
MPLAPACK version 1.0.0 user manual

NAKATA Maho1

1RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-City, Saitama 351-0198, JAPAN

Abstract

The MPLAPACK (formerly MPACK) is a multiple-precision version of LAPACK
(https://www.netlib.org/lapack/). MPLAPACK version 1.0.0 is based on LAPACK version
3.9.1 and translated from Fortran 90 to C++ using FABLE, a Fortran to C++ source-to-source
conversion tool (https://github.com/cctbx/cctbx_project/tree/master/fable/). MPLA-
PACK version 1.0.0 provides the real and complex version of MPBLAS, and the real version of
MPLAPACK supports all LAPACK features: solvers for systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue problems, and singu-
lar value problems, and related matrix factorizations except for rectangular complete packed
matrix form and mixed-precision routines. Besides, MPLAPACK supports a part of the com-
plex routines of LAPACK, such as diagonalization of Hermite matrices, Cholesky factorization,
and matrix inversion. The MPLAPACK defines an API for numerical linear algebra, similar
to LAPACK. It is easy to port legacy C/C++ numerical codes using MPLAPACK. MPLA-
PACK supports binary64, binary128, FP80 (extended double), MPFR, GMP, and QD libraries
(double-double and quad-double). Users can choose MPFR or GMP for arbitrary accurate cal-
culations, double-double or quad-double for fast 32 or 64 decimal calculations. We can consider
the binary64 version as the C++ version of LAPACK. MPLAPACK is available at GitHub
(https://github.com/nakatamaho/mplapack/) under the 2-clause BSD license.

1 Introduction

Numerical linear algebra aims to solve mathematical problems, such as simultaneous linear equa-
tions, eigenvalue problems, and least-squares methods, using arithmetic with finite-precision on a
computer [1]. We can formulate many problems as numerical linear algebra in various fields, such as
natural science, social science, and engineering. Therefore, its importance is magnificent.

The standards for the numerical linear algebra package are BLAS [2] and LAPACK [3]. The
BLAS library defines how computers should perform for vector, matrix-vector, and matrix-matrix
operations in FORTRAN77. Almost all other vector and matrix arithmetic libraries are compatible
with it or have very similar interfaces. Furthermore, LAPACK solves linear problems such as solving
linear equations, singular value problems, eigenvalue problems, and least-square fitting problems using
BLAS as a building block.

The main focus in numerical linear algebra has been on the speed and the size of solving the
problem at approximately 8 or 16 decimal digits (binary32 or 64) using highly optimized BLAS and
LAPACK [4, 5, 6, 7, 8, 9]. Using higher precision numbers than binary64 is not common.

However, there are some problems in numerical linear algebra that require higher precision oper-
ations. In particular, when we solve ill-conditioned problems, large-scale simulations, and compute

1

inversions of matrices, we usually need functions of higher precision numbers [10, 11, 12].

Solving positive semidefinite programming (SDP) is yet another example that requires multi-
precision computation. When we solve this problem using binary64 usually yields values up to eight
decimal digits. The accumulation of numerical error occurs because the matrices’ condition number at
the optimal solution usually becomes infinite. As a result, Cholesky factorization fails near the optimal
solution; the approximate solution diverges toward the optimal solution using the primal and dual
interior point method [13]. Therefore, we require multiple precision calculations if we need more than
eight decimal digits for optimal solutions. For this reason, we have developed SDPA-GMP [14, 15, 16],
the GNU MP version of semidefinite programming solver based on SDPA [16], which is one of the
fastest SDP solvers.

MPLAPACK was developed as a drop-in replacement for BLAS and LAPACK in SDPA since
SDPA performs Cholesky decomposition and solves symmetric eigenvalue problems via 50 BLAS and
LAPACK routines [17].

The features of MPLAPACK are:

� Provides Application Programming Interface (API) numerical algebra, similar to LAPACK and
BLAS. Like BLAS and LAPACK, we can implement an optimized version of MPBLAS and
MPLAPACK. In addition, we provide a simple OpenMP version of some MPBLAS routines as
proof of concept.

� Completely rewrote LAPACK and BLAS in C++ using FABLE and f2c.

� C style programming. We do not introduce new matrix and vector classes.

� Supports seven floating-point formats by precision independent programming; binary64 (16 dec-
imal digits), binary128 (32 decimal digits), FP80 (extended double; 19 decimal digits), double-
double (32 decimal digits), quad-double (64 decimal digits), GMP, and MPFR (arbitrary preci-
sion, and the default is 153 decimal digits).

� MPLAPACK 1.0.0 is based on LAPACK 3.9.1.

� Version 1.0.0 supports all real and complex versions of BLAS and real version LAPACK func-
tions; simultaneous linear equations, least-squares solutions of linear systems of equations, eigen-
value problems, and singular value problems and related matrix factorization except for mixed-
precision version, and full packed matrix form version and complex version will be supported in
version 2.0.

� Reliability: We extended the original test programs to handle multiple-precision numbers, and
most of the MPLAPCK routines have passed the test.

� Runs on Linux/Windows/Mac.

� Released at https://github.com/nakatamaho/mplapack/ under 2-BSD clause license.

The rest of the sections are organized as follows: Section 2 describes supported CPUs, OSes, and
compilers. Section 3 describes how to install. Section 4 describes the supported floating-point format.
Section 5 illustrates LAPACK and BLAS routine naming conventions and available MPBLAS and
MPLAPACK routines; section 6 describes how to use MPBLAS and MPLAPACK. The examples are
based on the assumption that users use Docker to avoid over-complicating the notation with differences

2

in environments. Section 7 describes how we tested MPBLAS and MPLAPACK. Section 8 describes
how we rewrote Fortran90 codes to C++ and extended them to multiple precision versions. Next,
section 9 describes benchmarking MPBLAS routines, and section 10 describes the history, Section 11
describes related works. Finally, section 12 describes future plans for MPLAPACK.

2 Supported CPUs, OSes, and compilers

Only 64 bit CPU is supported. Following OSes are supported:

� CentOS 7 (amd64, aarch64)

� CentOS 8 (amd64, aarch64)

� Ubuntu 20.04 (amd64, aarch64)

� Ubuntu 18.04 (amd64)

� Windows 10 (amd64)

� MacOS (Intel)

We support the following compilers:

� GCC (GNU Compiler Collection) 9 and 10

� Intel OneAPI.

