1 Sheaves

Exercise 1.1. Let A be an abelian group, and define the constant presheaf
associated to A on the topological space X to be the presheaf U — A for all
U # @, with restriction maps the identity. Show that the constant sheaf A
defined in the text is the sheaf associated to this presheaf.

Solution. Let AP be the constant presheaf. There is an obvious morphism of
sheaves AP™¢ — A which sends an element a € AP"¢(U) = A to the constant
map U — A. This induces a morphism from the sheafification of AP"¢ to A
which we claim is an isomorphism. To see that it is an isomorphism we need
only check the stalks, and since stalks are preserved under sheafification, we
need only check that AP"¢ — A induces an isomorphism on the stalks. Clearly,
the stalks of AP™¢ are A. Now consider a representative of the stalk of A at P.
That is, an open set U 3 P and section s : U — A. The preimage s~1(s(P))
of the value of s at P is an open subset of U on which the restriction of s is
constant. Hence, every element of the stalk can be represented using a constant
section and therefore Ap = A.

Exercise 1.2. a For any morphism of sheaves ¢ : F — 4 show that for
each point P, (ker ¢)p = ker(¢p) and (im¢)p = im(¢p).

b Show that ¢ is injective (respectively, surjective) if and only if the induced
map on the stalks ¢p is injective (respectively, surjective) for all P.

¢ Show that a sequence --- — Fi=1 — Fi — Fi+l of sheaves
and morphisms is exact if and only if for each P € X the corresponding
sequence of stalks is exact as a sequence of abelian groups.

Solution. a Recall that filitered colimits commute with finite limits in the
category of sets. Now kernel is a finite limit and stalk is a filtered colimit.
Image is the kernel of 4 — coker ¢.

b ¢ is injective if and only if its kernel is zero, and phi is surjective if and
only if its cokernel is zero if and only if its image is ¢. So these follow
from part (a).

¢ Exactness can be stated as im ¢° = ker ¢**! and so it follows from part
(a).

Exercise 1.3. a Let ¢ : F — 4 be a morphism of sheaves on X. Show
that ¢ s surjective if and only if the following condition holds: for every
open set U C X, and for every s € 4(U), there is a covering {U;} of U,
and there are elements t; € F (U;), such that ¢(t;) = s|y, for all i.

b Give an example of a surjective morphism of sheaves ¢ : F — ¢, and an
open set U such that ¢(U) : F#(U) — 4 (U) is not surjective.

Solution. a This is equivalent to saying that ¢ is surjective on each stalk.



b Consider the sheaf of holomorphic functions on C — {0} and the map
f — exp(f). For every holomorphic function defined on some open set of
C — {0} we can write it locally as f = log g for some f so this morphism
is surjective on stalks. Globally, we cannot.

Exercise 1.4. a Let ¢ : F — G be a morphism of presheaves such that
o(U) : F(U) — 4 (U) is injective for each U. Show that the induced map
¢T  FT = GT of associated sheaves is injective.

b Use part (a) to show that if ¢ : F — ¥4 is a morphism of sheaves, then
im¢ can be naturally identified with a subsheaf of &, as mentioned in the
text.

Solution. a Sheafification preserves stalks, now use Exercise 1.2(a).

b The image is defined as the sheafification of the “presheaf image” which is
certainly a subpresheaf of ¢. Sheafification preserves injective morphisms
and sheaves and so the image is a subsheaf of ¥.

Exercise 1.5. Show that a morphism of sheaves is an isomorphism if and only
if it is both injective and surjective.

Solution. Exercise 1.2(b) and Proposition 1.1.

Exercise 1.6. a Let F' be a subsheaf of a sheaf F. Show that the natural
map of F to the quotient sheaf F | F' is surjective, and has kernel F'.
Thus there is an exact sequence

0% - F > F/F =0

b Conversely, if 0 - %' — % — F" — 0 is an exact sequence show that
F' is isomorphic to a subsheaf of %, and that F" is isomorphic to the
quotient of F by this subsheaf.

Solution. a Shealfification is a left adjoint and therefor preserves colimits
(i.e. preserves surjections).

b The forgetful functor is the right adjoint to sheafification. Since it is a right
adjoint it preserves kernels and so 0 — %' — % is exact as a sequence of
presheaves. That is, #’ is a subsheaf of .%. Then use part (a).

Exercise 1.7. Let ¢ : % — &4 be a morphism of sheaves.
a Show that im ¢ = .F [ ker ¢.
b Show that coker ¢ =2 ¥ /im ¢.

Solution. Follows from Exercises 1.6 and 1.4(b).

Exercise 1.8. For any open subset U C X, show that the functor T'(U,—) from
sheaves on X to abelian groups is a left exact functor.



Solution. Since U is an open subset, there is a morphism of sites ¢ : X,pep, —
Uopern with underlying functor the inclusion Uspen, = Xopen. We also have a
morphism of sites defined by the continuous morphism p : U — e of U to a
point. Global sections of a sheaf .# on U is then p,i,.%#. Since both p, and i,
are right adjoints, they are left exact.

Exercise 1.9. Direct sum. Let .% and 4 be sheaves on X. Show that the
presheaf U — F(U) @4 (U) is a sheaf.

Solution. A consequence of the forgetful functor preserving limits.

Exercise 1.10. Direct Limit. Let {%#;} be a direct system of sheaves and mor-
phisms on X. We define the direct limite to be the sheaf associated to the
presheaf U lz_n;nfz(U) Show that this is a diret limit in the category of
sheaves on X.

Solution. Sheafification is a left adjoint and so preserves colimits.

Exercise 1.11. Let {%;} be a direct system of sheaves on a noetherian topo-
logical space X. In this case show that the presheaf U — ll_n}ﬁz(U) is already a

sheaf. In particular, T(X, lz_r)m%) = lzl)nF(X, Fi).

Solution. This is again a consequence of finite limits commuting with filtered
colimits. Since each %, is a sheaf, given an open set U and a cover {U; — U} we
can write 7, (U) as the limit lim.%, (U;;) where the limit is indexed by double
intersections with inclusions as morphisms.

If the space is Noetherian, then we can choose the cover to be finite, hence,
the limit is finite. So now for any open cover {U; — U} (which we can choose
to be finite)

Wy (ling, 7)) (Usg) = L (limy, .7, (Usg)) = lingy (i 7 (Ui))
= hginjn(U) = (ﬂlnﬁn)(U)

Exercise 1.12. Inverse limit. Let {%;} be an inverse system of sheaves on X.
Show that the section wise inverse limit is a sheaf.

Solution. Same as the previous solution but since arbitrary limits commute, we
don’t need to assume the cover to be finite.

Exercise 1.13. Espace Etalé of a Presheaf. Show that the sheaf F+ associated
to a presheaf F can be described as follows: for any open sets U C X, F1(U)
is the set of continuous sections of Spé(F) over U.

Solution. Let U be an open subset of X, and consider s € .ZT(U). We must
show that s : U —Spé(.#) is continuous. Let V' CSpé(.#) be an open subset
and consider the preimage s~'V. Suppose P € X is in the preimage of V. Since
s(Q) € F¢ for each point Q € X, we see that P € U. This means that there is
an open neighbourhood U’ of P contained in P and a section ¢t € .%(U’) such
that for all @ € U’, the germ ¢y of t at U’ is equal to s(U’). That is, s|g = t.



So we have s|;;+ (V) = t~1(V), which is open since by definition of the topology
on Spé(F), t is continuous. So there is an open neighbourhood ¢t=*(V) of P that
is contained in the preimage. The point P was arbitrary, and so we have shown
that every point in the preimage s~V has an open neighbourhood contained in
the preimage s~'V. Hence, it is the union of these open neighbourhoods, and
therefore open itself. So s is continuous.

Now suppose that s : U —Spé(.#) is a continuous section. We want to show
that s is a section of ZT(U). First we show that for any open V and any
t € F(V), the set t(V) CSpé(F) is open. To see this, recall that the topology
on Spé(F) is defined as the strongest such that every morphism of this kind is
continuous. If we have a topology % (where % is the collection of open sets)
on Spé(.#) such that each ¢t € #(U) is continuous, and W €Spé(F) has the
property that ¢t~1W is open in X for any ¢t € #(V) and any open V, then
the topology generated by % U {W} also has the property that each t € .7 (U)
is continuous. So since we are taking the strongest topology such that each
t € Z(U) is continuous, if a subset W CSpé(.#) has the property that t ='W is
open in U for each ¢t € .Z (U), then W is open in Spé(.%). Now fix one s € #(U)
and consider ¢t € F(V). For a point z € t~'s(U), it holds that s(z) = ¢(z). That
is, the germs of ¢t and s are the same at x. This means that there is some open
neighbourhood W of x contained in both U and V such that s|w = t|w, and
hence s = t for every y € W so W C t~1s(U). Since every point in t~1s(U) has
an open neighbourhood in ¢t~1s(U), we see that t~1s(U) is open and therefore
by the reasoning just discussed we see that s(U) is open in Spé(.%#).

Now let s : U —Spé(F#) be a continuous section. We want to show that s is
a section of .Z T (U). For every point x € U, the image of 2 under s is some germ
(t, W) in the stalk of # at xz. That is, an open neighbouhood W of x (which
we can assume is contained in U) and t € .#(W). Since s is continuous, and
we have seen that t(W) is open, it follows that s~1(¢(W)) is open in X. This
means there is an open neighbourhood W’ of  on which ¢|y+ = s|w. Since s
is locally representable by sections of .%, it is a well defined section of .# .

Exercise 1.14. Support. Let F be a sheaf on X, and let s € F(U) be a
section over an open set U. The support of s, denoted Supp s, is defined to be
{P € Ulsp # 0}, where sp denotes the germ of s in the stalk Fp. Show that
Supp s is a closed subset of U. We define the support of %, Supp %, to be
{P € X|.Zp # 0}. It need not be a closed subset.

Solution. We show that the complement of the support V is open. For every
point P € V, since P is not in the support the germ of the section s is zero.
This means there is a neighourhood Vp of P on which s vanishes. Note that
Vp N Supps = & since an intersection would imply sg = 0 for all @ in the
intersection. Now V = UVp, a union of opens, therefore V is open.

An example of a sheaf whose support is not closed is ji.# from Exercise
1.19(b).

Exercise 1.15. Sheaf JZom. Let %, & be sheaves of abelian groups on X.
For any open set U C X, show that the set hom(.Z |y, ¥|uy) of morphisms of



the restricted sheaves has a natural structure of abelian group. Show that the
presheaf U — hom(Z |y, ¥9|v) is a sheaf.

Solution. Suppose we have an open set U, a cover {U; — U}, and a set of
natural transformations ¢; : F|y, — ¥|u,, that agree on restrictions to the
Ui;. We define a natural transformation #|y — ¢|y. Given an open subset
V C U we want a morphism .# (V) — 4 (V). Since {VNU; — V} is a cover
of V, we can write .# (V) and .Z(G) as a limit over {V NU;;} and we already
have morphisms .Z#(V N U;;) — 4(V NU;;) from our initial data. It doesn’t
matter which morphism we choose since the requirement that the ¢; agree on
restrictions means they will be the same. So now we have a morphism % (V') —
4 (V) between the limits, it remains to show that these actually form a natural
transformation, but this can be seen by drawing the appropriate diagram

[TF (Vi) ——T1F(Vij)

NN

W) ——[[F(W;) ——=[[F(W;)

| |

GV) — | =116V —|=11G(Vy)

NN N

GW) ——=[IGW;) —=[1G(Wy;)

F (V)

Exercise 1.16. Flasque Sheaves. A sheaf .# on a topological space X is flasque
if for every inclusion V. C U of open sets, the restriction map F(U) — F(V)
18 surjective.

a Show that a constant sheaf on an irreducible topological space is flasque.

b If0 - F' — F — F"” — 0 is an exact sequence of sheaves, and if F'
is flasque, then for any open set U, the sequence 0 — F'(U) —» F(U) —
F"(U) = 0 of abelian groups is also exact.

cIf0—- F — .7 — F" — 0 is an exvact sequence of sheaves, and if F'
and F are flasque, then " is flasque.

d If f: X —Y is a continuous map, and if F is a flasque sheaf on X, then
f«Z is a flasque sheaf on Y.

e Let & be any sheaf on X. Show that the sheaf of discontinuous sections
dis F s flasque and that there is a natural injective morphism of F into
des F

Solution. a If X isirreducible then every open set is connected and we have
already seen that a constant sheaf takes every connected open subset to
the same set/group. So all the restrictions are identity morphisms and
hence, it is flasque.



b The only thing to prove is that #(U) — F"(U) is surjective. Let f €
F"(U). Since the morphism .#% — %" is a surjective morphism of sheaves
there is a cover {U;} of U on which the restriction of f lifts to an element
{fi} of Z(Us).

Hij y/(Uij) - Hij y(Uij) — Hij y”(Uz")

T

[I; 7'(Us) I, 7(U) ——11, 7" (U:)
F'(U) F(U) F"(U)

Since f is a global section on U, the restriction to [[.#"(U;;) is zero
and so the element {fi|,, — fjlv,;} gets sent to zero horizontally. Since
sectionwise exactness in the middle is given automatically, this element
pulls back horizontally to some {g;;}. We have assumed .%#’ to be flasque
and so there is a {g;} in the preimage of {g;;}.

{gij}'>{f’i|Uij _fj|Uij} """" >0 : 0
! A A A

{9} )0k (e = )
/ L

Now by commutivity of the diagram, {g;—f;} € [[, # (U;) is in the vertical
kernel, and therefore lifts to some global section h € % (U). Now if we
push h up and to the right we get the restriction of f. So the image of h
in #”(U) hasthe same restriction as f. Since #” is a sheaf this means
that h = f in .#"(U). So we have found an element in the preimage of f.

¢ Let V. C U be open sets in the topological space X and consider the
following diagram.

We know that the rows are exact by the previous part, and the columns
are exact by the assumption that .#’ and .# are flasque. It is now a



straightforward diagram chase to find a preimage in %" (U) to anything
in F"(V).

d For opens V C U of Y we have
(fF (V) = £ FU) = (Z(fTV) = F(g7'U))
which is surjective.

e In general, for a subset I of set J indexing objects in some category C', the
morphism []; X; — [[; X; induced by the inclusion I C J is surjective.
The restriction morphisms are special cases of this where the indexing
sets are points in the opens. The natural injective morphism .# — dis .F
is clear. It is injective since two sections of a sheaf are the same if and
only if they agree on stalks. If % were to be a nonseparated presheaf the
morphism wouldn’t be injective.

Exercise 1.17. Skyscraper Sheaves. Let ip(A) be the skyscraper sheaf of a
space X at a point P for an abelian group A. Verify that the stalk of ip(A) is A
at every point Q € {P} and 0 elsewhere. Show that this sheaf can be described
as ix(A), the pushforward of the constant sheaf A on {P}.

Solution. Let Q be a point. If Q ¢ {P} then there is a neighbourhood U 3 Q
which doesn’t contain P. Every element in the stalk can be represented by
(s,W) where W C U and there for s = 0. So the stalk is zero. Conversely, if
Q € P, then every open neighbourhood of @ contains P, and so every group in
the limit defining the stalk is A, with transition morphisms identities. Therefore
the stalk is A. L

Let A be the constant sheaf of {P}. If U C X doesn’t contain P then
iU = @ and so i.(A)(U) = A(i"'U) = A(@) = 0. If U does contain P, then
i~'U = {P} and so i,(A)(U) = Ai~'U) = A({P}) = I'(A,{P}). It remains
only to show that { P} is connected so that I'(A, { P}) = A but this follows from
it having a unique generic point.

Exercise 1.18. Adjoint Property of f='. Show that f=! is the left adjoint to
e

Solution. If we denote f, ¢ the functor that sends a sheaf .# to the PREsheaf
Uw— mvgf(U)ﬁ(V) then we have

homgy, vy (afpeZ,9) = hompesny)(foreF ) = homgp(x) (F, f.9)

The theory of Kan extensions shows that fpj,le is the left adjoint to f, and we
already know that sheafification a is the left adjoint to the forgetful functor. So

the composition f~!' =a z;é is left adjoint to the “composition” f,.

Exercise 1.19. Extending a Sheaf by Zero. Let X be a topological space, let
Z be a closed subset, let i : Z — X be the inclusion, let U = X — Z be the
complementary open subset, and let j : U — X be its inclusion.



a Let F be a sheaf on Z. Show that the stalk (i..F)p of the direct image
sheaf on X is Fp if P€ Z,0if P ¢ Z.

b Let F be a sheaf on U. Show that the stalk (j1(F))p is equal to Fp if
PcU,0if P¢U, and show that j.% is the only sheaf on X which has
this property, and whose restriction to U is F .

¢ For % € Sh(X) show that there is an exact sequence of sheaves on X

0= j(Flv) = F = i.(Flz) =0

Solution. alf P¢ Z and (U,s) € (i«.%)p then there is an open subset
V of U containing P but not intersecting Z. Since V doesn’t intersect
Z, (ix.#)(V) = 0 and so s|y = 0, hence (U,s) = 0. Now suppose that
PeZviak: P — Z. The stalk (i..#)p is the group of global sections of
(ik)*(i.F) = k*i*i..F = k*F which is the stalk Zp.

b If P ¢ U then every open set containing P is not contained in U and so
every group in the diagram that defines the limit (ji(:%#))p is zero. Hence
(j1(.F))p is zero. Alternatively, if P € U then for every open set P € V
there is an open set P € V/ C U and so every element (V,s) of the stalk
is equivalent to an element (V’,s|y/) of the stalk Zp.

¢ We just need to show that the sequence is exact on each of the stalks. From
the previous two parts of the exercise however, depending on whether P
is in U or Z we either get an isomorphism followed by a zero object, or
the zero object followed by an isomorphism. So the sequence is exact on
the stalks.

Exercise 1.20. Subsheaf with Supports. Let Z be a closed subset of X, and
let F be a sheaf on X. We define I'z(X, F) to be the subgroup of T'(X, F)
consisting of all sections whose support is contained in Z.

a Show that the presheaf V. +— Tzav(V, Z|v) is a sheaf. It is denoted
AR (F).

b Let U =X —Z, and let j : U — X be the inclusion. Show that there is
an exact sequence of sheaves on X

0= HZ(F) = F = ju(Fv)
Furthermore, if & is flasque, the map F — j.(F|u) is surjective.

Solution. a Since it is a subpresheaf of a sheaf we know that it is separated.
Let U be an open subset of X and {U;} a cover of U. Suppose that s; is
a section of I'zny, (U;, #|u,) for each ¢ and that the restrictions of s; and
sj to U;; agree. Since all this takes place in a subpresheaf of a sheaf there
is some s € % (U) whose restriction to the U; are s;. The only thing to
check is that s has support inside Z. Suppose that P € U\Z. Since the



U; cover U, the point P is in one of the U;. Since s; is the restriction of s
to U;, the germ sp agrees with (s;)p which is zero. Hence, sp = 0 for all
PeU\Z. So s € I'znu (U, Z|u) and hence, #2(.F) is a sheat.

b First note that if U N Z = @ then 52 (.Z)(U) = 0 since 53 (F)(U) is

the group of sections whose support is contained in Z, but ZNU = @ and
so 2 (F)(U) is the group of sections with empty support. Since .Z is a
sheaf, any section whose germ is zero at every point is trivial itself, and
so H2(F)(U) =0.
Now for a point P ¢ Z, any section of the stalk (V,s) can be represented
by (V/,s|y/) with V' N Z = @ (take V/ = V N Z¢). But this means that
sy, = 0 and so the stalk of (%) ar P &€ Z is zero. As has been noted
in the previous exercise, for P € U the stalks %p and (j.(F|v))p are the
same, and so the sequence is exact on stalks at these points.

Now consider a point P € Z and an element (V,s) € Zp. If this element
gets sent to zero it means that there is some open subset V' C V such
that s|y+ is zero in j.(F|p)(V) = F(UNV'). HTUNV' # & we have
(V,s) ~ (UNV', slunv+) and so our original germ was trivial. fUNV' = &
then V/ C Z and so (V’, s|y/) is an element of (0 (F))p.

Now consider an element (V,s) of (W2 (%))p, with P € Z still, and its
image in (j«(-Z|v))p. Thisis (V,t) where t is the image of s under the map
HUF)NV) = §u(Zy)(V) = Z(U N V) which is essentially restriction
of s to U N V. Since the support of S is contained in Z, restricting it to
something contained in U = Z°¢ will give zero. Hence, (V,t) = 0. So the
sequence is exact in the middle term.

As has just been noted, for any open set V' the morphism Z#(V) —
J«(Fly) = F(U NV) is restriction, and so if % is flasque, the right-
most arrow is surjective as a morphism of presheaves. This means that it
is also surjective as a morphism of sheaves.

Exercise 1.21. Some Examples of Sheaves on Varieties. Let X be a variety
over an algebraically closed field k. Let Ox be the sheaf of reqular functions on
X.

a LetY be a closed subset of X. For each open set U C X, let Sy (U) be the
ideal in the ring Ox (U) consisting of those reqular functions which vanish
at all points of Y NU. Show that the presheaf U — Py (U) is a sheaf.

b If Y is a subvariety, then the quotient sheaf Oy /%y is isomorphic to
i+(Oy) where i :' Y — X is the inclusion and Oy is the sheaf of regular
functions on Y.

¢ Now let X =P, and let Y be the union of two distinct points P,Q € X.
Then there is an exact sequence of sheaves on X, where F = i, Op ®i.0¢

0= S - 0x - F =0



Show however that the induced map on global sections T'(X,Ox) — T'(X, %)
18 not surjective.

d Again let X =P, and let O be the sheaf of regqular functions. Let J be
the constant sheaf on X associated to the function field K of X. Show
that there is a natural injection O — . Show that the quotient sheaf
H | O is isomorphic to the direct sum of sheaves ) pcx ip(Ip) where I,
is the group K/Op, and ip(Ip) denotes the skyscraper sheaf given by Ip
at the point P.

e Finally show that in the case of (d) the sequence
0-1(X,0x) >1(X, %) >T(X,#/0x) =0
15 exact.

Solution. a Let {U;} be an open cover of an open subset U, and suppose
we are given sections f; € #y(U;) that agree on their restrictions to the
intersections U; N U;. Since #y is a subpresheaf of a sheaf, we know that
we can find a section f € Ox(U) whose restrictions to U; are the f;, we
just need to check that it is indeed in .#y (U). That is, that the function
f U — k vanishes at all points of Y NU. If P is a point of Y N U then
since {U;} is a cover, P is contained in some U;. The restriction of f to U;
is fi, so f(P) = f;(P) which is zero since f; € #y(U;). Hence, f vanishes
at all points of U NY and is therefore in %y (U).

The fact that #y is a separated presheaf comes from the fact that every
presheaf of a separated presheaf is separated, and every sheaf is separated.

b Let U be an open subset of X. If f € Ox(U) is a regular function on U,
then it is a function U — k that is locally representable as a quotient of
polynomials. Restricting to Y NU gives a section of Oy (UNY) = 4, (UNY)
and so we obtain a morphism Ox — i,Oy. We want to see that the
sequence

0— S - O0x - 1.0y =0

is exact. It follows from the definition of .#y that the sequence is exact
at #y and at Ox. To see exactness at i, Oy, consider a point P € X and
the morphism of stalks (Ox)p — (i.Oy)p. If P ¢ Y then (i,.Oy)p is
zero, as there is an open neighbourhood of P not intersecting Y, so the
morphism of stalks is surjective. Suppose P € Y. An element of (i,Oy)p
is represented by a rational function on the ambient affine or projective
space, which doesn’t have a pole at P. This ambient space also includes
X, and so this rational function also represents an element of (Ox)p.
Hence, (Ox)p — (i+Oy)p is surjective, and so the sequence of sheaves is
exact.

¢ Recall that P! is the set of linear subspaces of k2. Since the projective
general linear group is transitive on pairs of distinct points, we can assume
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that P = (0,1), and @ = (1,1) and therefore, the sequence will be exact
if and only if it is exact on its restriction to Al = {(0,a)|a € k} where
P=0and Q = 1.

Now the sequence on the stalk at a point R falls into three cases: either
R=P R=Qor R# P,Q. Incase R # P,Q, there is an open set
U containing R which does not contain P and @: the complement of
the closed subset defined by z(x — 1) € k[z]. On this open set we have
F(U) = 0, by definition the skyscraper sheaves, and %y (U) = Ox(U),
by definition of .#y-. Hence, the sequence is exact for any point in U.

If R = P, then the sequence is the same so suppose that R = ). The
stalk of Ox at @ is the ring of rational functions whose denominator
doesn’t vanish at (). That is, (Ox)g = {§|g(1) # 0}. The ideal (Hy)q is
the subset of functions whose numerator does vanish at @, that is (Sy)g =
{§|g(1) # 0, f(1) = 0}. The quotient is isomorphic to k via evaluation at
1, which is the stalk of .# at Q). So the sequence is exact at @, and by
symmetry, also at P.

On global sections however, the sequence is
0-0—-k—kdk—0

which cannot be exact.

By definition, a regular function on U is a function that is represented
locally by a rational function, that is, a section of ¢ (U). More explicitely,
a regular function on U is a function f : U — k, such that there is an open
cover {U;} of U on which f|y, is a rational function with no poles in Uj.
Since the f; are restrictions of f as functions, they agree as functions on the
intersections U;;, and therefore define a section of # (U), the sheafification
of U — K.

The morphism 2" — >~ . ip(Ip) should be clear. To show exactness it
is enough to show exactness on the stalks. The sequence on a stalk takes
the form

O—)OP—><%/p—>(Z iQ(IQ))p-)O
QeXx

Since £ is a constant sheaf, it takes the value K at every stalk. On the
right, we have a sum of stalks of skyscraper sheaves, all of which vanish
except @ = P which by definition is K/Op. Hence, the sequence is

0—-0p—K—K/Op—0
which is exact.

The global sections functor is left exact so we only need to show that
X, %) — I'(X, % /Ox) is surjective. Using the description of 2 /O
from the previous part as > ip(Ip), our task is the following: given a

11



rational function f € K and a point P, find another rational function
f' € K such that f' € Oq for every Q # P and ' — f € Op.

Using the isomorphism K = k(zx), we can write f = ggg = %
i=1 i

and then the points in Al C P! for which f & Og are those corresponding
to b;, and f &€ Oy if m < n. Infact, write f as f = x‘”% with = Jfa, B.
Since PGL(1) is transitive on points, without loss of generality we can
assume that our point P is 0 € A!. If v < 0 then choosing f’ = 1 satisfies
the required conditions. If v > 0, then choose f' = % with ¢; defined

iteratively via ¢y = % and ¢; = ﬁo_l(ai — Z;;E ‘cjﬁi_j) where «;, 3; are
the coefficients for & = > a;z* and ' = > B;2" respectively. Our thus

chosen f’ satisfies the requirement that ' € Og for all @ # P and so
consider f — f'. We have f — f/ = -2, — Licoci _ @=F 2 0% The jth

- xuﬁ/ TV ] :1:1//8/
coefficient of the numerator for i < v is a; — Z;:o ¢jBi—; which is zero
due to our careful choice of the ¢;. So the z¥ in the denominator vanishes
and we see that f — f' € Op since z f3'.

Exercise 1.22. Glueing Sheaves. Let X be a topological space, let {U;} be an
open cover of X, and suppose we are given for each i a sheaf F#; on U;, and for
each i,j an isomorphism ¢ : Fi|lu,nv;, = Fjlv.nu, such that (1) for each i we
have ¢;; = id, and (2) for each i, j, k we have ¢;r, = ¢jr0¢;; on U;NU;NUy. Then
there exists a unique sheaf F on X, together with isomorphisms v; : F |y, =2 F;
such that for each i,j we ahve ¥; = ¢y5 0 ; on U; NU;.

Solution. Let ¢; : Uy — X and ¢ : Uy NU; — X be the inclusions of the
open sets and define ¥, = 1;,.%; and 9;; = 1;;4(F; Uij)' Restriction induces
morphisms ¥; — %;; and restriction composed with ¢;; gives morphisms ¥; —
9;;. Define & = l&ng to be the inverse limit of the system of ¥;’s and ¥;;’s.
This comes naturally with morphisms .# — ;. By considering stalks we see
that the morphisms |y, — %y, = &; are isomorphisms, since on stalks, every
morphism of the system that we took the limit over becomes either zero or an
isomorphism, and the isomorphisms are compatible due to the cocycle condition.
If there were to be another sheaf .%’ with isomorphisms as stated in the question,
this would define a cone of the system. So there would be a morphism %' — %
and considering stalks shows that this would be an isomorphism.

12



2 Schemes

Exercise 2.1. Let A be a ring, let X = Spec A, let f € A and let D(f) C X be
the open complement of V((f)). Show that the locally ringed space (D(f), Ox|p(s))
is isomorphic to Spec Ay.

Solution. Let ¢ : A — Ay be the obvious ring homomorphism. This evidently
defines a scheme morphism Spec Ay — Spec A.

The ideal generated by the image ¢p of a prime ideal p of A is the set
Ap = {f% :n € N,a € p} which is prime in Ay, and its inverse image ¢! (Ap)
is p, unless f € p in which case Ay¢p = A;. So the morphism Spec Ay — Spec A
is surjective onto the underlying space of D(f).

Let p, q be two points of Spec A that get sent to the same image in Spec A.

This means that all of their elements of the form ¢ are the same. Now fi €p

if and only iff f"f% =a € p if and only if a € q if and only if fina = f% € q and
so p = q. Hence, the morphism is injective on the underlying space of Spec Ay.

This bijection of sets is continuous automatically since if comes from a ring
homomorphism. To see that it is a homeomorphism we need to show that it
is open. Let a C Af be an ideal and b = (f) N¢~'a C A. A prime ideal
p € Spec Ay is in the open complement of V(a) if and only if p % a if and only
if ~1p 2 b and conversely, q € Spec A is in the open complement of V (b) if
and only if q A b if and only if Ayq 2 a and so we have a homeomorphism.

It remains to show that the morphism of structure sheaves Ogpec 4|, 5
F.Ospec A, (where F is the scheme morphism) is an isomorphism. It is enough
to check this on the stalks. Let p € D(f). The stalk of Ogpec 4 is A, and the
stalk of F,Ogpec 4, is (Af)p where we confuse p with its preimage in Spec Ay.
Since f # p the morphism A, — (Ay), induced by ¢ is clearly an isomorphism.

Exercise 2.2. Let (X,0x) be a scheme, and let U C X be any open subset.
Show that (U, Ox|y) is a scheme.

Solution. Let Spec A; be an affine open cover for X. The intersection of each
Spec A; with U is an oen subset of Spec A; which is therefore covered by basic
open affines D(f;;). Hence, we obtain an open affine cover Spec(4;)y,; for U.

Exercise 2.3. Reduced Schemes.

a Show that (X,Ox) is reduced if and only if for every P € X, the local
ring Ox p has no nilpotent elements.

b Let (X,0x) be a scheme. Show that X,eq e (X, (Ox)req) is a scheme.
Show that there is a morphism of schemes X,eq — X, which is a homeo-
morphism on the underlying topological spaces.

¢ Let f: X =Y be a morphism of schemes, and assume that X is reduced
Show that there is a unique morphism g : X — Y,cq such that f is obtained

by composing g with the natural map Y,eq — Y.
The reson-

ing behind
the glueing
here needs to
be checked
and/or made
more explicit.



Solution. a Suppose that (X, Ox) is reduced. So Ox(U) has no nilpotent
elements for each U. Let P € X be a point and consider a representative
(U, s) of an element of the stalk. If this element is nilpotent, then there
is some subneighbourhood V' 5 P of P on which s™ vanishes, but Ox (V)
has no nilpotents, so s vanishes on V' an therefore (V, s|y) = (U, s) is zero.
Hence, the stalk has no nilpotents.

Suppose conversely, that each stalk has no nilpotents, and suppose that
s € Ox(U) is nilpotent, say s” = 0. Then the germ of s™ is zero at each
point in U. Since the stalks have no nilpotents, this means that the stalk
of s vanishes at each point of U. But this means that s = 0 since a sheaf
is a separated presheaf. So Ox (U) has no nilpotents.

b Suppose that X = Spec A is affine and denote by A,.4 the quotient A/R
where | = R(A) is the nilradical of A. Since every prime ideal of A con-
tains R, as topological spaces, sp Spec A = sp Spec A,.q. Now for a basic
open affine D(f) we have Ogpec(a,..)(D(f)) = (A/R)y = Af/(R(Af)).
That is, on a basic open affine U we have Ogpec(a,..) U = O(spec A),a|U-
Since the basic opens cover X this shows that Spec(A,cq) = (X, (Ox)red)-

Now for a general scheme X, a cover of X with open affines Spec A4; gives
a coer Spec(A;)req for (X, (Ox)req). Hence, the latter is a scheme.

The homomorphism X — X,..4 is induced on an affine cover Spec A; C X
by the ring morphisms A; — A;/R(A;). We have already seen that it is a
homeomorphism on the underlying topological spaces.

¢ Let V; = Spec B; be an open affine cover for Y, and let U;; = Spec 4;; be
an open affine cover of f~!V;. As in the previous part V;"*¢ = Spec BI*? is
an open affine cover for Y,..q and the morphism Y,..q — Y is induced by the
ring homomorphisms B; — B ed Now since each A;; is reduced, R(B;)
is in the kernel of each of the ring homomorphisms B; — A;; and so these
factor uniquely as B; — Bfed — A;;. So the morphisms U;; — V; factor
uniquely as U;; — V[ed — V;. The same is true of each intersection of te
U;;’s and so this gives rise to a unique factorization f~1V; — vred — V.
These patch to give a unique factorization X — Y,eq — Y.

Exercise 2.4. Let A be a ring and let (X, O)X be a scheme. Given a morphism
f: X — Spec A we have an associated map on sheaves f# : Ospec a4 — f+Ox.
Taking global sections we obtain a homomorphism A — T'(X,Ox). Thus there
s a natural map

a : homgp (X, Spec A) — homming (4, T'(X, Ox))
Show that « is bijective.

Solution. We will show that Spec(—) : Ring — Scb is a right adjoint to
I'(—,0-) : &h — Ring. One way to show this is to provide two natural
transformations

7 : idgen, — Specol’ € 1 1dRings — 1" 0 Spec



such that for all A € Rings and X € Gch we have
FnX CeErx = Z'dl—‘X and Spec €A O TSpec A = Z'dSpeCA

The obvious choice for ¢ is the isomorphism of Proposition 2.2 (c). For a scheme
X we define the natural transformation 7 as follows. Let U; = Spec A; be
an affine cover of the scheme. FEach restriction '’ X — A; gives a morphism
Spec A; — SpecI'X and since the restriction I'’X — Ox (U;) — Ox (U;;) is the
same as ['X — Ox(U;) — Ox(U;;) these morphisms glue to give a morphism
X — SpecT'X.

So now since ¢ is an isomorphism, we just have to show that for any scheme
X and A a ring, I'nx is an isomorphism, and 7gpec 4 is an isomorphism. For
a scheme consider the morphism n : X — SpecI'X just defined. It comes
with a sheaf morphism Ogpecrx — 17.Ox whose global sections we want to
be an isomorphism. This is indeed the case. Now for a ring A, we have a
sheaf morphism Spec A — SpecI'Spec A and since I' Spec A = A this too is an
isomorphism. Hence, the functors are adjoints and so « is a bijection.

We can more explicitely describe the bijection now as sending ¢ : A —
I'(X, Ox) to the composition

X 8 SpecI'(X, Ox) Spegd Spec A
and sending (f, f#): X — Spec A to

f#(S_>pec A)

A = I'(Spec A, Ogpec 4) I'(X,0x)

Exercise 2.5. Describe SpecZ and show that it is a final object for the category
of schemes.

Solution. Description. There is one closed point (p) for every prime number p
and one generic point (0). As the ideals of Z are (n), the closed subsets are finite
sets of primes (the prime divisors of n) and the open sets are their complements,
together with the empty set. As a consequence, every closed subset is of the form
D(n) for some integer n and so the structure sheaf takes an open set D(n) to
Z localized at the prime divisors of n that is, Ospecz(D(n)) = {§ :p /b V p|n}.
The value of the structure sheaf on the whole space is Z (since it is affine).
Final object. We have seen by the adjunction between Spec and I' that
the morphisms from a scheme X to an affine scheme Spec A are in one to one
correspondence with the morphisms A — I'(X,Ox). Since we consider only
identity preserving ring homomorphisms, there is a unique one of these if A = Z.

Exercise 2.6. Describe the spectrum of the zero ring, and show that it is an
initial object for the category of schemes.

Solution. The zero ring as no points as there are no proper prime ideals. The
structure sheaf takes the usual value on the empty open set. As the point set is
empty, there is a unique morphism of topological spaces from sp Spec0 to any
topological space X. If X is a scheme, then the structure sheaf pulls back to the
structure sheaf of Spec0, which has a unique morphism to itself - the identity
morphism. Hence, Spec0 is initial.



Exercise 2.7. Let X be a scheme and K a field. Show that to give a morphism
of Spec K to X it is equivalent to give a point © € X and an inclusion map
k(z) —» K.

Solution. Since Spec K has a unique point, unique nonempty open set, and
global sections K, given a point x we obtain immediately a continuous morphism
of topological spaces i : Spec K — X. To define the sheaf morphism i# : Ox —
1+ Ogpec k Note that i, Ogpec i is the skyscraper sheaf with ring of sections K so
for every open set U 3 x we need to give a ring homomorphism Ox (U) — K in
a way natural in U. We define these morphisms as the composition

Ox(U) = Ox 4 — k(z) > K

they are natural in U by definition of Ox ,.

Conversly, given a scheme morphism (i, %) : Spec K — X we obtain a point
x = 4((0)), the image of the unique point of Spec K. For the inclusion map,
consider an affine open Spec A containing x. In Spec A, the point z is a prime
ideal p and so if ¢ : A — K is the corresponding ring homomorphism, p is the
kernel of ¢ and so we get an induced inclusion k(z) = A, /pA, — K.

Exercise 2.8. Let X be a scheme over a field k. Show that to give a k-morphism
of Spec kle] /€% to X is equivalent to giving a point x € X, rational over k and
an element of homy,_ye.(m,/m2, k).

Solution. Let T = Spec kle]/€>.

Supose that we have a morphism of schemes (7,7%) : T — X. We get a point
x by taking the image of the unique point in T'. To see that it is k-rational note
that we have an inclusion of fields k() — k induced by 7 but since the morphism
T is a k-morphism, this has to be compatible with the structural morphism to
k. So we have inclusions k C k(z) C k and therefore k(z) = k. Now consider
77 : Ox.. — k[e]/€%, the stalk of 7#. Taking an open affine Spec A containing x
we can write this as A, — k[e]/e? where p is the prime ideal correpsonding to .
This morphism is induced a ring homomorphism ¢ : A — k[e]/e? whose scheme
morphism 7" — Spec A sends (¢), the only point of T, to p. So ¢~ ((¢)) = p and
therefore every element in (pA,)? = m?2 gets sent to (e?) which is zero. Hence,
the composition

m, C Ox,. — kle]/e® = k

passes to a k-homomorphism m,/m2 — k.

Now suppose that we are given a point z € X, rational over k, and an element
¢ € homy_vyec(m,/m2, k). The morphism 7 : T — X of topological spaces is
easily defined by sending the unique point of 7' to z. To define a mophism of
sheaves 7% : Ox — 7.O7 we need to give a morphism Ox (U) — k[e]/e? for
every open subset U 3 x containing x. We will give a morphism Ox , — kle]/e?
and then define Ox (U) as the composition

Ox(U) — OX@ — k‘[e]/eQ



Let o denote the morphism Ox , — k(z) = k. Then we claim that

Ox oz — k[e]/e2
fr=alf)+6(f —a(f)e

is a ring homomorphism. Assuming it is well-defined, it is immediate that it is
k-linear, and so we just need to notice that f — a(f) really is in m the maximal
ideal ' and that for f,g € Ox . the relation

o(fg—alfg)) =o(f —a(f))alg) + a(f)o(g — alg))
holds. 2

Exercise 2.9. If X is a scheme show that every (non)empty irreducible closed
subset has a unique generic point.

Solution. Claim 1: If n is a generic point of Z then n is in Z N U for all open
sets U that have nontrivial intersection with Z. Suppose that n # ZNU. Then n
is in its complement Z¢UU®. We know that n € Z and so  # Z¢ and therefore
n € U°. Since U° is closed and contains 7, it must contain Z, the closure of 7.
Hence, ZNU = @.

Using the claim we have just proven, we can reduced to the affine case by
chosing an open affine, say Spec A, that has nontrivial intersection with Z.

Claim 2: If a closed subset V(I) C Spec A is irreducible then \/T is prime.
Let fg € /T and consider the closed subsets Z; = V(I;) and Zo = V(I) where
I = (f)+ VI and I, = (g) + VI. If h € I, N1, then we can write h = af +i =
bg + j for some a,b € A and 4,5 € /1. Then h? = abfg + ij + ibg + afj and so
all these terms are in v/I, so is h? and therefore so is h. So I; + I, = /I, but
since V(1) is irreducible this means either I; = /T or Iy = v/I. Hence, either f
or g are in VT and so /T is prime.

It is now straightforward to see that v/T is the unique generic point of V(I).

Exercise 2.10. Describe SpecR[z]. How does its topological space compare to
the set R¢ To C?

Solution. Spec R[z] has one point for every irreducible polynomial, together with
the generic point (0). There is one closed point for every real number (r — a)
and one for every nonreal complex number (z + o)(x + @) where o € C. The
residue field at the real numbers is R and at the “complex numbers” is C. The
closed sets are finite collections of points and the open sets their complements.

Exercise 2.11. Let k = [, be the finite field with p elements. Describe
Speck[z]. What are the residue field of its points? How many points are there
with a given residue field?

IThis is a consequence of the composition k — Ox z = k(z) = k being the identity.

2This is more involved. By k-linearity of ¢ we just need to show that fg — a(fg) and
fa(g) —a(f)a(g) +a(f)g —a(f)a(g) get sent to the same place by ¢. This will hapen if their
difference is in m2, and this can be seen by expanding (f — a(f)(g — a(g)) € m2.



Solution. Speck[x] has the generic point and one point for every (monic) ir-
reducible polynomial. The residue field of a point corresponding to a poly-
nomial of degree n is the finite field with p™ elements. To count how many
irreducible polynomials there are of degree n, consider the field F,». Every
irreducible polynomial f(x) of degree n gives an element of Fyn via the isomor-
phism F,[z]/(f(z)) — Fp» and every element « of F,» that is not contained in
any subfields gives an irreducible polynomial of degree n by taking its minimal
polynomial []7—/ (z — a?"). These processes are inverses of each other and so
we want to count the number of elements of F,» not contained in any subfields.

This quantity is
> u(d)p?
d|n

where

(d) = 0 if d has repeated prime divisors
1% - (_1)(# prime divisors—1) otherwise

Exercise 2.12. Glueing Lemma. Let {X;} be a family of schemes (possibly
infinite). For each i # j, suppose given an opent subset U;; C X; and let if have
the induced scheme structure. Suppose also given for each i # j an isomorphism
of schemes ¢;; : Uj; — Uj; such that (1) for each i,j, ¢ = (;Si_jl, and (2) for
each 1,5,k ¢;;(Ui; NUs) = Ui NUji, and ¢i, = @jppij on Uy N U4.

The show that there is a scheme X, together with morphisms m; : X; — X
for each i, such that (1) 1; is an isomorphism of X; onto an open subscheme of
X, (2) the ¢1(X1) cover X, (3) wl(Uw) = wi(Xi)ﬂwj(Xj) and (4) % = '(/)jo¢ij

on Uij~

Solution. First define a topological space X as the quotient of [ X; by the
equivalence relation x ~ y if x = y, or if there are 7,j such that x € Uy; C
Xi, y € Uj; C X;, and ¢;;x = y. This relation is reflexive by definition,
symmetric since ¢;; = (bi_j , and transitive since ¢;;, = ¢;i 0 ¢;;, hence is really
an equivalence relation. We take the quotient topology on X =[] X;/ ~ (a set
is open in X if and only if its preimage under [[ X; — X is open; in particular
the image ¢;(X;) of X; is open for each i since its preimage is X; [[([]; Uj:)).
Now for each ¢ we have a sheaf 1, Ox, on the image of X; by pushing forward the
structure sheaf of X;, and on the intersections, we have the pushforward of the
isomorphisms qﬁf;, and these satisfy the required relation to use Exercise 1.1.22
to glue the sheaves together obtaining a sheaf Ox together with isomorphisms
Vi : Oxlyx, = 1.Ox,. So now we have a locally ringed space (X,Ox) and we
immediately see that v; : X; — X is an isomorphism of locally ringed spaces
onto an open locally ringed subspace of X. Hence, X is a scheme that satisfies
(1). Tohat (2) is satisfied follows from our definition of the uderlying space of X
as a quotient of [ [ X;. To see (3) let « be a point in ¢;(U;;). Then the preimage
of z in [] X, is certainly contained in X as well so ¢¥(U;;) € v;(X;) N (X;).
Conversely, if « € 1;(X;) N;(X;) then there are z; € X; and z; € X; that are
equivalent under ~. Hence, x; € U;j, x; € Uj;, and 9;5(x;) = x5 so x € ¥;U;;
and therefore ¥(U;;) = ¥ (X;) N;(X;). (4) is fairly clear as well.



Exercise 2.13. A topological space is quasi-compact if every open cover has a
finite subcover.

a Show that a topological space is noetherian if and only if every open subset
18 quasi-compact.

b If X is an affine scheme show that sp(X) is quasi-compact, but not in
general noetherian.

¢ If A is a neotherian ring, show that sp(Spec A) is a noetherian toplogical
space.

d Give an example to show that sp(Spec A) can be noetherian even when A
18 not.

Solution. a Let X be noetherian, U an open subset and {U;} a cover of U.
Define an increasing sequence of open subsets by Vy = @ and V11 = V;UU;
where U; is an element of the cover not contained in V;. If we can always
find such a U; then we obtain a strictly increasing sequence of open subsets
of X, which contradicts X being noetherian. Hence, there is some n for
which U ,U; = U and therefore {U;} has a finite subcover.

Suppose every open subset of X is quasi-compact. Suppose Uy C Uy C ...
is an increasing sequence of open subsets of X. Then {U;} is a cover for
UU;. Since this has a finite subcover, there must be some n for which
U, = U,+1, hence, the sequence stabilizes and X is noetherian.

b Let {U;} be an open cover for sp(X). The complements of U; are closed
and therefore determined by ideals I; in A = T'(Ox, X). Since UU; = X
the I; generate the unit ideal and hence 1 = 2?21 [39i; for some f; where

gi; € Iy;. Then {I;,,...,I; } also generate the unit ideal and therefore we
have a finite subcover {U;,,...,U;, }.
An example of a non noetherian affine scheme is Spec k[x1, 22, .. .] which

has a decreasing chain of closed subsets V(21) D V (21, 22) D V (21,22, 23) D

¢ A decreasing sequence of close subsets Z; D Z3 D ... corresponds to an
increasing sequence Iy C Is C ... of ideals of A. Since A is noetherian
this stabilizes at some point and therefore, so does the sequence of closed
subsets.

d If A is the ring of p-adic integers, then there is one prime idea so the space
is noetherian, but there is an increasing chain of ideals (0) C (p) C (p?) C

Exercise 2.14. a Let S be a graded ring. Show that Proj .S = & if and only
if every element of St is nilpotent.

b Let ¢ : S — T be a graded homomorphism of graded rings (preserving
degrees). Let U = {p € ProjT|p 2 ¢(S+)}. Show that U is an open subset
of ProjT and show that ¢ determines a natural morphism f : U — Proj S.



