, this tells us that H* (X, Q")
in the region ¢ < r,0 <r < n. All that remains to show is the region ¢ > r, 0 < i < n and this follows from
Corollary TI1.7.13.

3.7.4 IIL.7.4 (starred)

*7.4. The Cohomology Class of @ Subrariety. Let X be a nonsingular projective variety
of dimension » over an algebraically closed field k. Let Y be a nonsingular sub-
variety of codimension p (hence dimension n — p). From the natural map 2, @
¢y — 2, of (11, §.12) we deduce a map £y P — 7" This induces a map on
cohomology H* (X £ %) = H* 7Y 7). Now €77 = wy is a dualizing sheaf

for Y, so we have the trace map t,: H* /(Y2 ") - k. Composing, we obtain |a
linear map H" A(X % ") — k. By (7.13) this corresponds to an element (Y }jg
HY X %), which we call the cohomology class of Y.
(a) If Pe X is a closed point, show that r,{(y{P)) = 1. where n(P) e H(X ") an
ty is the trace map.
MISS
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(b) ITX =P identily (X027 with &k by (Ex. 7.3), and show that g ¥Y) = (dgg Y- 1,
where deg Y is its degree as a projective variety (1,§7). [Hint: Cut with g hyper-
plane H = X, and use Bertini's theorem (11, .18} to reduce to the cas¢ ¥ is a

himite set ol pomts. |
MISS

{c) For any scheme X of finite type over k, we define a homomorphism of sheaves
of abelian groups dlog: (% — Qy by dlog(f) = f~'df. Here (* is a group
under multiplication, and £2 1s a group under addition. This induces a map on
cohomology Pic X = H' X, (%) — H'(X.Q,) which we denote by ¢—see
(Ex. 4.5).

MISS

{d) Returningtothe hypotheses above, suppose p = 1. Show thatg(¥) = d2°(Y)),
where #(Y) is the invertible sheaf corresponding to the divisor Y.
See Matsumura [ 1] for further discussion.

MISS

3.8 [III.8 x Higher Direct Images of Sheaves
3.8.1 IIIL.8.1 x g Leray Degenerate Case

8.1. Let /:X — Y be a continuous map of topological spaces. Let # be a sheaf of
abelian groups on X, and assume that RYf(#) = Ofor all i = 0. Show that there
are natural isomorphisms, for each i = 0,

H{X . #) = H{Y.f,#)

(This is a degenerate case of the Leray spectral sequence—see Godement [1, L.
4.17.1].)
Let 0 — .% — .#° be an injective resolution of sheaves on X.
Then 0 — f..# — f..#° is an injective resolution on Y.
By hypothesis, R'f, (%) = 0 so this second resolution is exact.
The cohomology of .Z# is the cohomology of the complex I' (X, .#*) which is isomorphic to the complex
L' (Y, fo.#*) , and thus the required isomorphism.

3.8.2 III.8.2x g

8.2. Let f: X — Y be an affine morphism of schemes (11, Ex. 5.17) with X noetherian,
and let .# be a quasi-coherent sheal on X. Show that the hypotheses of (Ex. 8.1)
are satisfied, and hence that H'(X.#) = H'(Y,f,#) for each i = 0. (This gives
another proof of (Ex. 4.1).)

Since f~! (af fine) is affine, then, using I11.8.1, H* (f~* (U), #|;-11n) =0 = R'f.Z =0 for i > 0.
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3.8.3 1III.8.3 x g Projection Formula derived

8.3. Let f:X — Y be a morphism of ringed spaces, let # be an @y-module, and let
& be a locally free ¢y-module of fnite rank. Prove the projection formula (cf.
(1L, Ex. 3.1}
Rf(F @ [*£) = Rf(F) @ &.

Let 0 — .% — .#° an injective resolution of .%#.

Exc I1.5.1.d gives an isomorphism of chain complexes

(IR [*8) = fu (I)RE * .

As f*& is locally free, 0 - . ® f*& — Z°* ® f*& gives an injective resolution by exc I11.6.7.
Taking cohomology of LHS of x therefore gives R'f, (# ® f*&).

Note that R'f, () is the cokernel of f,.7""' — ker (f,.9" — f.. 1) .

Tensoring by locally free & is exact so R'f, (%) ® & are cohomology of RHS of .

3.8.4 III.8.4 x

8.4. Let Y be a noetherian scheme, and let & be a locally free ¢'y-module of rank n + 1,
nz= 1. Let X = P(£) (1, §7), with the invertible sheaf ¢ ;(1) and the projection
morphism m: X — ¥
(a) Thenn (€(])) = Si&)forl = 0,=n () = Ofor! < O(IL 7.11)1; Rin (C(])) = O

for0 < i<mandallleZ;and R'z(0(])) = Ofor! = —n — 1.

For U; = Spec A; a cover of X on which & is free, we have n=' (U;) = P} .

Hence H? (7= (U;), O (1) |z—1ury)) = H? (P4, O (1) |=-11r,)) which is 0 by the known cohomology of P"
in degrees between 1 and n — 1 .

Then RIT,O(1)=0,0< j <n by thm II1.8.1.

Similar] reasoning gives, R"m,O(l)=0,1>-n—1.

3.8.5 b.x

(b) Show there is a natural exact sequence

0= Qyy = (n*&H—1) = -0,

cf. (I1, 8.13), and conclude that the relative canonical sheaf vy, = N"Qy .y i3
isomorphic to (r* A" &) —n — 1). Show furthermore that there is a natural
isomorphism R"m (ey,y) = €y (cl (7.1.1) ).

By thm I1.7.11.b, we have a natural surjection 7*& — Ox (1) . This gives an ses. 0 - F —
(m*&) (—1) — Ox — 0 after twisting. If U = spec A is an open affine subscheme of Y where & is iso-
morphic to O | then 771U ~ P and the restriction of this exact sequence is

0= Flpn = O(=1)x|ps — Oxl|ps — 0 which is the exact sequence from thm I1.8.13. Thus we have
isomorphisms .%# |]p7‘ ~ Qpn v . These isomorphisms are compatible with restrictions to smaller affine subsets
and so we obtain a global isomorphisms .7 =~ (1x/y.

The isomorphism A"Qx/y & (7% A" &) (—n — 1) results from exc I1.5.16. If we then cover X with open
subsets of the form U; = P , Spec A; are opens of Y on which & ~ O+ (and so m'U ~ P7 ), then restricting
to these we get isomorphisms wx/y -1y & Or-1y (—n — 1) via the isomorphisms just mentioned. Thus we
have R'm, (wX/y) |Spec AR R"m, (QX/yhp;L‘) ~ H" (PZ,WWA/A)N ~ AT & OSpec A (by thm’s 11182, 11185,
and I11.5.1. ) Since these isomorphisms are all natural, we obtain the desired isomorphism R"7, (wx/y) ~ Oy
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3.8.6 c.x

—

ic) Now show, for any [ |.= £, that

R 0 = n (0(—T—n— 1)) @ (A" 14),

The map 78 — Op(g) (1) gives 7 (—1) — Op(g) which is surjective from a locally free rank n + 1 sheaf.
Thus we can extend to an exact koszul complex:

0= 7 (A"E) (—n—1) = - -7 (AN?E) (—2) = & (—1) = Opg) — 0.

There is a spectral sequence with Fy page, EY? = H? (L*9) and L T4 = Rim, (7" N'E (—1)) = N'E Rog
Rir, (Ops) (—i)) which converges to 0. As & is locally free, then locally X — Y is identified with P} — Y
. By previous parts, and the known cohomology of P" we find L™"7 is 0 except when it =qg=0o0ri=n+1
and ¢ = n . Thus E5? = 0 except when (p,q) = (0,0) and (p,q) = (—n — 1,n) . Thus E3° = 7,0ps) =~ Oy
by definition. and E; """ ~ APTLE ®oy R'1 (Opg) (—n — 1)) The lone nontrivial differential d,,,; gives
an isomorphism d} Y1 Oy = A"TE® R, (Op(e) (—n — 1)) which is an isomorphism by convergence of the
sequence. Hence A""'& = [R"7, (Op(s) (—n —1))] ~'_ In conjunction with (a), (b), , this gives | > —n — 1.

Forl < —n—1, consider the map 7* (S™"" 1 &) ®0, Ox (I) = Ox (—n — 1) . The projection formula gives
a map S~ (&) @y R, (Ox (1)) = R*m,0x (—n— 1) = (A"71&) ™" . Combined with known cohomology
and derived cohomology of P" | this gives a perfect pairing between R"7, (Ox (1)) and S~ (&)@ AT (£).

3.8.7 d. x

(d) Show that p,(X) = (= 1)p(Y) (use (Ex. 8.1)) and p(X) = O (use (Il, 8.11)).

First T attempt to show that p, (X) = (—=1)" p, (V).
S0 pa (V) = (Z1)" (xOy —1) = (=1)" (A" (OY) h' (Oy) + .. = h" (Oy) = 1)
Pa (X) = (=1)7" (h*(Ox) — h! (Ox) +

. — h¥ 1((’) )—1).
By exc 8.1 (¥) = (— 1) (W (Oy) — B (Oy) + .. — K21 (Oy) 1)
For dimension reasons
pa (X) = (=1)"" (1 (Oy) = 1" (Oy) + ... = h" (Oy) — 1)

Note that (—1)*" / (=1)" = (=1)"
Thus p, (X) = (—=1)" pa (V).

Next I want to show that p, (X) = 0 . Recall that geometric genus of projective space is 0 (example
[11.8.20.1). Recall that geometric genus is defined as dimension of the global sections of wy . There is a
canonical isomorphism wx/k|v = wy/k and since X is locally projective space, we can cover X by sets Uj
such that wx|y has no sections, thus we see that dimI’ (X,wx) = 0.

3.8.8 e. x

—

'''' rass T Tror@h T or oaTemes o oammees TRF TTTTT orgnToor T ===

(e} In particular, if Y is a n:}mmguldr }'JI'(J_!LLT.HL curve of genus g, dnd r“ a !ULd'l\-
free sheal of rank 2, then X is a projective surface with p, = —g, p, = 0, and
irregularity g (7.12.3). This kind of surface is called a geometrically ruled surface
(V,§2)

clear from part (c).
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3.9 1II.9 x Flat Morphisms
3.9.1 1II1.9.1x

9.1. A flat morphism f:X — Y of finite type of noetherian schemes is open, Le, for
every open subset U = X, f(Urisopenin Y. [ Hint: Show that fiL') is construct-
ible and stable under generization (11, Ex. 3.18) and (11, Ex. 3.19).]

The induced morphism U — Y is also finite type, so assume U = X.

Exc 11.3.18 gives f (X) is constructible, so closed under generization would imply open.

WTS if ¢ € Y is a generization of y € f (X) then we can find 2’ mapping to y .

If V = Spec B is an open neighborhood of y, then V' > ¢/ and f~'SPec B — Spec B is finite-type and
flat.

If x+— y, and U = Spec A 3 y, then A is a flat B-module by thm I1.9.1.A(d).

Let g : B — A the induced ring homomorphism and using going-up theorem for g.

3.9.2 1II1.9.2 x twisted cubic

9.2. Do the calculation of (9.8.4) for the curve of (1. Ex. 3.14). Show that you get an
embedded point at the cusp of the plane cubic curve.

We can write the twisted cubic as (z,y, z,w) = (¢, t?u, tu?, u*) which is projection from (0,0, 1,0). This is
the projection of the family (¢3, t>u, atu?, u®) onto the z # 0 plane. The cusp at (0,0,0,1) is on w # 0 where
X, is given by (z,y,2) = (3,12, at).

Eliminating ¢ gives k [a,z,y, 2] /I , [ = (y* — 22, 2% — a®y, 2® — a3z, 2y — ax, zx — ay?).

At a =0 we get Iy = (y> — 2%, 2%, 22, 2y) .

Thus the 0 fiber has suppose y* — z? in Spec k [z, y].

For p with ¢ p , then z € p since zz =0 € p.

Thus the local rings are reduced.

At p=(x,y) , z # 0 gives a nilpotent.

3.9.3 II1.93xg

9.3, Some examples of flatness and nonflatness.
ja) Il /X — Y is a finite surjective morphism of nonsingular varictics over an
aleebraically closed field k. ther f is flat.

I want to show finite + surjective + nonsingular gives flat. By exc I11.10.9 (we don’t need this the current
excercise to prove I11.10.9) we get that a surjective morphism is flat iff the fibers have the same dimension. So
I need to show the fibers have the same dimension. Note that a finite morphism is quasi-finite by exc I1.3.5
so all the fibers are O-dimensional. Thus f is flat.

3.94 b. x

T M = B e i i . 2 e e e

{h) Let X be a union of two planes meeting at a point, each of which maps iso-
morphically to a plane ¥. Show that f is not flat. For example, let ¥ =
Spec k[x.r] and X = Spec k[x,row]izw) nix + =y + w)
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If z is in the intersection of the two planes, the assumption is that f is flat, which gives O, x is a finite
rank free Oy(,)y — module by thm II1.9.1.A(f).

Then Om7x/mf(x)7y0x7X ~k.

If O, x is finite rank free Oy, y-module, then by the isomorhpsim, it has rank one.

Thus g : Ofa)y = O x as Oy, y-modules.

Let f =g(1)sothat z =hf, h€ Ofq)y.

But this contradicts hf .

3.95 c¢. x

(c) Again let ¥ = Spec Alx.v]. but take X = Spec k[x v o ]izioww? xz — vl
Show that X, = ¥, X has no embedded points, but that f is not flat.

Note for affine scheme X = Spec A, X,eq = Spec (A, eq)-
To see X,eq =Y,

sage: P.<x,y,z,w> = QQJ]

sage: I — Tdeal(z°2,z%w, w2 ,x%z2—y*wW)

sage: I.radical ()

Ideal (w, z) of Multivariate Polynomial Ring in x, y, z, w over Rational Field

So an embedded point is a nilpotent element at a singular point.
To find singular points

il R:QQ[X7Y>Z7W];
i2 : I=ideal(z"2,zxw,w"2 xX*z—y*w)

2 2
02 = ideal (z , zxw, W , X%z — y*w)

02 : Ideal of R

i3 : jacobian I

et Yt Wt Wt
— = s
S e

o3 : Matrix R <— R

So clearly at (x,y,z,w) there’s a singular point. There are no nilpotents in that local ring however.
Another singular point is at (z,y, z)since there, the rank is less than 2, which is n — dim (X). ( dim (X) =2
since nilpotents don’t affect dimension). However, at this point, there are no nilpotents, since just y is
there. All other points the jacobian has rank at least 2. Thus no embedded points. So we need to quotient
klx,y,z,w] /(2% 2w, w? vz — yw) by the nilradical.

So let f be the reduction map, f : X — X,.; so it’s not quite specified, but probably it’s the reduction
map f : X — X, So it’s clear that the dimension of the fibers changes. Note the fibers usually have
dimension 2 when x,y not zero, when one of them is zero, dimension 1, (since reduction doesn’t change
dimension), and when both are 0 has dimension 0 . But this contradicts thm I11.9.10.
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3.9.6 1II1.9.4 x open nature of flatness

9.4. Open Nature of Flatness. Let f: X — Y be a morphism of finite type of noetherian
schemes. Then |x e X|f is flat at x| is an open subset of X' (possibly empty)—see

L Cunhendieck [FGA IV, 11.1.1]

This follows immediately from Matusumura thm 24.3 which states:
let A anoetherian ring, B an f.g. A-algebra, and M a finite B-module. Set U = {P € Spec B|Mp is flat over A};
then U is open in Spec B .

3.9.7 1III.9.5 x Very Flat Families

- - . ST g - iy - 1
9.5, Very Flar Families. For any closed subscheme X = P*, we denoteby C(X) = |

the projective cone over X (L Ex. 2.10). If] = k[xg. ... x,] is the (largest) hcnmlj-
geneous ideal of X, then C(X) is defined by the ideal generated by [ 10
J'l.'l—."-'“. R, | |
{a) Give an example to show that if | X, is a flat family of closed subschemes ol
P". then !C(X,)! need not be a flat family in P71

Consider the flat family X; defined by (1:0:0), (0:1:0), and (1:1:¢) in P2

These points are only on a line together at ¢ = 0.

For t # 0, then Iy, = (zz — tvy, yz — toy, 22 — tzy) .

If Y is the closure of Ix, in A3 x Al | then Iy = (zz — tvy, yz — toy, 22 — oy, 2%y — zy?).

Y is the closure of a flat family over a smooth by one dimensional base so it is flat.

Note that {C (X;)} is the fiber {Y;}.

On the other hand, for ¢t = 0, X lies on z = 0 so I¢(x,) has z = 0.

However, Y, has no such linear terms.

3.9.8 b. x

Ty

by To rumeﬁi}- this situation, we make the following definition. Let X = P be g
closed subscheme. where T is a noetherian integral scheme. For each (€1
let 1, = S, = k([ x,.....x,] be the homogeneous ideal of X, in P{- W
say that the family | X} is rery flat if for all & = 0.

dimg,, (5,10,

is independent of . Here (), means the homogeneous part of degree .

So basically all we need to do is compute relate the hilbert polynomial of Xy with dimy, (S;/1;). so hilbert
polynomial gives dimy, (S/I),. Since grading commutes with the quotient in this case, we are done.

3.99 c. x

(c) If | X,} isa very flat family in P", show that it is flat. Show also that {C(X )} is
a very flat family in P** ' and hence flat.
This should be clear from (a), and from (b) since the problems cooked up in (b) cannot occur in the case
that the dimensions of the graded parts are always constant over 1. Also just recall the definition of the
hilbert polynomial, and that the hilbert polynomial constant gives flatness.
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3.9.10 d. x

(d) If | X, i1s an algebraic family of projectively normal \Jurictic:; in P, para-
metrized by a nonsingular curve T over an algebraically closed field k, then
1 X 18 a very flat family of schemes.

By thm 9.11, we already get a flat family. The only difference here is we are assuming projectively normal
varieties instead of just normal. We know the hilbert polynomials are the same and we know by projectively
normal that the higher parts of the hilbert polynomial are all 0 or equivalent to the one from projective space.

3.9.11 III.9.6 x

9.6. Let ¥ = P" be a nonsingular variety of dimension =2 over an algebraically
closed field k. Suppose P"~ ! 15 a hyperplane in P" which does not contain Y,
and such that the scheme Y' = Y ~ P" ! is also nonsingular. Prove that Yisa
complete intersection in P" if and only if Y is a complete intersection in P* !,
[Hint: See (11, Ex. 8.4) and use (9.12) applied to the affine cones over Y and Y]

This is Proposition 5.2.2.5 in Migliore, pp 129 Intro to Liason theory and deficiency modules.

3.9.12 III.9.7 x

9.7. Let ¥ < X be a closed subscheme, where X is a scheme of finite type over a
field k. Let D = k[1]'t* be the ring of dual numbers, and define an infinitesimal
deformation of 'Y as o closed subscheme of X. to be a closed subscheme
Y= X =, D, which s flat over D, and whose closed fibre is ¥ Show that these
Y are classified by H%(Y..4 'y ), where

Ny = Hom, (S y i FLE )

First we do the affine case. Consider I C A , I’ C A[t]. Suppose Spec A[t]/I' is an infinitseimal
deformation of Spec A/I in Spec A . Then t? € I' since A[t] /I' is a D-algebra. Furthermore, the image of I’
is [ since the composition (Spec A[t] /I')®pk — A/I is an isomorphism. Finally, the kernel of the composite

morphism A — A[t] /I’ 5 At] /I’ is contained in I', by the criterion of thm II1.9.1.a - note that every
element of A[t] /I’ ®p (t) is a®@t. The converse of each of these facts also clearly holds. Thus Spec A [t] /1" is
an infinitesimal deformation of Spec A/I in Spec A iff (a) t* € I’ (b) under the map, A [t] — A sending ¢ to

0, the image of I’ is I, and (c) the kernel of the composite morphism A — A[t] /I' % A[t] /I’ is contained
in I".

Let A be aring , I C A an ideal, and ¢ € homy (I/I?, A/I) . Define I' C A[t] by the set of polynomials
ap+art—+---+a,t" € Alt] such that ag € I and ¢ (ag) = a; or 0in A/I. Then (a), (b), (¢) give an infinitesimal
deformation of Spec A/I in Spec A .

On the other hand, if we have an infinitesimal deformation of Spec A/I in Spec A , then we can define
a morphism ¢ € homy,; (I/1?, A/I) . Given a € I , by condition (b), the set of elements a + bt € I’ is
nonempty. Define ¢ : I/I> — A/I by ¢ (a) = b . This choice of ¢ is well defined by (¢) and (b). Note that ¢
is A/I linear since for (ax + by) + zt, x + 2't and y + y't € I’ | then ax + az’t and by + by't are in I” and thus
(ax 4+ by) + 2t — (ax + az't) — (by + by't) = (2 —ax’ + by’ )t € I' so z —ax’ — by’ € I by (b), (c).

Thus we have an isomorphism between hom ., (I/1?, A/I) and the set of infinitesimal deformations of
Spec (A/I) /Spec A. Note that for ideals I C Aand J C B, and ¢ : A — B with ¢y='J C I , we have a

commutative square
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homayy (I/1?, AJI) —=[Spec (A/I) /Spec A" ,* meaning the infinitesimal deformations of that space.

| l

hompg,y (J/J?, B/J)—=[Spec (B/J) /Spec B]*
In the general space we therefore have nice restrictions and glueing works.

I11.9.8 (starred)
*9.8. Let A4 be a finitely generated k-algebra. Write 4 as a quotient of a polynomial
ring P over k, and let J be the kernel:
D=J—=P—= 410
Consider the exact sequence of (11, 8.4A)
JJIP 50, ®pAQ,, =0
Apply the functor Hom (-.A), and let T'(A) be the cokernel:
Hom ,(€@2,, @ A,4) = Hom (J/J?4) = T'A) = 0.

Now use the construction of (11, Ex. 8.6) to show that T 4) classifies infinitesimal
deformations of A4, i.e., algebras A" flat over D = k[¢]/t*, with 4’ @,k = 4. It
follows that T'(A4) is independent of the given representation of 4 as a quotient
of a polynomial ring P. (For more details, see Lichtenbaum and Schlessinger [1].)

MISS

3.9.13 III.9.9 x rigid example

9.9, A k-algebra A 15 said to be rigid il 1t has n|r infinitesimal deformations, or equi-
valently, by (Ex. 9.8) if T'(4) = 0. Let .»1‘£= k[ ow]/(xy) m (zw), and show
L thar A s rigid_This correspongds to two plimes in A* which meet at a point,

By previous excercise we want a surjective morphism hom (Qp/k ®A,A) — homa (J/J*,A) , P =
klz,y,z,w],and A= P/J. Now Qp/;, and Qp/, ® A are generated by dx, dy, dz, dw and their images respec-
tively, and hom 4 (Qp/k R A, A) is generated by the duals dz*, dy*, dz*, dw* . J is generated by xz, zw, yz, yw
as a P-module, and these elements give generators of J/J? as an A-module. Thus ¢ € homy (J/J?, A) is
determined by the value on on zz,zw,yz, yw so we can define ¢ € homy (J/J?, A) by giving the value on
TZ, TW,YZ, Yyw .

Now J/J* = Qpj ® A sends f to df ® 1 and any morphism homya (Qp/x @ A, A) — homa (J/J? A) is
a linear transformation defined by where it sends generators. Note that d(dz) = zdx + xdz, and we can
find all the other images similar using the liebniz rule. If v € hom 4 (Qp/k R A, A) sends dx to 1 and other
generators to zero, then v is mapped to (z,w,0,0) by the linear transformation. If 4 sends dy to 1 and all
other generators to 0, then 4 is mapped to (0,0, z,w) . In a similar manner, we can determine the image of
other generating morphisms, and so the linear transformation is given by

z w 0 0
0 0 z w
z 0 y O
0 =z 0 y

Consider (by, by, bs,by) € homa (J/J?) C A* where by is the image of zz , by image of zw , by image of
yz, and by image of yw . Note that xz, zw, yz, yw are zero in A so multiplying by x or y kills terms with z
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or w but sends z'y’ to 2!y’ or 'y’ respectively. Thus by = £b; + by where by € (2,w) k[z,w] . In total,
b1 = ibg + bll/ with blll S (x,y)k:[:v,y] Thus bl = ibz + 5[)3 . Similarly, bQ = 564 + %bl s b3 = %bl + §b4 y
by = by + 23 so that (b1, ba, b3, by) is in the image of homy (Qp/k ® A,A) — homa (J/J? A) .

3.9.14 II19.10x g

. A SCheme A, Over a Herd & 15 Figid 11 1
{a) Show that Py is ngid, using (9.13.2).
Infinitesimal deformations correspond to H! (X, Ix).

Now using the fact that Kpr = —2H — Jx = O (2) and computing cohomology using the euler exact
sequence gives the result.

3.9.15 b. x

(b} One might think that if X is rigid over k. then every global deformation of X',
i5 locally trivial. Show that this is not so. by constructing a proper. flat mor-
phism [:X — A° over k algebraically closed. such that X, = P;, but there
is no open neighborhood U of 0 in A® for which f " (U) = U x P'.

Use IT1.9.9 and just write our family with a characteristic function. g (a,b)-[2? + yz]+(1 — o (a, ))-[2?]
where do (a,b) is the characteristic function of (0,0). So in particular, we get a nonsingular conic at 0,0
and everywhere else a singular conic. But does that even give a morphism? so suppose we take the closed
set = 0 in A% Then pulling back gives V ((1 — dop (a,b)) - [z2]) UV (do (a,b) - [z + yz]) union of closeds...
hmm it seems to make sense. Ok I'm going with it.

S po— e

*lc) Show, however. that one can trivialize a global deformation of P' after a flat

base extension. in the following sense: let f: X — T be a flat projective mor-

phism, where T 1s a nonsingular curve over k algebraically closed. Assume

there isaclosed pointr € T such that X, = P;. Then there existsa nonsingular

curve T', and a flat morphism ¢: T' — T, whose image contains 7, such that

if X' = X x; T is the base extension, then the new famuly [ X' — T is
. : . ,

MISS

3.9.16 III.9.11 x interesting g

9.11. Let Y be a nonsingular curve of degree o in P{. over an algebraically closed field k.
Show that

0<plY)< 3d — Did = 2.

[Hint: Compare Y to a suitable projection of Y into P*, as in (9.8.3) and (9.8.4) ]

For P? it’s clear. else embed into P?, then put into P? using IV.3.10. Now p, (V) = 3 (d — 1) (d — 2) —nodes
and use the fact that genus is birational invariant.

196



3.10 III.10 x Smooth Morphisms
3.10.1 III.10.1 x regular != smooth always

10.1. Over a nonperfect field, smooth and regular are not equivalent. For example,
let k, be a field of characteristic p = 0. let k = kyir), and let X = A7 be the curve
defined by y* = x* — . Show that every local ring of X is a regular local ring,
but X" 1s not smooth over k.

Let X = Spec R, R = k(z,y]/(f), f =y>— 2P +t . f defines an irreducible polynomial so X is
irreducible and dimension 1 over k. Clearly F = K [z] /(2P —t) gives a field extension of degree p which
is inseparable since any k,z,y is a p — th root of some element of E. Note that for 7 a p root of ¢, then
p = (z — 7,y) is not regular over k as dim p/p?> =2 > dim R®x K = 1 . However for p > 0 away from p
computing the jacobian shows X/K is smooth. Now use thm 10.2.

3.10.2 III.10.2x g

10.2. Let /:X — Y be a proper, flat morphism of varieties over k. Suppose for some
point y € ¥ that the fibre X is smooth over k(y). Then show that there is an
open neighborhood U of y in ¥ such that f:f~Y{U) — U is smooth.

This is local so we can assume X, Y is affine. Note the map on tangent spaces. Suppose f is smooth at
x. In this case, the sequence given by 11.8.12, is exact on the left at x. I.e. we have

0— I/ I2 = Qv e — Q}(/m — 0.

There are functions ¢y, ..., g, around z with dg; forming a basis around Qﬁ(/m. The g; define g : U — A}
for an open set containing x which is etale since the dg; are linearly independent. Thus we f factors as an
etale map together with projection to Y.

3.10.3 1III.10.3 x

10.3. A morphism f:X — Y of schemes of finite type over & is érule il it is[smooth of
relative dimension 0. 1t is wnramified if for every x e X, letting y = _f'[_r' ), we have
m, €, = m,, and k(x) is a separable algebraic extension of k{ y). Show that the
following conditions are equivalent:
{1) [ is érale;
(i) [ is flat. and @, , = 0:
(iti) [ is flat and unramified.

Clearly flat and unramified is the same as smooth of relative dimension 0.

Suppose f is flat and unramified. Then Qx,y ® k () = 0 so by Nakayama, {2x,y is 0 at any stalk. Thus
(iii) implies (ii)

Now suppose (ii). Consider f*Qy/, — Qx/ = Qx/y — 0. At z this is

(mf(x)/m}(z)> Ry k (¥) = my/m2 — Qx/y,, @ k(x) — 0 where the last term is 0. Thus the middle is
surjective and nakayama gives m,Ox , = m,. Since we are looking locally, consider a homomorphism A — B
of f.g. k-algebrais with Qg4 = 0. If p C A is prime, this gives a point in Y. For S = B ®4 k(p), then
Qs/k(p) = 0 by base extension. The primes of S are the preimages of p by Spec (B) — Spec(A) . If q is in the
preimage then s/q)/kp) = 0 . By the logic used in advanced conditions for a closed immersion, k (p) C (S/q)
is of transcendence degree 0 and separably generated, and because it is finitely generated it must be finite
separable. Thus it is unramified, hence etale. Thus (ii) implies (i).
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Now suppose (i). By the previous paragraph, unramified = €x,y = 0. Thus we consider preimages.
By base change we assume Y is integral. Let X; U---U X,, = X the irreducible decomposition of X. If
Ui = X\ <X1 U-—-UX;U... UXn> , then dim (U;) = dim (X;) and wlog we assume U; ~ Spec (B) , and
f(U;) €V = Spec(A) . This gives a flat extension i : A — B of f.g. k-algebras with Q4 = 0 . Then
i is injective since for s mapping to 0, A =3 A is 0 after tensoring by — ® B contradicting flatness. If n is
the nilradical of B,then A — B/n is injective, B/n is a domain and thus as in the previous paragraph, with
p=(0)C Aand q=(0) C B/n, wefind K (5) /K (A) is a finite extension which gives dim (B/n) = dim (A).
Thus (i) = (iii)

3.10.4 1III.10.4 x

10.4. Show that a morphism f:X — Y of schemes of finite type over k is ¢tale if hnd
only if the following condition is satisfied: for each xe X, let v = f{x). Let ¢ and
EF_\ be the completions of the local rings at x and y. Choose fields of represepta-
l}vus [I}. 8.25A) kix) = ¢, and k(1) = {?J. so that k(y) = kix) via the natural map
¢, — (,. Then our condition is that for every x € X, k(x) is a separable algebraic
extension of k{ 1), and the natural map

{.’\:_'.' I:EIJ“N k[-"’-" — {?.‘

15 an isomorphism.
Assume it’s etale. We are looking locally so we can assume X = Spec A, Y = Spec B. From exc I11.10.3
get that it’s flat and unramified. Thus using Matsumura, pp 74, the induced maps m’%/m’;*" — m%/m/;H!
are isomorphisms. The reverse is in atiyah macdonals. Thus at the limit, the maps on completions are

isomorpisms. The reverse is in Atiyah Macdonald. Alternatively, use Liu prop 3.26.

3.10.5 III.10.5 x etale neighborhood x

10.5. If x is a point of a scheme X, we define an étale neighborhood of x to be an étale
morphism f: U — X, together with a point x e U such that f{x) = x. As an
example of the use of etale neighborhoods, prove the following: if # is a coherent
sheafon X, and if every point of X has an étale neighborhood f: U — X for which
f*# 1s a free Cy-module, then # 1s locally free on X.

Forz e X, f(a') =, let r = dimy)F, @ k (x) whichis 7k f,.% at 2/ € U .

After possibly shrinking U, we get a an exact sequenc 0 — kernel — O% — % — 0.

f flat implies 0 — f*kernel — O}, — f*.% — 0 is exact, and similarly if we localize at 2.
By assumption (f*.%),, is free, thus flat so the sequence

0 — f*kernel, @ k (v) — Op, @k (z) = [*F, @ k(x) — 0 is exact.

The dimensions on the right are the same so the kernel must be 0 by nakayama.

Thus Ofy — # is an isomorphism.
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3.10.6 III.10.6 x g Etale Cover of degree 2. x

10.6. Let Y be the plane nodal cubic curve 1* = x*(x + 1). Show that Y has a finite
etale covering X of degree 2, where X is a union of two irreducible components,
each one isomorphic to the normalization of Y (Fig. 12).

Figure 12. A finite etale covering.

So recall the normalization I think is just like a parabola, (it separates the two branches passing through
the node) so I'm pretty sure its R[t] with the map ¢ — (> — 1,¢(¢* — 1)). In particular, T compute the
normalization in Summer Problems 2012. Now we use this form the cover: Spec k [s, ] <t2 —(s*— 1)2> —
Spec kz,y|/ (y*> — 2% (x + 1)), z + (s> — 1) and y > st . (This is two parabolas joined together).

The two components are the two parabolas k[s,t] / (t — (s> — 1)), and k[s,t] / (t + (s* — 1)). To see that
the cover is etale, check that it gives an isomorphism on the tangent cones. The tangent cone is geometrically

the union of (tangent lines) two branches of C' at each node. But then geometrically, it is clear this gives an
isomorphism. Thus we have an etale cover.

3.10.7 III.10.7 x Serre’s linear system with moving singularities

10.7. (Serre). A linear system with moving singularities. Let k be an algebraically closed
field of characteristic 2. Let P, ... ,P- € P{ be the seven points of the projective
plane over the prime field F; = k. Let D be the linear system of all cubic curves
in X passing through P,.... P,.

(a) Disa linear system of dimension 2 with base points P,, ... ,P,, which deter-
mines an inseparable morphism of degree 2 from X — {P,! to P2

Let T denote the base locus consisting of P, = (1,0,0), P, = (0,1,0), P; = (0,0,1), P, = (1,1,0) ,
P;=(1,0,1), Ps = (1,1,1), and P; = (1,1,1). A generic cubic in P? is the zero set of V (f) of f (z,y,2) =

17 + asx?y + azx®z + agy® + asryz + agrz? + arxy? + agz® + agy’z + aoyz’.

For Py, P, Py € V (f) , we must have aq,ay,ag are zero. Py € V (f) mean ay = a7y , Ps € V (f) gives
a3 = ag , Ps € V(f) means a9 = ajg, and P; € V (f) means a5 = 0 . Thus a cubic in © looks like
a(x®y + zy?) + b (%2 + 22%) + ¢ (y*z + y2z?). Thus 0 is generated by 3 cubics C; with intersection T so there
is a morphism g : P2\T — P? given by (z,y, 2) — (2%y + zy?, 2?2 + 222, y*2 + yz?).

We can show inseparability locally on one of the affines D, (x), D, (y), Dy (2) . For example on Dy (z)
22y+ry?® 224z
have h : k(s,t) — k(x,y) , s — z%x b “y%% . Note that y - h(t) + +h(s) = %x:x . In h(s) we
get 0="h(s)+h(s)=nh s)+§—f{x:

h(s) (1) +u°h(8)* +yj (t5) +y>h(t) +yh(ts) +h(s)*+yh(s)

v+ :
Thusy?h (t) (h(t) + 1)+h(s) (h(s) + 1) = 0 and we can find a minimal polynomial y?+c¢ = 0, ¢ a function

of h(s),h(t) . Then u? + ¢ is a minimal polynomial that is inseparable of degree 2.

we have coordinates s = x/z , t = y/z and g is given by (z,y,1) — ( . On function fields, we
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3.10.8 b. x

(b) Every curve C € D is singular. More precisely, either C consists of 3 lines al
passing through one of the P, or C is an irreducible cuspidal cubic wilg
cusp P # any P,. Furthermore, the correspondence C +— the singular pﬂEm[
of C is a 1-1 correspondence between D and P2, Thus the singular points o
elements of ® move all over. I

The singular points are given by the partial derivatives 0 = %, 0= g—i, and 0 = % , which are ay?+02% = 0,

az? + cz? = 0, and bz® + cy® = 0. Thus /ay = Vb2, Jax = y/cz, and vbx = \/cy. There is a singular point
S = <\/E, Vb, \/5) Each P; is singular for only one of the cubics in 9. P lies on yz (y + z), P, is singular on
xz (z + 2), Py is singular on xy (x + z) , ... . Each of these equations results from choosing a, b, ¢ in F? which
is the same as choosing a union of three lines. Thus these relations give all the cubics with a singular point

in the base locus. Note that two different sets of a, b, ¢ give different singular points so @ — P? is a bijection
so the singularities of d are moving.

