
The DES Algorithm Illustrated

by J. Orlin Grabbe

The DES (Data Encryption Standard) algorithm is the most widely used

encryption algorithm in the world. For many years, and among many

people, "secret code making" and DES have been synonymous. And

despite the recent coup by the Electronic Frontier Foundation in creating a

$220,000 machine to crack DES-encrypted messages, DES will live on in

government and banking for years to come through a life- extending

version called "triple-DES."

How does DES work? This article explains the various steps involved in

DES-encryption, illustrating each step by means of a simple example.

Since the creation of DES, many other algorithms (recipes for changing

data) have emerged which are based on design principles similar to DES.

Once you understand the basic transformations that take place in DES, you

will find it easy to follow the steps involved in these more recent

algorithms.

But first a bit of history of how DES came about is appropriate, as well as

a look toward the future.

The National Bureau of Standards Coaxes the Genie from the

Bottle

On May 15, 1973, during the reign of Richard Nixon, the National Bureau

of Standards (NBS) published a notice in the Federal Register soliciting

proposals for cryptographic algorithms to protect data during transmission

and storage. The notice explained why encryption was an important issue.

Over the last decade, there has been an accelerating

increase in the accumulations and communication of digital

data by government, industry and by other organizations in

the private sector. The contents of these communicated and

stored data often have very significant value and/or

sensitivity. It is now common to find data transmissions

which constitute funds transfers of several million dollars,

purchase or sale of securities, warrants for arrests or arrest

and conviction records being communicated between law

enforcement agencies, airline reservations and ticketing

representing investment and value both to the airline and

passengers, and health and patient care records transmitted

among physicians and treatment centers.

The increasing volume, value and confidentiality of these

records regularly transmitted and stored by commercial and

government agencies has led to heightened recognition and

concern over their exposures to unauthorized access and

use. This misuse can be in the form of theft or defalcations

of data records representing money, malicious modification

of business inventories or the interception and misuse of

confidential information about people. The need for

protection is then apparent and urgent.

It is recognized that encryption (otherwise known as

scrambling, enciphering or privacy transformation)

represents the only means of protecting such data during

transmission and a useful means of protecting the content

of data stored on various media, providing encryption of

adequate strength can be devised and validated and is

inherently integrable into system architecture. The National

Bureau of Standards solicits proposed techniques and

algorithms for computer data encryption. The Bureau also

solicits recommended techniques for implementing the

cryptographic function: for generating, evaluating, and

protecting cryptographic keys; for maintaining files

encoded under expiring keys; for making partial updates to

encrypted files; and mixed clear and encrypted data to

permit labelling, polling, routing, etc. The Bureau in its role

for establishing standards and aiding government and

industry in assessing technology, will arrange for the

evaluation of protection methods in order to prepare

guidelines.

NBS waited for the responses to come in. It received none until August 6,

1974, three days before Nixon's resignation, when IBM submitted a

candidate that it had developed internally under the name LUCIFER. After

evaluating the algorithm with the help of the National Security Agency

(NSA), the NBS adopted a modification of the LUCIFER algorithm as the

new Data Encryption Standard (DES) on July 15, 1977.

DES was quickly adopted for non-digital media, such as voice-grade

public telephone lines. Within a couple of years, for example,

International Flavors and Fragrances was using DES to protect its valuable

formulas transmitted over the phone ("With Data Encryption, Scents Are

Safe at IFF," Computerworld 14, No. 21, 95 (1980).)

Meanwhile, the banking industry, which is the largest user of encryption

outside government, adopted DES as a wholesale banking standard.

Standards for the wholesale banking industry are set by the American

National Standards Institute (ANSI). ANSI X3.92, adopted in 1980,

specified the use of the DES algorithm.

Some Preliminary Examples of DES

DES works on bits, or binary numbers--the 0s and 1s common to digital

computers. Each group of four bits makes up a hexadecimal, or base 16,

number. Binary "0001" is equal to the hexadecimal number "1", binary

"1000" is equal to the hexadecimal number "8", "1001" is equal to the

hexadecimal number "9", "1010" is equal to the hexadecimal number "A",

and "1111" is equal to the hexadecimal number "F".