¢ The morphism f can be an isomorphism even when ¢ is not. For ezample,
suppose that ¢q : Sq — Ty is an isomorphism for all d > dy, where dy is
an integer. Then show that U = ProjT and the morphism f : ProjT —
Proj S is an isomorphism.

d Let V be a projective variety with homogeneous coordinate ring S. Show

that t(V') = Proj S.

Solution. a Since every prime ideal contains every nilpotent, if every element
of Sy is nilpotent then p D Sy for every homogeneous prime ideal p.
Hence, Proj S is empty.

Conversely, suppose Proj S is empty and consider s € S;. Let p C S be a
prime ideal, and consider the homogeneous prime ideal ¢ =3 ;- pNSq C
p (check that it is prime!). Since Proj S is empty, D (s) is empty, so every
homogeneous prime ideal contains s. Hence If p contains s. Since every
prime ideal contains s, it is nilpotent, so every element of S is nilpotent.

b Let p € U. Then ¢(S+) € p and so unless S, = 0, there is some f € Sy
such that ¢f ¢ p. If ¢f; € p for every homogeneous component f; of
f then ¢f € p, so there is some homogeneous component f; of f such
that ¢ f; & p. Hence, we have found a basic open Dy (¢ f;) that contains p.
Moreover, D (¢f;) is contained in U since every prime in D (¢ f;) doesn’t
contain ¢ f; and so doesn’t contain ¢(S1). The basic opens of this kind
cover U and therefore it is open since it is union of open sets.

For p € U define f(p) = ¢~ 'p. Since p 2 ¢(S;) we have ¢~p 2 S, so the
morphism is well defined. As in the affine case, this morphism preserves
all ideals, and therefore closed subsets so it is a continuous morphism of
topological spaces. As in the affine case, the morphism of sheaves f# is
induced by S(g-1p) — Ty for p € U.

¢ The open U is ProjT. Let p € ProjT, suppose that p O ¢(S;) and
let t € T, with ¢ > 0. Since ¢4 is an isomorphism for d > dy, there is
some s € Seq, such that ¢eq,s = t%. Since p O #(S4) this means that
bedys = t% € p and since p is prime, t € p. But p C Ty contradicts the
assumption that p € ProjT, so p € ¢(S1). Since p was arbitrary, this
shows that U = ProjT.

Surjectivity. Let p € ProjS. Define q = 1/(ép) to be the radical of the
homogeneous ideal generated by ¢p the image of ¢ (note that radicals of
homogeneous ideals are homogeneous). We will show that (i) ¢~1q = p,
and (ii) q is prime. We start with (i). The inclusion ¢~1q D p is clear,
so suppose we have a € ¢~ 1q. Then ¢a™ € (¢p) for some integer n. This
means that ¢a™ = > b;¢s; for some b; € T and s; € p. If we take a high
enough m, then the every monomial in the b; will be in 7% 4, and since we
have isomorphisms T,; = S; for d > dj this means that these monomials
correspond to some ¢; € S. The element () b;ps;)™ is a polynomial in
the ¢s; whose coefficients are monomials of degree m in the b;, and this



corresponds in S to a polynomial in the s; with coefficients in the c;, which
is in p, as all the s; are. Hence, ¢pa™™ € ¢p and so a™ € p and therefore
a €p. So p~'q C p and combining this with the other inclusion shows
that ¢~1q = p. (ii) Suppose that ab € q for some a,b € T. Then using the
same reasoning as for (i) we see that (ab)™™ € ¢p for some n, m such that
(ab)™™ € Tsq,. If necassary, take higher power so that a™™* b"mk € T 4
as well. Using the isomorphism 754, & S>g4, this means that a"™* prmk
correspond to elements of S and we see that their product is in p. Hence,
one of ™k or b"™* are in p, say a™™*. Then a™™* € ¢p and so a € q.
So q is prime.

Injectivity. Suppose that p,q € ProjT have the same image under f :
ProjT — ProjS. Then ¢~ 'p = ¢—'q. Consider ¢ € p. Since t € p we have
td ¢ p and since ¢4 is an isomorphism for d > dy it follows that there
is a unique s € S with ¢s = t%. The element s is in ¢~ 'p and so since
¢~ 'p = ¢ 1q this implies that s € ¢'q. So ¢s = t% € q. Now q is prime
and so t € q. Hence p C q. By symmetry q C p as well and therefore
p=4q.

Isomorphism of structure sheaves. Since Proj .S is covered by open affines
of the form D (s) for some homogeneous element of S, it is enough to
check the isomorphism on these. Note that D, (s) = D, (s%) so we can
assume that the degree of s is > dy. With this assumption it can be seen
that f~1D, (s) = Dy (t) C Proj T where t is the element of T' correspond-
ing to s under the isomorphism Sgeg s — Tdeg s Since a homogeneous prime
ideal q C T gets sent to Dy (s) if and only if s is not in its preimage, if and
only if ¢ is not in q. So our task is to show that the morphism Sy — T()
is an isomorphism. If gin gets sent to zero then 0 = t™of = ¢(s™)of for
some m (choose m > 0 so that we don’t have to handle the case deg f =0
separately), and so s™ f € ker ¢. Taking a high enough power of s™ f puts
it in one of the Sy for which S; — Ty is an isomorphism and so s™f = 0
and therefore Sin = 0 so our morphism is injective. Now suppose that

tin € T(1)- This is equal in T4 to tfld%jo and now t% f has degree high

enough to have a preimage in S. So our morphism is surjective.

Exercise 2.15. a Let V' be a variety over the algebraically closed field k.
Show that a point P € t(V') is a closed point if and only if its residue field
s k.

b If f: X =Y is a morphism of schemes over k, and if P € X is a point
with residue field k, then f(P) € Y also has residue field k.

¢ Now show that if V,W are any two varieties over k, then the natural map
homg e (V, W) — home e /1 (E(V), t(W))

is bijective.



Solution. a Every point of ¢(V) is by definition, an irreducible closed subset
of V. If P is not a closed point its corresponding irreducible closed subset
Z is not a point, but a subvariety of V of dimension greater than zero.
Then by Theorem 1.8A the transcendence degree of its residue field over
k is greater than zero. Hence, a residue field of k£ implies P is closed.
Conversely, a closed point comes gives a residue field of transcendence
degree zero, and since k is algebraically closed this means that k(P) = k.

b The morphism of structure sheaves Oy — f.Ox induces a morphism of
residue field k(f(P)) — k(P). Since X and Y are schemes over k, these
residue fields are both extensions of k. So if k(P) = k then we have a
tower k — k(f(P)) < k, and so k(f(P)) = k.

Exercise 2.16. Let X be a scheme, let f € T'(X,Ox), and define Xy to be the
subset of points x € X such that the stalk f, of x at x is not contained in the
mazximal ideal my of the local ring O,.
a IfU = Spec B is an open affine subscheme of X andif f € B =T'(U, Ox|v)
is the restriction of f, show that UN Xy = D(f). Conclude that Xy is an
open subset of X.

b Assume that X is quasi-compact. Let A =T(X,0x), and let a € A be an
element whose restriction to Xy is 0. Show that for somen >0, f"a = 0.

¢ Now assume that X has a finite cover by open affines U; such that each
intersection U; N Uj is quasi-compact. Let b € I'(Xy, Ox,). Show that for
some n > 0, fb is the restriction of an element of A.

d With the hypothesis of (c), conclude that I'( Xy, Ox,) = Ay.

Solution. a A point z is in U N X if and only if it is in U and the stalk f,
of f is not in the maximal ideal at z. Since U is affine we can take = to be
a prime p € Spec B and so the maximal ideal of the local ring is m = pB,.
The element f is in m if and only if f € p and so U N X; = D(f). Since
a subset of a topological space is open if and only if it is open in every
element of an open cover, we conclude that Xy is open in X.

b Let U; = Spec A; be an affine cover of X, finite since X is quasi-compact.
The restriction of a to U; N Xy = Spec(4;)s is zero for each i and so
f™a = 0in A; for some n;. Choose an n bigger than all the n;. Then
f"a = 0 in each Spec A;, and so since the Spec A; cover X and Ox is
a sheaf (in particular since it is a separated presheaf), this implies that
ffa=0.

¢ Let U; = Spec A; (different from the previous part!!!). The restriction of b
to each intersection X yNU; can be written in the form fl’,’fi for some n; € N.
Since there are finitely many affines, we can choose the expression so that
all the n;s are the same, say n. In other words, we have found b; € A; such
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that f"b|y,nx,; = b;. Now consider b; —b; on U;NUj. Since U;NUj is quasi-
compact and the restriction of b; —b; to U;NU;N Xy = (U;NU;) ¢ vanishes,
we can apply the previous part to find m;; such that f™#4(b; —b;) = 0
on U; NUj. Again, we choose m bigger than all the m;; so that they are
all the same. So the situation now is that we have sections f™b; on each
U; that agree on the intersections. Hence, they lift to some global section
¢ € I(X,0x). Now consider ¢ — f"*™b on Xy. Its restriction to each
UiNXgis f™b; — f™b; = 0 and so ¢ = f™"™b on Xy. Hence, f"t™b is
the restriction of the global section c.

d Consider the morphism Ay — I'(Xy,Ox,). If an element £ is in the
kernel then aly, = 0 and so by part (b) we have f™a = 0 as global
sections for some m. Hence, fiﬂ is zero and the morphism is injective.
Now suppose we have a section b on Xy. By part (c) there is an m such
that f™b is the restriction of some global section, say c. Hence, we have

found f% € Ay that gets sent to b so the morphism is surjective.
Exercise 2.17. A Criterion for Affineness.

a Let f : X — Y be a morphism of schemes, and suppose that Y can
be covered by open subsets U;, such that for each i, the induced map
f~YU;) — U; is an isomorphism. Then f is an isomorphism.

b A scheme X is affine if and only if there is a finite set of elements
fi,-.., fr € A =T(X,0x) such that the open subsets Xy, are affine,
and f1,..., fr generate the unit ideal in A.

Solution. a Take a cover of Y by open affines V; and then cover each inter-
section V; N U; by basic open affines of V;. So we end up with a cover of
Y composed of affines Wy, such that each one is an subset of some Uj;.
Since f~1(U;) — U; is an isomorphism, its restriction to f~1(Wy) — Wy
will be for any Wy, C U, so X is now covered by the same set of affines
as Y. It can be checked that the gluing morphisms are the same and so
Y and X are both isomorphic to the scheme obtained by gluing together
the Wy and these isomorphisms are compatible with f.

b If A is affine we can take f; = 1.

Suppose then that we have elements fi,...,f, € A, that each X;, =
Spec A;, and that the f; generate A. We always have a morphism f :
X — Spec A and we wish to show that this is an isomorphism. Since
the f; generate A the basic opens D(f;) = Spec Ay, cover Spec A. It is
immediate that their preimages are Xy, which we have already assumed
are affine Xy, = SpecA;. So our morphism f restricts to a morphism
Spec A; — Spec Ay, which comes from a ring homomorphism ¢; : Ay, —
A;. If we can show that the ¢; are isomorphisms then the result will follow
from the previous part of this exercise.

11



Stated more clearly, we want to show that
éi F(X7 OX)fi - F(XfﬁOX)

is an isomorphism for each .

Injectivity. Let f" € Ay, and suppose that ¢Z % = 0. This means that
it also vanishes in each of the intersections Xy, ﬂ Xy, = Spec(4;)y, so for
each j there is some n; such that fa=0in Aj. Choose an m bigger
than all the n;. Now the restriction of f/"a to each open set in a cover
vanishes, therefore f"a = 0. So f% =01in Ay,.

Surjectivity. Let a € A;. For each j # i we have Ox(Xy,f,) = (4;)y, so
a|Xf7-,fj can be written a i € N. That is, we

]

have elements b; € A; whose restriction to X 1.4, is fi”a. Since there are
finitely many, we can choose them so that all the n; are the same, say n.

Now on the triple intersections Xy, r r, = Spec(A;)s,z, = Spec(Ax)y, s,
we have b; — by = fl'a — fl'a = 0 and so we can find m;; € N so that
1 (b — bk) = 0 on Xy f,. Replacing each mj, by m larger than all
of them, the relation f]™(b; — b) still holds. So now we have a section
fi"b; for each Xy, j # i together with a section i a on Xy, and these
sections agree on all the intersections. This gives us a global section d

whose restriction to X, is f/""™a and so f"% gets mapped to a by ¢;.

Exercise 2.18. a Let A be a ring, X = Spec A, and f € A. Show that f is
nilpotent if and only if D(f) is empty.

b Let ¢ : A — B be a homomorphism of rings, and let f : Y = Spec B —
X = Spec A be the induced morphism of affine schemes. Show that ¢ is
injective if and only if the map of sheaves f# : Ox — f.Oy is injective.
Show furthermore in that case f is dominant.

¢ With the same notation, show that if ¢ is surjective, then f is a home-
omorphism of Y onto a closed subset of X, and f* : Ox — f.Oy is
surjective.

d Prove the converse to (c), namely, if f : Y — X is a homeomorphism onto
a closed subset, and f# : Ox — f.Oy is surjective, then ¢ is surjective.

Lemma 1. Let (f, f#) : Spec B — Spec A be a scheme morphims of affine
schemes with corresponding ring homomorphism ¢ : A — B. Then for a point
p € Spec A, the stalk (f+Ospec B)p is ST'B = B ®4 Ay where S = ¢(A\p).

Proof. Since we can shrink every open subset U containing p to one of the form
D(a) with a € A, we can compute the stalk by taking the colimit over these.
Notice that the preimage of D(a) is D(¢a) C Spec B. 3 So (f«Ospec B)yp is then

3If a prime q € Spec B is in the preimage of D(a) then ¢—1q € D(a) and so a ¢ ¢~ 1q
and therefore ¢a ¢ q. Conversely, if a prime q is in D(¢a) then ¢a ¢ q and so a ¢ ¢~ 1q so
¢~ 1q€ D(a).
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the colimit of Ogpec g evaluated at opens D(a) with a ¢ p, that is, the colimit of
Bga for a ¢ p. This is ST!B. To see that it is the same as the tensor product,
use the universal property of tensor products. O

Solution. a If f is nilpotent then f™ = 0 for some n € N and so f™* € p
for every prime ideal p. Hence, f € p for every prime ideal and therefore,
p & D(f) for every prime ideal p.

b If the map of sheaves is injective then in particular, taking global sections,
we see that I'(X,Ox) — I'(X, f.Oy) is injective. That is, A — B is
injective. Conversely, suppose A — B is injective, pick a prime p €
Spec A, and consider the stalk A, — S~™!B of the morphism f* at p
where S = A\p (see Lemma 1). That this is injective follows immediately
from A — B being injective.

To see that it is dominant consider the complement of the closure of the
image. That is, the biggest open set that doesn’t intersect the image.
This is covered by open affines of the form D(f) where f € ¢~1p for all
p € Spec B. For such an f, we have ¢f € p for all p € Spec B and so ¢f
is in the nilradical, so ¢ f is nilpotent. Since ¢ is injective, this means, f
is nilpotent, so D(f) is empty. So the closure of the image is the entire
space.

¢ We immediately have a bijection between primes of A containing I and
primes of A/I = B where I is the kernel of ¢. We already know the
morphism Spec B — Spec A is continuous so we just need to see that it
is open to find that it is a homeomorphism. Note that for f+ 1 € A/I
the preimage of D(f) C Spec A is D(f + I) C Spec(A/I), so basic opens
of Spec(A/I) are open in the image (with the induced topology). Since
arbitrary unions of open sets are open, and the basic opens are a base for
the topology, the image of every open set is open. The stalk A, = B®4 A4,
of the sheaf morphism at p € Spec A is clearly surjective.

d If f# is surjective then it is surjective on each stalk. So for an element
b € B, for each point p; € Spec A there is an open neighbourhood which
we can take to be a basic open D(f;) of Spec A such that the germ of b is
the image of some f“# € Ay,. That is, f"(a; — f]"'b) = 0 in B. Since all
affine schemes are qliasi—compact, we can find a finite set of the D(f;) that
cover Spec A, which means we can assume all the n; and m; are the same,
say n and m. Since D(f;) is a cover, the f; generated A and therefore so
do the f{"™ so we can write 1 = sumg, f/**" for some g; € A. We now

have
b= gifi""b =) gifi"a; € im¢

So ¢ is surjective.

Exercise 2.19. Let A be a ring. Show that the following conditions are equiv-
alent:
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a Spec A is disconnected;

b there exist monzero elements e1,ea € A such that ejea = 0, e% = ey,
6%262, e1+e=1.

¢ A is isomorphic to a direct product A1 X As of two nonzero rings.

Solution. (1 = 3) If Spec A is disconnected then it is the udisjoint union of two
open sets, say as Spec A = U [[ V. In particular, this means that U and V are
also both closed sets, and therefor correspond to ideals, say I and J. That is,
U =SpecA/I and V = Spec A/J. It follows that Spec A = Spec(A/I) x (A/J)
and therefore A = Ay x Ay where A; = A/I and A; = A/J.

(3 = 2) Choose e; = (1,0) and e; = (0,1).

(2 = 1) Since ejes = 0, for every prime, either e; € p or es € p. The closed
sets V((e1)), V((e2)) cover Spec A. Now if a prime p is in both these closed sets
then e, es € p and therefore 1 = e; + ex € p and so p = A. So the closed sets
V((e1)), V((e2)) are disjoint. Since we have a cover of Spec A by disjoint closed
sets, Spec A is disconnected.
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3 First Properties of Schemes

Lemma 1. a If B is a finitely generated Ay-algebra, then it is a finitely
generated A-algebra.

b Let F' : Spec A — Spec B be a morphism of affine schemes with associated
ring homomorphism ¢ : B — A. Then the preimage of Spec By is Agy.

¢ If B is a finitely generated A-algebra via ¢ : A — B, then for any element
f €A, the ring Byy is a finitely generated Ay algebra.

d Let fi,...,fn € A be elements which generate a B-algebra A. If Ay, is
a finitely generated B-algebra for every i, then A is a finitely generated
B-algebra.

e Let f1,..., fn € B be elements which generate the unit ideal, and let A be
a B-module. If Ay, is a finitely generated By, -module for every i, then A
s a finitely generated B-module.

Proof. a Let {bx} be a finite set of elements of B such that B = A¢[bq,...,by].

Then B = Alby, ..., by, ;].

b Let F': Spec A — Spec B be a morphism of affine schemes with associated
ring homomorphism ¢ : B — A. Then the preimage of Spec By is Ayy.

¢ Obvious.

d If fagill e ;,j:i }is a generating set for Ay, over B thensois {a;1,. .., ain, %}

S0 we can assume that the generating sets are of this form. Let § =
{ai;, fi}. We claim that A = B[S]. For an element a € A, for each i we
can write a € Ay, as a = ;’,ji for some k; € N and p; € Blai1,- - ., @in, fi].

Replacing p; by f;“p; for suitable v; we can assume that all the k; are the
same, say k € N. Now by definition of the localization, writing a in this
form means that for each i we have f%(fFa —p;) = 0 for some ;. Again,
we can replace p; and k so that we have (f/"a — p;) = 0 for each i. Now
since the f; generate A, the same is true of their Nth power for any N.
So choosing N = m we find that f{",..., f)* generate A, and so we can
write the unit as 1 = Y7 | g; /™ for some g; € A. Coming back to our
expressions with the p; we now see that

n n n n
0=> g(ffa—p)=> gfa—> gpi=a—Y_ gpi
i=1 i=1 i=1 i=1
and so we have found an expression for a as Y., g;p; € B[S].

e This is essentially the same idea as in the previous part.

If f“.,jjl yens f“.,j:% }is a generating set for Ay, over By, thensois {a;1,...,ain}

so we can assume that the generating sets are of this form. Let S = {a;;}.



We claim that A = B[S]. For an element a € A, for each i we can write
npiags

a € Ay, as a = % for some k; € N and b;; € B. As before, we
can assume that all the k; are the same, say kK € N. Now by definition
of the localization, writing a in this form means that for each ¢ we have
fh(fka — >_;bijai;) = 0 for some ¢;. Again, we can replace the b;; and
k so that we have (f/"a — 3, bijai;) = 0 for each i. Now since the f;
generate B, the same is true of their Nth power for any N. So choosing
N = m we find that f{",..., f/"" generate B, and so we can write the unit
as 1 =>"" g;f" for some g; € B. Coming back to our expressions with
the a;; we now see that

0= Zgi(fima—z bija;j) = Zgif{"a—z gi Zbijaij = a—z Ji Zbijaij
i1 j i=1 =1 =1

and so we have found an expression for a as Z?:l Gi Zj bija;; € B[S].
O

Lemma 2. Let Spec A, Spec B be two open affine subsets of a scheme X. Then
for every point p € Spec AN Spec B there exists an open subset U with p € U C
Spec A N Spec B such that U = Spec Ay = Spec B, for some f € A, g € B.

Proof. The basic open affines form a basis for affine schemes and so since
Spec A N Spec B is open in Spec A it is a union of basic opens, one of which,
say Spec Ay, contains p. This open will also be open in Spec B as well and so
for the same reason there is some g € B such that p € Spec B, C Spec Ay .
In particular, the inclusion Spec Ay C Spec B gives us a ring homomorphism

B4 Ayg. Now it can be checked that Ay = By for some f and so we are
done. O

Exercise 3.1. Show that a morphism f: X =Y is locally of finite type if and
only if for every open affine subset V.= Spec B of Y, f=1(V) can be covered
by open affine subsets U; = Spec A;, where each A; is a finitely generated B-
algebra.

Solution. (<) It is immediate from the definitions.

(=) Weuse F : X — Y to denote the morphism of schemes. Let V; =
Spec B; be a covering of Y by open affine subschemes such that F~1Vj is covered
by open affines Spec A;; where each A;; is a finitely generated B;-algebra. Each
intersection V; NV is open in V; and so is a union of basic open sets Spec(B;) ,,.
of V; since they form a base for the topology of Spec B;. Considering f;; as
an element of A;; under the morphisms B; — A;;, the preimage of Spec(B;)y,,
is Spec(A;;) .., and the induced ring morphisms make each (A;;)s,, a finitely
generated (B;)y,,-algebra.

So we can cover Spec B with open affines Spec C; whose preimages are cov-
ered with open affines Spec D;; such that each D;; is a finitely generated Cj-
algebra. Now given a point p of Spec B, it is contained in some Spec C;, but



since these are open, there is a basic open affine Spec By, C Spec C; that con-
tains p. Associating g, with its image under the induced ring homomorphisms
B — C; and then C; — D;j, it can be seen that Spec(C;),, = Spec By, , the
preimage of this is Spec(D;;)g,, and (D;;),, is a finitely generated By, -algebra.
The Spec(D;;)g, together cover the preimage of Spec B, and since (Dy;),, is
a finitely generated B -algebra, it follows that (D;;),, is a finitely generated
B-algebra (add g, to the generating set). Hence, the preimage of Spec B can
be covered by open affines Spec A; such that each A; is a finitely generated B
algebra.

Exercise 3.2. A morphism f: X =Y of schemes is quasi-compact if there is
a cover of Y by open affines V; such that f=1(V;) is quasi-compact for each i.
Show that f is quasi-compact if and only if for every open affine subset VCVY,
f~1(V) is quasi-compact.

Lemma 3. If a topological space has a finite cover consisting of quasi-compact
open sets, it 18 quasi-compact.

Proof. Suppose X is the topological space and {U;}?_; the open cover with each
U; quasi-compact. Let V = {V;},cs be a cover for X. Then {V; NU,};cs is an
open cover of U; which has a subcover {V; NU;} e, where J; is finite, since U;
is quasi-compact. Then U_,{V;};c, is a finite subcover of V. O

Solution. Let {Spec B;};cr be an open affine cover of Y such that the preimage
f~!Spec B; of each Spec B; is quasi-compact. Let SpecC C Y be an arbi-
trary open affine subset. Each intersection Spec B; N Spec C' can be covered
by opens that are basic in Spec B; and since the Spec B; form a cover for
X, these opens, basic in the various Spec B;, cover SpecC. Since SpecC' is
quasi-compact (Exercise I1.2.13(b)), we can find a finite subcover {D(by)}7_,
where for each k, by € B;, for some ¢;. Now we cover each f~ ! Spec B; with
open affine subschemes {Spec A;;}je,. Since f~!SpecB; is quasi-compact,
we can choose these in such a way that J; is finite. The preimage of D(by) in
Spec A, j is Spec(A, ;)b » 50 we now have a finite cover Up_; {Spec(4i, )b, }ie,,
of f~'SpecC by open affines. Each open affine is quasi-compact (Exercise
11.2.13(b)) and so applying the Lemma 3 we see that f~!SpecC is quasi-
compact.

Exercise 3.3. a Show that a morphism f : X — Y 1is of finite type if and
only if it is locally of finite type and quasi-compact.

b Conclude from this that f is of finite type if and only if for every open
affine subset V = Spec B of Y, f~1(V) can be covered by a finite number of
open affines U; = Spec A; where each A; is a finitely generated B-algebra.

¢ Show also if f is of finite type, then for every open affine subset V =
Spec B C Y and for every open affine subset U = Spec A C f~1(V), A is
a finitely generated B-algebra.



Solution. a We need only show that if f is of finite type then it is quasi-
compact, the others follow immediately from the definitions. Since f is of
finite type there is a cover of Y by open affines Spec B; whose preimages are
covered by finitely many open affines Spec 4;;. We know from Exercise
2.13(b) that each Spec A;; is quasi-compact. In general if a space can
be covered by finitely many quasi-compact opens then it itself is quasi-
compact !, so we have found an open affine cover of Y whose preimages
are quasi-compact. Hence, f is quasi-compact.

b Follows directly from Exercise 3.1, 3.2, and 3.3(a).

¢ Cover f~Y(V) by affines U; = Spec A; such that each A; is a finitely
generated B-algebra. We can cover each of the intersections U; N U with
opens that are basic in both U and U; by Lemma 2. Let Spec Ay, =
Spec(A;)g, be a cover of U by these basic opens, which we can choose
to be finite since the morphism is quasi-compact. Since each A; is a
finitely generated B-algebra, (A4;)y, = Ay, is a finitely generated B algebra
(Lemma 1), and therefore, since the Spec Ay, form a finite cover of U, the
ring A is a finitely generated B-algebra (Lemma 1).

Exercise 3.4. Show that a morphism f : X — Y is finite if and only if for
every open affine subset V.= Spec B of Y, f~Y(V) is affine, equal to Spec A,
where A is a finite B-module.

Solution. As usual, let V; = Spec B; be an affine cover of Y such that each
preimage f~'V; is affine U; = Spec 4; and each A; is a finitely generated B;-
module. We cover each intersection UNU; with opens D(f;;) = (B;)y,,; of U; that
are basic in both U and U; and note that the preimage of D(f;;) is Spec(4;)y,,
where f;; is associated with its image in A;. Since A; is a finitely generated
Bj-module, it follows that (A;)y,; is a finitely generated (B;)y,;-module.

So now we have a cover of V' = Spec B by opens Spec B, that are basic in
V' and each of the preimages is affine Spec C; and each C} is a finitely generated
B,,-module. We now use the affineness criterion from Exercise 2.17 as follows.
Since Spec B is affine it is quasi-compact (Exercise 2.13(b)) there is a finite
subcover Spec By, , .. .,Spec By, . Since this is a cover, the g1, ..., g, generated
the unit ideal. This means their image in I'(U, Oy) where U = f~! Spec B also
generate the unit ideal. Furthermore, the preimage of each Spec By, is in fact
U,, where we associated g; with its image in I'(U, Oy). So we can apply the
criterion of Exercise 2.17(b) and find that U is affine.

Let U = Spec A. To see that A is a finitely generated B-module we use
Lemma 1.

Exercise 3.5. Let f: X — Y be a morphism of schemes.

lLet X be the space and U; the finite cover. For any cover {V;} of X we get a cover
{Vi nU;} for each Uj, which has a finite subcover by the assumption that the U; are quasi-
compact. The union of the V; appearing in these finite subcovers will cover X since it covers
a cover, and by construction it is finite.



a Show that a finite morphism is quasi-finite.
b Show that a finite morphism is closed.

¢ Show by example that a surjective, finite-type, quasi-finite morphism need
not be finite.

Solution. a Let p € Y be a point. By assumption of the morphism being
finite there is an open affine scheme Spec B containing p such that the
preimage f~!Spec B is affine, say Spec A, and A is a finitely generated
B-module, so we immediately reduce to the case where X = Spec A and
Y = SpecB. To show that the preimage of p is finite is the same as
showing that the fiber Spec A ® g k(p) has finitely many primes (Exercise
I1.3.10). Since A is a finitely generated B-module, it follows that A®pk(p)
is a finitely generated k(p)-module, that is, a vector space of finite rank.
Hence, there are a finite number of prime ideals.

b Note that a subset of a topological space is closed if and only if it is closed
in every element of an open cover so we can reduce to the case where
X =Spec A, Y = Spec B, and A is a finitely generated B-module, via say
¢: B — A. So now we want to show that for every ideal I C A there is
an ideal J C B such that V(J) C Spec B is the image of V(I) C Spec A.
We immediately have a candidate: ¢~ 'I so let J = ¢~'I. For a point
p € SpecA we have p D I = ¢~ 'p D ¢~'I so fV(I) C V(J) and it
remains to show that V(I) is mapped surjectively onto V(J). Replacing
A and B by A/I and B/J, we just want to show that f is surjective.
Given a point p € Spec B the Going Up Theorem provides us with a point
q € Spec A that maps to p, and so we are done.

Speck[t,t '] @ k[t, (t — 1)7'] — Spec k[t]

Exercise 3.6. Let X be an integral scheme. Show that the local ring O¢ of the
generic point & of X is a field. Show also that if U = Spec A is any open affine
subset of X, then K(X) is isomorphic to the quotient field of A.

Solution. Let U = Spec A be an open affine subset of X. By definition, A is an
integral domain and so (0) is a prime ideal. A closed subset V(I) contains (0)
if and only if (0) contains I and so we see that the closure of (0) is V' ((0)), i.e.
all U. Hence, (0) is the generic point £ of X. Ox(U)(y) = O is the fraction
field of Ox (U).

Exercise 3.7. Let f : X — Y be a dominant, generically finite morphism of
finite type of integral schemes. Show that there is an open dense subset U CY
such that the induced morphism f=*(U) — U is finite.

Solution. Step 1: k(X) is a finite field extension of k(Y"). Choose an open affine
Spec B =V C Y and an open affine in its preimage Spec A = U C f~'V such
that A is a finitely generated B-algebra (by the finite type hypothesis). From



the hypothesis that X is irreducible, it follows that U is irreducible, implying
that A is integral.

Now A is finitely generated over B and therefore so is k(B) ®p A = B~1A.
So by Noether’s normalization lemma, there is an integer n and a morphism
k(B)[t1,...,tn] — B~1A for which B~!A is integral over k(B)[ty,...,t,]. Since
it is integral, the induced morphism of affine schemes is surjective. But Spec B~ A
has the same underlying space as f~!(n) N U where 7 is the generic point of
Y, and by assumption this is finite. Hence, since affine space always has in-
finitely many points and the Going-Up Theorem tells us that the morphism
Spec B~YA — Speck(B)[t1,...,t,] is surjective (B~!A is integral and integral
over k(B)[t1,...,t,]) we see that n = 0 and moreover, we have found that B~1A
is integral over k(B). Since it is also of finite type, this implies that it is finite
over k(B). With some work clearing denominators from elements of A, This
implies that k(B~1A) = k(A) is finite over k(B). That is, it is a finite field
extension of k(B).

Step 2: The case where X andY are affine. Let X = Spec A and Y = Spec B
and consider a set of generators {a;} for A over B. Considered as an element
of k(A), each one satisfies some polynomial in k(B) since it is a finite field
extension. Clearing denominators we get a set of polynomials with coefficients
in B. Let b be the product of the leading coefficients in these polynomials.
Replacing B and A by By, and Ay, all these leading coefficients become units,
and so multiplying by their inverses, we can assume that the polynomials are
monic. That is, Ay is finitely generated over By, and there is a set of generators
that all satisfy monic polynomials with coefficients in By,. Hence, A; is integral
over By and therefore a finitely generated Bp-module.

Step 3: The general case. Now we return to the case where X and Y are not
necassarily affine. Take an affine subset V' = Spec B of X and cover f~'V with
finitely many affine subsets U; = Spec A;. By Step 2, for each i there is a dense
open subset of V' for which the restriction of f is finite. Taking the intersection
of all of these gives a dense open subset V' of V such that f~'V' NU; — V' is
finite for all ¢. Furthermore, a look at the previous step shows that V' is in fact
a distinguished open of V. We want to shrink V"’ further so that f~'V" is affine.
To start with, replace V with V' and similarly, replace U; with U; N f~1V".
Since V' is a distinguished open of V, we still have an open affine subset of Y’
and the U; N f~1V’ (now written as U;) form an affine cover of f=1V".

Let U’ C NU; be an open subset that is a distinguished open in each of the
U;. So there are elements a; € A; such that U’ = Spec(A;),, for each i. Since
each A; is finite over B, there are monic polynomials g; with coefficients in B
that the a; satisfy. Take g; of smallest possible degree so that the constant
terms b; are nonzero and define b = [[b;. Now the preimage of Spec By is
Spec((A4;)q;)p (any i gives the same open) and ((4;)q;)s is a finitely generated
By module. so we are done.

Exercise 3.8. Normalization. Let X be an integral scheme. For each open
affine subset U = Spec A of X, let A be the integral closure of A in its quotient
field, and let U = Spec A. Show that one can glue the schemes U to obtain a



normal integral scheme )~(, and that there is a morphism X = X having the
following universal property: for every normal integral scheme Z, and for every
dominant morphism f : Z — X, f factors uniquely through X. If X is of finite
type over a field k, then the morphism X — X is a finite morphism.

Solution.
Exercise 3.9. The Topological Space of a Product.

a Let k be a field, and let A} = Spec k[z] be the affine line over k. Show that
A} Xspeck Ar 2 A2 and show that the underlying point set of the product
is not the product of the underlying pointsets of the factors (even if k is
algebraically closed).

b Let k be a field, let © and t be indeterminates over k. Then Speck(s),
Spec k(t), and Spec k are all one-point spaces. Describe the product scheme
Spec k(s) Xspeck Speck(t).

Solution. a The stated product is the affine scheme of the ring k[x] ®j k[z]
which is clearly isomorphic to k[z,y] via (for example)

r®1—x, 1®r—y

To see that the underlying point set of the product is not the product of
the underlying point sets of the factors consider the point (x —y) C k[z, y]
(or equivalently (x ® 1 — 1 ® z) C k[z] ® k[z]). Each pair of points
((f),(g9)) C sp Speck[z] x sp Speck[y] (where f and g are irreducible or
zero) gives a point (f, g) € Spec k[x, y] which gets sent back to (f) and (g)
via the projections. However, (x —y) gets sent to (0) via both projections,

yet (0) # (z —y).

b Using greatest common denominators, every element of k(s) ®j k(t) can

be written as 1
o(s) ® d() (X ats) 2 0:)

for some a;, ¢ € k[s], b;,d € E[t]. So if
S = {c(s)d(t)|c € k[s],d € k[t]} C k[s, ]

then we can associate k(s) @y, k(t) with S™1k[s, t], the “holomorphic func-
tions whose poles form horizontal and vertical lines in the plane”. To see
what this looks like geometrically, note that S~1k[s,t] = li_n}fesk[s,t]f
and so Spec S™1k[s,t] is the intersection (Spec is contravariant) of ba-
sic opens of A? which are “complements of horizontal or vertical lines”.
More concretely, the points of Spec k(s)®4k(t) are the points of Spec k[s, t]
that aren’t in the preimage of one of the projections (excluding the generic
point (0)). The topology and structure sheaf are the induced ones.

Exercise 3.10. Fibres of a Morphism.



a If f: X =Y is a morphism, y € Y a point, show that sp(X,) is homeo-
morphic to f~(y) with the induced topology.

b Let X = Speck[s,t]/(s —t?) let Y = Speck[s], and let f : X — Y be the
morphism defined by sending s — s. If y € Y is the point a € k with
a # 0, show that the fibre X, consists of two points, with residue field k.
Ify €Y corresponds to 0 € k, show that the fibre X, is a nonreduced one-
point scheme. If  is the generic point of Y, show that X, is a one-point

scheme, whose residue field is an extension of degree two of the residue
field of n. (Assume k algebraically closed).

Solution. a In the affine case we want to show that for a morphism f :
Spec A — Spec B induced by ¢ : B — A, and a point p € Spec B, the
preimage of p is topologically homeomorphic to the space of Spec A ®p
(Byp/(pBy)). Consider the commutative diagram

Xy A@p k(p) <— k(p)
N
X A B

and a prime ' C A®p k(p). Along the top q’ gets pulled back to (0) and
along the right, (0) gets pulled back to p so along the left, q’ gets pulled
back to q € f~p and so the morphism of topological spaces Spec(A ®p
k(p)) — Spec A factors through f~1(y).

Injectivity. Suppose that q,q" € Spec(A ®p k(p)) get sent via 7! to the
same prime in A and consider an element of q. It can be represented by
a sum Z?:l a; ® % where a; € A,b;,¢; € B,c; € p. Since the tensor
is over B, replacing a; by a;b; we can assume that b; = 1. We have
Savteqs(I1ee) (Caod) =@l eq) @) eqandso
(ai [l ¢5) € 77 1q = 7~ 1q’ which implies that > (a; [Tjzc)®1) €d.

Now multiplying by 1 ® ch, we see that our original element > a; ® Ci

is in q’. Therefore q C q'. By symmetry we also have ¢’ C q and so the
morphism X, — f~ly is injective.

Surjectivity. Let q € Spec A be in the preimage of p under f and consider
the subset q' = {a®+|a € q,b € B\p} of A®pk(p). With some elementary
work it can be seen that this is an ideal, which is in fact prime, and that
the preimage 7~ 1q’ is q.

Closedness. Let I C A®p k(p) be the radical ideal associated to a closed
subset of Spec(A ®p k(p)). Let I’ = 7' C A, an ideal of A. For
any prime ideal q € Spec(A ®p k(p)), if ¢ D I then 7=1p D 7711 = I'.
Conversely, consider q € V(I') N f~'p and its preimage q¢' = {a ® }|a €
q,b € B\p} € Spec(A®p k(p)). For any a® 3 € I the element (1®b)(a®
1

3) = a®1isalsoin I, and so a € I'. Since q D I’ this implies that

a € aandsoa® ¢ € q. Hence g O I. What we have shown is that a



prime q is in V(1) if and only if 7= 1q is in V(I’)N f~1p. So the morphism
Spec(A®p k(p)) — f~1p is closed. Since it is also a continuous bijection,
this proves that it is a homeomorphism.

b The ring of the fibre is the tensor (k[s,t]/(s —t?)) ®x (k[s]/(s — a)) which
is isomorphic to the ring k[s,t]/(s — t?,5 — a). Since s = t> = a in this
ring, every class can be represented uniquely by a polynomial of the form
ag + ait. Recalling that t> = a it can be checked that if a # 0, a ring
isomorphism k[s,t]/(s — t?,s — a) = k @ k is given by

1 . 1 1 . 1
2 2 2va T2
and so the fibre has two points, both with residue field k. If a = 0, then
k[s,t]/(s —t2,5 — a) = k[t]/(t?), which is a nonreduced one-point scheme.
For the generic point, the ring of the fibre is (k[s,t]/(s — t?)) @4 k(s) =
k(t)[s]/(s — t?) which is an extension of degree zero.

(1,0) (0,1) +

Exercise 3.11. Closed Subschemes.

a Closed immersions are stable under base extension: if f :Y — X is a
closed immersion, and if X' — X is any morphism, then f': Y xx X' —
X' is also a closed immersion.

b If Y is a closed subscheme of an affine scheme X = Spec A, then Y is
also affine, and in fact'Y is the closed subscheme determined by a suitable
ideal a C A as the image of the closed immersion Spec A/a — Spec A.

¢ Let'Y be a closed subset of a scheme X, and give Y the reduced induced
subscheme structure. If Y' is any other closed subscheme of X with the
same underlying topological space, show that the closed immersion Y — X
factors through Y.

d Let f: Z — X be a morphism. Then there is a unique closed subscheme
Y of X with the following property: the morphism f factors through Y,
and if Y’ is any other closed subscheme of X through which f factors,
then Y — X factors through Y’ also. If Z is a reduced scheme, then'Y is
Just the reduced induced structure on the closure of the image f(Z).

Solution. a Step 1: X and X' are affine. In this case by part (b) of this
exercise is also affine and is infact Spec A/I for some suitable ideal of
A =T(X,0x). Then if I'(X',Ox/) = B the morphism ¥ xx X' — X'
is Spec(B ®4 (A/I)) — SpecB and since B ®4 (A/I) = B/J where
J = (¢I) the ideal generated by the image of I, we see that the morphism
Y xx X' — X' is a closed immersion.

Step 2: X is affine. Let x € X’ be a point of X’ and SpecA = U an
open affine neighbourhood of X. As we have just seen, Y xx U — U is
a closed immersion, and so since Y xx U = (f')7U it follows that the
morphism of stalks (Ox/), — (fiOyxxx’)z is surjective. Furthermore,



it shows that locally, f’ is a homeomorphism onto a closed subset of X'.
This is enough to conclude that f’ is globally a homeomorphism onto a
closed subset of X'. 2

Step 3: X and X' general. Take an open affine cover {U; = Spec A4;}
of X and let f~'U; = Y; and g~ 'U; = X! where g : X’ — X. From
the previous step we know that the morphisms Y; xy, X! — X! are closed
immersions. But these are the same as the morphisms X} x x Y — X/ and
so we have found an open cover of X’ on which f’ is a closed immersion.
This is enough to conclude that X’ x x Y — X’ is a closed immersion (see
footnote).

Let V; = Spec B; be an open affine cover of Y. By definition of the induced
topology, if the V; are open in Y then there is some open U; C Spec A such
that U; NY = V. Since Spec A is affine the U; are covered by basic open
affines D(a;;). Consider the composition V; = SpecB; — Y — Spec A.
There is an induced ring homomorphism ¢; : A — B; and the preimage
of D(as;) is D(¢sasj) = Spec(Bi)g,q;,; € Spec Bi. The complement Y¢ C
Spec A is open and therefore covered by basic open affines D(g;). Putting
these two sets of basic opens together we get a cover of Spec A since every
point in Y is covered as well as every point not in Y. Using the quasi-
compactness of Spec A (since it is affine) we find a finite subcover {D(h;)}
where h; = f; or g, for some j, k. As this is a cover, the h; generate
the unit ideal in A. That is, there are k; € A such that 1 = Y h;k;.
Under the ring homomorphism A — T'(Y, Oy) unity is preserved and so
the images of the h; generate the unit ideal there also. But recall that
D(h;) C Y were all affine, and so the criteria of Exercise 1.2.17(b) is
satisfied and we see that Y is affine. Now we use Exercise 11.2.18(d) to
find that ¢ : A — B = I'(Y,Oy) is surjective (f# is surjective since
Y — SpecA is a closed embedding). Hence, B = A/ker¢ and Y is
determined by the ideal ker ¢.

First assume that X = Spec A is affine, so Y = Spec A/ for some radical
ideal I. As we have seen in the previous part, this implies that Y’ =
Spec B’ is affine and is determined by an ideal I’ C A. That is, B’ = A/I’.
Since Y’ and Y share the same underlying closed set, vT = v/I'. But I is
already reduced and so I = v/I’. Hence, the morphism A — A/T factors
as A — A/I' — A/I. In fact, it factors uniquely. If X is not affine,
we can take an open affine cover {Spec A;}. If {Spec B;} and {Spec B!}
are the retrictions of this cover to Y and Y’ respectively, then as we
have just seen, we obtain morphisms g; : Spec B; — Spec B} which factor

2Let Z be the image of f’ in X’. To see that Z is closed it is enough to note that the closure
of a set is the union of its closures on an open cover {U;} since Z C JU; N Z C Y(U;NZ) = Z.
To see that it is mapped homeomorphically we need just to show that it is closed (since we
already know that it is bijective and continuous). But this follows from the same reasoning.
That is, for a closed subset Z C Y xx X' its image f/(Z) is closed globally if and only if it
is closed locally on an open cover. But this we have seen since locally Y x x X’ is mapped
homeomorphically onto is image.
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Spec B; — Spec A;. If p € Spec A is a point in an intersection Spec A; N
Spec A;, we take a basic open affine eighbourhood D(f) of p (contained
in Spec A; N Spec A; (say with f € A;) and then we are still in the affine
world, so we get a factoring Spec(B;)s — Spec(Bj); — Spec(4;) . Since
this factoring was unique, this shows that the restriction of the g; to the
intersections agrees, and so the g; give a well defined morphism ¥ — Y’

which factors Y — X.
d
Exercise 3.12. Closed Subschemes of ProjS.

a Let ¢ : S — T be a surjective homomorphism of graded rings, preserving
degrees. Show that the open set U of Exercise I11.2.1/ is equal to ProjT,
and the morphism f : ProjT — Proj S is a closed immersion.

b If I C S is a homogeneous ideal, take T = S/I and let Y be the closed
subscheme of X = Proj S defined as the mage of the closed immersion
ProjS/I — X. Show that different homogeneous ideals can give rise to
the same closed subscheme. For example, let dg be an integer, and let
I' =D y>q, la- Show that I and I' determine the same closed subscheme.

Solution. a
Exercise 3.13. Properties of Morphisms of Finite Type.
a A closed immersion is a morphism of finite type.
b A quasi-compact open immersion is of finite type.
¢ A composition of two morphisms of finite type is of finite type.
d Morphisms of finite type are stable under base extension.

e If X and Y are schemes of finite type over S, then X xXgY is of finite
type over S.

fIfX Ly 5 7 are two morphisms, and it f is quasi-compact, and g o f
is of finite type, then f is of finite type.

g If f: X =Y is a morphism of finite type, and if Y is noetherian, then X
is noetherian.

Solution. a Take an open affine cover U; = Spec A; of the target scheme
X. The restriction of f : Y — X to f~1U; — Uj is still a closed immer-
sion and so it follows from Exercise I1.3.11(b) that f~'U; is affine, say
f~'Ur = Spec B;. Since the morphism of structure sheaves is surjective,
the morphism (4;), — (B;)-1, is surjective at every prime p € Spec 4;
and from this it follows that A; — B; is surjective. Hence, each B; is a
finitely generated A; module.