I11.10.8 x

10.8. A linear svstem with moving singularities contained in the base locus (any charac-
teristic). In affine 3-space with coordinates x,v,z, let C be the conic (x — 1)* +
v* = | in the xy-plane, and let P be the point (0,0,1) on the z-axis. Let ¥, be the
closure in P? of the cone over C with vertex P. Show that as r varies, the surfaces
'Y} form a linear system of dimension 1, with a moving singularity at P. The
base locus of this linear system is the conic C plus the z-axis.

geometrically this is fairly obvious.

II1.10.9 x

10.9. Let /: X — Y be a morphism of varieties over k. Assume that Y is regular, X is
Cohen—Macaulay, and that every fibre of / hasdimensionequaltodim X' = dim ¥.
Then f is flat. | Hinr: Imitate the proof of (10.4), using (11, 8.21A}.]

So recall a variety: integral separated scheme finite type over algebraically closed field k. Also flatness is
local so we just need to show that X D Spec A — Spec R C Y is flat. Or that R — A is flat. So A is a local
noetherian R-algebra, R is regular by assumption We have dim X = dim Y + dim fiber. So really 1 just
need to show that dim fiber is dim A/PA. But X, = Spec(A® k (P)) = Spec(A,/PAp) and dimension
works with localization. So we’re good. Now this follows from Eisenbud 18.16.b which says if A is CM then
A is flat over R iff dim A = dim R+ dim A/PA .

3.11 IIL.11 x Theorem On Formal Functions
3.11.1 III.11.1 x g higher derived cohomology of plane minus origin.

11.1. Show that the result of (11.2) is false without the projective hypothesis. For
example, let X = A, let P=(0.... 0L let U' =X — P, and let f:U = X be
the inclusion. Then the fibres of f all have dimension 0, but R"™'f ¢ # (.
Since R™ ! f,Oy is the sheaf associated to V +— H* (f_1 V), OU\f—l(V)), we can just compute the cohomol-
ogy of A7—{0} . WLOG let n = 2, then take the open cover U, = Spec k [z,y,2™ "], and U, = Spec k [z, y,y "]
. The cech complex is
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0= klr,y,z | @klr,y,y ] = klr,y,z7 Ly ] —=0— ...
So the first cohomology group is linear combinations of monomials of negative degree.
Clearly the fibers have dim 0 on the inclusion.

3.11.2 III.11.2x g

11.2. Show that a projective morphism with finite fibres {= quasi-finite (11, Ex. 3.5V}
15 a finite morphism.

Let f : X — Y. This result is local on the base, thus we assume Y is affine. Since X is projective,
X CY xP", and we are projecting to Y. By induction, and blowing up a point of P” we can assume n = 1.
If y € Y, then since f has finite fibers, we can find 2 € y x P! | 2 € Y x P\ X. This shows that we can take
a smaller open affine and call that X.

Thus assume X is affine, defined by a polynomial in x with coefficients in A(Y), f (x) = apz™ + - - + ay.
Localizing at a, gives a quotient of A [x]/(f) which is finitely generated by 1,x, ..., 2"

3.11.3 III.11.3 x
e
11.3. Let X be a normal, projective variety over an algebraically closed field k. Let?
be a linear system (of effective Cartier divisors} without base points, and assume
that b is not composite with a pencil, which means that if f : X — P} is the morphism

determined by b, then dim f(X) = 2. Then show that every divisor in D is con-
nected. This improves Bertini’s theorem (10.9.1). [Hints: Use (11.5), (Ex. 5.7)
and (7.9}.]

(Kleiman)

Suppose that 0 is reducible. I claim that 0 is composite with a pencil.

By Bertini, 0 has no variable singular points outside the base locus so a general member of 0 has distinct
components. Fix a general member U of 0 with minimal number of components and assume the number of
components is d > 2 by contrapositive, so that 9 is disconnected / reducible. Let P be a subsystem which
contains U, with no fixed components, and which is parametrized by a line. A general member of P has d
components and the i** component is a 1-parameter family P; .

We can factor P so that each factor has coefficients which are coordinates of a generic point of a curve in
projective space parametrizing P;. Then P; is a linear pencil since the degree of the curve gives the number
of hypersurfaces in P; which pass through a general point of projective space. But since only one member of
P intersects x, this degree is 1.

Note that each of the P, must be equal to each other. If U; is a general member of P, , and a general
x € Uy , then for each ¢, z must lie in some U; € P; . Thus U; must be a component of U since P is a pencil.
Thus U; must equal U; and thus U; € P,. Thus P; are all the same. Thus all components of U belong to P;
so 0 system is composite with a pencil.

3.11.4 1III.11.4 x Principle of Connectedness

11.4. Principle of Connectedness. Let {X,| be a flat family of closed subschemes of P}
parametrized by an irreducible curve T of finite type over k. Suppose there is a
nonempty open set U = T, such that for all closed points t € U, X, i1s connected.
Then prove that X, is connected forall re T.
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Since this question is stable under base change, wlog assume 7T is normalized. f flat and projective gives
f+Ox torsion free. T smooth gives f,Ox locally free. f has connected fibers over U gives f.Ox has rank
one on U and thus everywhere. Thus f,Ox gives an invertible sheaf. Note that the global sections of f,Ox
are the same as the global sections of Ox . Thus f,.Ox ~ Or . By a theorem in this section, the fibers are
connected.

IT1.11.5%*

*11.5. Let Y be a hypersurface in X = P with N = 4. Let X be the formal completion
of X along Y (11, §9). Prove that the natural map Pic X — Pic Y is an isomorphism.
[ Hint: Use (11, Ex. 9.6), and then study the maps Pic X, , — Pic X, for each n

using (Ex. 4.6) and (Ex. 5.5).]
Skip

I11.11.6 - Skip (formal schemes)

11.6. Again let Y be a hypersurface in X = PY, this time with N = 2.
fa) If 5 is alocally free sheaf on X, show that the natural map
HYX . #) - HYX. %)
Is an isomorphism.
MISS

(b) Show that the following conditions are equivalent:

(1) for each locally free sheaf § on X. there exists a coherdnt sheaf # on X
such that & = # (ie. & is algebraizable):
(1) for each locally free sheaf & on X, there is an integer ng| such that &in) i1s
generated by global sections for all n = n,.

[Hini: For (1) = (i}, show that one can find sheaves &,.&,[on X, which are
direct sums of sheaves of the form '{ —g,), and an exact sequence &, — &, —
& — 0 on X. Then apply (a) to the sheafl #om(£,.£,).]

MISS

{c) Show that the conditions (i) and (11} of (b) imply that the natural map Pic X' —
Pic X is an isomorphism.
Note. In fact, (i) and (ii) always hold if N = 3. This fact, coupled with
(Ex. 11.5) leads to Grothendieck’s proof [ SGA 2] of the Lefschetz theorem
which says that if ¥ is a hypersurface in P} with N = 4, then Pic ¥ = Z, and
it.is generated by (",(1). See Hartshorne [ 5, Ch. IV] for more details.

MISS

209



IT1.11.7 -Skip (formal schemes)

11.7. Now let ¥ bea curvein X = P}, )
{a) Use the method of (Ex. 11.5) to show that Pic X — Pic Y is surjective, and 1ts
kernel is an infinite-dimensional vector space over k.

MISS

{b) Conclude that there is an inveriible sheaf € on £ which is not algebraizable.
MISS

I e A% LPEEAEE A WTAE Ak AAREE LaF FERSL LN SR L LA T

(¢} Conclude also that there is a locally fr::vr. sheal & on X so that no twist i (1) 18
generated by global sections. Cf. (11, 9.9.1)

MISS

IT1.11.8 x higher derived is 0 in a neighborhood

11.8. Let f:X — Y bea projective morphism, let # be a coherent sheaf on X which 1s
flat over Y. and assume that H(X,.#,) = 0 for some i and some 1|e ¥. Then
show that R'/_(.#) is () in a neighborhood of -

We will show that (R'f, (35))2 (A for completion) is 0.

By the formal function theorem, this is equivalent to H® (Xy, F 20,/ m’;) =0 for all k.

Note that H (X,, # ® O,/m,) = 0 by assumption.

We also have

0— m];/m];+1 — (%/m’;Jr1 — Oy/m'y‘“' — 0 and since .% is flat, then by long exact sequence and induction,
we just have to show that H' (X,,.# @ m}/mi+!) = 0.

Since m’; / m’;“ is a direct sum of copies of O, /m,, since the cohomology commutes with the direct product.

3.12 1III.12 x Semicontinuity

3.12.1 1III.12.1 x g upper semi-continuous tangent dimension

12.1. Let ¥ be a scheme of finite type over an algebraically closed field k. Show that the
function
@i 1) = dimy(m,/m?)

15 upper semicontinuous on the set of closed points of Y.

This is intuitively clear as m/m? is the number of tangent directions.

proof:

Since this is a local result, assume Y is some affine variety.

The tangent space in this case is the kernel of the linear transformation given by the jacobian matrix of
the polynomials in the ideal of Y.

Since the rank function on matrices is upper-semicontinuous, the result follows.
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3.12.2 1III.12.2 x

12.2. Let [ X,] be a family of hypersurfaces of the same degree in P;. Show that for
each 7. the function If{ X (' ) is a constant function of 1.

Let f € R[zy,...,7,] a polynomial of degree d, p € Spec R, and k = quot (R/p). Let f the reduction
of f mod p. By a change of coordinates, f can be written in Welerstrass form with respect to z,: f =
ard + pg_12971 + .- + po, where p; are polynomials in the other variables, and 0 # @ € k. If 2* € k are
Coefﬁments giving the change of coordinates are in R, then we can accomplish the change of Coordlnates on the
open set D (a]]s;) C Spec R containing p where a is invertible. Over the ring R’ attained by adjoining % s
to R, we have R'[zy,...,1,] / (f) is a free R’ [x1, ..., 7,_1] module with basis 1,z,, ..., 23 which is therefore

a free R'-module. This gives the affine case, as free gives us flatness of the morphism to 7. The affine case
covers P,

3.12.3 1II1.12.3 x Rational Normal Quartic

12.3. Let X, = P} be the rational normal quartic curve (which is the 4-uple embedding
of P'in P"‘}. Let X, = P; be a nonsingular rational quartic curve, such as the
one in (I, Ex. 3.18b), Use (9.8.3) to construct a flat family [ X, of curves in K%,
parametrized by T = A', with the given fibres X, and X for 1 = 1 and 1 =|0.

Let .9 = ¢ ps, ; be the ideal sheaf of the total family X = P* x T. Show thjat
4 1s flat over T. Then show that

0g) = {(I} fore = 0

forr =0
and also
0 fort # 0
.5 = J
Aied i fort = 0.

This gives another example of cohomology groups jJumping at a special point.

This question has a typo which makes it not quite work. See
http://mathoverflow.net/questions /90260 /trouble-with-semicontinuity
for details.

3.12.4 1II.12.4x

12.4, Let Y be an integral scheme of finite type over an algebraically closed field k.
Let /:X — Ybea fiat projective morphism whose fibres are all integral schemes.
Let &7, 4 be invertible sheaves on X. and assume for each ve Y that ¥ = #.
on the fibre X . Then show that there is an invertible sheaf 1 on ¥ 5m,h T]"tdt
= 4@ f* A [Hinr: Use the results of this section to show that [ (¥ & .# ')
is locally free of rank 1 on Y]

Suppose that .# is an invertible sheaf on X which is trivial on the fibers X,. I claim that f,.% =¥ is
invertible on Y with f*¢ = .% .

By Grauert, m,.% is locally free rank 1 (call this ¢) and ¥ ® k (y) — H" (X, .%,) is an isomorphism. The
natural map f*¢Y = f*f.9 — ¢ is an isomorphism since it is surjective on the fibers.

Now if ., ~ A, then £, ® //{y_l is trivial on the fibers so we are done.
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3.12.5 III.12.5 x Picard Group of projective bundle

12.5. Let Y be an integral St:ht.‘]m:: of finite type over an algebraically closed field k.
Let & be a locally free sheafon Y. and let X = P& )—see (11, §7). Then show that
Pic X = (Pic Y) = Z. This strengthens (11, Ex. 7.9).

We will map .% x m € PicY X Z to p*.% ® Ox (m) .

Injective:

Suppose that p*.# @ Ox (m) = Ox .

Then p,Ox =~ Oy by thm I1.7.11

Using projection, p. (Ox (m) ® p*.%) ~ Oy

So (p«Ox (Mm)) @ F ~ Oy .

F invertible so (p,Ox (m)) ~ .F 1.

By thm T1.7.11, for m < 0 we’re done.

If m > 0, then p,Ox (m) ~ S™ (&) which has rank " —;m ;— L
So if rank is > 1, we are done for m > 0 since the rank will be too big to have

If & is invertible, then we have p,Ox (m) = Oy and so .# must still be Oy (see 11.12 in 3284 book).

Surjective.

Consider .# € Pic(X) .

The restriction to the X, , ., is an invertible sheaf on P" and thus is Opn (m) for some m.

Thus for a preimage we consider # @ Ox (—m) .

Note this is effective and the restriction is trivial for every y.

This follows by semicontinuity and since the euler characteristic is locally constant. By (hirzebruch)
riemann-roch we can find that degree 0 is locally constant so degree 0 + effective gives us a sheaf which is
the same on each fiber. Now use the previous excercise.

I11.12.6%*

*12.6. Let X be an integral projective scheme over an algebraically closed field k. and
assume that HY(X,Cy) = 0. Let T be a connected scheme of finite type over k.
(a) 11 # is an invertible sheaf on X » T, show that the invertible sheaves %, on

X = X x |1} are isomorphic, for all closed points1 € T.

MISS

(b) Show that Pic(X x T) = Pic X x Pic T. {Do not assume that T is reduced!)
CL(IV, Ex, 4.10) and (V, Ex. 1.6} for examples where Pic(X x T) # Pic X x
Pic T. [Hinr: Apply (12.11) with i = 0,1 for suitable invertible sheaves on
X x T]

MISS

4 TV Curves

4.1 IV.1 x Riemann_ Roch Theorem

alternative
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4.1.1 x IV.1.1 g Regular except at a point

1.1, Let X be a curve. and let P e X be a point. Then there exists a nonconstant
rational function / € KX L which is regular everywhere except at P.

Let Q # P. and let D =2P — Q).

Choose n such that deg (nD) > max {29 — 2, g,1}.
By R.R. and speciality of nD, h® (nD) =n+1 — g.
So nD — (f) ~ D' for some effective D'.

Then D' —2nP +n@ ~ (f)

and so since D’ is effective, f has a pole at P.

4.1.2 xIV.1.2 g Regular Except pole at Points

1.2, Againlet X be a curve.and let P, ... P, X be points. Then there is a rational
function f = KIX') having poles (of some order) at cach of the P, and regular
elsewhere.

Let Q € X — {P,,...P.}.

Let D=(Pi+..+ P —(r—1)Q), n > mazx {29 — 2,9,1}.

rr gives i’ (nD)=n+1—g> 1.

By definition of linear series, 3f € K (X), nD — (f) = D’ > 0.

ie. D'+n(—P—..— P4+ (r—1)Q) = (f) %

Now if D" cancels no poles, then (f) is our function by %

Else D’ cancels a pole,

Note since deg (nD) = n thus deg (D') = deg (nD).

So D’ only cancels one pole (since effective). Thus D' = nP,.
Using Excercise IV.1.1, find ¢ which is regular except for a pole at P;.
To avoid cancelling, find N greater than the order of g at each P,.
Then fVg will be regular everywhere except at each P;.

4.1.3 x IV.1.3 g Nonproper Curve is affine
1.3. Let X be an integral, separated, regular. one-dimensional scheme of finite type
over k. which is not proper over k. Then X is affine. [Hint: Embed X in a (proper)
curve X over k, and use (Ex. 1.2) to construct a morphism f/: X — P' such that

j,- I[.‘ill — _'5(_]

Remark 11.4.10.2 (e), says that every variety can be embedded as an open dense subset of a complete
variety.

So embed X in such a complete variety.

By 1.6.10 embed X as an open subset of a complete curve X.

Then X\X = {Py, ..., P,} since it’s closed.

By Excercise IV.1.2, “regular except at P,”, there is a section f with no poles except at P;.

f gives a finite morphism to P* from X.

By finiteness of the morphism, f~! (A!) = X is affine.

Embed X in a proper variety over k.
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414 1IV.1l4x

1.4. Show that a separated. one-dimensional scheme of finite type over n. none of whose
irreducible components 1s proper over k. 1s affine. [ Hini: Combine (Ex. 1.3) with
(111, Ex. 3.1, Ex. 3.2, Ex. 4.2).]
By II1.3.1, we only need to show for a reduced scheme.
By II1.3.2, we only need to show for an irreducible component of a reduced scheme.
Thus we assume X is integral.
By I1.2.4, since the image of a proper scheme is proper, the normalization X is not proper.
By IV.1.3, X is affine. (not proper then affine)
By II1.4.2, Chevalley’s theorem, since we have a finite surjective with X affine, then X is affine.

4.1.5 IV.1.5 x g Dimension less than degree

1.5. For an effective divisor D on a curve X of genus g. show that dim|D| < deg D.
Furthermore, equality holds if and only if D = O org = .

Using riemann roch,

dim|D| =h® (D) —1=deg D — g+ h° (K — D)

Since D is effective, it’s

<deg D—g+h°(K)

Note the canonical has h° (K) —h° (K — K)=29—-2+1—-g=g.

= deg D — g + g since the canonical has h° (K) = g.

Note that equality holds when h° (K — D) = h" (K) so when D =0 or g = 0.

4.1.6 1IV.1.6 x g finite morphism to P!

1.6. Let X be a curve of genus . Show that there s a finite morphism /X — R'

of degree <¢ + 1. (Recall that the degree of a finite morphismoof curves /1 X' — |V
is defined as the degree of the field extension [ K{.X): K( Y )] (11 §6).)

Choose g + 1 points P; on X.

By IV.1.2, there is a nonconstant function f in k (X) with poles at P; and regular elsewhere.
Since f is nonconstant, By Theorem I1.6.8 f is finite.

Since f~! (0o) consists of the poles P;, then deg f < g + 1.

4.1.7 IV.1.7x g

1.7. A curve X is called hyperelliptic if g = 2 and there exists a finite| morphism

f:X — P' of degree 2.

{a) If X is a curve of genus ¢ = 2, show that the canonical divisor defines a com-
plete linear system |K | of degree 2 and dimension 1, without base ]-ninl:i. Use
[T, 7.8 1710 conciude that .\ is nyperciipric.

If X has genus 2, then deg Kx =29 —2=2and dim|Kx|=g—1=1.

To show base point free, we need dim |Kx — P| = dim |Kx| — 1 for any point.
Note that |P|—|Kx — P| = 1+1—¢g = 0 and |P| = 0 since if it was 1, there would be a degree 1 morphism
to PL.
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By remark I1.7.8.1, a linear system without basepoints gives a morphism to P" . (in this case to P! since
dim |Kx| =1). Since deg Kx =2, we have a degree 2 morphism to P! so X is hyperelliptic.

4.1.8 b.xg

ib) Show that the curves constructed in (1.1.1) all admit a morphism of degree 2
to P'. Thus there exist hyperelliptic curves of any genus g = 2,
Nore, We will see later (Ex. 3.2) that there exist nonhyperelliptic curves. See
L also (VW _Fx. 210
Let X a curve on the quadric corresponding to divisor of degree (g + 1,2) . Denote py : X — P! the
second projection from @ = P! x P!, This projection is non-constant and thus finite by thm I1.6.8. By thm
I1.6.9, for a point, deg p; (P) = degps - deg P so 2 = deg p, .

4.1.9 1IV.1.8 x g arithmetic genus of a singular curve

L.8. p, of o Singulor Curve, Let X be an integral projective scheme ol dimension 1
over h, and let X be its normalization (11, Ex. 3.8). Then there is an exacl sequence

of sheaves on X
0=y = flg—= Y Cplp—0.

Felk

where ¢ , is the integral closure of (p. For cach P e X, let dp = lengtl (€ p € p.
(a) Show that p(X) = pX) + N pex dp. [Hine: Use (11, Ex. 4.1) and (111,
Ex. 5.3).]

X nonsingular projective by Leray spectral sequence that H° (fiOz) =k . As ZpGX (’5p/(9p is a direct
sum of flasque, then exc I11.4.1, H' (X, f,O%) ~ H! (X, (’)5(> . Thus we have an s.e.s.

0— HO (X, ey cip/op) = HY(X,0x) — H! (X, (’)X) 0.
Now by exc I11.5.3, p, (X) = p, ()2) + > pex dimpOp/Op = p, (X) + > 0p.

4.1.10 (b) x g Genus 0 is nonsingular.

| b} 1 piX) = 0.show that X is already tmnsingu]urund in fact isomorphic to P
This strengthens (1.3.5).

d0p = 0 by the formula from the question.
Thus local rings are normal.

By DIRP, its nonsingular.

By 3.1.5, it’s P!

*c) If Pisa node or anordinary cusp (1, Ex. 5.6, Ex. 5.14), show that d, = 1. [Hin:
Show first that . depends only on the analytic isomorphism class of the sin-
gularity at P. Then compute 8, for the node and cusp of suitable plane cubic
curves. See (V, 3.9.3) for another method.]

MISS
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IV.1.9 (star)

*1.9. Riemann-Roch for Singular Curves. Let X be an integral projective scheme of
dimension 1 over . Let X, be the set of regular points of X',
(a) Let D = Y n,P; be a divisor with support in X Lo be,all Pe X . Then
define deg D = Y i, Let #(D) be the associated invertible sheaf on X and
show that

P M) =degD + 1 — p,.

4.1.11 x g difference of very amples.

{b} Show that any Cartier divisor on X is the difference of two very leplc Cartier
divisors (Use (1L Ex. 7501 [
Choose n > 0 such that D + mL is globally generated where L is some very ample divisor.
By IL.7.5, (D +mL)+ L = D+ (m+ 1) L = B is very ample.
Then D = B — (m + 1) L is the difference of very amples.

4.1.12 x g Invertible sheaves are .Z (D)

¢l Conclude that every invertible sheafl % on X is isomorphic to #(D) for pome
i 3

P ST A IR TANE VRN Y aY o
S A PP e e —

By (b), assume very ample cartier.
Choose a hyperplane which doesn’t not intersect the singular locus of X.

4.1.13 x. Alternative riemann-roch

(d) Assume furthermore that X is a locally complete intersection in some pre”
jective space. Then by (II1, 7.11) the dualizing sheaf my is an invertible sheal
on X.so we can define the canonical dirisor K 1o be a divisor with support i
X ... corresponding to esy. Then the formula of (a) becomes

Dy — K — Dy=degD + 1 — p,.

note that LCI by 11.8.32

Thus by T11.7.6

, HY (X, Z (D)) =~ Ext® (£ (D) ,w%) ~

Ezt' (Ox,wx ® £ (—D)) =~ H*(X,u% ® Z (-D)).
Now use the Riemann Roch formula from part (a).

4.1.14 1IV.1.10 g x

L.10. Let X be an integral projective scheme of dimension | over k, which is locally
vomplete intersection, and has p, = 1. Fix a point P, & X .. Imitate (1.3.7) to
show that the map P — #{P — P, gives a one-to-one q:nrl'l:.s.i‘mndt_‘:l'li:l: between
the points of X, and the elements of the group Pic X. This generalizes (II,
6.11.4) and (11, Ex. 6.7).
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By exc IV.1.9.d, deg Kx =p, —1=0".

Now let D be a divisor of degree 0.

By exc IV.1.9.c, applied to D + P, gives an invertible sheaf .Z (D’) where D’ has support in X, .
Then deg (Kx — D — Py) = 0 — 1 so it has no sections so dim |D + Fy| = D'.

4.2 1IV.2 x Hurwitz Theorem
4.2.1 1IV.2.1x g projective space simply connected

First I will retype the case for P! since I forget how it goes.

Let f : X — P! an etale cover. Assume X is connected. Then X is smooth over k since f is etale
(obvious), and X is proper over k since f is finite (exc II.4.1 or something). So X is a curve (note connected
and regular imply irreducible - i'll take your word for it). Since f is etale, f is separable, so we apply hurwitz
theorem. f unramified, then the ramification divisor R = 0 so 2¢g (X) — 2 =n (-2).

g (X) >0 so this only happens for g (X)=0,andn=1 = X =P'.

Now assume by induction that we know P’ are all simply connected, i < n . Let H = P! a simply
connected hyperplane in P” . Suppose f : X — P" an etale cover. Pulling back H gives f*H ample, so it’s
connected by lefschetz hyperplane or thm II1.7.9.

So we want to show no nontrivial etale coverings.

We proceed by induction.

For a base case we have 2.5.3.

Now let H ~ P"~! a hyperplane in P".

Suppose there is a nontrivial etale covering f : X — P".

Pulling back H gives f*H ample since f is finite, by I11.7.9, it’s connected.
Thus f|g is an isomorphism. So f is degree 1. So f is an isomorphism.

4.2.2 1IV.2.2 x g classification of genus 2 curves

2.2, Classification of Curves of Genus 2. Fix an algebraically closed field k of char-

actleristic # 2.

(a) If X is a curve of genus 2 over k, the canonical linear system |K| determines a
finite morphism f: X — P' of degree 2 (Ex. 1.7). Show that it is ramified a1
exactly 6 points, with ramification index 2 at each one. Note that [ is uniquely
determined, up to an automorphism of P!, so X determines an (unordered)
set of 6 points of P!, up to an automorphism of P,

|Kx| gives a finite morphism to P! of degree 29 — 2 = 2.

Then using Hurwitz,

2g—2=2(—2)+deg Rsodeg R=6.

Thus for any branch point, we have have 6 ramification points with ramification index 2 (2 is the degree
of the map f).
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423 b.xg

- oy i i

(b) Conversely, given six distinct elements 2, ... ,%, € k, let K be the extension
of k(x) determined by the equation z* = (x — a;) -+ (x — x4). Let f:X — P!
be the corresponding morphism of curves. Show that g(X) = 2, the map f
is the same as the one determined by the canonical linear system, and [ is
ramified over the six points x = x; of P!, and nowhere else. (CI. (II. Ex. 6.4).)

Projection from f onto the x coordinate is ramified (branched) at values of z which have one value of z.
Thus there are 6 ramification points given by the «; . By hurwitz, deg R = 6 and the genus of X = 2.

Now suppose that there is a divisor giving a degree 2 map to P!. So Consider Ox (DY @ Kx) . Note that
|D| — |Kx — D] =2+ 1—2=1so that |Kx — D| has dimension 0.

Note that |Kx — D| — |D| = deg (Kx — D) — 1 so that Kx — D has degree 0. Thus Kx — D is trivial. so
Kx =D.

4.2.4 c. x

(c}) Using (I, Ex. 6.6), show that if P,,P,.P, are three distinct points of P'. tken
there exists a unique ¢ € Aut P! such that @(P,) = 0. ¢(P,) = 1, @(P;) = [.
Thus in (a), if we order the six points of P', and then normalize by sending the
first three to 0,1,%, respectively, we may assume that X is ramified oyer
0.1, .01, where .6, are three distinct elements of k, #0,1.

L

We can just find linear fractional transformations sending P, — 0, P, — 1, P3 — oo. Each case is given
in Rudin 14.3.

4.2.5 .x

(d) Let X, be the symmetric group on 6 letters. Define an action of X | on sets
of three distinct elements f,,8,,08; of k, #0.1, as follows: reorder| the set
0,1,=,5,.p;.f; according to a given element # € X, then renormalize ps in (<)
so that the first three become 0,1, again. Then the last three are the new

ﬁlﬁJI Jfrl 11[?:-1-'

nothing to do here.
Are you trying to make me do group theory?

4.2.6 conclusion. x

{e) Summing up, conclude that there is a one-to-one correspondence between the
set of isomorphism classes of curves of genus 2 over k, and triples of distinct
elements f,.f,,8, of k, #0.1, modulo the action of X, described in (d). In
particular, there are many non-isomorphic curves of genus 2. We say thaf
curves of genus 2 depend on three parameters, since they correspond to the
points of an open subset of A} modulo a finite group.

Clear from parts a-d.
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4.2.7 1IV.2.3 x inflection points gauss map

2.3. Plane Curves. Let X be a curve of degree d in P2, For each point P € X, let Tp(X])
be the tangent line to X at P (1, Ex. 7.3). Considering T,(X ) as a point of the dual
projective plane (P?)*, the map P — Tp(X) gives a morphism of X to its Juf”
curve X* in (P¥)* (I, Ex. 7.3). Note that even though X is nonsingular, X™* 1
general will have singularities. We assume char k = 0 below.

{a) Fixaline L = P? which is not tangent to X. Define a morphism g: X — L DY
@(P) = T4 X) ~ L, for each point P e X. Show that ¢ is ramified at P if and
only if either (1) P e L, or (2) P is an inflection point of X, which means that the
intersection multiplicity (1, Ex. 5.4) of Tp(X ) with X at Pis = 3. Conclude thal
X has only finitely many inflection points.

Suppose first that P € L . WLOG assume P is the origin in A? and L is the line y = 0, and T, is z = 0 .
For @Q = (a,b) € X , then T is {g—ﬂQ (x —a)+ g—£|Q (y—0b) = O}. ¢ (Q) can be found by setting y = 0

o
Llob

af
m\@

and solving for x. This gives %‘QI = g—£|Qb + %|Qa and dividing by %]Q gives x = +a

of
— Y

If ¢ is a local parameter at 0 € A | then ¢* (t) = % + = . Then on the y-axis, which is Tp, g—g (0)=0

7
and ¢ (0) = 0 so = vanishes at 0 to order > 2 . Since % cyem?, and 2L #£ 0, then ¢* (t) € mJ which gives
¢ ramified at 0.

On the other hand if P ¢ L, again let P = (0,0) in A2, T}, be the line 2 = 0, but this time set L to be the
line at infinity. For @ € X , then the tangent at Q = (a,b) is %|Q (x —az) + g—g (y — bz) = 0 since we take
the projective tangent line this time. () is mapped to the slope of its tangent line, which is the intersect of the

. L1 . . . . 9 9
tangent line and L which is the line at infinity, given by z = 1. Thus ¢ : X — P! maps Q — <—8—£|Q : 6—£|X)

. Note that g—£|{(070)} # 0 near P so we have ¢ : X — A' | Q — —g—£|Q/g—£|Q. ¢ (0) = 0 so X has no constant

term. We write f (z,y) = ax + by + cx® + dwy + ey* + ... . If t is the local coordinate at 0 (for the y ), then
©* (t) e mi «— g—g eml < b+dr+2ey € mil,—o < b+ 2ey € m} which means f restricted to x = 0
has degree > 3 in y (so it’s only the higher order terms). Which is the same as intersection mult of f with
x =0is > 3 or 0 an inflection point.

Note that Hurwitz shows the degree of the ramification divisor is finite, so X has a finite number of
inflection points.

4.2.8 b. x multiple tangents.

(b) A line of P* is a multiple tangenr of X ifit is tangent to X at more than one pﬂijﬂ.
It is a bitangent if 1t is tangent to X at exactly two points. If L is a multigle
tangent of X, tangent to X at the points P,, ... .P,, and if none of the P; is 4n
inflection point, show that the corresponding point of the dual curve X* is 4n
ordinary r-fold point, which means a point of multiplicity r with distinct tangent
directions (1, Ex. 5.3). Conclude that X has only finitely many multiple tangen(s.

So recall the gauss map which takes a point © € C to the coefficients of the definition equation of the
tangent line to x in P2V .
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Now consider the picture So if P; and P, and Pj all map to the same point
on C*, then we have a multiple point on the dual curve. i.e., in small neighborhoods on C* corresponding to
neighborhoods around each P; there are distinct branches, but then at the P; there is an intersection. Now
if there was an inflection point, note that an inflection point on C corresponds to where two tangents come
together. On the dual curve this would correspond to where two transverse branches become less and less
transverse, and finally they are the same, i.e. this is a cusp. Since we don’t have any such inflection points,
all of the tangents at the point of singularity must be distinct.

In local coordinates, we have an inflection point when the hessian curve intersects the curve. We write this

as ( ;” L];fy ) = 0 in local coordinates. On the other hand we have a cusp when f, (0,0) =0, f,(0,0) =0
yx vy

and fu (0,0) p*+2pqfry (0,0)4 f,y (0,0) ¢* is the square of a linear factor and a node otherwise. This condition
can be rephrased as the discriminant of the polynomial [22f,, (0, 0)* = 4fuz (0,0) f,y (0, 0)] = 0 for a cusp,
and non-zero otherwise. which is the same as the condition that the above determinant be 0. Thus inflection
points correspond to cusps, and since we don’t have any we have ordinary multiple points. Now since there
are only finitely many singular points there must be only finitely many multiple tangents.

4.29 c.xg

T

T =TT I i e B e R BL R AL P

{c) Let 0 e P* be a point which is not on X, nor on any inflectional or multiple
tangent of X. Let L be a line not containing @. Let yr: X' — L bethe morphism
defined by projection from 0. Show that  is ramified at a pomt P € X if and
only if the line OPF 1s tangent to X at P, and in that case the ram!fication index
is 2. Use Hurwitz's theorem and (I, Ex. 7.2) to conclude that the¢re are exactly
did — 1)tangents of X passing through O. Hence the degree of ‘he dual curve
{sometimes called the class of X') is did — 1). l

WLOG assume O = (0,0) € A*> | P = (0,1) € A% L the line at infinity which doesn’t contain O. Let
¥ the projection from O, ¢ : (x,y) — (x :y). We can define ¢» : U — D (y) by (z,y) — x/y where U is a
neighborhood of P. Thus ¢ (P) = 0. Note that ¢ is ramified at P when ¢* (¢) = { € m% , t a local parameter
of 0. If y # 0 , ramification is therefore equivalent to x € m% , or the line z = 0 being tangent to X at P.

Hurwitz gives (d — 1) (d —2) —2 = —2d+deg R . Thus R =d(d — 1), and R is reduced since 0 is not on
an inflection point or tangent line. Thus the number of tangent lines is d (d — 1) = deg R .
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(d) Show that for all but a finite number of points of X, a point O of X lies on
exactly (d + INd — 2) tangents of X, not counting the tangent at O.

Let O be a point not at any of the finite number of inflections or multiple tangents. If ¢ : X — P! is
projection from O | deg ¢ = d—1 (recall X is a curve of degree d). Thus by hurwitz, 29—2 = —2d+2+deg (R)
so by genus degree in P2, gives (d — 1) (d — 2)+2d—4 = deg R so by allroots ((x — 1) - (x —2) +2-x — 4,7)
[z = —1.0,2 = 2.0] we have deg R = (d+ 1) (d — 2).

4.2.11 e. xg

{e) Show that the degree of the morphism ¢ of (a) isudm’ - I] Conclude that if
d = 2. then X has 3d(d — 2) inflection points, properly counted. (If TR(X) has

intersection multiplicity r with X at P, then P should be counted r — 2 times as
an inflection pomnt. If r = 3 we call it an ordinary inflection point.) Show that
an ordinary inflection point of X' corresponds to an ordinary cusp of the dual
curve X,

Note that ¢=! (P) = {Q € X|P € Ty (X)}. For P not an inflection or on a multiple tangent line, then (c)
gives fio ™! (P) = d(d —1) so degp = d(d — 1) . Hurwitz gives that if deg R = 3d> — 5d. Since P ¢ L , we
can add an extra d ramification points by (1) of a.

(f) Now let X be a plane curve of degree d = 2, and assume that the dual curve
X* has only nodes and ordinary cusps as singularities (which should be true
for sufficiently general X'). Then show that X has exactly 3did = 2)id = 3)d + 3)
bitangents. [Hinr: Show that X is the normalization of X*. Then calculate
P X¥) two ways: once as a plane curve of degree did — 1), and once using
(Ex. 1.8).]

The map ¢ : X — X* is finite and birational. X is normal so by the universal property of normalization,
X is the normalization of X*. Then

pa(X*) = 1(d(d—1) - 1) (d(d—1)-2),

Pa (X*) = pg (X) + ¢ inflections + § bitangents

Plugging in p, (X) = 1 (d — 1) (d — 2), and inflections is 3d (d — 2), and solving for the number of bitan-

gents gives it.

4.2.13 g. xg

(g) For example, a plane cubic curve has exactly 9 inflection points, all ordinary.
The line joining any two of them intersects the curve in a third one.

Since a plane cubic has degree 3, then by (e), there are 3 - 3(3 —2) = 9 inflection points. Since r = 3,
these are ordinary. An inflection point is where there is multiplicity 3 or greater. Since all are ordinary, the
multiplicity is exactly 3. Now choose coordinates z,y, z such that y = 0,2z = 0 are the tangents through
the inflection points at (0,0,1),(0,1,0) . Thus the cubic is yz (ax + by + cz) + dx® = 0 by computing the
intersection with the hessian. The third flex is therefore z = 0 . Note that x = 0 is the line joining the two
points.
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4.2.14 h. x

{h) A plane quartic curve has exactly 28 bitangents. (This holds even if the curve
has a tangent with four-fold contact, in which case the dual curve X* has a
tacnode.)

A plane quartic has degree 4 (we assume nonsingular in this chapter). Now plug in to the formula from

(£).