Note that we use GCC by MacPorts on macOS, which is NOT the default compiler. We use the
mingw64 and Wine64 environments on Linux to build and test the Windows version. On different
configurations, MPLAPACK may build and work without problems. We welcome patches from the
community.

3 Installation

3.1 Using Docker (recommended for Linux environment)

The easiest way to install MPLAPACK is to build inside Docker [18] and use it inside Docker. For
example, the following command will build inside docker on Ubuntu amd64 (also known as x86 64)
or aarch64 (also known as arm64); the following command will build inside docker.

$ git clone https://github.com/nakatamaho/mplapack/

$ cd mplapack

$ git checkout v1.0.0

$ /usr/bin/time docker build -t mplapack:ubuntu2004 -f Dockerfile_ubuntu20.04 . \

2>&1 | tee log.ubuntu2004

3

Table 1: The name of the Dockerfile and the corresponding OS and CPU

Docker filename CPU OS Compiler
Dockerfile CentOS7 amd64 CentOS 7 GCC
Dockerfile CentOS7 AArch64 aarch64 only CentOS 7 GCC
Dockerfile CentOS8 all CPUs CentOS 8 GCC
Dockerfile ubuntu18.04 amd64 only Ubuntu 18.04 GCC
Dockerfile ubuntu20.04 all CPUs Ubuntu 20.04 GCC
Dockerfile ubuntu20.04 intel amd64 only Ubuntu 20.04 Intel oneAPI
Dockerfile ubuntu20.04 mingw64 amd64 only Windows10 GCC

In Table 1, we list corresponding Dockerfiles for CPU and OS.

When the build is finished, all the files will be installed under /home/docker/MPLAPACK.

One can also install MPLAPACK in the desired directry. First, make a tar archive of installed
directory,

$ docker run -it mplapack:ubuntu2004

$ cd /home/docker/MPLAPACK

$ tar cvfz ../mplapack.tar.gz .

$ cd .. ; scp mplapack.tar.gz YourhostIP:

$ exit

Then, on the host OS, copy like following:

$ sudo tar xvfz mplapack.tar.gz -C /usr/local/mplapack

In Table 1, we list Dockerfiles and corresponding CPU, OS, and compiler.

3.2 Compiling from the source

We list prerequisites for compiling from the source in Table 2; users can satisfy these prerequisites
using MacPorts on macOS. Homebrew may be used as an alternative to satisfy these prerequisites.

$ sudo port install gcc9 coreutils git ccache

$ git clone https://github.com/nakatamaho/mplapack.git --depth 1

$ cd mplapack

$ git checkout v1.0.0

$ pushd mplapack/debug ; bash gen.Makefile.am.sh ; popd

$ autoreconf --force --install ; aclocal ; autoconf ; automake

$ autoreconf --force --install

$ CXX="g++-mp-9" ; export CXX

$ CC="gcc-mp-9" ; export CC

$ FC="gfortran-mp-9"; export FC

$ F77="gfortran-mp-9"; export F77

$./configure --prefix=/Users/maho/MPLAPACK --enable-gmp=yes --enable-mpfr=yes \

4

Table 2: Prerequisites for compiling from source

Package Version
gcc 9 or later
gmake 4.3 or later
git 2.33.0 or later
gsed 4.8 or later
autotools 2.71
automake 1.16
GNU sed 4.1 or later

--enable-_Float128=yes --enable-qd=yes --enable-dd=yes --enable-double=yes \

--enable-_Float64x=yes --enable-test=yes

...

$ make -j6

...

$ make install

4 Supported Floating point formats

We support binary64, FP80 (extended double), binary128, double-double, quad-double (QD library),
GMP, and MPFR in MPLAPACK.

Binary64 [4] is the so-called double precision: the number of significant digits in decimal is about
16, and CPUs perform arithmetic processing in hardware. As a result, the CPU can perform binary64
operations very fast.

FP80 is an extended double precision. IEEE 754-1985 species the minimum requirements for an
extended double format [19], and 80-bit format meets the minimum requirement. FP80 has approxi-
mately 19 digits accuracy, respectively and FP80 has a much wider exponent than binary64. Recently,
ISO defined C real floating type [20] for FP80 as Float64x but not yet a standard of C++. More-
over, GCC has already defined type for FP80 as float80. In any case, we always use Float64x

MPLAPACK programs to keep the consistency among different environments. When building the
MPLAPACK library, the configure script investigates whether Float64x is available or not. If not,
we typedef the appropriate type as Float64x. Only Intel and AMD CPUs support FP80 format.
These CPUs implement FP80 as hardware. However, they do not support SIMD-type acceleration
like SSE nor AVX; thus, FP80 arithmetic is much slower than binary64.

Binary128, and sometimes called quadruple precision, is defined in IEEE754-2008 [4] and this
format has approximately 33 decimal significant digits. Usually binary128 arithmetic is done by
software, therefore, operations are very slow. As far as we know, only IBM z processors have been the
only commercial platform supporting quadruple-precision [21]. Some processors like aarch64, Sparc,
RISCV64, MIPS64 define instructions for quadruple-precision arithmetic. These processors emulate
binary128 instructions by software. ISO defined C real floating types [20] as Float128 but not yet a
standard of C++. GCC has already been providing a type for binary128 as float128. We always

5

use Float128 as a type for binary128 numbers in MPLAPACK. This type may be the same as long
double or float128 depends on the environment, we typedef appropriate type to Float128.

We use the QD library [22] to support double-double and quad-double precision. The double-
double casts two binary64 numbers as a one number and has approximately 32 decimal significant
digits, and the quad-double casts four binary64 numbers as a one number and has approximately
64 decimal significant digits. Using Kunth and Dekker’s algorithm [23, 24], which can evaluate the
addition and multiplication of two binary64 numbers exactly. Then, we can define the addition and
multiplication of double-double numbers. Pros for using these format is speed. Since all arithmetic
can be done by binary64 and accelerated by hardware, calculation speed is are approximately ten
times faster than software implemented binary128. Cons of using these formats are programs written
for expecting IEEE754 feature might not work with these precisions. Note that OSes and compilers
for IBM Power CPU and Power Macs, “long double” has been equivalent to the double-double.