11
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b Let ¢ : U — X be a quasi-compact open immersion. Since we already
know that ¢ quasi-compact, by Exercise I1.3.3(a) we only need to show
that it is locally of finite type. Let Spec A; be an open affine cover of X.
Then i restricts to open immersions U; — Spec A. Each U; is covered by
basic open sets D(fi;) = Spec(4;)y,,. Clearly, each (A;)y,, is a finitely
generated A;-algebra (generated by 1 and % for example) and so we have
shown that 7 is locally of finite type.

cLet X LY % Zbea pair of composable morphisms of finite type. Let
W = SpecC be an open affine subscheme of Z. By Exercise 1.3.1 the
preimage ¢~ 'W can be covered by finitely many open affine subschemes
Spec B; such that each B; is a finitely generated C-algebra. Again by
Exercise 1.3.1, the preimage f~!Spec B; of each Spec B; can be covered
by finitely many open affine subschemes Spec A;; such that each A;; is a
finitely generated B;-algebra. Hence, the preimage (go f)~'W of W can
be covered by finitely many open affine subschemes Spec A;; such that
each A;; is a finitely generated C-algebra, so by Exercise 1.3.1 go f is a
morphism of finite type.

d Consider a pullback square with f a morphism of finite type:

/

X' xxYI—y
f’l lf
x—L sx

We want to show that X’ xx Y — X’ is a morphism of finite type. If
X', X and Y are affine this is certainly true since A ® ¢ B is a finitely
generated B-algebra if A is a finitely generated C-algebra. If X’ and X
are both affine then it is true since a finite open affine cover U; C Y leads
to a finite open affine cover U; x x X’ of Y x x X’ and as we just noted, if
the U; are of finite type over X then the U; X x X’ are of finite type over
X'’. Now suppose that just X is affine and let V; be an open affine cover
of Y'. Then each V; x x Y is of finite type over V; and so since they cover
X’ and V; x x Y is the preimage of V; we see that X’ X x Y is of finite type
over X',

So the only case left is when X is not affine. In this case, take an open
affine cover {U; = Spec A;} of X and let X! = ¢~'U; and V; = f~1U;.
From the above work we see that X| x, Y; is of finite type over X!. But
this is the same morphism as X; xx Y — X/ and so we have found an
open cover of X’ on which f’ is of finite type. This is enough to conclude
that f’ is of finite type.

e Let {SpecC;} be an open cover of S. Since X 5s (resp. ¥ % §) is a

scheme of finite type over S, the preimages f~! Spec C; (resp. g~* Spec C;)
can be covered by finitely many open affines, say {Spec A;;} (resp. {Spec B;x})
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such that each A;; (resp. Byj) is a finitely generated C; algebra. It can
be seen from the construction of X xg Y given in the text that X xg Y
is covered by the open affines Spec(A4;; ®¢, Bix) for various 4, j, k. Notice
that for fixed i there are finitely many of these. Since A;; and B;j are
finitely generated C; algebras, it follows that A;; ®c, By is a finitely gen-
erated C; algebra (if {ay} C A;; and {3,,} C By are finitely generating
sets then take {ay ® B, }). So we have found an affine cover of S such that
each of the preimages in X X g Y satisfies the required property. Hence,
X XgY — § is a morphism of finite type.

f Since we are given that f is quasi-compact, by Exercise 11.3.3(a) we just
need to show that it is locally of finite type. Let C = {Spec C;} be an open
affine cover of Z. Since gf is of finite type, the preimages (gf)~! Spec C;
are covered by finitely many open affines Spec A;; such that each A;; is
a fintely generated Cj-algebra. Let {Spec B;;} be an open affine cover
of g7'SpecC; in Y. Then the preimage of each Spec B;j is contained in
U; Spec A;; so we can cover it with basic open affines coming from the
Spec A;;. Stated differently, for each ik, the preimage f~'Spec B;, can
be covered with affine schemes of the form Spec(A;;)q,,, for some j and
some a;re € A;j. We then have a sequence of ring homomorphisms C; —
Bir — (Aij)ai,- The composition makes (A;j)q,,, a finitely generated
Cj-algebra (since A;; is a finitely generated C; algebra we can choose the
generators for A;; together with aiké) and hence, (Aij)a;., 1 a finitely

generated Bji-algebra (we can take the same generators as for over C; as

everything in C; goes through B;; anyway).

g Let V; = Spec B; be a finite affine cover of Y and U;; = Spec 4;; be
a finite affine cover of V; such that each A;; is a finitely generated B;-
algebra. Since each A;; is a finitely generated B;-algebra, and each Bj is
noetherian (since Y is noetherian) it follows from Hilbert’s Basis Theorem
that the A;; are noetherian. Hence, Y is locally noetherian.

To see that Y is quasi-compact, consider a finite open affine cover {U;}
of X. Since f is of finite type it is quasi-compact (Exercise 1.3.3(a)), and
so the preimage f~'U of each U; is quasi-compact (Exercise 1.3.2). Now
let {V;};es be an open cover of Y indexed by a set J. This gives an open
cover of f~1U; for each 7, and since each of these is quasi-compact, there is
a finite subcover, indexed by a finite set, say J;. Now UJ; is finite and the
subcover indexed by it is still a cover so we have found a finite subcover
of an arbitrary cover. Hence, Y is noetherian.

Exercise 3.14. If X is a scheme of finite type over a field, show that the closed
points of X are dense. Give an example to show that this is not true for arbitrary
schemes.

Solution. We immediately reduce to the affine case, for if V is a closed subset
containing every closed point, then for each U; in an open affine cover, V NU; is
a closed subset containing every closed point of U;. So we can’t have a proper
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closed subset containing every closed point globally, unless we can have them
locally on affines.

So let X = Spec A be an affine scheme of finite type over a field. If we can
show that the Jacobson radical is the same as the nilradical of A we are done,
since the Jacobson radical corresponds to the smallest closed subset containing
all the maximal points, and the nilradical corresponds to the closed set which
is the whole space. But this is a statement of the Nullstellensatz.

An example of a scheme for which this is not true is Spec R for any local
ring R of dimension greater than 0. The maximal ideal is unique and therefor
equal to its own closure. Since the dimension is positive however, this is not the
whole space.

Exercise 3.15. Let X be a scheme of finite type over a field k (not necessarily
algebraically closed).

a Show that the following three conditions are equivalent.

(a) X x3, k is irreducible, where k denotes the algebraic closure of k.
(b) X Xy ks is irreducible, where ks denotes the separable closure of k.
(c¢) X Xy K is irreducible for every extension field K of k.

b Show that the following three conditions are equivalent.

(a) X xi k is reduced.
(b) X Xy ky, is reduced, where k, denotes the perfect closure of k.
(c) X Xy K is reduced for all extension fields K of k.

¢ Give examples of integral schemes which are neither geometrically irre-

ducible nor geometrically reduced.
Solution. a

b

¢ Consider
Spec Qz, y]/(z* + )
Since 22 + y? is an irreducible polynomial in Q[z, ] the ideal (2% + y?) is
prime and therefore the affine scheme is integral. However, after tensoring
with C we get
Spec Cla, y]/((z — iy)( + iy))
which is certainly not irreducible.
Now consider
Spec Z[x]/(x* — p)
for some prime p.In the integers since p is prime there is not solution to

22 = p and so z? — p is irreducible implying that the affine scheme is

integral. However after tensoring with Z/p we get

Spec(Z/p)[z]/ ()
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which is certainly not reduced.

For an example over a field consider F,(¢) the function field over the field
with p elements. We take our example to be

SpecFy (8)[x]/(2” —t)

which is integral as 2P —t has no solutions in F,(¢). Tensoring with F, (t%)
however, our scheme becomes

Spec F (t7)[a]/(w — t7)?

Exercise 3.16. Noetherian Induction. Let X be a noetherian topological space,
and let & be a property of closed subsets of X. Assume that for any closed
subset Y of X, if &2 holds for every proper closed subset of Y, then & holds
for'Y (in particular, &2 holds for the empty set). Then & holds for X.

Solution. Let NP be the collection of closed subsets of X for which & does not
hold. If NP is not empty, then since X is noetherian, it has a least element Z.
If every proper closed subset of Z satisfies & then so does Z, however if there
is a proper closed subset of Z that doesn’t satisfy & then Z is not minimal.
Hence, we have a contradiction and N P must be empty. So X satisfies Z.

Definition. A topological space X is a Zariski space if it is noetherian and every
(nonempty) closed irreducible subset has a unique generic point.
Exercise 3.17. Zariski spaces.

a Show that if X is a noetherian scheme, then sp(X) is a Zariski space.

b Show that any minimal nonempty closed subset of a Zariski space consists
of one point. These are called closed points.

¢ Show that a Zariski space X satisfies Ty: given any two distinct points of
X, there is an open set containing one but not the other.

d If X is an irreducible Zariski space, then its generic point is contained in
every nonempty open subset of X.

e Show that the minimal points, for the partial ordering determined by x1 >
xo if xo € {x1}, are the closed points, and the mazimal points are the
generic points of the irreducible components of X. Show also that a closed
subset contains every specialization of any of its points.

f Let t be the functor on topological spaces introduced in the proof of (2.6):
the points of t(X) are the irreducible closed subsets of X and the closed
subsets are the sets of the form t(Y') where Y is a closed subset of X.

If X is a noetherian topological space, show that t(X) is a Zariski space.
Furthermore, X itself is a Zariski space if and only if the map o : X —
t(X) is a homeomorphism.
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Solution. a We have already seen in the text (Caution 3.1.1) that sp(X) is
a noetherian topological space so we just need to show that each closed
irreducible subset has a unique generic point. Note that for a closed
irreducible subset Z of any topological space and an open subset U, either
U contains the generic points of Z, or UN Z = @ (since if n ¢ U then U*
is a closed subset containing 7 and so {n} C U¢ and therefore UNZ = ).
So we can reduce to the affine case.

Suppose that X is affine. Then the irreducible closed subsets correspond
to ideals I with the property that VI = VJK = VI =/ J or VK. We
claim that ideals with this property are prime. To see this, suppose that
fg € VI. Then VI = ((f)+V1)((9)++/T) and so either /T = (f)++/T or
VI = g++/I. Hence, either f € /T or g € V/I. It is straightforward that
p is a generic point for V(p) so we just need to show uniqueness. Suppose
that p, q are two generic points for a closed subset determind by an ideal

I. Thenp=p=VI=q=q.

b Let Z be a minimal nonempty closed subset. Since Z is minimal it is
irreducible and therefore, by the previous part has a unique generic point
7n. For any point z € Z, again since Z is minimal, we have Z = {z} and
S0 T = 1.

¢ Let x,y be the two distinct points and let U = mc. If y € U we are done.
If not, then y € {«}. If © € {y} then = and y are both generic points for
the same closed irreducible subset, which contradicts the assuption that
they were distinct. Hence, = € {y} .

d If n € U then n € U°, a closed subset, and so X = W C U¢. Therefore
U=go.

e Let X = UZ; be the expression of X as the union of its irreducible closed
subsets. In particular, the Z; are the maximal irreducible closed subsets.
Let n be the generic point of Z; and x a point such that n € {z}. This
implies that Z; C {x} and so since the Z; are maximal, Z; = {z}. Since
the generic points of irreducible closed subsets are unique, this implies
that n = x. So 7 is maximal. Conversely, suppose that 7 is maximal. 7 is
in Z; for some ¢. If i is the unique generic point of Z; then n € {5’} and

so since 7 is maximal, n =7’

Let Z be a closed subset and z € Z. Since@ is the smallest closed subset
containing z, and Z contains z, we have {z} C Z.

f Since the lattice of closed subsets of ¢(X) is the same as the lattice of
closed subsets of X, we immediately have that ¢(X) is noetherian. Now
consider 7, a closed irreducible subset of X, and its closure {n} in ¢(X).
This is the smallest closed subset of X containing 7. Since 7 is itself a
closed subset of X, we see that this is 7. So if ' is a generic point for
{n} Ct(X) then {n} = {n'}, and so n = 7. Hence, each closed irreducible
subset has a unique generic point.
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If X is itself a Zariski space then there is a one-to-one correspondence
between points and irreducible closed subsets. Hence, « isa bijection on
the underlying sets. It is straightforward to see that its inverse is also
continuous.

Exercise 3.18. Constructible sets. Let X be a Zarisiki topological space. A
constructible ubset of X is a subset which belongs to the smallest family § of
subsets such that (1) every open subset is in §, (2) a finite intersection of
elements of § is in §, and (3) the complement of an element of § is in §.

a A subset of X is locally closed if it is the intersection of an open subset
with a closed subset. Show that a subset of X is constructible if and only
if it can be written as a finite disjoint union of locally closed subsets.

b Show that a constructible subset of an irreducible Zariski space X is dense
if and only if it contains the generic point. Furthermore, in that case it
contains a nonempty open subset.

¢ A subset S of X is closed if and only if it is constructible and stable under
specialization. Similarly, a subset T of X is open if and only if it is
constructible and stable under generization.

dIf f: X =Y is a continuous map of Zariski spaces, then the inverse
image of any constructible subset of Y is a constructible subset of X.

Solution. a Consider ]_[?:l Z; NU; € X where Z; are closed subsets of X

and U; are open subsets of X. Note that (1) + (3) implies that all closed
subsets of X are in § and (2) + (3) implies that finite unions of elements
of § are in §. Hence, as long as the Z; N U; are disjoint, ]_[?:1 Z;NU; =
U?lei NnU; €5.
Let § be the collection of subsets of X that can be written as a finite
disjoint union of locally closed subsets. We have just shown that §' C §, so
by definition, if §F’ satisfies (1), (2), and (3) then § = §. We immediately
have that (1) is satisfied since UNX = U and X is closed. If [}, Z,NU;
and [[!_, Z/ N U/ are two elements of §’ then their intersection is

n

(ﬁZmUz) N (ﬁz{mm’) =[] @nz)n@winu))

i,j=1

which is in § so (2) is satisfied. We show (3) by induction on n. Let
5, C § be the collection of subsets of X that can be written as a finite
disjoint union of n locally closed ubsets. Note that U,J,, = § and that
we have already shown that, an intersection an element of an element of
&, and an element of §/, is in §'. Let S € §. So S =U N Z. Then its
complement is

Se=Unz)F=vuz =U]](z°nD)
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which is in §'. Now let S € §F/, and suppose that for all i < n, complements
of memebers of §, are in §'. We can write S as S = S,_1[[S1 for some
Sp—1 € &1 and S1 € ). The complement of S is then S5_; N Sf. We
know that S¢_, and SY are in § by inductive hypothesis and we know
that their intersection is in § by (2) which we proved above. Hence, S°©
is in § and we are done.

Let S € §. If if the generic point 1 is in S then S O {n} = X so S is
dense.

For the converse, we use the fact that for an irreducible Zariski space,
every nonempty open subset contains the generic point (Exercise 3.17(d)).
Suppose S = [[I-; Z; N U; is dense, that is, its closure is X. The closure
S is the smallest closed subset that contains S so any closed subets, for
example U; Z; that contains S, contains the closure. Hence, U; Z; O S = X.
But X is irreducible and so Z; = X for some i. So up to reindexing,

S =U,]] (]_[?;11 ZiN UZ-). Since every nonempty open subset contains
the generic point, S contains the generic point.

It is immediate the closed (resp. open) subsets are constructible and stable
under specialization (resp. generization). Suppose that S =[], Z;NU;
is a constructible set stable under specialization and let x be the generic
point of an irreducible component of Z; that intersects U; nontrivially.
Since S is closed under specialization, S contains every point in the closure
of {z}. So S contains every point of every irreducible component of each
Z;. That is, S O UZ;. Now consider a point = € S. It is contained in so
Z; and so S C UZ;. Hence S = UZ; is closed.

Now suppose S is a constructible set, stable under generization. Then S°¢
is a closed set, stable under specialization and therefore closed, so S is
open.

n

f_l (H Z; N Uz) = H f_l(ZZ' N Uz) = Hf_l(ZZ‘) n f_l(Ui)

i=1

Since f is continuous, f~'Z; is closed and f~'U; is open, hence, the
primage of a constructible set is constructible.

Exercise 3.19. Let f : X — Y be a morphism of finite type of noetherian
schemes. Then the image of any constructible subset of X is a constructible
subset of Y. In particuler, f(X), which need not be either open or closed, is a
constructible subset of Y.

a Reduce to showing that f(X) itself is constructible, in the case where X
and Y are affine, integral, noetherian schemes, and f is a dominant mor-
phism.
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b In that case, show that f(X) contains a nonempty open subset of Y by
using the following result from commutative algebra: let A C B be an
inclusion of noetherian integral domains, such that B is a finitely gener-
ated A-algebra. Then given a nonzero element b € B, there is a nonzero
element a € A with the following property: if ¢ : A — K is any homomor-
phism of A to an algebraically closed field K, such that ¢(a) # 0, then ¢
extends to a homomorphism ¢' of B into K, such that ¢'(b) # 0.

¢ Use noetherian induction to complete the proof.

d Give some examples of morphisms f : X = Y of varieties over an alge-
braically closed field k, to show that f(X) need not be open of closed.

Solution. a If S C X is a constructible set then we can restrict the morphism
to fls : S — Y. So it is enough to show that f(X) itself is constructible.
If {V;} is an affine cover of Y and {U;;} is an affine cover for each f~1(V;)
then if f(U;;) is constructible for each 4, j then f(X) = Uf(U;;) is con-
structible, so we can assume that X and Y are affine. Similarly, if {V;} are
the irreducible components of Y and {U;;} the irreducible components of
F71(V;), then if f(U;;) is constructible for each i, j then f(X) = Uf(U; )
is constructible, so we can assume that X and Y are irreducible. Reducing
a scheme (or ring) doesn’t change the topology, so we can assume that X
and Y are reduced. Putting these last two together, we can assume that
X and Y are integral.

The last thing is to show that we can assume f is dominant. Suppose that
f(X) is constructible for every dominant morphism. We have an induced
morphism [’ : X — f(X) = C from X into the closure of its image C.
Then f’ is certainly dominant, so f'(X) is constructible in C. This means
it can be written as [[U; N Z; a disjoint union of locally closed subsets.
Since C' is closed in Y, each Z; is still closed in Y. The subsets U; on
the otherhand, can be obtained as U; = V; N C for some open subsets
V; of Y| by the definition of the induced topology on C'. We now have,
fX)=11U:nZ; =11Vin (C N Z;), which is constructible.

b If X = Spec B and Y = Spec A are affine integral noetherian schemes, and
f is a dominant morphism, then f : X — Y is induced by a morphism
¢ : A — B. Since A is integral it has a generic point 7 = (0) and since
f is dominant, n is in the image of f. That is, there is some p C B such
that ¢~'p = (0). Since every element of B is contained in a prime ideal,
in particular this means that ¢ is injective. By the assumption that f
is finite type, we have that B is a finitely generated A-algebra. We now
use the following lemma, with b = 1 to find an element a of A with the
stated properties. We claim that D(a) C f(Spec B). To see this, suppose
that p € D(a). So a # p and the image of a under the composition
¢:A— A/p — Frac(A/p) — Frac(A/p) is nonzero. This means that
we can lift ¢ to a homomorphism ¢’ : B — K in which 1 is not zero.
This means the kernel of ¢ is a proper prime ideal q of B. We now have
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ANg=AnNker¢ = ker¢ = p and so q gets sent to p under X — Y.
Hence, D(f) is contained in the image of f.

Lemma 4. Let A C B be an inclusion of noetherian integral domains, such
that B is a finitely generated A-algebra. Then given a nonzero element
b € B, there is a nonzero element a € A with the following property: if
¢ : A — K is any homomorphism of A to an algebraically closed field K,
such that ¢(a) # 0, then ¢ extends to a homomorphism ¢ of B into K,
such that ¢'(b) # 0.

Proof. First suppose that B is generated over A by one element. Then
either B = Alz] or B & Alz]/(f(z)) where f(z) = ag+ar1xz+---+a,z™ is
an irreducible polynomial of degree, say n (irreducible since B is integral).

In the first case, given b = g(x) = by + b1z + - - - + bgz? we choose a = by.
Then for a homomorphism ¢ : A — K into an algebraically closed field,
we get a nonzero (since ¢(bg) # 0) polynomial ¢(g)(x) € K[z] which has
d roots. Since K is algebraically closed, we choose an element « that is
not a root, and define ¢’ : B — K by sending x to a.

Now suppose that B = Alz]/(f(z)). Let b € B and let g(z) = by +
b1z + -+ + bype™ € Alz] be a representative for b with m < n. Choose
a = by € A. Now given a morphim ¢ : A — K, we obtain polynomi-
als ¢(f)(x), 9(g)(z) € Klx] which since K is algebraically closed can be
written as a, [[\-,(z — a;) and by, []~,(z — B;) for some oy, 3; € K.
Note that the «; are all distinct. Choosing an «; € {f1,...,8m} we get
a morphism ¢’ : B — K defined by z — «; which extends ¢. Now the
image of b is by, [~ (c; — 3;) which is nonzero by our choice of «; and
the fact that ¢(a) = ¢(by) # 0.

Now suppose that we have a B generated by n elements over A. So
B = Alxy,...,x,]/p for some prime idea p. Let ¢ : Alxy,...,zp_1] —

Alz1, ..., z,] denote the inclusion. It can be shown that A’ def Alzy, ..., Tp—

is a noetherian integral domain and A’ C B satisfies the assumptions of
the lemma. So we have reduced to the case where B is generated by one
element, which we have already proven. O

We need to show that given a closed subset Z C Y of Y, if Z' N f(X)
is constructible for every proper closed subset of Z, then Z N f(X) is
constructible. The result that f(X) is constructible will then follow by
Noetherian induction.

So suppose that Z’ N f(X) is constructible for every closed proper subset
of a closed subset Z C Y.

Consider the morphism Spec k[t,t~1, (¢t — 1)~!] — Spec k[z, y] determined
by y +— 0,z +— t. It is a composition

Al —{0,1} — A} — {0} — A?
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where the image of the second morphism is the hyperbola xy = 1, a closed
subset of AZ. The closure of the image of the composition is zy = 1 but
the image is missing the point (1,1).

Exercise 3.20. Dimension. Let X be an integral scheme of finite type over
a field k (not necassarily algebraically closed). Use appropriate results from
Section 1.1 to prove the following:

a For any closed point P € X, dim X = dim Op.

b Let K(X) be the function field of X. Then dim X = tr.d. K(X)/k.

¢ IfY is a closed subset of X, then codim(Y, X) = inf{dim Op x : P € Y}.
d IfY is a closed subset of X, then dimY + codim(Y, X) = dim X .

e If U is a nonempty open subset of X, then dimU = dim X .

f If k C k' is a field extension, then every irreducible component of X' =
X % k' has dimension = dim X .

Lemma 5. Let P be a point of X. Then there is an inclusion reversing bijection
between irreducible subsets of X containing P and prime ideals of Ox p.

Proof. Let U = Spec B be an open affine subset of X containing P and let
p be the prime ideal of B corresponding to P. So we have an isomorphism
Ox,p = B,. We will use bijections

{ZCX:Zc ir.andPeZ} < {ZCU:Zcl irr. and P € Z}
< {I CB:IprimeandpDI}
< {I C B, : I prime }

The only one of these that is not immediately a bijection is the first one.

If Z is a closed irreducible subset of X containing P, then UNZ is a nonempty
closed subset of U. We can write Z = (U°N Z)U (U N Z). Since we assumed
that Z is irreducible and intersects U we have Z = U N Z. To see that ZNU is
irreducible, suppose we write it as UNZ = Z1UZs for closed subsets Z1, Z5 C U.
Since the Z; are closed in U we have Z; = U N Z; where Z; is their closure in
X. Now Z=UNZ=2,UZy=2,UZyand so Z = Z; fori =1 or 2. Say 1.
Then ZNU = Z; and so Z N U is irreducible.

Conversely, if Z is a closed irreducible subset of U, then consider Z. Writing
itas Z = Z1UZyweget Z=UNZ = (UNZ)U(UN Zy) and so either
Z=UNZor Z=UNZy Say Z =UnNZ. Then Z C Z; and so since
Z = 74 U Zy we find that Z = Z;. So Z is irreducible. O

Solution. a Via the lemma, any chain of distinct prime ideals of Op gives
a chain of distinct closed irreducibles of X containing P, so dimOp <
dim X. In particular, since any maximal chain of distinct closed irreducible
subset of X ends in a closed point, say @), we have equality for at least
one point Q.
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Now for P again an arbitrary point, the fraction field of Op is the same as
the function field of X (since it is integral) and so by Theorem 1.1.8A(a),
we have

dim Op = tr.d. K(Op)/k
= tr.d.K(X)/k = tr.d. K(Og)/k = dim Og = dim X

b This is contained in the proof of the previous part.

¢ By definition, codim(Y, X) is the infimum of the codimension of the closed
irreducible subsets of Y and so we can assume that Y is irreducible. In the
case where Y is irreducible, it has a unique generic point 7, and O, x 2
Op x for any P € Y. This implies that dim O, x < dim Op x for any P
and hence, inf{dimnOpx : P € Y} = dimO,, x. Now the result follows
from the lemma.

d Suppose that X,Y are affine and Y is irreducible. Then Y corresponds
to a prime ideal p in B = I'(X, Ox). We have the following immediate
equalities: dimY = height p, dim B/p = codim(Y, X),dim X = dim B.
From these and Theorem I.1.8A(b) the result follows.

Now suppose X and Y are not necassarily affine, but Y is still irreducible.
Then it has a generic point 7, and choosing an affine neighbourhood U =
Spec A of n we get a new pair, U and Y/ = U N'Y which are affine, and
therefore satisfy

dimY”’ + codim(Y',U) = dim U

e They have the same function fields, and so the equality follows from the
second part of this exercise.

f

Exercise 3.21. Let R be a discrete valuation ring containing its residue field
k. Let X = Spec R]t] be the affine line over Spec R. Show that statements (a),
(d), (e) of Exercise 8.20 are false for X.

Solution. First we describe X. To list the points, we separate them into two
groups by considering the preimages of the closed and generic points under
R[t] — R. Topologically, these are isomorphic to Speck[t] and Spec K[t] and
so the points of Spec R[t] are of four kinds. To describe these we name the
morphisms 7 : R[t] — k[t] and ¢ : R[t] — K][t]. Then a point of Spec R[t] is one
of

a t=1(0) = (0),

b 17Y(f) = (f) for a polynomial f € R[t] irreducible in K[t], and therefore
also in R[t] (note that by clearing denominators of coefficients, every poly-
nomial in K[t] can be written as a product of a unit in K and a polynomial
in RJt]).
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¢ 7 1(0) = mlt],

d 771(f) = m[t] + (f) for a polynomial f € R[t] which is irreducible module
m[t], and therefore also irreducible RJ[t].

L_l(gi)NNNNNNNNNNNN

(t,fi) @@ 0000 ee

(a) A closed point of the form ¢~ 1p.

(d)

(e)
Exercise 3.22. Dimension of the Fibres of a Morphism.
Solution.

Exercise 3.23. If V., W are two varieties over an algebraically closed field k,
and if V. x W is their product, as defined in Ezercises 1.3.15 and 1.3.16, and it
t is the functor of I1.2.6 then t(V x W) = t(V) xy t(W).

Solution.
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4 Separated and Proper Morphisms

Exercise 4.1. Show that a finite morphism is proper.

Solution. Let f : X — Y be the finite morphism. Finite implies finite type so
we only need to show that f is universally closed and separated.

f is separated. We want to show that X — X xy X is a homeomorphism
onto a closed subset of X xy X. It is enough to show this locally so take an
open affine cover {V; = Spec B;} of Y. Since f is finite, the preimages of the
Vi are also affine, say U; = Spec A;. Now U, xv, U; are open affine subsets of
X Xy X which cover the image of the diagonal and so it is enough to show
that each A=U; xv, U; — U; Xy, U; is a closed immersion. Now the preimages
are A71U; xy. U; = U; so we want to show that the scheme morphism induced
by A; ®p, A; — A; is a closed immersion. Since this ring homomorphism is
surjective, the result follows from Exercise 11.2.18(c).

f is universally closed. The proof of Exercise 11.3.13(d) goes through to show
that finite morphisms are stable under base change (in fact, the proof becomes
easier). Secondly, we know that finite morphisms are closed (Exercise 11.3.5)
and therefore finite morphisms are universally closed.

Exercise 4.2. Let S be a scheme, let X be a reduced scheme over S, and letY
be a separated scheme over S. Let f and g be two S-morphisms of X toY which
agree on an open dense subset of X. Show that f = g. Give examples to show
that this result fails if either (a) X is nonreduced , or (b)Y is nonseparated.

Solution. Let U be the dense open subset of X on which f and g agree. Consider
the pullback square(s):

e

A/
_—

~—N=<—""-

lf,g
A

Y*>Y><5Y

Since Y is separated, the lower horizontal morphism is a closed immersion.
Closed immersions are stable under base extension (Exercise 11.3.11) and so
Z — X is also a closed immersion. Now since f and g agree on U, the image
of Uin Y xgY is contained in the diagonal and so the pullback is, again U (at
least topologically. But this means that U — X factors through Z, whose image
is a closed subset of X. Since U is dense, this means that sp Z = sp X. Since
Z — X is a closed immersion, the morphism of sheaves Ox — Oy is surjective.
Consider an open affine V' = Spec A of X. Restricted to V, the morphism
ZNV — V continues to be a closed immersion and so Z NV is an affine scheme,
homeomorphic to V, determined by an ideal I C A. Since Spec A/I — Spec A
is a homeomorphism, I is contained in the nilradical. But A is reduced and so
I =0. Hence, ZNV = Z and therefore Z = X.



a Consider the case where X =Y = Spec k[z, y]/(2?, 7y), the affine line with
nilpotents at the origin, and consider the two morphisms f,g: X — Y,
one the identity and the other defined by x — 0, i.e. killing the nilpotents
at the origin. These agree on the complement of the origin which is a
dense open subset but the sheaf morphism disagrees at the origin.

b Consider the affine line with two origins, and let f and g be the two open
inclusions of the regular affine line. They agree on the complement of the
origin but send the origin two different places.

Exercise 4.3. Let X be a separated scheme over an affine scheme S. Let U
and V be open affine subsets of X. Then U NV 1is also affine. Give a example
to show that this fails if X is not separated.

Solution. Consider the pullback square

UNV ——UxgV

L

X*>X><SX

Since X is separated over S the diagonal is a closed immersion. Closed immer-
sions are stable under change of base (Exercise I11.3.11(a)) and so UNV — U x gV
is a closed immersion. But U xg V is affine since all of U,V,S are. So
UNV — U x5V is a closed immersion into an affine scheme and so U NV itself
is affine (Exercise I1.3.11(b)).

For an example when X is not separated consider the affine plane with two
origins X and the two copies U,V of the usually affine plane inside it as open
affines. The intersection of U and V is A2 — {0} which is not affine.

Exercise 4.4. Let f : X — Y be a morphism of separated schemes of finite
type over a nmoetherian scheme S. Let Z be a closed subscheme of X which is
proper over S. Show that f(Z) is closed in'Y, and that f(Z) with its image
subscheme structure is proper over S.

Solution. Since Z — S is proper and Y — S separated it follows from Corollary
I1.4.8e that Z — Y is proper. Proper morphisms are closed and so f(Z) is
closed.

f(Z) — S is finite type. This follows from it being a closed subscheme of a
scheme Y of finite type over S (Exercise I1.3.13(a) and (c)).

f(Z) — S is separated. This follows from the change of base square and the
fact that closed immersions are preserved under change of base.

f(Z) — =Y



f(Z) — S is universally closed. Let T — S be some other morphism and
consider the following diagram

Txg —7

o

T xs f(Z2) —= f(Z)

T ———>5

Our first task will be to show that T'xs Z — T x g f(Z) is surjective. Suppose
x €T Xg f(Z) is a point with residue field k(x). Following it horizontally we
obtain a point =’ € f(Z) with residue field k(z’) C k(x) and this lifts to a point
z" € Z with residue field k(z”) D k(z"). Let k be a field containing both k(z)
and k(z"). The inclusions k(z"), k(z) C k give morphisms Speck — T xs f(2)
and Speck — Z which agree on f(Z) and therefore lift to a morphism Spec k —
T g, Z giving a point in the preimage of . So T'xsZ — T X g f(Z) is sujective.

Now suppose that W C T xg f(Z) is a closd subset of T xg f(Z). Its
vertical preimage (f’)"'W is a closed subset of T' X Z and since Z — S is
universally closed the image s'o f/((f/)~'(W)) in T is closed. As f’ is surjective,
FI)7HW)) = W and so s o f/((f1) 71 (W) = s'(W). Hence, T x5 f(Z) is
closed in T

Exercise 4.5. Let X be an integral scheme of finite type over a field k, having
function field K. We say that a valuation of K/k has center x on X if its
valuation ring R dominates the local ring Oy x.

a If X is separated over k, then the center of any valuation of K/k on X
(if it exists) is unique.

b If X is proper over k, then every valuation of K/k has a unique center on
X.

¢ Prove the converses of (a) and (b).

d If X is proper over k, and if k is algebraically closed, show that T'(X,Ox) =
k.

Solution. a Let R be the valuation ring of a valuation on K. Having center
on some point x € X is equivalent to an inclusion O, x € R C K (such
that mp N O, x = m,) which is equivalent to a diagonal morphism in the
diagram

Spec K ———= X

|

Spec R —— Speck

But by the valuative criterion for separability this diagonal morphism (if
it exists) is unique. Therefore, the center, if it exists, is unique.



b Same argument as the previous part.
c

d Suppose that there is some a € I'(X, Ox) such that a € k. Consider the
image a € K. Since k is algebraically closed, a is transcendental over k
and so k[a™'] is a polynomial ring. Consider the localization kla™']4-1).
This is a local ring contained in K and therefore there is a valuation ring
R C K that dominates it. Since mp N k[a™'],-1) = (a™') we see that
a”le mpg.

Now since X is proper, there exists a unique dashed morphism in the
diagram on the left.

SpecK—;X K <—1TI(X,0x)
| ] ]
- i/

Spec R —— Speck R k

Taking global sections gives the diagram on the right which implies that
a € R and so vg(a) > 0. But a=! € mp and so vr(a™!) > 0 This gives a
contradiction since 0 = vg(1) = vr(%) = vg(a) + vr(L) > 0.
Exercise 4.6. Let f : X — Y be a proper morphisms of affine varieties over
k. Then f is a finite morphism.

Solution. Since X and Y are affine varieties, by definition they are integral and
so f comes from a ring homomorphism B — A where A and B are integral.
Let K = k(A). Then for valuation ring R of K that contains ¢(B) we have a
commutative diagram

Spec K ——= X

7
ElNEd
Ve
7
Ve

SpecR ——Y

Since f is proper, the dashed arrow exists (uniquely, but we don’t need this).
From Theorem I1.4.11A the integral closure of ®(B) in K is the intersection of
all valuation rings of K which contain ¢(B). As the dashed morphism exists for
any valuation ring K containing ¢(B) so it follows that A is contained in the
integral closure of ¢(B) in K. Hence every element of A is integral over B, and
this together with the hypothesis that f is of finite type implies that f is finite.

Exercise 4.7. Schemes over R.

a Let X be a separated scheme of finite type over C, let o be a semilinear
involution on X, and assume that for any two points x1,xo € X there is
an open affine subset containing both of them. Show that there is a unique
separated scheme X of finite type over R such that Xo xg C =2 X, and
such that this isomorphism identifies the conjugation involution of X with
the one on Xg xg C.



For the following statements, Xo will denote a separated scheme of finite type
over R, and X, o will denote the corresponding scheme with oncolution over C.

b Show that X is affine if and only if X is.

¢ If Xo,Yy are two such schemes over R, then to give amorphism fy: Xo —
Yy is equivalent to giving a morphism f : X — Y which commutes with
the involutions.

d If X = Al then Xy = Ag.

e If X = IP’(l: then either Xy = Pul{ or Xg is isomorhic to the conic in ]P’%
given by the homogeneous equation x3 + 3 + x5 = 0.

Solution. a

b Since Xy xg C = X if X, is affine then certainly X is. Conversely, if
X = Spec A is affine then as above, Xy = Spec(A7).

¢ Certainly, given fy we get an f that commutes with the involution. Con-
versely, suppose that we are given f that commutes with o. In the case
where Y and X are affine Y = Spec B and X = Spec A we get and in-
duced morphism on ¢ invarants A° — B? and this gives us the morphism
Xo— Yy. If X and Y are not affine then take a cover of X by o preserved
open affines {U;} and for each i take a cover {V;;} of f~'U; with each Vj;
a o preserved open affine of Y. Let m : Y — Y} is the projection and recall
that it is affine (part (b)). By the affine case, we get 7V;; — nU; and by
the way these are defined it can be seen that they glue together to give a
morphism Yy — Xj.

d See Case II of part (e).

e Case I: 0 has no closed fized points. Let © € X = ]P’(%: be a closed point
and consider the space U = X\{x,o0x}. Since o has no fixed points
and PGL¢(1) is transitive on pairs of distinct points we can find a C-
automorphism f that sends (z,cx) to (0,00) and therefore assume that x
and oz are 0 and oo and so U = Spec C[t,t~!]. Note that the lift of o is
still C-semilinear by the commutativity of the following diagram.

—1
xtox o xt o

RN e

C—+C—+>C—=C

Now o induces an invertible semilinear C-algebra homomorphism on C[t,#~1].

We will show that o acts via t — —t~!. The element ¢ must get sent
to something invertible and therefore gets sent to something of the form



at® for some k an integer. ! Since ¢? = id it follows that k = =+1.
Furthermore, by considering o on the function field C(¢) it can be seen
that k = —1 since otherwise the valution ring C[t]4) C C(t) would be
fixed, implying that ¢ has a fixed point. Now tot = a is fixed by ¢ and o
acts by conjugation on constants, we see that a € R. If a is positive, the
ideal (t —+/a) is preserved contradicting the assumption of no fixed points,
so a € R<p. Now we make a change of coordinates by replacing ¢ with
\/%7. This amounts to choosing a slightly different element of PGL(1) at
the beginning when we were sending « and oz to 0 and co. With this new
t our involution is ¢ ++ —¢~1.

Now we rewrite C[t,t7!] as

so the involution acts by switching % and % (and conjugation on scalars).
Now consider the two subrings C[—t] and C[t~!] of the function field C(t).
We have isomorphisms

Cl% %] ~ _ _ Z
Fzm Sl =%
ClX,2] o iy _

;([_E( ZY)]z) = C[t 1] —t7! = %

and o acts by swapping these two rings (and conjugation on scalars).
These three open affines patch together in a way compatible with o to
form an isomorphism
C[X,Y, Z] 1
Proj ————< =P

"Xy +z2) ¢
where o acts on the quadric by swapping X and Y, and conjugation on
scalars. Making a last change of coordinates

U:%(XH/) V:%’(YfX)

we finally get the isomorphism

2 = Proj —C[X7 Y, Z] = Proj Clx,Y, 7]

—oD 2 apl o X
U2+ V2 + 22) "Xy +22) €

YThe group of wunits in C[t,t='] is {at* : a # 0,k € Z}. Suppose that
(om0 ai)(Oor, b)) = 1 the term of highest order in the product is ambpt™™™ = 1 and

so n = 1 — m. Similarly, the term of lowest order is am/bn/t”urm, =landson =1-—m'.

Nown' <n=1-—m<1-—m/=n’ and so n = n’. The same argument shows that m = m/.
Hence, both elements of the product are of the form at¥ for some k.



where o acts on 2 by conjugation of scalars alone. Hence

R[X,Y, 7]

Yo = 2o =Prol a7

Case II: o has at least one fized point. Now suppose that o fixes a closed
point z. This means that o restricts to a semilinear automorphism of the
complement of the fixed point Spec C[t] C PL. Since o is invertible, ¢ gets
sent to something of the form at + b. There exists a change of coordinates
s = ct + d such that 0s = s and so in these new coordinates we get a o
invariant isomorphism X = P} @ C.

Exercise 4.8. Let &2 be a property of morphisms of schemes such that:
a a closed immersion has &2;
b a composition of two morphisms having & has &;
¢ & is stable under base extension.
Then show that
d a product of morphisms having & has &;

eif f: X =Y and g:Y — Z are two morphisms, and if go f has & and
g is separated, then f has &;

fIff: X =Y has &, then freq : Xred = Yreq has &2.

Solution. dLet X LY and X' & Y7 be the morphisms. The morphism
f x f"is a composition of base changes of f and f’ as follows:

Therefore f x f’ has property Z.

e Same argument as above but we should also note that since g is separated
the diagonal morphism ¥ — Y Xz Y is a closed embedding and therefore



satsifies A2.

f Consider the factorization

id
m

Yred Xy Xred > Xred

L

Yred Y

Xred

fred

The morphism X,.q =& X — Y is a composition of a closed immersion
and a morphism with property scP and therefore it has property <.
Therefore the vertical morphism out of the fibre product is a base change
of a morphism with property &2 and therefore, itself has property . To
se that f.q has property &2 it therefore remains only to see that the graph
I'4,., has property & for then freq will be a composition of morphisms
with property &?. To see this, recall that the graph is following base

change
XTEd —_— Y!’Ed

Xred Xy Yred I Yred Xy Yred

But Yieq Xy Yred = Yreq and A =idy, , and so A is a closed immersion.
Hence, T is a base change of a morphism with property Z.

Exercise 4.9. Show that a composition of projective morphisms is projective.
Conclude that projective morphisms have properties (a)-(f) of Exercise I11.4.8
above.

Solution. Let X Ly % 7 be two projective morphisms. This gives rise to a



commutative diagram

’

f idxg'
X——P XY ——P xP*x 72

L

Y———P'xZ

S

Z

where f’ and ¢’ (and therefore id x ¢') are closed immersions. Now using the
Segre embedding the projection P" x P* x Z — Z factors as

PrxPsxZ>Pstrts w7z 57

So since the Segre embedding is a closed immersion then we are done since we
have found a closed immersion X — P7’""* which factors g o f.

Exercise 4.10. Chow’s Lemma. Let X be proper over a noetherian scheme
S. Then there is a scheme X' and a morphism g : X' — X such that X' is
projective over S, and there is an open dense subset U C X such that g induces
an isomorphism of g~*(U) to U. Prove this result in the following steps.

a Reduce to the case X irreducible.

b Show that X can be covered by a finite number of open subsets U;,i =
1,...,n, each of which is quasi-projective over S. Let U; — P; be an open
immersion of U; into a scheme P; which is projective over S.

¢ Let U = NU; and consider the map
U—XxgP| Xg---xg P,

deduced from the give maps U — X and U — P;. Let X' be the closed
image subscheme structure. Let g : X' — X be the projection onto the
first factor, and let h : X' — P = P| xg --- Xg P, be the projection onto
the product of the remaining factors. Show that h is a closed immersion,
hence X' is projective over S.

d Show that g~ 1(U) — U is an isomorphism, thus completing the proof.
Exercise 4.11. Valuative criteria using discrete valuation rings.

a If O,m is a noetherian local domain with quotient field K, and if L is a
finitely generated field extension of K, then there exists a discrete valuation
ring R of L dominating O.

b Let f: X =Y be a morphism of finite type of noetherian schemes. Show
that f is separated (resp. proper) if and only if the criterion of 4.3 (resp.
4.7) holds for all discrete valuation rings.



Exercise 4.12. Examples of Valuation Rings. Let k be an algebraically closed
field.

a If K is a function field of dimension 1 over k, then every valuation ring
of K/k (except for K itself) is discrete.

b If K/k is a function field of dimension two, there are several different
kinds of valuations. Suppose that X is a complete nonsingular surface
with function field K.

(a) If Y is an irreducible curve on X, with generic point x1, then the
local ring R = Oy, x is a discrete valuation ring of K/k with center
at the (nonclosed) point x.

(b) If f : X! = X is a birational morphism, and if Y’ is an irreducible
curve in X' whose image in X is a single closed point xq, then the
local ring R of the generic point of Y' on X' is a discrete valuation
rign of K/k with center at the closed point xg on X.

(c) Let xg € X be a closed point. Let f : X1 — X be the blowing up
of xo and let By = f~lzq be the exceptional curve. Choose a closed
point x1 € Eq, let fo : Xo — X4 be the blowing-up of x1, and let
E, = f{lxl be the exceptional curve. Repeat. In this manner we
obtain a sequence of varieties X; with closed points x; chosen on
them, and for each i, the local ring Ox, , z,., dominates Ox, »,. Let
Ry = U2,O0x,.4,- Then Ry is a local ring, so it is dominated by
some valuation ring R of K/k. Show that R is a valuation ring of
K /k and that it has center xo on X. When is R a discrete valuation
ring?

Solution. a Let R C K be a valuation ring of K. We will show that mp is
principal, which will imply that R is discrete. Let ¢t € mg. If (t) = mpg then
we are done. If not choose some s € mg\(¢). Note that ¢ is transcendental
over k. To see this, suppose that it satisfies some polynomial Z?:o a;t' =0
chosen so that ag # 0. Then ap =t a;t"~! and so ag € (t). But ag is a
unit and so we get a contradiction, hence there is no such polynomial. Now
since K has dimension 1 and ¢ is transcendental, K is a finite algebraic
extension of k(t). The element s ¢ () and so it is algebraic over k. Hence,
it satisfies some polynomial with coefficients in k(t). Let Y1 a;s* = 0
be such a polynomial, chosen so that ag # 0. Again, this implies that
ap = s a;s'"t. Write ag = %. Then we have % = 5> a;s' ! and
so f(t) = g(t)s Y a;s*~! implying that f(¢) € (s) C mpg. Since tinmpg, the
polynomial f(t) can’t have any constant term (otherwise this term would
be in mp contradicting the fact that it is a proper ideal) and so t € (s)
and hence (s) D (t). If (s) = mp we are done. If not, repeat the process
to obtain increasing chain of ideals (t) C (s) C (s1) C ... all contained in
mp. Since R is noetherian, this chain must terminate and we find so s;
such that (s;) = mg. Hence, mp is principal, and therefore by Theorem
1.6.2A the valuation ring R is discrete.

10



5 Sheaves of Modules

Exercise 5.1. Let (X,Ox) be a ringed space, and let & be a locally free Ox-
module of finite rank. We define the dual of & denoted & to be the sheaf
Homo, (&,0x).

a Show that (€)Y = &.
b For any Ox-module .F, we have #omo (6, F) = E @ F.
¢ For any Ox-modules #,9, we have homp , (§QF ,9) = homo, (F, #Homo, (&,9)).

d Projection Formula. If f : (X,0x) — (Y, Oy) is a morphism of ringed
spaces, if F is an Ox-module, and if & is a locally free Oy -module of finite
rank, then there is a natural isomorphism fo(F R0y f*&) = f(F )R, 8.

Solution. a Even without any conditions on & there is a canonical mor-
phism & — Hom(H#om(&,0x),Ox) defined by evaluation. Given an
open subset U we want to define for every section, s € &(U) a natural
transformation hom(&, Ox )|y — Ox|u. For every open subset V' C U
we define an element of homp, (&(V),Ox(V)) = Ox(V) by evaluating
at s|y.

In the case where & is locally free, it can be seen that this canonical
morphism is an isomorphism by looking at the stalks. On the stalks, this
morphism is the canonical morphism of Ox ,-modules,

& — homo  (homo, , (&2, Ox,2))
Since &, is free, this morphism is an isomorphism.
b Again, we have a canonical isomorphism
Hom(Ox,E) @oy F — Hom(&,F)

To define this consider the presheaf U — #om(Ox, &) (U) @0 ) -F (U).
Denote this presheaf by #om(Ox, &)@, F . Tts sheafification is #om(Ox, &) R0
Z so we need just define a morphism

Hom(Ox,E) @5 F — Hom(&,T)

and then sheafification will give a morphism of the kind we require. Define
the morphism of presheaves section wise by noticing that every section
s € Z(U) gives a natural transformation Ox |y — % |y by multiplying by
the restriction of s. Then we define

hOIn(OX|U, éa|U) Qox|v y(U) — horn(éz’|U, le)
PR Ss— ((5)|U i) OXlU if|U>
The stalk of the morphism we have just defined is the obvious canonical

morphism of Ox ;-modules. When & is locally free, &, is free and so this
is an isomorphism.



Exercise 5.2. Let R be a discrete valuation ring with quotient field K, and let
X = SpecR.

a To give an Ox -module is equivalent to giving an R-module M, a K -vector
space L, and a homomorphism p : M ®g KtoL.

b That Ox-module is quasi-coherent if and only if p is an isomorphism.