4.2.15 1IV.2.4 x g Funny curve in characteristic p

2.4. 4 Funny Curre in Characteristic p. Let X be the plane quartic curve x*r + 17z +
=?x = 0 over a field of characteristic 3. Show that X is nonsingular, every point
of X is an inflection point, the dual curve X* is isomorphic to X, but the natural
map X — X* is purely inseparable.

To check singularities, we use jacobian criterion.
Partials are f, = y*, f, = 2%, f, = 2®. Since (0,0,0) is not in projective space, then there is no point
where all partials are zero, so it’s nonsingular.

To check inflection points, we compute the hessian:

fmc f:ty fzz 6$y 31’2 0
fy:r fyy fyz — 0 6yZ 3y2
fzx fzy fzz 322 0 6zx

This is 0 in characteristic 3, so every point is an inflection point.

Tangent line at P = (xo,yo0,20) is fo - (. —x0) + f, - (y —v0) + fo - (2 —20) = 0. This is 23 (z — zo) +
3 (y—vo) +ys (2 — 20) = 0. This is 25z + z3y + y5z = 0 since z3z¢ + Yo + Y20 lies on X. Thus the gauss
map is the frobenius. The function field morphism is thus purely inseparable and finite. Thus by thm IV.2.57
X~ X",

4.2.16 1IV.2.5 x Automorphisms f a curve in genus >= 2

L5, Automorphisms of o Curve of Genus =2. Prove the theorem of Hurwitz [ 1] that
a curve X of genus g =2 over a field of characteristic 0 has at most 84{g — 1) auto-
morphisms. We will see later (Ex. 5.2) or (V, Ex. 1.11) that the group G = Aut X is
finite. So let & have order n. Then & acts on the function field K{X). Let L be
the fixed field. Then the field extension L = K(X) corresponds to a finite mor-
phism of curves f: X — Y of degree n.

(a) If P e X 15 a ramification point, and ¢, = r, show that ™ 'f{P) consists of
exactly n/'r points, each having ramification index r. Let Py, ....P, be a maxi-
mal set of ramification points of X lying over distinct points of ¥, and let
ep = r;. Then show that Hurwitz's theorem implies that

(29 — 2)n = 2gi¥Y) = 24+ Y (1 = 1jr)

Let P € X a ramification point, e, = . If y € Y is a branch point, and z;, ¢« = 1, ..., s are the points of
X lying over y, then these form an orbit of GX. Thus the x; ’s have conjugate stabilizers. Thus the number
of points in this orbit is the index of the stabilizer which has order |G| /r . Thus at z, f has multiplicity r.
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By Hurwitz, 2p, (X) — 2 = |G| (2p, (Y) —2) + > 1 o Y (r; — 1) and rearranging this gives the desired
equation.

4.2.17 b. x
{b) Since g = 2, the left hand side of the equation 1s =0. Show that iff g(Y) = 0
s = 0.r 2 2,i = 1,... 5are integers such that
29007V — 2+ Y (1 = 1k =0,

=1

then the minimum value of this expression is 1 /42, Conclude that n < 84(g — 1).
See (Ex. 5.7) for an example where this maximum is achieved.

If po (Y) > 1 and R = Z(l——)zo,thenpa(Y)22,by (a), 50 |G| < pa (X) — 1.

(
Ifp,(Y)>1and R=)_ (1 — —) >0, then R > 3,50 2p, (Y) —2+7 > 1 and thus |G| < 4 (p, (X) — 1).
If p, (Y) =0, then the equation from (a) is 2p, (X) 2 =|G|(—2+ R) so R > 2. Using some arithmetic,

ifR=320,

/~ N

1——)>2 then R>2Lso R—2> L so |G| <84(g—1).

4.2.18 1V.2.6 x g pushforward of divisors

2.6. f, for Divisors. Let f:X — Y be a finite morphism of curves of degree n. We
define a homomorphism f,:Div X — Div ¥ by 1Y nP) = Ynf(P) for any
divisor D = TJ:P on X,

(a) For any ]ncailj, free sheaf & on Y, of rank r, we define det & = AT ePic ¥
(I1, Ex. 6.11). In particular, for any invertible sheaf .4 on X, f,.# is locally free
of rank n on ¥, so we can consider det f,.# € Pic ¥. Show that for any divisor
Don X,

det( f, (D)) = (det [ () @ £(f, D)

Note in particular that det( f, (D)) # #(f,D) in general! [Hinr: First con-

sider an effective divisor D, apply [, 1o the exact sequence 0 — #{—D) —
Oy — Cp — 0, and use (I, Ex. 6.11).]

Let & a locally free sheaf on Y of rank r. Define det & = A"& € Pic Y . For an invertible sheaf .#Z on
X, fod is locally free rank n on Y. Thus we have det f,.# € PicY . If D is a divisor on X, then since
f: X — Y finite, we assume X and Y are affine. Then £ (—D) is q.c, so by thm III.8.1 (degenerate leray),
R'f,.Z (—D) = 0. Then from the s.e.s. of £ (—D) we get 0 — f.Z (—D) = Ox — Op = 0.

If D >0, then thm IL6.11.b gives det f,.Z (—D) ~ det f.Ox ® (det f.Op)~" . Then f.Op ~ ®?,O;.p
, so det f.Op =det Opp =% (f.D) . Thus det f.O,' = £ (—f.D) . If D is arbitrary, write D = D; — D,
the difference of two effective divisors. Now look at the s.es. 0 - £ (D) — £ (—Ds) — Op, — 0. If we
apply f. and take determinants we get f..Z (D) .

4.2.19 b.xg

e e e e ¢ e

(b} Com.]udr.' that ,I’*D depends only on T.he linear equivalence class of D, so there is
an induced homomorphism f,:Pic X' = Pic Y. Show that f, - f*:Pic ¥ —
Pic Y is just multiplication by n.
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Note that .Z (D) only depends on linear equvialence class.
Furthermore, det f = n so pullback of a point gives a degree n divisor. Thus f, f* multiplies by n.

4.2.20 c. x

(c) Useduality for a finite flat morphism (I11. Ex. 6.10) and (I11, Ex. 7.2) to show that
det f,Qy = (det [0 ,) ' ® QF".

Exc IIL.7.2.a gives f'Qy = Qx .
Exc I11.6.10.a. giVGS f*QX = HOmy (f*OX, Qy) = (f*Ox)* X Qy.
Now take the determinants of both sides and note that (f,Ox)" is locally free rank n.

4.2.21 d. x branch divisor

(d) Now assume that [ is separable, so we have the ramification divisor R, We
define the branch divisor B to be the divisor f_R on Y. Show that

(det [,04)* = #(—B).

Note Ky ~ f*Ky + R.

Thus f,Kx ~nKy + B.

Thus .2 (-B) = Q%" @ .2 (f.Kx) " .

By (a) and (b), .Z (f.Kx) ' ~det f,Ox @ det (f.Qx)"" , and .Z (—B) ~ (det f,0x)" .

4.2.22 1V.2.7 x Etale Covers degree 2

2.7. Erale Covers of Degree 2. Let ¥ be a curve over a field & of characteristic # 2.
We show there is a one-to-one correspondence between finite étale morphisms
f:X — Y of degree 2, and 2-torsion elements of Pic Y, ie.. invertible sheaves #
on ¥ with #* = ¢,.

(a) Given an étale morphism [:X — Y of degree 2, there is a natural map (y =
[,Cx. Let # be the cokernel. Then # isan invertible sheafon ¥, % = det f,C x-
and so #? = (', by (Ex. 2.6). Thus an étale cover of degree 2 determines 4
2-torsion element in Pic Y.

A stalk of f,Ox is a rank 2 free module over the stalk of Oy .

Thus a stalk of f,Ox is isomorphic to the stalk of Oy.

Thus .Z is invertible.

Now £ =~ det £ ~ det f.Ox ® (det Oy)_l ~ det f,Ox via the sequence
00y — f,Ox -2 —0.

Thus .¥? = % (—B) = Oy.

4.2.23 b. x

(b) Conversely, given a 2-torsion element ¥ in Pic Y, define an { y-algebra structurt
on Oy @ £ by {ab {aby = {aa + @b @MW), ab + a'b}, where ¢ is an
isomorphism of ¥ ® # — (,. Then take X = Spec(¢, @ ) (11, Ex. 5,17}
Show that X is an étale cover of ¥,

s
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Let X — Y be the morphism f given by exc 11.5.17.d. Then f is affine and finite and thus X is integral,
separated, finite type over k, dim X =1 . X is a curve. X is smooth since normal. The function field is a
degree 2 extension so by exc II1.10.3, f is etale.

4.2.24 c. x

(c) Show that these two processes are inverse to each other. [Hint: Let t: X — X
be the involution which interchanges the points of each fibre of f Use the

trace map a— a + tla) from f @y — €y to show that the sequence of (/-
modules in (a)
00y = fliy % =0

is split exact.

The give sequence from (a) has a section o — (0 +70) /2, f.Ox — Oy.
Thus f,Ox =~ Oy & Z so X =~ Spec(Oy & Z) by exc II11.5.17.

4.3 1V.3 Embeddings In Projective Space
alt:

43.1 IV.3.lxg

3.1, If X is a curve of genus 2, show that a divisor D is very ample <= deg D = 5.
This strengthens (3.3.4).

If D > 5, then thm 3.2 gives D is very ample.

Now suppose D is very ample.

Thus I (D)=1(D—-P—-Q)>2.

Since g = 2, dim |D| # 1 so [ (D) # 2.

Thus I (D) > 2.

Now by cases:

If deg (D) <1, then by exc IV.1.5, 1 (D) < deg(D)+1<2

If deg (D) =2then (D) =1(K —-D)+1<I(K)+1=2.

If deg (D) =3, then [ (K —D)=0s0l(D)=2.

If deg (D) =4 then [ (D) = 3, then thm 3.2 gives D is generated.
Thus |D| gives a morphism to P? so it’s a plane curve.

Then g=3(4—-1)(d—2)=3#2.

Since we have eliminated the impossible, whatever remains, however improbable, must be the truth.

4.3.2 1IV.3.2 x g :a,b,c

3.2, Let X be a plane curve of degree 4.
{a) Show that the effective canomcal divisors on X are exactly the divisors X L.
where L is a line in P*

Let D= X.L .

We have p, (X) =3, s0 [ (K) =3, deg (K) = 4.
By bezout, deg (D) = 4.

dim |L| = 2 since L is determined by 2 points.
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Thus [ (D) = 3.

Then [ (K — D) =1(D)+ g —deg (D) —1 =1 by riemann roch and above.
Now deg (K — D) =4—-4=0.

Thus by exc IV.1.5 we are done.

433 b.xg

(b) If D is any effective divisor of degree 2 on X, show that dim|D| = 0.

Let D effective divisor of degree 2 on X, D = P + Q.

K is very ample so gives an embedding to P2.

Note thus dim |K| =2 .

If [ is the line through P, @, then by bezout it hits X , degree 4, at 2 other points, say R, S.

By (a) we assume K = P+ Q + R+ S. Then dim |D| = dim |K| —2 =2 — 2 = 0 since K is very ample.

434 c.xg

| {c) Conclude that X 1s not hyperelliptic (Ex. 1.7).
Part (b) shows we can’t have dim |D| =1 and deg D = 2.

435 IV.33xg

3.3. I X is a curve of genus =2 which is a complete intersection (II, Ex. 8.4) in some
P, show that the canonical divisor K is very ample. Conclude that a curve of
genus 2 can never be a complete intersection in any P*. Cf. (Ex. 5.1},

Suppose X is NH; of hypersurfi.

By exc 11.8.4.d, K is a multiple of hyperplane divisor, so .Z (K) ~ Ox (nH) ~ Ox (n) for some n > 0
since 2g — 2 > 0.

Then | K| induces d-uple embedding so K is very ample.

If g = 2, then degree K = 2g — 2 = 2 and so K is not very ample by exc IV.3.1.

Contradiction.

4.3.6 IV34xg

34. Let X be the d-uple embedding (1, Ex. 2.12) of P'in P4, for any d = 1. We call
X the rational normal curve of degree d in P,
{a) Show that X is projectively normal, and that its homogeneous ideal can be
generated by forms of degree 2.

Since P! is projectively normal, then d-uple is projectively normal.
If 0 is the corresponding ring homomorphism, then the kernel is generated by quadrics.
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4.3.7 b.xg

(b) If X is any curve of degree d in P", with d < n, which 1s not contained in any
P" ', show that in fact d = n, g{X) = 0, and X differs from the rational
normal curve of degree d only by an automorphism of P4, CI. (11. 7.8.5).

We have dim |D| =n, deg (D) =dand [ (D) =n+1<deg(D)+1=d+1<n+1.
Thus n = d. Since deg (D) = dim (D) , and d # 0, then by exc IV.1.5, g = 0.
Thus D corresponds to an (n + 1) dimensional subspace in T (P*, O (n))

4.3.8 c. x
cerremorarrreeo—e e, P
: . : . .
(c) In particular, any curve of degree 2 in any P" 1s a conic in some P~

By part (b).

439 d.xg

T e e e e i e i L e e - —_

(d) A curve of degree 3 in any P" must be either a plane cubic curve, or the twisted
cubic curve in P,

Ok well we know genus < 1 (d—1)(d—2)=1(3—1)(3—2) =42 =1. So it’s either rational or elliptic.

If genus is 1, then it’s a plane cubic by IV.4.6. If genus is 0, then if n = 4, then it’s a degree 2 in P3. then
projecting down gives a negative genus, degree 1 in P? so g < $(d—1)(d —2) it’s < 0... so there are no

nodes, or else genus is actually < 0 there. but then it’s a line in P2, so contained in a plane. so it’s a plane
cubic. Now the only other choice is if it’s a cubic in P of genus 0. Are all of these twisted? yes by definition.

4.3.10 IV.35xg

3.5. Let X be a curve in P?, which is not contained in any plane.
{a) ITO ¢ X is a point, such that the projection from O induces a birational mor-
phism ¢ from X to its image in P2, show that (X ) must be singular. [Hinr:
Calculate dim HY(X.¢ y11)) two ways. |

Suppose to the contrary that ¢ (X)) is nonsingular.

Then ¢ is an isomorphism.

X is not contained in a hyperplane, so H (P?, Ix (1)) =0 .

Thus H° (P3,Ops (1)) — H° (X, Ox (1)) is injective.

Thus dim H® (X, Ox (1)) > 4.

As ¢ (X) is a complex intersection, (it’s a curve in P? ).

Thus exc I1.5.5.a gives that dim H° (¢ (X),Opx) (1)) < dim H° (P?, Op2 (1)) = 3 .
Contradiction since ¢ (X) ~ X.

4.3.11 b.xg

(b) IT X has degree anLI genus ¢, conclude that g < Hd — Did — 2). (Use
iEx. 1.8}

Projection from a point preserves degree.
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X is the normalization of this projection.
By exc IV.1.8, X has a lower degree than the normalization.
Once we project enough that we are in P? use genus-degree formula.

4.3.12 c. x

(¢c) Now let |.X, be the flat family of curves induced by the projection (111, 9.8.3)
whose fibre over r = 1 is X, and whose fibre X, over r = () is a scheme with
support i X ). Show that X, always has nilpotent elements. Thus the example
(111, 9.8.4) 1s typical.

X is the curve given by projection as in (b). But this contradicts the fact that for a flat family the fibers
have the same hilbert polynomial.

4.3.13 1IV.3.6 x g Curves of Degree 4

3.6, Curres of Degree 4,
ia) If X 1s a curve of degree 4 in some P?, show that either

(1) g = 0, in which case X is either the rational normal quartic in P* (Ex. 3.4)
or the rational quartic curve in P* (I1. 7.8.6), or

(2) X = P% in which caseg = 3, or

(3 X Pandg = 1.

v N

Suppose X C P".

If n > 4, then by exc IV.3.4.b, X is rational normal.

Ifn=2 then g(X)=3(d—1)(d—2)=3.

If n C P?\P? | then by exc IV.3.5.b, g < 3.

If g = 2 by exc IV.3.1, any divisor of degree 3 is not very ample so X is not embedded in P? contradiction.
If g =0, then X is rational quartic.

4.3.14 b.xg

(by In the case g = 1, show that X is a complete intersection of two irreducible
quadric surfaces in P7 (1, Ex. 5.11). [Hinr: Use the exact sequence 0 — .5, —
(pr — Cy — 0 to compute dim H"P*.#,(2)), and thus conclude that X is
contained in at least two irreducible quadric surfaces. ]

Suppose g = 1. Consider the LES associated to

0—=Zx(2) > Ops(2) > O0x(2) = 0.

As dim HO (P*, Oss (2)) = ( 2o ) — 1, and dim H*(X,0x (2) = h°(2H) = 8+ 1—1 = 8 by r.r.,
then dim H° (P3,Zx (2)) > 2.

As the intersection of 2 quadrics has degree 4 by bezout this intersection is all of X (i.e. not just a
component).
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4.3.15 IV.3.7Tx

3.7. In view of (3.10), one might ask conversely, is every plane curve with nodes a
projection of a nonsingular curve in P*? Show that the curve xv + x* + 4 =0
jassume char k # 2) gives a counterexample.

By using the jacobian, xy + 2% +y* =0 .

Any curve projecting to this would have degree 4 and genus 2 by using the degree-genus formula for
singular curves.

By exc IV.3.6, this is impossible.

4.3.16 IV.3.8x

3.8, We say a (singular) integral curve in P" is strange if there is a point which lies
on all the tangent lines at nonsingular points of the curve.
{a) There are many singular strange curves, e.g., the curve given parametrically by
v =1, =P, 2 = *? over a field of characteristic p > (.

Computing the tangent line at the point (¢, t?,t*p) gives a line pointing in the direction (1,0,0) at each
point since char k=p .

We can also parametrize in z,y, w coordinates as (£2P~1 P, %) .

The tangent at (0,0,0) points again in (1,0,0) direction.

Thus (1:0:0:0) is a strangent point.

4.3.17 b. x g No strange curves in char 0!!!!

{b) Show, however, that if char k = 0, there aren’t even any singular strange
curves besides P'.

char k =0 X has finitely many singular points.

Choosing a general point gives a projection to P3.

If P is a strange point we choose an affine cover where P is infinity on the x-axis as in thm 3.9.

As the morphism is unramified at finitely many points, the image is a point since the map is separable in
char O .

Thus X is a line.

4.3.18 IV.3.9x¢g

3.9, Prove the following lemma of Bertini: if X is a curve of degree d in P*, not con-
tained in any plane, then for almost all planes H < P? (meaning a Zariski open
subset of the dual projective space (P?)*), the intersection X m H consists of
exactly d distinct points, no three of which are collinear.

Recall the tangent variety is a subvariety of P! x X and thus has dim < 2 .

Using the trisecant lemma (not in Hartshorne) the dimension of multisecants is < 1.

Thus the union of these spaces is a proper closed subset of (IE”?’)v .

Thus almost all hypeplanes intersect somewhere not tangent or multisecant.

Now recall tat a hyperplane intersects at d points iff not on a tangent line and three points are collinear
iff they are not on a multisecant.
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4.3.19 IV.3.10x g

3.10. Generalize the statement that “not every secant is a multisecant™ as follows.
If X is a curve in P", not contained in any P"~ 1, and if char k = 0, show that for
almost all choices of n — | points P,,...,P,_, on X, the linear space L" *
spanned by the P; does not contain any further points of X.

Let X C P not contained in P"~! having degree d.

Let Hy a hyperplane which meets X in py,...,pq -

For H in a small neighborhood of Hy, then the intersections of H with X vary smoothly with H.

Thus for every multiindex I = {iy,...,4,} C {1,...,d} there is a map

U — X" =X x X x..x X where H maps to the points of intersection of X with H.

For any point Q = (¢1, ..., ¢,) € X™ close to m; (Hp) we can find a hyperplane H € U containing ) such
that the image of U contains a small opens subset.

Let D C X™ the locus of points (g1, ..., ¢,) such that ¢, ..., g, are linearly dependent.

Since X is not contained in P"~! | D is a proper subvariety of X" .

Thus 7~ (D) is a proper subvariety of U.

Thus for H € U — Uy (D) , the points of H N X satisfy no n of them are linearly dependent. Thus if
we choose n — 1 of them, the n'* intersection will not be dependent on the first n — 1.

(From GH p 249)

4.3.20 IV.3.1l1xg

3.11 (a) Il X is a nonsingular variety of dimension v in P", and if n = 2r 4+ 1, show that
there is a point O ¢ X, such that the projection from O mduces a closed
immersion of X into P* 1.

This is Shafarevich Algebraic Geometry 1, theorem 9, page 136

4321 b.xg

(b) If X is the Veronese surface in P*, which is the 2-uple embedding of P? (I,
Ex. 2.13), show that each point of every secant line of X lies on infinitely many
secant lines. Therefore, the secant variety of X has dimension 4, and so in this
case there is a projection which gives a closed immersion of X into P* (1L,
Ex. 7.7). (A theorem of Severi [ 1] states that the Veronese surface is the only
surface in P* for which there is a projection giving a closed immersion nto
P*. Usually one obtains a finite number of double points with transversal
tangent planes.)

If r € P° is a general point on a secant line v (P)v (Q) of X, then pg maps to a conic C' in X and r then
lies on the plane spanned by C'. Any other line on the plane passing through r is also a secant line to C' and
thus to X. Thus a general point on a secant line to X lies on a one-dimensional family of secant lines to
X. Since we are in P° at any rate, then the secant variety has dimension at most 4. On the other hand, the
secant variety clearly has dimension at least 4.
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4.3.22 1IV.3.12 x g (just explain the advanced method)

3.12. For each value of d = 2,345 and r satisfying 0 < r < $(d — 1)(d — 2), show
that there exists an irreducible plane curve of degree d with r nodes and no other
singularities.

Basic Method:
1. Weuse g = 3 (d — 1) (d — 2) —r to find curves of a certain degree with the right amount of singularities.
2. Now for each singularity, we substitute in so that the singularity is at (0,0, 1).
3. We write as poly in
Zd_2f2 + Zd_3f3 + ...

in order for there to be a singularity there.

4. A double point is where f; is nonzero (Fulton, algebraic curves or Michael Artin’s Plane algebraic
curves lecture notes from MIT).

This is because it is quadratic, product of homogeneous linear poly, has two zeros

5. Specifically a node is a point where the discriminant of f5 is nonzero.

This is when f is not the square of a linear polynomial.

6. Now we:

a. Check for genus in Sage easily

b. check for singularities on the affine patches with Maple once we have a candidate.

Coen

d. Profit.

More advanced method

1. Use halpen’s theorem

exa |0 nodes for d=2,3,4,5] Use the comment on page 314 about Bertini theorem.

Verbatim.

exa [The maximum amount of notes for d = 3,4, 5| Using Comment on Page 314 again, Hartshorne says,
For any d, we can embed P! in P? as a curve of degree d , and then project it into P? | by (3.5) and (3.10),

to get a curve X of degree d in P? having only nodes, and with g <X> = 0. This gives r =1 (d — 1) (d — 2).
For any d, there are irreducible nonsingular curves of degree d in P2 .
exa|l node for d=4,5] compute partials and find singularities. Either draw the curve, or note that hessian
must be invertible to see that we have nodes. Use the following polynomials:
degree 4: xyz? + a* +y* = 0 for char # 2 or zyz? + 232 + y* = 0 for char 2
or

0.0 3.0 ‘
3.0
10.0 ,

1060

v

0.0

0.0

Note we can also check these with Maple on the affine patches with the algcurves package
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degree 5: xy2® + 25 4+ > = 0 for char # 5 or xy2® + 2° + ° + 23y? for char 5.

There is also a method using discriminants.

exa|2 nodes for d = 4, 5]

Now I want to do the same sort of thing for 2 nodes as 1 node, just the computations are harder, so I use
a computer to help aid visualization.

X*y "3 + x"2%y*z4 x72%27°2 4 x*y*z"2 - y°2*%2°2 ... for deg 4 - note genus is 1

Maple checks this one out:

We compute g =1 (4 — 1) (4 —2) — 2 =3 — 2 =1 so there can be no more singularities.

Next, I compute a genus 4 quintic with discriminant of the 2% terms nonzero:

Ut 4V - ut3 VT2 - u2%v T3 - utvi4 - vOb 4 ut 4w - ut 3w - 2%V 2% w - v 4w + u”3*w 2 +
U 2%V W2 + v3*w 2 + u 2w 3 - utviw 3 + v 2*w 3

Maple likes this one too:

theorem
Corollary [halphen corollary] There exists a curve X of degree d and genus g in P3, whose hyperplane
section D is nonspecial, iff either
(1) g=0and d > 1,
(2) g=1and g > 3, or
(3)g>2and d> g+ 3.
(pp366, page 350)
corollary | Any curve is birationally equivalent to...| a plane curve with at most nodes as singularities.
(Hartshorne 3.11, pp331, page 314).
exa |degree 4 with 2 or 3 nodes, and degree 5 with 4,5, or 6 nodes|
We have the following table:
| degree d | Nodes r | Genus: g = % (d — 1) (d — 2) — r | Halphen Condition |
5 4 sX3x4—4=2 (3)
5 5 sx3x4-5=1 (2)
By Halphen’s Corollary, we have a curve of degree d and genus listed above in P3.
Now if we can argue as in the case for the top dimensional genus, then we should be all set.
Note genus is a birational invariant by Hartshorne 1.8
exa [3, 4, and 5 nodes for a degree 5 curve|

295



So if we have three nodes, the two conditions are going to be we need genus of 3 since 3 (5 — 1) (5 — 2)—3 =
5 (4) (3) =3 =6 — 3 =3 is the number of singularities.
We also need discriminant of the 23 term nonzero.
us +ut3*vVe2-utvi4-veh H utd*w a3 VW - 122w - w3 W 2 - um 2 vEW T2 o utv 2% w2
-ve3*wW T2 Fut2*w 3 - utvViW T3 - v 2%w 3
maple likes:
singularities(subs(w=1, f), u, v);

1, 21, [[RootOf(1l +

ational Fiel
W+ URYN 3R - v 4Ry - un3

3)

For 5 nodes, we will need genus 2.

For 5 nodes we will need genus 1.

exa | 4 and 5 nodes for degree 5]

We will need genus 2 and 1 respectively.

u 4tV + u"3* 02 + utvod - und*w + um 3 VW + u 2% 2w + v 4w - u 28R w2 4+ utv 2R w2 +

u"2*w"3 - u*vfw"3 + v 2*w"3

viw + ut2*%v " 2%w + v 4w - ut2%vRW 2 + utv 2R w2 + ut2fw 3 - utviw T3 + v 2Fw T 3;
singularities(subs(w=1, f), u, v);

[[-1, -1 - RootOf(5 + 8 _

(e, o, 1],

and at u=1
singularities(subs(u=1, f), w, v);
bmory used=7.6MB, alloc=4.1MB, time=1.00

[-1, -1 - RootOf(5 + 8 _

[[1, 0, 6],

and at v— 1
singularities(subs(v=1, f), u, w);
{(fe, 1, o1, 2, 1, 21,

[[RootOf(1 + 2

4.4 1IV.4 Elliptic Curves

Note: I will pretty much freely use and quote silverman’s books for this chapter’s solutions

44.1 IVdlxg

4.1. Let X be an elliptic curve over k, with char k # 2, let P e X be a point, and let
R be the graded ring R = f_ij,,ﬂ. H% X . y(nP)). Show that for suitable choice

of 1,

R = k[ex. ]y — xix — i — ),
as a graded ring. where k[rx,)] is graded by setting degr = 1, degx = 2,
deg v = 3.

Define ¢ : k[z,y,t] = R = ®,50H° (X,0x (nP)) , by t = 1 € H°(X,Ox (P)) , and define ¢ on z,y as
in thm IV.4.6.
If fe€klz,y,t],and (f)+nP >0 then f can have poles only at P.
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Considering P to be the point at infinity, such an f lives in A? .

So for any section of the graded ring R, it satisfies (f) + nP > 0 some n, and we can find an f € A?
mapping there under .

On the other hand, y*> — z (z — ¢?) (x — M\t?) is in the kernel so R is a quotient of the desired ring at least.

By r.r., dim H° (X,Ox (nP)) = n and also dimension of the desired ring graded n part is n. So they must
be equal.

4.4.2 1IV.4.2 x

4.2. If D is any divisor of degree =3 on the elliptic curve X, and if we embed X in
P" by the complete linear system |D|. show that the image of X in P is projec-
tively normal.

Noie. 1t is true more generally that if D is a divisor of degree =2y + l on a
curve of genus ¢. then the embedding of X by |D|is projectively normal (Mumford
[4, p. 55]).

Denote by ¢p| : X — PV the embedding. Suppose E is an effective divisor of degree d — 2. Consider
the s.es. 0 = Z(—F) —» Ox — i,0p — 0. This gives 0 = £ (D) ® X (—F) = £ (D) = 1.0 — 0
, supp i.Op = Supp E . Then deg¥ (D) ® £ (—E) =d—deg F = d—d+2 = 2. By serre duality,
H' (¥ (D—-F))=H" (¥ (K+ E — D)) =0. This gives a commutative diagram:

['(-E+D)®T'(nD)—T (D)@ (nD) —T(i.0) @' (nD) —0

| Lg I
I'(-=E+D+nD,) I'(D+nD) I' (1,0 +nD)

Snake lemma gives us an s.e.s. coker f — coker g — coker h .

Asdeg D >3 >2g—2=0, |D|is bpf and Supp i,.Op is clearly 0 -dimensional. We can yse the base-point
rfee pencil trick (Geom Alg Curves I, page 126) to get coker h = 0 so coker f — coker g.

R.R. gives h° (D — E) = deg (D — E)+h! (D — E) = d—d+2 = 2. Therefore H° (D — F) is a basepoint
free pencil, so again by BPFPT, coker f =0 and g is surjective.

Since |D| is complete, we have a surjection I' (P", Opr (1)) — ' (X, Ox (1)) by ex 11.7.8.4. Suppose we
have a similar surjection when twisted by n. We have a square

[P, Opr (1)) @ T (P, Opr (n)) —T' (P, Opr (n+ 1))

D(X,0x (1)) @ T (X, Ox (n)) —T (X, Ox (n + 1))
The left is surjective clearly and since g is surjective then the bottom is surjective. Thus the right is
surjective so by induction, X is projectively normal.
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443 IV.43xg

4.3. Let the elliptic curve X be embedded in P? so as to have the equation 1=
xlx — IWx — 2). Show that any automorphism of X leaving P, = (0.1,0) fixed
is induced by an automorphism of P? coming from the automorphism of the
affine (x, r}-plane given by

X =ax + b
o=y

In each of the four cases of (4.7), describe these automorphisms of P explicitly,
and hence determine the structure of the group G = Aut( X, Py).

We can write F in weierstrass form as f so that if k[E] = k[z,y]/ (f) is the ring of regular functions.
, a regular function can be written as v (z) +y - w(x). If E is defined by y?> = 23 + ax® + bx + ¢, then
a rational function of z and y on E (i.e. in frac (klz,y]/(f))) can be written as a(x) + b(z)y , with
a(z),b(z) € K (z) (As in Algebra 1.46, NN.30, my summerstudychallenge2 notes). Thus we can write an
isogeny as ¢ (x,y) = (a(x) +b(z)y,c(z) +d(z)y) for a,b,c,d(x) € K (x) .

Since this is an isogeny then ¢ (P) + ¢ (—P) = ¢ (P — P) = O hence (a(z)+b(x)y,c(z)+d(x)y) =
(a(x) —b(x)y,—c(x)+d(z)y) so that b(z),c(x) are 0 and thus ¢ (z,y) = (a(x),d(x)y) . Now suppose
that [a (z)] (0,1) = 0 and [d (z)y] (0,1) = 1. So clearly d(x) # 0. so it has a constant term. But since there
are no y terms on rhs, there can be no z terms in d (x). Thus d(x) is just some constant. Now in order for
the degrees to be correct, a (x) must be linear.

4.4.4 1IV.44x

4.4, Let X be an elliptic curve in P? given by an equation of the form
}'1 + Xy + dzy = x? + ﬂ;.*cz + Gy X+ iy

Show that the j-invariant is a rational function of the «,, with coefficients in Q.
In particular, if the a, are all in some field k, = k, then j € k, also. Furthermor®

for every x € k, there exists an elliptic curve defined over k, with j-invariant
equal to =

We’ll write the j-invariant via the tate coefficients and show this equals Hartshorne’s definition of the
j-invariant. I will show my calculations and the maxima output even though it looks a tiny bit sloppy.

Write the tate coefficients as by = a? +4as, by = ajaz + 2ay4 , bg = a3 +4ag , bg = beag — ajazaq + asas — a3,
¢y = B3 — 24by | cg = —b3 + 36boby — 216bg, A = —b2bs — 8b3 — 27B2 + Iybybg, j = .

f:y°2 + alsxxxy + ad3xy — x°3 — a2%x"2 — adxx — ab;
If char # 2, this means 2 is invertible so we can simplify by completing the square via y — (y — @12 — a3).

g:expand (4xsubst(1/2 % (y — alxx — a3), y, {));

(%04) y -4x -4a2x -al x 4adx-2ala3x-4ab -

This gives E : y?> = 42° + box? + 2042 + bg,. Now replace (z,y) with (z,2y) and factor to get y? =
(x —e1) (x — eq) (x — e3).

h:expand (1/4%subst (2xy, y, g));

i: —1xh + y~2;
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Now i is a cubic which will factor into

(r —e1) (x — e) (z — e3) for some ¢; in the algebraic closure so this gives an equation like y* = z (z — 1) (x — ).
ok so that we get a j-invariant which agrees with Hartshorne’s for algebraically closed.

Now we want to show that for the curve y?> = x (x — 1) (x — \), hartshorne’s

e et U

L TN =201

j-invariant of

. .. . J=d /A,

agrees with our j-invariant of
We expand y*> =z (z — 1) (z — \)

expand (x * (x — 1) % (x — L));

So comparing to Weierstrass equation, E : y? + a1xy + asy = 23 + a2 + ayx + ag gives a; = 0, az = 0,
as=—A—1,a4 = X and ag = 0.

al:0; a3:0; a2:—L—1;a4:L;a6:0;
We find the b;’s
b2:(al)"2 + 4xa2; b4:2x(a4) + al % a3; b6:(a3) 2 + 4xab;

b2 = 4/\7 b4 = 2)\, and b6 = 0.
Now we need c; and A.

b8:al "2xab + 4xa2 *x a6 — al % a3 x a4 + a2 x a3"2 — a4 "2;
cd:b272 — 24 x b4;

c6:—b273 4+ 36 x b2 x bd — 216 x b6;

Delta:—b272 x b8 — 8%xb4"3 — 27 % b6°2 + 9%b2 x b4 x b6;
j:factor(c4°3 / Delta);

by = —\?
ey =16 (=X —1)* — 48\
cg =288 (=A — 1)\ — 64 (=X — 1)
A=16(=\—1)" )\ — 64)°
256(A2—141)"

(A—1)2)2
80 new x -coordinate is

So we have shown our definitions agree. Note that A # 0 is another definition for an elliptic curve

(weierstrass equation, nonzero discriminant. Clearly defining j this way will give a fraction of coeflicients of
the weierstrass equation.

Now we may wish to show the second statement about finding j’s.

We can use the following curves:

If char (k) =2, jo =0, then y?> +y = 2% | jo # 0 y* + oy + 2% + 22 + j; "

If char (k) =3, jo = 0, then y?> = 23 + 2, jo # 0, then ¢? = 2° + 2% — j; .

If char (k) # 2,3, jo = 0, then y* = 241, jo = 12, then y* = 2%+, jo # 0,12° , then y* = 2°+2k X + 25,

— Jo
=15
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4.4.5 1IV.4.5x

4.5. Let X, P, be an elliptic curve having an endomorphism [ : X — X of degree 2.
(a) If we represent X as a 2-1 covering of P! by a morphism m: X — P! ramified
at P,. then as in (4.4), show that there is another morphism n': X — P' and
a morphism g:P' — P'. also of degree 2, such thatr [ =¢ ="

This goes almost exactly like 4.4.

4.4.6 b. x

ib} For *..L|11dh|L LhuILLH of wrnd]natu |t1 the two copies uf F"' show that ¢ can
be taken to be the morphism x — x2.

So from part (a), we have X 7. X and we know that f, g have degree 2.

pt - P!
By Silverman, exa I11.4.5 we consider the two elliptic curves ) : y?> = 22 + a2z + bz , and E, : Y? =
X% —2aX?+7rX .
We have isogenies of degree 2 connecting the curves:
2 b—x Y(r—X?2
¢:E1_)E27 <x7y)'_>(g2a ( >> and¢ E2_>E17<X Y) (%a%

Now if E has a degree 2 endomorphism has a kernel with two points, O and an order 2 point. Moving the
order 2 point to (0,0) gives a weierstrass equation, E : y* = z° + ax? + bz which looks like F; above and we
know the equation for E;’s isogeny. Thus we just need to see (see part (d) for example) when E; and E, are
isomorphic. This calculation is performed on page 110 Silverman, AEC II.