DES works by encrypting groups of 64 message bits, which is the same as

16 hexadecimal numbers. To do the encryption, DES uses "keys" where

are also apparently 16 hexadecimal numbers long, or apparently 64 bits

long. However, every 8th key bit is ignored in the DES algorithm, so that

the effective key size is 56 bits. But, in any case, 64 bits (16 hexadecimal

digits) is the round number upon which DES is organized.

For example, if we take the plaintext message "8787878787878787", and

encrypt it with the DES key "0E329232EA6D0D73", we end up with the

ciphertext "0000000000000000". If the ciphertext is decrypted with the

same secret DES key "0E329232EA6D0D73", the result is the original

plaintext "8787878787878787".

This example is neat and orderly because our plaintext was exactly 64 bits

long. The same would be true if the plaintext happened to be a multiple of

64 bits. But most messages will not fall into this category. They will not

be an exact multiple of 64 bits (that is, an exact multiple of 16

hexadecimal numbers).

For example, take the message "Your lips are smoother than vaseline".

This plaintext message is 38 bytes (76 hexadecimal digits) long. So this

message must be padded with some extra bytes at the tail end for the

encryption. Once the encrypted message has been decrypted, these extra

bytes are thrown away. There are, of course, different padding schemes--

different ways to add extra bytes. Here we will just add 0s at the end, so

that the total message is a multiple of 8 bytes (or 16 hexadecimal digits, or

64 bits).

The plaintext message "Your lips are smoother than vaseline" is, in

hexadecimal,

"596F7572206C6970 732061726520736D 6F6F746865722074

68616E2076617365 6C696E650D0A".

(Note here that the first 72 hexadecimal digits represent the English

message, while "0D" is hexadecimal for Carriage Return, and "0A" is

hexadecimal for Line Feed, showing that the message file has terminated.)

We then pad this message with some 0s on the end, to get a total of 80

hexadecimal digits:

"596F7572206C6970 732061726520736D 6F6F746865722074

68616E2076617365 6C696E650D0A0000".

If we then encrypt this plaintext message 64 bits (16 hexadecimal digits) at

a time, using the same DES key "0E329232EA6D0D73" as before, we get

the ciphertext:

"C0999FDDE378D7ED 727DA00BCA5A84EE 47F269A4D6438190

9DD52F78F5358499 828AC9B453E0E653".

This is the secret code that can be transmitted or stored. Decrypting the

ciphertext restores the original message "Your lips are smoother than

vaseline". (Think how much better off Bill Clinton would be today, if

Monica Lewinsky had used encryption on her Pentagon computer!)

How DES Works in Detail

DES is a block cipher--meaning it operates on plaintext blocks of a given

size (64-bits) and returns ciphertext blocks of the same size. Thus DES

results in a permutation among the 2^64 (read this as: "2 to the 64th

power") possible arrangements of 64 bits, each of which may be either 0

or 1. Each block of 64 bits is divided into two blocks of 32 bits each, a left

half block L and a right half R. (This division is only used in certain

operations.)

Example: Let M be the plain text message M = 0123456789ABCDEF,

where M is in hexadecimal (base 16) format. Rewriting M in binary

format, we get the 64-bit block of text:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011

1100 1101 1110 1111

L = 0000 0001 0010 0011 0100 0101 0110 0111

R = 1000 1001 1010 1011 1100 1101 1110 1111

The first bit of M is "0". The last bit is "1". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are

actually stored as being 64 bits long, but every 8th bit in the key is not

used (i.e. bits numbered 8, 16, 24, 32, 40, 48, 56, and 64). However, we

will nevertheless number the bits from 1 to 64, going left to right, in the

following calculations. But, as you will see, the eight bits just mentioned

get eliminated when we create subkeys.

Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This

gives us as the binary key (setting 1 = 0001, 3 = 0011, etc., and grouping

together every eight bits, of which the last one in each group will be

unused):

K = 00010011 00110100 01010111 01111001 10011011 10111100

11011111 11110001

The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-

bits long.

The 64-bit key is permuted according to the following table, PC-1. Since

the first entry in the table is "57", this means that the 57th bit of the

original key K becomes the first bit of the permuted key K+. The 49th bit

of the original key becomes the second bit of the permuted key. The 4th

bit of the original key is the last bit of the permuted key. Note only 56 bits

of the original key appear in the permuted key.