Solution. a Since R is a discrete valuation ring, there are two nontrivial
open subsets of Spec R: the total space and U = {n} the set containing
only the generic point. So by definition, an Ox-module consists of an
Ox(X) = R module M and an Ox(U) = K module L, together with
an R-module homomorphism M — Lgr where Ly is L considered as an
R-module. Since restriction and extension of scalars are adjoint the R-
module homomorphism is that same as giving an K-module homomorpism
M®r K — L.

b Let # be the Ox-module. If .# is quasi-coherent then every point has a
neighbourhood on which % has the form M. The only neighbourhood of
the unique closed point of Spec R is the whole space, so .# is of the form
M and therefore L = #(U) = My = M ®r K. Conversely, suppose
M ®r K — L is an isomorphism. M ® g K — L is the adjunct morphism
of M — Lg so we get a factorization M — M ®p K — Lp where the
first morphism is the unit of the adjunction. This factorization means
gives a morphism of sheaves M — .% and since it is an isomorphism, the
morphism of sheaves is. So .% is quasi-coherent.

Exercise 5.3. Let X = Spec A be an affine scheme. Show that the functors ™
and I' are adjoint.

Solution. We begin by defining a morphism of sheaves n : T'(X, %)~ — .#. Ona
distinguished affine open, D(a) of Spec A we have I'(X, %)~ (D(a)) = (X, Fa
and so restriction .#(X) — % (D(a)) induces a morphism I'(X,.%#)~(D(a)) —
F(D(a)). If we have two distinguished open subsets D(a), D(b) of X, it can be
seen that the restriction of the morphisms agree on the intersection, and SO we
have defined a morphism of sheaves. Furthermore, since X = D(1), on global
sections we have the identity I'(X, %) — I'(X, .%).

Now for a morphism ¢ € homa(M,['(X, %)) we define a morphism in
homoe (M,ﬁ“) by 1o ¢. By the observation that ¢y : Nx, ) - I'(X,%)
is the identity, we see that I' : home, (M,.#) — homu(M,I(X,.Z)) is an
inverse to this assignment. Hence we have a bijection.

Exercise 5.4. Show that a sheaf of Ox-modules F on a scheme X is quasi-
coherent if ad only if every point of X has a neighbourhood U, such that & |y is
isomorphic to a cokernel of a morphism of free sheaves on U. If X is noetherian,
then Z is coherent if and only if it is locally a cokernel of a morphism of free
sheaves of finite rank.



Solution. First suppose that .% is quasi-coherent. Then every point has a neigh-

bourhood U on which .Z |y & % (U). Since every module is a cokernel of a mor-
phism between free modules, ! .%(U) is the cokernel of a morphism F; — F,
of free Ox(U)-modules. Since the functor ™~ is a left adjoint it is right ex-
act and therefore preserves cokernels. So |y is isomorphic to the cokernel of
E — E—E The functor ~ also preserves arbitrary products and so ﬁ, E are free
O x-modules.

Conversely, suppose that locally % is isomorphic to a cokernel of a morphism
of free sheaves. Take an affine neighbourhood U = Spec A of a point z on which
Z |y is isomorphic to a cokernel of a morphism of free sheaves % — Z#y. Since

—_~—

the .%; are free, the adjunction morphisms .%;(U) — %, are isomorphisms. So
we have a diagram

—_~—

Fr—=Fg—=F({U)—=0

F 2o F 0

where the rows are exact. So it follows from the five lemma that the adjunction

—_~—

morphism % (U) — Z is an isomorphism. Hence, % is quasi-coherent.

The proof for the coherent case is the same. To get a cokernel of finite
rank free modules we do the following. M is finitely generated so there is a
surjective morphism R™ — M that sends each standard basis element to a
generator. Its kernel is not finitely generated a priori but we have assumed that
R is noetherian, hence R™ is a noetherian module, hence every submodule is
finitely generated. So we can find a morphism R — R’ that is surjective onto
the kernel of R™ — M. Hence, M is a cokernel of finite rank free R-modules.

Exercise 5.5. Let f: X — Y be a morphism of schemes.

a Show by example that if F is coherent on X, then f«.# need not be co-
herent on Y, even if X and Y are varieties over a field k.

b Show that a closed immersion is a finite morphism.

c If f is a finite morphism of noetherian schemes, and if F is coherent on
X, then f«F is coherent on 'Y .

Solution. a Consider the pushforward of the structure sheaf under the mor-
phism Spec k(t) — Speck for a field k. Certainly, Ogpec k(+) is coherent on
k(t) but since k(¢) is not a finitely generated k-module, its pushforward is
not coherent.

ITake Fy to be the free R-module with basis the underlying set of M equipped with the
obviousmorphism Fp — M. Now let F be the free R-module with underlying set the elements
of the kernel of Fp — M. This comes with a morphism F; — Fy and the cokernel of this
morphism is, of course, M.



b Let i : Z — X be a closed immersion of schemes. Let {U; = Spec 4;} be
an open affine cover of X. The restrictions i_lUj — Uj are also closed im-
mersions and so by Exercise I1.3.11(b) the are of the form Spec(4,/I;) —
Spec A; for suitable ideals I; C A;. Since each A;/I; is a finitely generated
Aj-module, this shows that 7 is finite.

¢ Let {Spec B;} be an open affine cover of Y. Since f is finite, each
71 Spec B; is affine (say Spec A4;) and since .% is coherent and X noethe-
rian, the sheaf .# is of the form M; on each Spec A; (Proposition I1.5.4)
where the A; are finitely generated B;-modules and the M; are finitely
generated A;-modules. On Spec B; we have foF |spec B, = (B, Mi)™~ by
Proposition I1.5.2(d). Since A; is a finitely generated B;-module and M;
is a finitely generated A;-module it follows that g, M; is a finitely generated
B;-module. Hence, f,.% is coherent.

Exercise 5.6. Support.

a Let A be a ring, let M be an A-module, let X = Spec A, and let F = M.
For any m € M show that Suppm = V(Annm).

b Now suppose that A is noetherian, and M finitely generated. Show that
Supp .# = V(Ann M).

¢ The support of a coherent sheaf on a noetherian scheme is closed.

d For any ideal a C A, we define a submodule T'y(M) of M by T'y(M) =
{m € Ml|a"m = 0 for some n > 0}. Assume that A is noetherian, and
M any A-module. Show that To(M)~ = 2 (F), where Z = V(a) and
F =M.

e Let X be a noetherian scheme, and let Z be a closed subset. If F is
a quasi-coherent (respectively coherent) Ox-module, then 3 (F) is also
quasi-coherent (respectively coherent).

Solution. a By definition Suppm is the set of points p € Spec A such that
my # 0. This condition is equivalent to asking that sm # 0 for all s & p.
Ifp € V(Annm) then p O Annm and so sm # 0 for all s ¢ p and therefore
p € Suppm. Conversely, if p € Suppm then there is some nonzero s ¢ p
such that sm = 0 and therefore p 2 Annm so p ¢ V(Annm).

b By definition Supp.# is the set of primes p € Spec A such that M, # 0.
Suppose p € Supp.%. If p ¢ V(Ann M) then there is some s & p such
that sm = 0 for all m. This means that M, = 0 which contradicts the
assumption that p € Supp #. Hence, Supp # C V(Ann M). Conversely,
suppose that p is not in the support of M, so M, = 0. Then for each
element m € M there is some s € A\p such that sm = 0. In particular,
if {m;} is a finite set of generators for M then there are s; € A\p such
that s;m; = 0. This means that s = [[s; € A\p is in Ann M. Hence,
p 2 Ann M.



¢ The support of a sheaf is the union of the supports of the sheaf resricted to
each element of an open cover. Take an open affine cover {U; = Spec A;}
of X such that ZF|y, = ]\Z for some finitely generated A;-modules. Then
by the previous part, for each 4, the support intersected with U; is a closed
subset of U;. This implies that the support is closed in X. 2

d Let U =X — Z and j : U — X the inclusion. Exercise 1.1.20(b) gives us
an exact sequence:
0— HNF) = F — j.F

Since j is quasi-compact and separated, we can apply Proposition 11.5.8(c)
to find that j,.# is quasi-coherent. Using a similar diagram to that in the
proof of Exercise 11.6.4 we see that 3 (%) is quasi-coherent. So we only
need to show that the module of global sections are isomorphic. That is,
we want an isomorphism between the following two modules

[o(M)={m e M|a"m = 0 for some n > 0}

I'z(%#)={me€ M|Suppm C Z}

First suppose that m € T'y(M). Then a™ C Annm for some n > Z
so V(a™) D V(Annm). But V(a") = V(a) (Lemma I1.2.1(a)) and by the
first part of this exercise V(Annm) = Supp m. Furthermore, by definition
Z = V(a). So our inclusion V(a™) O V(Annm) becomes Z O Suppm.
Hence, m € I'z(.%).

Conversely, suppose that m € I'z(%#), so Suppm C Z. By what we have
just written we immediately see that this implies that V(Annm) C V(a).
By Lemma I1.2.1(c) this implies that v Annm 2 v/a and so vVAnnm 2 a.
Now since A is noetherian, a is finitely generated by, say n elements {a;}.
Since a C vAnn M there is some j; such that for eacj ¢ we have al' €
Ann M. Let N = %{J} Now every element of a can be written as a
polynomial in the a; with no constant term, and so every element of a’¥
can be written as a polynomial in the a; where the degree of the smallest
homogeneous part is V. For a polynomial of this form, every mononial
contains a factor of the form af where k > max{j;} > j; by definition of
N. Hence, every element of a” is in Ann M and so a¥Vm = 0. Hence,
m € Lq(M).

e Let {U;} be an affine cover on which .% is locally of the form M;. Since
X is noetherian we can apply the previous part of this question to find
that S0 (F )|y, 2 Ty, (M;)~ where qa; is the ideal of Z N U; (see Exercise
11.3.11(b)). Hence, 52 (.F) is quasi-coherent. The same proof works for
the coherent case.

2Let Z denote the support of X and Z¢ its complement. For each i since Z N Uj; is closed
in U; we see that Z¢NU; is open in U;. Since U; is open in X this implies that Z¢NU; is open
in X as well. So Z¢ =U(Z°NU;) is a union of open sets, and therefore open itself. Hence, Z
is closed.



Exercise 5.7. Let X be a noetherian scheme, and let F be a coherent sheaf.

a If the stalk F, is a free Oy-module for some point x € X, then there is a
neighbourhood U of x such that F|y is free.

b F is ocally free if and only if its stalks F, are free Oy-modules for all
zeX.

¢ F is invertible (i.e. locally free of rank 1) if and only if there is a cogerent
sheaf 4 such that ¥ @ 9 = Ox.

Solution. a Consider a neighbourhood of x on which .# has the form M
(where M is a finitely generated A-module where A is the ring of global sec-
tions of said neighbourhood), so that %, = M, for some prime p € Spec A.
Hence, we have an isomorphism M, = Aga". Let e; be the images in M,
of the standard basis elements (note that we can choose the isomorphism
so that e; € M). Let {m;} be a finite set of elements that generate M
and (§&,..., =) their images in A", Let s = [[;; sij and consider the
open affine subset D(s) of Spec A. As s is invertible in M, so are all the
s;; and so we have the relation m,; = > Z’Tfjej. This shows that we have

a surjective morphism ¢ : A" — M,. We wish it to be injective as well.
Consider the kernel. Since A is noetherian, every submodule of AP" is
finitely generated and so there is a morphism A®™ — A®" whose image
is the kernel of ¢. This can be represented by a matrix with entries in
Ay and multiplying the basis of AP™ by a suitable invertible element of
A, (the inverse of the product of the denominators of the entries of the
matrix of ¢ would do nicely) we can assume the entries of the matrix b;;
are in A. Now when we restrict (= tensor with) to Ay, the kernel vanishes
as id4, X ¢ is our original isomorphism so this means that every element
bi; is zero in A,. This means that there is some ¢;; for each b;; such that
tijbi; =0in M. Let t = s[[t;; and consider D(t) C D(s). Tensoring our
exact sequence with A; now kills ¢, by our choice of ¢ and so we obtain
an isomorphism AP" 2 M.

b If % is locally free then by definition the stalks are free O,-modules for all
xz € X. Conversely, if the stalks are all free O,-modules then by part (a)
each point has a neighbourhood U on which .Z |y is a free Ox|y-module,
hence . is locally free.

¢ If .Z is invertible then consider ¥ = sZom(%#,Ox). There is a canonical
morphism .# ® hom(.#,0x) — Ox defined by evaluation and on the
stalks, this is an isomorphism since .% is locally free of rank 1.

Conversely, suppose that there is a coherent sheaf ¢ such that % ® ¥ =
Ox. Let = be a point of X. The vector space (F; ®ox , %) ®ox ., k()
is isomorphic to (F, ®ox., k() @) (Y o, k(z)) as well as k(z).
Hence, the vector space (%, ®oy, k(z)) is of dimension one, and similarly
for ¢4. Consider an affine neighbourhood of  on which .# has the form



M and  the form N and let p € A be the prime corresponding to x.
Since .# and ¢ are coherent, M and N are finitely generated and so by
Nakayama’s lemma, a set of generators for (F, ®oy , k(x)) = M, ® k(p)
lifts to a set of generators for M,. We have seen that (%, ®o,, k(x))
is a vector space of dimension one and so it follows that M, is generated
by a single element, say m € M, as an Ap-module, and similarly, IV, is
generated by a single element, say n, as an Ap-module. Hence, M, ® N,
is generated by m ® n. Recall that it is also isomorphic to A,. We define
three morphisms:

Ay = M, M, — M, ® N, M, ® N, = A,
2= 4m %'Hm?/@)n Im@n)— %

S

By recalling that the first morphism is surjective we see that the compo-
sition of the second two is an inverse to the first. Hence ., = Ox , and
so % is locally free of rank one.

Exercise 5.8. Again let X be a noetherian scheme, and % a coherent sheaf on
X. We will consider the function

¢(x) = dimy,) Fo R0, k()

where k(x) = Oy /m, is the residue field at the point x. Use Nakayama’s lemma
to prove the following:

a The function ¢ is upper semi-continuous. That is, for any n € Z the set
®(n) = {z € X[o(x) = n}
is closed.
b If F is locally free, and X is connected, then ¢ is a constant function.

¢ Conversely, if X is reduced, and ¢ is constant, then F is locally free.

Solution. a Since a set is closed only if it is closed on each element of an
open cover, we need only prove the result for the case when X is affine. We
will show that the set ®(n)€ is open by showing that every point in it has a
neighbourhood contained in it. Let 2 € ®(n)°. So dimy,)(M,/pM,) <n
where p € Spec A = X is the prime corresponding to x and M = I'(X, %).
In fact, let m be this dimension. By Nakayama’s lemma, a basis of the
vector space M, /pM, lifts to a set of generators {m;} for the A,-module
M,, so M, is generated by m < n elements 3. Note that we can assume
m; € M. Now let {n;} be a generating set for the A-module M. In M, we
can write each n; as n; = Z i m;. So setting s = H 85, We can write sn;

Sij

. o i / iy ] .
as »_aj;m; for suitable a;;. None of the s;; are in p and so s & p, hence

3Let {v;} be a set of generators for My /pM, where v; € M, represents the class of 7;. Let
N be the submodule of M, generated by the v;. Then M, = pM, + N since N — M, /pM,
is surjective. So Nakayama’s lemma says that M = N.



p € D(s). Consider another prime q € D(s). Since s ¢ ¢, the element
s is invertible in A4 and so recalling our expressions sn; = ) aj;m; we
can write n; as an Ag-linear combination of the m;. Since n; generate
M, they also generate M, and since the m; generate the n; in M, we see
that the m; generate M,. Hence, M, is generated by m < n elements
and therefore, so is M/qM,. Hence q € ®(n)°. Since q was arbitrarily
chosen, this shows that D(s) C ®(n)°. So every point in ®(n)¢ has an
open neighbourhood contained in ®(n)¢, hence, ®(n)¢ is a union of open
sets and therefore open itself. It follows that ®(n) is closed.

b If Z is locally free then for each point x there is an open nighbourhood
U on which ¢ is constant. So ®(n) is a union of open sets, and therefore
open itself. In part (a) we have shown that it is also a closed set and so
if X is connected, the set is either empty or the whole space. Since .7 is
locally free it is locally of finite rank and so there is some n for which ®(n)
empty and therefore min,;{i|® (i) # @} is a finite integer, say m. The set
of points such that ¢(z) = m is ®(m)\®(m + 1) and by definition of m
this is the whole space. Hence, ¢ is constant.

¢ Let z be a point. We will find an open neighbourhood U of x such that
F|u is free of finite rank. Let Spec A be an affine neighbourhood of z,
let p be the prime of A corresponding to X, and let M be the finitely
generated A-module corresponding to % |gpec 4. Since X is reduced, A
has no nilpotents and similarly for all A; and Ay for f € A, q € Spec A.
Let n = dim M, ® k(p), choose a basis for this vector space and lift it to a
set of generators mq,...,m, for M, (using Nakayama’s lemma as in the
first part). Let {n;} be a finite set of generators for M. In M, these can
each be written as n; = ) Z’J m;j. Setting s = []s;;, these expressions

hold also in As so we get a short exact sequence

0—>ker¢—>A§9"£>Ms—>0

This sequence holds in each A, for q € D(s) but since ¢ is constant, each
Mg ®Fk(q) has dimension n and so ¢ tensored with k(q) is an isomorphism.
That is, k(q) ® ker¢ = 0 for all ¢ € D(s). This implies that for every
element of ker ¢, the components of the tuples are in qA; for all g € D(s).
This implies that they are in the nilradical of A;. But A; is reduced, since
X is reduced, so the nilradical is zero. Hence, ker ¢ = 0, and Mj is free.

Exercise 5.9. Let S be a graded ring, generated by S, as an Sy-algebra, let M
be a graded S-module, and let X = ProjS.

a Show that there is a natural homomorphism o : M — T, (M)

b Assume now that So = A is a finitely generated k-algebra for some field k,
that S1 is a finitely generated A-module, and that M is a finitely generated
S-module. Show that the map « is an isomorphism in all large enough
degrees.



¢ With the same hypothesis, we define an approzalence relation =~ on graded
S-modules by saying that M ~ M’ if there is an integer d such that M>q =
ML ;. We will sa that a graded S-module M is quasi-finitely generated if it
is approzalent to a finitely generated module. Now show that the functors
~ and 'y induce an approzalence of categories between the category of
quasi-finitely generated graded S-modules modulo the approzalence relation
=, and the category of coherent Ox -modules.

Solution. a Since S7 generates S, there is a cover of distinguished open
affines D (f) with f € S;. Now to give a global section of M (n)™ is the
same as giving a section on each D, (f) such that the intersections agree.
For m € My, the element m defines a section on each Dy (f), as it has de-
gree zero in M(d) sy = I'(Dy(f), M(n)~), and these sections agree on the
intersections where they are, again, m € M(d)(sg) = I'(D4(fg), M(n)™).
Hence, they define a global section and we obtain a morphism of abelian
groups o : M — T, (M).

If s € Se and m € My then sa(m) € T'.(M) is defined as the image of m®s
inI'(X, M (d)~ ®0Ox (e)) under the isomorphism M (d)~®Ox (e) = M (d+
e)™. In our case (that is, where .# from the definition on page 118 is of the
form M) the isomorphism is the one induced by M (d) ®sS(e) = M (d+e)
and so sa(m) = a(sm) and therefor « is a morphism of graded modules.

¢ Part (b) of this exercise shows that M is equivalent to I'.(M) if M is
finitely generated, and Proposition I1.5.15 says that ', (%)™ is isomorphic
to & for any quasi-coherent sheaf .. So if I' and ~ have images in the
appropriate subcategories we are done. That is, we want to show that for
a quasi-finitely generated graded S-module M, the sheaf M is coherent,
and for a coherent sheaf .# that I'.(.%) is quasi-finitely generated.

Suppose that M is a quasi-finitely generated graded S-module. Then there
is a finitely generated graded S-module M’ such that M>q = M. , for some
d. This implies that for every element f € S we have Mf) ~ M (’ ) since

m mfd

v = frra Since M’ is finitely generated, M('f) is finitely generated. S is
generated by S1 as an Sp algebra so open subsets of the form My cover

X = Proj S and so there is a cover of X on which M is locally equivlanent
to a coherent sheaf. Hence M is coherent.

Now consider a coherent O x-module .%. Then by Theorem I11.5.17 .%(n)
is generated by a finite number of global sections for sufficiently large
n. Let M’ be the submodule of I',(.%) generated by these sections. We
have an inclusion M’ — T',(.%) which induces an inclusion of sheaves

—_~—

M < I'.(#) = .7 where the latter isomorphism comes from Proposition

!/
I1.5.15. Tensoring with O(n) we have an inclusion M(n) < .%(n) that
is actually an isomorphism since .%(n) is generated by global sections in



M’. Tensoring again with O(—n) we then find that M’ is isomorphic to
F. Now M’ is finitely generated and so by part (b) there is a dy such
that for all d > dy we have My = I'(X, M'(d)) =X, #(d) =T (F)a-
Hence, M>q4, 2 T.(F)>q, and so I'.(F) is quasi-finitely generated.

Exercise 5.10. Let A be a ring, let S = Alxg,...,z,] and let X = Proj S.

a For any homogeneous ideal I C S, we define the saturation I of I to be
{s € 8| for each i =0,...,r there is an n such that x}'s € I}. Show that
I is a homogeneous ideal.

b Two homogeneous ideals Iy and Is of S define the same closed subscheme
of X if and only if they have the same saturation.

¢ If Y is any closed subscheme of X, then the ideal I'.(Fy) is saturated.
Hence it is the largest homogeneous ideal defining the subscheme Y .

d There is a 1-1 correspondence between saturated ideals of S and closed
subschemes of X.

Solution. a Suppose that s,t € I then for each i there is an n and an m such
that z's,z"t € I. So x!t™"st € I, 2T (s +t) € I, and for any a € S
we have ax}'s € I. So I is certainly an ideal. Now write s = sg + - - + sg
with each s; homogeneous. Since z; is homogeneous of degree 1, each
x7's) is homogeneous of degree n + k. Since I is a homogeneous ideal and
x?(sp + -+ + s) € I it follows that x7s, € I. Hence, sy € I, so I is a
homogeneous ideal.

b Suppose that two homogeneous ideals I; and Is define the same closed
subscheme of X. Then by Proposition I1.5.9 they define the same quasi-
coherent sheaf of ideals .# on X. Suppose s is a homogeneous element of
I of degree d. Then for each i, the element % is a section of ¥ (D (x;)).

Since the sheaf of ideals of I; is the same as tihat of I, for each ¢ there is

some t; € Iz, homogeneous of degree d such that =% = 7%,, which implies
that " (s — t;) = 0 for some n,. Since t; € I so is xit; = xzis and so s
is in the saturation of I, hence Iy C I5. By symmetry Is C I and since

the operation of saturation is an idempotent we see that I = I;.

¢ Suppose s € S is a homogeneous element of degree d, in the saturation
of T'.(Hy). That is, for each i there is some n such that zl's € I'.(Fy).
There are only finitely many ¢ and so we can assume it is the same n for
all of them. Since £y is a subsheaf of Ox, to show that s € T (Hy)q =
I'(X, #y(d)) it will be enough to show that its restriction to each open
We know that z7's € I'(X, #y(d + n)) and so, ;" ® z}'s is a section in
I'(U;, #y (d+n)®0(—n)). But Sy (d+n)@0(—n) = Hy(d) and under this
isomorphism, z; " ® zI's corresponds to z; "z's = s. So s € I'(U;, #y (d))
for all i, hence s € I'(X, #y(d)) C T'.(Hy). So I'.(Fy) is saturated.
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d We have the following three sets and maps between them:

=

Prop I1.5.9

homogeneous T.(=) quasi-coherent lﬂ__ closed
subschemes ofX

ideals of S sheaves of ideals

=
Proposition I1.5.9 says that the maps between the two rightmost sets are
bijective, and Proposition I1.5.15 says that the composition left, then right
from the middle is an isomorphism. Keeping in mind the bijection between
the two rightmost sets, part (b) of this exercise says that two homogeneous
ideals determine the same quasi-coherent sheaf of ideals if and only if they
have the same saturation. Since we already know that ~ is surjective, and
we now know that each preimage has a unique saturated homogeneous
ideal in it, we see that ~ defines a bijection between the saturated homo-
geneous ideals of S and quasi-coherent sheaves of ideals. Part (c) of this
question says that T'x(—) is its inverse.

Exercise 5.11. Let S and T be two graded rings with So =Ty = A. We define
the Cartesian product Sx AT to be the graded ring ©q>054®aTy. If X = Proj S
and Y = ProjT, show that Proj(S xa T) =2 X x4 Y and show that the sheaf
O(1) on Proj(S x4 T) is isomorphic to the sheaf pi(Ox (1)) ® p5(Oy (1)) on
X xY.

Solution. Let f € Sg and g € Ty. We have a ring isomorphism S5y ®4 T(y) —

(S x T)(fag) defined by }fn ® gi, — {;@ngy? with inverse given by (f%g’t)n —

7 ® g%. Hence D, (f) x D4(g9) =2 D4+(f ® g) and so composing with the
inclusion D4 (f) x Dy(g) — Proj S x ProjT we get morphisms D, (f ® g) —
Proj S x ProjT that are isomorphic onto their images.we get morphisms. Now
consider f' ® ¢’ € (S x4 T)q and the restriction of the two morphisms Dy (f ®
g9) = Proj S x ProjT and D, (f' ® ¢') = Proj S x ProjT to their intersection
Di(f'f®g'9)=Di(f ©g) N Di(f' ©g'). We have a diagram

Dy (f ® g) ——— D4(f) x D4(g)

| |~

D (f'f®g'g) —=Di(f'f) x D4(¢9'g) — Proj S x Proj T

i .

Di(f'®g") ———=D4(f') x Dy(d')

11
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with corresponding ring homomorphisms
(S % T) (a9 <——— S(5) @4 Tiy)

| |

(S X T) (1099 <55 ®aTigyg)
(S % T)(peq) <— S @aTig)
Following an element through the upper square gives

f7l"s®9"t
(f®g)"””

3 |

(f/)’nrwszlsg)(g/)nmgnt (f/)TIS (g,)’n‘bt
GFregar 7 7n" @ g

s t
W\wa—n(@,

and so we see that the two squares commute. Hence, the restriction of the
morphisms to intersections agree. Therefore, the morphisms patch together to
give a global morphism Proj.S x T" — Proj.S x ProjT which we can see by the
way we have defined it is an isomorphism.

To show that O(1) on Proj(S x 4 T) is isomorphic to pi(Ox (1)) @ p5(Oy (1))
on X XY we use a similar method. That is, we provide an isomorphism on each
of the distinguished opens of the form we have ben using and show that they
agree on the intersections.

Exercise 5.12. a Let X be a scheme over a scheme Y, and let £, . # be
two very ample invertible sheaves on X. Show that £ & M is also very
ample.

b Let f: X =Y and g:Y — Z be two morphisms of schemes. Let £ be a
very ample invertible sheaf on X relative to' Y, and let A be a very ample
invertible sheaf on'Y relative to Z. Show that £ & f*. 4 is a very ample
invertible sheaf on X relative to Z.

Exercise 5.13. Let S be a graded ring, generated by S1 as an Sy-algebra. For
any integer d > 0, let S'9 be the graded ring EBnZOS,(Ld) where Sﬁld) = Spa- Let
X = ProjS. Show that ProjS® = X and that the sheaf O(1) on ProjS@
corresponds via this isomorphism to Ox (d).

Exercise 5.14. Assume that k is an algebraically closed field, and that X is
a connected, normal closed subscheme of P;.. Show that for some d > 0, the
d-uple embedding of X is projectively normal, as follows.

a Let S = klzog,...,z,]/T«(Fx) be the homogeneous coordinate ring of X,
and let 8" = @, (X, 0x(n)). Show that S is a domain, and that S’
is its integral closure.

12



b Use Ezercise 11.5.9 to show that Sq = S, for all sufficiently large d.

¢ Show that SV is integrally closed for sufficiently large d, and hence con-
clude that the d-uple embedding of X is projectively normal.

d As a corollary of (a), show that a closed subscheme X C P, is projectively
normal if and only if it is normal, and for every n >) the natural map
(P, Opr(n)) — T'(X,Ox(n)).

Exercise 5.15. Extension of coherent sheaves.

a On a noetherian affine scheme, every quasi-coherent sheaf is the union of
its coherent subsheaves.

b Let X be an affine noetherian scheme, U an open subset, and F coherent
on U. Then there exists a coherent sheaf F' on X with F'|y = .

¢ With X,U, # as in (b) suppose furthermore we are given a quasi-coherent
sheaf 4 on X such that F C 4|y. Show that we can find F' a coherent
subsheaf of 4, with F'|y = 7.

d
e

Solution. a Since the scheme is affine, a quasi-coherent sheaf corresponds
to a module and a coherent sheaf a finitely generated module. So if X =
Spec A showing that every A-module is a union of its finitely generated
submodules is sufficient. But this is clear since for an A-module M, every
element m € M is contained in a finitely generated submodule (take the
submodule generated by m).

b Consider the pushforward i,.# where i : U — X is the inclusion. By
Proposition 5.8(c) we know that it is at least quasi-coherent. Then by the
previous part of this question it is the union of its coherent subsheaves,
that is, i+.# = Uy con.¥. Restricting this union gives a system of sub-
sheaves of .% whose union is .%. But .% is coherent on a Noetherian affine
scheme, so the corresponding module is Noetherian. This means that the
system of submodules corresponding to sheaves of the form i*¥¢ (for ¢
a coherent subsheaf of i,.%) has a maximal element. But this system is
directed and so the maximal element is the union. If i*.%#’ is the sheaf
corresponding to this maximal element, then we have found a coherent
subsheaf %’ of i,.# such that #'|y = Z.

¢ We have a natural morphism ¢4 — i,i*9 and so we can consider the
subsheaf ¢’ of 4 which is the preimage of i,.# C ,(i*¥). On open sets
V contained in U the morphism 4(V) — 4,i*%4 (V) is an isomorphism and
so 4’|y = . Consider the directed system of coherent subsheaves of ¥
that are contained in ¢’. Notice that by the following pullback diagram
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and the fact that the horizontal morphisms are injective, these are in one-
to-one correspondence with coherent subsheaves of i,.%#, so their union is
g’

G —Y9

L

Now the argument of the previous part goes through. Since ¢’ is the
union of our directed system, and the restriction of this union to U is #,
there is a maximal element .#’ whose restriction to U is .%. So we have
found a coherent subsheaf of ¢ whose restriction to U is &

d Let {U;} be an affine cover of X. Since X is noetherian, we can assume
the the cover is finite. Restricting to U; and U N Uy, the hyotheses of
the previous part are satisfied and so we can find a coherent subsheaf .71
of 4|y, such that the restriction to U3 NU is isomorphic to #|y,. Now
consider ¥|y,uy, (note the union, not intersection!). Setting X' = U,
and U’ = Uy N (U U U;) we have a quasi-coherent sheaf 4|y, on X' = U,
and a coherent subsheaf #; |y, on U’. The conditions of the previous part
are satisfied and so we can find a coherent subsheaf .75 of 4|y, whose
restriction to U’ is isomorphic to .Z|ys. In particular, the restriction to
U1 NUs is the same as that of I} so their “union” is a coherent subsheaf of
9 |u,nu, whose restriction to U N (U UUz) is isomorphic to .7 |ynw, uvs)-
Continuing in this was we eventually run out of U; and end up with a
coherent subsheaf %' of ¢4 such that the restriction to U is isomorphic
to .Z. In general, for the iterative step we will have X' = U; and U’ =
UnNnUuUyU---UU;_1).

e If s is a section of .% over an open set U, we apply (d) to the subsheaf of
Z |y generated by s. In this way, for every open subset U and every section
s € F(U) there is a coherent subsheaf .#' of % such that s € .7/ (U).
Hence, .7 is the union of all of these.

Exercise 5.16. Tensor Operations on Sheaves.

a Suppose that F is locally free of rankn. Then T"(F), S™(F), and \" (F)

are also locally free, of ranks n”, (":ﬁ;l), and (:f) respectively.

b Again let & be locally free of rank n. Then the multiplication map \".F ®
A"TTF — ANF is a perfect pairing for ane r, i.e., it induces an isomor-
phism of A" F with (N"""F)V @ \"F.

c Let 0 = F' — . F — F" — 0 be an ezact sequence of locally free sheaves.
Then for any r there is a finite filtration of S™(F),

Sr(g):FOQFl2”'2F7‘2Fr+1:0
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with quotients
FP/FP~t = SP(F) @ S"P(F")

for each p.
d Same statement as (c¢), with exterior powers instead of symmetric powers.

e Let f: X — Y be a morphism of ringed spaces, and let F be an Oy -
module. Then f* commutes with all the tensor operations on Z .

Solution. a Suppose that .7 is a free sheaf with basis global sections ey, . . ., e,.
That is, the e; are global sections and for each open set U, we have
FU)=2O0x(Uer|ly @@ Ox(U)ey|u, and these isomorphisms respect
the restriction homorphisms. Then the presheaf U — ®(%#(U)) (where
® is one of 77,87, \") is free with basis {e;, ® -+ ® e; |1 < iq1,... 0 <
n},{eileh...eMl < <igg <o < Sn},{eil /\"'A61T|0< 11 <ty <
<+ < iy < n+ 1} respectively. As this presheaf of Ox-modules is free,
it is a sheaf. Now if .% is an arbitrary locally free sheaf, we take a cover
{U;} of X on which each Z|y, is free. Then ®(F)|y, = ®(F|v,), and so
O(.F) is locally free.

The ranks of T"(%) and \"(F) are straightforward from the description
of the basis: for 7" we have n choices for each of the i;, of which there
are 7, and so there are n"; for A" the basis global sections are in one-
to-one correspondence with subsets of {1,...,n} of size r. For the rank
of S"(%) we want to count how many tuples (i1,...,i.) € {1,...,n}"
there are such that ¢; < i;41. Tuples of this form are in one-to-one
correspondence with subsets of {1,...,n+r—1} of size n — 1. To see this,
choose a subset {ki,...,k,—1} and suppose that the indexing is chosen
so that k; < k;41 for all . Now define k; — k;—1 — 1 to be the number
of times that ¢ appears in the tuple (i1,...,4,). That is, our basis global

]{:1—1 n—1 kifk:iflfl

. . n+r—1l—~ky_1 .
section is ej'” “ep | s . Conversely, given such a

tuple (i1,...,4,) we define k; = Z;Zl(l + #{ielie = j}). It can be seen
that these are inverse operations.

b Suppose that .# is free of rank n with basis of global sections ey, ..., e,.
Then the pairing is defined by w® A — wA A. Since Z is free of rank n we
have an isomorphism Ox — A" .Z given by f — f(e1 A+ Aey,). Every
global section A of A"™".Z defines a morphism \".# — A" % = Ox
via w + w A X. Alternatively, given a morphism of Ox-modules A" .Z —
A" F = Ox we have a morphism of global sections ¢ : A" Z#(X) —
A" Z(X) =2 Ox(X) and so we can define a global section of \"™".Z by
d(=1) (e, A---Nej,)ej, A---Aej, . where the ji are the elements of
{1,...,n} that don’t appear as iy for some £ and sy is an appropriately
chosen integer depending on the i,. It can be shown that these operations
are inverses using the fact that if A, u are two basis global sections of A" .%
and \"7".Z then A A u is zero unless p has all the complement elements
to A, in which case it is £e3 A - -+ A e, (this is how we choose 7).
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If % is not free, but still locally free, we can define such isomorphisms
N Fly, & (AN""F)V @ A" ZF|y, locally on an open cover {U;} on which
Z is free. Then we need to check that the isomorphisms agree on their
restrictions to U; N Uj for each ¢, 7. But notice that when we defined the
morphism A\".Z — (A" )Y we didn’t explicitely use the basis. So
since the inverse exists locally, it exists globally, by virtue of the fact that
it is the inverse to an isomorphism of sheaves.

Exercise 5.17. Affine Morphisms.

a

€

Show that f : X =Y is an affine morphism if and only if for every open
affine V. CY, the open subscheme f~'V of X is affine.

An affine morphism is quasi-compact and separated. Any finite morphism
s affine.

Let Y be a scheme, and let A be a quasi-coherent sheaf of Oy -algebras.
Show that there is a unique scheme X, and a morphism f: X — Y, such
that for every open affine V.C Y, f~1(V) = Spec A(V), and for every
inclusion U C V' of open affines of Y, the morphism f~Y(U) — f~1(V)
corresponds to the restriction homomorphism A(V) — A(U).

If A is a quasi-coherent Oy -algebra, then f : X — Spec A — Y is an
affine morphism, and A = f,Ox. Conversely, if f : X — Y is an affine
morphism then A = f.Ox is a quasi-coherent sheaf of Oy -algebras, and
X = Spec A.

Let f : X — Y be an affine morphism, and let A = f.Ox. Show that
f« induces an equivlance of categories from the category of quasi-coherent
Ox -modules to the category of quasi-coherent A-modules.

Solution. a Let {V;} be an open affine cover of Y such that f~1V; is affine

for all <. Given another open affine subset V' C Y we can consider the
intersections V' N V;. These are open subsets of the affines V; and so are
covered by distinguished open affines D(f;;) of the V;. Let A; = T'(V;, Oy)
and B; = I'(f~'V;,Ox). Then since both V; and f~1V; are affine, the
morphism f|s-1y, : f~W; — V; is induced by a ring homomorphism
¢; + A; — B; and the preimage of D(f;;) is D(¢fi;), also affine. So
we have found an open cover (the D(f;;)) of V for which the preimage
of every element in the cover is affine. Hence, the restricted morphism
fly=1v, « f71V; = V; is affine. Now if the result holds for Y affine, then
it will hold for this restricted morphism and in particular, the preimage
of the whole space V; will be affine. Hence, we just need to show that the
result holds for Y affine.

So suppose that Y = Spec B is affine, and that the morphism f is affine.
So there is an open cover {Spec B;} of Y such that each of the preimages
£~ Spec B; is an affine subscheme of X. We will show first that X is affine
using the criterion of Exercise I1.2.17. First refine the open affine cover
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{Spec B;} to one which consists of distinguished open subsets D(f;) of Y.
The preimages will still be affine as the preimage of a distinguished open
subset under a morphism of affine schemes is still a distinguished open
affine (as we just saw above). Now since Y is affine, it is quasi-compact,
so we can find a subcover of the {D(f;)} which is finite. So now we have
a finite set of elements {f;} of B, which generate the unit ideal, and the
preimage of each D(f;) under f : X — Y is an open affine subscheme of
X. The sheaf morphism f# : Oy — f,Ox induces a morphism of global
sections, and since unity in B is a finite linear combination of the f;, unity
in I'(X, Ox) is a finite linear combination of their images g; under this
morphism of global sections. It remains only to see that Xy, = f~1D(f;),
and restricting to an open affine cover of X shows this. 4

So now we know that X is affine. Open immersions are preserved by base
change and so are morphisms between affine schemes. So the preimage
FfIU =U xx Y of under of an open affine subset U C X of X is affine.

Let f : X — Y be an affine morphism. Take an open affine cover {V;}
of Y. Since f is affine, each U; = f~'V; is affine, and since every affine
scheme is quasi-compact, we have found a cover of Y for which each of
the preimges is quasi-compact. Hence, f is quasi-compact.

Now consider the diagonal morphism A : X — X xy X. This factors
through the open subscheme |JU; xvy, U; — X xy X and so if X —
UJU; xv, U; is a closed immersion, then so is A and f will be separated.
The preimage of each U; Xy, U; is U; and so we just want to see that
U; = U; xv, U; is a closed immersion. But this is a morphism of affine
schemes whose corresponding ring homomorphism of global sections is
surjective, hence, it is a closed immersion. So f is separated.

If f is finite then it follows from the definition that f is affine.

That f is affine follows from the definition of Spec A. If U C Y is an open
subset, then by definition (f,Ox)(U) = Ox(f~'U) = Ox(Spec A(U)) =
A(U). So f.O0x = A.

Conversely, suppose f : X — Y is an affine morphism. Let {V;} be an
open affine cover of Y. Since f is affine f~'V; is affine for each i, say
f~V; = Spec A;. We have (f.Ox)|v, = f.Opy, which is f.(A;). By
Proposition 5.2(d) this is (p,4;)~ where B; = Oy (V;), hence f,Ox is a

4Explicitely, let Spec A be an open affine subset of X and p : I'(X,0x) — A be the
restriction morphism. Then X4, N Spec A = D(pg;). But f~1D(f;) N Spec A is the preimage
of the composition Spec A —+ X — Spec B. This composition gives an induced morphism
Spec A — Spec B and the morphism B — A of global sections of this restricted morphism
factors into the morphism of global sections follows by restriction B — I'(X,Ox) — B. The
preimage of D( f;) under the morphism specA — Spec B is the distinguised open corresponding
to the image of f; in A, that is, D(pg;). So f~1D(f;)NSpec A = X4, NSpec A. This works for
any open affine and so taking a cover of them, we see that the intersection of the two subsets
FID(f), Xy, with every element in an open cover is the same, therefore they are the same.
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quasi-coherent sheaf of Oy-algebras. To see that Spec. A = X we need to
check that (i) for every open affine V = Spec B of Y we have f~1(V) =
Spec A(V), and (ii) that for every inclusion of open affines V! C V of Y the
morphism f~'V’ C f~'V corresponds to the restriction homomorphism
A(V) — A(V").

For (i) since f is affine know that f~1(V) as affine and therefore f~1(V) =
Spec Ox (f~1(V)) = Spec(f.Ox)(V). For (ii), again since f is affine we
know that f~1(V) and f~1(V’) are affine and so f~1V' < f~1V cor-
responds to the ring homomorphism Ox (f~'V) — Ox(f~'V’) which is
none other than f.Ox (V) — f.Ox(V'). That is, A(V) — A(V").

e

Exercise 5.18. Vector Bundles.
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6 Divisors

Exercise 6.1. Let X be a scheme satisfying (*). Then X x P™ also satisfies
(*) and Cl(X x P") = CI(X) x P".

Solution. As in the proof of Proposition I1.6.6 we see immediately that X x P!
is noetherian, integral, and separated. To see that it is regular in codimension
one, note that it can be covered by (two) open affines of the form X x Al. Each
of these is shown to be regular in codimension one in the proof of I1.6.6 and so
X x P! is regular in codimension one.

After Proposition I1.6.5 and I1.6.5 we have an exact sequence

Z 5 ClUX xPY) L ClX -0

The first map sends n to nZ where Z is the closed subscheme 75 'oco C X x
P! (where my : X x P! — P! is the second projection), and the second is
the composition of CI(X x P!) — CI(X x Al) & CIX. Consider the map
ClX — CI(X xP") that sends 3 n;Z; to S nym; * Z;. The composition C1(X) —
CI(X x P!) — CI(X x A') & CI(X) sends a prime divisor Z to 7, 'Z, then
(X x AY) N7t Z, and then back to Z since (X x A') N7 'Z is the preimage
of Z under the projection X x A' — X. Hence, the epimorphism in the exact
sequence above is split.

We now show that the morphism Z — C1(X x P!) is split as well, by defining
a morphism Cl(X x P') — Z which splits i. Let k : C1 X — CI(X x P!) denote
the morphism we used to split j. Then we send a divisor £ to & — kj€. This is
in the kernel of j (since jk = id) and therefore in the image of 7. So it remains
only to see that ¢ is injective.

Suppose that nZ ~ 0 for some integer n. Taking the “other” X x A' we
have Z as ngo under the projection my : X x P! — P!, In the open subset
X x A! we have Z as X embedded at the origin. So the local ring of Z in the
function field K (¢) (where K is the function field of X) is K[t];). Since nZ ~ 0
there is a function f € K(t) such that vz(f) = n and vy (f) = 0 for every other
prime divisor Y. So f is of the form t"% where g,h € KJt] and ¢ fg(t), h(¢).
If the degree of g and h is 0 then changing coordinates back ¢ +— t~! we see
that vy (f) = —n where Y is another copy of X embedded at the origin, or
infinity, depending on which coordinates we are using; the one opposite to Z
at any rate. If one of g or h has degree higher than zero then, it will have an
irreducible factor in K[t], which will correspond to a prime divisor of the form
Ty L2 for some = € P!, and the value of f will not be zero at this prime divisor.
Hence, there is no rational function with (f) = nZ and so ¢ is injective. Hence
Cl(X x P) = CI(X) x Z.

Exercise 6.2.
Exercise 6.3.

Exercise 6.4. Let k be a field of characteristic # 2. Let f € k[x1,...,x,] be a
square free nonconstant polynomial, i.e., in the unique factorization of f into ir-



reducible polynomials, there are no repeated factors. Let A = kw1, ..., 2y, 2]/ (2%~

f). Show that A is an integrally closed ring.

Solution. Let B = k[x1,...,x,], L = Frac B and consider the quotient field K
of A. In this field we have gﬁzh g:zg = gg:;ﬁz since 22 = f in A, and so
every element can be written in the form ¢’ + zh' where ¢’,h’ € L. Hence,
K = L[2]/(2*> — f). This is a degree 2 extension of L with automorphism
o : z — —z and is therefore Galois. So we have the situation of Problem 5.14
from Atiyah-Macdonald (with badly chosen notation). Let A¢ be the integral
closure of A in K. We will show that A = A° by showing that fora = f+2z9 € K
(with g,h € L) we have o € A° if and only if f,g € B.

The minimal polynomial of v is X2 — 29X + (g2 — h%f). So if g, h € B then
a € A°. Conversely, suppose that a € A°. Then a + ca = 2f and a — o = 2g
are both o invariant and in A¢ and are therefore in B, by the Atiyah-Macdonald
exercise.

Exercise 6.5. Quadric Hypersurfaces. Let char k # 2, and let X be the affine
quadric hypersurface Speck[xg, ...,z /(23 + 23 + - + 22).

a Show that X s normal if v > 2.

b Show by a suitable linear change of coordinates that the equation of X
could be written as xor1 = 23 + --- + 22. Now imitate the method of
(6.5.2) to show that:

(a) If r =2 then C1X = 7Z/2Z;
(b) If r =3 then C1X 2 Z;
(¢c) If r > 4 then C1X = 0.

¢ Now let QQ be the projective quadric hypersurface in P" defined by the same
equation. Show that:

(a) If r = 2, C1Q = Z, and the class of a hyperplane section Q.H 1is
twice the generator;

() Ifr=3,ClQXZ&Z;
(¢c) If r > 4, C1Q 2 Z, generated by Q.H.

d Prove Klein’s theorem, which says that if r > 4, and if Y is an irreducible
subvariety of codimension 1 on Q, then there is an irreducible hypersurface
V CP" such that Y N Q =Y, with multiplicity one. In other words, Y 1is
a complete intersection.

Solution.  a Let A = Specklzq,...,z,]/(x3 + 22 + --- + 22). By taking
f=a2+ .-+ 22 if we can show that f is square free, then we will have
the situation of Exericise I1.6.4 and so A will be integrally closed, implying
that X is normal. But the polynomial f has degree 2 and so it is a product
of at most 2 other nonconstant polynomials, which by degree, must be
linear. Suppose Y a;z; is a linear polynomials such that (3 a;z;)% = f.



Then a? =1 for all i =0,...,7, and 2a;a; = 0 for i # j € {0,...,r}. But
this implies that 2 = 2afa? = 0 and we have assumed that k doesn’t have
characteristic 2. Hence f is square free.

b We assume —1 has a square root ¢ in k, otherwise there isn’t a suitable
change of coordinates. Take the change of coordinates xo — yo—;yl and
xp — LU Then z§ + 27 = yoy1.