Now assuming we have such a curve with F; ~ E, , the maps m and n’ are given by projection of the

x

x-coordinate. Clearly g: z — (Z—i) (if coordinates on the second P! are given by X := (g)

4.4.7 c. X

{c) Mow show that g is branched over two of the branch points of n, and that g ~*

of the other two branch points of n consists of the four branch points of #'.
Deduce a relation involving the invariant 2 of X,

Since it’s a degree 2 morphism to P!, then by Riemann-Hurwitz, there are 4 branch points. Factoring
¥ =x(x—-1)(r—N) =23+ (=1 — X) 22 + Az these branch points are values of x for which there are one
value of y, as well as the point at infinite.

Note that x — z? : P! — P! is degree 2 so by Riemann-Hurwitz, —2 = 2 - (—2) + R implies there are
two branch points. (Point at infinity and 0). Taking 7 : co — oo gives one of the branch points of ¢, and
after taking our equation to the form y? = 2 4 az? + bx as in (b), we see there is another branch point at 0,
corresponding to the root at 0. Clearly this is a branch point of z — 22, To see the reverse direction, look at
¢ given in (b).

Now to see a relation involving the invariant we look at (b) and see that we need, for Ey ~ E, that the
256(( 1-02-30)" 16((—1-A)2+122)°

M((F1=07-40))  A((m1-2)2-4n)”

j-invariants be equal. Thus, by the forms of E;, Es in (b) we need
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4.4.8 d. x

id) Solving the above, show that there are just three values of j corresponding to
elliptic curves with an endomorphism of degree 2, and find the corresponding
values of 2 and j. [Answers:j = 2°-37,j=2°-57j = —3".57]

Expanding the relation (I used maxima since lazy) given above gives the polynomial 256\ — 180810 +
550412 — 216968 — 5760\ + 47008)\°—

5760\° — 21696\* + 55043 — 18082 + 256\ .

To find the roots, I use the numerical durandkerner algorithm. Below is an implementation I did for
gmabth (my personal math library), though you would need some of my other code to run it ..

function durandkerner(eq)
local i=1 local j=1
local numterms = table.maxn(eq)
local so = {} so|l] = {} so|1l][|1] = .4 so|l][2] = "" —initial point
if verbose then
print ("Durand—Kerner")
print"Roots of:"

peq(eq)
print""
end
so[2] = {}
so[2][1] = .9 so[2][2]= "i"

local ttab = {}
local ntht = {}
—finding max the first time
local max — 0
for i=1,table.maxn(eq) do —find max exp
if numvars(eq[i][2],"x") > max then
max = numvars(eq|i][2],"x")

end
end
—finding min exp to extract zero roots
local min = max
for i=1,table.maxn(eq) do —find max exp
if numvars(eq[i][2],"x") < min then
min = numvars(eq|i][2],"x")
end
end

—dividing by x if there are zero roots
for i=1,min do
for j=1,table.maxn(eq) do
eq[j|[2] = string.sub(eq[j][2], 2)
end
end
if min > 0 and verbose then

print ("Note that there is a root of multiplicity "..min.." at zero"
end
eq = ceq(eq)
—vpeq (eq)
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local max = 0

for i=1,table.maxn(eq) do —find max exp
if numvars(eq[i][2],"x") > max then
max — numvars(eq[i][2],"x")
end
end

—then poly needs to be switched depending on max power
eq = seq(eq,(—1)" (max))

db("herel™)

local nume = {}
local denom = {}
local rootab = {}
local v = verbose
verbose = false

for i=1,max do
rootab|i] = exeq(so,i—1)
end
if verbose then
print "Initial guess"
for i=1,table.maxn(rootab) do
peq(rootab|[i])

end
print""
end
db("here2 ")

local n=1
—1local last — 2341

repeat
—last = rootab [1]|[1][1]
db("here3 ™)
for i=1,table.maxn(rootab) do
db("here 4")
if rootab|i] = nil then rootab|i]| = zeropoly () end
nume = eveq{eq,rootab[i],"x")
if type(nume) "= "table" then print"error in durker" end
denom = constantpoly ()
db("here 4")
for j=1,table .maxn(rootab) do
if i = j then
—print ("here2")
if rootab|j]| = nil then
rootab|j] = zeropoly ()
end
denom = ceq(meq(denom,aeq(rootab|i],seq(roo
end
end
db("here5")

—print ("herel")
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—printmat (rootab[i])
_ print (table .maxn(nume))

—printmat (seq (conjdeq (nume,denom), —1))
db("here6")
if table.maxn(nume) > 0 and table.maxn(denom) > 0 then
rootab|i] = aeq(rootab|i],seq(conjdeq (nume,denom), —
end
dbprint (rootab[i][1][1])
for j=1,table.maxn(rootab|i]) do
if 1/rootab|i]|[j][1] > 1le+25 then
rootab|i][j|[1] = 0

end
end
db("here7")
end
n=n+1
if v then
if n % 3 =— 0 then
print ("roots at iteration " n)
for i=1,table.maxn(rootab) do
peq(rootab|[i])
end
print""
end
end
until n> 15
verbose %
db("here end")
if verbose then
print " The roots of this polynomial are approximately: "

end
for i=1,table.maxn(rootab) do
peq(rootab|[i])
print ("norm ", normeq(rootab[i]))
end
return rootab

end

Throwing away roots which give singular elliptic curves, and plugging into the j-invariant equation, we
are left with 7 = 1728, 7 = 8000, 5 = —3375 .

4.4.9 IV.46.a. xg

4.6. (a) Let X bea curve of genus g embedded birationally in P? as a curve of degree d
with rnodes. Generalize the method of (Ex. 2.3) to show that X has6{g — 1) +
3d inflection points, A node does not count as an inflection point. Assume

char k = 0.
The arithmetic genus, p, (X) = 3 (d — 1) (d — 2) — r where 7 is the number of nodes.

222



Define ¢ to be the gauss map from the plane curve to a line with no nodes.

¢ is rational so it gives a regular map X — P!,

If P is a point on the plane curve which is not on a tangent that has an inflection or on a multiple tangent,
and 7 gives projection from P, then 7 induces a map from X to P! which has degree d.

By Hurwitz, this gives d?> — d — 2r tangents of the plane curve through P, which is therefore the degree of
©.

As in exc IV.2.3.a, ignore the ramification, then the plane curve has 3d*> — 6d — 6r inflection points.

4.4.10 b. x osculating hyperplanes

{b) Now let X be a curve of genus g embedded as a curve of degreed in P". n = 3,
not contained in any P* ', For each point P € X, there is a hyperplane
containing P, such that P counts at least n times in the intersection f1M.X.
This is called an osculating hyvperplane at P. It generalizes the notion of
tangent line for curves in P2, If P counts at least n + 1 times in H ~ X, we
say H 1s a hyperoscularing hyperplane, and that P is a hyperosculation point.
Use Hurwitz’s theorem as above, and induction on n, to show that X has
min + 1y — 1) + (n + 1kl hyperosculation points.

Example 4 of http://www.math.lsa.umich.edu/ “idolga/sol.pdf which are some notes from Dolgachaev.

4.4.11 c. xg

(¢c) IT X 1s an elliptic curve, for any d = 3, embed X as a curve of degrec d in
P71, and conclude that X has exactly d* points of order d in its group law.

By (b), X has d* hyperosculating points.
If X is embedded via |dP,| , then P is a hyperosculating point when it is the divisor of a hyperplane is
dP which happens when P has order dividing d in the group law (see also I1.6 excercises).

4.4.12 1IV.4.7 x g Dual of a morphism

4.7. The Dual of o Morphism. Let X and X' be elliptic curves over k. with base points
P,.Pp.
fa) If /:X — X' 1s any morphism, use (4.11) to show that f*:Pic X' = Pic X
induces a homomorphism FX". Py} — (X.Py). We call this the dual of I.

Note that the by thm TV.4.11, the picard groups and jacobians coincide.

Now IV.4.10.6 gives that jacobian automatically has a group structure.

We know there is an induced homomorphism on picard groups.

So we just compose the correspondence between jacobian variety and picard group with the pullback on
piard group.

4.4.13 b. x

(b If f:X = X and g: X' — X" are two morphisms, then (g - f} = [ _f}..

[ [ P N i T el e I P I R L 3 T ) S i TN ¥R T -

This is clear from (a).
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4.4.14 c. x g

(c) Assume f(Py) = Pj.and let n = deg f. Show that if Q € X is any point, and
f1Q) = @', then fiQ') = ny(Q). (Do theseparable and purely inseparable cases
separately, then combine.) Conclude that fo f = ny-and f o f = ny.
Silverman, thm 6.1, around page 82
Case 1: f is separable. Since f has degree n, then tker f = n so every element of ker f has order dividing
n. Thus ker f C ker n .
By Galois theory, there is an inclusion [n]" K (FE) C f*K (E) C K (E) so we can find a map \ satisfying
FNK (E) = [n]" K (E) so that Ao f = [n]. Clearly A= f .

*(dy I flg: X — X are two morphisms preserving the base points Py.Py. then
(f + g =1+ 4 [Hins: It is enough to show for any % e Pic X', that
(f + g% = [*7 @ g*#. Forany . let I';:X = X x X' be the graph
morphism. Then it is enough to show (for ¥ = p*#) that

Fe. (&) =Tte @I

Let a:X — X x X' be the section x — (x.Py). Define a subgroup of
PiciX = X')as follows:

Pic, = | ¥ € Picl X = X')|% has degree 0 along each fibre of p,, and o* & = 0
in Pic X'|.

Note that this subgroup is isomorphic to the group Pic (XX} used in the
definition of the Jacobian wvariety. Hence there is a 1-1 correspondence
between morphisms f:X — X’ and elements ¥, € Pic, (this defines ¥ ),
Now compute explicitly to show that ['*{# ;) = I'H(# ) for any f.g.

Use the fact that ¥, = ¥, ® ¥,. and the fact that for any % on X",
p3# € Pic, to prove the result.]

MISS - strred

4.4.15 e. x

fe) ljsing (d). show that for any ne Z. iiy, = n,. Conclude that deg ny, = n’*,

Silverman thm 6.2, page 83

4.4.16 f. x

A i -

(f) Show for any f that deg f :fda:g I
Silverman thm 6.2, page 83
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4.4.17 1IV.4.8 x Algebraic Fundamental Group

4.8. For any curve X, the algebraic fundamental group m,(X) is defined as
lim Gal(K'/K ), where K is the function field of X, and K' runs over all Galois
extensions of K such that the corresponding curve X' 1s étale over X (111, Ex. 10.3),
Thus, for example, 7,(P') = 1{2.5.3). Show that for an elliptic curve X,

nX)= [] Z x Z, if char k = 0:
[ prime
X)) =] Z, x Z, if char k = pand Hasse X = 0;
Iwp
niX)=2Z, x [| Z, x Z; ifchark = pand Hasse X # 0,
[#p

where Z; = lim Z/I" is the l-adic integers.

[ Hints: Any Galois étale cover X' of an elliptic curve is again an elliptic curve.
If the degree of X" over X is relatively prime to p, then X' can be dominated by the
cover ny: X — X for some integer n with (n,p) = 1. The Galois group of the
covering ny is Z'n x Za. Etale covers of degree divisible by p can occur only
if the Hasse invariant of X is not zero. |

This is not something that incredibly exc1tes me. Here are some notes that have the answer: http://math.berkeley

4.4.18 1IV.4.9 x g isogeny is equivalence relation.

4.9. We say two elliptic curves X, X" are isogenous if there is a finite morphism
X =X
{a) Show that 1sogeny 1s an equivalence relation.
Reflexivity is clear.
Symmetry is by exc IV.4.7.c. (dual isogeny)
Reflexivity is clear by composition of finites.

44.19 b.xg

(b) For any elliptic curve X, show that the set of elliptic curves X” isogenous Lo X.
up to ﬁnnmrp]mm is countable. [Hint: X" is uniquely determined by X and
ker f.]

Every isogeny is a finite map of curves.

Thus we have an inclusion of function fields K (X') — K (X) .

The degree of this inclusion is the degree of the field extension.

Since degree 1 would mean an isomorphism, and degrees come in nonnegative integer sizes, we are done.

4.4.20 1IV.4.10 x picard of product on genus 1

4.10. If X is an elliptic curve, show that there is an exact sequence
0 - p¥ Pic X @ p3 Pic X — Pic(X x X) = R =0,

where R = End(X,P,). In particular, we see that Pic(X = X) is bigger than the
sum of the Picard groups of the factors, Cf (111, Ex. 12.6),(V, Ex. 1.6).
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Following Mumford, Abelian Varieties, let T}, : X — X be the translation, T, (y) = x+y. Let m : X x X —
X be addition. The theorem of the square (cor 4) gives us a homomorphism . — ¢o : Pic(X) — R, where
¢ is defined by ¢ () is the isomorphism class of T/.¢ ® £~ ! in Pic(X) . Then Pic® (X) is the set of
line bundles .Z where ¢« is identically 0. We therefore have an exact sequence 0 — Pic® (X) — Pic(X) —
Hom (X, Pic® (X)) — 0. Note moreover that .Z € Pic® (X) < Tr¥ ~ & for all z € X (by definition)
— m'Z =~ pl¥ Rp;L on X x X. This last equality follows since by the seesaw theorem (essentially the
theorem of the cube) m*.Z @ p;.L ' @ p3. L~ is trivial iff it is trivial on X x {a} and {0} x X . Clearly
it is always trivial on {0} x X and restricts to 7/.Z @ £~! on X x {a}. Thus our exact sequence implies
exactness of the desired sequence.

4.4.21 1IV.4.1lxg

4.11. Let X be an elliptic curve over C, defined by the elliptic functions with periods
1.r. Let R be the ring of endomorphisms of X. )
(a) If f € R is a nonzero endomorphism corresponding to complex multiplication
by =, as in (4.18), show that deg /' = |«|°.

An elliptic curve corresponds to a lattice L. If A (L) is the area, then A (aL) = |[o?| A (L) .
For a sublattice, the degree of the field extension is the inverse quotient of the areas.
Thus deg f = deg (o) = [L: aL] = |a|* - A(L) JA(L) .

4.4.22 b. x

ib) If { € R corresponds to = € C again, show that the dual ,I? of (Ex. 4.7} corre-
sponds to the complex conjugate 7 of .
By part (a), we have deg f = laf® .
We know that fo f = Uaﬂ by Silverman, thm 6.2, (page 5277).
Thus taking f~* , we have f =a o> =@ .

4.4.23 c. x

c) fre (){\_.-':u'] happens 10 be integral over Z, show that R = Z[1].

This is theorem V1.5.5 Silverman since integral means a finitely generated module contained in Q (7) .

4.4.24 1V.4.12.a x

4.12. Again let X be an elliptic curve over C determined by the elliptic functions with
periods 1.1, and assume that t lies in the region G of (4.15B).
{a) If X has any automorphisms leaving P, fixed other than + 1, show that either
T =1iort=w, asin (420.1) and {4.20.2). This gives another proof of the
fact (4.7) that there are only two curves, up to isomorphism, having auto-
morphisms other than +1.

Write the curve as y? = 23 + Az + B.
Via Milne, Elliptic Curves, Theorem 2.1, automorphisms fixing the point have the form = = u?x’ ,
y = vy’ for u € C* and the substitution gives an automorphism of E iff u=*A = A and u=°B = B. Checking
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possibilities, if AB # then v = +1. If B = 0 then writing A, B in terms of A gives j = 1728. If A = 0 then
j = 0. Now in part (b), we’ll see these match the desired values of 7 .

4.4.25 b. x

(b) Now show that there are exactly three values of t for which X admits an
endomorphism of degree 2. Can you match these with the three values of j
determined in (Ex. 4.5)7 [Answers: 1 =ii1=(—-2it=3(—-1+ 4 —-7]

Note that we’ll use exc 4.11 to connect 7 from the lattice to the ring of integers, and then prove a
supplementary lemma for the similar case. Basically the idea is we need to find quadratic extensions which
have elements of norm 2.

Note for x = a + /mb € Q(y/m) /Q the norm is given by N (z) = a* — mb*>. So we need to solve
2 = a® — mb® with m prime and negative. For example 2 = a? + 1b* works for a = b =1. so Q (v/-1) /Q is
one possibility For example 2 = a? + 2b? works for a = 0,b = 1. So these are clearly the only solutions for
m = 2,3 mod 4.

If m = 1mod 4, then Ok = {a +b (H‘/E) ,a,b e Z} which we can write as (a + %)—kg\/a to compute the

2

norm. In later case we need (a + §)2+m (%)2 = 2 so need expand ((a + g)Q +m- (g)2> = b24m+%+a b+a? =

2. Soifwelet m=7,a=0,b=2 then we get 177+%+0+O:2.

If m is any larger, it is clear that the lhs will be too large, and thus these are the only rings of integers
under quadratic extensions with elements of norm 2. So we are done.

Now we want to match 7 with 7. But the method of proof of exc IV.4.5.b accomplishes this since we are
just using the fact of corresponding to degree 2.

4.4.26 1IV.4.13 x

4.13. If p = 13, there is just one value of j for which the Hasse invariant of the corre-
sponding curve is 0. Find it. [Answer:j = 5(mod 13).]

This is j = 5 mod 13 . The uniqueness is Silverman Theorem 4.1.c , page 149.

The curve is incidentally given by (y~2-x"3+165*x+110)"12.

So given a j-invariant, you can solve the j-invariant equation to get a curve.

You can check this is unique, and then use thm IV.4.21 (and some computer algebra software since it’s a
large polynomial) to see the Hasse invariant is 0.

4.4.27 1V.4.14 x Fermat Curve and Dirichlet’s Theorem

4.14. The Fermat curve X :x* + ¥ = -? gives a nonsingular curve in characteristic p
for every p # 3. Determine the set ¥ = |p # 3|X, has Hasse invariant 0},
and observe (modulo Dirichlet’s theorem) that it is a set of primes of density +.

Dirichlet’s theorem gives that the Dirichlet density of primes in an arthmetic progression a + nb for
a,b coprime has dirichlet density 1/¢ (b) . The condition that the Hasse Invariant be 0 is that (zyz)" ™'
has coefficient 0 in the expansion of (23 + 1% — 23"~ . Taking a trinomial expansion,(z® +y3 — 23)P " =

-1 ./ : . — _ .
D ket tha—p 1 < kmp o k. ) (%)™ ()™ (23)". The term we want is % (zyz)"~". So for what p is

this coefficient 07 What if p— 1 has no factor of 37 Ignore those primes since then automatically (a:yz)pil has
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coefficient 0 since it doesn’t appear in the above summation. Thus all primes like 3k 4+ 2 are automatically
hasse invariant 0 for this. Modulo dirichlet theorem, this gives us a set of density ﬁ = % Otherwise, this
coefficient should not be zero mod p , since p is a larger prime! so we have the whole set.

4.4.28 1IV.4.15x

4.15. Let X be an elliptic curve over a field k of characteristic p. Let F': X, = X be
the k-linear Frobenius morphism (24.1). Use (4.10.7) to show that the dual
morphism F: X — X, is separable if and only if the Hasse invanant of X is 1,
Now use (Ex. 4.7) 10 show that if the Hasse invariant is 1, then the subgroup of
points of order p on X is isomorphic to Z;p; if the Hasse invariant is 0, 1t 1s (.

This is silverman V.3.1, page 144

4.4.29 1IV.4.16 x

4.16. Again let X be an elliptic curve over k of characteristic p, and suppose X is de-
fined over the field F, of ¢ = p" elements, 1e., X = P? can be defined by an
equation with coefficients in F,. Assume also that X has a rational point over
F,. Let F: X, — X be the k-linear Frobenius with respect to .

{a) Show that X, = X as schemes over k, and that under this identification,
F:X — X is the map obtained by the gth-power map on the coordinates
of points of X, embedded in P*.

This is Qing Liu, 3.2.26a

4.4.30 b.x g kernel of frobenius

S S —
{b) Show that 1, — F' is a separable morphism and its kernel 1s just the set

X(F,) of points of X with coordinates in F,.

Separability is thm II1.5.5 Silverman. Essentially we know that F'is separable iff the pullback on sheaves of
differentials is injective as in I11.8. (The proof follows as in IV.2 in the proof of Hurwitz). Thus inseparable iff
¥*w = 0 where w is the invariant differential of the curve. Now compute the frobenius of invariant differential
using the tate coefficients.

Now note that the fixed points of frobenius are the points in F, since a € F lies in F, when a? = a.

4.4.31 c. x

(ch 1..'5:'111g (Ex. 4.7), show that F' + F' = ay for some integer o, and that N
¢ —a + 1, where N = # X(F).
I give a proof on page 11, 12 of my Fall Break Number Theory Remix Notes from 2012 http://divisibility.files.worc
alternatively
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4.4.32 d. x Hasse’s Riemann Hypothesis for Elliptic Curves

(d) Use the fact that degim 4 r'rf"'qr = 0 for all mpn e Z to show that |a| < 2.
This is Hasse's proof of the analogue of the Riemann hypothesis for elliptic
curves (App. C. Ex. 5.6).
I give a proof on page 7,8 of my fall break number theory remix notes http://divisibility.files.wordpress.com /2012,

Alternatively, see my proof in exc V.1.10 and use g = 1.
alternatively, via granville

4.4.33 e. x
{e) Now assume ¢ = p, and show that the Hasse invariant of X 1s 0 if and only
ifa = 0{mod p). Conclude for p = 5 that X has Hasse invariant 0 if and only
N =p + 1.

The first assertion is proved in the first three paragraphs of Silverman theorem V.4.1.

Now, using the previous parts, if p > 5, have a = p— N+ 1= 0(mod p) <= hasse = 0. (since assume
qg=p) If N =p+1, then clearly hasse = 0. Now if p+1— N = 0(mod p) then pk = (p+ 1) — N some k.
Since N > 0, then we are done.

4.4.34 1IV.4.17 a. x

4.17. Let X be the curve ¥ + v = x* — x of (4.23.8).
fa) Il Q@ = {a.h) is a point on the curve, compute the coordinates of the point
P + @, where P = (0.0, as a function of a,b. Use this formula to find the
coordinates of nP, n = 1,2,....,10. [Check: 6P = (6,14).]

Well here is a lua function T made for the group law:
e ../gmabth.lua -pv "wpeq(leq(’g’))"

e where h is a file containing

andrew@andrew—HP—Folio —13—Notebook—PC:~$ ./gmabth.lua —pv "wpeq(leq(’h’))"
Printing weierstrass a coeffs for equation
lyyy +lyy +—Ixxx +1x

al = 0
a3 = 0
a2 = 0
a4 — —1
a6 = 0

other form see hartshorne IV.4.4

y°2 —x"3 —0%x"2 —0xx"2 ——1Ixx —0xx —0

j invariant 1728

Group law for weierstrass equation, following Silverman , pp76

may need some editing for + — combos or 1lc coefficients before it runs

function GroupLaw (x1, yl, x2, y2)
local x3 =1
local y3 =1
if x1 "= x2 then
lambda = (y2 — yl1)/ (x2 — x1)
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nu = (yl % x2 — y2xx1) / (x2 — x1)

elseif x1 = x2 then

lambda = (3%x1°2 + 2%(0)xx1 + -1 — (0)*yl) / (2 %= yl + (0)*x1 + (0) )
nu — (—x1°3 + (=1)*x1 + 2%(0) — (0)xyl) / (2xyl + (0)*xx1 + (0))

end
local x3 = lambda~2 + (0)xlambda — (0) — x1 — x2
local y3 = —1%(lambda + (0))*x3 — nu — (0)
return x3, y3
end
4.4.35 b. x

ib) This equation defines a nonsingular curve over F,forall p # 37.

Such a curve is nonsingular iff the discriminant is nonzero.
Note the discriminant is defined via the Tate coefficients (definition 1.3 Schmitt)

S0 a3 =

lLad=—1,50by=0,by =2 a3 = —2,bg = a2 =12 , bs = —al = —1

SOA=0-8-22-27-149-0=8-8—27=—64—27=37#0.

4.4.36 IV.4.18 x

4.18. Let

X be the curve v* = x* — Tx + 10. This curve has at least 26 points with

integer coordinates. Find them (use a calculator), and verify that they are all
contained in the subgroup (maybe equal to all of X(Q)7) generated by P = (1,2}

and

Q0 = (2.2}

e can probably find these with my calculator “sage”, then use the additional law in silverman...

e sage:

sage

sage:
sage:

E = EllipticCurve (QQ,[0, 0, 0, =7, 10])

: QFE(2,2)

P=E(1,2)

E.integral points(mw_base=|P,Q],both signs=True)

-2 : 1), (-3:2:1), (-2 :—-4:1), (-2 :4: 1), (-1

4 1), (1 :=2:1), (1L :2:1), (2 :=2:1), (2 :2: 1),
4 1)y, (b : =10 : 1), (5 : 10 : 1), (9 : =26 : 1), (9 : 26 :
—46 : 1), (13 : 46 : 1), (31 : —172 : 1), (31 : 172 : 1), (41
262 : 1), (67 : —548 : 1), (67 : 548 : 1), (302 : —5248 : 1),
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4.4.37 1IV.4.19 x

4.19. Let X.P, be an elliptic curve defined over Q, represented as a curve in P? de-
fined by an equation with integer coefficients. Then X can be considered as the
fibre over the generic point of a scheme X over Spec Z. Let T = Spec Z be the
open subset consisting of all primes p # 2 such that the fibre X, of X over p
is nonsingular. For any n, show that ny: X — X 1s defined over T, and 1s a flat
morphism. Show that the kernel of ny is also flat over T. Conclude that for
any pe T, the natural map X(Q) — X ,(F,) induced on the groups of rational
points, maps the n-torsion points of X(Q) injectively into the torsion subgroup of
X plFp), for any (n,p) = L

By this method one can show easily that the groups XiQ) in (Ex. 4.17) and
(Ex. 4.18) are torsion-free.

The fact that nx : X — X is defined over T is theorem IV.5.3.c Silverman AEC II. Now let ¢t € T and
consider [nx], : X; — X, . Note that ny is obtained by composing multiplication by prime factors p of n. By
thm I1.6.8, each such px is either constant or flat. If [nx], is constant, then one of the [px], is constant. But
this doesn’t happen by the Criterion of Neron-Ogg-Shafarevich: thm VIL.7.1 Silverman AEC L. Thus [nx], is
finite flat by thm I1.6.8 / thm IV.4.17. The last statement follows by Silverman AEC I, VIL.3.1.b.

4.4.38 IV.420x g

4.20. Let X be an elliptic curve over a field k of characteristic p = 0, and let R =
Endi( X .P;) be its ring of endomorphisms.
{a) Let X, be the curve over k defined by changing the k-structure of X (2.4.1),
Show that /(X ) = j/(X)'". Thus X = X, overkifandonlyifljeF,.
e Ok here’s what we do. Assume for convenience the curve is in the form y? = z (z — 1) (x — \) =expand (z - (z -
—2 X+ +ad— 22

e Soa; =0,a =—A—1,a3 =0, ay = A\, ag = 0. are the tate coefficients.

256(A2—1+1)
(A—1)2x2
— On the other hand, if we let a] = 0,a) = (=X — 1), a3 =0, ay = ), ag = 0, be the tate coefficients
256(3A7—(~A-1)?7)”
A%P (4ap—(=A=1)%)

— The j-invariant, a’la Ex, 4.4 is

of XP? then the j-invariant will be a’la Ex 4.4

— Take p* power of the first one, and factor mod p gives the second. (It helps to use a computer
algebra system such as maxima to do the computations for you)

4.4.39 Slight issue?

(b} Show that py in R factors into a product 77 of two elements of degree p if and
only if X' = X . In this case, the Hasse invariant of X is 0 if and only if n and
7t are associates in R (Le.. differ bv a umit). (Use (2.5).)

e There is a slight error with this problem. Or there is an error on other sources. In characteristic p, then
multiplication by p is never separable, so it always factors!
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— If it factors as frobenius -> separable, then both are size p.

— if it factors as frobenius -> frobenius, then both are size p.

e So I think there is actually a slight error in this guy.. or it’s trivial. Since I read Milne’s Modular forms
notes earlier this year...

— Also it’s in some notes from MIT

e By assumption of the problem, we are in characteristic p

e Thus the multiplication by p map is either purely inseparable (in which case, the multiplication by p

map factors as £ — E(®) ~ E so in this case multiplication by p factors as two frobenius morphisms
each of degree p.

e If the mult by p map is separable / inseparable, then it’s separable / inseparable degrees are p, and it
factors into two things of degree p.

e In characteristic p is it true that X ~ X, 7
e hmm...

e 5o if £ ~ EP then F ~ EP” then it factors as EF — E<p2) - F.

4.4.40 c. x

(c) If Hasse (X) = Oshow in any case j € F ..
Suppose Hasse (X) =0 .
By exc IV.4.15, the subgroup of points of order p on X is 0.
Now use Silverman, Theorem 3.1, page 144, 145.

4.4.41 d. x

(d) For any f € R, there 1s an induced mnp'_}"*:f.f"[f x) = H'C ). This must be
multiplication by an element 4, € k. 50 we obtain a ring homomorphism
@:R — k by sending [ 1o 4. “Show that any fe R commutes with the
(nonlincar) Frobenius morphism F:X — X, and conclude that if Hasse
(X) # 0, then the image of ¢ is F,. Therefore, R contains a prime ideal p
with Rip = F,,.

Recall that R is the ring of endomorphisms of X fixing F. Recall that an isogeny is defined by
polynomials with coefficients in k. Thus it is clear that f commutes with frobenius since all such polynomials
do. Now how does hasse invariant relate to frobenius? So the frobenius F also gives a map F* : H' (Ox) —
H' (Ox). Note that F, C k is the fixed point set of frobenius, and if Hasse invariant is nonzero, F, are the
points of order p which will be potential images by what we will see next. So if \; ¢ F,,, then \; - F* (z) #
F*(X\f) - F*(z) = F*(Ajz). Since we know it does commute, then A\; must be in F,. Then by group
isomorphism theorem since ¢ : R — k, then just take the kernel will be a prime ideal such that R/p ~ F,
(it’s prime since F,, is a field).
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4.4.42 1V.4.21 x skip - not algebraic geometry

4.21. Let O be the ring of integers in a quadratic number field Q(,, —«). Sho L that
any subring R = O, R £ Z,isoftheform R = Z + O, for a uniquely deter-
mined integer f = 1. This integer [ 1s called the conductor of the ring R.

This isn’t really algebraic geometry. See for instance, Dummit and Foote

IV.4.22%* (starred)

*4,22. If X — A( is a family of elliptic curves having a section, show that the family Is
trivial. [Hints: Use the section to fix the group structure on the fibres. Show
that the points of order 2 on the fibres form an étale cover of A}, which must be
trivial, since Ag is simply connected. This implies that / can be defined on th
family, so it gives a map A¢ — A¢ — [0.1]. Any such map is constant. so # 18
constant, so the family is trivial. ]

MISS

4.5 1IV.5 Canonical Embedding
4.5.1 1TV.5.1 x g complete intersect is nonhyperelliptic

——
5.1. Show that a hyperelliptic curve can never be a complete intersection in any pro-
jective space. CI (Ex. 3.3).

3.3. gives us that the canonical bundle K is very ample if it’s a complete intersection.
But 5.2 says | K| is v.a. iff X is non-hyperelliptic.

4.5.2 1IV.5.2 x g Aut X is finite.

5.2. If X is a curve of genus =2 over a field of characteristic 0, show that the|group
Aut X of automorphisms of X is finite. [Hint: If X is hyperelliptic, use the inique
g} and show that Aut X permutes the ramification points of the 2-fold cgvering
X — P'. If X is not hyperelliptic, show that Aut X permutes the hyperﬂsc:Llata'un
points (Ex. 4.6) of the canonical embedding. Cf. (Ex. 2.5).]

Proof 1
See Dawei-Chen Notes M'T845, proposition 4.8, and use Weierstrass points.

Proof 2

If X is hyperelliptic, then it has a g3 so a degree 2 map f: X — P! .

By hurwitz, it’s ramified at 2g + 2 points.

Any automorphism of X is determined by whether or not it permutes the ramification points.

By connectedness of X, any nontrivial automorphism has no fixed points.

Automorphisms of X are therefore determined by automorphisms of P! permuting all the ramification
points.

Automorphisms of P! are determined by where the three points {0, 1,00} are sent.
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So we are permuting 2g + 2 points with ¢ > 2, and thus since there are only finitely many ways to permute
them, Aut (X) is finite.

Now suppose X is non-hyperelliptic.

Then X has (g — 1)* g + gd hyperosculating points. by exc. IV.4.6.

An automorphism of P9~! (where X is embedded) is determined by where it sends g+ 1 points not on the
same hyperplane.

By comparing this number with d and g—1 we see that all hyperosculating points cannot lie on a hyperplane
of degree d thus the finite number of hyperosculating points determine Aut (X) so that it is finite.

4.5.3 1IV.5.3 x g Moduli of Curves of Genus 4

5.3. Moduli of Curves of Genus 4. The hyperelliptic curves of genus 4 form an irre-
ducible family of dimension 7. The nonhyperelliptic ones form an irreducible
family of dimension 9. The subset of those having only one g} is an irreducible
family of dimension 8. [Hinr: Use (5.2.2) to count how many complete inter-
sections @ n F there are. ]

Hyperelliptic.
These are classified by the hurwitz scheme (see my notes on Severi + Hurwitz scheme) which has dimension
2g — 1.

Nonhyperelliptic

So let E a projective bundle parametrizing complete intersections of cubics and quadrics in P2,

We have a surjection to the quadrics in P3, 7 : E — PH? (P?, Ops (2)) = PY .

Now we must add the dimension of a fiber (cubics intersecting each quadric) and then quotient by PGL (3)
action.

For the fiber over a point (), we have an exact sequence:

0 — HO(P?,Opa (1)) 2 H® (P3, Ops (3)) — H® (P*, 04 (3)) = E, — 0

And thus dim E, = H° (P?, Ops (3)) — H® (P?, Ops (1)) — 1

ORE R

Also dim PH® (P?, Ops (2)) = ( > ) —1=22-1=09.

3 2
So now we add 15+ 9 = 24 and quotient by PGL (3) which has dim (3 + 1)*—1 = 15 gives us 24— 15 = 9.

Only one g} .
A curve with only one gi corresponds to sublocus where quadric is singular
. . 5
So we counted the quadrics by dim PH? (P?, Ops (2)) = ( 5 ) —1=10-1.
Note that 10 is also the number of parameters in the symmetric matrix below.
Note that a singular quadric is rank 3, so in the symmetric matrix, there are 9 parameters.
In this case we need @ to be singular, i.e. quadric cone.
So basically I just need to say that the dimension of the space of quadric cones is going to be 8.
Note that quadric forms are zero sets of the following matrix:

Consider P (z,y, z) = ax® + by? + 2fzy + 2gyz + 2hzw + 2px + 2qy + 2rz + d .

a f h p
This is a matrix product X*-A-X =0, X = (z,y,2,1)", and A = £ 2 i g
p q r d
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454 IV.54xg

5.4. Another way of distinguishing curves of genus g is to ask, what is the least degree
of a birational plane model with only nodes as singularities (3.11)7| Let X be
nonhyperelliptic of genus 4. Then:
(a) if X has two gl's, it can be represented as a plane quintic with two|nodes, and

— CONverseiy;

Suppose X is nonhyperelliptic with two gi’s each giving degree 3 maps to P!. Let ¢ : X — P! x P! be the
product morphism. If X, is the image its on a quadric so it has type (a,b) for some a,b. If ¢ has degree e,
then ea = 3, eb = 3 since these are coming from gi’s so eithera =b=1ande=30ora=5b=3 and e¢ = 1.
In the first case Xj is smooth and rational and the projections from X, — P! are injective hence the two gi’s
must coincide so that gives a contradiction.

Now we want to bound the number of singularities to 2. Consider the projection 7 from a point Fy on X
to P2. By bezout, if 7 maps P, Q to the same point, then the line through P,, P, Q lies in Q. Since there are
only two lines through any given point of () the image of X under 7w can have only two singularities.

Now if more than two points are collapsed then 4 points are collinear on X. Since X is type (3,3) it is a
complete intersection of a quadric and cubic. But then the cubic and the quadric both contain lines through 4
points which is a contradiction. Since we are on a quadric, geometrically it is clear that we cannot collapse a
g3 through a tangent line and similarly, there are no secants with coplanar tangent lines for the same reason.
Computing the genus of normalization gives degree 5.

On the other hand if we have a plane quintic with two nodes then the normalization has genus 4, and
genus is a birational invariant of a curve so X has genus 4. A line through one of the nodes meets X in 4
other points since it has multiplicity 2 there and using degree 5 and bezout. Thus we have a g3 .

If X was hyperelliptic, then it has a g3 , but also a g3 taking the product gives a map to a quadric with
ea = 2, eb = 3 as above. so e = 1 so the product morphism is birational to something with a different genus,
contradiction.