GMP [25] is a C library for arbitrary precision arithmetic, operating on signed integers, rational
numbers, and floating-point numbers. We can perform calculations to any accuracy, as long as the
machine’s resources allow. We support complex numbers by preparing mpc class.

MPFR [26] is a C library for multiple-precision floating-point computations with correct rounding
based on GMP. We support complex numbers using MPC, which is a library for multiple-precision
complex arithmetic with correct rounding [27] via mpcomplex class. Both libraries provide almost
the same functionalities, but MPFR and MPC further support trigonometric functions necessary for
cosine-sine decomposition, elementary and special functions. Therefore, we will drop GMP support
in the future.

long double is no longer supported in MPLAPACK since v1.0.0 since the situation regarding long
double is very different and confusing in different environments. E.g., on Intel CPUs, long double

may be equivalent to Float64x; however, it also depends on OSes. On Windows, long double is
equivalent to double. Similar confusion happens in the AArch64 environment. ARM defines long

double should be binary64, but on the OS side, Apple overwrites long double should be double. On
IBM PowerPC or Power Macs, long double have been double-double.

5 LAPACK and BLAS Routine Naming Conventions and

available routines

BLAS and LAPACK prefix routine names with “s” and “d” for (real) single and double precision
real numbers and “c” and “z” for single and double precision complex numbers. FORTRAN77 and
Fortran90 are not case-sensitive in function and subroutine names, while C++ is case-sensitive in
function names.

The prefix for real and complex routine names in MPLAPACK is an uppercase “R” for real numbers
and “C” for complex numbers. All other letters in the routines are lowercase. Also, while we do not
distinguish function names by floating-point class (e.g. mpf class, Float128), we use the same
function name for different floating-point classes to take advantage of function overloading (e.g., no
matter which floating-point class is adopted, program calls Raxpy appropriately). The floating-point
class is added after the routine name for routines that take no arguments or only integers. Otherwise,
we add the prefix “M” or insert “M” after “i.”

For example,

6

� daxpy, zaxpy → Raxpy, Caxpy

� dgemm, zgemm → Rgemm, Cgemm

� dsterf, dsyev → Rsterf, Rsyev

� dzabs1, dzasum → RCabs1, RCasum

� lsame → Mlsame mpfr, Mlsame gmp, Mlsame Float128 · · · etc.

� dlamch → Rlamch mpfr, Rlamch gmp, Rlamch Float128 · · · etc.

� ilaenv → iMlaenv mpfr, iMlaenv gmp, iMlaenv Float128 · · · etc.

In table 3, we show all supported MPBLAS routines. The prototype definitions of these routines
can be found in the following headers.

� /home/docker/MPLAPACK/include/mplapack/mpblas Float128.h

� /home/docker/MPLAPACK/include/mplapack/mpblas Float64x.h

� /home/docker/MPLAPACK/include/mplapack/mpblas dd.h

� /home/docker/MPLAPACK/include/mplapack/mpblas double.h

� /home/docker/MPLAPACK/include/mplapack/mpblas gmp.h

� /home/docker/MPLAPACK/include/mplapack/mpblas mpfr.h

� /home/docker/MPLAPACK/include/mplapack/mpblas qd.h

A simple OpenMP version of MPBLAS is available. In table 4, we show all OpenMP accelerated
MPBLAS routines.

In table 5, we show all supported MPLAPACK driver routines. In table 6, we show all supported
MPLAPACK Real computational routines. In table 7, we show all supported MPLAPACK complex
computational routines.

We do not list here, but there are many MPLPACK auxiliary routines as well.

We usually use MPLAPACK driver routines and MPBLAS routines directly. MPLAPACK com-
putational routines and auxiliary routines may be implicitly used by the driver routines.

The prototype definitions of the MLAPACK routines can be found in the following headers.

� /home/docker/MPLAPACK/include/mplapack/mplapack Float128.h

� /home/docker/MPLAPACK/include/mplapack/mplapack Float64x.h

� /home/docker/MPLAPACK/include/mplapack/mplapack dd.h

� /home/docker/MPLAPACK/include/mplapack/mplapack double.h

� /home/docker/MPLAPACK/include/mplapack/mplapack gmp.h

� /home/docker/MPLAPACK/include/mplapack/mplapack mpfr.h

� /home/docker/MPLAPACK/include/mplapack/mplapack qd.h

7

Table 3: Available MPBLAS routines

Crotg Cscal Rrotg Rrot Rrotm CRrot Cswap Rswap CRscal Rscal

Ccopy Rcopy Caxpy Raxpy Rdot Cdotc Cdotu RCnrm2 Rnrm2 Rasum

iCasum iRamax RCabs1 Mlsame Mxerbla

Cgemv Rgemv Cgbmv Rgbmv Chemv Chbmv Chpmv Rsymv Rsbmv Ctrmv

Cgemv Rgemv Cgbmv Rgemv Chemv Chbmv Chpmv Rsymv Rsbmv Rspmv

Ctrmv Rtrmv Ctbmv Ctpmv Rtpmv Ctrsv Rtrsv Ctbsv Rtbsv Ctpsv

Rger Cgeru Cgerc Cher Chpr Cher2 Chpr2 Rsyr Rspr Rsyr2

Rspr2

Cgemm Rgemm Csymm Rsymm Chemm Csyrk Rsyrk Cherk Csyr2k Rsyr2k

Cher2k Ctrmm Rtrmm Ctrsm Rtrsm

Table 4: Available OpenMP version of MPBLAS routines

Raxpy Rcopy Rdot Rgemm

Table 5: Available MPLAPACK Driver routines (1.0.0)

Rgesv Rgesvx Rgbsv Rgbsvx Rgtsv Rgtsvx Rposv Rposvx Rppsv Rppsvx

Rpbsv Rpvsvx Rptsv Rptsvx Rsysv Rsysvx Rpspv Rspsvx Rgels Rgelsy

Rgelss Rgelsd Rgglse Rggglm Rsyev Rsyevd Rsvevd Rsyevr Rsepev Rspevd

Rspevx Rsbev Rsbevd Rsbevx Rstev Rstevd Rstevx Rstevr Rgees Rgeesx

Rgeev Rgeevx Rgesvd Rgesdd Rsygv Rsygvd Rsygvx Rspgv Rspgdv Rspgvx

Rsbgv Rsbgv Rsbgvx Rgges Rggesx Rggev Rggevx Rggsvd

8

Table 6: Available MPLAPACK Computational Real routines (1.0.0)