Let A = Speck[wo, ..., 2,]/(vox1+25+ - -+22). Now we imitate Example
I11.6.5.2. We take the closed subscheme of A" with ideal (x1, 23+ - -+22).
This is a subscheme of X and is in fact V(x1) considering z; € A. We
have an exact sequence

Z—-Cl(X)—=Cl(X-2)—=0
Now since V(z1) N X = X — Z the coordinate ring of X — Z is
klzo, x1, 27", T2, ., xn]/(wox1 + 23 + - + 22)

As in Example I1.6.5.2 since zg = —27 * (23 + - - - + 22) in this ring we can
eliminate ¢ and since every element of the ideal (zoz; + 23 + -+ + 22)
has an xy term, we have an isomorphism between the coordinate ring of
X — Z and K[z, xfl, Za9,...,Zn]. This is a unique factorization domain so
by Proposition I1.6.2 C1(X — Z) = 0. So we have a surjection Z — C1(X)
which sends n to n - Z.

r = 2 In this case the same reasoning as in Example 11.6.5.2 works. Let
p C A be the prime associated to the generic point of Z. Then m,, is
generated by zo and z; = arglxg s0 vz(x1) = 2. Since Z is cut out
by x; there can be no other prime divisors Y with vy (x1) # 0. It
remains to see that Z is not a principle divisor. If it were then CI(X)
would be zero and by Proposition I1.6.2 this would imply that A is
a unique factorization domain (since A is normal by the first part of
this exercise) which would imply that every hieght one prime ideal is
principle. Consider the prime ideal (z1, z2) of A which defines Z. Let
m = (z0,21,...,T,). we have m/m? is a vector space of dimension n
over k with basis {Z;}. The ideal m contains p and its image in m/m?
is a subspace of dimension at least 2. Hence, p cannot be principle.

r =3 We use Example I1.6.6.1 and Exercise II1.6.3(b). Using a similar
change of coordinates as the beginning of this part of this exer-
cise, we see that X is the affine cone of the projective quadric of
Example I1.6.6.1. This, by Exercise 11.6.3(b) we have an exact se-
quence 0 - Z — Z®Z — CI(X) — 0. We already know that
Cl(X) is Z,Z/n or 0. Tensoring with Q gives an exact sequence
Q — Q? - CI(X) ® Q — 0 of Q vector spaces. Hence, CI(X) = Z,
as the other two cases contradict the exactness of the sequence of
Q-vector spaces.



r > 4 In this case we claim that Z is principle. Consider the ideal (z1) in A.
Its corresponding closed subset is Z and so if we can show that (z1) is
prime, then Z will be the principle divisor associated to the rational
function x;. Showing that (x;) is prime is the same as showing that

A/(z1) is integral, which is the same as showing that %
»*2 r
is integral since (z1,zory + 25 + -+ + 22) = (w,23 + -+ + 22).

7k([§gf+z§;] is integral (where the
2 ™

variable z is missing on the top) which is the same as showing that
f = 23+ --- + 22 is irreducible. Suppose f is a product of more
than one nonconstant polynomial. Since it has degree two, it is the
product of at most two linear polynomials, say agxo+aszo+- - +a, Ty,
and byoxg + baxs + -+ + bpx,. Expanding the product of these two
linear polynomials and comparing coefficients with f we find that (I)
a;b; =1 for 2 < i <r,and (II) a;b; + ajb; = 0 for 2 <4,j < r and
i # j. Without loss of generality we can assume that as = 1. The
relation (I) implies that bo = 1, and in general, a; = b;l for2 <i<r.
Putting this in the second relation gives (ITI) af + a3 = 0 for 2 < i #
j < r and this together with the assumption that as = 1 implies that
(IV) af = =1 for each 2 < j < 7. But if 7 > 4 then we have from
(IIT) that a% + a3 = 0 which contradicts (IV). Hence 23 + - - - + 22 is

klzo,z2,...,zn]
(z3+-+a?)
is prime and hence Z is the principle divisor corresponding to x1. So

Cl(X) = 0.

This is the same as showing that

irreducible, so is integral, so A/(x1) is integral, so (z1)

¢ For each of these we use the exact sequence of Exercise 11.6.3(b).

r =2 We have an exact sequence 0 — Z — Cl(Q) — Z/2 — 0 where the
first mophism sends 1 to the class of H - @ a hyperplane section.
Tensoring with Q we get an exact sequence Q 2 ClRQ)I®RQ —-0—0
and so since Cl(Q) is an abelian group we see that it is Z@®T where T
is some torsion group. Tensoring with Z/p for a prime p we get either
7/2 % ClQ)®(Z)2) — Z)2 — 0if p=2or Z/p > CUQ)®(Z/p) —
0 — 0if p # 2. Hence, T = 0, and so CI(Q) = Z and the class of a
hyperplane section is twice the generator.

r = 3 This is Example 11.6.6.1.

r > 4 We have an exact sequence 0 — Z — C1(Q) — 0 — 0, hence, Cl(Q) =
Z and it is generated by @ - H.

3

Exercise 6.6. Let X be the nonsingular plane cubic curve y*z = z3 — 222 of

(6.10.2).

a Show that three points P, Q, R of X are collinear if and only if P+Q+ R =
0 in the group law on X. (Note that the point Py = (0,1,0) is the zero
element in the group structure on X ).



b A point P € X has order 2 in the group law on X if and only if the tangent
line at P passes through Py.

¢ A point P € X has order 3 in the group law on X if and only if P is
an inflection point (an inflection point of a plane curve is a nonsingular
point P of the curve, whose tangent line (Exercise 1.7.3) has intersection
multiplicity > 3 with the curve at P.)

d Let k = C. Show that the points of X with coordinates in Q form a
subgroup of the group X. Can you determine the structure of this subgroup
explicitly?

Solution. a Suppose that P, @, R are collinear. Then there is a line L on
which they all lie and since every line meets X in exactly three points
(counting multiplicities) P, @, R are the only points where L meets X. In
P? any line is equivlant to z and so P + Q + R ~ 3P, as divisors, hence
(P-Py)+(Q—FPy)+ (R—Py) ~ (Pp— Py) as divisors, and therefore
P+ Q@+ R =0 in the group law on X.

Conversely, suppose that P+ Q + R = 0 in the group law on X. If P, Q, R
are not all distinct, then they are collinear in P? since any two points are
collinear in P2. Suppose they are distinct and consider the unique line L
on which P and @ lie. This line intersects X in a unique third point T'
and we have P+ Q 4+ T ~ 3F,. Hence, P+ @Q + T = 0 in the group law
on X and therefore R=—P — @ =1T. So P,Q, R are collinear.

b Recall that the tangent line to P is the unique line Tp(X) whose intersec-
tion multiplicity with X at P is > 1 (Exercise 1.7.3).

If P = Py then certainly the tangent line passes through Py. Suppose that
P # Py has order 2 and consider the tangent line Tp(X) to P. This line
intersects X in three points (counting multiplicities) and since it hits P
with multiplicity greater than one, these three points are P, P and R for
some other point R (which is possibly also P). Now P, P and R being
collinear means that P + P + R + 0 in the group law on X. But P has
order 2 and so we see that R = 0 = Py. Hence, the tangent line Tp(X)
passes through Py.

Conversely, suppose that the tangent line Tp(X) passes through Py. Since
Py is the identity, it has order 2 so suppose that P # Py. Again, Tp(X)
hits X in three points (counting multiplicities) of which at least two are
P, and since we have assumed that Py # P these three points are P, P
and Py. Hence, P+ P + Py = 0 and since Py = 0 we see that P has order
2.

¢ If P is an inflection point then the intersection multiplicity of Tp(X) and
X at P is > 3. Since X has degree three it can’t be more than three and
so we see that it is exactly three. So the three points of X that Tp(X)
hits, counting multiplicites, are all P, and so P+ P+ P = 0 in the group
law. Hence, P has order three.



Conversely, if P has order three then P+ P+ P = 0 then the three points
P, P, P are collinear. That is, there is a line L such that L intersects X
in the unique point P with intersection multiplicity three. Since there is
a unique line of P? that intersects X at P with multiplicity greater than
one—the tangent line—we see that the tangent line intersects X at P with
multiplicity three, and therefore P is an inflection point.

d If the base field is C then the elliptic curve is isomorphic as an abelian
variety to the quotient of the complex plane by a lattice Z2.

Exercise 6.7. Let X be the nodal cubic curve y?z = x> + 2%z in P2. Imitate
(6.11.4) and show that the group of Cartier divisors of degree 0, CaCl’ X, is
naturally isomorphic to the multiplicative group G, .

Exercise 6.8. a Let f : X — Y be a morphism of schemes. Show that
£ — f*Z induces a homomorphim of Picard groups, f* : PicY — Pic X.

b If f is a finite morphism of nonsingular curves, show that this homomor-
phism corresponds to the homomorphism f* : Cl1Y — Cl X defined in the
text, via the isomorphism of (6.16).

c If X is a locally factorial integral closed subscheme of P}, and if f: X —
P™ is the inclusion map, then f* on Pic agrees with the homomorphism on
divisor class groups defined in (Ex. 6.2) via the isomorphisms of (6.16).

Exercise 6.9. Singular curves.

Exercise 6.10. The Grothendieck Group K (X). Let X be a noetherian scheme.
We define K(X) to be the quotient of the free abelian group genertaed byt all
the coherent sheaves on X, by the subgroup generated by all expressions F —
F' — F", whenever there is an exact sequence 0 — F' — F — F" — 0 of

coherent sheaves on X. If F is a coherent sheaf, we denote by v(F) its image
in K(X).

a If X = A}, then K(X) 2 Z.

b If X is any integral scheme, and % a coherent sheaf, we define the rank
of & to be dimy F¢ where £ is the generic point of X, and K = O¢ is
the function field of X. Show that the rank function defines a surjective
homomorphism rank : K(X) — Z.

¢ If Y is a closed subscheme of X, there is an exact sequence
KY)->KX)—-KX-Y)—0
where the first map is extension by zero, and the second map is restriction.

Solution. a Let . be a coherent sheaf on X. Then .# corresponds to
a finitely generated k[t]-module M. We take a presentation k[t]®" —
k[t]®™ — M — 0 of M and since k[t] is a principle ideal domain, we can



choose the first morphism to be injective.! Hence, we arrive at an exact
sequence 0 — (’)?2” — O?@m — % — 0 so in the Grothendieck group we
have y(#) = (m — n)y(Ox). So the morphism Z — K(X) sending n to
ny(Ox) is surjective. To see that this morphism is injective, we use the
rank homomorphism from the next part of this exercise to split it.

b First we show that it defines a homomorphism. Let 0 — #' — % —
ZF"” — 0 be an exact sequence of coherent sheaves on X. Since this
sequence is exact, it is exact at every stalk. In particular, it is exact at
the stalk at the generic point £. So we have an exact sequence of finitely
generated Og-modules 0 — F; — F¢ — F¢ — 0. Hence, dimg F¢ =
dimg ﬁf” + dimg 9‘5’ So rank is a well-defined homomorphism.

To see that it is surjective, notice that v(Ox) +— 1, and so n-v(Ox) — n.

¢ Surjectivity on the right. Every coherent sheaf .% on X — Y can be ex-
tended to a coherent sheaf %’ on X such that &'|x_y = F by Exercise
I1.5.15. So the morphism on the right is surjective.

Ezactness in the middle. Suppose that % is a coherent sheaf on X
with support in Y. We will show (below) that there is a finite filtra-
tion & = %y 2 %1 D -+ O F, = 0 such that each %;/ %, is the
extension by zero of a coherent sheaf on Y. Assuming we have such a
finite filtration, we have v(%;) = Y(Fit1) + v(Fi/Fip1) in K(X) and
so Y(F) = Z;ZOI v(ZFi/Fir1). Hence, the class represented by .# is
in the image of K(Y) — K(X). Now if > n;v(%#;) is in the kernel of
K(X)— K(X -Y) the Proof of claim. Let i : Y — X be the closed em-
bedding of Y into X and consider the two functors i, : Coh(X) — Coh(Y)
(Exercise I1.5.5) and i* : Coh(Y) — Coh(X). These functors are adjoint
(page 110) and so we have a natural morphism 7 : # — i,i*% for any
coherent sheaf .7 on X. Let Spec A be an open affine subscheme of X
on which .% has the form M. Closed subschemes of affine schemes corre-
spond to ideals bijectively and so Spec ANY = Spec A/I for some ideal
I C A and the morphism 7 : % — i,i*.% restricted to Spec A has the
form M — M/IM. Thus we see that 7 is surjective. Let %y = .# and
define % inductively as %#; = ker(F;_1 — i,i*%;). It follows from our

LIf N is a submodule of a free A-module M of rank n where A is an integral PID then
N is free. Induction on n. If n = 1 then a submodule is an ideal and since A is a PID the
ideal is of the form (a) for some a € A. Since A is integral the map b — ab is an isomorphism
of modules. Now suppose M = A™. Consider the submodule A"~ ! of elements whose last
component is zero. Then by the inductive hypothesis N’ = A?~1 N N is free; let my,..., m,
be a basis for N’ as a free A-module. If 7 : A™ — A is projection onto the last component
then its image is an ideal I of A. If I = 0 then N’ = N and we are done. If not, choose an
elemen n € N such that 7n = a where (a) = I. Then we claim that N = N’ @ An. Certainly,
N’'+An C N. If m € N then m = (m — (7m)n) + (7m)n is a decomposition into an element
of N’ and of An so N’ + An D N and therefore N’ + An = N, so it remains to see that
N’ & An — N’ + An is injective. Suppose (z,bn) is in the kernel. Then x + bn = 0 and so
w(z 4+ bn) = 0. But w(z 4 bn) = ba and since A is integral this implies that b = 0. Hence,
z+0n=0and soxz=0. So N'® An — N’ + An = N is an isomorphism.



definition that each .%;/.%,; 1 is the extension by zero of a coherent sheaf
on Y so we just need to show that the filtration .# D .%; D ... is finite.

On our open affine we have .#;|spec 4 = I7 M. Now the support of M con-
tained in the closed subscheme Spec A/I = V(I) so by Exercise 11.5.6(b)
we have vVAnn M D /T D I. Since A is noetherian, every ideal is finitely
generated. In particular, I is finitely generated. So there exists some N
such that Ann M D IV (see the proof of Exercise I1.5.6(d) for details).
Hence, 0 = IV M and so the filtration is finite when restricted to an open
affine. Since X is noetherian, there is a cover by finitely many affine opens
{U;} and so if n; is the point at which .%;|y, = 0 then F,axqn,3 = 0. So
the filtration is finite.

Exercise 6.11. The Grothendieck Group of a Nonsingular Curve. Let X be a
nonsingular curve over an algebraically closed field k.

a For any divisor D =" n;P;, let (D) = > n;[k(F;)] € K(X) where k(F;)
is the skyscraper sheaf k at P; and 0 elsewhere. If D is an effective divisor,
let Op be the stucture sheaf of the associated subscheme of codimension
1, and show that ¥(D) = [Op]. Then use (6.18) to show that for any
D, (D) depends only on the linear equivalence class of D, so 1 defines a
homomorphism ¢ : C1X — K(X).

b For any coherent sheaf F on X, show that there exists locally free sheaves
&y and & and an exact sequence 0 — & — &ytoF — 0. Let ro = rank &,
ry = rank &, and define det F = (AN"°&) ®@ (A"&)! € PicX. Show
that det Z s independent of the resolution chosen, and that it goves a
homomorphism det : K(X) — Pic X. Finally show that if D is a divsor,
then det(y(D)) = Z(D).

¢ If F is any coherent sheaf of rank r, show that there is a divisor D on X
and an exact sequence 06.L (D) — F — T — 0, where T is a torsion
sheaf. Conclude that if & is a sheaf of rank f, then [F] —r[Ox] € im.

d Using the maps v, det,rank, and 1 — [Ox] from Z — K(X), show that
K(X)2PicXa®Z.

Solution. a We denote the associated subscheme of D also by D. So its sheaf
of ideals is .#p. For each closed point P € X let %p be the skyscraper
sheaf coker((£p)p — Op) at P and zero elsewhere. There are surjections
Ox — Zp for each P and so we have an exact sequence

0—>JD—>OX—>@£ZP—>0
PeX

Hence, Op = ®&.%p and so v(Op) = >_v(F#p). Now consider .Zp for
some P € X with %#p nonzero (there are only finitely many as there are
only finitely many points in D). Choose a representation {(U;, f;)} of the
Cartier divisor corresponding to the Weil divisor D. Since D is effective,



this can be chosen so that f; € TI'(U;, Oy,) for each 4, and in this case
the sheaf of ideals .p is locally generated by f; (by the definition on
page 145). If U; is an open that contains P then vp(f;) = n, where n
is the coefficient of P in the sum D. So in the local ring Op we have
fi = t" where t is a generator of mp. The stalk of %p at P is by our
definition above coker((.#p)p — Op) which we can now see to be Op/m’%.
For each i we have an exact sequence of Op modules 0 — mb/ma! —
(’)p/mé;"l — Op/m’% — 0 and we have isomorphisms of Op-modules
mb /m's ™ = mp/m? =k so it follows that y(Fp) = ny(k(P)). Combining
this with the equality v(Op) = > v(-#p) shows that (D) = v(Op).

If D’ is some other effective divisor in the same linear equivalence class as
D then we have

(D) =~(0p) =v(0Ox) — (D)

2" 1(0x) =1 (Z(~D)) "=’ 1(0x) =1 (L (~D))

6.18

=" 7(0x) = v(Ip)) =v(Op/) = (D)

So 1 defines a homomorphism (for an arbitrary divisor D, write it as
a difference of two effective divisors D = D, — D_ and then we have

Y(D) =v(0p,) —v(Op_)).

Existence of the exact sequence. By Corollary 11.5.18 we can write %
as the quotient of a finite direct sum & = ®O(n;) of twisted structure
sheaves O(n;) for various n;. Let & be the kernel of the map & — Z.
At each closed point we then have an exact sequence

0= (&) = 02" = Z, =0

That is, (&), is a submodule of OP™. But each O, is a reduced regular
local ring of dimension one, and therefore a principle ideal domain (the
only two ideals are zero since it is reduced, and m which is principle since
O, is regular) and every submodule of a free module over a principle ideal
domain is free. Hence (&), is free for every closed point x. Then by
Exercise 11.5.7 &7 is locally free.

Independence of & and &y. Suppose that we choose another locally free
resolution 0 — & — & — # — 0. Consider the sequence 0 — ¢4 —



& B &) — F — 0. We have a diagram

0 0

0 & & F 0

0 0

0
0
0
and we know that the rows and the two right columns are exact. Hence,
the left column is exact as well by the nine lemma. We also get a similar
diagram using &7, &} in the top row which gives an exact sequence 0 —
& — 4 — &y — 0 as the left column. We know that ¢ is a locally free

sheaf by the same argument we used to show that existence of the exact
sequence and so using the isomorphism of exercise I1.5.16(d) we see that

(NEo) ® (&)~ = (A1) @ (AG) T @ (&)
(AL @ (M)
(
(

AEDNTL® (NE) T @ (AE)

So the determinant is independent of the resolution chosen.

The map det defines a homomorphism K(X) — Pic(X). We need to
show that whenever we have an exact sequence 0 — #' — % — F" —
0 of coherent sheaves, it holds that det.%# =2 (det #') @ (det #"). Let
0— & — &) — %' — 0 be an exact sequence, and &, — .Z a surjective
morphism with &y, &y, &7 all locally free. We define ¢ = ker(&o® &) — F#)

10



and 77 = ker & — %" to obtain a diagram

whose columns and the lower two rows are exact by construction. Hence,
by the nine lemma the top row is exact. ¢ and .7 are locally free sheaves
by the same argument we used to show the existence of the exact sequence
above. using the isomorphism of exercise I11.5.16(d) we see that

det F = (A& @ (AE)) ® (AF)

(A) ® (NE)) @ (AL @ (ANE]) !
det ' @ det F"

®
®

1

1%

Hence, det : K(X) — Pic(X) is a well defined homomorphism.

For a divisor D, det(¢(D)) = £(D). Suppose D is an effective divi-
sor. Then we have an exact sequence 0 — %y — Ox — Op — 0
where Y is the corresponding closed subscheme. Since both Ox and
Jy are locally free of one, and by definition (D) = v(Op) we have
det(y(D)) = Ox ® #5 ' = #, 1. Then using Proposition I1.6.18 this is
equal to Z(—D)~! and then by Proposition 11.6.13 this is isomorphic to
Z (D). If D is not effective, write it as a difference of effective divisors
and use the fact that det and 1 are both group homomorphisms together
with Proposition 11.6.13.

To construct the injective morphism, the idea is to take a basis for the
K (X)-vector space Z¢, and find a suitable (D) such that this basis gives
global sections of . (D)®.%. This defines a morphism 0" — £ (D)®.F
which we show to be injective, and then tensor everything with £ (D)~

Cover X with finitely many open affines {U; = Spec A;}?_;. On each of

these, the restriction of .# has the form M; for some A;-module M;. Now
consider the stalk %, of .# at the generic point. Since X is integral each
A; is integral and so the generic point appears as (0) in each U;, so we
have isomorphisms % = (Frac A;) ®4, M; for each i. If e1,...,¢, is a

11



basis for .Z¢ as a K(X)-vector space, then these isomorphisms gives each

e; as = for some m;; € M; and a; € A; (if for some 4 the denominators

7

’

m Hk¢j Aik
a

mij S 4 m;;
of each o were not the same, multiply by Mo e to get Tay ). Now

we want to use the a; to define a Cartier divisor but Z—] might not be in
Ox (U; NU;). We rectify this by shrinking the U; as follows. First define
U! = U;\V(a;) for each i. If UU; # X then its complement is a finite
set of points (since X is a curve), each one of which is contained in V'(a;)
for some 4 (since {U;} was a cover). For each of these points x, choose a
V(a;) that it is in, and put it back in U;. So if Z; is the set of points in
V(a;) that we have decided to leave in U;, we have U] = U;\(V (a;)\Z;).
The end result is that for ¢ # j, if = is a point in V(a;) U V(a;) then
x ¢ U;NU;. So V(a;) N(U;NU;) and V(a;) N (U; N Uj) are both empty.
It follows that a; and a; are both invertible in Ox (U N Uj). 2

So we can define a Cartier divisor D’ = {(U/, a;} whose associated sheaf is
locally generated by a% on U/. The point is that our basis vectors e; from
F¢ are now sections - @my; of I'(U}, £ (D) ®0, F). Futhermore, these
sections agree on the intersections and so we have global sections e; €
(X, Z(D")®0 F) and this we obtain a morphism 0" — £(D')® Z.
We claim that this is injective. To see this, it will be enough to show
that the a% ® m;; generate a free submodule of I'(U}, Z(D’) ®o, F).
To see this let M = I'(U/, Z(D') o, #) and consider the morphism
M — M@ K(X). Let A= Ox(U}) and let A" — M be the morphism
defined by sending (a1, ...,a,) to Zj aja%_ ® mg;. If A" — M were to
have a kernel, say N, then we would have an exact sequence

NK—-A"QK - MK

but the second morphism is an isomorphism and so N ® K is zero. Hence
the composition N -+ N ® K — A™ ® K is zero. But this is the same as
the composition N - A™ — A" ® K, and both of these maps are injective.
Hence, N = 0.

So we have an injective morphism of sheaves Ox — Z(D’') ® Z. Now we
need just tensor with .Z(D’)~! = Z(D) and we obtain an exact sequence
0— Z(D)®" - .F — 7 — 0 where 7 is the cokernel of £ (D)% — Z.
To see that .7 is torsion, consider the stalk of this exact sequence at the
generic point. We get an exact sequence of K (X )-vector spaces 0 — V' —
V — V" — 0 and the ranks of V' and V' are the same. Hence .7 = 0 and
T is torsion.

To show that [#] — r[Ox] is in the image of ¢ we first use the exact
sequence 0 — Z(D)*" — F — J — 0 to see that [F]| — r[Ox] =
r[Z(D)]+ 7] —r[Ox]. Soif [Z] and [[£(D)] — [Ox] are in the image of
1) then we are done.

2For any affine scheme Spec 4, if a is not invertible, then (a) is a proper ideal of A, and
therefore contained in some maximal idea (Zorn’s Lemma) m which implies that a € m and
so m € V(a). Therefore, if V(a) = & then a is invertible.

12



(i) [Z(D)] — [Ox] is in the image of 1. As we saw in part (a) of this
exercise, for effective divisors D there is an exact sequence 0 — £ (D) —
Ox — Op — 0 (c.f. Proposition I1.6.18) so in K(X) we have [Op] =
[Ox] — [[Z(D)]. Now if D is not necassarily effective, then it can be
written as a difference D = D, — D_ of effective divisors. Then we
have $(D) = (Op.] — [Op_] = [Ox] — [Z(D4)] — [Ox] + [£(D_)] =
[(Z(D_)] — [Z(D+)]. Now since Z(D_)~! is locally free, tensoring with
it preserves exact sequences, so ® : [F] = [F @ L(D_)7 is a well
defined (set) function on K(X). So ®(¢(D)) = ®([L(D-)]—[Z(D4)]) =
[Ox]—[Z(D)]. But ¢(D) = > n;[k(P;)] where D = 3" n;P;. and so ¢(D)
is unchanged by ®. Hence [Ox] — [Z(D)] is in the image of .

(ii) 7] is in the image of v. By Exercise I1.5.6 the support of 7 is a
closed subset of X. Since X is a curve, this is a finite set of points, so
T = ®Ip, is a finite sum of skyscraper sheaves. If we can show that
[Zp] is in the image of v for every coherent skyscraper sheaf Jp then we
are done. As we are not assuming X complete, it is enough to do this in
the affine case. So suppose that X = Spec A and that M is a coherent
skyscraper sheaf, concentrated at the maximal prime p € Spec A. For
each i we have an exact sequence 0 — p*1M — p'M — p'M/piTtM —
0. The A-module piM/pi*1M is a finite rank A/p-module; that is, a
finite dimensional vector space. Hence, p! M /p*t1M =2 (A/p)®"i for some
n;. The associated sheaf to A/p is the skyscraper sheaf k(P) and so
by induction, we have [M] = Y >0 nilk(P)], if this sum is finite. As the
support of M is p, Exercise I1.5.6(b) shows that v Ann M = p. The ring A
is noetherian and so p¥ C Ann M for some N. 3 This means that pNM =
0. Hence, n; = 0 for each j > N and so the sum [M] = " n;[k(P)] is
finite. Therefore, [.7] is in the image of 1. -

d The diagram is

Pic X KX)" ~z
P rank

It is fairly evident that rank(ny(Ox)) = n and det(ny(Ox)) = OF" =
Ox =1 € Pic(X). Furthermore, since ¢ takes a divisor to a sum of
skyscraper sheaves, and the rank of a skyscraper sheaf is zero, we have
rank o) = 0. So we just need to show that det o) = idpic x -

Suppose that D is an effective divisor and Z(D) the corresponding in-
vertible sheaf. Then by part (a) 9 sends D to v(Op) = v(Ox) — v(Ip).
By Proposition I1.6.18 this is equal to y(Ox) — y(Z(—D)). The homo-
morphism det then takes this to Ox @ (£L(—D))" = (£ (-D))¥ =2 £ (D).
Hence det ot = idpjc x -

3Since A is noetherian, p is finitely generated. Let ai,...,an be generators. For each 4
there is some n; such that a;” € Ann M. Taking N high enough, every monomial of degree
N in the a; will contain at least one term of the form a;* with m > n;. Hence, pN C Ann M.
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Exercise 6.12. Let X be a complete nonsingular curve. Show that there is a
unique way to define the degree of any coherent sheaf on X, deg F € 7Z, such
that:

a If D is a divisor, deg £ (D) = deg D;
b If Z is a torsion sheaf then deg.# =} p. y length(Fp); and

c If0 %" — .7 — Z" — 0 is an exact sequence, then deg.¥ = deg.¥' +
deg 7"

14



7 Projective Morphisms

Exercise 7.1. Let (X,Ox) be a locally ringed space, and let f : & — M be a
surjective map of invertible sheaves on X. Show that f is an isomorphism.

Solution. The morphism & — .# of sheaves is surjective (resp. isomorphic) if
and only if it is surjective (resp. isomorphic) on stalks (Exercise I.1.2). Further-
more, .Z and .# being invertible means that they are locally free of rank one.
So we are reduced to the question, given a local ring (A, m) and a surjective
morphism ¢ : A — A of A-modules, show that ¢ is an isomorphism. Since
¢(a) = p(a- 1) = ag(1) the morphism ¢ is determined by b — bg(1). Since ¢ is
surjective, there is some element ¢ € A that gets mapped to 1, so c¢(1) = 1 and
therefore ¢(1) is invertible. Then we can define ¢ : A — A by a — ac and this
gives an inverse to ¢. So ¢ is an isomorphism.

Exercise 7.2. Let X be a scheme over a field k. Let £ be an invertible sheaf
on X, and let {so,...,sn} and {to,...,tm} be two sets of sections of £, which
generate the same subspace V. C I'(X, %), and which generate the sheaf £ at
every point. Suppose n < m. Show that the corresponding morphisms ¢ : X —
Py and ¢ : X — " differ by a suitable linear projection P — L — P™ and an
automorphism of P", where L is a linear subspace of P™ of dimension m—n—1.

Solution. Now since the s; and ¢; generate the same subspace of I'( X, .¥) each s;
can be written (possibly non-uniquely) as a k-linear combination s; = ) a;;t; of
the ¢;. We choose the a;; so that the corresponding (n+1) x (m+1) matrix has
linearly independent rows. * The coefficients a;; determine n+ 1 global sections
u; = »_a;;x; of O(1) on P and we have ¢*u; = ¢* > a;jz; = > a;;¢*x; =
> a;it; = s;. So the morphism p : P — L — P" determined by the w; satisfies
po® = 1 by the uniqueness in Theorem I1.7.1. Tt remains to see that p is a linear
projection, which Hartshorne fails to define. We define it to be a morphism
P™ — L — P defined by n + 1 linearly independent global sections of O(1)
where L is the closed subvariety determined by the global sections considered
as homogeneous elements of degree 1 of the homogeneous coordinate ring. The
since the global sections are linearly independent and of degree 1, L will be a
linear subspace of P™ of projective dimension m —n — 1. We don’t need the
automorphism because we have probably defined linear projection in a more
general way tha Hartshorne has in mind.

Exercise 7.3. Let ¢ : P — P™ be a morphism. Then:

et dimV = r + 1 and notice that we suppose n < m. Now notice that we can find
a subset of {s;} that are linearly independent (inductively, choose si; not in the span of
Si1sSigs - Sijfl) and similarly for the t;. Without loss of generality, we can assume that
these linearly independent subsets are {so,...,sr} and {to,...,tr}. Now for each i =0,...,7
we can express s; uniquely as a linear combination of the ¢; for j = 0,...,r, thus obtaining an
(r+1) x (r 4+ 1) matrix that is invertible. For each i > r, express s; as s; = t; + > 7_( aijt;.
Then the full (n + 1) X (m + 1) matrix [a;;] consists of an upper left square (r + 1) X (r + 1)
square which is invertible, and for each ¢ > r we have a nonzero entry in the ith column and
zeros in the jth columns for j > i. So the rows are linearly independent.



a either ¢(P™) = pt or m > n and dim ¢(P™) = n;

b in the second case, ¢ can be obtained as the composition of (1) a d-uple
embedding P" — PN for a uniquely determined d > 1, (2) a linear projec-
tion PN — L — P™, and (3) an automorphism of P™. Also, ¢ has finite

fibres.
Solution. a A morphism from P" to P™ is equivalant to giving a line bundle
% on P™ and m + 1 global sections sg, ..., s, that generate £ at every

point of P". Consider the subsets Z; = {P € P"|(s;)p € mpLp,j =
0,1,...,i}. These are closed subset of P" and Z; 2 Z;1. Since the s;
generate £ at every point Z,, = &. Now P has dimension n so either
Z; = @ for every i, or m > n. In the first case, the global sections are all
of degree zero in the homogeneous coordinate ring of P so d = 0 and its
image in P™ is a point. In the second case, we show that dim ¢(P") = n
by induction on m.

We have already seen that if m < n then the image of ¢ is a point.
Consider n < m and ¢ is surjective then dim ¢(P"*) = dimP™ = m and
so m = n. If ¢ is not surjective then there is a point P not in the image,
and so we can compose P" — P™ — P with projection from the point
P™ — P — P™~!. By the inductive hypothesis on ¢’ : P* — P™~1 either
dim ¢'(P") = n in which case dim ¢(P") > n and is therefore n, or ¢’ (P™)
is a point. If ¢/(P") is a point then ¢(P™) is contained in the preimage
of this point under the projection. But this preimage is isomorphic to
A'. So we have a morphism P* — A'. Since P" is proper and connected,
its image is proper (Exericse I1.4.4) and connected, and the only proper
connected subschemes of A! singleton points. Hence, the image of P” is a
point.

Exercise 7.4. a Use (7.6) to show that if X is a scheme of finite type over
a noetherian ring A, and if X admits an ample invertible sheaf, then X
1s separated.

b Let X be the affine line over a field k with the origin doubled. Calculate
Pic X, determine which invertible sheaves are generated by global sections,

and then show directly (without using (a)) that there is no ample invertible
sheaf on X.

Solution. a If X admits an ample invertible sheaf £ then Theorem I1.7.6
tells use that Z™ is very ample for some n > 0 and so X admits an imbed-
ding in projective space. So there is a morphism X — P™ for some n that
factors as an open imbedding followed by a closed imbedding. Projective
space is separated and so the structural morphism P” — Spec A is sepa-
rated. But then X — Spec A is a composition of an open immersion, a
closed immersion, and P" — Spec A, all of which are separated. Hence
X — Spec A is separated.



b An invertible sheaf .Z on X restricts to invertible sheaves on Uy, Uy, the
two copies of the affine line that we have constructed X out of. Using
Proposition I1.6.2 and Corollary I1.6.16 we see that PicU; = 0 so every
invertible sheaf is isomorphic to the structure sheaf. So .Z is determined
by the isomorphism Oy, |v,nv, — Llvinv, — Ou,lvinu,- Using 11.6.2
and I1.6.16 again we see that PicUy N Uy = 0 so Z|y,nu, = Ovynu, and
therefore the isomorphism is an automorphism of k[z,x~!] as a module
over itself. Automorphisms of this form are determined by a unit in the
ring, and the units of k[z,z7!] are the polynomials of the form az™ for
a € k" and n € Z. So every element of Pic X is determined by a polynomial
of the form azx™. Following our construction, it can be seen that the
corresponding Cartier divisor is {(Up, 1), (Uy,axz™)}. In this form it can
be seen that az™ and by™ define the same invertible sheaf if and only if
n = m, so PicX = Z. Denote by .%, the invertible sheaf corresponding
ton € Z.

Given a Cartier divisor {(Uy, 1), (Uy,2z™)}, the corresponding invertible
sheaf .7, is the subsheaf of J# generated locally on Uy by 1 and on U; by
™", A global section of %, is a section on Uy and a section on U; that
agree on the intersection. That is, an element of k[z] and an element of
2~ "k[z] that agree when restricted to Uy NU;. So the element of ™ "k[z]
must have homogeneous components of nonnegative degree, and soif n > 0
the local ring at the origin of U; cannot be generated by a global section.
So each of the invertible sheaves %, for n > 0 aren’t generated by global
sections.

Now suppose that .Z is an ample invertible sheaf, say £ = .%,. Then by
Theorem I11.7.6 £™ = %, is very ample over Speck for some m > 0.
This means there is a morphism to some projective space ¢ : X — P} such
that £, = ¢*O(1). But since P™ is separated, the two origins get sent

to the same point, and so the morphism factors through X ENYY ENS
Since PicA! = 0 we have ¢g*O(1) & Oy and so ¢*O(1) = f*g*O(1) =
f*Opn = Ox. Son = 0. Now consider the coherent sheaf .%,, for some
n > 0. If Ox really were ample then there would be some iy such that
for i > ig the sheaf %, ® O?}i was generated by its global sections. But
we have seen that this is not the case. So not even Ox is ample, and
therefore there are no ample invertible sheaves on X.

Exercise 7.5. FEstablish the following properties of ample and very ample in-
vertible sheaves on a noetherian scheme X. £, # will denote invertible sheaves,
and for (d), (e) we assume furthermore that X is of finite type over a noetherian
ring A.

a If £ is ample and A is generated by global sectrions, then £ @ M is
ample.

b If £ is ample, and A is arbitrary, then # & L™ is ample for sufficiently
large n.



Solution. a Note that if % and ¢ are two sheaves of Ox-modules that
are generated by global sections {fi,..., fn} and {g1,...,9m} then the
tensor product, is generated by the global sections { f;®g;}. Now consider
some coherent sheaf of Ox-modules .%. Since .Z is ample, there is some
ng such that for all n > ng the sheaf % ® £ is generated by global
sections. By the remark we just made, this implies that (¥ ®.£")®@.#% =
F R (M R@ZL)" is generated by global sections. Hence, £ ® # is ample.

b .# is coherent and so for sufficiently large  the sheaf ¥ ® .# is generated
by global sections. By the remark we made in part (a) this means that
(L*@.4#)% is generated by global sections for all positive d. Take n = i+1.
For another arbitrary coherent sheaf .7, there is some dy such that for all
d > dy the sheaf .F ® £? is generated by global sections. It follows that
(FRLN(L @M= F(L@.4M)7 is generated by global sections
for all d > dy. Hence, " ® .# is ample for sufficiently large n.

¢ Oy is a coherent sheaf so there is some dj such that for all d > dy Ox Q.4
is generated by global sections. For an arbitrary coherent sheaf .%, there
is some eg such that for all e > eg the sheaf .# ®.£° is generated by global
sections. Choose ng bigger than ey and dg. Then for all n > ny we have
FRMARL) =2 (FRL™)R(Ox ®.A™) is generated by global sections.
So £ ® A is ample.

e From Theorem II1.7.6 we see that there is some n > 0 for which Z" is very
ample. Using .# = .Z in the definition of ample shows that there is some
do for which Z? is generated by global sections for all d > dy. Then by
the previous part Z% @ £" = £ is very ample for all d +n > dy + n.

Exercise 7.6. The Riemann-Roch Problem.

a Show that if D is very ample, and if X — P™ is the corresponding em-
bedding in projective space, then for all n sufficiently large, dim|nD| =
Px(n) — 1, where Px is the Hilbert polynomial of X.

b If D corresponds to a torsion element of Pic X, of orderr, then dim [nD| =

0 if rln and dim |nD| = —1 otherwise. In this case the function is periodic
of period r.
Solution. a Recall that the Hilbert polynomial is the numerical polynomial

associated to the Hilbert function ¢ : n — dimyg S,, where S is the homoge-
neous coordinate ring of X. Via the embedding we can assocoiate .Z with
S(1)~ and then using Exercise I1.5.9(b) we see that S, — I'(X,S(n)™~) =
['(X,£™) is an isomorphism for all large enough n. So for all dn large
enough have dim [nD| = dimI'(X, Z") — 1 =dim S,, — 1 = ¢(n) — 1. For
n large enough, by definition ¢(n) = Px(n) and so for n large enough we
get dim |[nD| = Px(n) — 1.



b If D is a torsion element of degree r then rD is trivial and so its correspond-
ing line bundle is the structure sheaf, whose vector space of global sections
has dimension one. So dim [rD| = dimI'(X,0x) —1=1—-1= 0. Simi-
larly, if n = rk for some integer k, then dim [rkD| = dimT'(X,0%) — 1 =
dimI'(X,0x)—-1=1-1=0.

For the case r fn we will first show that dimI'(X,.#¢) = 0. Consider a
global section s € T'(X,.%) and let Z; = {P € X|[s$" € mp. L3}, If we
take an open affine subset U on which we have an isomorphism |y = Oy
then s gives a section t € Oy (U) and the set Z; NU is {P € X|t, € mp}
and so we see that from this that Z; = Z; for all ¢ > 1. Furthermore,
since .£" = Ox, we see that Z,;, = @ or X since the only global sections
of Ox are constants. Hence, Z; = @ or X. If Z; = @ then recalling the
construction of D from .Z we see that D = 0 and so r = 1, and so r|n for
all n and we have the previous case. If Z; = X then our original global
section s was zero and so there are no nonzero global sections of .Z.

Now for any ¢ = 1,...,7 — 1, the sheaf .Z? is again a torsion sheaf of rank
dividing r and so we see that #* has no global sections for each of these
i. Now I'(X,.£") = I'(X, ZLF+) = I'(X, £) for some i = 1,...,7r — 1
and so for any n that is not a multiple of r, there are no nonzero global
sections of .£"™. Hence dim|nD|=T(X,Z")-1=0—-1=—1.

Exercise 7.7. Some Rational Surfaces. Let X = P2, and let |D| be the
complete linear system of all divisors of degree 2 on X (conics). D corre-
sponds to the invertible sheaf O(2), whose space of global sections has a basis
22,92, 22, xy, x2,yz, where x,vy, z are the homogeneous coordinates of X.

a The complete linear system |D| gives an embedding of P? in P°, whose
image is the Veronese surface.

b Show that the subsystem defined by x3, 23, ¥3, 11 (xo—22), (xo —1)T2 gives
a closed immersion of X into P*.

¢ Let 0 C |D| be the linear system of all conics passing though a fized point
P. Then 0 gives an immersion of U = X — P into P*. Furthermore, if
we blow up P, to get a surface X, then this map extends to give a closed
immersion of X in P*. Show that X is a surface of degree 3 in P?, and
that the lines in X through P are transformed into straight lines in X
which do not meet.

Solution. a Recall that the Veronese surface is the 2-uple embedding of P?
into P°. That is, the embedding that corresponds the the ring homomor-
phism

(y07 Y1,Y2,Y3, Y4, y5) = (x(2)7 I’?, 1’3, ToT1,ToT2, l’1$2)

from k[y;] to k[x;]. Consider the morphism ¢ : P> — P5 corresponding
to the linear system |D|. In the proof of Theorem II1.7.1 the morphism ¢
is defined via P2 — D, (y;) where s; is the (i + 1)th basis vector of |D.



Take so = x3. Then the morphism is Spec[ZL, 2] — Spec[2:, ..., %] and

1
. . . . o’ To Yo
is defined via the ring homomorphism

(y1 ys) N (fv% ToT1 ToT2 x1x2>
y07 7y0 I‘%’ m% 9 I‘% 9 ZC%
Clearly, this agrees with the Veronese embedding described above. Now

we can do the same thing for the other s; or evoke Exercise 11.4.2 to see
that the two morphisms agree.

We use the cirteria from Proposition 7.3. Since Dy (z?) = D, (z;), the
five open sets corresponding to the chosen global sections cover P2, hence
(1) is satisfied. Now we want to show that for every closed point P € P2,
the global sections whose germ are in mp.Zp generate mp.Zp /mQP.Zp as
a k(P)-vector space.

Each closed point appears in one of the open affines D (z¢), Dy (x1), Dy (x2).
The system is symmetric under 1 <> x5 so show (2) is satisfied for all
closed points in D4 (z1) will imply it for D, (z2) and then that will leave
the one remaining closed point (1,0,0) that is not in Dy (x1) U D4 (z2).
We start with P = (1,0,0) which is the origin in A% & D, (x(). Choose

. e ey . . ~
coordinates u = L, v = £2. We use the isomorphism OQ2)|p, (wg) =

Ox|p, (z9) S0 for sections of O(2) we have 2§ = 1, x%% = u, and m%;—z = .
Then our global sections are 1,u%,v% u(1 — v), (1 — u)v. What we want
to show is that mp/m% = (u,v)Op/(u,v)?Op is generated by the linear
combinations of the given global sections. Note that the images of u
and v in this vector space are basis vectors. We need only the global
sections u(1 —v), (1 —u)v for in (u,v)Op/(u,v)?Op we have uv = 0 since
wv € (u,v)%. So everything is fine.

While we are in Dy (xg) we do the point (u+ 1,v+ 1) as well; we will see
why later. We have the global section u(l1 —v)+2=u+1—(u+1)(v+1)
which is u + 1 in mp/m% and v(1 —u) +2 = v+ 1 — (u+ 1)(v + 1)
which is v+ 1 in mp/m%. So our global sections generate the vector space
(U +1,v+ 1)Op/(u +1,v+ 1)2Op.

Now consider the closed points in D (z1). Choose coordinates u = Hv=
22, We use the isomorphism O(2)|p, (z,) & Ox|p, () so for sections
of O(2) we have 22 = 1, x%i—‘l’ = u, and x%i—f = v. Then our global
sections are u?, 1,v2, (u—v), —uv. What we want to show is that mp/m% =
(u—a,v—b)Op/(u—a,v—>b)?Op is generated by the linear combinations
of the given global sections. If a + b # 0 then consider

uww —ab=(u—a)(v+b) —blu—a)+a(v—">)
(u—v)+(b—a)=(u—a)+ (v—">)

written on the left as a linear combination of our global sections, and on



the right as elements of mp = (u — a,v — b)Op. We have

uv—ab—b(u—a)+a(v—b)+((v—b)(u—a))
(u—v)+(b—-—a)=(u—a)—(v-0>)

and so modulo m% these generate mp as long as a+b # 0 (recall that the
images of u — a and v — b in mp/m?% are basis vectors).

So we have seen that (2) holds for all points not in the hypersurface V (zo+
x2). Actually, everything that we did for D (z1) holds for D (x2) as well,
with 1 switched with 2 so we actually see that (2) holds for all points not
in V(zg + x2) or V(xo + x1). That is, all points except (1,—1,—1). But
we saw that it holds for (1,—1,—1) earlier in D, (xg). Hence, (2) holds
for all closed points, and X — P* is a closed immersion.

If we use coordinates yo, ..., ys for P* and zg, 1,22 for P? and take our
point to be (0,0,1) = (xg,z1), it can be seen by looking at the basic
opens D, (zg), D4 (z1) and Dy (z2) — P that the linear system 9 with
basis vectors 23,72, o1, 172, Toz2 maps U homeomorphically onto an
open subset of the closed subvariety V' = V(y2ys — YoYs, Y1Y3 — Y2Y4).
Since the image of X is a closed subset and U = 7r’1~is dense in X ,
the closure V of the image of U must be the image of X. Now picking
a global section yo of O(1) it can be seen to correspond to the divisor

V(yanhyQ) =+ V(yOa 2/2793) + V(y07y3ay4) and so has degree 3.

The image of the line azg + br; = 0 (minus P) of U C P? in V has as
its closure the line V(ayo + bys, ayr + bya, ays + bys) and it follows from
some linear algebra that if the ratio a : b is different to a’ : b’ then the two
corresponding lines in V' C P* do not share a point.

Exercise 7.8. Let X be a noetherian scheme, let & be a coherent locally free
sheaf on X, and let w : P(&) — X be the corresponding projective space bundle.
Show that there is a natural 1-1 corresondence between sections of m and quotient
invertible sheaves & — £ — 0 of &.

Solution. By Proposition 7.12 to give a morphism X — P(&) over X (that is,
a section) it is equivalent to give an invertible sheaf . on X and a surjective
map of sheaves & — . So we are done.

Exercise 7.9. Let X be a regular noetherian scheme, and & a locally free
coherent sheaf of rank > 2 on X.

a Show that PicP(&) = Pic X x Z.

b If & is another locally free coherent sheaf on X, show that P(&) = P(&”)
(over X ) if and only if there is an invertible sheaf £ on X such that
E2ERL.