455 xg

(b) if X has one g}. then it can be represented as a plane quintic|with a tacnode
(I, Ex. 5.14d), but the least degree of a plane representation with|only nodes is 6.

Note X is nonhyperelliptic, genus 4 by assumption.

By example 1V.5.2.2, X lies on a unique irreducible quadric surface ). By example IV.5.5.2, @) is singular.
Also by example IV.5.2.2, X is the complete intersection of the quadric cone with a cubic surface F'.

Projecting from a point P on X gives a morphism to P2, If P lies on a trisecant L the projection is 3 — 1
at some points. By Bezout, as ) has degree 2 and L intersects () in 3 points, then L must lie on @), and as
(@ has a unique ruling through P, then the projection is birational from X to a plane curve which must have
only the one singularity from the trisecant. If on the other hand there is a multisecant line L which meets X
in more than 3 points, then by Bezout L must lie on both @@ and F. But a quadric and a cubic forming a
complete intersection don’t share a line. This contradiction shows there must be at most trisecants.

Has one singular point. Then we have 4 =1 (5-1)(5—-2) —r=324-3=6—rsor =2 . Now using
the chart around page 506-508 which tells how much a one singularity will drop the genus, we see that the
singular point corresponds to a tacnode. Geometrically, this is also fairly clear, we need to cut X with a
hyperplane meeting X tangent at an inflection in one point P and tangent at a concave point () and then
project down from a point on the line PQ but not between P, (Q .

Now suppose we have a plane quintic with degee less than 6 and only nodes. By degree genus formula
for normalization, which was a previous excercise, we must have two nodes. Each node gives a g3 as in ex
IV.5.5.2. Thus we have two g3 ’s which gives a contradiction.
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4.5.6 IV.5.5 x g Curves of Genus 5

5.5. Curves of Genus 5. Assume X is not hyperelliptic.
(a) The curves of genus 5 whose canonical model in P* is a complete intersection
F,.F,.F, form a family of dimension 12.

There is probably a way to do this via Hartshorne, however, let H ilbP" denote the hilbert space corre-
sponding to the hilbert polynomial p () .

By Arbarello, Cornalba, ... Geometry of Algebraic Curves II, 1.5.11 we have

h° (X, Nx/pr) is an upper bound for the dimension of Hilb?" .

By the next theorem, 5.12, the dimension of irreducible components of Hilbf(t) at a point is at least
h° (X, NX/PT) —ht (X, NX/PT) .

So we need to compute cohomology of the normal bundle of X.

From Sernesi’s book on moduli theory, (I forget the title)

Nxpr = Ox (2) 8 0x (2) © Ox (2) .

So, just need to compute h° (X,0(2)) @& h° (X,0(2)) @& h° (X,0(2)) and h' (X, 0 (2)) @ h* (X,0(2)) @
h* (X, 0 (2)). Well, ° (X, 0 (2)) —h' (X,0(2)) =d+1—g=8-2+1—-5=17—5 = 12 Now multiply that
by 3 gives 36. Now modulo by PGL (4) = (4 +1)° — 1 = 24, still get 12 since 36 — 24 = 12. Note we should
have an upper bound on the dimension, since these guys are in 915 which has dimension 3g—3 = 15—3 = 12.
does this actually work? Hopefully

4.5.7 b.xg

These form an irreducible family of dimension 11. [Hinr: If D € g3,juse K — D

{b) X hasa g} if and only i it can be represented as a plane quintic witT one node.

P i ]

# oo acach
(A ) Jlllﬂl.r' JE T a |J_

Has g13 implies plane quintic with one node

Suppose X has a divisor D which gives a degree 3 embedding to P!.

Thus h° (D) = 2.

Then deg (Kx — D) =2-5—-2-3=5.

By RR., x(D)=3+1-5=-1s0oh’(Kx —D)=h"(D)+1=3.

Thus Kx — D is a g2 which maps X to P2

By degree-genus, 5 = p, (X) = 5 (5—1) (5 — 2) — fnodes .

Solving gives one node.

Plane quintic with one node implies g13

Let f : X — P2 , and Ox (E) = f*O[pﬂ (1) .

Then deg (E) =5,s0deg(Kx — E)=2-5—-2—-5=3. (2g-2-5)

By ror, h°(E) —h° (Kx —E)=5+1-5=1.

Necessarily, h° (f*Op2 (1)) > h° (Op2 (1)) =3 and so h° (Kx — E) > 2.

Thus E is special, and hence by clifford, dim |E| < 3deg (E) = 5 - 5.

Thus 3 < h®(E)=dim|E|+1<1=35.

Thus h° (E) = 3, and thus i’ (Kx — E) =2 ,s0 Kx — Eis a g3 .

Irreducible family

See my notes on Severi Varieties and Hurwitz schemes: dim Vs5 =3d+9g—1=154+5—-1=19... Now
subtract dim PGL(2) = (2+1)° — 1 — 8 and we’re good.

1
2
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*(c) In that case, the conics through the node cut out the canonical system (not
counting the fixed points at the node). Mapping P? — P* by this linear system
of conics, show that the canonical curve X is contained in a cubic surface
V < P* with Visomorphic to P? with one point blown up {11, Ex. 7.7). Further-
more, V is the union of all the trisecants of X corresponding to the g} (5.5.3),
so V is contained in the intersection of all the quadric hypersurfaces containing
X. Thus V and the ¢; are unique.

T O g T O v T

MISS.

e . already showed g} is unique.

4.5.8 IV.56xg

5.6. Show that a nonsingular plane curve of degree 5 has no gi. Show that there ar¢
nonhyperelliptic curves of genus 6 which cannot be represented as a nonsingular
plane quintic curve.

I feel slightly iffy about this one.

So a plane curve will have genus 6 by the degree genus formula if it is degree 5.
Suppose X has a divisor D which gives a degree 3 embedding to P!

Thus h° (D) = 2.

Then deg (Kx — D)=2-6—-2—-3=T7.

By RR., x(D)=34+1-6=-2s0 h®(Kx —D)=h°(D)+2=4.

Thus Kx — D is a g2 which maps X to P2

By degree-genus, 6 = p, (X) =1 (7—1) (7 — 2) — fnodes .

Then 6 = % -6 -5 — finodes so 6 = 15 — finodes.

So there are 7 nodes.

For the second part see Arbarello, Harris, Geometry of Algebraic Curves I.

4.5.9 IV.b.7axg

: z
5.7. (a} Any automorphism of a curve of genus 3 is induced by an automorphism [P
via the canonical embedding.

Suppose first that C' is non-hyperelliptic.

Note that a morphism between nonsingular non-hyperelliptic curves then the pullback of regular differen-
tials map to regular differentials. Thus such a morphism lifts to a morphism between projective spaces via
the canonical embedding.

If C is hyperelliptic it has a unique degree two map f to P! ramified at 8 points by Hurwitz theorem.
Any automorphism preserves f but permutes the 8 points. Thus the morphism is determined by the action
on the fibers. Since the complement of the 8 points on C' is connected, then the action must be free. Such
automorphisms are just given by automorphisms of P! permuting 8 points. Now apply thm IV.5.3.
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*(b) Assume char k # 3. If X is the curve given by

Xty + ylz 4 2x = 0,

the group Aut X is the simple group of order 168, whose order is the maximum
84{g — 1) allowed by (Ex. 2.5). See Burnside [1, §232] or Klein []].

e

solved:

e S B T e L ™l e I - .
*lc) Most curves of genus 3 have no automorphisms except the identity, [Hint:
For each n, count the dimension of the family of curves with an automorphism
T of order n. For example, if 1 = 2, then for suitable choice of coordinates,
T can be written as x — —x, v — v, = — =. Then there is an 8-dimensional
family of curves fixed by T changing coordinates there is a 4-dimensional
family of such T, so the curves having an automorphism of degree 2 form a
family of dimensional 12 inside the 14-dimenstonal family of all plane curves
of degree 4.]

MISS

4.6 1IV.6 Curves In P3
4.6.1 IV.6.lxg

|

I.miq“l.‘: quadric surface @, and

6.1. A rational curve of degree 4 in P is contained in a
[J 15 necessarily nonsimgular.

Denote by X a rational curve of degree 4 in P3. Consider the LES associated to 0 — Zx (2) — Ops (2) —
Ox (2) — 0. Let D the hyperplane section. dim |2D| — dim|K —2D| =8+ 1—-0 = 9. Also deg K =
29 — 2 = —2 clearly dim |K — 2D| = 0. Thus h° (Ox (2)) = 9 and since h° (Ops (2)) = ( s —:l,)_ 2 ) = 10, then
by exactness, h° (Fx (2)) > 1. So at least X lies on a quadric. ~ If X is contained in two quadrics, then by
by Bezout, X is a complete intersection and by exc 11.8.4 thus has genus %4- (2+2—4)+1 =1 contradiction.
Thus @ is unique. Now note that by exc IV.5.6.b.3 and since X is, at any rate, nonsingular that X is the
rational normal quartic which has n + 1 linearly independent points in P” and thus must be contained in a
nondegenerate quadric. But nondegenerate quadrics are nonsingular by chapter I.

4.6.2 IV6.2xg

6.2. A rational curve of degree 5 in P? is always contained in a cubic surface, but there
are such curves which are not contained in any quadric surface.

Always in a cubic

To see it’s always in a cubic, consider h° (Ops (3)) —h° (Ox (3)) = fam{jf(g‘g’f}‘;’c‘fgw(?,) —...=20—...To get

the second term, note d > 2g — 2 thus nonspecial (the degree of the divisor 3P), so h° (Ox (3)) =3d+1—g =
15+ 1—0 =16 by R.R. Thus the ideal sheaf twisted by 3 has some global sections.

Exist ones not in any quadric

First note that the rational curve of degree 5 X cannot be contained in a quadric cone or else by exc
V.2.9 (which doesn’t use this result) g (X) = 2 which is a contradiction. Thus we can restrict our attention
to finding a rational degree 5 curve not on a smooth quadric since at any rate such a curve won’t be on
a singular quadric. The remainder is Theorem 4 and Proposition 6 of Eisenbuds “On Normal Bundles of
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Smooth Rational Space Curves.” Alternatively, embed P! via (s:t) + (s°: st : st? +as3t? : 15) for a € k*

This is a degree 5 and we can check there are no degree 2 relations by checking each case (i.e. check
(s9) — (s*) (st* + as®th) = 0 and such possibilities, there are finitely many and I'm too lazy to type them
all). Now use thm T1.7.3 to check it gives an embedding.

4.6.3 IV.6.3xg

6.3. A curve of degree 5 and genus 2 in P? is contained in a unique quadric surface Q.
Show that for any abstract curve X of genus 2, there exist embeddings of degree 5
in P? for which Q is nonsingular, and there exist other embeddings of degree 5 for
which Q is singular.

Contained in a Quadric. Consider the LES associated to 0 — Ix (2) — Ops (2) — Ox (2) — 0. Note
that A (Ops (2)) = ( 2 ) — 2 _ 10, By 1, h(Ox (2) — h' (Ox (2)) =52+ 1 —2 = 9. Note that
h' (Ox (2)) = h° (Ox (Kx —2H)) = 0 since Kx — 2 - H has negative degree. So if h° (Ix (2)) = 0 then we
have a contradiction to exactness.

Thus at least X is on a quadric Q). If that quadric is nonsingular, then by remark 1V.6.4.1, checking the
possible types gives X of type (a,b) = (2,3). Then exc IV.5.6.b.3, gives X is projectively normal. Then exc
I1.5.14.d combined with the LES computation gives X that () is the unique quadric on which X lies.

If the quadric is singular, then by the proof of exc V.2.9, X passes through the vertex of the cone. If it
lies on another quadric, it must be a cone, and so since X is smooth the two vertices must coincide (think of
the picture) so they are in fact the same cone.

As X has genus 2, then deg (Kx) = 2 and Ky spans a line in P3. Let H be the hyperplane Ox (1) which
has degree 5 since X does. Thus H —2Kx has degree 1 but could either be effective or not effective depending
on how we choose the points (both cases are possible).

For H—2K x not effective, then |H — 2K x| = ). Let D = H— Kx which has degree 3. Then h° (Ox (D)) =
2 and |H — D| = |Kx| has dimension 1. Thus the divisors of D are contained in two planes and therefore
spans a line which is the intersection of the planes. This line is contained in () since it meets X in 3 points
by bezout since it has degree 3 and it’s a line. Since |H — 2D| is empty, two different lines don’t meet. But
then we have rulings not meeting which gives a smooth quadric.

On the other hand if H —2K > 0, then by the dimension |H — 2K is a point. So we have rulings meeting
at a vertex giving a quadric cone.

464 IV64xg

6.4. There 1s no curve of degree 9 and genus 11 in P 1_Hz'rrr: Show that 1t would have
to lie on a quadric surface, then use (6.4.1).]

Suppose X has degree 9 and genus 11 in P? . Consider the LES associated to 0 — £y — Ops — Ox — 0.
By riemann-roch, h° (Ox (2D)) — h® (Ox (K —2D)) = 18 + 1 — 11 = 8. This curve should be special so
W (Ox (2D)) > 8. W0 (O (2) =  ° 7
If 2D is special, then since h° (Ox (2d)) > 0 , we can find an effective divisor linearly equivalent to 2D. By
Clifford, dim |2D| < 1deg 2D = 9. So in any case h° (Ox (2D)) < 10 and thus X lies on a quadric surface Q.

Now if @ is nonsingular, then by rmk IV.6.4.1, 9 = a+ b, 11 = ab — a — b+ 1 and there are no possible
solutions. If @) is the product of two hyperplanes, then it be a line and have genus 0 or it’s on a plane so by
degree genus for P? | the genus is % (9—1)(9—2) #11. If Q is a quadric cone, then by exc V.2.9,9 =2-a+1
and 11 = a® — a so that 11 = 12 which is a contradiction.

= 10. If it’s nonspecial, then it’s clearly contained in a quadric.
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4.6.5 IV.6.5 x g complete intersection doesn’t lie on small degree surface

6.5. If X is a complete intersection of surfaces of degrees b in P*, then X does not lie
on any surface of degree < min(a,h).

We assume X is smooth I guess since we’re in chapter 4. Via exc I1.8.4 We get projectively normal. (smooth
= normal = projectively normal) Thus H" (Op (1)) — H° (Ox (1)) is surjective for all [ > 0 via I1.8.4.
m+ 3

3

We know it’s hilbert polynomial. so that’s how we’ll compute h° (Ox (I)). Since x (1) = h° (Ox (1)) —
h* (Ox (1)) + k' (Ox (1)) — ... but h' (Ox (1)) = 0 by projectively normal, and h* (Ox (1)) = 0 since X is
dimension 1. Therefore, we have h° (Ix (m)) = h° (Ops (m)) — h° (Ox (m)) =

T
() ()
() () (),

So if m < a and m < b then (m+3_a)20and (m+3_b>20and (m+3_a_b):0so

Now note if m < min (a,b) we want to show that h° (Zx (m)) = 0. I can compute h° (Ops (m)) =

3 3 3
we're good.

4.6.6 IV.6.6 x g Projectively normal curves not in a plane

6.6. Let X be a projectively normal curve in P2, not contained in any plane. Ifd = 6,
theng = 3ord. Ifd = 7,theng = 5or 6. CI (11, Ex. 8.4) and (111, Ex. 5.6).

e [1.8.4

e ok here is almost everything for d = 6:

— for g = 0, it’s rational so in a plane

— for g = 1, it’s a plane cubic

— for g = 2,777 (maybe something like canonical embedding)
* see below.

— for g = 3,4 ok

— for g > 5, use castelnuovo’s bound (6.4)
e For d =7, then

— for g = 0,1 same reasoning as before.
— for g > 9, we have castelnuovo’s bound
— For g > 7 we have castelnuovo again genus is bounded above by ;11 (T*=1)—-T+1=6.

— Now we just have to check genus 2, 3, 4.

e so for genus 2, and degree 6 in P3.
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— if it were a complete intersection of surfaces of degree d, e
— then 2 = ide(d+e—4)+ 1 and d- e =6 (by bezout) or e =d/6 so

~2=3-6-(d+%-6)+1=3(%-6)+1s03+6="o0rS+36="7dord= 220 =

5.428571428571429
— This is not an integer, so it’s not a complete intersection.

— something’s messed up here though, since consider degree 7, then de = 7, so it’s contained in a
degree 1 thing.

— 8o it’s not a complete intersection (also ¢ =2 == hyperelliptic = not a complete intersection
by IV.5.1), we still need to prove the thing.

— by halphen, it has a nonspecial, very ample divisor of degree d > 5.

— by 6.3, the hyperplane section D is nonspecial. -should allow us to compute h° (Ox (1))... yeah it’s
5 so that confirms it’s not in a plane. wait, but h° (Ops (1)) = 4 so that’s actually a contradiction,
since we’re supposed to have a surjection !

e 5o for degree 7, genus 2, 3,4,

— if hyperplane section is special, then g > %7 +1=4.5by 6.3
— so hyperplane section is nonspecial.

— Now let’s compute h°(Ox (1)) using Remark 1V.1.3.1 so h’ (Ox (D)) = 7+ 1—g. if g = 4,
then h° (Ox (D)) = 4 so that’s still ok, however for g = 2,3 we get a contradiction same as for
d=06,g =2 case.

o for degree 7, genus 4. we’ll take 2D it has degree 12 > 2g — 2 so it’s nonspecial.

— Then A% (Ox (2)) =12+ 1 —4 =13 —4 =9. Also hO (P3 (2)) = ——Lectorial®) ___ _ 1() 50 we see

" factorial(3)- factorial(2)
that our curve is contained in a quadric. (note for genus 5 this would not be the case)

— So if it’s on a quadric, it has a type. (a,b) where a +b="7.
—soa=1,b=6,a=2b=5,a=3,b=4.
—Alsog=ab—7T+1,50g=6—-T+1=0,org=10—7+1=4o0org=12—-7+1
— so we know that it has type (2,5) .

— However, this contradicts II1.5.6.b.c since |a — b| £ 1.

4.6.7 IV.6.7xg

6.7. The line, the conic, the twisted cubic curve and the elliptic quartic curve in P?

[ Hint: Consider a projection from a point of the curve to P2.]

Suppose X is a curve with no multisecants.

Looking at the picture if X lies on a plane then it is a line or conic since any degree term higher than 3
would have at least one inflection and thus a trisecant.

If X C P3\P? has degree d then the projection from a general point of X gives an isomorphism onto a
smooth plane curve of degree d — 1 with genus 1 (d — 2) (d — 3).
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1> —d+1 d even
i(dg—l)—d—i—l d odd
d+1, d even or %dQ—gd—i-SS }L(dQ—l)—d—i—l if d is odd. Thus d?> —6d +8 < 0so 2 < d < 4. Thus we
could have d = 3 so X is twisted cubic since it’s degree 3 in P? and genus 0. We could also have d = 4 so
by the genus is 0,1 depending on nodes. Such an elliptic would be the complete intersection of two quadrics
which has no trisecants. On the other hand, a rational quartic lives as a type (1,3) on a smooth quadric so
has trisecants which are lines on one of the rulings.

By Castelnuovo, this gives £ (d —2) (d — 3) < . Thus 1d? — 2d+3 < 1d? —

4.6.8 IV.68xg

6.8. A curve X of genus g has a nonspecial divisor D of degree d such that |D| has no
base pomnts ifand only ifd = g + 1.

Rephrase

Let K be the field of rational functions on X.

Define S to be the set of all d € N such that there exists base point free g} on X.
Define dy to be the smallest d € S such that m > d implies m € S .

Note that if dg < g+ 1, and d > g+ 1 then there exists a base point free g} on X.
On the other hand if d < dy, then there exists no base point free g} on X.

Thus it suffices to prove dy < g+ 1

d >= g+1 implies exists bpf ...

Halphen gives us that if ¢ > 2, then X has a nonspecial very ample divisor iff d > g + 3 .

Thus if d > g + 3, consider a nonspecial very ample g;i*g for any d > g + 3, the general pencil of the very
ample gg‘f‘g gives a base point free so such d € S.

Next we have the bpf, g, ; (—P) where P € C' is general which gives g +2 € S.

We may subtract a further point by g2, 5 (=P — Q) = g, (—P) = g,,, which is birationally very ample.
Thus forany d >g+1,de Sandsody <g+1.

Clearly these later linear systems are also nonspecial.

exists bpf implies d>= g+1
If there exists a base point free, nonspecial g;, then we add two points not in ¢
very ample by thm IV.3.1(b) contradicting Halphen.

1

; to get a g3, which is

4.6.9 1IV.6.9 (starred)

*6.9. Let X be an ireducible nonsingular curve in P'. Then for each m == (), there is a
nonsingular surface F of degree m containing X. [Hint: Let 7 : P— P be the
blowing-up of X and let Y = n~ ' X). Apply Bertini’s theorem to the projective
embedding of P corresponding to .7y @ n*(¢ pi(m).]

skip.
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5 V Surfaces

5.1 V.1 Geometry On A Surface
5.1.1 V.1.1 x g Intersection Via Euler Characteristic

1.1. Let C.D be any two divisors on a surface X, and let the corresponding invertible
sheaves be % .#. Show that

CD=xty) = HL V= )+ 0¥ 'R &)

Proof 0. For full generality see mumford chapter 12.

Proof 1.

As in the proof of V.5.1,

write C' and D as the difference of curves all meeting transversally.
Thus we can use V.1.1 TSADL: #(CND)=C.D

We have 0 » Ox (—C) - Ox - O¢c — 0

0— Oc(—=D) = Oc — Ocnp — 0 and

0—-0x(-D—-C)— Ox(—=D) = Oc(-D) =0

Since euler characteristic is additive on exact sequences,

then y of the middle is sum of x outside.

Making the needed substitutions gives

X (0x) = x (Ox (=D)) = x (Ox (=0)) + x (Ox (=C = D)) = x (Ocnp) = h’ (C'N D)
Proof 2.

For simplicity, assume C, D are curves meeting transversely.
Consider the sequence

0= Ox (—C = D) "3 05 (—=0) @ Ox (=D) Y Ox = Ocrp — 0.
Exactness can be checked at the stalks.

00,3029 o0 = 0y/(c,d) = 0.

We must show that the kernel of (¢, d) is the image of (d, —c).

Ifaf +cd =0, then af = —cd.

Since the meetings of C, D are transverse, O, is a UFD, since ¢, d are relatively prime.
Thus there is h such that a = hd and b = —he.

5.1.2 V.1.2 x g Degree via hypersurface

1.2. Let H be a very ample divisor on the surface X, corresponding to a projective
embedding X = P". If we write the Hilbert polynomial of X (III, Ex. 5.2) as

1
F(z) = - azt + bz + ¢,
show that a = H% b = 1H? + 1 — n, where n is the genus of a nonsingular
curve representing H, and ¢ = 1 + p,. Thus the degree of X in P, as deﬁnﬂf—f
in (1, §7), is just H*. Show also that if C is any curve in X, then the degree of €
in PY is just C.H.

By Riemann-Roch, x (nH) = 1 (nH).(nH — Kx) + 1 + pa.
This is P (n) = sn?H* — inH.Kx + 1 + p,.

Clearly a = H? and ¢ = 1 + p,.

We need that %H.KX = %HZ +1—.

Note that H.(H + Kx) =29 —2 and so H Kx =29 — 2 — H*

I54



By L7, the degree is dim (X)! times the first coefficient, so it’s H2.

Now we have exact sequences

0—=0x(-C)—0O0x —-0c—0

0—-0x(-C—H)—=>0Ox(—H) = Oc(—Hl|c) =0

Plugging these into excercise V.1.2 gives

C.H = x (C,0c) = x (C, —H|c).

But this is the definition of the degree of the line bundle associated to C.

5.1.3 V.1.3 x g:a,b adjunction computational formula

1.3. Recall that the arithmeric genus of a projective scheme D of dimension |1 15 defined
asp, = | — q(@p) (111, Ex. 5.3).
{a) If D is an effective divisor on the surface X, use (1.6) to show that|2p, —

g T n |y
T = 1%

Riemann-roch (for a surface) gives

X (=D) =5 (=D) (=D — Kx) + 1 +pa.

By the exact sequence 0— Ox(—=D) = Ox — Op — 0,
we get x (Op) = 3D. (=D — Kx) — 1 —p, + x (Ox)
(note the last term cancels out).

5.1.4 b. x g: with above

(b) p. D) depends only on the near equivalence class of D on X,

By part (a).

5.1.5 c.xg

{c) More generally, for any divisor D on X, we define the virtual arithmeric genus
{which is equal to the ordinary arithmetic genus if D is effective) by the same
formula: 2p, — 2 = DD + K). Show that for any two divisors O[> we have

pl=D)=D* - piD) + 2

and
pJC + D) = pfCy + pih + C.D — 1.

Note that p, (—D) =3 (—=D)(-D+ K)+1=D*-1D.(D+ K) + 1
also p, (C+D) =3 (C+D).(C+D+K)+1=3C(C+K)+iD.(D+K)+CD+1.

5.1.6 V.1.4 x g Self intersection of rational curve on surface

. . . 1. -
1.4. {a) If a surface X of degree « in P’ contains a straight ine C = P!, show that
Cr=2—d.

First we compute Kx

We have X ~ dH for a hypersurface
(since we're in P2, and dim 2).

Using adjunction, Ky = (Kps +dH) |x
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Recalling that Kps = —4H, Kx = (—4+d) H.

Now we compute C2.

By adjunction, C. (C+ Kx) =29 —2=0—2.

We can choose H generally enough to meet C' at one point.
(ie. C.H=1)

Then C* = -2+ (4—d)C.H=2—d.

5.1.7 b. x.

ib) Assume char k = 0, and show for every d = |, there exists a nonsingular
surface X of degree d in P? containing the line x = y = (.

The fermat hypersurface ¢ + y? + 2% +w? = 0 contains the line z — o/

5.1.8 V.1.5 x g Canonical for a surface in P3

1.5. (a) If X is a surface of degree d in P2, then K? = d(d — 4)°.

Let X ~ dH for some hypersurface.

Then Ky = (d — 4) H by adjunction (since canonical in P? is —4H)
Thus K% = (d — 4)* H.

Now H? =d by V.1.2

519 b.xg

{b) If X is a product of two nonsingular curves C.C7, of genus g.4° respectively,
then K* = 8(g — 1)(g' — 1). CI(II, Ex. 8.3).

Let p1, po the projections .

From exc I1.8.3, Kx = pi K¢ + ps K¢ .

Thus K% = (piKe)” + 2t Ko psKer + (p5Ke)? .

Then middle term is 2 - (2g — 2) - (29’ — 2) and the outer terms disappear.

5.1.10 V.1.6xg

1.6. {a) I C is a curve of genus g, show that the diagonal 4 = C x C has self-inter-
section 4% = 2 — 2g. {Use the definition of Q. , in (11, §8).)

) ~ x i - 1 [ alo I B | - |

Let pi, ps the projections C x C' — C' .
Note the diagonal is isomorphic to C.

The intersection of the diagonal and a fiber is the point.
Thus deg Ka = (Kx + A).A by adjunction.

This is (piKe + p3Ke) A+ AA =

(29 —2)+ (29 —2) + A%.

Now A =~ C' so deg Kpn =deg Ko =29 — 2.

Now solve for A%
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5.1.11 b.xg

(b) Let ! = C x ptandm =pt x C. Ifg = 1, show that [m, and A are linearly
independent in Numi{C = ). Thus Num(C x ) has rank =3, hnd in parti-
— ot Pt 2 p P O P C—Cf- B 26V, Ex. 4.10).

Note that 12 =0, l.m =1, [.A = 1, where A is again, the diagonal, and m? = 0, A? = 2g — 2 by (a).
Suppose that a -1+ b-m + c¢- A = 0 for some constants.

Then l. (al + bm +cA) =0 = b+c=0,

m.(al+bm+cA)=0 = a+c=0

A (al+bm+cA)=0 = a+b+c(2g—2)=0.

Thus 2 (a + ¢ — gc) = 0.

Thus a = b = ¢ = 0 by solving the system.

5.1.12 V.1.7 x Algebraic Equivalence of Divisors

1.7. Algebraic Equivalence of Divisors. Let X be a surface. Recall that we hate
defined an algebraic family of effective divisors on X, parametrized by a nop-
singular curve T, to be an effective Cartier divisor D on X = T, flat over [T
(111,9.8.5). In this case, for any two closed points 0,1 € T, we say the correspondirg
divisors Py, D, on X are prealgebraically equivalent. Two arbitrary dtt'jscr[’:s
are prealgebraically equivalent if they are differences of prealgebraically cquivL-
lent effective divisors. Two divisors DD are algebraically equiralent if there fis
a finite sequence D = D, D,, ..., D, =D with D, and D, prculgubl‘aiml[}'

———equivatentforeaeh—+

{a) Show that the divisors algebraically equivalent to 0 form a subgroup of Div X,

Write = for algebraic equivalence.

Suppose D is prealgebraically equivalent to 0.

inverses

Write D as the difference of effective Dy — Ds.

Then —D = Dy — D is prealgebraically equivalent to D is prealgebraically equivalent to —D.
Now suppose that 0 = Dy, ..., D,, = D is a sequence for D.

Then 0 = —Dgy, —Dy, ..., —D,, is a sequence for —D by above.

Thus —D = 0 so it’s closed under inverses.

Sums

Suppose 0 = Dy, ...,D, =D and 0 = Ey, ..., E,, = E .

Now D and D + 0 = D + E, are prealgebraically equivalent. Hence,
0=Dy,...D,=D,D+ FEy,..,.E+ FE,, =D + E is a sequence for D + E .

5.1.13 b. x

{b} Show that linearly equivalent divisors are algebraically equivalent. [Hint: If
( f}is a principal divisor on X, consider the principal divisor (tf — wyon X x P!,
where ¢,u are the homogeneous coordinates on P'.]

By 11.9.8.5, an effective divisor on X x T is flat over T" when the local equations of the divisor are nonzero
when restricted to a fiber.

Since the difference of linearly equivalent divisors is principal, we just need to show that (f) = 0 for
feK(X).
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Note that (tf — u) restricts to (f) over (1,0) and to 0 over (0,1) .
Thus (f) = 0.

5.1.14 c. x

{c) Show thatalgebraically equivalent divisors are nun‘f&:rieull}' equivalent. [ Hini:
Use (111, 9.9) to show that for any very ample H,if D and D’ are algebraically
equivalent, then D.H = ' H |

By bertini we can consider differences of very ample divisors.

Thus we consider intersections with very ample divisors.

Thus we want to show D.H = D'.H for prealgebraically equivalent effective D, D" and very ample H.

H induces an embedding X — P} which gives an embedding X x T" — P7. .

If £ C X x T is a divisor with fibers £y = D, By = D’ , then E is flat over T, so by thm II1.9.9 , the
degrees of D and D’ in P} are equal.

But D.H and D'.H are exactly the degrees of D and D’ in P} .

Thus D.H = D'.H.

5.1.15 V.1.8 x g cohomology class of a divisor

1.8. Cohomoloyy Class of a Divisor. For any divisor D on the surface X, we define
its cohomology class ¢(D)e H'(X.Q2y) by using the isomorphism Pic X =
HYX %) of (III, Ex. 4.5) and the sheaf homomorphism dlog:¢* — @, (111,
Ex. 7.4c). Thus we obtain a group homomorphism ¢:Pic X - HY(X,Q2,). On
the other hand, H'(X,€) is dual to itself by Serre duality (111, 7.13), so we have a

nondegenerate bilinear map
¢ DrHYXQ) x HYUX.Q) =k

(a} Prove that this is compatible with the intersection pairing, in the following]
sense; for any two divisors D,E on X, we have

{eADVAEYy = (D.E)- 1

in k. [Hint: Reduce to the case where D and E are nonsingular curves meeting|

transversally. Then consider the analogous map ¢:Pic D — H'(D.Q,), and

the fact (111, Ex. 7.4) that ¢{point) goes to 1 under the natural isomorphism of

HYD.Q,) with k]
By Bertini, write D as a difference of very ample divisors, thus wlog smooth curves.
Consider Pic X > H' (X, Qx)

| i
Pic D—H'(D,Qp) ~ k
By the hint, the bottom map is degree.
Thus going down and right gives £ (E) — £ (E) ® Op — degp-Z (E) ® Op = D.E by 1.3.
Now going right then down gives f (¢(D)) = D.E.
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5.1.16 b. x g

{b) If char k = 0, use the fact that H'(X Q,) is a finite-dimensional vector space
to show that Num X 1s a finitely generated free abelian group.

Via the exponential sequence, D determines ¢; (Ox (D)) € H? (X,Z) . (see page 446). This second group
is finitely generated (note it sits between H' (X, O%) and H? (X, Ox) in the sequence ).

5.1.17 V.1.9 x g Hodge inequality

1.9, (a) If H is an ample divisor on the surface X, and if D is any divisor, show thai
(DY H* < (D.H)

Let a divisor.

D' = H?D — (H.D) H.

Then D'.H = 0. Thus by hodge index theorem D"? < 0.
Then

(H>D — (H.D)H)’ <0 —

H*D?> - 2H*(H.D)D.H + (H.D)> H> <0 —

since H? > 0 (nak moish) we factor it out and have
D?*H?> - 2(H.D)* + (H.D)* <0 —

D?*H? < (H.D)?.

5.1.18 b.xg

(b} Now let X be a product of two curves X = C x ', Let [ = C x p'l~ and

m=pt x C'. Forany divisor Don X.leta = D.[.h = D.m. Then wepay D
has rype (a,h). 1f D has type (a.h), with a.h = Z, show that

D* < 2abh,

and equality holds if and only if D = bl + am. | Hint: Show that H ={ + m
is ample. let E =1 — m, let D' = (H*}E*)D — (E*)(D.H)H — (H*)(D.E)H, and
apply (1.9). This inequality is due to Castelnuovo and Severi| See
Grothendieck [21.]

Define H = [+m and E = l—m so that deg (D.H) = deg (D.l)+deg (D.m) = a+b and deg (D.E) = a—b.

Note as I> =0, l.m =1, m? = 0 then deg (E?) = —2, deg (H?) = 2, deg (E.H) = 0. By Nakai Moishezon,
H is ample thus if D' = —4D +2(a+b) H —2(a — b) E since deg (D'.H) = 0, then by Hodge index theorem
if D' # 0, then 0 > deg (D) = 16 (deg (D?) — 2ab). Thus 2ab > deg (D?). If D' = 0 then D = bl + am and
deg (D*) = deg ((bl + am)2) = 2ab.
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5.1.19 V.1.10 x g Weil Riemann Hypothesis for Curves

1.10. Weil's Proof [2] of the Analogue of the Riemamn -'f_rpr:lfu-.wfw for Curres, Let ©
be a curve of genus ¢ defined over the finite field F,. and|let N be the number of
points of C rational over F,. Then N =1 — a + ¢, with |u| < 2y, y. To prove
this, we consider C as a curve over the algebraic closure k of F,. Let f:C — C
be the k-linear Frobenius morphism obtained by takjng gth powers, which
makes sense since C is defined over F, so X, = X (IV.24.]). Let I = € % C
be the graph of f,and let 4 = C x C be the diagonal. Show that I'* = ¢12 — 2g)
and .4 = N. Then apply (Ex. 1.9) to D = ¢ + 54 fpr all r and s to obtain

L theresult SeelApp C _Ex 37 for another interpretation of this result.

Note that T is the preimage of A under (f,1): C x C — C x C . Thus I'? = A% - deg (f) = (2 —29) - q
since ¢ is the degree of frobenius and A? = 2 — 2g by exc V.1.6.a and ((f,1), (f,1)" A, A) = deg (f,1) - A%
Now I'"'A = N clearly gives the number of fixed points and the fixed point set of frobenius are the points
lying in F, as in exc IV.4.16.b. Note that, using the notation of exc V.1.9, I meets [ = C' x pt at f*pt x pt,
[ meets m = pt x C' at pt x f (pt). Since Frobenius has degree ¢, then I'.l = ¢, I''m = 1 . Similar logic gives
A.l =1, Aom = 1. Thus T has type (¢, 1), A has type (1,1).

Let D = rI'+sA = as in the hint. Thus D has type (rq + s,7 +s) D*> =rq (2 — 2g) + s? (2 — 2g) + 2rsN.
Now by exc V.1.9, 7q (2 — 29)+5* (2 — 2g)+2rsN < 2(rq + s) (r + s) . Rearranging gives N < 14+q+Lgq+2g
forrs > 0and N > 1+q+Zgq+2gfor rs < 0. Since r, s can be arbitrary we have [N — 1 — ¢q| < sup, sZgq+2g.
Note that g (q:L’ + %) is maximized at the same place as g (¢gr? + 1) is maximized which is at z = i\/ia and

thus we get |N — 1 — ¢ §g<q\%§+\/§> =9 (2/4).

5.1.20 V.11l x g

1.11. In this problem, we assume that X is a surface for which Num X is finitely genr
erated (i.e., any surface, if you accept the Neron Severi theorem (Ex. L7)).