 PC-1

 57 49 41 33 25 17 9

 1 58 50 42 34 26 18

 10 2 59 51 43 35 27

 19 11 3 60 52 44 36

 63 55 47 39 31 23 15

 7 62 54 46 38 30 22

 14 6 61 53 45 37 29

 21 13 5 28 20 12 4

Example: From the original 64-bit key

K = 00010011 00110100 01010111 01111001 10011011 10111100

11011111 11110001

we get the 56-bit permutation

K+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111

0001111

Next, split this key into left and right halves, C0 and D0, where each half

has 28 bits.

Example: From the permuted key K+, we get

C0 = 1111000 0110011 0010101 0101111

D0 = 0101010 1011001 1001111 0001111

With C0 and D0 defined, we now create sixteen blocks Cn and Dn,

1<=n<=16. Each pair of blocks Cn and Dn is formed from the previous

pair Cn-1 and Dn-1, respectively, for n = 1, 2, ..., 16, using the following

schedule of "left shifts" of the previous block. To do a left shift, move

each bit one place to the left, except for the first bit, which is cycled to the

end of the block.

 Iteration Number of

 Number Left Shifts

 1 1

 2 1

 3 2

 4 2

 5 2

 6 2

 7 2

 8 2

 9 1

 10 2

 11 2

 12 2

 13 2

 14 2

 15 2

 16 1

This means, for example, C3 and D3 are obtained from C2 and D2,

respectively, by two left shifts, and C16 and D16 are obtained from C15 and

D15, respectively, by one left shift. In all cases, by a single left shift is

meant a rotation of the bits one place to the left, so that after one left shift

the bits in the 28 positions are the bits that were previously in positions 2,

3,..., 28, 1.

Example: From original pair pair C0 and D0 we obtain:

C0 = 1111000011001100101010101111

D0 = 0101010101100110011110001111

C1 = 1110000110011001010101011111

D1 = 1010101011001100111100011110

C2 = 1100001100110010101010111111

D2 = 0101010110011001111000111101

C3 = 0000110011001010101011111111

D3 = 0101011001100111100011110101

C4 = 0011001100101010101111111100

D4 = 0101100110011110001111010101

C5 = 1100110010101010111111110000

D5 = 0110011001111000111101010101

C6 = 0011001010101011111111000011

D6 = 1001100111100011110101010101

C7 = 1100101010101111111100001100

D7 = 0110011110001111010101010110

C8 = 0010101010111111110000110011

D8 = 1001111000111101010101011001

C9 = 0101010101111111100001100110

D9 = 0011110001111010101010110011

C10 = 0101010111111110000110011001

D10 = 1111000111101010101011001100

C11 = 0101011111111000011001100101

D11 = 1100011110101010101100110011

C12 = 0101111111100001100110010101

D12 = 0001111010101010110011001111

C13 = 0111111110000110011001010101

D13 = 0111101010101011001100111100

C14 = 1111111000011001100101010101

D14 = 1110101010101100110011110001

C15 = 1111100001100110010101010111

D15 = 1010101010110011001111000111

C16 = 1111000011001100101010101111

D16 = 0101010101100110011110001111

We now form the keys Kn, for 1<=n<=16, by applying the following

permutation table to each of the concatenated pairs CnDn. Each pair has 56

bits, but PC-2 only uses 48 of these.

 PC-2

 14 17 11 24 1 5

 3 28 15 6 21 10

 23 19 12 4 26 8

 16 7 27 20 13 2

 41 52 31 37 47 55

 30 40 51 45 33 48

 44 49 39 56 34 53

 46 42 50 36 29 32

Therefore, the first bit of Kn is the 14th bit of CnDn, the second bit the

17th, and so on, ending with the 48th bit of Kn being the 32th bit of CnDn.