Rgetrf Rgetrs Rgecon Rgerfs Rgetri Rgeequ Rgbtrf Rgbtrs Rgbcon Rgbrfs

Rgbequ Rgttrf Rgttrs Rgtcon Rgtrfs Rpotrf Rpotrs Rpocon Rporfs Rpotri

Rpoequ Rpptrf Rpptrs Rppcon Rpprfs Rpptri Rppequ Rpbtrf Rpbtrs Rpbcon

Rpbrfs Rpbequ Rpttrf Rpttrs Rptcon Rptrfs Rsytrf Rsytrs Rsycon Rsyrfs

Rsytri Rsptrf Rsptrs Rspcon Rsprfs Rsptri Rtrtrs Rtrcon Rtrrfs Rtrtri

Rtptrs Rtpcon Rtprfs Rtptri Rtbtrs Rtbcon Rtbrfs

Rgeqp3 Rgeqrf Rorgqr Rormqr Rgelqf Rorglq Rormlq Rgeqlf Rorgql Rormql

Rgerqf Rorgrq Rormrq Rtzrzf Rormrz

Rsytrd Rsptrd Rsbtrd Rorgtr Rormtr Ropgtr Ropmtr Rsteqr Rsterf Rstedc

Rstegr Rstebz Rstein Rpteqr

Rgehrd Rgebal Rgebak Rorghr Rormhr Rhseqr Rhsein Rtrevc Rtrexc Rtrsyl

Rtrsna Rtrsen

Rgebrd Rgbbrd Rorgbr Rormbr Rbdsqr Rbdsdc

Rsygst Rspgst Rpbstf Rsbgst

Rgghrd Rggbal Rggbak Rhgeqz Rtgevc Rtgexc Rtgsyl Rtgsna Rtgsen

Rggsvp Rtgsja

Table 7: Available MPLAPACK Computational Complex routines (1.0.0)

Cgelq2 Cgeqr2 Cgeqrf Cgesv Cgetf2 Cgetrf Cgetri Cgetrs Cheev Chetd2

Chetrd Clacgv Clacrm Clacrt Cladiv Claesy Claev2 Clahef Clanhe Clanht

Clansy Clarfb Clarfg Clarf Clarft Clartg Clascl Claset Clasr Classq

Claswp Clasyf Clatrd Cpotf2 Crot Cspmv Cspr Csteqr Csymv Csyr

Ctrti2 Ctrtri Ctrtrs Cung2l Cung2r Cungql Cungqr Cungtr Cunmqr

9

Table 8: The floating-point formats used in MPLAPACK, their type names, and accuracy in decimal
digits.

Library or format type name accuracy in decimal digits
GMP mpf class, mpc class 154 (default) and arbitrary
MPFR mpreal, mpcomplex 154 (default) and arbitrary

double-double dd real, dd complex 32
quad-double qd real, qd complex 64
binary64 double, std::complex<double> 16

extended double Float64x, std::complex< Float64x> 19
binary128 Float128, std::complex< Float128> 33
integer mplapackint (32bit on Win, 64bit on Linux and macOS)

6 How to use MPBLAS and MPLPACK

6.1 Types

We use seven kinds of floating-point formats. Multiple precision types are listed in the table 8. For
GMP, we use built-in mpf class for real type. For complex type, we developed mpc class. For
MPFR, we use a modified version of mpfrc++ (the final LGPL version) to treat like double or float
type. For complex type, we developed mpcomplex.h using MPFR and MPC. For double-double and
quad-double, we use dd real and qd real, respectively. For complex type, we developed dd complex

and qd complex, respectively.

For extended double we use Float64x for all Intel and AMD environment. For binary128, we use
Float128 for all OSes and CPUs. For complex types for double, Float64x and Float128, we use
standard complex implementation of C++. Using float80, float128, or long double is strongly
discouraged as they are not tested and not portable.

Also, we define mplapackint as a 64 bit signed integer to MPLAPACK that can access all the
memory spaces regardless of which data type models the environment employs (LLP64 or LP64). On
Windows, mplapackint is still a 32 bit signed integer.

6.2 MPBLAS

The API of MPBLAS is very similar to the original BLAS and CBLAS. However, we always use a
one-dimensional array as a column-major type matrix in MPBLAS, and unlike CBLAS, we cannot
specify row- or column-major order.

Following is the prototype definition of the multiple-precision version of matrix-matrix multiplica-
tion (Rgemm) by MPFR.

void Rgemm(const char *transa, const char *transb, mplapackint const m,

mplapackint const n, mplapackint const k, mpreal const alpha, mpreal *a,

mplapackint const lda, mpreal *b, mplapackint const ldb, mpreal const beta,

mpreal*c, mplapackint const ldc);

10

and the following is the definition part of the original DGEMM

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

* .. Scalar Arguments ..

DOUBLE PRECISION ALPHA,BETA

INTEGER K,LDA,LDB,LDC,M,N

CHARACTER TRANSA,TRANSB

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)

There is correspondence between variables in the C++ prototype of Rgemm and variables in the
header of DGEMM.

� CHARACTER → const char *

� INTEGER → mplapackint

� DOUBLE PRECISION A(LDA, *) → mpreal *a

We can see such correspondences for other MPBLAS and MPLAPACK routines. Let us see how we
can multiply matrices using MPFR. The list is the following.