{a) If H is an ample divisor on X, and d € Z, show that the set of effective divisor

D with D.H = d, modulo numerical equivalence. is a finite set. [Hini: Us?

the adjunction formula, the fact that p, of an irreducible curve is =0, and the

fact that the intersection pairing is negative definite on H* in Num X

T

— s

WLOG assume that H is a very ample hyperplane of deg (H) = 1.

For D.H = 0 this follows from nakai moishezon.

Note that any such D can only have finitely many components not intersecting H since if P;.H = 0, then
P;.P; < 0 and with each additional such component, the genus, 29 —2 = C.C' + C.K > —2 will decrease.

On the other hand, if we can choose infinitely many components which each have different numerical
equivalence class, then Num X will not be finitely generated.

Thus we are choosing D from a finite set of a finite number of components.

5.1.21 b.xg

(b) Now let C be a curve of genus g = 2, and use {a) to show that the group TI
automorphisms of C is finite, as follows. Given an automorphism a of f'._] L
I'c X = C x C beits graph. First show thatif ' = A, then ' = 4. us! £
the fact that 42 < 0,since g = 2(Ex. 1.6). Then use (a). Cf.{IV. Ex. 2.5).

If o € Aut (C) , and let I be its graph.
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Doing the hint by contrapositive, thm V.1.4, gives I' # I" which implies I""A > 0.
Then I'? < 0 implies I'.A # A% and thus I' £ A .

Asinexc 6.1, [? = A2 <0.

Thus two graphs of an automorphism are not numerically equivalent.

Let H =1+ m from exc V.1.9.b, then I'H = 2 for a graph of an automorphism I" .
Now use (a).

5.1.22 V.1.12 x g Very Ample not numerically equiv

1.12. If D is an ample divisor on the surface X, and D' = D, then D'|is also alm]:ﬂf:
Give an example to show, however, that if D is very ample, D' nged not be ver
ample. -

First we examine a curve. Let C a curve with p, > 2. Let D a divisor of degree 2g. Recall from thm
IV.3.4 that D is very ample iff for any two points, h° (D — P — Q) = h° (D) — 2 . If D has degree 2g, then
r.r. gives

(D) —h’(Kg—D)=29g+1—g=g+1.

RP(D—-—P—-Q)—h (Kc—D+P+Q)=29—-2)+1—g=g—1.

So this holds when Ko — D + P + () has nonpositive degree, in other words, when D is not of the form
Ke+ P+ Q.

Since D’s looking like K¢ + P + Q) are parametrized by the set of P, () which is a two dimensional proper
subset of the possible divisors D, then degree is not determined by numerical equivalence on a curve.

Case of a Surface

Consider a decomposable ruled surface X over a curve with p, (C) > 2, let H = |Cy + bf| a linear system
on X. By Fuentes-Pedreira thm 3.9, |H| is very ample iff b and b + ¢ are very ample. By the above, we know
that we may find b of degree 2p, which is very ample, and b of degree 2p, which is not very ample. But
numerical equivalence is only determined by the coefficient on Cj and the degree of the divisor by thm V.2.3.

5.2 V.2 Ruled Surfaces
521 V.2l1xg

2.1. If X isabirationally ruled surface, show that the curve C, such that X is birationally
equivalent to C x P!, is unique (up to isomorphism).
Suppose that Cp x P! =2 X =~ () x PL.
But two curves which are birational are isomorphic.

(since any isomorphism of open sets extends to an isomorphism of the whole curve by the valuative
criterions).

5.2.2 V.2.2x

1 .
2.2. Let X be the ruled surface P(£) over a curve C. Show that & is decomposaple if
and only if there exist two sections C.C" of X suchthat O m 7 = 7.

Marumaye, Remark 1.20
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5.2.3 V.23 x

2.3. (a) If & is a locally free sheaf of rank r on a (nonsingular) curve C, then there 1s a
sequence
0=&,S & S...C& =&

of subsheaves such that £,/&,_ | i1s an invertible sheal for each i = 1.....r. We
say that & is a successive extension of invertible sheaves. [ Hint: Use (11, Ex. 8.2).]

Miyanishi, Algebraic Geometry Lemma 12.1

5.2.4 x g tangent sheaf not extension of invertibles

(b) Show that this is false for varieties of dimension = 2. In particular, the sheaf of
differentials  on P? is not an extension of invertible sheaves.

Suppose that the tangent bundle on P? is an extension of line bundles.
We have 0 — Ox (dy) = Fp2 — Ox (d2) — 0.

Let H a hyperplane.

Then ¢ (%2) = (1 + le) (1 + dgH)

By the euler exact sequence

00— Op2 — Op2 (1)> = Fp2 — 0

¢(Fp2) =c (O (1)°) = c(0r (1)) =

1+ 3H + 3H?

Since we cannot solve for dy, ds, this is a contradiction.

5.2.5 V.24 ax

2.4. Let C be a curve of genus g, and let X be the ruled surface C x P'. We consider
the question, for what integers s € Z does there exist a section D of X with D* = \?
First show that s is always an even integer, say s = 2r.

(a) Show that r = 0 and any r = g + | are always possible. CfL (IV, Ex. 6.8).

" - ] [ | a ] R

Let X =P (&) the ruled surface.

So D~ Cy+ (0 —¢) f € PicX corresponds to a surjection £ — L (9) — 0
We can also write as D ~ Cy + (d — e) f € NumX by 2.3 where f? =0 and Cy.f = 1.
Let’s compute D? via adjunction.

29—2=D.(D+K)=D*+D.K

D?*=2g-2-D.K.

Now K "= —2C) + (29 — 2 —¢) f by 2.11.

Plugging in to D.K is (Cy + (d—e€) f).(—=2Cy + [29 — 2 — €] .f).

By FOIL it’'s —2e + 29 —2 — e — 2 (d — €) + 0 and we are left with an e

In total: D> =2e+e+2(d—e)=2d+e.

Now we note that C' x P! is the ruled surface with the projection, by 2.0.1.
By 2.11.1, we have e = 0. And thus we have D? = 2d.

So we have that D? = 2d by the above.

Then we need D with degree d > g+ 1, on X and D with degree 0 on X.
(We can take the structure sheaf and the one given by Ex, IV.6.8)
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5.2.6 b. x

(b) Ifg = 3, show thatr = 1is not possible, and just one of the two values r = 23
is possible, depending on whether C is hyperelliptic or not.
If hyperelliptic, then has a g4 i.e. closed immersion to P! of degree 2.
Then O¢ (—1) has d = —2 and so we’re done..
If nonhyperelliptic, then by 5.5.2, it has a g3 but not a gJ
And it is obtained by projecting from a point to P! from it’s deg 4, embedding in P? .
If it has an r = 1 then that would mean we have a degree 1 map from C to P!,
Thus it’s an isomorphism. But the genii are different.

527 V.25 xg

2.5. Values of e. Let C be a curve of genus g = 1.
(a) Show that for each 0 < e < 2y — 2 there is a ruled surface X over C with
invariant e, corresponding to an indecomposable &. Cf. (2.12).

I will do this proof in a way that solves this one and one of the exercises in section 5. Now consider X an
arbitrary indecomposable with invariant eg. Let Cy with C3 = —ej the minimum self-intersection curve.

Now an elementary transform X’ of a ruled surface blows up a point x, and then blows down the strict
transform, leaving the exceptional divisor as a fiber of the new surface (see ex V.5.7.1).

Using general rules of monoidal transformations in V.3, we find that if C, D € X, are nCy+af, mCy+bf
, and C’", D' are their elementary transformed curves, then C".D’ = C.D +nm+n-mult, (D) —m-mult, (C).
Thus if m,n =1, then forz € CN D, C".D'=C.D — 1, and for x ¢ C N D we have C".D' = C.D + 1.

Note that Cj the elementary transform of Cy , Cf is the new minimum self-intersection curve. For if
x € Cy , and D' is another one on X’ then D> > D? — 1> X2 —1= X} .

Thus if z € Cy , then we can obtain a new ruled surface with e; = ey + 1 . On the other hand, taking
the reverse transformation, we can lower the invariant . Thus starting with ey I can arbitrarily lower or raise
the invariant. Thus going high enough, I get to a decomposable ruled surface. By Fuentes, Pedreira 4.6, if
X =P (&) , A’ =~ Ox (¢), then the new surface correpsonds to &), A?&] ~ O¢ (¢ — P) where z lives in the
fiber over P. Now subtracting enough points we can get to X x P! corresponding to P (O¢ @ O¢) (example
V.2.11.1). Thus we can go from any X to one with high invariant which is decomposable, and then back to
X x P! using a finite number of elementary transformations. Thus gives the exercise in V.5 that I mentioned.

Finally, suppose X is arbitrary decomposable with two sections Cy, C; . Then if z ¢ X, , 2 ¢ X; and P is
a base point of —e, then X' is indecomposable with ¢/ = e — 1. This will get us all invariants for this problem
with the help of thm V.2.12. This is F,P thm 4.12.4.

5.2.8 b. x

- . S — —
(b) Lete < 0, let D be any divisor of degreed = —e,andlet e H'(#(—D)ibea
nonzero element defining an extension

=M= & = (D)= 10

Let H = |D + K| be the sublinear system of codimension | defined by kgr ¢,
where & is considered as a linear functional on HY (D + K)). For I-mj.
|ID + K — E| + E. Show that & is normalized if and only if for each E as
above, Ly & H. CI. proof of (2.15).
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I Follow thm IV.2.15. If & is normalized, then H° (& ® .#) =0 so the map v: H* (¥ (D+ K — E)) —
H' (¥ (—E)) must be injective. On the other hand, let £ € H'(Z (—D)) be the element defining the
extension &. Then we have a commutative diagram, writing £ (D + K — E) as .Z (),

H® (O¢) —=H' (£ (- D))

| 3

HY(Z (s) —=H' (£ (-E))

where 6 (1) = &, a(1) = t, a nonzero section defining the divisor S, and § is induced from the map
Oc — £ (8S) corresponding to t. Now £ is dual to the map 3 : H°(Z (E)) — H°(Z (D + K)) also
induced by ¢. The image of any nonzero element of H° (% (E)) by ' is a section of H(Z (D + K))
corresponding to the effective divisor £+ S € |D + K|. By varying E and S, we get every divisor in linear
system |D + K|, therefore image of 3’ as E varies fills up whole H° (% (D + K)). So if Ly C |D + K|, then
D+ K —-E|+EC|D+ K|

On the other hand, E+S = (D+ K — E)+ E.

So suppose to the contrary, that there exists ' such that Ly C H, where H is the kernel. In this case,
B (&) = 0 contradicting injectivity of -, so & is not normalized. Thus we have shown the contrapositive of &
is normalized = for every such E, Ly ¢ H. So in particular, we have shown that & normalized = for
every such E, then Lgy ¢ H.

On the other hand suppose & is not normalized. Thus there is & with H° (& ® £ (—F)) # 0. Thus the
map v : H* (£ (D+ K — E)) - H' (£ (—F)) is not injective and therefore we can find Lr C ker (£) by
using commutativity of the above diagram.

5.2.9 c. x
AUV, Lp % . O ProuT U2 rar
ic) Now show that if —g < e < 0, there exists a ruled surface X over C with
invariant e. [Hinr: For any given D in (b), show that a suitable £ exists, using
an argument similar to the proof of (11, 8.18).]

By proof of (a), I only need to find one with invariant —g. Thus I need to find a ruled surface with C? = g.
This is given by 3.13 in Maruyama.

5.2.10 d. x

a4 maa pmassssaass

(d) For g = 2. show that e = —2 is also necessary for the existence of X.
Note. Tt has been shown that ¢ = —g for any ruléd surface (Nagata [8]).

By Theorem 1 in Nagata “Self-intersection number...”

5.2.11 V.2.6 x g Grothendieck’s Theorem

2.6. Show that every locally free sheaf of finite rank on P! is isomorphic to a direct
sum of invertible sheaves. | Hinr: Choose a subinvertible sheaf of maximal degree.
and use induction on the rank. |

(Following Potier) Given a base case of rank 1 so it’s already invertible, assume locally free sheaves of

rank 7 — 1 all split on P!. By thm II1.8.8.c and Serre duality, we can find n > 0 such that & (—n) has
no sections. If i is the largest integer where & (—i) admits a section, then after twisting, we get an s.e.s.
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0—0()— & —.F — 0, where % has rank r — 1. Then .Z =~ @;0 (j)" by induction, with j < for r; # 0
or else & (—i — 1) has a nonzero section. But then H' (X, Zom (Z#,0 (i))) = 0 so the sequence splits by
Weibel 10.1 and exc IIL.6.1.

5.2.12 V.2.7x

2,7. On the elliptic ruled surface X of (2.11.6), show that the sections (', with C:=1
form a one-dimensional algebraic family, parametrized by the points of the base
curve C, and that no two are linearly equivalent.

By 2.11.6, ¢ = —1.

Thus by 2.12.a, £ must be indecomposable. (by 2.11.6, locally free, rank 2)

By 2.15, there is exactly one ruled surface over xC' for this value of e.

Now according to the defniitions 2.9, sections correspond to &€ — L (0) — 0 and by 2.15, 9 has degree 1
and the exact sequence is 0 - O — & — L (P) — 0 for some point P € C.

By 2.16, there is a natural 1-1 correspondence between set of isomorphism classes of indecomposable
locally free sheaves of rank 2 and degree 1 on elliptic curve C and set of points of C.

Now suppose that € 2 " . Then the two exact sequences correspond to different points £ (P) and £ (Q)
where P # () .

Now for £ we have C2 = —e = — (—1) = 1 if we use the notation 2.8.1 on the exact sequence & — L (Q) —
0 and similarly, if we use the notation on the exact sequence & — £ (Q) — 0 (maybe we can say it’s C{ in
this case).

Suppose that Cy ~ Cy + (P — Q) f. Then Pf ~ Qf so L (P) ~ L(Q) but then P ~ Q.

Note that on an elliptic curve we have the following theorem:

“If £ is an elliptic curve the map E — Div® (E) /Prin (E) defined by P — [P — 0] is a bijection” (brackets
denote the equivalence class)

so this would mean P and () are the same point.

5.2.13 V.2.8.a x g decomposable is never stable

. | .
2.8. A locally free sheal & on a curve C is said to be stable if for every quot’ent locally
free sheal f — F — 0, #F # 4, F # 0, we have

(deg # )/rank # = (deg & )/rank &.

Replacing = by = defines semistable.

L {a) A decomnposahle & is never stable
A decomposable is a direct sum of two invertible sheaves.
Claim: & stable = every non-zero morphism of & to itself is an isomorphism.
Given this, then clearly f: 9 & % - 9 @ .F — f =idy ® 04 is clearly not an iso.
Proof of claim.
Factor p: & > & asp: & —im p — &.
If im ¢ # &, then by stability, %9&) « deglime) - deg(d) . radiction.

7 7 rk(&) _rk(imep) rk(&)
Thus im ¢ = ¢ so the kernel is 0 since it’s locally free.

5.2.14 b.xg

(b) If & has rank 2 and is normalized, then & is stable (respectively, semistable) if
and only if deg & = 0 (respectively, =0).
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First note that if & is (semi) stable of (negative) non-positive degree , then & has no sections. For if &
has a section, then O¢ C & so deg (&) (>) > 0, contradiction to (semi)-stability. Since & is normalized, it
has global sections, and thus by contrapositive we have the if direction.

Now suppose & has positive degree and is rank 2 normalized. Since & is rank 2, we need for % C &, that
deg (F) < 3deg (&), since at any rate rk (F) < 2. If & is decomposable, then by thm V.2.12(a), and the
normalized assumption, and thm V.2.8 degree of .% would be < 0 so we have the inequality.

Assume & is indecomposable of rank r, degree d. By exc V.2.6, we may therefore assume p, (C') > 0.
Assume to the contrary that & is not stable. Thus there is .# C & with deg (#) > 3deg (&) > 0. But then
as there is a map .% — &, & ® .%" has a section, and .Z is invertible and deg .%" < 0 so by the normalized
assumption h' (& @ .FV) = 0 so actually it should have no sections.

To discern between semistable and stable in this direction, use 4.16, Teixido, vector bundles: An indecom-
posable of degree zero is semistable but not stable.

5.2.15 c. xg

(¢) Show that the indecomposable locally free sheaves & of rank 2 that are{not
semistable are classified, up to isomorphism, by giving (1) an jﬂngLt' 0 <
2g — 2.(2)an element # € Pic C of degree —¢, and (3)a nonzero ¢ € H iz"' 3

dod e icnac] wues ko o memmaens conlor v ibimle
ul._-"\_-l (=1 I_I.Il' L= T oac L —n s pli = =y =y lJll_l.l.l.Ir '

Let & non-semistable.

Claim: The degrees of coherent subsheaves of .% are bounded above.

On P!, this is clear by exc V.2.6. Otherwise, let f : X — P; with f*Op (1) = Ox (1) be finite. The
pushforward of any subsheaf & of .7 is a subsheaf of f..# . By Leray, exc II1.8.1, x (f.¥) = x(¥¢) and
since the euler characteristic is additive in s.e.s., we find the x (¥¢) is bounded. Since degree is deg (¥) =
X(¥)—1k(¥) - x(Oc¢) , then the degrees are bounded above.

Claim: & has an increasing filtration by 0 C %, C -+ C %, = .% where (a) .%;/.%;_1 is semi-stable and
(b) p(Fi) Ficr) < u(Finr/ Fi) -

If .7 is semi-stable then this is clear. Else, by the first claim, we can find .#; C .% with maximal rank
among those of maximal slope. By maximality, .#; is semi-stable. Since the quotient is locally free we can
repeat. Note that (b) follows since u (¥¢) < u (%) for ¢ C % /.7 . For the uniqueness of this filtration, see
prop 5.4.2, Potier.

Now consider the maximal slope subsheaf .#; in the filtration, we have a nontrivial extension 0 — .7, —
& — £ — 0. Asin thm V.2.12, this corresponds to nonzero ¢ € Ext' (¥, Ox) ~ H'(C, %) with
—deg £ < 2g — 2. Since & is non-semistable and .%; is maximal slope, then deg .%#; > 0 . Since necessarily
deg £ + deg.#1 = deg&, we must have —deg £ > 0. Since the filtration was unique we have this up to
isomorphism.

5.2.16 V.2.9 x g Curves on Quadric Cone

2.9. Let Y be a nonsingular curve on a quadric cone X, in P*. Show that either } Is @
complete intersection of X, with a surface of degree ',, 1, in which case dLE Y =
2a, glY) = (a — )%, or, deg Y is odd, say 2a + 1, and g(Y) = ¢* — «. Cf.

(V. 6.4.1). |jnmr: Use (2.11.4).]

So if it’s a complete intersection, then by exc I11.8.4, deg = 2a, and g = %Q-a (a+2—-4)+1=a(a—2)+1 =
2 2
a*—2a+1=(a—1)".
On the other hand, we can split the two cases into curves intersecting the vertex and not. geometrically
this corresponds to some multiplicity of the conic section together with the line. Note the line has multiplicity
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1 since it’s nonsingular and it’s going through the vertex. (else too many tangent directions)

Using what we know of ruled surfaces, a divisor D on the cone will be some multiple of the section p +
some multiple of the ruling q. A hyperplane intersecting Y through the vertex will hit ¢ once and p twice and
using exc V.1.1, we see the degree is 2a + 1 some a.

Y

Geometrically considering the number of intersections of a plane passing through the vertex (this gives the
line) and via exc V.1.1 we see that the degree is 2a + 1 since this is the number of intersections.

To compute the genus, we blow up the point on the cone via V.2.11.4 achieving a ruled surface X over
the conic, with e = —d. In particular, K = —2Cy — 4f where Cj is the section of the conic. (this is via
V.2.11). Thus the hyperplane section on the cone lifts to C; = Cy + 2f. In particular,

C}=Ci+4=2.

Ci.f=(Co+2f).f =1

Co.C1 =Co (Co+2f)=—-2+2=0

Our original curve which was in the form aC' + f , therefore lifts to aC; + f. Now we attempt to compute
genus using adjunction.

expand (3 - (a-C1+ f)-(a-Ci+ f—=2-Co—4-f)+1) =

3 Craf—Cof+ S —CyCra+1
This gives —a — 1 + a* + 1 = a® — a which is what we wanted.

5.2.17 V.2.10 x

2.10. For any n > ¢ = 0, let X be the rational scroll of digree d = 2n — e in P47
givenn by (2.19). If n = 2¢ — 2, show that X contains|a nonsingular curve Y of

— s =W winuhms e cove nritnsenrsedding. Conclude that for
every g = 4, there exists a nonhyperelliptic curve of genus g which has a g}.

CL (1V, §5).

See example 2.10 in Kollar’s Complex Algebraic Geometry.
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5.2.18 V.2.11 x

2.11, Let X be a ruled surface over the curve C, defined by a normalized bundle &,
and let e be the divisor on C for which #(e) = ffr':-’ (2.8.1). Let bbeanydivisor on
C.
(a) 17 b and |b + ¢| have no base points, and if b 1s nonspecial, then there is a
section D ~ C, + bf, and |D| has no base points.
Claim: If b is nonspecial, then h' (Ox (Co+ bf)) = h' (O (b)) + h' (O (b + ¢)).
Proof: Consider the LES associated to 0 — Ox (—Cy) — Ox — Og, — 0 . From the picture,
R (Ox (bf)) = k' (Oc¢ (b)) and h' (Og, (Co+bf)) = h' (Ox (b+e)). Also h? on the curve vanishes and
h' (Ox (bf)) = 0 by nonspecialness. Now use exactness.
Claim: If P € C, then H = |Cy + bf| is bpf on Pf(the fiber over P) iff h° (Ox (H — Pf)) = h° (Ox (H))—
2. .
Proof: This is essentially rephrasing thm IV.3.1, using the same left exact sequence and noting that
Pf ~ P! since we're on a ruled surface.
Claim: |D| has no basepoints
Proof:Since there are effective divisors linearly equivalent to b, b + ¢ , any generic point P can’t be a base
point of both. Since b is nonspecial, b — P is nonspecial as P is not a base point of b, it being bpf. Thus by
the first claim,

h?(Ox (Co + (b= P) f)) =

ho (Oc( ))+h0 (OC (b—FQ—P)) = which by bpf is
R (Oc (b)) — 1+ h° (Oc (b+ ¢ — P)) = if P is not a basepoint of b + ¢
R (Oc¢ (b)) = 1+ h° (Oc (b +¢)) — 1 so we're done.

5.2.19 b. x

(b} Ifband b + ¢ are very ample on C, and for every point P e Cl we haveb — P
and b + ¢ — P nonspecial, then Cg, + b i5 very ampie.

Note b — P is bpf since b is very ample and using thm IV.3.1. By the first claim in (a), for arbitrary P, Q
on the curve,
1O (Ox (Co+bf — (P+Q) ) =
W (O (b—P —Q))+h(O¢(b+e¢— P —Q)) = by thm IV.3.1
hO (Oc (b)) + h° (O (b +¢)) — 4 = by the first claim in (a)
h? (OX (Co+bf)) —
Now if |Cp + bf| had a base point P, then h° (Ox (Co +bf — Pf)) > h° (Ox (Co + bf)) — 1, but then
R (Ox (Co+bf —(P+Q) f)) > h*(Ox (Co + bf)) — 3 using the first claim in (a) which is a contradiction.
Now let ¢ be the map determined by |Cy + bf| . Then ¢ is injective, for if z, y are two points on the same
ruling then by the second claim in (a) and thm IV.3.1, |Cy + bf| is very ample on the fiber and thus separates
Y .
Further, ¢ separates tangent vectors, since if x is in the fiber f over P and ¢t € T, (f), then |Cy + bf| is
very ample on f so there is a tangent vector through = meeting the fiber transversally. If ¢t ¢ T,,(f) , then
you can just take a tangent along the fiber and containing x. Thus |Cy + bf| separates tangent vectors.

5.2.20 V.2.12x

2.12. Let X be a ruled surface with invariant e over an elliptic curve (f, and let b be a
divisor on C.
(a1 :1r-ng_;= e == 1 then thers 15 a trr*j,j_m_gw_:ﬁ_—g-_b__f_swj hat | D] has no
base points
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This is Fuentes, Pedreira Prop 1.3.

5.2.21 b. x

L@lﬁ@hﬂ@&@#&%—@ﬁ—b{—l—kﬁ@p}—&m—p@rﬁ%ﬂ&]h ifdegh = ¢ + 3

Note. The case ¢ = — 1 will require special attention.

Fuentes, Predeira prop 1.4

V.2.13 x

2.13. Foreverye = —landn = e + 3, thereis an elliptic scroll of degree d = 2n — e
in P~ 1, In particular, there is an elliptic scroll of degree 5 in P*,

(Follow thm V. 2.19 slightly)

So by thm V.2.15, e = 0 or e = —1 are possible for indecomposable

by thm V.2.12, a, e > 0 are possible for decomposable.

Let D = Cy+ nf. This is ample by thm V.2.20.b, V.2.21, b.

Then using thm V.2.3, that Cy.f = 1 and f? =0, we have

D.f = (Co+nf).f=Co.f+nf?=1s0it’s an elliptic scroll.

D?* = (Cy+nf).(Cy+nf) =2n — e so image has degree 2n — e = d.

so the first part is done... Now just need to find N.

We need H° (X, L (D)) = H*(C,m.L(D))=..=H°(C,.....)

where the last term has dimension d = 2n — e. This would give N =d — 1.
H°(X,L£(D))=H°(C,m.L (D))= H’(C,Oc (n) ® Oc (n—e)) (c.f. thm IV.2.12.a, pp309, exa 3.3.3)
By riemann roche (c.f. thm pp 319, pp381), get HY (C, O¢ (n)) = n and so this dimension is 2n—1 = d—1.

V.2.14 x

2.14. Let X bearuled surlace overacurve C of genus g, with invariant e < ll|~ nd assume
that chark = p > 0and g = 2.
{a) If Y = aC, + bf 15 an irreducible curve # Cy.f, then either a = |,

bz=0or
2sa<sp-LlLhz=lacorazpb=lae+1 -y I

CAt. thm V.2.21 assume genus is > 2. 3
Let Y the normalization of Y and consider the composition of natural map Y — Y with the projection

m:Y — C. If char k =p , then

This map is degree a (mod p) so by (thm V.2.4, we have)
29 (37) — 2> a(2g —2) + degR where R is (effective ram divisor).

On other hand, p, (Y) > g (Y/) (thm TV.1.8) so

2pa (Y) — 2 > (29 — 2) by getting rid of deg R.

Futhermore, this last inequality is true in any char if g = 0, 1, since in any case, p, (V) > g.

By adjunction, we have

2. (V) —2=Y.(Y + K) .

Substituting Y == aCy + bf and K = —2Cy + (29 — 2 —e) f from (thm V.2.11), and combining with

inequality above we find that

(CLCO + bf) . ([CLCO + bf] + —200 + (29 —2— 6) f) Z « (29 — 2)

260



LHS is

a’Cg + 2abCy. f + b2 f? — 2aC2 + aCy. (29 — 2 —€) f — 2abCo.f +b(2g — 2 —¢) .f?

we use that C2 = —e, Cyp.f = 1, and f? = 0 so that the above LHS becomes:

a®(—e) + 2ab — 2a (—e) + a(2g — 2 — e) — 2ab.

In the end this becomes

ae(l1—a)+2b(a—1)> (a—a) (29 — 2).

Note that when a = a, (as is the case when 2 < a < p — 1) then we retain the inequality from V.2.21,
which is

b(a—1)> %ae (a—1). So that if p—1 > a > 2, we have b > %ae as required.

If a > p, then the term (a —a) (29 — 2) will be (—np) (29 —2) =np (1 — g).

We will have b(a — 1) > ae(a—1) + L (a — deg (7)) (1 — g)

Now we don’t know deg7r except it’s less than a. Thus (a — deg (7)) > 0.

The most that 1 (a — deg (7)) (1 — g) can be is when deg (7) = 1.

And thus we have b > %ae +1—g.

In the case a = 1, the same proof as thm V.2.21.a holds:

Y is a section, corresponding to surjective map & — £ — 0.

Since &£ is normalized, degLl > deg& .

But degl = Cy.Y by thm V.2.9, sob—e > —e and b > 0.

5.2.22 b. x

by Ifa = 0 and b = u[;_{' + [l_pHg.—- 1), 1hf:n any divisor D = aC, + bf !s
ample. On the other hand, if D is ample, thena > Oand b > Lae.

Using thm V.1.10, if D is ample, then since Nakai-Moishezon works in any characteristic, then D.f > 0
and D? = (aCy + bf)* = a>C2 + 2abCy.f = —a’e + 2ab > 0.
Thus b > %ae.

Suppose that @ > 0 and b > ia (e + (%) (g — 1)) Tae + %% (g—1).

Since g > 2, and a > 0, then b > %ae.

Then D.f = (aCy + bf).f =a > 0.

Also D? = —a’e + 2ab = 2a (b — Lae) > 0. since b — Lae > 0 and a > 0.

Also D.Cy = (aCy+bf).Co = —ae +b > —ae + tae = —3ae > 0 (since a is positive, and e < 0 in the
assumptions of the problem).

Let Y an irreducible curve # Cy, f. Then
DY = (a.Co+bf).(d'Co+Vf) =ad (—e) + ab/Cy.f +ba'Cy.f +0 =
—aad'e + ab’ + ba'.

Suppose that a’ = 1. Since Y is an irreducible curve, then by the first part of the excercise, we have that
b' >0 (in fact > 1 since Y # Cy) so using: a > 0, b > %ae and that b’ > 1, we have ab’ > 0 and thus
DY =—ae+ab +b>—ae+b> —ae+ %ae = —%ae > ( since e < 0 by assumption.

Next suppose that 2 < @’ < p — 1. By part (a) v/ > %a’e and by assumption, b > %ae.
Thus D.Y = —ad’e + ab’ + ba’ has ab’ > %aa’e and ba’ > %aea’.

In total, D.Y > —ad’e + 3ad’e + saea’ = 0.
Finally, suppose that a’ > p. By part (a), v/ > % ade+1—g. Note g > 2so (1—g)<0.
To recap, we also have a > 0, b > a ( (%) > DY = —ad'e + ab + ba'.
Thus ab’ > fad’e +a — ga and a’b>a’ale+ (g—1).

In total, D.Y > [—ad’e + Lad’e + fad’e] + [a—ga—f— (- 1)]
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The first term is 0 and the second factors to a (1 — g) (1 - %) > 0.

By Nakai-Moishezon, we are done...

V.2.15 x Funny behavior in char p

2.15. Funny behavior in characteristic p. Let C be the plane curve x7y + _L"": + 23 =0
over a field k of characteristic 3(IV, Ex. 2.4).
{a) Show that the action of the k-linear Frobenius morphism f on H'Y{C.0:) is
identically 0 (Cf. {1V, 4.21)).

By degree genus in P? is genus 3 quartic.

Let’s try and follow thm IV.4.21

Calculate H! of quartic curve in P2

The ideal sheaf is isomorphic to Op2 (—4) so we have an exact sequence:

0= Op(—4) = Op2 —» Ox — 0.

Taking cohomology, we get — H' (Op2) — H' (Ox) — H? (Op2 (—4)) — H? (Op2)

Via stacks,

we have H! (P?, Op2 (0)) = 0 and H? (P?,Op2 (0 = —1r — 1 — (—r —1))) = H* (X, Ox (—r — 1)) = 0 (since
no global sections) so we obtain H' (Ox) ~ H? (Opz (—4)).

Now H?(Op: (—4)) ~ H (Opz (1)) of dim ( 1

We compute action of frobenius using this embedding.

If F| is Frobenius morphism on P? | then F} takes Ox to Ox», where X? is subscheme of P? defined by
=0

Thus:

0— Op (—4) Op ——= Oy ——0

PR
0—— Op (—4]9) O]p Oxp 0
Namely 23 +y?2% 4 2923 = 0. (char 3) On other hand, X is closed subscheme of X? . (since f is a factor
of (f)°) so we have a commutative diagram:

)—— O]P’ (—4p) O[[D OX;D 0

-]

0——Op (—4) Op Ox 0

(we can multiply by the equation fP~! to go from the scheme f to f? and note that if we start in the thing
twisted by —4p (p is the characteristic - which is 3 ) then we will end in the thing twisted by —4 — compute
a few examples if it seems mysterious))

Now combining the cohomologies of the above two diagrams gives:

H' (X,0x) —=> H? (P2, Op (—4))

H' (X?,Ox») —= H* (P?, Op (—4p))

| -

H' (X,0x) —== H? (P?,0p (—4))
Now F* is the map H' (X,Ox) — H' (X, Ox) on the left hand column.
We can use 5.1 to get that H? (P?, Op (—4)) ~ H® (P?, Op (1)) with dim 3.

= 3 vector space...
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Since a basis for H? (P2, Op (—3)) is (zyz) "', then we must have a basis for H? (P2, Op (—4)) is (22yz) "

, (zy?2) 7", and (zyz?) " as a free Fy 1, i,% -module.

Then FY ((fQ?JZ)_I) = (2%y2) ", FY ((xygz)_l> = (zy*2) ", and Fy ((WJZQ) = (vy2?)
age in H? (Op (—4)) (bottom right of above diagram) will be (for example) fP~1 ( 2yz) P = Pl (p7by 3273,

Now fP~1is (2225 + 2xy3z —|— 2z y23 + 1022 —|— 2x3y z+af y 2) and (2%yz) " is (z 70y 3273).

We multiply these giving - gl + + i + wSzQ + yz3 +

Similarly, f*~" (zy*2)" s _6 + 3 + 5 + y222 + y4z3 + 12/?

and finally, P~ (zy22) " is 23 + ygjg + w3Z4 + 24 ;73; + z—;g

Now any monomial having a nonnegative exponent on x, y, or z is 0 , and thus each of the above expressions
is 0. Thus F* is identically 0.

! “P and the im-

5.2.23 b. x

{b) Fixa pmlrn P e C, and show that there is a nonzero £ € H'(%#( - P) ) such that
f*& =0in HYZ(-3P)).

Let H be hyperplane section. First make the bottom sequence: 0 — Ox (—1) = Ox — Oy — 0 Now top
sequence: 0 — Ox (—3) = Ox — Ogys — 0 put them together:
0— Ox (-3) Ox Ops 0

]

0——Ox (-1) Ox Oy 0

Now F*(£) = &P and it’s image in H' (C,O¢ (—1)) will be f2-£P. T can look at f? in affine coords.
Writing this out gives

subst (1,2, expand <(:c3 y+ydoz+ 23 x)2)) =y +228yt + 229% + 259% + 221y + 22, On the other
hand, H! (O¢ (—1)) has basis 3 , and any monomial having nonnegative exponent is 0. Thus the image is just
3 times coefficient of 5. So I need to determine the basis 38 of H' (C, O¢ (—1)). So since it says plane curve,
we're in P2, In the exc II11.4.7 I computed what these elements look like explicitly for a plane curve. Every
element of H' (C, O¢) can be represented by a polynomial like Y a;;z'y? with 1 <i < d and —i < j < 0. If
we twist by negative 1, then —4 <7 < —1 and ¢ < —7 < 0 which, as in exc I11.4.7 will give a zero image.

5.2.24 c¢. x

(c) Now let & be defined by £ as an extension

ﬂ—h{vt.—r;‘;—tﬁf}[f’]—'ﬂ‘

and let X' be the corresponding ruled surface over C. Show that X contains a
nonsingular curve ¥ = 3C, — 3f. such that n: ¥ — C is purely inseparable.
Show that the divisor D = 2C,, satisfies the hypotheses of (2.21b), but is not
ample.

To see the curve Y = 3C,) — 3f is inseparable is Miyanishi, Open Algebraic Surfaces, lemma 2.5.2.2. The
significance of m : Y — C is that then they will be isomorphic as abstract schemes. So Y is some section of
C' lying on the surface.

Now since we have a genus 3 and we are not in characteristic 0, we have a chance of getting a counterex-
ample to 2.21b since those hypothesis are required by 2.21b.
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What I need to find are a > 0,b > %ae where invariant e is invariant of ruled surface is < 0. Note that
the invariant is the degree of the the sheaf £ (P) (see for instance Theorem 2.15 or 2.12), so in particular,
so it’s —1 as Cf = —1. If we let a = 6,b = —6, then —6 > %(6) -6 . Clearly 2D will not be ample, since
Co. (6Cy —6f) = —6 — 6 < 0 and by Nakai moishezon.

5.2.25 V.2.16 x

2.16. Let € be a nonsingular affine curve. Show that two locally free sheaves £, of
the same rank are isomorphic if and only if their classes in the Grothendieck group
K(X)ILEx. 6.10)and (1L, Ex. 6.11) are the same. This is false for a projective curve.

So suppose they are isomorphic. £ ~ £’. Then have ses 0 - 0 - & - & - 0s0 & —-E& —0=01in
K (X). so classes in K (X) are the same. On the other hand suppose class in groth group are the same. Since
locally free, it must be M for some finitely generated projective O (X)module M. Now by Rotman 7.77
gives that if C' is a x-category, then A, B € Obj (C) have the same classes in the grothendieck group iff there
is D € Obj (C) with Ax D ~ B+ D. Now use the fact (Rotman 11.118) that stably isomorphic on dedekind
domain (such as a smooth affine curve) is equivalent to isomorphic. Note that an affine variety is a smooth
curve iff it’s a dedekind domain (for this definition of a dedekind domain see Bruning coherent sheaves on an
elliptic curve).