Example: For the first key we have C1D1 = 1110000 1100110 0101010

1011111 1010101 0110011 0011110 0011110

which, after we apply the permutation PC-2, becomes

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

For the other keys we have

K2 = 011110 011010 111011 011001 110110 111100 100111 100101

K3 = 010101 011111 110010 001010 010000 101100 111110 011001

K4 = 011100 101010 110111 010110 110110 110011 010100 011101

K5 = 011111 001110 110000 000111 111010 110101 001110 101000

K6 = 011000 111010 010100 111110 010100 000111 101100 101111

K7 = 111011 001000 010010 110111 111101 100001 100010 111100

K8 = 111101 111000 101000 111010 110000 010011 101111 111011

K9 = 111000 001101 101111 101011 111011 011110 011110 000001

K10 = 101100 011111 001101 000111 101110 100100 011001 001111

K11 = 001000 010101 111111 010011 110111 101101 001110 000110

K12 = 011101 010111 000111 110101 100101 000110 011111 101001

K13 = 100101 111100 010111 010001 111110 101011 101001 000001

K14 = 010111 110100 001110 110111 111100 101110 011100 111010

K15 = 101111 111001 000110 001101 001111 010011 111100 001010

K16 = 110010 110011 110110 001011 000011 100001 011111 110101

So much for the subkeys. Now we look at the message itself.

Step 2: Encode each 64-bit block of data.

There is an initial permutation IP of the 64 bits of the message data M.

This rearranges the bits according to the following table, where the entries

in the table show the new arrangement of the bits from their initial order.

The 58th bit of M becomes the first bit of IP. The 50th bit of M becomes

the second bit of IP. The 7th bit of M is the last bit of IP.

 IP

 58 50 42 34 26 18 10 2

 60 52 44 36 28 20 12 4

 62 54 46 38 30 22 14 6

 64 56 48 40 32 24 16 8

 57 49 41 33 25 17 9 1

 59 51 43 35 27 19 11 3

 61 53 45 37 29 21 13 5

 63 55 47 39 31 23 15 7

Example: Applying the initial permutation to the block of text M, given

previously, we get

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011

1100 1101 1110 1111

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010

1111 0000 1010 1010

Here the 58th bit of M is "1", which becomes the first bit of IP. The 50th

bit of M is "1", which becomes the second bit of IP. The 7th bit of M is

"0", which becomes the last bit of IP.

Next divide the permuted block IP into a left half L0 of 32 bits, and a right

half R0 of 32 bits.

Example: From IP, we get L0 and R0

L0 = 1100 1100 0000 0000 1100 1100 1111 1111

R0 = 1111 0000 1010 1010 1111 0000 1010 1010

We now proceed through 16 iterations, for 1<=n<=16, using a function f

which operates on two blocks--a data block of 32 bits and a key Kn of 48

bits--to produce a block of 32 bits. Let + denote XOR addition, (bit-by-

bit addition modulo 2). Then for n going from 1 to 16 we calculate

Ln = Rn-1

Rn = Ln-1 + f(Rn-1,Kn)

This results in a final block, for n = 16, of L16R16. That is, in each

iteration, we take the right 32 bits of the previous result and make them

the left 32 bits of the current step. For the right 32 bits in the current step,

we XOR the left 32 bits of the previous step with the calculation f .

Example: For n = 1, we have

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010

R1 = L0 + f(R0,K1)

It remains to explain how the function f works. To calculate f, we first

expand each block Rn-1 from 32 bits to 48 bits. This is done by using a

selection table that repeats some of the bits in Rn-1 . We'll call the use of

this selection table the function E. Thus E(Rn-1) has a 32 bit input block,

and a 48 bit output block.

Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits

each, are obtained by selecting the bits in its inputs in order according to

the following table:

 E BIT-SELECTION TABLE

 32 1 2 3 4 5

 4 5 6 7 8 9

 8 9 10 11 12 13

 12 13 14 15 16 17

 16 17 18 19 20 21

 20 21 22 23 24 25

 24 25 26 27 28 29

 28 29 30 31 32 1

Thus the first three bits of E(Rn-1) are the bits in positions 32, 1 and 2 of

Rn-1 while the last 2 bits of E(Rn-1) are the bits in positions 32 and 1.

Example: We calculate E(R0) from R0 as follows:

R0 = 1111 0000 1010 1010 1111 0000 1010 1010

E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101

(Note that each block of 4 original bits has been expanded to a block of 6

output bits.)

Next in the f calculation, we XOR the output E(Rn-1) with the key Kn:

Kn + E(Rn-1).

Example: For K1 , E(R0), we have

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101

K1+E(R0) = 011000 010001 011110 111010 100001 100110 010100

100111.