1 #include <mpblas_mpfr.h>

2

3 //Matlab/Octave format

4 void printmat(int N, int M, mpreal * A, int LDA)

5 {

6 mpreal mtmp;

7 printf("[");

8 for (int i = 0; i < N; i++) {

9 printf("[");

10 for (int j = 0; j < M; j++) {

11 mtmp = A[i + j * LDA];

12 mpfr_printf("%5.2Re", mpfr_ptr(mtmp));

13 if (j < M - 1)

14 printf(", ");

15 }

16 if (i < N - 1)

17 printf("]; ");

18 else

19 printf("] ");

20 }

21 printf("]");

22 }

23

24 int main()

25 {

26 mplapackint n = 3;

27 //initialization of MPFR

11

28 int default_prec = 256;

29 mpfr_set_default_prec(default_prec);

30

31 mpreal *A = new mpreal[n * n];

32 mpreal *B = new mpreal[n * n];

33 mpreal *C = new mpreal[n * n];

34 mpreal alpha, beta;

35

36 //setting A matrix

37 A[0 + 0 * n] = 1; A[0 + 1 * n] = 8; A[0 + 2 * n] = 3;

38 A[1 + 0 * n] = 0; A[1 + 1 * n] = 10; A[1 + 2 * n] = 8;

39 A[2 + 0 * n] = 9; A[2 + 1 * n] = -5; A[2 + 2 * n] = -1;

40

41 B[0 + 0 * n] = 9; B[0 + 1 * n] = 8; B[0 + 2 * n] = 3;

42 B[1 + 0 * n] = 3; B[1 + 1 * n] = -11; B[1 + 2 * n] = 0;

43 B[2 + 0 * n] = -8; B[2 + 1 * n] = 6; B[2 + 2 * n] = 1;

44

45 C[0 + 0 * n] = 3; C[0 + 1 * n] = 3; C[0 + 2 * n] = 0;

46 C[1 + 0 * n] = 8; C[1 + 1 * n] = 4; C[1 + 2 * n] = 8;

47 C[2 + 0 * n] = 6; C[2 + 1 * n] = 1; C[2 + 2 * n] = -2;

48

49 printf("# Rgemm demo...\n");

50

51 printf("A ="); printmat(n, n, A, n); printf("\n");

52 printf("B ="); printmat(n, n, B, n); printf("\n");

53 printf("C ="); printmat(n, n, C, n); printf("\n");

54 alpha = 3.0;

55 beta = -2.0;

56 Rgemm("n", "n", n, n, n, alpha, A, n, B, n, beta, C, n);

57

58 mpfr_printf("alpha = %5.3Re\n", mpfr_ptr(alpha));

59 mpfr_printf("beta = %5.3Re\n", mpfr_ptr(beta));

60 printf("ans ="); printmat(n, n, C, n); printf("\n");

61 printf("#please check by Matlab or Octave following and ans above\n");

62 printf("alpha * A * B + beta * C =\n");

63 delete[]C;

64 delete[]B;

65 delete[]A;

66 }

First, we must include mpblas mpfr.h to use MPFR. printmat function prints matrix in Matlab
format (lines 4 to 22). We set 256 bit in fraction for mpfrc++ in lines 28 to 29; MPFR Real accuracy
setted to 77 decimal digits (77.06 = log10 2

256). We allocate the matrix as a one-dimensional array
(lines 31 to 33). Then we set the matrix A, B, and C. We always input matrix by row-major format
to an array (lines36 to 47). Matrix-matrix multiplication Rgemm is called in line 58. One can input
the list and save as Rgemm mpfr.cpp or you can find /home/docker/mplapack/examples/mpblas/

directory. Then, one can compile by one own like following in Docker environment as follows:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmpblas_mpfr -lgmp -lmpfr -lmpc

12

Then, you can run as follows:

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

Rgemm demo...

A =[[1.00e+00, 8.00e+00, 3.00e+00]; [0.00e+00, 1.00e+01, 8.00e+00]; [9.00e+00, -5.00e+00, -1.00e+00]]

B =[[9.00e+00, 8.00e+00, 3.00e+00]; [3.00e+00, -1.10e+01, 0.00e+00]; [-8.00e+00, 6.00e+00, 1.00e+00]]

C =[[3.00e+00, 3.00e+00, 0.00e+00]; [8.00e+00, 4.00e+00, 8.00e+00]; [6.00e+00, 1.00e+00, -2.00e+00]]

alpha = 3.000e+00

beta = -2.000e+00

ans =[[2.10e+01, -1.92e+02, 1.80e+01]; [-1.18e+02, -1.94e+02, 8.00e+00]; [2.10e+02, 3.61e+02, 8.20e+01]]

#please check by Matlab or Octave following and ans above

alpha * A * B + beta * C

One can check the result by comparing the result of the octave.

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | octave

octave: X11 DISPLAY environment variable not set

octave: disabling GUI features

A =

1 8 3

0 10 8

9 -5 -1

B =

9 8 3

3 -11 0

-8 6 1

C =

3 3 0

8 4 8

6 1 -2

alpha = 3

beta = -2

ans =

21 -192 18

-118 -194 8

210 361 82

ans =

21 -192 18

-118 -194 8

210 361 82

In this case, we see the result below two “ans =” are the same. The Rgemm result is correct up to
16 decimal digits.

Let us see how we can multiply matrices using Float128 (binary128). The list is the following.

1 #include <mpblas__Float128.h>

2 #include <stdio.h>

13

3 #define BUFLEN 1024

4

5 void printnum(_Float128 rtmp)

6 {

7 int width = 42;

8 char buf[BUFLEN];

9 #if defined ___MPLAPACK_WANT_LIBQUADMATH___

10 int n = quadmath_snprintf (buf, sizeof buf, "%+-#*.35Qe", width, rtmp);

11 #elif defined ___MPLAPACK_LONGDOUBLE_IS_BINARY128___

12 snprintf (buf, sizeof buf, "%.35Le", rtmp);

13 #else

14 strfromf128(buf, sizeof(buf), "%.35e", rtmp);

15 #endif

16 printf ("%s", buf);

17 return;

18 }

19

20 //Matlab/Octave format

21 void printmat(int N, int M, _Float128 * A, int LDA)

22 {

23 _Float128 mtmp;

24

25 printf("[");

26 for (int i = 0; i < N; i++) {

27 printf("[");

28 for (int j = 0; j < M; j++) {

29 mtmp = A[i + j * LDA];

30 printnum(mtmp);

31 if (j < M - 1)

32 printf(", ");

33 }

34 if (i < N - 1)

35 printf("]; ");

36 else

37 printf("] ");

38 }

39 printf("]");

40 }

41

42 int main()

43 {

44 mplapackint n = 3;

45

46 _Float128 *A = new _Float128[n * n];

47 _Float128 *B = new _Float128[n * n];

48 _Float128 *C = new _Float128[n * n];

49 _Float128 alpha, beta;