Solution. a There is a natural morphism « : Pic X x Z — PicP(&) defined
by (Z,n) = (7*Z) ® O(n). We claim that this gives the desired iso-
morphism. Let r be the rank of &. Pick a point ¢ :  — X and an
open affine neighbourhood U of it on which & is free and let k(x) be the
residue field. On U we have 771U = P’{fl and so we obtain an embed-
ding ]P’,;(;l) — Pt = P(&). Clearly, Opg)(n)|y = Oy(n) and we know
that Pic ]P”,;(ZS) = Z so we have obtain a left inverse to Z — PicP(&). So
it remains to show that « is surjective, and that PicX — PicP(&) is
injective.

Injectivity of .. Suppose that 7*.Z ® O(n) = Op(s). Then by Proposition
I1.7.11 we see that 7, (7*.Z @ O(n)) = Ox and by the Projection Formula
(Exercise 11.5.1(d)) we have .Z ® m.0O(n) = Ox. Again by Proposition
I1.7.11 we know that 7,O(n) is the degree n part of the symmetric algebra
on & and since rank & > 2 this implies that n = 0 and . = Ox. Hence
« is injective.

Surjectivity of a. Let {U;} be an open cover of X for which & is locally
trivial, and such that each U; is integral and separated. We can find such a
cover since every affine scheme is separated, and X is regular implies that
the local rings are reduced. The subschemes V; def P(&ly,) 2 U; x Pr—t
form an open cover of P(&) and since X is regular, each Uj; is regular, and

in particular, regular in codimension one, and hence satisfies (*), so we
can apply Exercise 11.6.1 to find that PicV; = PicU; x Z.

Now if Z € PicP(&) then for each i, by restricting we get an element
O;(ny)®@nf 2, € PicV; = PicU,; X Z together with transition isomorphisms

aij : (Oi(n;) @ mf %)

vi; — (0j(n;) @ 73 Z5)|v;,

that satisfy the cocycle condition. These isomorphisms pushforward to
give isomorphisms

aij LTy (Ol(nz)

vi;) ® £ = m(0;(ng)]v;,) ® Z;

via the projection formula. A quick look at Proposition I1.7.11 and con-
sidering ranks, we see that n; = n;. Furthermore, it can be seen from the
definition of P(&") that O;(n)|v,, = O;;(n) and so our isomorphism a; is
Oij(n) @ mf Zilv,; = Oij(n) @ 77 Zj|v;;. Tensoring this with O;;(—n) we
get isomorphisms O;; ®@ w7 Zilv,; — Oy ® 77} and the projection for-
mula together with I1.7.11 again then tells us that we have isomorphisms
Bij + ZLilu,; = .,?j\Ui]., and it can be shown that these satisfy the cocycle
condition as a cosequence of the a;; satisfying it. Hence, we can glue the
Z; together to obtain a sheaf .# on X such that 7*.# ® O(n) is isomor-
phic to £ on each connected component of X (where n depends on the
component).

b One direction follows immediately from Lemma I1.7.9 but we choose to do
it more explicitely, using Yoneda’s Lemma.



Suppose we have Z Ly % X for arbitrary schemes Y and Z and
morphisms f,g. Proposition 11.7.12 says that we have an isomorphism
homx (Y, P(&£)) = { quotient invertible sheaves g*& — £} and that this
is given by (Y % P(&)) — (u*n*& — u*O(1)). Tt is straightforward that
the following square commutes

homx (Y, IP(£)) — { quotient invertible sheaves of g*&}

i_og lg*

homx (Z,P(&)) —— { quotient invertible sheaves of f*&}

since (ab)* = b*a* and so we actually have an isomorphism of functors
between homx (—,P(&)) and the functor Fg that sends a scheme g : Y —
X over X to the set of quotient invertible sheaves of g*&'.

Now Yoneda’s Lemma says that if two representable functors are isomor-
phic then their representatives are isomorphic. If we have an isomor-
phism & = &' ® & we get an induced isomorphism Fe = Fe by send-
ing a quotient invertible sheaf g*& — 4 to ¢g*(&’ ® £) — A and then
g & — M 2(g* L)~ L. Tt can be checked that this is functorial using Exer-
cise I1.6.8(a), and so we obtain via Yondea, an isomorphism P(&’) = P(&”).

Suppose that we have an isomorphism « : P(&) — P(&”’) with inverse §.
Since a, and o* are adjoints, we obtain for every quasi-coherent sheaf .#
on P(&£) a morphism a*a..# — .#. If we choose an open affine subset U =
Spec A of P(&), this morphism on U takes the form ((pM) ®p A)~ - M
where Spec B = a(U), A = Bisinduced by a and M is an A-module. This
is an isomorphism and so a*a..# — % is an isomorphism. Now take .% =
O(1). Then we have a*a,O(1) =2 O(1) and so a,O(1) = *O(1) since S
is the inverse to ae. We know that 8*O(1) is in the Picard group of P(&”)
and so by part (a) it has the form ((7')*.Z") ® Op(s/)(n) for some invertible
sheaf . on X and some integer n. Pushing the isomorphism «,O(1) &
((7")* ) ® Op(gry(n) forward through 7" and using the Projection formula
(Exercise 11.5.1d) and Proposition I1.7.11 gives

&2 m.0(1) = (1).a,0(1) = (), (((W’)*-i”) ® Ouv(g')("))
= L@ (1) Poen(n) = £ @ (&)

Now since the rank of &’ is r > 2, the rth degree of the symmetric algebra
on &’ has rank (”jr) and so n = 1 and we have an isomorphism & & Z®&”’
for some line bundle .Z.

Exercise 7.10. P"-Bundles Over a Scheme. Let X be a noetherian scheme.

a By anaogy with Exercise 11.5.18, define the notion of a projective bundle
over X.



b If & is a locally free sheaf of rank n+ 1 on X, then P(&) is a P"-bundle
over X.

¢ Assume that X is reqular, and show that every P"-bundle P over X is
isomorphic to P(&) for some locally free sheaf & on X. Can you weaken
the hypothesis “X regular”?

d Conclude (in the case X regular) that there is a one-to-one correspondence
between P"-bundlesover X, and equivalence classes of locally free sheaves
& of rank n + 1 under the equivlanece &' ~ & if and only if &' =X & Q M
for some invertible sheaf # on X.

Solution. a A projective bundle of rank n over X is a scheme P and a
morphism f : P — X, together with additional data consisting of an open
covering {U;} of X, and isomorphisms v¢; : f~1(U;) — P, such that
for any 7,7 and for any open affine subset V' = Spec A C U; N Uy, the

automorphism ¢ = v; 0 1; ! of Py, = Proj A[xg, 21, .. .,2,)] is given by a

linear automorphism 6 of A[zg, 1,...,zy].

b We take an affine cover {U; = SpecA4;} of X such that & is free on

U;. So we have isomorphims &|y, = (’)?Jai(nﬂ). By definition of 7 :

P(&) — X we have 7~ U; = Proj.(&)(U;) = Proj y(O(ejai(nH))(Ui) =
Proj Ai[xo, ..., z,] = Py, where #(F) is the symmetric algebra associ-
ated to a locally free sheaf .. So we have our automorphisms ;. Now for
any open affine subscheme V' = Spec A of U; N Uy, again from the defini-
tion of P(&) we have an isomorphism 7~V 2 P% and the automorphism
Y = 1h; oh; ' of P is defined via the automorphism Ogjlh/ = Oﬁj1|v
coming from the restriction morphisms &(U;) — &(V') < &(U;). Clearly
this is of the desired form.

d Given a locally free sheaf of rank n + 1 we obtain a projective bundle
P(&) by part (b) of this question, so P(—) : Loc,11(X) = P B, (X)
is a map from locally free sheaves of rank n + 1 to projective bundles of
rank n. Conversely, given a projective bundle P, by part (c) we obtain a
locally free sheaf & = &p of rank n + 1 and an isomorphism P(&) = P,
so we have a map &_ : XA, (X) = ZLoc,+1(X) which is a right inverse
to P(—). The only thing left to see is that &_ is a left inverse to P(—)
as well. So suppose that we have a localy free sheaf .# or rank n + 1 on
X. Then we have seen that P(&p(#)) = P(#). But by Exercise I1.7.9(b)
this implies that &pz) = F @ .4 for some invertible sheaf .Z. So we
have the desired one-to-one correspondence after we note that P is still
well defined on Zoc,4+1(X) modulo the equivalence relation (again by
Exercise I1.7.9(b)).

Exercise 7.11. a If 7 is any coherent sheaf of ideals on X, show that
blowing up I for any d > 1 gives a scheme isomorphic to the blowing up

of S.
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b If J is any coherent sheaf of ideals, and if # is an invertible sheaf of
ideals, then S - 7 give isomorphic blowings-up.

¢ If X is regular, show that (7.17) can be strengthened as follows. LetU C X
be the largest open set such that f: f~'U — U is an isomorphism. Then
S can be chosen such that the corresponding closed subscheme Y has
support equal to X — U.

Solution. a By definition, the blowing up of . is Proj(€p,,~,-#"), and the
blowing up of .#? is Proj(€P,,~,-#"%). Locally-that is on an affine sub-
scheme U of X, these blowing ups are Proj @, ~, -# (U)" and Proj @, ., -# (U)".
By Exercise 11.5.13 we know that these are isomorphic, and so if we can
show that the isomorphism from Exercise 11.5.13 is natural we are done,
since these local isomorphisms will then agree on the pairwise intersections
U; NUj of two open affine subschemes. That is, we want to show that for
a morphism of graded rings T" — S, the square commutes

Proj S ProjT

—

Proj $(4) —— Proj T(®

But in the proof of Exercise I1.5.13, the horizontal morphisms come from
inclusions S¥ — S and T® — T and so this square commutes. So we
are done.

b This follows from Lemma I1.7.9 or we can use Yoneda’s Lemma as follows.

Proposition I1.7.14 says that X represents the functor that sends Z to
the set of morphisms f : Z — X such that f~!.# - Oz is an invertible
sheaf of ideals on Z. Now since ¢ is invertible, f*# is invertible, and
so if we can show that f~1(% - #) - Oz = (f7'.9 - Oz) @ f*#, then
NI - 7) - Oz will be invertible if and only if f~!.# - Oy is invertible
and so the two functors represented by the blowings-up of .# and .# . # will
be isomorphic, implying that the blowing-ups themselves are isomorphic.

The sheaf f~1 7 -Oy is the image of f*# — Oz, so we have natural maps

(1T 0)0fF = ([T -00)@ ([T F - 0z) =1 - f7L7-0z
=fYI 7)) Oz
Since_# is invertible, it is locally isomorphic to Ox, and so f* # is locally
isomorphic to Oz. Let U be an open subset of U on which we have an
isomorphism f* 7|y = Oz|y. Then f* 7|y is of the form (Oz|y)s for some
section s € Oz(U) (that is, s generates f* # |y as a free Oz|y module).

Assuming that U = Z so that we can stop writing |y everywhere, our
morphisms above become

(7' 0z)0s S 1 Oz5=f1 (I 7) Oy

11



Since we only need to check isomorphisms of sheaves locally, we are done.

Exercise 7.12. Let X be a noetherian scheme and let Y, Z be two closed sub-
schemes, neither one containing the other. Let X be obtained by blowing up
Y N Z (defined by the ideal sheaf Sy + 7). Show that the strict transform Y
and Z of Y and Z in X do not meet.

Solution. Suppose that they do meet at some point P € X. The image of this
point 7P in X is contained in some open affine scheme U = Spec A and the
preimage of this open is 77U = Proj @ ;o (Iy +1z)% where Iy = Sy (U),Iz =
Jz(U). The intersections of Y and Z with U are Y N U = Spec(A/Iy), and
ZNU = Spec(A/Iz) and the preimage of these opens of Y and Z are 7~ 1(U N
Y) = Proj@ oIy + Iz)(A/Iy))? C Y and similarly for Z. The closed
imbedding 71 (UNY) — 7~ 1(U) is given by a homomorphism of homogeneous
rings @ oIy +12)* = @ oo ((Iy +12)(A/Iy))? and similarly for Z. Clearly
the kernel of this ring homomorphism is the homogeneous ideal @, I¢ and
similarly for Z. Now if the two closed subschemes intersect as we have supposed
then there is a homogeneous prime ideal of @~ (Iy + Iz)? that contains both
of these homogeneous ideals. But @, I¢ and @~ [% generate @ o (Iy +
I7)? so there can be no proper homogeneous prime ideal containing them both.
Hence, the intersection is trivial.
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8 Differentials

Exercise 8.1. a Generalize (8.7) as follows. Let B be a local ring contain-
ing a field k, and assume that the residue field k(B) = M/m of B is a
separable generated extension of k. Then the exact sequence of (8.44),

0— m/m2 £> QB/k (29 k?(B) — Qk(B)/k —0
is exact on the left also.

b Generalize (8.8) as follows. With B,k as above, assume furthermore that
k is perfect, and that B is a localization of an algebra of finite type over
k. Then show that B is a regular local ring if and only if Qp /. is free of
rank = dim B + tr.d. k(B)/k.

¢ Strengthen (8.15) as follows. Let X be an irreducible scheme of finite type
over a perfect field k, and let dim X = n. For any point x € X, not
necassarily closed, show that the local ring O, is a regqular local ring if and
only if the stalk (Qx 1)z of the sheaf of differentials at  is free of rank n.

d Strengthen (8.16) as follows. If X is a variety over an algebraically closed
field k, then U = {z € X|O, is a regular local ring} is an open dense
subset of X.

Solution. a To show that § is injective is equivalent to showing that the
morphism of vector spaces

6% : homy,p) (Qp/r ® k(B), k(B)) — homy,p)(m/m?, k(B))
is surjective. Note the isomorphisms:
hOHlk(B)(QB/k ® k(B),k(B)) = homB(QB/m k(B)) = Dery (B, k(B))

So given a k(B)-linear homomorphism h : m/m? — k(B) we want to find a
k-derivation d' : B — k(B) such that pushing it through the isomorphisms
and then 0* gives the original h. First we describe the image of a derivation
d' through the isomorphisms and then 6*. The deriviation d’ : B —
k(B) first becomes the B-homomophism described by db — d’'b (use the
expression of € as a free module generated by the db modulo the suitable
relations). This then becomes the k(B)-homomorphism db® ¢ — ¢d’'b and
then applying 6* gives b+ d'b. So a derivation d’ just gets mapped to its
restriction to m (note that if b € m? then b = 3" a;c; for some a;,¢; € m
and so d'b=> a;d'¢; + ¢;d'a; =0 in k(B) = B/m).

Now given a k(B)-linear homomorphism h : m/m? — k(B) we describe a
k-derivation d' : B — k(B). For b € B, write b = ¢+ A with X € k(B),c €

id

m in the unique way using the section k(B) = B — k(B) from Theorem
8.25A. Then define d’'(b) = h(c).




b Suppose that g/ is free of the given rank. Then we have the exact
sequence from part (a):

0— m/m2 i) QB/k ® k(B) — Qk(B)/k —0

We know that the dimension of Qp,, ® k(B) is dim B + tr.d. k(B)/k
by assumption and that dim Qy(p)/, = tr.d. k(B)/k by Theorem II.8.6A
(k(B) is separably generated over k since we have assumed k perfect,
see Theorem 1.4.8A). Hence, the dimension of m/m? is dim B and so by
definition B is regular.

Now suppose that B is regular. By the argument just described, we know
that dimyg) Qp/, ® k(B) is dim B + tr.d. k(B)/k. If we can show also
that dimg Qp/, @ K is dim B + tr.d. k(B)/k (where K is the quotient
field of B) then we will be done by Lemma II.8.9 for the same reasons
that it works in the proof of Theorem I1.8.8. As in that proof we have
Qp/, @p K = Qg by Proposition I1.8.2A and since k is perfect, K is
a separably generated extension of k (Theorem 1.4.8A) so dimg Qg /), =
tr.d. K/k by Theorem 8.6A. Hence dimg Qp,, ® K = tr.d. K/k. Now
we have assumed that B is the localization of an algebra A of finite type
over k, so B = A, for some prime p € Spec A. This means that we
have Frac A = Frac B and height p = dim B. So by Theorem 1.1.8A we
have tr.d. K/k = dim A = height p + dimA/p = dimB + dimA/p =
dim B + tr.d. Frac(A/p)/k = dim B + tr.d. k(B). So we have shown that
dimg Qp/, ® K is dim B + tr.d. k(B)/k and now we can happily apply
Lemma I1.8.9 to get the desired result.

¢ Take an affine neighbourhood Spec A of x in which x corresponds to the
prime ideal p. Define B = A, and we have the hypotheses of part (b)
satisfied so we see that O, = B is a regular local ring if and only if Qg
is free of rank dim B+tr.d. k(B)/k = dim A = dim X (see the proof of the
previous part for the former equality). The stalk (Qx/x)s is Qa/r ®4 B
and we have an isomorphism QB/k = QS—]A/k = S_lQA/k = QA/k ®a B
by Proposition 11.8.2A where S is the multiplicative set of elements not in
p, so O, = B is a regular local ring if and only if Qg = Q4 /1 = (Qx/k)e
is free of rank dim B + tr.d. k(B)/k = dim A = dim X.

d By (8.16) we know that there exists some open dense subset V' of X which
is nonsingular, hence U is dense since it contains any such V. At every
point = of U, the coherent sheaf 2y, is locally free by part (c) and so
by Exercise 11.5.7(a) there is an open neighbourhood W of z on which
Qx/k|w is free of rank n. This implies that at every point w of W, the
stalks (Qx/)w are free of rank n and therefore, again by part (c), w € U.
So every point of U has an open neighbourhood contained in U, and
therefore U is open.

Exercise 8.2. Let X be a variety of dimension n over k. Let & be a locally free
sheaf of rank > n on X, and let V C T'(X, &) be a vector space of global sections



which generate &. Then show that there is an element s € V', such that for each
x € X, we have s, & m;&,,. Conclude that there is a morphism Ox — & giving
rise to an exact sequence

050x =-&—8& =0

where &' is locally free.

Solution. Consider the scheme X x V and the subset of points Z = {(z, s)|s, €
m,&,}. We label the projections by m : Z € X xV — X and my : Z C
X x V — V. Now for any point € X, the preimage 7'z in Z is the set of
global sections s in V' that s, € m;&,. Otherwise said, it is the kernel of the
k(x)-vector space morphism V ®j k(z) — &, ®o, k(x). Since & is generated
by global sections this morphism is always surjective and since & is locally free
of rank r this kernel will then have rank m — r where m = dim V. Hence, the
dimension of Z as a closed subset of X x V is n+m —r. By assumption r > n
and so n +m — r < m. Hence, the second projection 7o : Z — V cannot be
surjective. Any point not in the image will be a global section with the required
property.

Using this global section s we define a morphism Ox — & by sending 1 +— s,
and define & as the cokernel of Ox — &. To see that we have an exact sequence
as desired, consider the stalk at z € X. We want to show that O, — OF" is
injective where we are using the isomorphism OP" 2 &,; let s, = (a1, ..., a,).
This morphism sends a — a(aq,...,a,) and so if aa; = 0 for all ¢ then a = 0
or a; = 0 for all ¢ (since X is integral the local rings have no zero divizors) but
we have chosen s so that s, € m,&, and so a; € m, for some i, and therefore
a=0.

Now we must show that &, = O2" /O, is free, then the local free-ness of &’
will follow from Exercise I1.5.7(b). We do this by explicitely constructing an
isomorphism o¥ (r=1 " We have assumed that one of a; is not in m,. Without
loss of generality we can assume that it is a,. Writing O, as A, for some
affine Spec A containing p we see that a, is invertible since it is not in pA, =
m,. Now consider the composition A;~' — Ay — A} /sAp where the first
morphism sends (by,...,b.—1) to (b1,...,b,-1,0). Clearly the composition is
injective for (by,...,br,_1,0) € sA, contradicts the assumption that a, ¢ m,.
For surjectivity, let b = (by,...,b,) represent an element of Aj/sA,. Then
b—a;'b.s € Ay and (b—a;'h.s) — b € sAp. So we are done.

Exercise 8.3. Product Schemes.

a Let X andY be schemes over another scheme S. Use (8.10) and (8.11)
to show that QXXY/S = pTQ)(/S @p;Qy/S.

b If X and Y are nonsingular varieties over a field k, show that wxxy =
piwx ® prwy .

¢ LetY be a nonsingular plane cubic curve, and let X be the surface Y X Y.
Show that py(X) =1 but pe(X) =—1 (I. Ex. 7.2).



Solution. a From (8.10) it follows that Qx . y/x = p3(Qy/s) and Qx .y vy =
P71 (x/g). Combining these with Proposition (8.11) gives exact sequences

Qxxy/x = Qxxy/s = Lxxyyy =0

Qxxy/y = Qxxyys = Qxxy/x =0

To see that the relavent morphisms actually do decompose Qy,y,s into
pillx/s @© p58ly;s we go to Matsumura to find the definitions of these
morphisms. It is enough to consider the affine case, so let A and B be
rings over C. We want to know if the composition

Quwen/a & Qo ®p (B@c A) = Qoo = Qagen/a

is the identity. The first module is generated by elements of the form
dxr where © € A ®c B. Since d is a morphism of abelian groups and
dla®b) =d(a®1)+d(1®b) =d(1®b) it is enough to consider elements
of the form d(1 ® b). The first map takes such an element to (1® 1) ® db.
This then gets taken to d(1 ® b) which gets taken back to d(1 ® b) so the
composition is the identity.

b Suppose that the dimensions of X and Y are n and m respectively. Then
we have
wxxy = AN"Qxxy (by definition)
= A" (p1(2x) @ pa(Qy)) (part (a))
= (A"pi(x)) @ (A"p5(y)) (Exercise 1.5.16(d))
>~ (p](A"Qx)) @ (p5s(A™Qy)) (Exercise 1.5.16(e))
p1(wx) ® ps(wy) (by definition)

1%

¢ In Example 8.20.3 we see that wy = Oy and so by part (b) we have
wyxy = piwy ® phwy = piOy ® p5Oy = Oyxy. By Exercise 11.4.5(d)
the vector space of global sections of the structure sheaf of Y x Y has
dimension one.

In Exercise 1.7.2 we calculate the arithmetic genus of a plane cubic curve
to be 1 in part (b) and then the arithmetic genus of Y x Y is calculated
in part (e)as1—1—-1=—1.

Exercise 8.4. Complete Intersections in P".

Exercise 8.5. Blowing up a Nonsingular Subvariety. As in (8.24), let X be a
nonsingular variety, let Y be a nonsingular subvariety of codimension r > 2, let
7: X — X be the blowing up of X along Y, and let Y = 7= 1(Y).

a Show that the maps m : Pic X — Pic )~(, and Z — Pic X defined by n +—
class of nY', give rise to an isomorphism Pic X = Pic X & Z.

b Show that wg = ffwx @ L((r —1)Y’).



Solution. a Since X is nonsingular we can associate each each invertible
sheaf to a class of divisors (Remark I1.6.11.1A). Then from Proposition
11.6.5 we have the exact sequence and isomorphism:

7 — ClX — ClU — 0 ClU ~ClX

where U = X — Y. The composition Pic X — Pic X — PicU is the same
as the composition Pic X = PicU and so Pic X — Pic X — Pic X is the
identity. Furthermore, the composition Z — Pic X — Pic X is zero as
a direct consequence of the exact sequence. So it remains only to find
a splitting for Z — Pic X. Consider the embedding j : Y — X. This
provides a morphism Pic X — PicY’. We know by Theorem I1.8.24(b)
that Y’ is a projective bundle over Y and then from Exercise I11.7.9 that
PicY’ = PicY @ Z. We follow 1 through the composition Z — Pic X —
PicY’ — PicY ®@Z — Z. We have 1 gets sent to £ (Y’) € Pic X which by
Proposition I1.6.18 is isomorphic to %y, which we know is O (—1) (from
the proof of (7.13) for example). This then becomes Oy (—1) which is then
sent to —1. So our composition is not the identity, but is an isomorphism,
and we only wanted to find a splitting for Z — Pic X so compose with
1 — —1 and we obtain our desired splitting.

b By (a) we can write wg as f*.# @ £ (qY") for some invertible sheaf .# €

Pic X and some integer g. We have an isomorphisms X — Y = X-Y
(Proposition I1.7.13) and so wg|g v/ = wy = wx|x—y. We also have
an isomorphism Pic X = PicU (Proposition I1.6.5) and so if .#|x_y =
wx|x—y, which it is, then .# = wx. Now by Proposition I1.8.20 we
have wy: = wg @ Z(Y') ® Oy = ffux ® Z((¢+1)Y') ® Oys. Then
by Proposition 11.6.18 Z((q + 1)Y”) = %, " and we know that #y+ =
O%(1) (from the proof of (7.13) for example). Putting all this together we
get wyr = ffwx®0Oy/(—g—1). Now we take a closed point y € Y and let Z
be the fibre of Y’ over y; that is, Z = yxyY’. We can use Exercise I1.8.3(b)
to find that wz = mjw, @MWy = 15 (ffwx @Oy (—qg—1)) = Oz(—q¢—1)
since wy, = O, and pulling wx back to Z can be done via y on which it
becomes the structure sheaf. Now Z is just projective space of dimension
r — 1 (Theorem I1.8.24) and so wz = Oz(—r) (Example 11.8.20.1) so
q=r—1 Hence wg = ffwx @ Z((r — 1)Y’).

Exercise 8.6. Infinitesimal Lifting Property. Let k be an algebraically losed
field, let A be a finitely generated k-algebra such that Spec A is a nonsingular
variety over k. Let 0 — I — B' — B — 0 be an exact seqeuence, where B’ is
a k-algebra, and I is an ideal with 1> = 0. Finally suppose given a k-algebra
homomorphism f : A — B. Then there exists a k-algebra homomorphism g :

A — B’ lifting f.

a First suppose that g : A — B’ is a given homomorphism lifting f. If

g : A — B’ is another such homomorphism, show that 6 = g — ¢

is a k-derivation of A into I, which we can consider as an element of



homa(Qa/x, I). Conversely, for any 0 € homa(Qa/y, 1), show that g =
g+ 0 is another homomorphism lifting f.

b Now let P = k[z1,...,x,] be a polynomial ring over k of which A is a quo-
tient, and let J be the kernel. Show that there does exist a homomorphism
j: P — B’ making a commutative diagram

\Lx

O<—p<—g=<=—W=<—0
V=
©<—U:J<—ug<*’ﬂ<*©

and show that h induces an A-linear map h: J/J? — 1.

¢ Conclude by finding the desired morphism g : A — B’ (Hartshorne essen-
tially walks the reader through the proof of this part in his statement of
the exercise).

Solution. a Since g and ¢’ both lift f, the difference g—g' is a lift of zero, and
therefore, the image lands in the submodule I of B’. The homomorphisms
g and ¢’ are algebra homomorphisms and so they both send 1 to 1, hence
the difference sends 1 to 0 and so for any ¢ € k we have (k) = k6(1) =0
For the Leibniz rule we have

0(ab) = g(ab) — ¢'(ab)
g9(a)g(b) — ¢'(a)g'(b)
= g(a)g(b) — g'(a)g'(b) + (¢'(a)g(b) — ¢'(a)g(b))
= g(b)8(a) + ¢'(a)0(b)

We can consider it as an element of hom (€24, I) by the universal prop-
erty of the module of relative differentials.

Conversely, for any 6 € hom4(Q4x, I) we obtain a derivation fod: A —
I which we can compose with the inclusion I — B’ to get a k-linear
morphism from A into B’ Since the sequence is exact, this § vanishes on
composition with B’ — B and so g+ 6 is another k-linear homomorphism
lifting f and we just need to show that it is actually a morphism of k-
algebras; that is, that it preserves multiplication.

g(ab) + 6(ab) = g(ab) + 6(a)g(b) + g(a)d(b)
= g(ab) + 0(a)g(b) + g(a)0(b) + 0(a)f(b)  since I2 = 0 and 6(a),O(b) € I
= (g9(a) + 6(a))(g(b) +0(b))



b A k-homomorphism out of P is uniquely determined by the images of the
x;, which can be anything. So for each 4 choose a lift b; of f(x;) in B’ and
we obtain a morphism h by sending x; to b; and extending to a k-algebra
homomorphism. If @ € P is in J then by commutivity, the image of h(a)
in B will be zero, implying that h(a) € I so we have at least a k-linear
map J — I. If a € J? then h(a) € I? = 0 so this map descends to
h:J/J?* — I. The last thing to check is that the map h is A-linear, and
this follows from h preserving multiplication.

¢ Applying the global sections functor to the exact sequence of (8.17) with
X = Spec P, Y = Spec A gives an exact sequence

0= J/J> = Qp ®A—= Qu, =0

which is exact on the right as well by (8.3A). Now since A is nonsingular,
Q4 /y, is locally free and and therefore projective so Ext' (€24, 1) = 0 for
all i > 0. So the exact sequence

0 — homa (Q4/x, I) — homa(Qp/x®A, I) — homa(J/J? I) — Ext}y(Qa s, I) — ...

shows that hom(Qp/, ® A,I) — hom(J/J? I) is surjective. So we can
find a P-morphism 6 : Qp,, — [ whose image is h from part (b). We

then define § as the composition P LS Qps, — 1 — B’ to obtain a k-
derivation P — B’. Let ¥ = h — 6. For any element b € J we have
h'(b) = h(b) — 6(b) = h(b) — h(b) = 0 so h' descends to a morphism
g : A — B’ which lifts f.

Exercise 8.7. If X is affine and nonsingular, then show that any extension of
X by a coherent sheaf F is isomorphic to the trivial one.

Solution. Since everything is affine, the problem restated is this: given a ring A’,
an ideal I C A’ such that I%, and an isomorphism A’/I = A, such that I = M
as an A-module (where M is the finitely generated A-module corresponding to
F), show that A’ =2 A® M as an abelian group, with multiplication defined by
(a,m)(a’,m’) = (ad’,am’ + a’'m).

Using the infinitesimal lifting property we obtain a morphism A — A’ that
lifts the given isomorphism A’/I = A. This together with the given data pro-
vides the isomorphism A @ M = A’ of abelian groups where we use the iso-
morphism M 2 [ to associate M with I as an A-module. If a € A then
(a,0)(a/,m') = (aa’,am’) using the A-module structure on A and M = [. If
m € M = I then (0,m)(a’,m') = (0,a’m) since mm’ € I?>. So we have the
required isomorphism.

Exercise 8.8. Using the method of (8.19), show that P, = dim I'(X,w$™) and
h?0 = dimy (X, NQx 1) are birational invariants of X, a projective nonsin-
gular variety over k.



Solution. The proof of (8.19) translates almost verbatim.

Suppose that we have another nonsingular, projective variety X', bira-
tionally equivalent to X. Consider a birationally invertible map X — X’ and
let V' C X be the largest open subset of X on which it is representable, and
f 'V — X' a representative morphism. We obtain a morphism of sheaves
f*Qx: — Qyp via Proposition I1.8.11. These are locally free sheaves of rank
n = dim X and so we obtain morphisms f*w%’ — wi”™ and f*Q%, — QF
both of which induce morphisms of global sections. By (I, 4.5) there is an open
subset U of V that is mapped isomorphically onto its image in X’ by f. This
Qv = Q%) via f. We have a commutative square

Dw$ X') ——T(wP™, V)

| |

F(W}g(%y f(U) — F(w(%ma U)

and a similar one for f*Q%, — Q. Since f(U) is dense and open in X', and
a nonzero global section cannot vanish on a dense open subset, we see that the
morphisms

LW, X') — D(wg™, V) L%, X' - rQ,v)

are both injective.

Now we compare I'(V, —) to I'(X, —). First we claim that X — V has codi-
mension > 1 in X. This follows from the valuative criterion of properness (4.7).
If P € X is a point of codimension 1 then Ox p is a discrete valuation ring
because X is nonsingular. The map from the generic point nx of X to that of
X' fits into a commutative diagram

Spec K(X) — X'/

7
-
-
-
-
-

Spec Ox,p — Speck

and so we can extend V to include P and so by the definition of V, it already
includes P.

To show that I'(V, %) = T'(X,.%) for the sheaves .% that we are interested
in, it suffices to show that IV N U, #|y~v) = T'(U, #|v) for each open U in
a cover of X (use the sequences 0 — I'(X,—) — @I'(U;, —) — @I'(U;j, —)).
Choose the open cover {U;} such that on each U; the sheaf .# (= Q% or w$")
is free, and each U; is affine. Then what we need to show is that for each of
these U;, the morphism I'(U;, Oy,) — I'(U NV, Oy,av) is bijective. Since X is
nonsingular, and therefore normal, and since U; — U; NV has codimension > 1
in U;, this is a consequence of (6.3A).

So the culmination is that we have an injective morphism I'(X', Zx/) —
[(V, %x|v) and a bijective morphism I'(X, Zx) — ['(V, Zx|v) (where #_ =



Q7 or w®™"). Hence, P,(X’') < P,(X) and h?%(X’) < h?%(X). By symmetry
we get inequalities in the other direction and so these inequalities are actually
equalities.
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2 Cohomology of Sheaves.

Exercise 2.1. a Let X = A be the affine line over an infinite field k. Let
P,Q be distinct closed points of X, and let U = X — {P,Q}. Show that
HY(X,Zy) # 0.

b More generally, let Y C X = A™ be the union of n + 1 hyperplanes in
suitable general position, and let U = X —Y. Show that H"(X,Zy) # 0,
thus the result of (2.7) is the beset possible.

Solution. a The sheaf Zy is a subsheaf of Zx and so we get an exact se-
quence 0 — Zy — Z — ip«Z ® ig«Z — 0 where ip,Z and iQ.Z are
the skyscraper sheaves at P and @ with value Z. Taking cohomology
gives a long exact sequence, one piece of which is --- — H(X,Zyx) —
HY(X,ip.Z ®ig«Z) — HYX,Zy) — ..., so if HY(X,Zy) = 0, then
HY(X,Zx) — H%X,ips«Z & ig.Z) is surjective. But thisis Z — Z & Z
which cannot be surjective.

Exercise 2.2. Let X = P! be the projective line over an algebraically closed field
k. Show that the exact sequence 0 — O — H — & /O — 0 of (II, Ex. 1.21d)
is a flasque resolution of ©. Conclude from (II, Ex. 1.21e) that H'(X,0) =0
for all i > 0.

Solution. Since every pair of open subsets of X intersect nontrivially, every open
subset is connected. So the constant sheaf ¢ is actually the constant presheaf
, and therefore flasque. To see that J# /O is flasque, write it as ®pexip(Ip)
(Exercise I11.1.21(d)). Exercise I1.1.21(e) then tells us that applying the global
sections functor we get an exact sequence, so I'(X, . #) — I'(X, #/O) — 0 —

. is exact, and since we can use this to calculate the cohomology, H!(X,0) = 0
for all ¢ > 0.



Exercise 2.3. Cohomology with Supports. Let X be a topological space, let' Y
be a closed subset, and let F be a sheaf of abelian groups. Let T'y (X, %) denote
the group of sections of F with support in Y.

a Show that Ty (X, -) is a left exact functor from /b(X) to o/b.

b If0 - %' — F — F" — 0 is an exact sequence of sheaves, with F'
flasque, show that

0—Iy(X, 7)) - Ty(X,F) = Ty(X,7") =0
s exact.
¢ Show that if F is flasque, then HL.(X, 7) =0 for all i > 0.
d If F is flasque, show that the sequence
0-Ty(X, %) —-T(X, %) ->T(X-Y,%)—0
18 exact.

e Let U = X — Y. Show that for ny F, there is a long exact sequence of
cohomology groups

f Excision. Let V be an open subset of X containing Y. Then there are
natural functorial isomorphisms, for all i and F

Hy (X, 7) = Hy(V,Zv)

Solution. a Let #' — F — F" be an exact sequence of sheaves of abelian
groups on X. If Ty (X,.7’) — 'y (X,.%) is injective as a consequence of

I'X,#') — I'(X, %) being injective. Similarly, the composition I'y (X, #') —

Ty (X, #) - T'y(X,%#")is zero as a consequence of I'( X, #') — T'(X, %) —

I'(X,.Z") being zero. Consider a section s € I'y (X, .#) and suppose that
it gets sent to zero in I'y (X, #"”). This implies that as an element of
I'(X,.7), the section s gets sent to zero in I'(X,.%#") and so is the image
of some section t € T'(X,.#’). We just need to check that ¢, = 0 for every
x¢Y. Let z € X —Y be such a point. Since F' — F — F" is exact, we
have an exact sequence of stalks 0 — %, — #, — #) — 0. The stalk of
sy 1s zero since s € I'y (X, .%) and therefore t,, = 0. Hence t € I'y (X, .F').

b By part (a) we know that I'y (X -) is left exact so we just need to show that
I'y(X,.7) — I'y(X, ") is surjective. Suppose that we have a section
s € Ty(X,.#"). This is a section of I'(X, #"”) and since %’ is flasque,



there is a section t € I'(X,.#) in its preimage (Exercise I1.1.16(b)). This
section does not necassarily have support in Y however. For every point
x € X —Y consider the exact sequence of stalks 0 — .7, — %, — F) —
0. The germ t, gets sent to s, € %, which is zero since s has support
in Y. So there is a germ u, € &%, which gets sent to t,. This means
there is a neighbourhood U; of « (which we can assume doesn’t intersect
Y) and a section u; which gets sent to t;|y,. In this way we get an open
cover {U;} of X —Y and for each 7, a section u; which gets sent to ¢|y,.
Consider the intersections of the u;. The sections u;|y,nv; — ujlu,nu; get
sent to t|y,nu; — tlv,nu; = 0 and since F' — 7 is injective, this means
that u;|u,nu; — ujlu,nu, = 0 and so the u; glue together to give a section
u' € Z'(U) which gets sent to t|y. Since .#' is flasque, this lifts to a
global section u € T'(X,.%#"). Now consider t —u € T'(X,.%#) this gets sent
to s € I'(X, %#") since u came from %’ and ¢ got sent to s. Furthermore,
for any point € X —Y, the germs of ¢t and u agree since t|y, = u|y, = u;
for every ¢ in our cover above. Hence, we have found a global section
t —u e I'y(X,.#) that gets sent to s.

¢ The proof from Proposition I11.2.5 works. Embed .% in an injective object
& and let ¢ be the quotient .% /.#. The sheaf % is flasque by hypothesis,
and .# is flasque by (2.4) so ¢ is flasque by Exercise I1.1.16(¢c). Since #
is flasque, we have an exact sequence

0-Ty(X, %) =Ty (X, 7)) - Ty(X,9) =0

from part (b). On the other hand, .# is injective and so H%.(X,.#) =0
for all 4 > 0. Thus, from the long exact sequence of cohomology, we get
HY(X,Z) =0 and H(X,.F) = H7'(X,9) for each i > 2. But ¢ is
also flasque, and so by induction on ¢ we get the result.

d This sequence is what you get if you apply the global sections functor to
the sequence of Exercise I1.1.20(b) so we just need to show that I'(X,.%) —
['(X — Y, %) is surjective. But this is true, since % is flasque.

e To compute the cohomology of .% we choose at the beginning an injective
resolution .#¢ for .#. The functor —|y preserves injectives so we can use
F|y as an injective resolution to calculate the cohomology on U of .Z|y.
Now injective sheaves are flasque by Lemma II1.2.4 so for each ¢ we have
an exact sequence

0-Tyv(X,7)—-T(X,9) - T(U Ay) =0

since I'(U, Z|y) = #(U). Now the long exact sequence is a consequence
of the snake lemma.

f We use the espace étale of Exercse 11.1.13 to show that there is an iso-
morphism of functors I'y (X, —) — I'y(V, —|y). Given a sheaf .# and an
open subset U C X, using the espace étale we can consider .% (U) as a set



of continuous morphisms U —Spé.%. Any section of 'y (X, %) takes the
value 0 € %, CSpé.Z on any point x not in Y. So since Y C V, if two
sections of 'y (X, %) agree on their restrictions to V', then they agree in
I'y(X,.#) soI'y(X,#) — I'y(U,.Z) is injective. On the other hand, if
we have a section s € I'y (U, .#) we extend it to a section ¢ in I'y (X, %)
by sending x — 0 € .%, for any point z € X — V. This defines a function
X —Spé# which is a section but is not necassarily continuous. To see
that it is continuous, consider the restriction to an open cover {U;} where
for each i, either U; C V or U;NY = & (or both). Since ¢ came from a
section s, for the ¢ with U; C V' we have t|y, = s|y, and so these are contin-
uous. For the ¢ with U; NY = &, we have t|y, = 0, which is continuous by
definition of the espace étale since these morphisms come from sections of
Z(U;). So the restrictions of ¢ to every element of an open cover of X are
continuous, and therefore ¢ is continuous, hence I'y (X, %) — T'y (V, Z|v)
is surjective.

Now as we mentioned in the previous part, if #? is an injective resolution
for #, then .#"|y is an injective resolution for .7 |, and so the isomorphism
Ty (X,—) 2Ty (V,—|v) leads to the isomorphism of cohomology groups.

Exercise 2.4. Mayer-Vietoris Sequence. Let Y7, Y5 be two closed subsets of X .
Then there is a long exact sequence of cohomology with supports

T H{/lmy2 (X7 9) - H;/l (X7 y)@H;I/Q (X7 fg‘) - HiiﬁUYg ('X7 y) - H;/T%YQ ..

Solution. Define Y12 = Y1 N }/2, Y = Y1 @] }/2, U12 =X - Y12, U,L' =X - Zi,
U = X — Y and consider the diagram

0 0 0

O4>Fyl2(Xaj)HFYl(ij)EBFYE(Xvﬂ)HFY(ij)4>0

0——I'(X,7)

N'x,s7)el(X,s)

Nx,s)——0

0 E—— F(U12a j)

F(Ul,f) (&) F(UQ,])

T(U,.%) —=0

0 0 0

If the sheaf .7 is flasque, then the columns are exact. The lower two rows are
exact (the lower one being exact as consequence of .# being a sheaf) and so we
can apply the Nine Lemma to find that the top row is exact. Soif 0 —» F — #*
is an injective resolution of .%, then we get an exact sequence of complexes

O—>Fy12(X,f.) — FYI(X,f.)EBFYQ(X,f.) — Fy(X,ﬂ.) — 0



The Snake Lemma applied to this exact sequence of complexes gives the desired
long exact sequence.

Exercise 2.5. Let X be a Zariski space. Show that for all i, #, we have
Hp(X,7) = Hp(Xp, Fp)
(see Hartshorne’s statement of the exercise for notation).

Solution. We show a natural isomorphism I'p(X,¥) = T'p(Xp,¥p). By defini-
tion, I'(Xp,¥%p) = LiLnngg(U) = ¥p since P € U if and only if U D Xp, so
there is a natural morphism I'(X,¥) — I'(Xp,%p) which induces a morphism
I'p(X,9) - T'p(Xp,9p). Injectivity: let s and t be two global sections with
support on P. If they get sent to the same element in T'p(Xp,%p) then the
germs sp = tp agree. But s and t have support in P so they are identically
zero in every other stalk. Therefore they agree on every stalk and hence, s = ¢.
Surjectivity: let s € I'p(Xp,9p) = ¥p. Then there is an open neighbourhood
of P and sy € ¢(U) which represents s. Since s has support in P we can
choose U small enough so that (sy)g = 0 for every point () # P. Now consider
V = X — P and the zero section in 4 (U). Since the germ of sy is zero on all
points that aren’t P, we have sy|uny = 0 and so sy and 0 glue together to give
a global section with support in P. So the map is surjective.

Exercise 2.6. Let X be a noetherian topological space, and let {Fo}aca be a
direct system of injective sheaves of abelian groups on X. Then @fa 15 also
injective.
Solution. For an open subset U C X we define Zy = 41Zy where Zy is the
constant sheaf associated to the group Z and i : U — X is the inclusion.

Step 1. First we show that a sheaf .# is injective if and only if for every
open set U C X, and subsheaf Z C Zy, and every map f : Z — #, there is an
extension of f to a map of Zy — .

0—=Z%—— 2Ly

N

The direction (=) follows from the definition of an injective object. For the
direction (<) we adapt the proof from the proof of Baer’s Criterion (Theorem
2.3.1) in Weibel. Let % C ¢ be an injective morphism of sheaves, and suppose
we have a morphism ¢ : % — #. Consider the poset of extensions of ¢ to a
subsheaf .7’ of 4 containing .%, where the order is a < o if o’ extends a. By
Zorn’s lemma this poset has a maximal element ¢ : #' — £ and so we just
need to show that %' = 4.



Suppose that there is an open set U and a section s € 4(U) that is not in
F'(U). This defines a morphism Zy — ¢ and the inclusion .#’ — & defines a
subsheaf Z C Zy. Let " be the subsheaf of 4 generated by #’ and s. Then
we can extend ¥ to F” and so ' =¥. Hence .# is injective.

Step 2. Secondly, we show that any such subsheaf Z C Zy is finitely gen-
erated. Let U = [[U; be a decomposition of U into its connected components
U;. Since X is noetherian, the ascending chain U; C Uy UU; C ... stabilizes
(Exercise 1.1.7(a)), say at n. So U is a finite union of connected open subsets.
For each i we have subgroups Z(U;) C Zy (U;) = Z, say that these are generated
by s; € Zy(U;). Then these finitely many s; generate Z.

Step 3. Let s; € Z(U;) be generating elements of % where ¢ = 0,...,n.
For any map # — lim.7,, the image of s; is represented by some ¢; € Fu, (U;)
for some ;. Due to the system being direct, there is an index 3 so that the
image of s; can be represented by t; € #3(U;). Hence, the morphism factors as
X — Ig — h_n)lﬂa. Now use the first part. For every open subset U C X, and
subsheaf # C Zy, and map f : # — lim.7, the map f factors through some
fs: # — 3. Since I3 is injective, fg extends to a map Zy — g and so we
get an extension Zy — #3 — lim.7, of f. Hence, by Step 1, lim.#, is injective.

Exercise 2.7. Let S be the circle (with its usual topology), and let Z be the
constant sheaf 7.

a Show that H*(S',Z) = Z, using sheaf cohomology.

b Now let Z be the sheaf of germs of continuous real-valued functions on
St. Show that H'(S', %) = 0.

3 Cohomology of a Noetherian Affine Scheme

Exercise 3.1. Show that a noetherian scheme X is affine if and only if X eq
is affine.

Solution. If X is affine then X,.q = Spec(A/N) where A =T'(X,Ox) and N is
the nilradical of A.

Conversely, suppose that X,..q is affine. We want to show that X is affine by
using Theorem 3.7 and induction on the dimension of X. If X has dimension
0 then affineness follows from the noetherian hypothesis since it must have
finitely many points and each of these is contained in an affine neighbourhood.
So suppose that result is true for noetherian schemes of dimension < n, and that
dim X = n. Let ./ be the sheaf of nilpotents on X and consider a coherent
sheaf .. For every integer i we have a short exact sequence

0> 7 5 . 7 94, —0

where ¢, is the appropriate quotient. This short exact sequence gives rise to a
long exact sequence in cohomology:

-— HY(X,9,) - HY(X, /. .7) - HY(X, /- F) - H (X, 9;) — ...



Since X is noetherian, there is some m for which .44 = 0 for all d > m, so if we
can show that H'(X,%,) is zero for each d, then the statement H'(X,.Z) =0
will follow by induction and the long exact sequence above.

So the sheaf ¥y = A% . .7/ 491 . .F on X. Recall that X,..q has the same
underlying topological space as X, but with sheaf of rings Ox,_, = Ox/A4". So
¢, is also a sheaf of Ox,_,-modules. Since cohomology is defined as cohomology
of sheaves of abelian groups we have H*(X,%;) = H*(X,cq4, %) and so it follows
from Theorem 3.7 that H*(X,¥,) = 0.

Exercise 3.2. Let X be a reduced noetherian scheme. Show that X is affine if
and only if each irreducible component is affine.