5.2.26 V.2.17* (starred)

*2.17. (a) Let @:P! = P; be the 3-uple embedding (I, Ex. 2.12). Let .# be the sheaf of
ideals of the twisted cubic curve C which is the image of ¢. Then #/#%1sa
locally free sheaf of rank 2 on C, so ¢*(.#/#*} is a locally free sheaf df rank 2 on

P'. By(2.14), therefore, o*(.#/F 3y = @b @ €(m)forsome Im € Z. Determine

| and m.

(b) Repeat part (a} for the embedding @ :P!' — P? given by x, = t*, x;, = r*u.
vy = tid, x; = u', whose image is a nonsingular rational quartic curve.
[Answer:Ifcharh # 2, then! = m = —7:ifchark = 2,thenl.m = —6, -8

starred

5.3 V.3 Monoidal Transformations
53.1 V3lxg

3.1. Let X be a nonsingular projective variety of any dimension, let ¥ be g nonsingular
subvariety, and let m: X — X be obtained by blowing up ¥. Show that p(X) =
Pl X).

This follows from 3.4, which says that H’ <X> ~ H'(X) and the fact that p, is calculated from the Euler
characteristic.
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5.3.2 V.3.2xg

3.2. Let C and D be curves on a surface X, meeting at a point P. Let m: X — X be
the monoidal transformation with center P. Show that C.0 = C.D — pp(C) - up( D).
Conclude that C.D = ) jup(C) - pp(D), where the sum is talken over all intersection
points of C and D, including infinitely near intersection pﬂ}ms.

We have the following rules of intersection theory, via 3.2:

o D.m*C =C.D
ExC =0
and F? = —1.

Usnig thm V.3.6, 7*C =C +rE so C = 7*C —rE and D = 7*D — ' E.
Then C.D = (7*C — rE) . (7*D — 1'E) =

7 Ca*D —r'Ex*C — (rE) . (n*D) +r'E.E =

C.D — rr'. So that’s the first part. The second part follows trivially.

53.3 V.33xg

3.3, Let n: X — X be a monoidal transformation, and let D be a very ample divisor
on X. Show that 2n*D — E is ample on X. [Hinr: Use a suitable generalization
of (I, Ex. 7.5) to curves in P |

Ok well 1.7.5, says that an irreducible curve Y of degree d > 1 in P? cannot have a point of multiplicity
> d . This generalizes simply to P".

Now since D is very ample, then for any other curve C' on X, then D.C is the degree of C. (via V.1.2)

Then by V.3.2, anything in PicX may be written as 7*C — rE.

Now we compute

(27*D — F) (7*C —rE) =27*D.C — 27*D.E — E.n*C + rE>.

The middle terms drop out by V.3.2, and it becomes

2deg (C') — r since E? = —1 by V.3.1.

But then we know that deg (C) > r and so we have

(2r*D — E) (7*C —rE) >0 .

Further, note that
(27*D — E).(21*D — E) = 47*D? + E? > 0 since D* =1,2, ...

5.3.4 V.3.4 x Multiplicity of local ring

3.4. Muliiplicity of a Local Ring. (See Nagaty [7, Ch 11, §23] or Zariski-Samuel
[1. vol 2, Ch VIII. §10].) Let 4 be a noeth¢rian local ring with maximal ideal m.
For any [ = 0,let yil) = length(A4/m'). We gall  the Hilbert—Samue! function of A.
{a) Show that there is a polynomial P,(z)le Q[=] such that P (1) = y(I) for all
| 5> 0. This is the Hilbert—Samuel polyndmial of A. [Hint: Consider the graded
ring gr,, A = @ ., mym’* ! and apply (1, 7.5).]

Note that gr,, A = @g>om?/m?™! is a graded ring.

Now ¢ (1) = length (A/m') in the problem, and in 1.7, we have

oar (1) = dimy M; where M is the ['" graded part.

So I need to show that M; = A/ml so note M = ®yezr My

so then in our case, M; = m?/m*™ so I wts that length (A/m') = dim (m'~!/m').
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so ok we know that a sop x1, ..., z, for m = ) Ax; exists El, so zariski samule, vol 2, vhap VIII, $10 gives
us that

grmA = Bgzom?/m¥* ~ 4 (X X,] in n variables. (note A/m is a field )]

Thus in our case m'~! /m’ becomes dim (2 [Xi,..., X,]) /m'.

Since this is a vector space, length and dimension coincide.

Thus must show that length (2 [Xy, ..., X,]) /m' = length (A/m')

But from the isomorphism, we have that A ~ ﬁ (X1, ..., X, and so

length (4 [X1, ..., X,,] /mll% = length (A/m').

Now applying thm 1.7.5, | we have that there is P4 (z) € Q[z] such that P4 (1) = ¢ (1) =1 (1) for I > 0.

5.3.5 b. x

L T T T

(b} Show that deg P, = dim A.

6.1.1 Definition

Let R be a Noetherian local ring with maximal ideal M, and let M be a finitely generated

R-module of dimension n. A system of parameters for M is a set {a,.... ,a,} of elements

of M such that M/(a;.... ,a,)M has finite length. The finiteness of the Chevalley
3 dimension (see (5.3.2) and (5.3.3) guarantees the existence of such a system.

http://www.math.uiuc.edu/ “r-ash/ComAlg/ComAlg6.pdf

BAELAE l-iFil\-l el i

Tueorem 23.  Let A be a local ring, {x,,- - -, x;} a system of para-
d

meters of A, q the ideal > Ax;. Then e(o)<{(Ala). If e(a)=£(A4]q),
i=1

then the associated graded ring Go(A)= > o~ q**! is isomorphic to the
=0
polynomial ring B=(Afo) X, -+, X,]; and conversely.

4
zariski samule, vol 2, vhap VIII, $10

Definition. If p is a minimal prime of a graded S-module M, we define the
multiplicity of M at p, denoted p (M), to be the length of M, over §,.

Now we can define the Hilbert polynomial of a graded module M over the
polynomial ring § = K[xa.....x,]. First, we define the Hilherr function
ipy OF M, given by

pyll) = dim, M,
for each | e Z.

Theorem 7.5, (Hilbert-Serre), Let M be a finitely generated graded 8§ =
K[ xgy ..o, J-module. Then there is a unigue polynomial Pylz) e Q[ -]
such that @yl = Pyl for all 1= 0. Furthermore, deg Pyl2) =
dim Z{Ann M), where £ denotes the zero set in P* of a homogenegons

5 ideal (cf, $2).
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This is given in Zariski samuel vol 2, ch VIII, $10. [

alternatively, note by 1.7.5, and part (a), we must have

degPy = dim Z (Ann % (X1, .. Xn]) where Z denotes the zero set in P of a homogeneous ideal.

Following chapter 9 Zariski-Samuel, we have that dimension of A is the length of the system of parameters,
so it’s n.

Since we are trying to annihilate a vector space, then the annihilator is just 0.

So Z (0) = P™ which will just have dimension n.

5.3.6 c. x

(¢c) Let n = dim A. Then we define the multiplicity of A, denoted u(A), to be m_!b'
(leading coefficient of P,). If P is a point on a noetherian scheme X, we defin¢
the multiplicity of Pon X | pp{ X'), to be p(@p x).

™ e

( he means n! x the leading coefficient of Py ).
he is not actually asking any question here...

5.3.7 d. x

T ~ — ey

b = L]
(d) Show that for a point P on a curve C on a surface X, this definmi
coincides with the one in the text just before (3.5.2).

c.f. V.3.6

Assume that C' has multiplicity r at P.

Let m be sheaf of ideals of P on X.

x,y generate m in some neighborhood U of P, we may assume affine, say U = Spec A.
Let f (x,y) a local equation for C' on U (shrinking U if necesarry).

By definition of multiplicity in chapter, f € m" , f ¢ m" 1.

Now note the local ring is being given by || O¢ ), = {g € % 1g(p) # O}.

Thus length (Oc,p/m) = length (Oc,p/ (x,y)) is small,
length (Oc,p/m?) = length (Oc,/ (z, y)2) is a little bigger

ion of upC)

length (Oc,/m") is a little bigger but now note that since f ¢ m™ then further quotienting doesn’t
change the length.

In particular, length (Ocp/m") = lim, o (Ocp/m") = lim, o Po,, (1)

(Note that

Now we know the Hilbert-Samuel function looks like

Po,, (1) = apl™ + apn 10" + ... 4 ao.

§ 10. Theory of multiplicities. Let 4 be a semi-local ring of
dimension d, and o an open ideal of 4, admitting the intersection m of
the maximal ideals p; of A as radical. Then the characteristic poly-
nomial Py(n) is of degree d, by the definition of the dimension of 4
(§9). Its leading term has the form

e(and/d!,
where e{g) is an integer (cf. VII, § 12). The integer (o) is called the
multiplicity of the ideal a. 'The integer e(m) is called the multiplicity
6 of the semi-local ring A. '
"(think gathmanns local ring def)
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. . . n . length(O¢ p/m! . . .
So the first coefficient is a,, = lzmHooa"“{++““ = lzml%m# where n is the dimension.

So for a curve (n =1 ), I want to show that length (Oc,/m') — | x L + constant.

So we’ll divide out the [, and then multiply through the n! (for the dimension —it’s 1! = 1 in this case),
and we just are left with showing that

length (Oc,/m!) — 1 x 1 + constant.

To compute the length this is how I will argue:
k[z,y] / (m™ y") will be equidimensional. Here is the picture:

(%,y)™n
_— y/\r

So we are localizing at the green point, and we are still in the fuzzy area with blue and red. Thus localizing
won’t change the length (This is called the equidimensional case).

Since localizing commutes with quotients, we have that length length ([Ly}n} ) = length (%)
T | @)™
klz,y]

Thus I just have to compute the length of T

we’ll here’s an example:

M =klz,y]/(y" — %) with m = (z,y) has dim (M) =1
deg (M/m) =1,

deg (M/m?) =3,

up to it increases by 1 each time.

deg (M/m") = 28

Now it stabilizes, adding 7 each time

deg (M/m?) =35 ,

deg (M/m?®) = 42

Now note that 35 + 21 = 56 which /8 is an integer

42 4 21 = 63 which /9 is an integer...

so length (M/m™) = a; X n+ ag

so assuming ag = —21, then a; X n must be 7 x n.

which makes sense, since it’s the degree we want...

So I just have to show that the length stabilizes correctly
Le. length (M/[(y"+...)+ (z,y)"]) =r xn+ ...

Ok, here’s the idea: Note that pu, (C) as defined by the problem (as the n! times the coefficient of the

leading term of samuel, hilbert thing can also be written as
. length(M/qu)
nlimy_yoo——57—>

- )
To see this, let ¢,k™ + ... + ¢y be the Hilbert Poly of M.
let’s maybe try and figure out ag 7

r=1, -1
r=2,0,
r=3,3
for r =4 it’'s —6,
r=>51it’s —10

for r =6 1it’'s —15

277



for r =71it’'s —21

so it goes up 1 each time... Note that arithmetic sum is 5,, = M so the first term is —1, the last
term we add is like — (r — 1) in total, In our case, we take @ which coicidentally is ( g )

so maybe we have md + (n + 1)

So basically I need to prove that length (W) =1rn — < ; ) forn>r.
M/ (y", (z,y)")

ideal on right is gen by 2", 2" 1y, ..., ac"_(r_l)y’“_ plus redundant terms.

Thus a basis: 1and y,9%,y3,...,y" ', and z, 22, ..., 2" L and yz, y2?, ..,y2" 2 and ... up toy" ‘o, y" 122, ..,y 'x
In total it’s 1+ (r— 1)+ (n—1) + ( 2) ( 3)+...+(n—r).
Thisisr+(n—1)+(n—2)+ (n )

This is (n—0)+(n—1)+(n—2) (n—(r—1))

Thus it’s >/ —gn — Y071 j

—r
+
Thisisnxr—w:nr—< )

Since nr is the linear term, we are done.

5.3.8 e. x

W'TWW'““WW'__""_"_-" __________ __| - o
(e) If Y is a variety of degree d in P". show that the verex of the cone over Y isa
point of multiplicity 4.

See Mumford, Algebraic Geometry 1, Proposition 5.11

5.3.9 V.3.5 x g hyperelliptic every genus

35 Leta,,....a,.r =5 be diatinl.l elements of k. and let C be the curve in P? gjv:fll
by the (affine) tqudlmn 2 = [Ti=1 (x = @,). Show that the point P at infinity
on the y-axis is a singular point. Compute d, and g(Y), where Y is the norfnaliza-
tion of ¥, Show in this way that one obtains hyperelliptic curves of every genus
g =2

Singular at infinity on y -axis

So this is referring to the point co = (0 : 1 : 0) on projective space P (z,y,2) = P? .
(Since it’s on y-axis, then = 0 and infinity means z = 0)

The projective closure of C'is 2" 2y = 2" + 2" 2> a; + ... + 2" [] a;

The jacobian at oo is ((ra™' + ..+ 271 2yz"2 (r—2)2"y* + 3 (2,¥) ) e
which is 0. Thus it’s a singular point.

Compute 0p

Now at oo = (0:1:0) we subs in 1 for y and the equation becomes:

2=+ e+ 2 ] as

Then r — 2 is the multiplicity since it’s lowest order term (i.e. f € m"~2 not in m
maximal ideal of the point oco.

=1 where m is the

every genus ... + genus.

Now note that by projecting to the x-coordinate, then the equation gives a cover of P! of degree 2.

By Riemann-Hurwitz, formula (IV.2) such a cover will have 2g + 2 branch points. The branch points are
places where there is one value of x for the value of y, namely the roots x;.
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So choosing n = 2g + 2, we obtain hyperelliptic curves of any genus we desire.

5.3.10 V.3.6 x

3.6. Show that analytically isomorphic curve singularities (I, 5.6.1) are equivalent in
the sense of (3.9.4), but not conversely.

See Wall’s, Singular Points of Plane Curves where he proves that Analytically isomorphic =— same
puiseux characteristic = equivalence in the sense of 3.9.4. Furthermore he shows that two curves are
equisingular iff they have the same puiseux characteristic. However the example is then given of the two
curves C; : 43 + 27 = 0 and Cy : 43 + 2%y + 27 = 0 which are equisingular but not analytically isomorphic.

5.3.11 V.3.7x

3.7. For each of the following singularities at (0,0) in the plane, give an embedded
resolution, compute d,, and decide which ones are equivalent.
(a) x* + " =0.

Loy —14——[5 =)

(ch x* +y* + " =0

S —

x>+ v+ =0

fe) x* + xi* +p* =0

The following code will compute an embedded resolution of singularities in Singular, find strict transforms,
and exceptionals

LIB"resolve.lib";
LIB"reszeta .lib";
LIB"resgraph.lib ";
//that loaded some libraries

ring R=0, (x,y), dp; //define the ring Q[x,y]
ideal I=x"2—y~3; //define a cusp for example
list L=resolve (I, 1);

list coll=collectDiv (L);

For example, let’s do a resolution of 23 + 2° =0 .

- Overview of Current Chart -H
Current number of final charts: 0

Total number of charts currently in chart—tree: 1

Index of the current chart in chart—tree: 1

e e I |
LI L L e O D I

——— Ambient Space:
_[1]=0

——— Ideal of Variety:
1] =y5+x3

——— Exceptional Divisors:
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empty list

——— Images of variables of original ring:

Upcoming Center

e Overview of Current Chart 4

Current number of final charts: 0
Total number of charts currently in chart—tree: 2

Index of the current chart in chart—tree: 2
I e e e e e e e e e o I |

——— Ambient Space:
_[1]=0

——— Ideal of Variety:
1=y (1) 734x(2) "2

——— Exceptional Divisors:
[1]:
_[1]=x(2)

—— Images of variables of original ring:
_[1]=x(2)xy (1)
_[2]=x(2)

Upcoming Center

_[H=y (1)
_[2]=x(2)

A - Overview of Current Chart -
Current number of final charts: 0
Total number of charts currently in chart—tree: 3

Index of the current chart in chart—tree: 3
I O O e e e e e e ey B

——— Ambient Space:
_[1]=0

——— Ideal of Variety:
=y (1) 2+x(2)

——— Exceptional Divisors:
[1]:
_[1]=y (1)
[2]:
_[1]=x(2)
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——— Images of variables of original ring:
_[H=x(2) "2y (1)
_[2]=x(2)*y (1)

Upcoming Center
1=y (1)
_[2]=x(2)

A Overview of Current Chart -

Current number of final charts: 0
Total number of charts currently in chart—tree: 5

Index of the current chart in chart—tree: 4
I O e e e o e e e e Iy B

I L L L e e e O O O R R

——— Ambient Space:
_[1]=0

—— Ideal of Variety:
[ =x(2)+y (1)

——— Exceptional Divisors:
[1]:
_[1]=1
[2]:
_[1]=y(1)
[3]:

_[H=x(2)
——— Images of variables of original ring:

_[H=x(2) " 3%y (1) 72
_[2]=x(2)"2xy (1)

Upcoming Center

1=y (1)
_[2]=x(2)

e Overview of Current Chart A

Current number of final charts: 0
Total number of charts currently in chart—tree: 7

Index of the current chart in chart—tree: 5
I e e e e e I |

——— Ambient Space:
_[1]=0

——— Ideal of Variety:
[1]=x(1)*y(0)"2+1

——— Exceptional Divisors:

[1]:
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_[1]=y(0)
[2]:

_[1]=1
[3]:
_[1]=x(1)

——— Images of variables of original ring:
_[H=x(1) "3y (0)
_[2]=x(1) " 2%y (0)

Upcoming Center
1= x(1) v (0) 241

A R Overview of Current Chart -

Current number of final charts: 0
Total number of charts currently in chart—tree: 7
Index of the current chart in chart—tree: 6

——— Ambient Space:
_[1]=0

—— Ideal of Variety:
_[1]=y(1)+1

——— Exceptional Divisors:
[1]:
-1
[2]:
_[1]=1
[3]:
_[1]=y(1)
[4]:

_[1]=x(2)
——— Images of variables of original ring:

_[H=x(2) "5y (1)"3
_[2]=x(2) "3y (1) "2

Upcoming Center

]=y(1)+1

e Overview of Current Chart A

Current number of final charts: 1
Total number of charts currently in chart—tree: 7

Index of the current chart in chart—tree: 7
I e e e e e e e e e e e |

——— Ambient Space:
_[1]=0
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——— Ideal of Variety:
_[1]=y(0)+1

——— Exceptional Divisors:
[1]:
_[1]=1
[2]:
_[1]=y(0)
[3]:
_[1]=1
[4]:
_[1]=x(1)

——— Images of variables of original ring:
_[H=x(1) 5%y (0)"2
_[2]=x(1)"3xy (0)

Upcoming Center
_[1]=y(0)+1

result will be tested

the number of charts obtained: 2

result is o.k.

Now let’s compare the charts for the exceptionals from (a)
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Each row gives one chart, and each column tells which exceptional is appearing there. So for instance in
(e) above, the 1 in the second row first column means F is in the second chart. To see the multiplicity, you
have to look at

So this would seem to say that (a), (b), (d) are equivalent and (c), (e) are not equivalent to any others.
However, we should check the multiplicities of the exceptionals (a), (b), (d) to make sure they are actually
equivalent resolutions. To do this we can use the additional singular commands:

> poly f=x"3+4y"5;
> displayMultsequence (f);

> poly f=x"3+x"4+y"5;
> displayMultsequence (f);

> poly f=x"4+y"5+y 6;
> displayMultsequence (f);

This last set of commands should show that (d) is not equivalent.

5.3.12 V.3.8a,b x

3.8. Show that the following two singularities have the same multiplicity, and the
same configuration of infinitely near singular points with the same multiplicities,
hence the same dp, but are not equivalent.

(a) x* — xy* =0.
| (b x* —x3? =3 418 =0 |

Clearly these two singularities have the same multiplicity by looking at the lowest term (it’s 4).

The configuration of infinitely near singular points can be seen as in 3.7. The multiplicities are given as
in the end of 3.7.

To see they are not equivalent,

Note to compute the multiplicity sequence, we use the list L=resolve(I, 1) command as in 3.7 which gives
3 charts for (a) yet (4) for (b).
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5.4 V.4 Cubic Surface
5.4.1 V.4.1 x g P2 blown at 2 points

4.1. The linear system of conics in P? with two assigned base points P, and P, (4.1}
determines a morphism  of X' (which is P? with P, and P, blown up) to 2
nonsingular quadric surface Y in P®, and furthermore X' via ¢ is isomorphic
to Y with one point blown up.

Using the notation of the chapter, since r < 4, dim 0 = 3 by thm V.4.2.a.

9’ has no base points by thm V.4.1 and by thm I1.7.8.1, it determines a morphism 1) of X’ to P? .

Let the two blown up points be P, = (0,0,1) and P, = (0, 1,0).

The vector space V' C H (Op2 (2)) corresponding to 0 is spanned by z2, x179, ToTo, Tor; which is the space
of all conics passing through (0,0, 1) and (0,1,0) .

You can check this by looking at the defining equations of conics through some points
2?2 xy Yy xz yz 2P
v pq ¢ qr
= 0 through points (p, ¢, ) in the variables x,y, z.

Now we define ¢ : X’ — IP3 by where it sends the basis elements.

Namely, x% — 1o , and xox1 — Y1 , and zoTs —> Yo, and x1xo — Y3 .

Note that for any point in X', the image satisfies yyys = y1y2 which is the equation defining the quadric
surface @ (zw = yz ).

Thus the image of ¢ is contained in Y.

Now let 7 : @ — P? be projection from the point p = (0,0,0,1) € Q to the plane y3 = 0, i.e. 7, :
(x,y,2,t) — (z,9,2) .

Note that we have m o = Idp> and ¢ o7 = idg.

Let I' C Q x P? be the graph of .

Let p=(0,0,0,1) € Q and ¢ = (0,0,1), r = (0,1,0) € P2

We have the following definitions for the blow up of a point and subvariety from Harris:

e Blowing up P" at a point.

— Let ¢ : P — P"~! the rational map given by projection from a point p € P* and T, the graph.
The map 7 : I', — P" is the blow up of P" at p. The map 7 projects I',, isomorphically to P" away
from p, while over p the fiber is isomorphic to P*~ ! .

e For the blowing up of @ at p
— Let X C P" a quasi-projective variety and p € X any point. Let X = I, C X x P! the graph
of the projection map of X to P"~! from p. The map 7 : X — X is then called the blow-up of X
at p.

e For P? with two points blown up:

— If X C P™ is a projective variety and Y C X is a subvariety, we define the blow-up of X along
Y by taking a collection Fy, ..., F,, of homogeneous polynomials of the same degree generating an
ideal with saturation I (Y) and letting Bly (X) the graph of the rational map ¢ : X — P" given
by [FO, ceey Fn]
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Then ' = X’ is by definition the blow up of @ at p. Note that (z3, zox1, ToT2, T172) generate an ideal with
saturation the homogeneous ideal of two points I ({g,7}). Thus the graph of the rational map 1 : P* — P3
given by [23, 201, T2, T172] above is the blowing up of P? at the two points ¢,r. This is again just T

54.2 V42xg

4.2. Let ¢ be the quadratic transformation of (4.2.3), centered 4t PP, P;. If C 15
an irreducible curve of degree d in P2, with points of multiplicity r,s;,r3 at
P.P5.P,. then the strict transform C' of C by g has degree d' = 2d — ry — 1y — I'as

and has points of multiplicity d — r, —ryat Q,,d — r, —ryat J, and d —
r, — rpat@,. The curve C may have arbitrary singularities. [Hint: Use (Ex. 3.2).}

Suppose C' is defined by f (z,y,z) = 0 which is irreducible thus no z,y,z factors out. WLOG as-
sume P, = (0,0,1),P = (0,1,0),P; = (1,0,0). The strict transform under the quadratic transforma-

tion of chapter 1 (z,y,2) — (yz,xz,zy) , from the three points Py, P, P3 is then given by ¢ (x,y,z) =

f(yz,xz,xy)
"1 yTQ 2"3 °

in z,y. Then f(z,y,2) = fr, (x,y) 2" + -+ + fo_r, (2,y), Where f;(z,y) are homogeneous of degree i.
The transform satisfies f (yz, 2z, xy) = fo, (yz, 22) ()™ "™ + - + fo_r, (yz,22) since 2" gets cancelled in
g. Now g is just f(yz,zz,xy) dividing out factors of x,y,z and doing this twice gets us back to f so
since this agrees with the quadratic transform given in chapter 1, we see this is the strict transform, which
clearly has degree 2d — r; — ro — r3 . Now recall that multiplicity is the lowest degree term so looking at
g(x,y,2) = S50 fri (y, @) ad i msyd=rimrzpdora=rs - [ooking at (0,0, 1), and since this is homogeneous,
then f;(y,z)x "y "3 is the lowest degree term there of degree d — ry — 73 , similarly for the other points.

Suppose P, has multiplicity r; on C. So the terms of lowest degree in x,y have degree r;

54.3 V.43x

4.3. Let C be an irreducible curve in P*. Then there exists a finite sequence of qua-
dratic transformations, centered at suitable triples of points, so that the strict
transform C' of C has only ordinary singularities, ie., multiple points with all
distinct tangent directions (I, Ex. 5.14). Use (3.8).

See Algebraic Curves over Finite Fields by Hirschfel, Theorem 3.27

5.4.4 V.4.4 x g important?

4.4, (a) Use (4.5) to prove the following lemma on cubics: If C is an irreducible plane
cubic curve, if L is a line meeting C in points P,Q,R, and L' is a line meeting C
in points PLQ°,R’, let P” be the third intersection of the line PP’ with C, and
define Q",R" similarly. Then P",0",R" are collinear.

Well, note that 9 points determine a cubic.

Also a reducible plane cubic is either 3 lines or 1 line and a conic.

Let the blue lines be the cubic given by the three lines PP’ , Q@' and RR' in the following picture I stole
from Wikipedia:
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Now consider the cubic determined by the two lines L (P — @ — R) and L' (P — @' — R’) and the third
line L” (P" — Q").

Now use this Cayley-Bacharach theorem: If two cubics €} and C5 meet in nine points, then every cubic
that passes through eight of the nine also passes through the ninth.

This pretty much does it.

54.5 b. x

e e —— ——

(b) Let Py be an inflection point of C, and define the group operation on the set
of regular points of C by the geometric recipe “let the line PQ meet C at R, and
let PbRmeet Cat T, then P + 0 = T  asin(ll, 6.10.2) and (11, 6.11.4). Use
(a) to show that this operation is associative.

e e e 2 e

See Tate, Silverman: Rational Points. It’s in the first chapter. They even give nice pictures

5.4.6 V.4.5 x g Pascal’s Theorem

4.5. Prove Pascal’s theorem: if 4,B,C A",B",C" are any six points on a conic, then l]'JE
points P = AB"A'B, Q = AC'A'C, and R = BC'.B'C are collinear (Fig. 22).

Figure 22. Pascal’s theorem.

Consider the cubics X = AB'+ BC' + CA’ and Y = AC' + BA' + CB'.
Then X N'Y meets on the outside along the conic in 6 points, and in the inside at P, (), R. Thus in 9
points.
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Now consider F = conic+ P(Q . which is a cubic. This meets the cubics at 8 of the 9 points, so by Cayley
Bacharach, as in 4.4.a,

547 V46xg

4.6. Generalize (4.5) as follows: given 13 points P,,...,P,; in the plane, there are
three additional determined points P,,.P,s,P,4. such that all guartic curves
Through F7,....F,; also pass (NTOUEN F 4. 15.F 15 Whal nypotheses are
necessary on P,, ... P, for this to be true”?

In exc V.4.15, T prove that there is exactly one curve of degree 4 through 4 - (4 + 3) /2 = 28/2 points in
general position, where this hypothesis means that the linear system of curves through the points has the
smallest possible for any choice of that number of points. Thus 13 points determine a 1-dimensional pencil
C1 + tC5 = 0 of quartics.

For another quartic C'5 through those points but not in the pencil then C; + tC5 + sC3 = 0 is a two
dimensional family meeting the points. Thus if we fixed some additional two arbitrary points P, (), then for
some t, s there is a quartic through points 1 through 13 and P, (). But 14 points determine a quartic so this
is a contradiction.

Thus the pencil C; 4+ tCy = 0 determines all quartics through the P, ..., Pi3 . By Bezout, Cy N C5 has 3
additional points through which clearly all other quartics in the pencil must pass.

5.4.8 V.4.7x

4.7. If D is any divisor of degree d on the cubic surface (4.7.3), show that
1
gd—-1d-2 ifd = 1,2 (mod 3)
pdD) < : .
gd—Dd -2+ ‘—; ifd = 0 (mod 3).

Show furthermore that for every d > 0, this maximum is achieved by some
irreducible nonsingular curve.

If it’s not on a quadric, this is Harris / Eisenbud, Curves in Projective Spaces Theorem 3.13. Otherwise,
proceed as in example IV.5.2.2.

Claim: for d > 0 and g with \%d?‘/2 —d+1<g<id(d—3)+1, there exists a smooth connected curve
of degree d and genus g on the cubic surface.

Given this

expand (3 - (d—1) - (d —2)) = @ _

expand (3 - (d—1) - (d—2) + 2) =

expand (3 -d - (d—3) + 1) :%—g—i-l

so we have achieved the maximum

Following Hartshorne, master of arithmetic and algebraic geometry. Consider, on the cubic, the irreducible
nonsingular curve of degree d = 3a—>_ b; and genus g = % (a*> = >0 —d)+1fora > by+by+bs, b; > by >0

Define for (a, by, ...,bs) € Pic X r =a—0b; ,and o; = %r—bi fori =2,...,6sothatr € Zand o; € %Z. Thus
a= % (d+%r—2ai), bip=a—r,b = %r—ai, i=2,...,6 . Note for a,b; € Z we need a; = %r(mod 1) and
d+3r—>" a; = 0 (mod 2) . The inequalities at the end of the first paragraph become |as| < a3 < -+ < ag < ir
and —az 4+ a3 + - -+ + ag < d — 3r and the genus becomes g =1 ((r—1)d — 31 = > a?) + 1.
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Now define Fy (r) =1 ((r—1)d—32r*) + 1, g=Fy(r) — 3> a? . We want to find for arbitrary d, some
r € Z and oy € 1Z satlsfymg the required Congruences and inequalities above for all g = F, (r) — %Z a? .

To compute the maximum value of F; (1), 52 of the poly €ffpand( . ((7" —1)-d— % : 7,2) + 1) = _% +
dr — 4 41 as a polynomial in 7.

If d = 1 mod 3, then [2d] = 2&1 o F (2(d71)> _
1)

’ 2a

3
expand (subst (2 (d—2),r,3- ((r—1)-d—3-r )—i—l))*f—%—i-%
So Fy (r) has a max at r = 2d, F (3d) = ¢d (d — 3)+1. Thus for d = 0 (mod 3), the maximum is attained
by taking all o; =0 .

For other g, we use the sum of five squares theorem.

Claim: If d > 0 is an integer, \%\/3 <r < 2dand Fy(r—1) < g < F;(r) then we can find o; € 37,
i =2,...,6 satisfying the requirements so that g = F; (r) — 1 > a?.

Proof: Fy(r) — Fy(r—1) = 3 (d—32r+2) so that F;(r) —
1(d—23r+3). Weneed Fy(r)—g=15 o2

If r is even, then Fy(r) € 3Z. Then n = 2(F;(r) —g) is an integer, and we need a; with |a;| < ir

such that n = > a?. By hypothesis, n < d — %T + %. On the other hand, since \% d — % < r, we

have n < %1”2 —r+ %. We need x integers a;,i = 2,...,6 with |o;] < %7’, n = Y a? . Assuming we
have x | We must verify the congruences and inequalities from the first paragraph. Since g is an integer,
(r—=1)d—3r2=>a?=0 (mod 2), 80 d+ ir — > a; = 0(mod 2). After adjusting the order and signs of the
o; to satlsfy the |ag| <az3 < - < ag § ir  since > aZ=n < d——r—{—% , then —as +az+ ... +ag < d—ér

Next assume r is odd. thus Fy(r) € %Z. For n = 8(F,;(r) —g), we want to write n = Z?—z x? With

= 2a , the sum of odd integers with |z;] < r. Thus n = 5(mod 8). By hypothems n<3r?—dr+ 0
as above Then we need ** integers x; with |x;] < r such that n = > 2? , a; = sz. As we hve assumed
o] < a3 < ... < ag < 3 57 , the order and signs of the «; are determined. The sign of a; is given by the
assumption that d + 3r — >~ a; =0 (mod 2). We therefore need to check that —as + ag + .. + ag < d — 3r.
Setting —xo+ x5+ - -+ x5 < 2d — 3r, then since n < 4d— 6r+3 and n = 5(m0d 8), we have n < 4d — 6r — 1.
Since n = > x? , we need —xg + 3+ - + 16 < 5 LN a2 +3 L which is (xg + 1) +Zf:3 (x; — 1)2 —4>0. For
x; odd, this is true unless (zo, ..., 26) = ( 1,1,1,1,1). Slnce —xo+ a3+ -+ 26 < 2d— 3r unless 2d —3r =1
or 3, and in the first case there is no n = 5 with n < 4d — 6r — 1, and in the second case, the congruence
—ag a3+ .. +ag<d-— %r is clear, then we have shown the claim.

g < i(d=3r+3). Thus Fy(r) —g <

1

*

The Sum of Five Squares

If k € Z* then any positive integer n < 3k? — 2k + 3 can be written as the sum of five squares n = Z?:l x?
of integers xz; with |z;| < k.

Proof: Recall the sum of three squares theorem from Gauss: A positive integer n is the sum of 3 squares
iff it is not of the form 4% (8b — 1) ,a,b € Z.

Now suppose that n < (k4 1)>. If n = 22 4+ 23 + 22, then clearly |z;| < k for all i so we are done. Else,
write n = 4%m, m = 7 (mod 8). Then m — 1 is a sum of 3 squares, so n is the sum of 4 squares of integers
< k.

If k2 < n < k24 (k+1)*, the same argument applies to n — k2 so either n is the sum of 4 or of 5 squares
of integers z; with |z;| < k.

If on the other hand n > 2k* | write n = 2k + m. If m is the sum of 3 squares and m < (k + 1)2 , We are
done as above. Else, m = 4% (8b — 1), m = 0,4,7 (mod 8). Write n = 2(k —1)> 4+ m/ , so m/ = m + 4k — 2 .
Then m' = 1,2,5,6 (mod 8) so m’ is the sum of 3 squares. If m’ < (k + 1)2 , then n < 3k? — 2k + 3 we have
the result.

*x Claim: Set £ > 0 an odd integer. Then all positive integers n = 5 mod 8 with n < 3k® + 2k + 1 are
sums of 5 squares, n = > ., a7 , |z;| < k.

Proof: Any such n can be written as 1+14m, 14+ k*>+m or k*+ k*>+m, where 0 < m < (k+1)” and
m = (mod 8). Then m is the sum of 3 squares of integers < k which are odd.
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e Existence

V.4.8*

*4.8. Show that a divisor class D on the cubic surface contains an irreducible curve <=
it contains an irreducible nonsingular curve <= it is either (a) one of the 27 lines,
or (b) a conic (meaning a curve of degree 2) with D? = 0,or (¢) D.L = 0 for every

line L, and D? = 0. [Hint: Generalize (4.11) to the surfaces obtained by blowing
up 2. 3. 4, or 5 peints of P?, and combine with our earlier results about curves
on P' x P! and the rational ruled surface X, (2.18).]

5.4.9 V.4.9 x genus bound for cubic surface.

4.9, If C 15 an irreducible non-singular curve of degree d on the cubic surface, and
if the genus ¢ = 0, then

I I
S ld = 6) ifd iseven, d = 8

1
- iof — 5 ifdisodd, d = 13

and this minimum value of g = 01is achieved for each d in the range given.

e Note g =1 (a® — > b7 — d) + 1 since it’s a cubic surface.
e S0g>0 = g—1>0s0 (a®>—>_b})>d

The bound:
LHS T will work downwards from the genus:
We haveg— (a—l)(a—2) —%Zb?jL%Zbi
=1(a*>—3a —i— 2) — = Z b7 + 2> b; lets get rid of § since on both sides
- %be + 3 Zb get rid of 2 on each s1de
a? —3a— 13 b+ %Zb move a’ to other side
—3a— 3> b7+ 15" b; move 9a here
6a — = > b + %Zb move £ > b; down

6a+6a2b hmm move 2.52() here
6a+ 6ad> b, +2.5> b

Now, since g =1 (> =307 —1)+1>0, = ... = a?>8+> b7 >> b
Thus 6a ) b; < 6a

case 1

If >>,b; > 1, then a>>9 = a>3 = 2a® > 6a+ 1 so we are done.

case 2 if > b; = 0, then we are done trivially.

case 3 if > b; <0, a =0, then we are done

case 4 if > b; <0, a < 0, then we are still done, since we still have 6a >  b; < 6a?