50

51 //setting A matrix

14

52 A[0 + 0 * n] = 1; A[0 + 1 * n] = 8; A[0 + 2 * n] = 3;

53 A[1 + 0 * n] = 2.5; A[1 + 1 * n] = 10; A[1 + 2 * n] = 8;

54 A[2 + 0 * n] = 9; A[2 + 1 * n] = -5; A[2 + 2 * n] = -1;

55

56 B[0 + 0 * n] = 9; B[0 + 1 * n] = 8; B[0 + 2 * n] = 3;

57 B[1 + 0 * n] = 3; B[1 + 1 * n] = -11; B[1 + 2 * n] = 4.8;

58 B[2 + 0 * n] = -8; B[2 + 1 * n] = 6; B[2 + 2 * n] = 1;

59

60 C[0 + 0 * n] = 3; C[0 + 1 * n] = 3; C[0 + 2 * n] = 1.2;

61 C[1 + 0 * n] = 8; C[1 + 1 * n] = 4; C[1 + 2 * n] = 8;

62 C[2 + 0 * n] = 6; C[2 + 1 * n] = 1; C[2 + 2 * n] = -2;

63

64 printf("# Rgemm demo...\n");

65

66 printf("A ="); printmat(n, n, A, n); printf("\n");

67 printf("B ="); printmat(n, n, B, n); printf("\n");

68 printf("C ="); printmat(n, n, C, n); printf("\n");

69 alpha = 3.0;

70 beta = -2.0;

71 Rgemm("n", "n", n, n, n, alpha, A, n, B, n, beta, C, n);

72

73 printf("alpha = "); printnum(alpha); printf("\n");

74 printf("beta = "); printnum(beta); printf("\n");

75 printf("ans ="); printmat(n, n, C, n); printf("\n");

76 printf("#please check by Matlab or Octave following and ans above\n");

77 printf("alpha * A * B + beta * C \n");

78 delete[]C;

79 delete[]B;

80 delete[]A;

81 }

We do not show the output since the output is almost the same as the MPFR version.

The Float128 version of progarm list is almost similar to the MPFR version, too. However,
printnum part is bit complicated. Because there are at least three kinds of binary128 support depend
on CPUs and OSes: (i) GCC only supports float128 using libquadmath (Windows, macOS),
(ii) GCC supports Float128 directly and there are libc support as well (Linux amd64), (iii) long

double is already binary128 and no special support is necessary (AArch64). For (i), we internally
define MPLAPACK WANT LIBQUADMATH , for (ii) we define MPLAPACK FLOAT128 ONLY , and for
(iii), we define MPLAPACK LONGDOUBLE IS BINARY128 . Users can use these internal defines to
write a portable program.

As a summary, we show how we compile and run binary64, FP80, binary128, double-double, quad-
double, GMP andMPFR versions of Rgemm demo programs in /home/docker/mplapack/examples/mpblas
as follows:

� binary64 (double) version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_double.cpp -L/home/docker/MPLAPACK/lib -lmpblas_double

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

15

� FP80 (extended double) version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm__Float64x.cpp -L/home/docker/MPLAPACK/lib -lmpblas__Float64x

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� binary128 version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm__Float128.cpp -L/home/docker/MPLAPACK/lib -lmpblas__Float128

LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

or (on macOS, mingw64 and CentOS7 amd64)

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm__Float128.cpp -L/home/docker/MPLAPACK/lib -lmpblas__Float128 -lquadmath

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� double-double version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_dd.cpp -L/home/docker/MPLAPACK/lib -lmpblas_dd -lqd

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� quad-double version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_qd.cpp -L/home/docker/MPLAPACK/lib -lmpblas_qd -lqd

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� GMP version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_gmp.cpp -L/home/docker/MPLAPACK/lib -lmpblas_gmp -lgmpxx -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� MPFR version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmpblas_mpfr -lmpfr -lmpc -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

16

6.3 OpenMP accelerated MPBLAS

We have provided reference implementation, and a simple OpenMP accelerated version for MPBLAS,
which are shown in Table 4. Even though the number of optimized routines is small; however,
acceleration of Rgemm is significant as it impacts the performance. To change linking against optimized
version, we must add “ opt” for MPBLAS library as follows:

� -lmpblas mpfr → -lmpblas mpfr opt

� -lmpblas gmp → -lmpblas gmp opt

� -lmpblas double → -lmpblas double opt

� -lmpblas Float128 → -lmpblas Float128 opt

� -lmpblas dd → -lmpblas dd opt

� -lmpblas qd → -lmpblas qd opt

� -lmpblas Float128 → -lmpblas Float128 opt

� -lmpblas Float64x → -lmpblas Float64x opt.

In the previous examples, we compile the demo program as follows for the MPFR version.

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmpblas_mpfr -lmpfr -lmpc -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

and to link against optimized version, we complie the program as follows:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgemm_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmpblas_mpfr_opt -lmpfr -lmpc -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

Performance comparison is presented in Section 9.

6.4 MPLAPACK

The API of MPLAPACK is very similar to the original LAPACK. We always use a one-dimensional
array as a column-major type matrix in MPLAPACK. We do not have an interface like LAPACKE
at the moment, and we cannot specify raw- or column-major order in MPLAPACK.

Let us show how we diagonalize a real symmetric matrix A
5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4



17

using GMP. Eigenvalues are λ1 = 10, λ2 = 5, λ3 = 2, λ4 = 1 and eigenvectors are

x1 =


2
2
1
1

 , x2 =


−1
−1
2
2

 , x3 =


0
0
−1
1

 , x4 =


−1
1
0
0


and Axi = λxi for 1 ≤ i ≤ 4 [28].

Following is the prototype definition of the diagonalization of a symmetric matrix (Rsyev) by
GMP.

void Rsyev(const char *jobz, const char *uplo, mplapackint const n,

mpf_class *a, mplapackint const lda, mpf_class *w, mpf_class *work,

mplapackint const lwork, mplapackint &info);

and the following is the definition of the original dsyev

SUBROUTINE dsyev(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)

*

* -- LAPACK driver routine --

* -- LAPACK is a software package provided by Univ. of Tennessee, --

* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--

*

* .. Scalar Arguments ..

CHARACTER JOBZ, UPLO

INTEGER INFO, LDA, LWORK, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), W(*), WORK(*)

* ..