Solution. If X is affine then every closed subscheme is affine (Exercise I1.3.11(b))
and so every irreducible component is affine.

Conversely, suppose that each irreducible component is affine. Let Y7,Ys
be two closed subschemes of X and consider the coherent sheaves of ideals
Hy,, Fy,uy,. We have an exact sequence

0— Aoy, = Iy, = F —0

and it can be seen (reduced to the affine case) that .# = i,.%y,y, wherei : Yo —
X is the closed imbedding. Let Y = Y7 be an arbitrary closed subscheme. If
Z =Y, is one of the irreducible components, it is affine and so H' (X, i, #ynz) =
Hl(Z, Hynz) = 0. Hence, from the long exact sequence associated to the
cohomology of the short exact sequence above, we see that H'(X, #y7) —
HY(X,.%y) is surjective.

Now let Z1, ..., Z, be the irreducible components of X. By induction we see
that HY(X, #yuz,0.0z,) — HY (X, Hy) is surjectve. But YUZ1U---UZ, = X
and #x = 0 since X is reduced. Hence, H'(X, #y) is zero and so it follows
from Theorem II1.3.7 that X is affine.

Exercise 3.3. Let A be a noetherian ring and let a be an ideal of A.

a Show that Ty(-) is a left-exact functor from the category of A-modules to
itself.

b Now let X = Spec A, Y =V(a). Show that for any A-module M,
Ho(M) = Hy (X, M)
¢ For any i, show that To(HL(M)) = HL(M).

Solution. aLet 0 - M — M — M” — 0 be a short exact sequence of
A-modules. Since I',(N) C N for any A-module, we know that

0—Ta(M') — Ta(M) — T'a(M")

is exact on the left, and the composition of the two rightmost morphisms
is zero. So the only thing to show is that if m is in the kernel of 'y (M) —



Ty (M"), then it is in the image of T'y(M') — T'y(M). By exactness of
the original short exact sequence we know that there is a unique n € M’
which gets sent to m. Since m € I'q(M) there is some i for which a’m = 0.
But M’ — M is injective, and so a’n = 0 and so n € T'q(M").

b Let 0 — M — I* be an injective resolution for M in the category of A-
modules. Then we have an exact sequence of sheaves 0 — M — I*® on X.
Each I is flasque by (3.4) so we can use this resolution of M to calculate
Hi (X, JT/.?) (Exercise I11.2.3(c) and Proposition III.1.2A). The only thing
left to show is that T'q(-) = Ty (X,7).

Consider m € T'y(M) for some arbitrary A-module M. Then by definition
there is some n for which a™m = 0. Let p be a point of X not contained in
Y. So p doesn’t contain a and there is some a € a which is not in p. Then
a™ is also not in p. Since a"m = 0 we see that a™m = 0 and so m = 0 in
the localized module M,. Hence, m is a global section of M with support
inY =V(a).

Conversely, let m be a global section of M with support in Y = V(a).
So Supp m C V(a). By Exercise I1.5.6(a) we have Supp m = V(Ann m)
and so VAnn m O /a (Lemma II.2.1(c)). Since A is noetherian, a is
finitely generated, say a = (f1,..., fn). For each i, there is n; such that
[ € VAnn m, and so there is some j; such that f/"7/* € Ann m. Set
N = [[niji so that fN € Ann m for all i. Then, there is some N'(= nN)
such that 1" ;| k; > N’ = k; > N for some i where k; > 0. So every
element of ¥’ is a sum of elements which are divisible by f& for some i.

Hence, a¥' C Ann m, so m € T'q(M).

¢ By definition we know that ['y(H:(M)) C Hi(M). Consider m € H:(M).
So we have taken an injective resolution 0 — M — I® of M, we have

. i gt .
<= To(I'1) LI %S To(I+') — ... and m is an element of
keifnd;jl . In particular, it is represented by an element of ker d**1 C T'y(I?)
and so there is some n for which a"m = 0. Hence H:(M) C I'y(HL(M)).

Exercise 3.4. a Assume that A is noetherian, Show that if depth, M > 1,
then Tq(M) = 0, and the converse is true if M is finitely generated.

b Show inductively, for M finitely generated, that for any n > 0, the follow-
ing conditions are equivalent:
(a) depth, M > n;
(b) Hi(M) =0 for all i <n.
For the converse to part (a) we use some Commutative Algebra results that
can be found in Section 3.1 of Eisenbud’s “Commutative Algebra”.

Solution. a If depth, M > 1 then there is some = € a which is not a zero
divisor of M. Let m € T'q(M). Then there is some n for which a™m = 0,
and so £"m = 0. But x is not a zero divisor and so m = 0.



Conversely, suppose that M is finitely generated and that T'q(M) = 0. So
for any (nonzero) m € M and n > 0 there is an = € a” such that zm # 0.
This means that a ¢ p for any associated prime p of M (i.e. primes p
such that p = Ann(m) for some m € M). So a € Uyecass(ar)p [Eisenbud,
Lemma 3.3, Theorem 3.1(a)]. The latter set is the set of zero divisors of
M (including zero) [Eisenbud, Theorem 3.1(b)] and so we find that there
is an element x € a that is not a zero divisor in M. Hence depth, M > 1.

b

Exercise 3.5. Let X be a noetherian scheme, and let P be a closed point of X .
Show that the following conditions are equivalent:

a depth Op > 2;

b If Uis any open neighbourhood of P, then every section of Ox over U — P
extends uniquely to a section of Ox over U.

Solution. First note that we can assume U is affine, since given a point P and
an open subscheme containing it, there is an open affine subscheme V of U
containing P, and a section of Ox (U) is the same as giving a section of Ox (V)
and a section of Ox (U — P) which agree on V — P since Ox is a sheaf. So
suppose that U = X = Spec A is an affine noetherian scheme.

Secondly, note that we have the long exact sequence of Exercise I11.2.3(e):

- — H%(X,0x) — H(U,0x) — H'(U - P,0x) — HH(X,0x) — ...

So the second statement in the problem is equivalent to showing that Hs (X, Ox) =
0 for i = 0,1. By Exercise III.3.3 this is the same as showing that Hy(A) =0
for i = 0,1 where p is the prime ideal of A corresponding to the point P. Fur-
thermore, by Exercise I11.3.4(b) this is the same as showing that depth, A > 2
since A noetherian implies that A is finitely generated.

So we have reduced the problem to showing that depth, A > 2 if and only
if depth 4, > 2. If depthp A > 2 then there are x1,22 € p such that xy is
not a zero divisor of A and x5 is not a zero divisor of A/xs. We can consider
the x; as elements of A, and so we get a regular sequence of length 2 of A,.
Conversely, if depth A, > 2 then there is a regular sequence ”S”—I, ’;—; € pA, of A,
where 21,29 € p and s1,52 € A\p. It can be seen that x1,zo is then a regular
sequence for A and so depth, A > 2.

Exercise 3.6. Let X be a noetherian scheme.

a Show that the sheaf ¥ constructed in the proof of (3.6) is an injective object
in the category Qco(X) of quasi-coherent sheaves on X. Thus Qco(X) has
enough injectives.

b Show that any injective object of Qco(X) is flasque.

¢ Conclude that one can compute cohomology as the derived functors of
I'(X,-), considered as a functor from Qco(X) to Ab.



Solution. a Recall that the sheaf ¢ is constructed as follows. Cover X with
a finite number of open affines U; = Spec 4;, and let % |y, = M;. Embed
M; in an injective A;-module I;. For each i let f; : U; — X be the
inclusion, and let ¢ = ®f;.(I;). Now suppose we have an inclusion of
quasi-coherent sheaves 0 — %’ — .% and a morphism .#’ — 4. We want
to show that this lifts to a morphism % — ¢.

First notice that for each i, a morphism .#’ — fl*fz corresponds to a
morphism .#'|y, — I; which lifts to .#|y, — I; (since I; is injective), and
this corresponds to a morphism . — fl*fl So each fl*i is injective.
Now notice that a direct sum @} %/ of arbitrary injective objects ¥/ is
injective, since a morphism to ®F_ ;¥/ is the same as an n-tuple of one
morphism into each G;. Hence, ¢ is injective, since it is a direct sum of

injectives.

b By definition,the derived functors are calculated using injective resolu-
tions. We have seen that the cohomology of a sheaf of abelian groups as it
was defined in the text can be calculated using flasque resolutions. Hence,
the derived functors of I'(X,-) are the same as the cohomology groups
H (X7 _)'

Exercise 3.7. Let A be a noetherian ring, let X = Spec A, let a C A be an
ideal, and let U C X be the open set X — V(a).

a For any A-module M, establish the following formula of Deligne:
(U, M) 22 lim,, hom(a™, M),
b Apply this in the case of an injective A-module I, to give another proof of

(3.4).

Remark. A more general version of this is proved using a similar method in
EGA 16.9.17.

Solution. a First we define a morphism lim,, hom4 (a, M) — I'(U, M) Since
A is noetherian, a is finitely generated, say a = (f1,..., fn). Furthermore,

the basic opens D(f;) form a cover of U. This means that every section
of I'(U, M ) can be written as an element of @Mjy,, and conversely, every
element of ©My, which is in the kernel of ©®My, — ©Mjy,y, defines a
section of I'(U, M) So given a morphism ¢ : a” — M define a section by
(M . M) It can be checked fairly readily that this tuple actually

VA >
does define a section (since ffo(f7) — fi¢(f]) = ¢(f f]) — o(fi f7) = 0)
and furthermore, two representatives ¢ : a” — M and ¢’ : a”’ — M of
the same element of lim, hom 4 (a”, M) give rise to the same section (since

oUIT) _ foU) _ ¢(ff))

7T Fo i 7+=). So we have a well-defined morphism

lim,, hom (a”, M) — T(U, M)
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This morphism is injective: if an element represented by ¢ : a” — M gets
sent to zero, then % =0 € My, for each ¢ and so f'¢(fI) =0¢e M
for some s;. Since there are finitely many f; choose some s > s; so that
we have fEo(fI) = 0 € M for all i. We then consider R big enough so
that a® is generated by 1" (for example, R > n(s+7)) and the induced
morphism ¢ : aft — M is consequently zero, since ¢(fS7") = ffo(f7) = 0.

Now to see that the morphism is surjective. Choose a section f € F(U M ).
As already mentioned, this section gives rise to a tuple ( Tl e fm ). By

replacing fﬂ' with £ f’ ‘ms where r = maxr; we can assume that all

i

, ?ﬁ:ﬁ) came from a section

f eI, M)7 for each 4, j we have (f; ;)% (fim;— f;m;) = 0 € M for some
sij. Again, we can choose s big enough so that we can assume s;; = s
for all 4,5. Now deﬁne m;, = ffm;. So we have (fItsf — m;) sy =

(fi et = frma) = (f”smj — fofim) = r+e (fif3)>(fimg — fim;) =

0. The p01nt of this is that since the D(f;) cover U, and we have (f 7 f —
m;)|p(s;) = 0 for each j, we now have the relation

the r; are the same. Since the tuple ("11 yen

r4+s _ !
fi f= m;
on U for each i.

Now choose R big enough so that a® is generated by the Il *s (for ex-
ample R > n(r + s)) and define a morphism ¢ : a® — M by send-
ing S a;f/** to (3 a;ml)|y (note that a; € A are global sections of
I'(X,Ox)). We need to check that this is a well defined homorphism. Sup-
pose that Y a;f/™° = 0. Then we need (3 a;m})|y to be zero also. But
we have (3" a;m!)|y = Y (a:ifi™°f) = O aif{T°)f = 0 and so we really
do have a well defined morphism. Moreover, the image of the morphism

& in D(U, M) is (Frkz, .o gois) = (g ey — (o ey —

1
the section we started with. So we have lifted f € I'(U, M) to an element
of lim,, hom 4 (a, M) and consequently, the morphism lim, hom(a, M) —

L(U, M) is surjective.

Suppose I is an injective A-module. We want to show that for any two
open subsets V' C U, the restriction morphism I'(U, I) — I'(V,I) is sur-
jective. Using Deligne’s formula, we can write the restriction as

li_r)nn homu(a™, 1) — h_n)ln hom 4 (b, I)

where a and b are the (radical) ideals of the closed complements of U and
V respectively. Since V' C U, we have V(b) D V(a) and since we assumed
a and b to be radical this implies b C a. The point is that this is an
inclusion of A-modules, and so given a representative ¢ : b — [ is an
element of lim,, hom 4 (b, I), the fact that I is injective implies that there is

11



a lifting to a™ — I Since 0 — b™ — a™ is an exact sequence of A-modules.
Hence, the restriction homomorphism is surjective and so I is flasque.

Exercise 3.8. Let A = k[zo, 21,22, ...] with the relations x{z, = 0 for n =
1,2,.... Let I be an injective A-module containing A. Show that I — I, is
not surjective.

Solution. Suppose that I — I, is surjective. Then there is some m € I which
gets sent to ?10 That is, 2 (xgm —1) = 0 in I for some n. Multiplying by z,41
and using the relation $n+1$g+1 = 0 gives x{xn+1 = 0 in A. But this is not

true, and so we have a contradiction. Hence I — I, is not surjective.

4 Cech Cohomology

Exercise 4.1. Let f : X — Y be an affine morphism of noetherian separated
schemes. Show that for any quasi-coherent sheaf F on X, there are natural
isomorphisms for all i > 0

HY (X, F)= HY, f.7)

Solution. Let {V;} be an open affine cover of Y. Since f is an affine morphism
the set of preimages {U; = f~1V;} form an open affine cover of X. Further-
more, since X and Y are separated, the intersections V;, . and U, ., =
v are also affine. Let Uig,....i, = Spec Aio,u.,ip and Viewoviip = Spec B;,
As 7 is quasi-coherent its restrictions to each U;, . ;, are of the form F |y,

3
yeenslip
[a¥}

Sip

05--0slp

M,,...s, where M;, . ; is an A;, . ;,-module. Proposition I1.5.2(d) says that
f*yh/io ..... ip (Bio ..... ipMio»-<~7ip)N'
Now consider the appropriate Cech complexes. In degree p we have

CPU,7) = H Mio,...,z‘p and CP(T, f.7) = H B; i Mio,...,ip

0+ vip
i< <ip o< <ip

As complexes of abelian groups, these are identical and so their cohomology
groups are the same. Since we can use Cech complexes of affine covers to
compute the cohomology of quasi-coherent sheaves (Theorem I11.4.5) we find
the natural isomorphisms required.

Exercise 4.2. Prove Chevalley’s theorem: Let f : X — Y be a finite surjective
morphism of noetherian separated schemes, with X affine. ThenY is affine.

a Let f: X — Y be a finite surjective morphism of integral noetherian
schemes. Show that there is a coherent sheaf # on X, and a morphism
of sheaves o : Oy — fod for some r > 0, such that o is an isomrophism
at the generic point of Y.

b For any coherent sheaf F on 'Y, show that there is a coherent sheaf 4
on X, and a morphism (B : f.4 — F" which is an isomorphism at the
generic point of Y.

12



¢ Now prove Chevalley’s theorem. First use Ezxercise II1.3.1 and FExercise
I11.3.2 to reduce to the case X and Y integral. Then use Theorem 3.7,
Ezercise 4.1, consider ker 3 and coker 3, and use noetherian induction on
Y.

Solution. a If we apply #Zom(-, F) to a we get a morphism SCom/(f.. M, F) —
om(0%,, %) which is an isomorphism at the generic point (to see this
consider an affine neighbourhood of the generic point). We have an isomor-
phism JZom(O%., F) = F and by Exercise I1.5.17, since SZom(f.. M , F)
is a quasi-coherent f,Ox-module, there is a quasi-coherent O x-module ¥
such that SZom(f.. M, F) = f.9Y.

b The morphism f : X — Y induces a morphism fy.cq : Xyeq — Yireq which
is still surjective (since the underlying topological spaces are the same)
and still finite (since if a B-algebra A is finitely generated as a B-module
then Bj.q is finitely generated as a A,.q4-module). Exercise I111.3.1 says
that Y,..q is affine if and only if Y is and so we can assume that X and Y
are reduced.

Now for each connected component Y’ of Y, the induced morphism f~'Y’ —
Y is still surjective, and finite because the other three morphisms in the
commutative square

fflyl >Yy/

Lo

X—Y

are finite (closed immersions are finite). Since it is surjective, we can con-
sider an irreducible component X’ of f~1Y” that contains a point in the
preimage of the generic point of Y’. The induced morphism X’ — Y is
finite, since it is a composition of finite morphisms X’ — f~1Y’ — Y’
(closed immersions are finite). Now since X is affine, each irreducible
component is (since a closed subscheme of an affine scheme is affine (Ex-
ercise I11.3.11(b)) and Exercise I11.3.2 says that Y is affine if and only if
each irreducible component is. So we can assume X and Y irreducible.

So we can assume X, Y integral. Now we use Theorem II1.3.7 to show
that Y is affine. The goal is to show that for any coherent sheaf of ideals
# we have HY(Y, #) = 0. So let .# be a coherent sheaf of ideals on
Y. Then by part (b) we have a coherent sheaf 4 on X and a morphism
B f+¥9 — 7 which is an isomorphism at the generic point. This gives
an exact sequence 0 — ker § — f,9 — " — coker 8 — 0 which we break
up into to short exact sequences

0—kerf— f,9 -impB —0 0—imB3— #" — coker 8 — 0

which give rise to long exact sequences on cohomology. Since H'(Y, f,4) =
H(X,%9) (Exercise 111.4.1) and X is affine, we have H' (Y, f.4) = 0 for
all i > 0 (Theorem I11.3.7) and so H(Y,im 3) = H**1(Y, ker 3) for i > 0.
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On the other hand, since ( is an isomorphism at the generic point, both
ker 3 and coker 3 are zero at the generic point, and therefore have support
in some closed subscheme, necassarily of smaller dimension than Y. That
is, we have ker 8 = i,i* ker # where i : Z — X is the closed immersion
of the support and similarly for coker 3. By the inductive hyopothesis
and Exercise I11.4.1, we then have that H' (Y, ker 3) = H'(X,i* ker 3) =
0 for ¢ > 0 and similarly, for coker 3. Putting this together with the
isomorphism H'(Y,im 3) & H'T}(Y,ker ) described above, we see that
HY(Y,imB3) = 0 for i > 0 as well and so putting these into the long
exact sequence associated to the short exact sequence 0 — imf — I —
coker 3 — 0 we obtain finally H!(Y, #") = H (Y, #)" = 0 for i > 0.
Hence, Y is affine by Theorem III.3.7.

Exercise 4.3. Let X = A} = Speckl[xz,y], and let U = X —{(0,0)}. Using a
suitable cover of U by open affine subsets, show that H*(U, Oy) is isomorphic
to the k-vector space spanned by {z'y?|i,j < 0}. In particular, it is infinite
dimensional.

Solution. Take the open cover {U, = Speck[z,y,2~'],U, = Spec k[m,y,yil]}.
The intersection is Uy, = U, N U, = Speck[z,y,z~',y~'] and so the Cech
complex of this cover is

1

0 — klz,y, " @ klz,y,y '] — klz,y, 27 Ly ] = 0— ...

The first cohomology group of this complex is k[z,y, 271, y~1] over the image of
the boundary morphism. This image consists of all polynomials which are linear
combinations of monomials z*y? where at least one of ¢ or j are not negative.
Hence, the first cohomology group consists of linear combinations of monomials
x'yd with 4,5 < 0.

Exercise 4.4. a Let 4 = {U,;}ier be an open covering of the topological
space X. If U is a refinement of U (that is, a covering B = {V;},cs
together with @ map A : J — I of index sets, such that for each j €
J, Vi € Uxyy), show that there is a natural induced map on the Cech
cohomology, for any abelian sheaf %, and for each i,

N HY(U,.F) — HY(D,.7)
b For any avbelz'an sheaf Fon X, show that the natural maps (4.4) for each
covering H (W, F) — H (X, ) are compatible with the refinement maps
above.

¢ Now prove the following theorem. Let X be a topological space, F a sheaf
of abelian groups. Then the natural map

ZZ_'r)nilHl(uvy) - Hl(Xvﬁ)

s an isomorphism.
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Solution. For each p > 0 and each tuple (jo, - . .,jp) € JPT! we have a morphism

induced by the restriction morphisms 7 (Ux(j,)...x(,)) — 7 (Vjo...j,) Which in-
duces a morphism CP (4, F) — CP(U,.F). Since
A da)jo. g1 = (A AGo) Gy Vg5, 11
p+1
- Z A(d0) -+ A(k)-+-Aldpt1) |U>\(Jo) Alp41)
Vjo-»-1p+1
p+1
= Z A(Jo)---Ak)-- /\(Jp+1)| Yo dp+1
p+1

:Z(il Oé/\(JD) )‘(]k) )‘(]p+l)| ]0 ke dpt1 Vfo----7p+1
0

p+1
P
= Z(_l) (Aza)jomikwjpﬂ|VJ’O~~J’p+1
k=0
= (d)‘za)jomijrl

we have commutative squares

(1,.7) —L> or+i(y, 7)

I

CP(U, 7)
CP (D, F) —L= CrHL (7, F)

and so we have a morphism of the Cech complexes C*(i, . #) — C*(U,.%)
induced by the restriction morphisms and A. This induces a morphism on the
Cech cohomology.

The maps H'(U,.#) — H'(X,.#) come from choosing an injective resolu-
tion 0 — # — #°* of chain complexes and obtaining a map of chain com-
plexes C*(U,.#) — #* unique up to homotopy. Our maps \* : H*(U,.F) —
H(%0,.7) from part (a) were induced by maps of chain complexes. Since the
map C*(U,.#) — #* is unique up to homotopy, the map obtained as the com-
position C* (U, F) — C*(U, F) — £* is homotopic to C*(U, F) — #* and
therefore induces the same maps on cohomology. Therefore we have a commu-
tative triangle

- T T T
Hl(ﬂvﬁ)HHl(m’f)HHl(X’ﬁ')

Exercise 4.5. Show that Pic X & HY (X, O%) for any ringed space (X,Ox).

Solution. The map PicX — HY(X,0%). Let £ be an invertible sheaf on
X. That is, a sheaf that is locally frem of rank one. By definition there is
an open cover {U;} of X for which we have isomorphisms ¢; : Oy, = Z|y,.
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Restricting to the pairwise intersections we get isomorphisms ¢;; = (;5;1 op;:
Ou,;, — Z|v,; — Ou,, and on the triple intersections Usj;, the restriction of
these isomorphisms satisfy the cocycle condition ¢; o ¢;; = ¢, where ¢;; is
the identity. Each of the isomorphisms ¢;; is determined by an element o;; €
Ox (Ui;) (the image of the identity) which is a unit by consequence of the ¢;;’s
being isomorphisms. The cocycle condition amounts to the relation oy oy =
air, and a;; = 1. So the elements {;;} determine an element of C*({U;}, O%)
which is a cocycle as a consequence of the cocycle conditions, as

(da)ijr = ajrag ag =1

So we have defined a map, of sets at least, from Pic X to H'(X,0%) via the
morphisms H*(U, O%) — H (X, 0%).

Independance with respect to the ¢;. If we have chosen different isomorphisms
¢ : Oy, = £|u, then we obtain isomorphisms 1; = ¢; Lo} : Oy, = Oy, which
correspond to elements v; € Ox (U;)* (the image of the identity global section)
as above. if o/ = {aj;} is the cocycle associated with the isomorphisms ¢;

then we have the relations ai_jlagj =7 1~; by the commutivity of the following
diagram:

¢ i
Ov,; —= 2|y, — Ou,,

i qb.fl

Ov,; ——= Zu, — Ou,,
Hence, a1’ is a coboundary and so a and o’ determine the same element in
H(U, 0%).

Compatibility with restriction (independence with respect to the cover). If £,
$1 are as above and if (U, A) is a refinement of 4 as in Exercise II1.4.4, then by
restricting a choice of isomorphism ¢; for 4, we get isomorphisms for U for which
the corresponding cocycle 3 = {Bke} in C (U, O%) is precisely the image of the
cocycle a = {a;;} obtained from the ¢; under the morphism C'(U,0%) —
C1(0,0%) described in Exercise I11.4.4(a). So via Exercise 111.4.4(b) we see
that the image of . in H'(X,0%) is independent of the cover chosen.

Compatibilty with the group structure. If we have two invertible sheaves .Z
and . then choose a cover 4 = {U;} on which both sheaves are trivial. Then
£ ® A is trivial on this cover as well, and we can take the isomorphisms
@i : Oy, =2 LR M|y, to be ¢p; » ® ¢; o where ¢; » and ¢; » are isomorphisms
for £ and .# respectively. It is now straightforward to see that the cocycle
for Z ® .# and is the product of that for . and that for .#, so the map
Pic X — H'(X,Ox) is actually a group homomorphism.

The map is an isomorphism. To see that the map defined is an isomorphism
we construct an inverse via the isomorphism liL)nuH YU, F) - HY(X,Z7) dis-

cussed in Exercise 111.4.4(c). This isomorphism implies that every element of
H'(X,.7) can be realized as an element of H' (4, %) for some cover l. So given
an element of H' (X, O%) there is a cover 4 for which the element is represented
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by a cocycle {a;;} € C*(4, O%). By virtue of the fact that {a;;} is a cocycle,
these a;; define isomorphisms Oy, |v,; — Ou,|u,; which satisfy the necassary
condition for us to be able to glue the Oy, together into an invertible sheaf
(Exercise 11.1.22). By construction it can be seen that this provides an inverse.

Exercise 4.6. Let (X,0x) be a ringed space, let & be a sheaf of ideals with
F% =0, and let Xo be the ringed space (X,Ox /7). Show that there is an ezact
sequence of sheaves of abelian groups on X,

-— HYX,.#) — Pic X — Pic Xy — H*(X,.9) — ...

Solution. Checking that the sequence is exact on stalks is fairly straightforward.
As a consequence we have an exact sequence

-— H'(X,¥)— H'(X,0%) - H'(X,0%,) > H*(X, %) — ...
and the required exact sequence then follows from Exercise I11.4.5 above.

Exercise 4.7. Let X be a subscheme of IP’% defined by a single homogeneous
equation f(xo,x1,22) = 0 of degree d (without assuming that f is irreducible).
Assume that (1,0,0) is not on X. Then show that X can be covered by the two
open affine subsets U = X N{x; # 0} and V = X N{x2 # 0}. Now calculate
the Cech complex

NU,0x)®d(V,0x) = T(UNV,0x)
explicitely, and thus show that
dim H°(X,0x) =1

dim H'(X,0x) = %(d —1)(d - 2).

Solution. There is a standard cover of P? consisting of the opens Uy = {zg #
0},U; = {x1 #0},Us = {3 # 0} and so {Uy N X,U; N X,U> N X} is an open
cover of X. Since closed subschemes of affine schemes are affine, this is an affine
cover. The only point of P2 not in Uy or Uy is (1,0,0) and since this is not in
X, the open affine Uy N X can be removed from the set and it will still be an
open affine cover.

The Cech complex is then

x o [:Uo Il] [1}0 T CL‘Q}

[ ’ Ty x2 ) T N x2 ) X2 X
FE 1) @ ) EER)
(70 T2y T Ty @@y T2 g @ T

) b g b b
T T1 T2 T2 T2 X1 T1 T2 T2

kuo] o kzyl klz,y,y!]
flu, o)~ f(z,y,1) f(x,y,1)
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(?(U7’U>,E($,y)) = ?(.’E’y—l,y_l) _E(l',y)
If (g, h) is in the kernel of this morphism then g — h is in the ideal generated
by f(x,y,1). So g —h = f'f for some f’' € k[z,y,y~']. Now the assumption
that (1,0,0) is not a point implies f(zq,r1,22) = f+aoxd for some f and some
nonzero ag. Since scaling by units doesn’t change the variety, we can assume
that ag = 1. So we have f(z,y,1) = Zogigd,ogjgd ai;xr'y! with apg = 1. The
polynomial f’ in the expression g—h = f’f is a linear combination of monomials.
Write it as f/ = fo + f1 + f2 where the f; are linear combinations of monomials
x'y? with i < —d—j for fo, with j > 0 for fi, and with j < 0 and ¢ > —d — j for

f2. The point is that fyf is in the image of fl(ciui”,l) and f1f is in the image of
klz,y]

T D and the monomials spanning these images overlap only on the constant
term. So if we can show that fs is necassarily zero, then we necassarily have
g = fof +g0 and h = —f1 f + ho where gg and hg are constants. So it will imply
that (g, h) represents the same element as one where g and h are constant, and
therefore equal.

To see that fo is necassarily zero consider a summand of it aijxi, y? with i
maximal and j minimal. Then a;;z'"%y7 is a summand of fof. but fof is in
the image of the boundary map of the Cech complex so either i +d < —j or
§ >0, both of which contradict our assumptions on f,. Hence, (g, h) represents
the same element as one where g and h are constants, and therefore equal, so
the kernel is (a,a) with a € k and therefore dim H°(X,Ox) = 1.

Consider now the cokernel. Each element of the cokernel can be represented
by a polynomial in k[z,y,y~!]. Write it as a linear combination of monomials
> is0 ez @'y’ . Any mononial with j > 0 represents zero in the cokernel

as it is the image of (0,2%y’)). Similarly, any monomial with j > i is the
image of (u‘v77%/0). So we can represent an element of the cokernel with a
polynomial Zj<03j<i a;;x'y’. Now the assumption that (1,0,0) is not a point
implies f(zo,x1,22) = f+ aoxg for some fand some nonzero ag. Since scaling
by units doesn’t change the variety, we can assume that ag = 1. Hence, in
the ring 7]‘3}?5;’3] e d —
combination of monomials 'y’ with 0 < ¢ < d and 0 < j. Coming back to
the cokernel, this means that every element of the cokernel can be represented
by a polynomial of the form Y a;jz'y’ where 1 < i < d and —i < j < 0. So
dim H'(X,Ox) < 3(d—1)(d—2). To show that equality holds we need to show
that polynomials of this form don’t represent zero elements of the cokernel.
Clearly, they are not in the image of the boundary map, by the argument
already given, so we just need to show that they are not in the ideal generated
by f(z,y,1). But since f(z,y,1) = 2% + f(z,y,1) if they were, there would be
a fact or of x with power > d. So we have equality.

we have the relation x —f(z,y,1) where f(x,y,1) linear

Exercise 4.8. Cohomological Dimension. Let X be a noetherian separated
scheme.

a In the definition of cd(X) show that it is sufficient to consider only coher-
ent sheaves on X.
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b If X is quasi-projective over a field k, then it is even sufficient to consider
only locally free coherent sheaves on X.

¢ Suppose X has a covering by r + 1 open affine subsets. Use Cech coho-
mology to show that cd(X) < r.

d If X is a quasi-projective scheme of dimension r over a field k, then X
can be covered by r + 1 open affine subsets. Conclude (independently of
(2.7)) that cd(X) < dim X.

e LetY be a set theoretic complete intersection of codimension r in X = P}.
Show that cd(X —Y) <r—1.

Solution. a Suppose that H'(X,.#) = 0 for all i > n and all coherent
sheaves #. If .Z is a quasi-coherent sheaf then it is the union of its
coherent subsheaves (Exercise 11.5.15(a)), that is, # = lim.#, where 7,
are the coherent subsheaves. Then by Proposition 2.9 for ¢ > n we have
H(X, F) = H(X,lmF,) = limH' (X, F,) = lim0 = 0.

b By Proposition I1.5.18 every coherent sheaf .# can be written as a quotient
of a finite rank locally free sheaf & so we have a short exact sequence
0—-¥% — & — F — 0 which gives rise to an exact sequence

= HY(X,6) —» H(X,Z) - HT(X,9) - HTY(X,&) — ...

So if H(X, &) for all locally free sheaves & and all i > n then H(X, .F) =
H™Y(X,%) for all i > n. Grothendieck’s Theorem says that H*(X,¥4) =0
for i > dim X so by induction, H(X,.%) = 0 for i > n.

¢ Since X is separated, we can use the Cech cohomology of an affine cover
to calculate the cohomology of X. If there are only r 4+ 1 elements in the
cover Y then for p > r there are no p-tuples of indicies (ig,...,4,) with
ip < - < i, and so CP(4,.#) = 0 and hence H(X,.#) =0 for p > r and
therefore cd(X) < r.

d By definition if Y is a set-theoretic complete intersection of codimension
r then it is the intersection of r hypersurfaces. The complement of each of
these hypersurfaces is an affine variety (Proposition I1.2.5) and so these r
complements form an affine cover of X — Y which is separated by virtue
of it being projective (Theorem 4.9). So it follows from part (c) of this
exercise that cd(X —Y) <r —1.

Exercise 4.9. Let X = Speck|x1,x2, 3, x4] be affine four-space over a field k,
Let Y7 be the plane x1 = xo = 0 and let Yy be the plane x3 = z4 = 0. Show
that Y = Y1 UYs is not a set-theoretic complete intersection in X. Therefore
the projective closure Y in ]P’% is also mot a set-theoretic complete intersection.

Solution. If Y is a set theoretic complete intersection then cd(X —Y) <1 (the
same proof as for Exercise I11.4.8(e) works). So to show that Y is not a complete
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intersection then we just need to show that H?(X — Y,.#) for some quasi-
coherent sheaf .%. Consider Ox. We have the exact sequence from Exercise
111.2.3:

- — H*(X,0x) — H*(X - Y,0x) — H¥(X,0x) — H}(X,0x) — ... (1)

Since X is affine, we have H'(X,Ox) for i > 0 and so H?*(X —Y,0x) —
H3 (X, Ox) is an isomorphism. So our task is reduced to showing that H; (X, Ox) #
0. Now consider the following exact sequence from Exercise 111.2.4:

.. H}(X,0x) — Hy (X,0x) & Hy (X,0x)
- H}gf(Xa OX) - H%(X7OX) - Hél’l(Xa OX) GBH;Z(X?OX) e
(2)

Using a similar exact sequence to 1 we see that H{,j (X,0x) 2 H"YX-Y;,0x)
for ¢ = 3,4 and the later is zero since X — Y} is covered by the two open affines
z2j—1 # 0 and xp; # 0, and so the Cech complex is zero in these degrees
(Exercise I11.4.8(c)). Hence we have an isomorphism H;- (X, Ox) = Hp(X,Ox)
and so we want to show that H3(X,Ox) # 0.

Consider the exact sequence:

- — H3(X,0x) - H¥X — P,0x) — Hp(X,0x) — H{(X,0x) — ... (3)

Since X is affine, we have H'(X,0Ox) for i > 0 and so H}(X — P,0x) —
H$(X,Ox) is an isomorphism. Now we can calculate H3(X — P, Ox) explicitely
using the Cech complex of the cover i consisting of the U; with z; # 0. We have
C*(U4, Ox) = 0 because there are four elements in the cover, so the cohomology
group in question is the cokernel of C%(4, Ox) — C3(4, Ox). This morphism

1S
4

@Ai — k[x1, 20, 23, 24,27 F, 25 Y, x;l,xf]

i=1
where A; is k[z1,z2, 3, x4] with x; inverted for all ¢ # j. The image of this
morphism is spanned by all the monomials 2! 22z x%* such that at least one
i; is not negative. So the cokernel (and hence the cohomology) is spanned by
monomials z{' 22z x%* with all 4; < 0. In particular, it is not zero.

So H3(X—P,0x) # 0 and therefore H5(X, Ox) # 0 by 3 and so Hy- (X, Ox) #
0 by 2 and therefore H*(X —Y,Ox) # 0 by 1. Hence, cd(X —Y) >1andso Y
is not a set theoretic complete intersection.

Now if Y was a set theoretic complete intersection then we could restrict the
two relavlent hypersurfaces to A* and find that Y is a set theoretic complete
intersection. But we have just proven that Y isn’t, and so therefore, Y isn’t
either.

Exercise 4.10. Let X be a nonsingular variety over an algebraically closed
field k, and let F be a coherent sheaf on X. Show that there is a one-to-one
correspondence between the set of infinitesimal extensions of X by F up to
isomorphism, and the group HY (X, .7 ® 7), where F is the tangent sheaf of
X.
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Exercise 4.11. Let X be a topological space, % a sheaf of abelian groups, and
U = {U;} an open cover. Assume for any finite intersection V. = U, N---NU;,
of open sets of the covering, and for any k > 0 that H*(V, #|y) = 0. Then
prove that for all p > 0, the natural maps

HP (4, 7) — H"(X,.7)

of (4.4) are isomorphisms. Show also that one can recover (4.5) as a corollary
of this more generaly result.

Solution. Let 0 — .F — #° be an injective resolution of .#. Consider the dou-
ble complex Eg’q = Hi0<__.<ip fp(UiO,m’iq). There are two spectral sequences
associated to this double complex, one coming from the filtration of the total
complex by columns and the other by rows.

Since for any open subset U and any i the sheaf .#%|y is injective as a
sheaf of abelian groups on U, the restriction 0 — Z |y — #°*|y is an injective

. . d .
resolution of .Z|y. So the “horizontal” cohomology groups E¥*? g P(ES?) of
this complex calculate the cohomology of .%|y. By assumption, we then have

e _ CiF, ) ifp=0
L7710 otherwise

The “vertical” differentials Eg’q — Eg 9+ induce the usual differentials on the
complex C(.%,4l) and so the “vertical” cohomology groups of E; are

HY(Z,4) ifp=0

p.q 9¢f 17q pey _
Byt = HY(E )_{ 0 otherwise

. . . . d
Now suppose we start with the vertical differentials first. So we define ' E}*? ef

HY(E[*). These calculate the Cech cohology of the sheaves .#7. Since the .
are flasque (Lemma I11.2.4), their Cech cohomology vanishes in nonzero degree

and so we have
IEPY I‘(X,jp) ifg=0
L7710 otherwise

As above, the horizontal differentials induce the usual morphisms on the complex
I'(X,.#*) and so we have

HY(X,F) ifq=0

1ppsa Al prp e
Ey" = HP('EY,q) —{ 0 otherwise

Sp the cohomology of the total complex is isomorphic to both H®(X, %) and
H*(4,.7), hence, they are isomorphic.
5 The Cohomology of Projective Space

Exercise 5.1. Let X be a projective scheme over a field k, and let F be a
coherent sheaf on X. if

00— 2 z% 2" 0
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is a short exact sequence of coherent sheaves on X, show that x(F) = x(F') +
X(F").
Solution. Consder the long exact sequence of cohomology

S xS H(X, 7)Y H(X, 7 HYY(X, T
Since it is exact, we have (for example) dim H*(X,.%#) = dim ker §* + dim ker ¢".
Now noting that H*(X, —) is zero for i > dim X = n (Grothendieck’s Theorem)
we can write

X(F) (—1)"dim H'(X,.F)

|

@
Il
o

(—1)*(dimker 6° + dim ker 1)%)

|

N
Il
=)

Il

s
Il
=)

(—1)° (dim ker 6° + dim ker ¢)° + dim ker ¢* — dim ker ¢i>

(—1)*(dim ker ¢* + dim ker 1)")

I

s
Il
=)

+ Z(—l)i(dim ker 6* — dim ker ¢")
i=0

(—1)*(dimker ¢* + dim ker 1)?)

[

@
I
=)

+ Z(fl)i(dim ker 6* + dim ker ¢" ™)
i=0

— dimker ¢"*! — dim ker ¢°
(—1)" dim H'(X, ") + Y (1) dim H'(X,.7") =0 -0
=0

[

N
I
=)

—~

F') + x(F")

We have that dim ker ¢" ! is zero from Grothendiecks Theorem (since H" 1 (X, —) =
0) and dimker ¢° is zero since ¢° : I'(X,.#') — I'(X,.%) is injective.

Exercise 5.2. a Let X be a projective scheme over a field k, let Ox (1)
be a very ample invertible sheaf on X over k, and let .F be a coherent
sheaf on X. Show that there is a polynomial P(z) € Qlz], such that
X(Z(n)) = P(n) for alln € Z.

b Now let X = P}, and let M = T'.(F), considered as a graded S =
klxo, ..., zr]-module. Use (5.2) to show that the Hilbert polynomial of F
Just defined is the same as the Hilbert polynomial of M defined in (Chapter
I, Section 7).
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Solution. a

b As a consequence of Theorem II1.5.2(b), for each n > ng (where ng is the
one from the statement of the theorem that depends on %) and ¢ > 0
we have H'(X,.Z(n)) = 0 and so x(Z(n)) = dim H(X,.#(n)). That is,
P(n) = dim M,,, which is exactly the definition of the Hilbert function for
M. Since this equality holds for n > 0, and P(z) and Pys(z) are both
polynomials, it follows that P(z) = Py (2).

Exercise 5.3. Arithmetic Genus.

a If X is integral, and k algebrically closed, show that H°(X,Ox) = k, so
that

r—1
Pa(X) = (=1)" dimy H"7'(X, Ox)
1=0

In particular, we have

pa(X) = dimy H'(X, Ox)

b If X is a closed subvariety of P, show that this p,(X) coincides with the
one defined in (I, Ex 7.2), which apparently depended on the projective
embedding.

¢ If X is a nonsingular projective curve over an algebraically closed field
k, show that pe(X) is in fact a birational invariant. Conclude that a
nonsingular plane curve of degree d > 3 is not rational.

Solution. a As X is integral, it is isomorphic to a variety (Proposition
11.4.10). So we can use Theorem 1.3.4(a) to see that H°(X,0x) = k.
The desired result then follows from the definitions.

Exercise 5.4. a Let X be a projective scheme over a field k, and let Ox (1)
be a very amply invertible sheaf on X . Show that there is a unique additive
homomorphism

P K(X) - QL]

such that for each coherent sheaf F on X, P(~y(F)) is the Hilbert poly-
nomial of F .

b Now let X =1P}. For eachi=0,...,r, let L; be a linear space of dimen-
ston 1 in X. Then show that

(a) K(X) is the free abelian group generated by {vy(Opr,)|i = 0,...,r},
and

(b) the map P : K(X) — Q[z] is injective.
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Solution. a Since we have a map defined from the set of coherent sheaves
(the free generators of K(X)) to Q[z] we just need to show that the map
is compatible with the relations. That is, for every short exact sequence
of coherent sheaves 0 — %' — % — F” — 0 we want to show that
P(y(#)) = P(y(Z")) + P(v(#")). This follows immediately from the
definition of the Hilbert polynomial and Exercise I11.5.1.

b First suppose that (a) is indeed true and consider P(y(QOp,)). We have
Op, = i+Op: for an appropriate linear embedding i : P — P". We know
the Hilbert polynomial of Op: from the explicite calculations of Theorem
5.1 to be (HZ'Z) So an element Y a;v(Of,) of K(X) gets sent to the
polynomial > a; (ztz) If this is zero then by induction on the highest
nonzero coefficient we see that each a; is zero and so (b) is true.

Now having seen that (a) = (b) we prove (a) and (b) together. The case
r = 0 is trivially true so suppose that (a) and (b) are true for P"~!. By
Exercise 11.6.10 we have an exact sequence

KPP ') - KP')— KPP —-P~') -0

where the first map is extension by zero. Suppose at the beginning we
choose L; such that L; C L,._; for all i < r. The map P clearly factors
through the first map of the exact sequence and so since the composition
K(P 1) — K(P") — Qz] is injective, we see that K(P""1) — K(P") is
injective. So K (P") has a subgroup Z" with basis Op, for ¢ = 0,...,r —
1 and this subgroup is the kernel of the surjective morphism K(P") —
K(P" — P™=1). The scheme P" — P"~! is isomorphic to A" and since
klx1,...,2,] is a principle ideal domain K (A") = Z generated by v(Oar),
which is in the image of v(Opr) (see the proof of Exercise 11.6.10). So
K(P7) is an extension of Z by Z". Since Z is projective, Ext'(Z,Z) = 0
and so there are no nontrivial extensions and therefore, K (P") = Z"
generated by v(Op,) fori = 0,...,r. We have already seen that (a) implies
(b) and so (a) and (b) are both true for P", completing the induction step.

Exercise 5.5. Let k be a field, let X =P, and let Y be a closed subscheme of
dimension q > 1, which is a complete intersection. Then:

a for all n € Z, the natural map
H°(X,0x(n)) — H(Y, Oy (n))
18 surjective.
b'Y is connected;
¢ H(Y,Oy(n)) =0 for 0 <i<gq and all n € Z;
d p(Y) =dimy H1(Y, Oy).

Solution. a
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b We know from Theore I11.5.1 that H°(X, Ox) = k and from Theorem 5.2
that H°(Y,Oy) is a finitely generated k-algebra. From part (a) of this
exercise, HO(X,0x) — H°(Y, Oy) is surjective and so H°(Y, Oy) = k. If
Y were to have more than one connected component then I'(Y, Oy ) would
have zero divisors. This is not the case and so Y is connected.

Exercise 5.6.

Exercise 5.7. Let X (resp. Y ) be proper schemes over a noetherian ring A.
We denote by £ an invertible sheaf.

a If £ is ample on X, and Y is any closed subscheme of X, then i*.% is
ample on'Y , where v : Y — X is the inclusion.

b Z is ample on X if and only if Lreqa = £ @ Ox,,, is ample on Xyeq.

¢ Suppose X is reduced. Then £ is ample on X if and only if £ ® Ox, is
ample on X;, for each irreducible component X; of X.

d Let f: X =Y be a finite surjective morphism, and let £ be an invertible
sheaf on' Y. Then £ is ample on Y if and only if f*.% is ample on X.

Solution. a Let .# be a coherent sheaf on Y. Then by Proposition I11.5.3
there is some ng such that for each n > ng we have H'(X,i..7 ® £") =0
for ¢ > 0. Using the projection formula (Exercise I1I1.5.1(d)) and Lemma
11.2.10 we have HY(X,i.7 @ £") = H{(X,i.(Z ®i*¥¢")) = H(Y, 7 ®
i*Z"™). Since # was arbitrary, it follows now from Proposition II1.5.3
that ¢*.Z is ample.

b Let i : X,eq — X be the canonical closed immersion. Then we have
Z ® Ox,,, =i*%Z and so if £ is ample, the ampleness of i*.Z follows
from part (a) of this exercise. Conversely, suppose that i*.¢ is ample.
We use a similar strategy to Exercise I111.3.1. We have a finite descending
sequence

FON - FON? FD---D0

where 4 is the sheaf of nilpotents on X (finite since X is proper, and
therefore finite type, over a noetherian base). At each d and n we have a
short exact sequence 0 — A . Z0 " — N1 FRL" — G0 L™ — 0.
giving rise to long exact sequences

= H(X,9,0.%") - HY (X, /. 202" - HTYX, ¥ .. F0L") - HYY (X, 90.2") —

So if we can show that H (X,¥; ® £™) = 0 for all i and all n > nq for
some ng, then it will follow by induction on d that H*(X,.# ® £™) = 0
for all n > ng and 7 > 0.

Since i*.% is ample, and ¥, are coherent sheaves on X,..q, by Proposition
I11.5.3 and the finiteness of the filtration, there is some ng such that for
all n > ng and i > 0 we have H*(X,cq,i*Z™ ® 9;) = 0. Since the ¥,
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are already Oy, ,-modules, cohomology is defined via sheaves of abelian
groups, and the fact that X and X,.q share the same underlying topolog-
ical space, we have H (X, " ® 9;) = H (X ,eq, 1" L™ ® 9;) = 0 for all
n > ng and ¢ > 0. Via the above mentioned long exact sequences, this
shows that HY(X,# ® £™) = 0 for all n > ng and i > 1, and that there
is a sequence of surjections

S HY (X, N Z o) > HUX, N FoL™) — ...

Since A4? = 0 for some d big enough, this is enough to show also that
HY (X, 7 @ £™) =0 for all n > ng. Hence, it follows from Proposition
II1.5.3 that .Z is ample.