8a® + (b)) + L2
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8a% +2.53 b + (X bi)* + 1 302 let’s move 2.5 b; down

8a% + (2.5 — 6a) 3" b; + (3 b;)” let’s move 6a > b; up and bring 1 3" b2 here

8a® — 6a 3" b; + (3 b;)* + 33 b; move L 3" b, here

8a2 — 6a > b + (3.b;)> — 9a + 33 b; move 9a up

9a® — 60> b 4+ (3. b;)* — 9a 4+ 3> b; move a? here

9a2 — 6a > b + (3. b;)> — 9a + 33 b; + 2 schwarz won’t help. we can get rid of 2’s
5 (d? — 3d + 2) let’s evict 3 for now

s(d—=1)(d—2),d=3a— Y b

On the RHS I will work upwards from what we want.

Existence: Set k > 0 an integer. Then all positive integers n < 3k* — 2k + 3 is the sum of five squares
n =37, x? of integers x; with |z;| < k. (see ex 4.7)

we want to get min values (d — 6) = 3 (a*> — Y. b7 — d) + 1 the genus.

This is a> — 2d +8 — b = S°0_, b? .

Choose a < d such that a® > d + 2. (since d > 8, this is easy)

Let b2 = 3.

Then 3a®> —2a+3=>a*>—-2d+3+5—b3 =a*—2d+3 — 4.

Since a? > d + 4, then 2a® > 2d + 2 and so a® — 2d + 8 — bg > 0.

Thus we can find b;,7 = 1,...,5 with |b;| < a such that > b? = a® — 2d + 8 — b2.

5.4.10 V.4.10 x

4.10. A curious consequence of the implication (iv) = (iii) of (4.11) is the following
numerical fact: Given integers ah, ... b, such that b, = O foreach i, a — h -
b, = 0 for each i,j and 2u — Y s, b = 0 for each j, we must necessarily have
al — Zh,‘ = (0, Prove this directly (for ab,...., b, € R} using methods of

No algebraic geometry here. If your interested, see Nagata Rational Surfaces I, and proceed by cases

5.4.11 V.4.11 x Weyl Groups

4.11. The Weyl Groups. Given any diagram consisting of points and line segments
joining some of them, we define an abstract group, given by generators and
relations, as follows: each point represents a generator x;. The relations are
x? = 1 for each i; I{.\.':-.‘l'_r-l'i = 1 if i and j are not joined by a line segment, and

(x;x;)" = 1ifiand jare joined by a line segment.

{a) The Weylgroup A, 1s defined using the diagram

of n — | points, each joined to the next. Show that it is isomorphic to the
symmetric group X, as follows: map the generators of A, to the elements
(12)023) ..., (n — Ln) of X, to get a surjective homomorphism A, — Z,.
Then estimate the number ofelements of A, to show in fact it is an isomorphism.

I don’t care about group theory.
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5.4.12 b. x

(b) The Weyl group E, is defined using the diagram

|

Call the generators x, . .. .xsand 1. Show that one obtains a surjective homo-
morphism E, — G, the group of automorphisms of the configuration of 27
lines (4.10.1), by sending x,.... . vs 1o the permutations (12)(23), ... [56) of
the E,. respectively, and 1 to the element associated with the quadratic trans-
formation based at P, .FP,.P,.

see above.

*(¢) Estimate the number of elements in E,, and thus conclude that E, =|0.
Note: See Manin [3, §25.26] for more about Weyl groups, root systergs, and
exceptional curves.

5.4.13 V.4.12 x g kodaira vanishing for cubic surface

4.12. Use (4.11) to show that if D is any ample divisor on the cubic surface X, then
HYX.C o(— D)) = 0. This is Kodaira's vanishing theorem for the cubic surface
(I11, 7.15).

Recall X ~ P? which has known cohomology.

H°(X,0x) =k, H' (X,0x) =0, H*(X,0x) = H*(X,0x (-3)) = H° (X,wx) = py, since —3H is the
canonical for P2, By ex 11.8.20.1, the dimension of this space is the geometric genus is 0 for P*. So this is 0.

By chapter 1, H° (D, Op) = k.

We have a LES

0— H°(Ox(-D)) -k — H(D,Op)=Fk — ---

H'(X,0x (-D)) = 0— H' (D,0p) — -

H?(X,0x (—D)) = 0 — 0.

So if H*(Ox (—D)) = 0, then we are done as k < k thus the kernel of k — H' (X, Ox (—D)) is k, and
so by exactness.

Suppose there is an effective divisor linearly equivalent to —D.

Then by V.4.11, this effective divisor should meet at least one line with negative intersection which is silly.
So we are done.

V.4.13 16 Lines x g

4.13. Let X be the Del Pezzo surface of degree 4 in P* obtained by blowing up 5 poifits
of P* (4.7),
{a) Show thalt X contains 16 lines.

So first we really need to get the intersection theory on the new surface.
Using the methods of the chapter we find:

e Pic X ~ 7° generated by [, e1, ..., eg

e intersection pairing on X given by [ =1, ¢7 = —1, l.e; = 0, ¢;.e.; = 0.
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— hyperplane is 3l — > ¢;

— canonical class is —h = =31 — > ¢;
— If D ~al = be;, degree as a curve in P? is d = 3a — > b;
- D*=da’ - Z bz27

— genus is % (D? — d) + 1 by adjunction.
Thus we claim:
e the del pezzo contains 16 lines, self-intersection —1, only irreducibles negative self-intersection
e exceptional curves F; (5 of these)

e strict transforms Fj; of lines through P, and P; , (the number of lines through 2 points is a; = 1, number
of lines through 3 points is ag = as + 2 = 3, number of lines through 4 points is a4, = a3 + 3 = 6, and
number of lines through 5 points is a5 = a4 + 4 = 10. So 10 of these.

e The strict transform of conic in P? containing 5 of the P; (one of these).

The first and second paragraphs of the proof of 27 lines hold exactly by looking at our intersection theory
discovered above.

Now suppose C' is irreducible curve on X, with deg C' = 1, and C? = —1, then C is one of the 16 listed.
If C' is not one of the E;, then C' ~ al — > b;, and since we are just doing monoidal transforms (3.7) cf 4.8.1,
then a > 0, b; > 0.

Also, deg C =3a—> b;=1,C?*=0a*> -3 0? = —1.

= > b;=3a—1,and > b =a*+1

We show that only a, by, ..., b5 satisfying all these conditions are those corresponding to Fj; and G, above.

Schwarz gives (3.b;)° <5 (> b2). Substituting, we get (3-a—1)* =9a2 —6a+ 1 < 5a®> +5

or 4a®> — 6a — 4 < 0.

We need to solve the quadratic.

allroots (4-a* —6-a—4,a) =[a=—0.5,a=2.0 soa=1or a=2.

Now if a =1, then >.b; =3 —1=2and > b? =1+ 1=2so two of the b; are 1 , and rest are 0. This is
one of the Fj;. If a =2, then >.b; =3-2—1=>5and >, b? =2%+1 =5 so all the b; are 1 and this is G;.

54.14 b.xg

1=

=

. Let X be the Del Pezzo surface of degree 4 in P* obtained by blowing up 5 poil
of P2 (4.7),

(b) Show that X is a complete intersection of two quadric hypersurfaces in [P*
ithe converse follows from (4.7.1)),

Since X is del-pezzo, as in thm V.4.7, we have Ox (1) = —wx, and X is embedded in P* via the linear
system of cubics through the blow up points.

Then Ox (—2Kx) =~ Ox (2) * by tensoring the same thing on both sides.

Consider 0 — HY (P* Iy (2)) — H® (P*, Ops (2)) — H° (X,0x (2)) = 0 .

(This ends in 0 since H' (P4, Ops (—2)) =0 ).

Now we count dimensions. Note h? (P4, Ops (2)) = 15

Note that by Riemann-roch on a surface,
13

since K% = 4 by thm V.4.7,
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Note that by Ramanujam vanishing and Serre duality, H' (X, Ox (—2Kx)) =0 .
Now use *.

5.4.15 V.4.14 x

4.14. Using the method of (4.13.1), verify that there are nonsinghlar curves in P*
withd =8, y=67;d=94¢9=1789;d =10, g = 8§9.10,11.| Combining with
(TV, §6), this completes the determination ol all posible ¢ Tor curves of degree
d < 101n P

From 4.7

e From method of V.4.7 we get d =8,9g=7,and d =9,9 =8,9 and d = 10,9 = 10, 11
e just need d=10,g=8,9and d=9,9g=7,and d=8,9g =6

For these remaining rest, I use the method of exc V.4.9 (Read that exercise solution first or this will be
nonsense!)

We want to get 3 (a> = > b} —d)+1=gford=8,g=56

soa’ =Y 0?=29—2+d

50 S0 b2 + b2 =2 —2g +d + a® —use this line

so Y. b}=a®>—12+2+8— b

s0 Y b7 = a® — 2 — bZ. Solve for this using sum of 5 squares as in exc V.4.9 and the rest follow similarly.

5.4.16 V.4.15 x admissible transformation

4.15. Let P,.....P, be a finite set of (ordinary) points of P*, no 3 collingar. We define
an admissible rransformarion to be a quadratic transformation (4.2.3) centered
at some three of the P, (call them PP, P;). This gives a new P?| and a new set
of r points, namely @,,0,,05, and the images of P, .. . ,P,. Wesay|that P.... P,
are in general position if no three are collinear, and furthermore after any finite
sequence of admissible transformations, the new set of r points alfo has no three
collinear.

— A ser ot irports s gererat-positronr i amd-orty o thmee-are collinear and
not all six lie on a conic.

I will show that there is exactly one curve of m™ order through m (m + 3) /2 points.

This is equivalent to there being %m (m 4+ 3) points with only one curve passing through those points for
any m.

For m =1 we can find a 1-4/2 = 2 points which only contain one curve clearly.

If the assertion is true for m — 1, then as im (m+3) = (m —1) (m —1+3) /24+m+1, we choose m + 1
distinct points on a line L and the rest not on the line and in general position.

Suppose C'is any curve passing through all the points. Now by Bezout, L has intersects any curve of m!"
order passing through the first m + 1 points at least m + 1 times but m - 1 for the degrees don’t equal so L
must be a component of such a curve, C = LU C’, with C’ being of order m — 1 . But then C’ is determined
by the choice of the remaining points by the induction hypothesis.
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5.4.17 b. x

{by Il P,,... P, are in general position, then the r points nbhtm:d by any finite

sequence of admissible transformations are also in general position.

This is Nagata, Rational Surfaces II, corollary to proposition 9, and use (a) of this problem.

5.4.18 c.xg

{c) As;umu the ground field k 1s uncountable. Then given P, ... .P, in general
position, thereisadense subset ¥ = P*suchthatforany P, .|, € V.P,. ..., P,
———wilH e general pesttion—HinePrevesdomma-thatwhen L is uncountable,
a variety cannot be equal to the union of a countable family of proper closed
subsets. |

Consider (P, ..., P,) as a point in Py x ... x Py .

General position is equivalent to some determinants not vanishing.

Thus the tuples (P, ..., P.) in general position form the complement of an the vanishing of these determi-
nants.

So unless the vanishing set is all of Py X ... x Py , then it must be proper so we get a zariski open set which
is open and dense for the general position points.

5.4.19 d. x
0

(d) Nowtake P,,.... P, € P* in general position, and let X be the surface obtained
by blowing up P, ..., P. If r = 7, show that X has exactly 56 irredlucible
nonsingular curves C with ¢ = 0, C* = —1, and that these are tke only
irreducible curves with negative self-intersection. Ditto for r = 8, the number
being 240. [

at 7

By the logic of thm V.4.9, and proceeding as in exc V.4.13.a, we find there are 7 exceptional curves.

There are 21 lines through the points, since no 3 are collinear, and that gives 21 additional —1 curves, as
in exc V.4.13.a.

There are 21 conics through 5 points, 7 choose 5.

Now note that cubics through 7 points have 1 degree of freedom (by Bezout for intsance). Thus if we take
one of the points doubled (so make a base point), this gives 7 additional —1 curves.

Thus we have 14 + 42 = 56

at 8

Using the same logic, we can have

exceptional curves (8)

Lines through points (8 choose 2 = 28)

conics through 5 (8 choose 5 = 56)

cubics through 7 with one double point (8 choose 7 = 8)

quartics through 8 with three double points (8 choose 3 = 56)
quintics though 8 with 6 double points (8 choose 6 — 28)

sextics through 8 with 7 double points and one triple point (the rest)
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5.4.20 V.4.16 x Fermat Cubic

4.16. For the Fermat cubic surface x} + xi + x3 + x3 = 0, find the cq}faliuns of
the 27 lines explicitly, and verify their incidence relations. What is the group of
automorphisms of this surface? [

We can use Elkies parametrization: If (w,z,y, z) is a rational solution of w® + 23 + 3*> + 23 = 0, then
there exist r, s,t such that (w,z,y, z) are proportional to

—(s+ )2+ (2 +2r?)t — 83 +rs? — 2r2s — 3 + 13

—(s+r) 2+ (s2+2r)t +rs® —2rs + 13 — 3+

(s+71)t? — (s +2r?) t + 2rs? — r?s + 2r3+

(s =2r)t2 + (r* — 8*)t + 83 — rs® + 2r%s — 23,

where 7 is proportional to yz — wx, s is propotional to wy — wz + 2z +w? —wz + 22, and t is proportional
to w + y,y, xr unless w + y, x + z are both zero, in which case r, s,t are proportional to x + vy, y,x . and the
blow down / points we blow up are

r+az=x4+ay=0— (—a:1:1);

wt+adz=z+dy=0 (—a :1:1);

r+az=y+aw=0—(0:1:—a);

r+dz=y+dw=0—(0:1:—d);

y+az=w+ar=0~ (1:—d :—a);

y+dz=w+dr=0—(1:—a:—d).

By remark 4.10.1 we have:

So it’s in P2, it’s blow up of P? at 6 points.

e [; there are 6 exceptional lines, with self intersection —1,
e [, there are 15 strict transforms of lines containing P; and F;
e (5, there are 6 strict transforms of conics containing 5 of the F;.

The are incidence relations
e 50 E; doesn’t meet E; (obvious by description)

— E; meets Fj; iff i = j or i = k (obvious by description)

— E; meets G iff i # j (obvious by description)

— Fj; meets Fy; iff all 7, j, k, [ are distinct.. not quite obvious.
— F;; meets Gy, iff i = k or j = k (obvious by description)

— so as an example calculation > If we use the parametrization above, and we want to show E; doesn’t
meet £, then they would meet if there is a point on the line where z =2’y = ¢/, 2 = 2/, w = o'
on the two curves w +az = v+ zy = 0 and w' + d'2’ = 2’ + 2’y = 0 where a is a cubic root of
unity. But then a = a’ which is false. The other’s can be similarly verified.

Automorphism group? FEg. A proof is in Hirschfeld Finite projective spaces in three dimensions 20.3.1.
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5.5 V.5 Birational Transformations

5.5.1 V.5.1 x g Resolving singularities of f

5.1. Let f be a rational function on the surface X. Show that it is possible to “resplve
the singularities of /7 in the following sense: there 15 a birational mnrphmn]l {J:
X’ = X so that f induces a morphism of X" to P, [Hinis: Write the divisor bf f
as (f) = ')_:1{ Then apply embedded resolution (3.9} to the curve ¥ = | | (.
Then blow up further as necessary whenever a curve of zeros meets a cunve of
poles until the zeros and poles of [ are disjoint. |

Let Y = div (f)

Take an embedded resolution using V.3.9, so f~! (Y)) is normal crossings.

Now how will further blowing-up make the resulting curves disjoint?

Ok, further blowing up will make the curves disjoint because you have simle normal crossings to start.
Now the blowing-up surface separates tangent directions at the node .

Now you have a bunch of copies of P! so you can just define by projection.

5.5.2 V.5.2 x g Castelnuovo Lookalike

5.2, Let ¥ = P! be a curve in a surface X, with ¥* = 0. Show that Y is contractible
(5.7.20 10 2 point on a projective variety X, (i general singular).

c.tb5.7

Let —-m=Y? <0

choose a very ample divisor H on X such that H' (X, £ (H)) = 0 by IIL.5.2.

Let £k = H.Y and assume k > 2.

(H is ample so intersection > 0 and then take a multiple of that) — [

We will use the invertible sheaf £ (mH + kY') to define a morphism of X to something.

First we prove that H' (X, £ (mH +iY)) =0 fori=0,1,..., k.

For i = 0, it’s true by assumption. Assume for ¢ — 1.

Consider 0 = L(mH + (i — 1)T) — L(mH +1iY) - Oy ® L (mH +iY) — 0.

Y ~ P! and (mH +iY).Y = mk —im, so

Oy @ L(mH +1iY) = Op1 (mk — im).

We get an exact cohomology sequence

= HY (X, LmH+ (i—1)Y)) = H (X, L (mH +iY)) —

— H' (P, Op1 (mk —im)) — 0

By the induction hypothesis, we know that H' (X, L (H + (i —1)Y)) = 0.

Also H' (P!, Op1 (mk — im)) = 0 by TIL.5 and so we conclude H' (X, L (mH +iY)) =0 for i < k.

step 2

Next we show that M = L (mH + kY) is globally generated.

Since H is very ample, |mH + kY| has no basepoints away from Y so M is generated by global sections
away from Y.

On the other hand, the natural map H® (X, M) — H® (Y, M @ Oy) is surjective, because

MRSy =~ LmH+EY)QL—-Y ~L(mH+ (k—1)Y) and

H' (X,L£(mH+ (k—1)Y)) =0 by step 1, and the LES of cohomology.

Next observe (mH + kY').Y = mk — mk = 0 and so M ® Oy =~ Op: which is generated by the global
section 1. Lifting this section to H° (X, M), and using Nakayama lemma, we see that M is generated by
global sections also at every point of Y.

Step 3.

8we can change k to the bigger
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Therefore M determines a morphism f; : X — PV (I1.7.1).

Let X it’s image.

Since ffO (1) =~ M (IL.7), and since degree of M ® Oy is 0 (since its Op: ), then f; must map Y to a
point Pj.

On other hand, since H is very ample, the linear system |mK + kY| separates points and tangent vectors
away from Y, and also separates points of Y from points not on Y , so f; is an iso of X — Y onto X; — P .

5.5.3 V.5.3 x g hodge numbers excercise

5.3. If .: ¥ — X is a monoidal transformation with center P, show thqt H'(X Qg) =
HYX.0Q2,) @ k. This gives another proof of (5.8). [Hints: Use [the projection
formula (111, Ex. 8.3) and (111, Ex. 8.1 ) to show that H(X.2,) = H'{X[z*Q, ) for each
i. Next use the exact sequence

0o 70, — Dy — Qg =0

and a local calculation with coordinates to show that there is a naturgl isomorphism
Q:, = Qg where E is the exceptional curve. Now use the 4.;0}11.']m]']]{}g}-' sequence
of the above sequence (you will need every term) and Serre duality 1 get the result, |

Let .Z = mQx . so probably since we are on smooth varieties, H’ <X,7T*QX) ~ H (X, m7m Qx) ~
H'(X,Qx) by exc ITL.8.1.

Now 0 — 7m*Qy — Qg — Qg v — 0 is the relative cotangent sequence.

Now (cf 1V.2.2) Q% ,x has support equal to the set of ramified points, for at other points the first two
sheaves are same dimensional so the quotient at the stalks is 0. Thus Qg ~ Qp .

Now consider )
0 — H° (X, Q) — H° (X, QX> 5 HY(E,Qp) —

H' (X, Qx) = H' (X QX> s HY(E,Qp) —

H?(X,Qx) — H? (X, QX> — 0 (the last is 0 since Qg has support on a one dimensional space).

Note that H° (E,Qg) ~ H® (P', Op: (—2)) = 0 since there are no monomials of negative degree in two
variables and H' (E,Qg) ~ H' (P!, Op: (=2)) = H° (P', Op1)" = kY = k by serre duality.

If X is P? at least, then we are done by exc I11.7.3, and hence we are done for a rational surface.

Otherwise, note that the hodge numbers satisfy h?? = h%P since H9 (X, ) = HP (X,Q9)" by serre duality
and further h"~P"~9 = hP4 by poincare duality. As h'? is a birational invariant since genus is, then we see

H?(X,Qx) — H? <X, QX) is an isomorphism.

5.5.4 V.5.4 x g hodge index theorem corollary x

54. Let /:X — X' be a birational morphism of nonsingular surfaces.
{a) If ¥ = X is an irreducible curve such that /(Y1 is a point|then ¥ = P' and
Y =0
Let H be a very ample divisor on X' .
Note that pullback of ample is ample.
So f*H.Y =0 and (f*H)* = 0.
Thus by the hodge index theorem, Y2 < 0.
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5.5.5 b. x g Hodge Index negative definite

(b} (Mumford [6].) Let P' £ X be a fundamental pomtof /™. and let ¥.. ...}, be
the irreducible components of f ~'(P'). Show that the matrix ||, Y || is negative
definite.

That Y;? < 0 is easy since if H is strict transform of a hyperplane not through P, then H? > 0, and
H.Y; =0 so that Y;*> < 0 by Hodge index theorem.

On the other hand, let H; the strict transform of a hyperplane through P and H, the strict transform
of a hyperplane not through P. Then on irreducible components we have Hy = Hy; + >_Y; , m; > 0. Then
for each j, > .(m;E;, m;E;) = —(Hy,m;E;) < 0. Note further that (Y;,Y;) > 0 for ¢ # j. Since the matrix
1Y;.Y;|| is symmetric, then by basic facts of symmetric matrices, we have ||Y;.Y;|| is negative indefinite.

Now note that since Hy passes through E; then ), ||Y;Y]|| < 0. By Zariski’s Main theorem, we can’t split
the Y;’s into two groups which are not connected so the two groups always don’t intersect each other. Since
we have already proved indefiniteness, these two facts give negative definite.

5.5.6 V.5.5xg

5.5. Let C be a curve, and let m: X — € and n": X' — C be two geometrically rujed
surfaces over C. Show that there is a finite sequence of elementary transformatigns
{5.7.1) which transform X into X'. [Hints: First show if D = X is a section of
containing a point P, and if D is the strict transform of D by elmp, then D? = D? | |

(Fig. 23). Next show that X can be transformed into a geometrically ruled surface
X" with invariant ¢ » 0. Then use (2.12), and study how the ruled surface P(#)
with & decomposable behaves under elm. ]

Consequence of my proof of exc V.2.5.a

5.5.7 V.5.6 x

[ |
5,6, Let X be a surface with lunction field K. Show that every valuation ring R of K &

is one of the three kinds described in (I1, Ex. 4.12). [Hint: In case (3),let f € R. Use
(Ex. 5.1) to show that for all i = 0, f € 'y , 50 in fact f € Ry.]

If R is a valuation ring with valuation v : R — I', then since X is projective, by the general assumptions in
chapter 5, it is thus proper, and so the valuative criterion gives that Spec K (X) — X extends to Spec R — X

The image of the closed point of Spec R corresponding to the maximal ideal is the center of the valuation v.
If x € X is the center then R dominates O,. If v is nontrivial, then the dimension of v , which is corresponds
to the transcendence degree of R/mp which corresponds to the dimension of the center, and since we are on
a surface this number must be 0 or 1.

If the center has codimension 1, then O, and R must be discrete as R dominates O, and at any rate a
valuation group on a surface is either a one dimensional or two dimension Z-module (see Vagiue Valuations and
local uniformization, remark 1.14). As both R and O, are valuation rings, then R = @, . This corresponds
to type (1) of exc 11.4.12.

If the center x has codimension 2, then taking the monoidal transform with center x gives X; . The center
of v in X is either the exceptional divisor or point contained in the exceptional divisor. In the former case
we have type (2) of exc 11.4.12, in the later case we repeat and get a type (3) of exc 11.4.12.
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5.5.8 V.5.7Tx

5.7. Let Y be an irreducible curve on a surface X, and suppose there is a morphism
f:X — X, to a projective variety X, of dimension 2, such that f(Y) is a point P
and f~YP) = Y. Thenshowthat ¥* < 0. [Hin:: Let |H| be a very ample (Cartier)
divisor class on X, let H, € |H| be a divisor containing P, and let H, € |H| be a
divisor not containing P. Then consider f*H,,f*H, and H, = [*H, — P)" ]

The answer from 5.4 applies since at beginning of surfaces chapter, we assume that X is nonsingular
(maybe X isn’t)

5.5.9 V.5.8 x A surface Singularity

5.8. A surface singularity. Let k be an algebraically closed field, and let X be the surface
in A2 defined by the equation x* + y* + z° = 0. It has an isolated singularity at
the origin P = (0,0,0).
3

(a) Show that the affine ring 4 = k[x,1.z]/(x* + y* + =%) of X is a unique

factorization domain, as follows. Let r = z ' u = r’x, and v = *y. Show
that z is irreducible in 4; ¢ € k[ur], and A[z7 '] = k[uv,s™']. Conclude that
A1sa UFD,

First we claim z is irreducible in A. So I wish to show A/ (z) ~ k[z,y] / (z* + %?) is an integral domain.
Proceed as in Algebra.NN.30, my algebra/geometry /analysis solutions, summerstudychallenge2.pdf.

Next note that 22 + y* 4 2° = 0 implies —2?/26 —3/26 =L sot = —u? —v¥ so t € k [u,v].

Now we have z = (7))’ 83z = (t7)°w, y = (7)) t2y = (t7)°v, z = t! so that A C k[u, v, t71].
Since t € k[u,v] then A[z7!] C k[u,v,7!]. On the other hand, u,v,t™* = (7))’ z, (z71)* ,t7* € A[z"}] so
Alz7Y D k[u,v,t7']. Thus A[z7!] = k[u,v,t7!] . These are both UFD.

Geometrically, A [z7!] is localizing at things not in 2. So if f is irreducible not in (z), then f is irreducible
in the localization. The converse also holds: If there is a nonzero irreducible element in the localization A [z7!]
for f € A, then f = 2z™g for an irreducible g € A , g ¢ (2).

Now if f € A is nonzero, since A[z71] is a UFD then, denoting by the localization, we have { =
Zimszll e f" for nonnegative m,mq,...,m, , a unit v in A, and fi, ..., f,, in A , where f;/2™ are irreducible
in Az~ ] Smce each z™ is a unit, we may write this as { =5 Lo f", fi 1rredu(:1ble Soz"f=ufr- fa
in A. By above, f; = 2"g; for an irreducible g; € A, g; ¢ (2) . Thus sz — uz2" [ g;. Since g; ¢ (2), then
m>][riso f=uz*]]gi, s =D r; —m >0 so we have factored f. Uniqeness follows in the standard way.

5.5.10 V.5.8.b. x Surface singularity

(b) Show that the singularity at P can be resolved by eight successive blowings-up.
If X is the resulting nonsingular surface, then the inverse image of P is a union
of eight projective lines, which intersect each other according to the Dynkin
diagram Eg:

Step 1: Start your computer.
Step 2: Enter the following commands into Singular

> ring R=0,(x,y,z).dp;
> ideal I=x2+y3+z5;
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> list L=resolve(I,1s)
> list iD=intersectionDiv (L);

Alternatively, if you have a few hours to spare you can proceed as follows:
We first find sings of X.
2z
Jacobian is | 3y
5z
nonsingular when rank is n — dim V where n = 3, dim of space, so when rank is > 1.
thus singular when z,y, 2=0
total transform S C A3 x P2 of blow-up at 0is S : (2% +9° + 2%, 27 = 2X,yZ = 2Y,2Y = yX)
we compute locally.
EX=1 (2 +y*+25 27 =2yZ=z2Y,2Y =y) <
(22 +23Y3 + 2525 aZ = 2,2 =y)
(22,27 = z,2Y =y)V (1 +2Y? + 23 2° 2Z = z,2Y = y)
The latter is strict transform.
32225 + 43
The jacobian is 3>
53z
note x # Oon the surface
if singular then Y, Z must both be zero, but that points not on surface either, thus nonsingular.

Ify =1,

(2* +y* + 2%, yZ = z,x = yX) strict is

y2X2+y3 +y5z5 — y2 <X2 +y—|—y3Z5)

exceptional is y?, strict (X2 +y + y>2Z°)

2x
jacobian is [ 3y22° +1
53/324

singular points need x = 0 for first col, either y or z is 0 for last col, but then middle col is nonzero, so

this patch is nonsingular.

If 7 =1,
2+ P+ 2050 =2X,y=2Y) <
(X2 + 233+ 25 x=2X,y=2Y) <
2z
(22 x=2X,y=2Y)V (X?+2Y3+ 23 2 = 2X,y = 2Y) jacobian of RHS strict is 3y%z
y® + 322
so to be signular, first row must be 0 so x = 0, and second row also so y or z = 0, but then both y, z are
zero by last row.
have one singularity at (0,0, 0)

New blowup

Xo: (X2 +2Y3+ 230X =Ya,az=cX,Yc=bz)ona=1,0X =Y, 2 =cX, =
X2+ ceXPX3+3X3 =

X2 (14 cb*X? + 3X)

jacobian of strict is

3b%cX? 3% cX?
BX2+332X | = XX +3c%)
203cX + 3 c(20°X + ¢?)

from first row, one of ¢, b, X must be zero.
X cannot be, since that is not on the surface.
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same for c.
If b= 0, then by second row, still X or ¢ must be zero.
Thus this patch is nonsingular.

Second patch:
Xo: (X2 42Y3+ 230X =Ya,az = cX,Yc = bz)
onb=1, X=Ya,Yc=zso
Y22 +YceY? + Y33 =
Y2 (a? 4+ cY? 4+ YP)
2a

jacobian of strict is | 3c%y + y?

e+ 2cy
clearly a = 0 at a sginularity
if ¢ # 0, then Y # 0,
by second row of jacobian, Y is negative
we must solve ¢Y (Y + ¢®) = 0 to be on surface
soc=—-Y3 )
last row of jacobian: —Y? —2Y% = —Y*(Y® +2)so Y = (—2)5
also by second row of jacobian
=3Y%.y+y?=0
so since this has different roots, Y =0
only singularity is at ¥ = 0.

On the other patch, ¢ = 1, we get it’s nonsingular.

Let X3:(a> +cY?+YPae =cd,af =Yd,cf =Ye)
ond=1,ae=c,af =Y so
a®(1+ ...) and we see it’s nonsingular
one=1,a=cd,cf=Y =
A (d* + cf? + cdc)
on f=1a=Ydc=Ye—=
Y2(d*+Ye+YYe?)
jacobian on e =1 is
2cd + f*
2+ 2d
2cf
so singularity at (0,0, 0)
on f =1, jacobian is
2d
2yed + e
3y%e? +y
so singularity at (0,0, 0)
sod=0
etc, etc.

209



5.6 V.6 Classification Of Surfaces
5.6.1 V.6.1xg

6.1. Let X beasurfacein P n = 3, defined as the complete intersection of hypersurfaces
of degreesd,, ..., d, ., witheachd, = 2. Show that forall but finitely many choices

of (md,. ..., ), the surface X is of general type. List the exceptional cases, and
where they fit into the classification picture.

X is a surface, so in this chapter it’s smooth, then Ky = Ox (Z?:_f di —n — 1) by adjunction since

If n =3, then —n — 1 = —4 so we could pick d; = 2 or d; = 3 to have K be negative multiple of ample so
by 6.1, [12K| =) = X rational or ruled. We could pick n =4 to have Kx =0 (so by 6.3, X is K3.

If n = 4, then we could pick d; = 2,dy = 3 to get a K3.

If n =5, we could pick dy,ds,ds = 2 to get a K3 .

If n =6 we need dy,ds, d3,ds = ... but since d; > 2 , and the canonical subtracts only 7, it will always be
general type.

Same for larger n.

5.6.2 V.6.2xg

6.2. Provethe following theorem of Chern and Griffiths. Let X be a nonsingular surface
of degree d in P¢™', which is not contained in any hyperplane. If d < 2n, then
pAX) = 0. Ifd = 2n, then cither p,(X) = 0, 0r p,(X) = 1 and X is a K3 surface.
[ Hint: Cut X with a hyperplane and use Clifford’s theorem {1V, 5.4). For the last
statement, use the Riemann-Roch theorem on X and the Kodaira vanishing
theorem (111, 7.15).]

Let X span P"*! of degree d < 2n since it’s not in a hyperplane. Let H be the hyperplane section of
genus g. |H|, has degree d and projective dimension n. Using Clifford’s theorem and Riemann-Roch either
h* (Oy (d)) >0andd>2n, g—1>nor h' (O (H))=0andn+1<h*(Oy(d))=1—g+d.

Assuming F' is not ruled, then by thm V.6.2, 6.3, there is r > 0, D > 0 with D ~ rKx. By adjunction,
2g—2=d+ %H.D > d so the second case is impossible since then multiplying by 2 gives 2n+2 < 2 —2g+2d
rearranging contradicts d < 2n. Then d = 2n, g = n+1sod = 2(g—1) = 29 — 2, so by the genus
formula, n+1 =p, (H) =14+ 1 (H*+ HK) =14 1 (2n+ HK) so H.K = 0. Since X is non-ruled then
|[12K| # () by thm 6.2. But then 12K ~ 0 so at least k = 0. As H — K is ample by Nakai Moishezon, then
h' (Ox (K — H)) = 0 by Kodaira Vanishing so that h' (Ox (H)) = 0 by Serre duality. Using Serre duality
and exc V.1.1, the degree of K — H < 0 so [ (K — H) = 0 and now using thm V.1.6, Riemann-roch we get
that p, (X) = 1so by thm V.6.3, X is K3. On the other hand, X is ruled.

Sources:

Allcock, “Hilbert’s Nullstellensatz”

Baker and Csirik, “An Alternative Approach to Serre Duality for Projective Varieties”
Ballico, “Space Curves Not Contained in Low Degree Surfaces in Positive Characteristic”
Bars, “Automorphisms groups of Genus 3 Curves”

Bernd, “Rings of Invariants and Linkage of Determinantal Ideals”

Commelin, “The structure of [N]”

Cutkosky, “Resolution of Singularities”

Cutrone, “Solutions...”

Daly, “Rank Two Vector Bundles on Elliptic Curves”
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Decker, “Computational Aspects”

Dolgachaev, “Plucker Formulas”

Eisenbud and Van De Ven, “On the Normal Bundles of Smooth Rational Space Curves”
Esnault-Viehweg, “Lectures on Vanishing Theorems”

Ghorpade and Verma, “Primary Decomposition of Modules”

Giraldo and Sols, “Irregularity of Ruled Surfaces in P3”

Hansen, “Rational Points on Curves Over Finite Fields”

Harris and Eisenbud, “Curves in Projective Spaces”

Hartshorne, “Algebraic Geometry”

Hartshorne and Polini, “Divisors Class Groups of Singular Surfaces”
Hartshorne, “Genre des Courbes algebriques dans ’espace projectif”
Hida, “Automorphic Forms on Shimura”

Hoffmann, Jahnel, and Stuhler, “Generalized Vector Bundles on Curves”
Jao, “Isogenies in Quantum in a Quantum World”

Javanpeykar, “Grothendieck-Riemann-Roch Theorem With an Application to Covers of Varieties”
Kedlaya, “Algebraic Geometry Notes MIT”

Kleiman, “Bertini and his Two Fundamental Theorems”

Lipman, “Unique Factorization in Complete Local Rings”

Madapusi, “Commutative Algebra®

Maruyama, “Boundedness of semi-stable sheaves of small ranks”
Mathew, “Notes on Cartier and Weil Divisors”

Mathew, “Zariski’s Main Theorem and some Applications”

Mckernan, “Course Notes Spring-2010”

Moe, “Rational Cuspidal Curves”

Morandi, “Locally Free Sheaves”

More, “Arc Valuations on Smooth Varieties”

Mumford, “Abelian Varieties”

Murfet, “An Equivalence for Modules over Projective Schemes”
Murfet, “Section 2.7.1”

Murfet, “Section 2.8”

Piercey, “Picard Groups of Affine Curves”

Potier, “Vector Bundles”

Rajadwe, “Formulae for Elliptic Curves with Complex Multiplication”
Reid, “Surfaces with genus 0 and K2 = 0

Ricolfi, “Bertini’s Theorem on Generic Smoothness”

Rosen Zvi and Richard Borcherds, “Algebraic Geometry Notes”

Siegel, “Course Notes of Algebraic Geometry”

Stacks, “Cohomology of Schemes”

Stacks Project, “Etale Morphisms of Schemes”

Sury, “Elliptic Curves over Finite Fields”

Swanson and Huneke, “Integral Closure of Ideals, Rings, and Modules”
Tu, “Semistable Bundles over an Elliptic Curve”

Vakil’s, “Foundations of Algebraic Geometry”

Van Tuyl, “Field of N-Torsion Points of an Elliptic Curve over a Finite Field”
Weil, “Field of Definition of a Variety”

Yildiz, “Curves in Projective Space”
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