*

There are clear correspondences between variables in the C++ prototype of Rsyev and variables in
the header of DSYEV.

� CHARACTER → const char *

� INTEGER → mplapackint

� DOUBLE PRECISION A(LDA, *) → mpf class *a

� DOUBLE PRECISION W(*) → mpf class *w

� DOUBLE PRECISION WORK(*) → mpf class *work

The list is the following.

1 //public domain

2 #include <mpblas_gmp.h>

3 #include <mplapack_gmp.h>

18

4

5 #define GMP_FORMAT "%+68.64Fe"

6 #define GMP_SHORT_FORMAT "%+20.16Fe"

7

8 inline void printnum(mpf_class rtmp) { gmp_printf(GMP_SHORT_FORMAT, rtmp.get_mpf_t()); }

9 inline void printnum_short(mpf_class rtmp) { gmp_printf(GMP_SHORT_FORMAT, rtmp.get_mpf_t()

); }

10

11 //Matlab/Octave format

12 void printvec(mpf_class *a, int len) {

13 mpf_class tmp;

14 printf("[");

15 for (int i = 0; i < len; i++) {

16 tmp = a[i];

17 printnum(tmp);

18 if (i < len - 1)

19 printf(", ");

20 }

21 printf("]");

22 }

23

24 void printmat(int n, int m, mpf_class * a, int lda)

25 {

26 mpf_class mtmp;

27

28 printf("[");

29 for (int i = 0; i < n; i++) {

30 printf("[");

31 for (int j = 0; j < m; j++) {

32 mtmp = a[i + j * lda];

33 printnum(mtmp);

34 if (j < m - 1)

35 printf(", ");

36 }

37 if (i < n - 1)

38 printf("]; ");

39 else

40 printf("] ");

41 }

42 printf("]");

43 }

44 int main()

45 {

46 mplapackint n = 4;

47 mplapackint lwork, info;

48

49 mpf_class *A = new mpf_class[n * n];

50 mpf_class *w = new mpf_class[n];

51

19

52 //setting A matrix

53 A[0 + 0 * n] = 5; A[0 + 1 * n] = 4; A[0 + 2 * n] = 1; A[0 + 3 * n] = 1;

54 A[1 + 0 * n] = 4; A[1 + 1 * n] = 5; A[1 + 2 * n] = 1; A[1 + 3 * n] = 1;

55 A[2 + 0 * n] = 1; A[2 + 1 * n] = 1; A[2 + 2 * n] = 4; A[2 + 3 * n] = 2;

56 A[3 + 0 * n] = 1; A[3 + 1 * n] = 1; A[3 + 2 * n] = 2; A[3 + 3 * n] = 4;

57

58 printf("A ="); printmat(n, n, A, n); printf("\n");

59 //work space query

60 lwork = -1;

61 mpf_class *work = new mpf_class[1];

62

63 Rsyev("V", "U", n, A, n, w, work, lwork, info);

64 lwork = (int) cast2double (work[0]);

65 delete[]work;

66 work = new mpf_class[std::max((mplapackint) 1, lwork)];

67 //inverse matrix

68 Rsyev("V", "U", n, A, n, w, work, lwork, info);

69 //print out some results.

70 printf("#eigenvalues \n");

71 printf("w ="); printmat(n, 1, w, 1); printf("\n");

72

73 printf("#eigenvecs \n");

74 printf("U ="); printmat(n, n, A, n); printf("\n");

75 printf("#you can check eigenvalues using octave/Matlab by:\n");

76 printf("eig(A)\n");

77 printf("#you can check eigenvectors using octave/Matlab by:\n");

78 printf("U’*A*U\n");

79

80 delete[]work;

81 delete[]w;

82 delete[]A;

83 }

One can input the list and save as Rsyev test gmp.cpp or you can find
/home/docker/mplapack/examples/mplapack/03 SymmetricEigenproblems directory. Then, one
can compile by one own like following in Docker environment as follows:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_gmp.cpp -L/home/docker/MPLAPACK/lib -lmplapack_gmp -lmpblas_gmp -lgmpxx -lgmp

Finally, you can run as follows:

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

A =[[+5.0000000000000000e+00, +4.0000000000000000e+00, +1.0000000000000000e+00, +1.0000000000000000e+00];

[+4.0000000000000000e+00, +5.0000000000000000e+00, +1.0000000000000000e+00, +1.0000000000000000e+00];]

#eigenvalues

w =[[+1.0000000000000000e+00]; [+2.0000000000000000e+00]; [+5.0000000000000000e+00]; [+1.0000000000000000e+01]]

#eigenvecs

U =[[+7.0710678118654752e-01, -1.3882760712710340e-155, -3.1622776601683793e-01, +6.3245553203367587e-01];

[-7.0710678118654752e-01, -1.0249769098010974e-155, -3.1622776601683793e-01, +6.3245553203367587e-01]

#you can check eigenvalues using octave/Matlab by:

eig(A)

20

#you can check eigenvectors using octave/Matlab by:

U’*A*U

One can check the result by comparing the result of the octave.

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | octave

octave: X11 DISPLAY environment variable not set

octave: disabling GUI features

A =

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

w =

1

2

5

10

U =

0.70711 -0.00000 -0.31623 0.63246

-0.70711 -0.00000 -0.31623 0.63246

0.00000 -0.70711 0.63246 0.31623

0.00000 0.70711 0.63246 0.31623

ans =

1.00000

2.00000

5.00000

10.00000

ans =

1.0000e+00 -2.8639e-155 2.6715e-17 -5.3429e-17

-2.6070e-155 2.0000e+00 -4.1633e-18 -2.0817e-18

-6.7450e-17 1.7912e-16 5.0000e+00 8.5557e-17

-3.5824e-16 -1.3490e-16 1.1229e-16 1.0000e+01

As a summary, we show how we compile and run binary64, FP80, binary128, double-double, quad-
double, GMP and MPFR versions of Rsyev demo programs in
/home/docker/mplapack/examples/mplapack/03 SymmetricEigenproblems as follows:

� binary64 (double) version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_double.cpp -L/home/docker/MPLAPACK/lib -lmplapack_double -lmpblas_double

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� FP80 (extended double) version

21

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test__Float64x.cpp -L/home/docker/MPLAPACK/lib -lmplapack__Float64x \