Exercise 5.8.
Exercise 5.9.

Exercise 5.10. Let X be a projective scheme over a noetherian ring A, and let
Fl = F2 . FT7 be an exact sequence of coherent sheaves on X. Show that
there is an integer ng such that for all n > ng, the sequence of global sections

I(X, Z(n)) = T(X,#*(n)) — --- = T(X, 7" (n))
18 exact.

Solution. Proof by induction. In the case r < 3 there is nothing to prove. In
the case r = 3, we have a short exact sequence 0 — .#! — .2 — %3 — 0. By
Proposition II1.5.2 there is an integer ng for .#! such that for each i > 0 and
each n > ng, H(X,.#(n)) = 0. So considering the long exact sequence

0= (X, 7' (n)) — I(X,Z%(n)) = N(X, F3(n)) - H'(X, 7' (n)) — ...

we see that for n > ng the sequence 0 — I'(X,Z'(n)) — I'(X,Z2(n)) —
(X, %3(n)) — 0 is exact.

Now suppose the result is true for » — 1. Given an exact sequence of sheaves
0= F' = ... s gn2 L gn-1 _, 2n _, () we obtain two exact sequences

0%351H~-H35”*2Lc0kerfﬂ0

0 — coker f — .ZF" 1 - ZF" -0

Choose ng bigger than the two ng provided for both of these exact sequences
by the induction hypothesis. Then for each n > ng we have exact sequences

0— D(X,Z(n) — - — (X, Z"2(n)) L T(X, coker f(n)) — 0

0 — I'(X, coker f(n)) — T'(X, #" 1 (n)) - T(X, F"(n)) — 0
which we can stick back together to get a long exact sequence

0= T(X, 7' (n) = = T(X,Z"?(n)) = I(X, F""}(n)) = (X, F"(n)) = 0

26



6 Ext Groups and Sheaves

Exercise 6.1. Show that there is a one-to-one correspondence between isomor-
phism classes of extensions of F'' by F', and element of the group Ext' (F", . F").

Solution. In Hartshorne’s statement of the exercise we are given a map E =
{extensions of .#" by Z#'} — Ext'(F",.F'); we construct an inverse. Let

0—-F -9 —-9—0 (4)

be an embedding of into an injective sheaf and ¥4 the cokernel. From this
short exact sequence we get a long exact sequence and from this, a surjection
hom(.#",9) — Ext'(F",.7') — 0 since Ext'(.#",.#) = 0 as a consequence of
7 being injective. So we can lift our element of Ext'(.%Z",.%’) to a morphism in
hom(.#",%4). We then define &% = ¥ x¢ %" (pullbacks exist in Mod(X) since
kernels and products do, and in fact are defined component wise in the sense
that (S x¢ F")(U) = Z(U) xg@w)-#"(U)). The two morphisms .7’ — .# and

0 .
F' = Z" define a morphism %' — ¥ x4 %" and so we get a sequence

0-F - F—->F"—>0 (5)

which turns out to be exact (it is exact even as a sequence of presheaves; this
is straight forward to check since .# = .# xo F#" is defined component-wise).
So now we have two morphisms of sets E & Ext'(#”,.%') and we just need to
check that they are actually inverses to each other.

Suppose we start with an element of Ext'(.#”,.%’), construct an extension
as above, and then look at what element of Ext!(.#”,.%’) this gives us. There
is a morphism from sequence 5 to sequence 4 and therefore a morphism between
the long exact sequences obtained through Ext’(.Z”, —). One square in this is

. — > hom(Z", F") — > Ext'(F", F') —> -

| |

- ——> hom(F",4) — Ext'(F", F') —> -

The image of the identity morphism .#” ‘4 .Z” in Ext'(Z",. ') is what we
are concerned with. Following .#” i 2" down and to the right gives us back
the element of Ext'(#”,.#') that we started with. Since the right vertical
morphism is the identity, this shows that the composition Ext'(.#",.#") —
E — Ext!'(Z",.#') is the identity.

Now we will show that Ext'(#’,.#') — E is surjective, and this together
with Ext!(#",.7") — E — Ext'(#",.#') being the identity shows that the
two maps in question are inverses to each other. Embed .#’ in an injective
& and let 4 be the cokernel so that we have an exact sequence 0 — %' —
4 — 4 — 0. Then by construction, every short exact sequence in the image
of Ext'(F', F') — E is of the form 0 — F' — . x4 4 F"' — F" — 0 for

27



some morphism ¢ : .#” — 4. So given a short exact sequence 0 — %' — .% —
Z" — 0 we have to show it is of this form. Since .# is injective and .%' — #
injective, the identity #' = ' lifts to a morphism # — #, and then since
hom(—,¥) is right exact we get a commutative diagram

0—=>F' >F>F"—>0

\Lid iw W

0—>F' -7 —>9—0

So we have a sequence 0 — .F — F" @ 7 *=¥ 4 and if this sequence is exact,
then % =~ %" x4 # and so we are done. Consider the stalks at a point =z,
so we obtain diagrams of O,-modules. In the world of modules, we can chase
elements around diagrams, and in this way prove that for every morphism of
short exact sequences

0—A—=B—(C—0

R

0—A—=B —=(C —0
results in an isomorphism B = B’ x, ¢/ s C. So for every point z, the sequence

0 - % — F/ @ S, bo = 4, is exact. This implies that it is an exact
sequence of sheaves. So we have our isomomorphism % = %" x4 . and
therefore 0 — .F' — F — F" — 0 is in the image of Ext'(#’, #') — E.

Exercise 6.2. Let X =P} with k an infinite field.

a Show that there does not exist a projective object &2 € Mod(X), together
with a surjective map & — Ox — 0.

b Show that there does not exist a projective object & in either Qco(X) or
Coh(X) together with a surjection & — Ox — 0.

Solution. a Suppose that we have such a projective object, with such a
surjection. Let z € U be a point in U and let V' C U be a neighbourhood
of x strictly smaller than U, so U # V, and consider the surjection Oy —
k(x) — 0 where Oy = ji(Ox|v), j : V — X is the inclusion, and k(x)
is the skyscraper sheaf at x with value the stalk O, of Ox at x. The
composition & — Ox — k(z) gives a surjection & — k(x) which then
lifts to & — Oy by the assumption that &2 is projective, so we have a
commutative square

P >0x =0
.

Ov>k'(f£) =

Evalutating at U, we see that #(U) — k(z) = k(z)(U) factors through
zero since Oy (U) = 0, so for every section in &2 (U) the stalk at z is zero.
Since U and x were arbitrarily chosen, we see that every section in Z(U)
for every open U is zero at every point z € U and so & = 0. But this
contradicts the existence of the surjection & — Ox.
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b
Exercise 6.3. Let X be a noetherian scheme, and let 7,9 € Mod(X).
a If F,9 are both coherent, then xt'(F,9) is coherent, for all i > 0.

b If F is coherent and ¥ is quasi-coherent, then &xt'(F,9) is quasi-coherent,
for alli > 0.

Solution. a We immediately reduce to the affine case since by definition
Ext(F,9) is coherent if and only if for every open affine subset U =
Spec A of X, the sheaf &xts (Z,9)|y = Extt (F|u,9|v) (Proposition
I11.6.2) is coherent and similarly, for .# and 4. So since X = Spec A is
affine, the sheaves .7 and ¢ correspond to finitely generated A-modules M
and N. From Exercise I11.6.7 we then have &xt’ (M, N) = Ext’y (M, N)~
so we know that &zl (M , N ) is at least quasi-coherent, so we have proven
part (b). Now since M is finitely generated and A is noetherian, we can
construct inductively a resolution of M by finite rank free A-modules - -- —
A™ — A" — M — 0. We then have Ext’y (M, N) = hi(hom (A", N)) =
hi(N™). Since N is finitely generated, so are the N™ and consequently,
so are the hi(N"™) = Ext’y(M, N). Hence, &xt’ (M, N) = Ext’y (M, N)~
is quasi-coherent.

b Was proven in part (a).

Exercise 6.4. Let X be a noetherian scheme, and suppose that every coherent
sheaf on X is a quotient of a locally free sheaf. Then for any 4 € Moo (X)
show that the §-functor Ext'(-,9) from Coh(X) to Mod(X) is a contravariant
universal d-functor.

Remark. We assume the hypothesis “every coherent sheaf on X is a quotient of
a locally free sheaf of finite rank” was intended.

Solution. By Theorem II1.1.3A we just need to show that &zt'(-,%¥) is coef-
faceable. Since every coherent sheaf .% is the quotient of a locally free sheaf
of finite rank, ¥ — F — 0, it is enough to show that &xt'(£,¥) = 0 for £
locally free of finite rank. From Proposition II1.6.2, to see that &zt' (£, %) =0
it is enough to show that &xt'(ZL|y,¥4|v) = 0 for every U in an open cover
of X. Choose a cover such that for each U we have U = Spec A for some A
and Z|y = @, Oy. Then we must show that &zt (®f,0v,%|y) = 0 for
all ¢ > 0. Take an injective resolution 0 — 4|y — .#* of ¢¥|y. Then we have
Ext' (B, Ov, Y|u) = h'(Hom(e]_, 0y, 7*)) = (B, A om(Oy, I*)) =
n_ ki (H#om(Oy, 7°)) = @ h(F*) =0 for i > 0.

Exercise 6.5. Let X be a noetherian scheme, and assume that Coh(X) has
enough locally frees. Show

a F is locally free if and only if Ext (F,9) =0 for all 4 € Mod(X);
b hd(F) < n if and only if Ext'(F,9) = 0 for all i > n and all G €
Moo (X);
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¢ hd(#) = sup, pdp, F.

Remark. Again, we assume the hypothesis “every coherent sheaf on X is a
quotient of a locally free sheaf of finite rank” was intended.

Solution. a If F is locally free of finite rank then by Proposition II1.6.5
we have &xt'(F,4) = 0 for all i > 0 and all ¢ € 9Mod(X). Con-
versely, suppose that &zt!(F,9) = 0 for all i > 0 and all ¥ € Mod(X).
Taking stalks, we have by Proposition II1.6.8 that 0 = &zt!(F,9), =
Extéx (%2, %,) for i > 0. This is a criterion for .%, to be projective, and
finitely generated modules over local rings are projective if and only if
they are free (Proposition 6 at the end of this section). So .%, is free for
each z. Hence, .Z# is locally free (Exercise I11.5.7(b)).

b First suppose that hd(#) < n. Then there exists a locally free resolution
= 0= & = Sy — - > & — F — 0 of F of length n.
We can use this to calculate &zt by Proposition II1.6.5 and so we find
that &xt'(F,9) = 0 for all i > n. We prove the converse by induction
on n. The case n = 0 has the same proof as part (a) of this question.
Consider n > 0 and suppose that &xt'(#,%) = 0 for all i > n and all
& € Moo(X). Express .F as the quotient of a locally free sheaf & and
consider the resulting short exact sequence 0 — %' — & — % — 0. This
gives rise to a long exact sequence

- Ext™(8,9) — Ext™(F',G) — Ext"THF,G) — Ext"THE,YG) — ...

Since & is locally free and n > 0 part (a) of this exercise tells use that the
two outer groups vanish and so we have an isomorphism &xt™(F',4) =
Ext"(F,9). By hypothesis &2t'(#,%) = 0 for all i > n and so we find
that &xt(F',4) = 0 for all i > n — 1 which by the inductive hypothesis
implies that hd . #’ < n — 1. So there is a locally free resolution --- —
0— &1 — -+ — & — F' — 0of # of length n — 1. The exact
sequence --- —- 0 — &, 1 — - = & — & — F — 0 where & — & is
the composition & — F’ — & then gives us a resolution of length n and
so hd # < n.

¢ Given a locally free resolution & — % — 0 of # of length n, taking
stalks gives a free (and hence projective) resolution of length < n of %,
for each point x, hence hd(.#) > sup,, pdy_.#,. Suppose equality doesn’t
hold. Then for every point x we have hd(.#) > pdyp, #,. By Propo-
sition III.6.10A this means that Exti(fI,N) = 0 for all points z, all
i > hd.# and all O -modules N. Using Proposition II1.6.8 this says that
Ext'(F,9), = 0 for all points z, all i > hd.# and all Ox-modules ¥,
and so &xt'(F,9) = 0 for all i > hd.# and all Ox-modules 4. By part
(b) of this exercise, this implies that hd(.%#) < hd(.%#) which is clearly a
contradiction. Hence, the inequality hd(.#) > sup, pdy, %, is actually
an equality.
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Exercise 6.6. Let A be a reqular local ring, and let M be a finitely generated
A-module. In this case, strengthen the result (6.10A) as follows.

a M is projective if and only if Ext'(M,A) =0 for all i > 0.

b Use (a) to show that for any n, pd M < n if and only if Ext'(M, A) =0
for all i >mn.

Solution. a If M is projective then Ext’(M, A) = 0 for i > 0 since Ext*(M, A)
can be defined as the ith left derived functor of hom(—, A). Conversely,
suppose that Ext'(M, A) = 0 for all ¢ > 0. Let N be a finitely generated
A-module. Then we have an exact sequence 0 - K — A" — N — (0 and
a corresponding long exact sequence

- — Ext™ (M, A") — Ext""'(M, N) — Ext'(M, K) — Ext'(M, A") — ...
— ——
=0 =0
(one of the many ways to see Ext’(M,A") = 0 is by considering the
long exact sequence associated to 0 — A""! — A" — A — 0 and using
induction). So if the statement:

(S;) Ext’(M, N) = 0 for all finitely generated A-modules N

is true with ¢ > 2 then (S;_1) is also true. The statement (S;) for all
i > dim A is true as a consequence of Proposition II1.6.11A and so by
induction we have the verity of (S;) for all ¢ > 1. In particular, consider
the exact sequence 0 — K — A™ — M — 0 and the corresponding
exact sequence - - - — Ext®(M, A™) — Ext’(M, M) — Ext'(M,K) — .. ..
Since Ext'(M, K) is zero, the morphism Ext’(M, A™) — Ext’(M, M) is
surjective and so the identity M — M is a composition M — A" — M.
In otherwords, M is a direct summand of A™. This is one criteria for M
to be projective.

b If pd M < n then we can calculate Exti(M ,A) using a projective resolu-
tion of M of length < n which implies that Ext’(M,A) = 0 for i > n.
Conversely, suppose that Exti(M ,A) = 0 for ¢ > n, and suppose that
Ext’(M’, A) = 0 for i > n — 1 implies that pd M’ < n — 1. If n = 0 then
we have pd M < 0 by part (a). If not then take a finite set of generators
of M and the associated short exact sequence 0 — N — A*¥ — M — 0.

This gives a long exact sequence
-~ — ExtTH (AR, A) - Ext' (N, A) — Ext!(M, A) — Ext'(A* A) — ...

Since AF is already free, we have Ext’(A* A) = 0 for all i > 0 and so
Ext' "' (N, A) = Ext(M, A) for i > 1. This means that Ext’(N, A) for
i > n — 1 and so by the inductive hypothesis pd N < n — 1. So there
exists a projective resolution 0 — P,,_; — -+ — Py — N — 0 of length
n — 1 and from this we obtain a projective resolution 0 — P, 1 — -+ —
Py — AF — M — 0 of length n — 1 where Py — A* is the composition
Py — N — AF. Hence, pd M < n.
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Exercise 6.7. Let X = Spec A be an affine noetherian scheme. Let M, N be
A-modules, with M finitely generated. Then

Ext’y (M, N) = Ext’, (M, N)

and o _
Exty (M, N) = Ext!y(M,N)~

Solution. Since M is finitely generated and A noetherian, we can find a reso-
lution of M by finite rank free modules --- — A™ — A™ — M — 0. The
A-modules Ext’ (M, N) can then be calculated as h(hom4(A™,N)). Now
compare the two functors

Ext’y (M,?) h'(homa (A", -))

that map A-mod to A-mod. Since ()~ is an exact equivalence between A-
mod and Qco(X) the functor Ext}(ﬁ ,+) is a derived functor and therefore
automatically a universaly o-functor (Corollary III1.1.4). Since hom4(A"™,-) =
()™ is exact for finite n, the functors h’(hom4 (A", ")) are also a J-functor (use
the Snake Lemma). Since A-mod has enough injectives, and hom4 (-, I) is exact
for any injective I, the functors hi(hom (A" ,-)) are effaceable for i > 0 and
therefore form a universal d-functor. Now Extg((J\A/[/ ,N) = homu(M,N) and
h9(hom4 (A", N) = homa(M,N). So the two sequences of functors are the
isomorphic. L

Now consider &xth (M, N) and Ext’y(M,N)~. We use the same resolu-
tion -+ — A™ — A™ — M — 0 and get a finite rank free resolution of M
which can be used to calculate &xt by Proposition I11.6.5 as &xt’(M, M) =
hi(%”om(;l\”/‘,ﬁ )). Now since M is finitely generated and A noetherian, we

have homy (M, N)~ = %om(ﬂ, N). ! Hence we have
Ext' (M, M) = h (A om(A™ ,N)) = h' (hom 4 (A™, N)™)
>~ pi(homy (A™, N))~ = ExtYy (M, N)~
Exercise 6.8. Prove the following theorem of Kleiman: if X is a noetherian,

integral, separated, locally factorial scheme, then every coherent sheaf on X is
a quotient of a locally free sheaf (of finite rank).

a First show that open sets of the form X for various s € T'(X,.%), and
various invertible sheaves £ on X, form a base for the topology of X.

b Now use (II, 5.14) to show that any coherent sheaf is a quotient of a direct
sum @ L for various invertible sheaves Z; and various integers n;.

1This doesn’t hold in general. Consider the values of these two sheaves on a basic open
D(f). On the left we have (homa (M, N))s and on the rights homa, (Mg, Ny). There is a
clear morphism (homy (M, N))y — homAf (Mg, N¢) but in general this morphism is neither
injective nor surjective (consider the ring ®%°, k[z,y]/(z?) with M = N = &, k[z]/(z?)
localized at f = z). If M is finitely generated though, the morphism is an isomorphism. It is
also natural with respect to inclusions of basic open affines, and so the sheaves are isomorphic.
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Solution. a We show that given a closed point x € X and an open neigh-
bourhood U of z, there is an .Z and s such that x € X, C U. Let
Z =X—-U and Z = U}, Z; be the decomposition of Z into its irreducible
components. If the statement is true for each U; = X — Z; then we can
take the global section s =51 ® - ® s, of X1 ® -+ ® %,. Then we have
(51®---®8n)y & myZ, if and only if (s;)y & m,.Z, for all i. So X, = NX,,
andsoz € X, CNU; = U. So we can assume that Z is irreducible. There-
fore it is a prime Weil divisor and by Proposition I1.6.11 corresponds to
a Cartier Divisor D. That is, a global section of J#*/O*. This is repre-
sented by a (finite) cover {U;} and for each U; an element f; € K such
that f;/f; € O%(U). By construction these f; also satisfy: for any codi-
mension one irreducible subscheme Z’ we have f; € mz Ox 7/ if and only
if Z/ = Z. We then have Proposition I1.6.13 which gives us an invertible
sheaf .Z (D), constructed as the sub-Ox-module of J#™* generated locally
by fi_l. The local sections fifi_1 € I'(U;, £ (D)) then glue together to
give a global section s € I'(X,.Z (D)) such that under the isomorphisms
T(U;, £(D)) = T'(U;, Ox) defined by ff;* < f we have s|y, < f; and so
X, = U. Hence we have found %, s such that x € X, C U.

b Let .# be a coherent sheaf on X. Then there is a cover by open affines
U; = Spec A;, such that on U;, we have F|y, = M, for some finitely
generated A;-module M;. This means that %y, is generated by finitely
many sections m;; € M; = I'(U;, #|y,). Now take a refinement of this
cover consisting of open set of the form X, C U; for some s;, € I'(X, %)
and some %, Then each m;; is a section of I'( X, , #) and so by Lemma
I1.5.14 there is some n;; such that s?k’ m;; extends to a global section of
ZLmik @ F. This global section defines a morphism Ox — £L"ik @ F
and tensoring with .£~"#* we obtain a morphism .Z, """ — #. Take the
direct sum of these morphisms @@ .Z,,"* — .%#. On the open set Xj,, the
section m;; is in the image of the morphism .Z~"#* — % and so since the
m;; generate .# locally, the morphism @@ .Z,""* — Z is surjective.

Exercise 6.9. Let X be a noetherian, integral, separated, reqular scheme.
Show that the natural group homomorphism € : Kyee(X) — Keon(X) from the
Grothendieck group of the category of locally free finite rank sheaves, to the
Grothendieck group of the category of coherent sheaves is an isomorphism as
follows.

a Given a coherent sheaf &, use (Ex. 6.8) to show that it has a locally free
resolution & — % — 0. Then use (6.11A) and (Ez. 6.5) to show that it
has a finite locally free resolution

0—6&,— - —>& -6 —F —0
b For each %, choose a finite locally free resolution & — F — 0, and
let 5(F) = S (=1)'9(&) in Kyee(X). Show that §(.F) is independent

of the resolution chosen, that it defines a homomorphism of K.opn(X) to
Kyee(X), and finally, that it is an inverse to .
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Solution. a By Exercise I11.6.8 every coherent sheaf is a quotient of a locally
free sheaf of finite rank (regular implies locally factorial; this is a hard
theorem [Matsumura Theorem 48, page 142]), and so €oh(X) has enough
locally frees. Hence, we can define the homological dimension of .# and
by Exercise I11.6.5(c) we have hd .# = sup, pdp_ #,. Since X is regular,
each O, is regular and so by Proposition I11.6.11A we have pd.%, <
dim Ox , < dim X. Hence hd .# = sup, pdp, %, < dim X and so there
exists a finite locally free finite rank resolution of .%.

Remark. This proof mimicks that found in [Borel, Serre - Théoreéme de
Riemann-Roch].

Lemma 1. Suppose we have a diagram 0 — F — F" — F' — 0 in the
category of coherent sheaves. Then there is a commutative square with &
locally free and all morphisms surjective

&>

o

F -7

Proof. Let 4 be the kernel of the canonical morphism .%' & " — %.
Since ' — % and F" — .F are both surjective, the same is true of the
compositions with projections 4 — F' & %" — %' and ¥ — F' & F" —
Z". So the two morphisms ¥4 — .%’ and ¥4 — %" are surjective. Then
we express ¢ as the quotient of a locally free sheaf & — ¢ and take the
compositions & - ¥ - F' o F" - F and & - ¥ — F' & F" —
F. O

Lemma 2. Suppose we have the commutative exact diagram of solid arrows
in the category of coherent sheaves with &, &" locally free. Then we can find
4" and &" with & locally free and extend the diagram to a commutative
exact diagram with the dashed arrows.

0 0 0

Loy

0> > & > F' —0

by

0 > g// . é‘;” > > ()

R

J

\
0 0 0

Proof. First we use Lemma 1 above to obtain the comutative square on the
left with &} locally free, and then again to obtain the commutative square
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in the center with &3 locally free. Note that this gives us the diagram on
the right where all morphism are epimorphisms.

(gi%g;// £2—>£>/ éa/‘> ar!
b | I
E—F E = F' = F' E = F
oo
E—=F

Then we take expressions for 4 and ¢’ as quotients of locally free sheaves
&3 2 @ and & 5 4" Now we have a diagram

0 0 0
0 @’ h & F 0
a|ker c+0+e a+0+he
c+04+0
0——ker(c) 8308 —=E D E3 B E —— F' —0
blker c+d+0 b+gd-+0
0 % 2 & F 0
0 0 0
which satisfies the requirements. O

Corollary 3. For any two locally free resolutions &y — F — 0 and &! LA

F — 0 of a coherent sheaf F there is a third locally free resolution &' =
F — 0 together with a commutative diagram where the vertical morphisms
are all surjective.

Proof. We construct &) inductively. From Lemma 2 we get a diagram

0> kere' =& = F —>0

bt

Oékers”>56/;f‘>0

o

0—=kere =& —F —0
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with surjective vertical morphisms. For the inductive step we use Lemma 2
to get a the diagram

0 — kerd; eéz’ikerdgfl -0

Lo,

0 —kerd! — &" *=kerd;_1 —0

T

d;
0 —kerd, — & = kerd! ; —0
with surjective vertical morphisms. O

Proof of independence of the chosen resolution. Now we have the results
we need to show that the class >°(—1)%[&;] in Kyeo(X) is independent of the
resolution chosen. Suppose that we have a second resolution &, — % — 0
as in Corollary 3. Then we get a third resolution &) — % — 0 which
“dominates” the other two and so we have an exact commutative diagram

0 0

o

==Y =G —=0—0

AR

o

=& =& —=F —0

o

0 0 0

and and analogous one for &, (denote the kernels in this analgogous dia-
gram by ¥/ instead of 4;). If the &; are locally free then we get

in Kye.(X) and so we just need to prove:
O

d defines a morphism Keop(X) — Kyee(X). We must show that formal
sums of coherent sheaves that are zero in K., (X) get sent to zero in
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Kyee(X). For this it is enough to show that for any short exact sequence
0— 7" — F — Z" — 0 of coherent sheaves, we have 6(.F) = 6(F') +
0(F") in Kyeo(X). To show this we will see that there exist resolutions for
F,.F' F" that themselves form an exact sequence, so we have an exact
commutative diagram

O—)éi’—)éi—)éi”—)()

bl

0= 7' >F>F"—>0

oo

0 0 0

As in the proof of Corollary 3 we build the sequences step by step. Each
step uses the following lemma.

Lemma 4. Suppose that 0 — F' — F — F" — 0 is an exact sequence of
coherent sheaves. Then there is an exact sequence of locally free sheaves
0 - & — & — & — 0 together with a surjective morphism to the
original sequence.

Proof. Expressing %" as a quotient of a locally free sheaf &’ — F”
we obtain &”. Now use Lemma 1 to obtain a commutative diagram of
surjective morphisms

g*‘l>g//
F— "

Express .#’ as a quotient of a locally free sheaf &’ = .#’ and we end up
with a diagram

0—>kerae® & ——=Gae o s

\Lb|kera+c ib+dc \L
d

0 F' F F 0

with the desired properties. O

Now using this lemma and given the ith step of the resolutions, we can
construct the (i + 1)th step by forming the diagram

0—> &l — i1 — Ly —>0

Vol

0 — kerd] > kerd; > kerd; — 0
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where d; : & — &;—1 and similarly for d; and d}’. Hence we get a commu-
tative exact diagram

0—& =& =&/ —=0

Voo

0—>F —F>F"—=0

oo

0 0 0
and so we have 6(.F) = 3 3(=1)'[&] = 2 (—=1)"([&/]+[6]']) = Z(-1)'[&/]+
(=1 = 6(F) + 6(F").
& provides an inverse to €. Clearly, if & is a locally free sheaf then we
can take the resolution --- — 0 — & — & — 0 and so 6(¢(&)) = [£].
Conversely, for any counded exact sequence 0 — %, — -+ — Fy — 0

in Coh(X) we have the relation Y (—1)'[%] in Keon(X) and so if & —
# — 0 is a bounded resolution by locally free sheaves then ¢(6(.%)) =

(X (=1)1E]) = (=)' ] = [F].
Exercise 6.10. Duality for a Finite Flat Morphism.

a Let f: X —Y be a finite morphism of noetherian schemes. For any quasi-
coherent Oy -module 4, 7 omy (f«Ox,9) is a quasi-coherent f.Oy -module,
hence corresponds to a quasi-coherent Ox -module, which we call f*.F .

b Show that for any coherent % on X and any quasi-coherent 9 on'Y , there
s a natural isomorphism

foomx (F, f'9) S Homy (f.7,9)

¢ For each i > 0, there is a natural map

b : Extiy (F, f'9) — Extl (f.7,9)

d Now assume that X andY are separated, €oh(X) has enough locally frees,
and assume that f,Ox is locally free on'Y . Show that ¢; is an isomorphism
for all i, all F coherent on X, and all 9 quasi-coherent on'Y .

7 The Serre Duality Theorem

Exercise 7.1. Let X be an integral projective scheme of dimension > 1 over a
field k, and let £ be an ample invertible sheaf on X. Then H°(X,£~1) =0.

Exercise 7.2. Let f : X — Y be a finite morphism of projective schemes of the
same dimension over a field k, and let wy, be a dualizing sheaf for Y.

a Show that f'wS is a dualizing sheaf for X.
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b If X andY are both nonsingular, and k algebraically closed, conclude that
there is a natural trace map t : fiwx — wy .

Exercise 7.3. Let X = P}. Show that H1(X, Q%) =0 forp # q, k forp=gq,
0<pg=<n.

Solution. Consider the exact sequence of Theorem 8.13. From Exercise I1.5.16(d)
we have a filtration for each r

/\T(O(_l)n-‘rl) = FO D Fl 2...D Fr ) Fr_;,_l -0

with quotients FP/FPTt = QP @ AT"PO. Since A" PO 2 0 for r —p # 0,1
and A"7PO =2 O for r —p = 0,1 we see that FP = FP*! for p # r,r — 1 so
our filtration is A”(O(=1)"*1) D F" D F"*!1 = 0. The quotient F"/F"+1 =
Fris Q" @ A"7"0 = Q" and the quotient F"~1/F" = A"(O(=1)"T1)/Q" is
Q@ AT=DO = Q1 50 the filtration is actually an exact sequence:

0— Q" — A" (O(=1)"") - Q! =0

Now for any line bundle .# on any ringed space we have A" (£®™) = (92”@7’)@(;)
(one way of showing this is to take a trivializing cover, choose a local basis, and
then look at the transition morphisms) and so our exact sequence is

0—Q" - O(-r™N -1 -0

for suitable N that we don’t care about. This gives rise to a long exact sequence
on cohomology. Since H* (X, O(—r)) = 0fori < norr < n+1 (Theorem IIL.5.1)
we have isomorphisms H*(X,Q") & H=YX, Q" 1) for 1 <iifr <n+1. If
r > n 4+ 1 then we still have isomorphisms but only for 1 <17 < n.

Now we know that H°(X,Q°%) = H%(X,Ox) = k (Theorem II1.5.1) and so
using these isomorphisms we see that H*(X, Q%) = k for 0 < i < n. Again, using
Theorem II1.5.1 we know the cohomology of Q™ = O(—n—1), and in particular,
that H'(X, Q") =0 for i < n. Using our isomorphisms above, this tells us that
HY(X,Q") = 0 in the region i < 7,0 < r < n. All that remains to show is the
region i > r,0 < ¢ < n and this follows from Corollary II1.7.13.

Exercise 7.4.

8 Higher Direct Images of Sheaves

Exercise 8.1. Let f : X — Y be a continuous map of topological spaces. Let F
be a sheaf of abelian groups on X, and assume that R'f.(F) =0 for all i > 0.
Show that there are natural isomorphisms, for each i > 0,

HY(X,Z)=H\Y, f.F)

Solution. Take an injective resolution 0 — % — #* of % on X. Then 0 —
f«F — foF° is an injective resolution of f,.% on Y. A priori, this complex is
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not necassarily exact but the hypothesis Rf,(.#) = 0 for all i > 0 says that
it is infact exact. By definition the cohomology of .% is the cohomology of the
complex I'(X, .#*) which is actually the same complex as T'(Y, f..#*). Hence,

Exercise 8.2. Let f : X — Y be an affine morphism of schemes, with X
noetherian and let % be a quasi-coherent sheaf on X. Show that the hypothesis
of Exercise II1.8.1 are satisfied, and hence that H'(X,.F) = H Y, f..7) for
each i > 0.

Solution. By Proposition II1.8.1 we know that R'f,.Z is the sheaf associated
to Vo H'(f"Y(V),Z|p-1(vy). Since f is affine, f~1(V) is affine for every
open subscheme V' of Y (Exercise I11.5.17). Theorem II1.3.7 then tells us that
Hi(f~Y(V),Z|p-1(vy) = 0 for i > 0. Hence, R'f,.# = 0 for i > 0.

Exercise 8.3. Let f : X — Y be a morphism of ringed spaecs, let & be an
Ox-module, and let & be a locally free Oy -module of finite rank. Prove the
projection formula

Rf(FfE)=Rf(F)RE

Solution. Let 0 — F — #° be an injective resolution of .%#. Using the natural
isomorphisms from Exercise I1.5.1(d) we get an isomorphism of chain complexes

(I )2 f(I)RE

Consider the cohomology sheaves of these chain complexes. The pullback f*&
is locally free and so by Proposition I11.6.7 0 — F ® f*§ — #°* ® f*& is an
injective resolution of # ® f*& and so can be used to calculate the right derived
functors of f. (tensoring with locally free sheaves is exact: check stalks). So the
cohomology sheaves of f,(#°* ® f*&) are R\ f.(F ® f*&).

Now R f,(.7) are the cohomology sheaves of f..#®. More explicitely, R f,. (%) =
coker(f, 771 — ker(f..# — f..#F1)). As tensoring with a locally free sheaf
is exact, it follows that R'f,(.#)® & are isomorphic to the cohomology sheaves
of fu(F*)®&.

Hence, the isomorphisms of cohomology sheaves induced by our isomorphism
of complexes above are the desired isomorphisms.

Exercise 8.4. Let Y be a noetherian scheme, and let & be a locally free Oy -
module of rank n+ 1, n > 1. Let X = P(&), with the invertible sheaf Ox (1)
and the projection morphism m: X — Y.

a Then m,(O(1)) = SY&) for1 >0, m.(O(1)) =0 for 1 < 0; Rim.(O(1)) =0
forO<i<mnandl € Z; and R"m.(O()) =0 for 1> —n —1.

b Show there is a natural exact sequence
0—Qx/y — (7°)(~-1) = O =0

and conclude that the relative canonical sheaf wx,y = A"l x/y is isomor-
phic to (m* A"t &)(—n — 1). Show furthermore that there is a natural
isomorphism R"m.(wx/y) = Oy
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¢ Now show, for any i € Z, that

R (O) = m(O(=1 —n — 1)) @ (A"F1&)V

d Show that p(X) = (—1)"pa(Y) and pys(X) =0,

e In particular, if Y is a nonsingular projective curve of genus g, and &
a locally free sheaf of rank 2, then X is a projective surface with p, =
—9g,pg = 0, and irregularity g.

Solution. a Let {U;} be a trivializing cover on X for & such that each U;
is affine, and consequently the spectrum of a noetherian ring A;. So we
have &(U;) = O%™ for each U; and hence n~'(U;) = P% . This means
in particular that H? (x='U;, O(1)|r-1p,) = H? (P, O(l)| z-1p,) which is
zero for 0 < j < n after Theorem III.5.1. As a consequence of this,
Rin,O() = 0 for 0 < j < n after Proposition II11.8.1. By the same
reasoning, R"m.O(l) = 0 for I > —n — 1 since H"(P% ,0(l)) = 0 for
l>-n—-1.

b Part (b) of Theorem I1.7.11 gives us a natural surjection 7*& — O(1).
Consider exact sequence arising from the twist of this by O(—1)

0—>F - (m"8)(-1)—- 0 —=0

Let U = Spec A be any open affine subscheme of Y on which & is isomor-
phic to (’);H. Then 771U = P7 and the restriction of this exact sequence
looks like

0— g‘pz — O(—l)]pz — Ol[[»z — 0

which is easily recognisable as the exact sequence from Theorem II.8.13.
So we have isomorphisms .7 [pn = Qpn /. These isomorphisms are com-
patible with restrictions to smaller affine subsets and so we obtain a global
isomorphism . = Qx/y.

~

The isomorphism A"Qy/y = (7% A"T! &)(—n — 1) is a consequence of
Exercise I1.5.16. If we then cover X with open subets of the form U; = P’}
where Spec A; are opens of Y on which & & Og‘,‘“ (and so 771U = P%),
then restricting to these we get isomorphisms wx /vy |z-1y = Or-1y(—n—1)
via the isomorphisms just mentioned. So we have R"m, (wX/Y)|SpecA =
Rm(wxyyley) = H" (P, wpnja)~ = AY = Ogpeca (Corollary 111.8.2,
Proposition IT1.8.5, and Theorem II1.5.1). Since these isomorphisms are
all natural, we obtain the desired isomorphism R"m.(wx/y) = Oy.

e There is nothing to show.
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9 Flat Morphisms

Exercise 9.1. A flat morphism f : X — Y of finite type of noetherian schemes
1S open.

Solution. We need to show that for any open subscheme U C X the image
f(U) is open in Y. Since the induced morphism U — Y is also of finite type
we can restrict to the case when U = X. By Exercise 11.3.18 we know that
f(X) is constructible, and so if it is closed under generization, then it will be
open. That is, we need to show that given a generization ¢y’ € Y of a point
y € f(X) there is some point ' € X whose image is 3. let Spec B be an
open affine neighbourhood of y. The scheme Spec B also contains y’, and the
induced morphism f~!Spec B — Spec B is still a flat morphism of finite type
of noetherian schemes. Let x be a point whose image is y, and let Spec A
be an open affine neighbourhood of y. By Proposition II11.9.1A(d) A is a flat
B-module.

So now we have a homomorphism ¢ : B — A of noetherian rings where A
is a finitely generated B-algebra and flat as a B-module. We have two primes
p’ C p of B, a prime q of A such that ¢~'q = p and we are looking for a prime
q’ C q such that ¢~'a’ = p’. This is a commutative algebra result that can be
found in Matsumara.

Exercise 9.2. Do the calculation of (9.8.4) for the curve of (I, Ex. 3.14). Show
that you get an embedded point at the cusp of the plane cubic curve.

Solution. The curve has parametric coordinates (z,y,z,w) = (3, t?u, tu?, u®)
and projection is from the point (0,0,1,0). That is, we are considering the
family of curves (t3,t2u, atu?, u3) projecting to the projective plane z = 0. We
are interested in what happens at the cusp (0,0,0, 1) of the projected curve so
we only need to consider the affine space w # 0.

X, has the parametric equations

x=1t3
y =t
z=uat

To get the ideal I C k[a,x,y, 2] of the total family X extended over all of A! we
eliminate ¢ from the parametric equations, and make sure a is not a zero divisor
in kla,z,y, z]/1, so that X will be flat. We find

2 3

I=(y®—2% 2% —d%y,2* — ax, 2y — ax, 2z — ay?)

Setting a = 0 we obtain the ideal Iy C k[x,y, 2] of Xy which is

IO = (y3 - xQu 2’2,2'377 Zy)
So Xy has support equal to the curve 22 = y* in Spec k[z,y]. Now at points
where p with « € p we have z € p since £z = 0 € p and so these local rings are
reduced. At the prime p = (z,y) however, z is not zero and so A, has a nonzero
nilpotent element.
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Exercise 9.3. Some examples of flatness and nonflatness.

a If f: X —Y is a finite surjective morphism of nonsingular varieties over
an algebraically closed field k, then f is flat.

b Let X be a union of two planes meeting at a point, each of which maps
isomorphically to a plane Y. Show that f is not flat. For example, let
Y = Specklz,y] and X = Speck[z,y, z,w]/(z,w) N (z + z,y + w).

¢ Again let Y = Spec k|x,y], but take X = Speckl|x,y, z,w]/(2?, 2w, w?, xz—
yw). Show that X,eq =Y, X has no embedded points, but that f is not
flat.

Solution. a

b Suppose z is the intersection point. The morphism is finite and so for it
to be flat, O, x must be a finite rank free Oy, y-module (Proposition
IL.9.1A(f)). We have Oy x/Mf(5)y Oz x = k and so if O, x is a finite
rank free Oy, y-module then it has rank one and therefore we would have
an isomorphism Oy ;) y 5 O, x as Of(ax),y-modules. Let f € O, x be
the image of 1 under this isomorphism. Then z = gf for some g € Oy, y-
But z can’t be expressed in this way in O, x. Hence, the isomorphism
doesn’t exist and the morphism is not flat.

Exercise 9.4.
Exercise 9.5.
Exercise 9.6.

Exercise 9.7. let Y C X be a closed subscheme, where X is a scheme of finite
type over a field k. Let D = k[t]/(t?) be the ring of dual numbers, and define
an infinitesimal deformation of Y as a closed subscheme of X, to be a closed
subscheme Y' C X x, D, which is flat over D, and whose closed fibre is Y.
Show that these Y’ are classified by HO(Y, Ny/x), where

Ny)x = Homo, (Fy | I3, Oy)

Solution. First a lemma to make the affine case easier to deal with.

Lemma 5. Consider ideals I C A and I' C A[t]. Then Spec A[t]/I' is an
infinitesimal deformation of Spec A/I in Spec A if and only if

at?cl;
b under the map A[t] — A sending t to zero, the image of I' is I; and

¢ the kernel of the composite morphism A — A[t]/I' 5 A[t]/I' is contained
in I'.
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Proof. Condition (a) just says that A[t]/I' is a D-algebra. Condition (b) is
equivalent to saying that the composition (Spec A[t]/I') ®p k — A/I is an
isomorphism. Condition (c) is equivalent to saying that Spec A[t]/I’ is flat over
D. To see this consider the criteria of Proposition II1.9.1A(a). Since D has a
unique nonzero ideal, we only need to test (¢). Furthermore, by writing every
element of A[t]/I’ ®p (t) as a ® t we reduce to showing that for a € A, it holds
that at = 0 implies a ® t = 0. Hence, the condition. O

Now given aring A, an ideal I, and a homomorphism ¢ € homA/I(I/I2, A/,
define an ideal I' C A[t] to be the set of polynomials ag + a1t + - - - + ant™ € A[t]
such that ag € I and ¢(ag) = a1 or 0in A/I. Tt is fairly straightforward to check
that the conditions of the lemma are fulfilled and so we have an infinitesimal
deformation of Spec A/I in Spec A. Conversely, given an infinitesimal deforma-
tion of Spec A/I in Spec A, we can define a morphism ¢ € homy,(I1/1%, A/T)
as follows. Given an element a € I, consider elements of the form a + bt € I'.
There must be at least one, for otherwise condition (b) of the lemma does not
hold. Define ¢(a) = b. Note that if a + b't € I’ is a different choice, then
(Y =b)t € I’ so (b —b) € I' by condition (c), so (b —b") € I by condition (b)
and so we end up with the same morphism I/I? — A/I. We still need to show
that ¢ is A/I-linear. That is, we must show that ¢(az + by) = ad(z) + bo(y)
for a,b € A/I and z,y € I/I?. Given our definition of ¢, this amounts to
showing that for any elements (ax + by) + zt, © + 2't and y + y't in I’, we
have z — ax’ — by’ € I. We know that ax + az’t and by + by't are in I’ and so
(az +by) + 2t — (ax + az't) — (by + by't) = (# — az’ — by')t € I’ and this implies
that z — az’ — by’ € I using conditions (b) and (c) of the lemma. So we have
given an isomorphism

hom 47 (1/1?, A/I) — Inf(Spec(A/I)/ Spec A)

and its inverse where Jnf(Y/X) is the set of infinitesimal deformations of Y as
a subscheme of X.

Now that the affine case is done, we prove the general case by glueing in the
usual way by glueing. The first thing to notice is that if we have ideals I C A,
J C B, and ring homomorphism 1 : A — B such that ¢y~'J C I then we get a
commutative square

hom 4 /7 (1/1%, A/T) —=> TInf(Spec(A/I)/ Spec A)

| |

homp, ;(J/J?, B/J) —=> Inf(Spec(B/J)/ Spec B)

So in the general case, since both sides are sheaves, and we have natural iso-
morphisms for affine opens, we can glue to get a global isomorphism

homo, (Fy /I3, Oy | Fy) = Tnf(Y/X)

Exercise 9.8.
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Exercise 9.9. Let A = k[z,y,z,w]/(z,y) N (z,w), and show that A is rigid.

Solution. Let P = k[z,y, z,w] and J = (z,y) N (z,w) as in the previous exercise.
By the previous exercise, we must show that the morphism

homa(Qp/, ® A, A) — hom 4 (J/J?, A)

is surjective. We do this explicitely.

We have (0p /), = P* with basis dz, dy, dz, dw and so Op/r @A A* with the
same basis and hom 4 (Qp, ® A, A) = A* with the dual basis dz*, dy*, dz*, dw*.
The ideal J is generated by zz,zw,yz,yw as a P-module and since A is a
quotient of A, these elements represent generators of the A-module J/J?. So
any morphism ¢ € hom(J/J?, A) is determined by its value on zz, zw, yz, yw
and in this way we get homa(J/J?, A) C A%, by identifying a morphism with
its value on zz, zw, yz, yw.

The morphism J/J? — Qp/r ® A sends f to df ® 1 and so using

hom4 (Qp), ® A, A) 2 A*  homa(J/J?, A) C A*

we can represent the morphism homa(Qp/, ® A, A) — homy(J/J? A) as a
matrix. The morphism in hom4(Qp,; ® A, A) that sends dx to 1 and all other
generators to zero gets sent to (z,w,0,0) in hom4(J/J?, A) since d(zz) = 2dz+

xdz, d(xw) = .... Continuing like this we find the matrix to be
z w 0 0
0 0 2z w
z 0 y O
0 =z 0 vy

We want to show that the morphism induced by this matrix is surjective.

Consider an element (by, be, b3, bs) of hom(J/J?, A) C A* where, recall that
by (resp. b, bs,by) is the image of zz (resp. zw,yz,yw). We have yb; = xbs.
Since zz, xw, yz,yw are all zero in A, multiplying by « or y kills all the terms
with 2z or w in them, but “preserves” any terms without, x sending x'y7 to 2'+1y
and y sending it to a’y’*". So by = §b3 +by where b} € (z,w)k[z,w]. Similarly,
from the relation wb; = zby we see that by = Zby + b} where b} € (z,y)k[z,y].
Putting these two together we see that b; = ib2 + §b3. We use a similar
argument for by, b3, by to find that

by = —by+ —bs
w” Ty

by = Zby + 2b
Yy z

by = by + by
x w

by = Loy + Lty
x z

abd consequently, (b1, ba, b3, by) is in the image of hom 4 (Qp/,®A, A) — hom 4 (J/J?%, A).
Hence, it is surjective, and so T (A) = 0 and therefore, the k-algebra A is rigid.
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Exercise 9.10. a Show that Pi 1s rigid.
b

C

Solution. a By (9.13.2) the infinitesimal deformations are classified by H*(X, Jx).
When X = P} we know that Qxj = O(—2) and so Ix = O(2) and
we have already calculated the cohomology of this sheaf. We find that
HY(X,9x) = HY(X,0(2)) = 0. Hence, there are no infinitesimal defor-
mations.

Proposition 6. Let M be a finitely generated module over a local ring (A, m).
Then M is projective if and only if M 1is free.

Proof. For any module over any ring, free implies projective so we need only
prove the converse. Since M is finitely generated M/mM is a finite dimensional
(A/m)-vector space. Take a set of elements my,...,m, in M whose image in
M/mM is a basis. Then by Nakayam’s Lemma, the m; generated M and so
we get an exact sequence 0 — N — A™ — M — 0. Since M is projective,
this sequence splits and we see that A =2 M ® N. Now we have A" /mA™
M/mM @& N/mN. But both A" /mA™ and M /mM are finite dimensional vector
spaces of the same dimension. Hence N/mN = 0 which implies mN = N and
Nakayama’s Lemma says that this implies N = 0. So A™ = M. O

Corollary 7. If & — &y is a surjective morphism of locally free coherent
sheaves then the kernel is also locally free.

Proof. Let ¢ be the kernel. At each point z we get an exact sequence of Ox .-
modules, and since the &; are locally free, this has the form 0 — ¢4, — O%.—
0%, — 0. Since finite rank free modules are projective, the sequence splits
and so &, is a direct summand of the free module O ., and hence projective.
But ¥, is a finitely generated module over a local ring and so being projective
is equivalent to being free (Proposition 6 above). O
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