We have not yet finished calculating the function f . To this point we have

expanded Rn-1 from 32 bits to 48 bits, using the selection table, and

XORed the result with the key Kn . We now have 48 bits, or eight groups

of six bits. We now do something strange with each group of six bits: we

use them as addresses in tables called "S boxes". Each group of six bits

will give us an address in a different S box. Located at that address will be

a 4 bit number. This 4 bit number will replace the original 6 bits. The net

result is that the eight groups of 6 bits are transformed into eight groups of

4 bits (the 4-bit outputs from the S boxes) for 32 bits total.

Write the previous result, which is 48 bits, in the form:

Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,

where each Bi is a group of six bits. We now calculate

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)

where Si(Bi) referres to the output of the i-th S box.

To repeat, each of the functions S1, S2,..., S8, takes a 6-bit block as input

and yields a 4-bit block as output. The table to determine S1 is shown and

explained below:

 S1

 Column Number

Row

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

If S1 is the function defined in this table and B is a block of 6 bits, then

S1(B) is determined as follows: The first and last bits of B represent in

base 2 a number in the decimal range 0 to 3 (or binary 00 to 11). Let that

number be i. The middle 4 bits of B represent in base 2 a number in the

decimal range 0 to 15 (binary 0000 to 1111). Let that number be j. Look

up in the table the number in the i-th row and j-th column. It is a number

in the range 0 to 15 and is uniquely represented by a 4 bit block. That

block is the output S1(B) of S1 for the input B. For example, for input

block B = 011011 the first bit is "0" and the last bit "1" giving 01 as the

row. This is row 1. The middle four bits are "1101". This is the binary

equivalent of decimal 13, so the column is column number 13. In row 1,

column 13 appears 5. This determines the output; 5 is binary 0101, so that

the output is 0101. Hence S1(011011) = 0101.

The tables defining the functions S1,...,S8 are the following:

 S1

 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

 S2

 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

 S3

 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

 S4

 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

 S5

 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

 S6

 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

 S7

 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

 S8

 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Example: For the first round, we obtain as the output of the eight S boxes:

K1 + E(R0) = 011000 010001 011110 111010 100001 100110 010100

100111.

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000

0010 1011 0101 1001 0111

The final stage in the calculation of f is to do a permutation P of the S-box

output to obtain the final value of f:

f = P(S1(B1)S2(B2)...S8(B8))

The permutation P is defined in the following table. P yields a 32-bit

output from a 32-bit input by permuting the bits of the input block.

 P

 16 7 20 21

 29 12 28 17

 1 15 23 26

 5 18 31 10

 2 8 24 14

 32 27 3 9

 19 13 30 6

 22 11 4 25

Example: From the output of the eight S boxes:

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000

0010 1011 0101 1001 0111

we get

f = 0010 0011 0100 1010 1010 1001 1011 1011

R1 = L0 + f(R0 , K1)

= 1100 1100 0000 0000 1100 1100 1111 1111

+ 0010 0011 0100 1010 1010 1001 1011 1011

= 1110 1111 0100 1010 0110 0101 0100 0100

In the next round, we will have L2 = R1, which is the block we just

calculated, and then we must calculate R2 =L1 + f(R1, K2), and so on for 16

rounds. At the end of the sixteenth round we have the blocks L16 and R16.

We then reverse the order of the two blocks into the 64-bit block

R16L16

and apply a final permutation IP
-1

 as defined by the following table:

 IP-1

 40 8 48 16 56 24 64 32

 39 7 47 15 55 23 63 31

 38 6 46 14 54 22 62 30

 37 5 45 13 53 21 61 29

 36 4 44 12 52 20 60 28

 35 3 43 11 51 19 59 27

 34 2 42 10 50 18 58 26

 33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its

first bit, bit 8 as its second bit, and so on, until bit 25 of the preoutput

block is the last bit of the output.

Example: If we process all 16 blocks using the method defined

previously, we get, on the 16th round,

L16 = 0100 0011 0100 0010 0011 0010 0011 0100

R16 = 0000 1010 0100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation

to

R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010

00110010 00110100

IP
-1

 = 10000101 11101000 00010011 01010100 00001111 00001010

10110100 00000101

which in hexadecimal format is

85E813540F0AB405.

This is the encrypted form of M = 0123456789ABCDEF: namely, C =

85E813540F0AB405.

Decryption is simply the inverse of encryption, follwing the same steps as

above, but reversing the order in which the subkeys are applied.

DES Modes of Operation

The DES algorithm turns a 64-bit message block M into a 64-bit cipher

block C. If each 64-bit block is encrypted individually, then the mode of

encryption is called Electronic Code Book (ECB) mode. There are two

other modes of DES encryption, namely Chain Block Coding (CBC) and

Cipher Feedback (CFB), which make each cipher block dependent on all

the previous messages blocks through an initial XOR operation.

Cracking DES

Before DES was adopted as a national standard, during the period NBS

was soliciting comments on the proposed algorithm, the creators of public

key cryptography, Martin Hellman and Whitfield Diffie, registered some

objections to the use of DES as an encryption algorithm. Hellman wrote:

"Whit Diffie and I have become concerned that the proposed data

encryption standard, while probably secure against commercial assault,

may be extremely vulnerable to attack by an intelligence organization"

(letter to NBS, October 22, 1975).

Diffie and Hellman then outlined a "brute force" attack on DES. (By

"brute force" is meant that you try as many of the 2^56 possible keys as

you have to before decrypting the ciphertext into a sensible plaintext

message.) They proposed a special purpose "parallel computer using one

million chips to try one million keys each" per second, and estimated the

cost of such a machine at $20 million.

Fast forward to 1998. Under the direction of John Gilmore of the EFF, a

team spent $220,000 and built a machine that can go through the entire 56-

bit DES key space in an average of 4.5 days. On July 17, 1998, they

announced they had cracked a 56-bit key in 56 hours. The computer,

called Deep Crack, uses 27 boards each containing 64 chips, and is

capable of testing 90 billion keys a second.

Despite this, as recently as June 8, 1998, Robert Litt, principal associate

deputy attorney general at the Department of Justice, denied it was

possible for the FBI to crack DES: "Let me put the technical problem in

context: It took 14,000 Pentium computers working for four months to

decrypt a single message We are not just talking FBI and NSA

[needing massive computing power], we are talking about every police

department."

Responded cryptograpy expert Bruce Schneier: " . . . the FBI is either

incompetent or lying, or both." Schneier went on to say: "The only

solution here is to pick an algorithm with a longer key; there isn't enough

silicon in the galaxy or enough time before the sun burns out to brute-

force triple-DES" (Crypto-Gram, Counterpane Systems, August 15, 1998).

Triple-DES

Triple-DES is just DES with two 56-bit keys applied. Given a plaintext

message, the first key is used to DES- encrypt the message. The second

key is used to DES-decrypt the encrypted message. (Since the second key

is not the right key, this decryption just scrambles the data further.) The

twice-scrambled message is then encrypted again with the first key to

yield the final ciphertext. This three-step procedure is called triple-DES.

Triple-DES is just DES done three times with two keys used in a

particular order. (Triple-DES can also be done with three separate keys

instead of only two. In either case the resultant key space is about 2^112.)

General References

"Cryptographic Algorithms for Protection of Computer Data During

Transmission and Dormant Storage," Federal Register 38, No. 93 (May

15, 1973).

Data Encryption Standard, Federal Information Processing Standard

(FIPS) Publication 46, National Bureau of Standards, U.S. Department of

Commerce, Washington D.C. (January 1977).

Carl H. Meyer and Stephen M. Matyas, Cryptography: A New Dimension

in Computer Data Security, John Wiley & Sons, New York, 1982.

Dorthy Elizabeth Robling Denning, Cryptography and Data Security,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1982.

D.W. Davies and W.L. Price, Security for Computer Networks: An

Introduction to Data Security in Teleprocessing and Electronics Funds

Transfer, Second Edition, John Wiley & Sons, New York, 1984, 1989.

Miles E. Smid and Dennis K. Branstad, "The Data Encryption Standard:

Past and Future," in Gustavus J. Simmons, ed., Contemporary

Cryptography: The Science of Information Integrity, IEEE Press, 1992.

Douglas R. Stinson, Cryptography: Theory and Practice, CRC Press,

Boca Raton, 1995.

Bruce Schneier, Applied Cryptography, Second Edition, John Wiley &

Sons, New York, 1996.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone,

Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997.

-30-

This article appeared in Laissez Faire City Times, Vol 2, No. 28.

Homepage: http://www.aci.net/kalliste/homepage.html

homepage.html
http://www.freehitmaps.com/myspace_map.aspx?id=58621