-lmpblas__Float64x

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� binary128 version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test__Float128.cpp -L/home/docker/MPLAPACK/lib -lmplapack__Float128 \

-lmpblas__Float128

LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

or (on macOS, mingw64 and CentOS7 amd64)

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test__Float128.cpp -L/home/docker/MPLAPACK/lib -lmplapack__Float128 \

-lmpblas__Float128 -lquadmath

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� double-double version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_dd.cpp -L/home/docker/MPLAPACK/lib -lmplapack_dd -lmpblas_dd -lqd

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� quad-double version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_qd.cpp -L/home/docker/MPLAPACK/lib -lmplapack_qd -lmpblas_qd -lqd

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� GMP version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_gmp.cpp -L/home/docker/MPLAPACK/lib -lmplapack_gmp -lmpblas_gmp \

-lgmpxx -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

� MPFR version

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rsyev_test_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmplapack_mpfr -lmpblas_mpfr \

-lmpfr -lmpc -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

22

The following example shows how to solve a real non-symmetric eigenvalue problem. For example,
let A is four times four matrices:

A =


−2 2 2 2
−3 3 2 2
−2 0 4 2
−1 0 0 5


with eigenvalues λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4 [28]. First, we solve it with dd real class with Rgees.
This routine computes for an N -by-N real nonsymmetric matrix A, the eigenvalues, the real Schur
form T , and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization A = ZTZt.
The matrix A is overwritten by T . The prototype definition of Rgees is following:

void Rgees(const char *jobvs, const char *sort, bool (*select)(dd_real, dd_real),

mplapackint const n, dd_real *a, mplapackint const lda, mplapackint &sdim,

dd_real *wr, dd_real *wi, dd_real *vs, mplapackint const ldvs, dd_real *work,

mplapackint const lwork, bool *bwork, mplapackint &info);

The corresponding LAPACK routine is DGEES. We show 14 lines of DGEES are following.

* SUBROUTINE DGEES(JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,

* VS, LDVS, WORK, LWORK, BWORK, INFO)

*

* .. Scalar Arguments ..

* CHARACTER JOBVS, SORT

* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM

* ..

* .. Array Arguments ..

* LOGICAL BWORK(*)

* DOUBLE PRECISION A(LDA, *), VS(LDVS, *), WI(*), WORK(*),

* $ WR(*)

* ..

* .. Function Arguments ..

* LOGICAL SELECT

* EXTERNAL SELECT

A sample program is following:

1 //public domain

2 #include <iostream>

3 #include <string>

4 #include <sstream>

5 #include <cstring>

6 #include <algorithm>

7

8 #include <mpblas_dd.h>

9 #include <mplapack_dd.h>

10

11 #define DD_PRECISION_SHORT 16

12

13 inline void printnum(dd_real rtmp) {

23

14 std::cout.precision(DD_PRECISION_SHORT);

15 if (rtmp >= 0.0) {

16 std::cout << "+" << rtmp;

17 } else {

18 std::cout << rtmp;

19 }

20 return;

21 }

22

23 //Matlab/Octave format

24 void printvec(dd_real *a, int len) {

25 dd_real tmp;

26 printf("[");

27 for (int i = 0; i < len; i++) {

28 tmp = a[i];

29 printnum(tmp);

30 if (i < len - 1)

31 printf(", ");

32 }

33 printf("]");

34 }

35 void printmat(int n, int m, dd_real * a, int lda)

36 {

37 dd_real mtmp;

38 printf("[");

39 for (int i = 0; i < n; i++) {

40 printf("[");

41 for (int j = 0; j < m; j++) {

42 mtmp = a[i + j * lda];

43 printnum(mtmp);

44 if (j < m - 1)

45 printf(", ");

46 }

47 if (i < n - 1)

48 printf("]; ");

49 else

50 printf("] ");

51 }

52 printf("]");

53 }

54 bool rselect(dd_real ar, dd_real ai) {

55 // sorting rule for eigenvalues.

56 return false;

57 }

58 bool rselect(dd_real ar, dd_real ai) {

59 // sorting rule for eigenvalues.

60 return false;

61 }

62

24

63 int main() {

64 mplapackint n = 4;

65

66 dd_real *a = new dd_real[n * n];

67 dd_real *vs = new dd_real[n * n];

68 mplapackint sdim = 0;

69 mplapackint lwork = 3 * n;

70 dd_real *wr = new dd_real[n];

71 dd_real *wi = new dd_real[n];

72 dd_real *work = new dd_real[lwork];

73 bool bwork[n];

74 mplapackint info;

75 // setting A matrix

76 a[0 + 0 * n] = -2.0; a[0 + 1 * n] = 2.0; a[0 + 2 * n] = 2.0; a[0 + 3 * n] = 2.0;

77 a[1 + 0 * n] = -3.0; a[1 + 1 * n] = 3.0; a[1 + 2 * n] = 2.0; a[1 + 3 * n] = 2.0;

78 a[2 + 0 * n] = -2.0; a[2 + 1 * n] = 0.0; a[2 + 2 * n] = 4.0; a[2 + 3 * n] = 2.0;

79 a[3 + 0 * n] = -1.0; a[3 + 1 * n] = 0.0; a[3 + 2 * n] = 0.0; a[3 + 3 * n] = 5.0;

80

81 printf("# octave check\n");

82 printf("a ="); printmat(n, n, a, n); printf("\n");

83 Rgees("V", "S", rselect, n, a, n, sdim, wr, wi, vs, n, work, lwork, bwork, info);

84 printf("vs ="); printmat(n, n, vs, n); printf("\n");

85 printf("t ="); printmat(n, n, a, n); printf("\n");

86 printf("vs*t*vs’\n");

87 printf("eig(a)\n");

88 for (int i = 1; i <= n; i = i + 1) {

89 printf("w_%d = ", (int)i); printnum(wr[i - 1]); printf(" "); printnum(wi[i - 1]);

printf("i\n");

90 }

91 delete[] work;

92 delete[] wr;

93 delete[] wi;

94 delete[] vs;

95 delete[] a;

96 }

One can compile this source code by:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgees_test_dd.cpp -L/home/docker/MPLAPACK/lib -lmplapack_dd -lmpblas_dd -lqd

The output of the executable is following:

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

octave check

a =[[-2.0000000000000000e+00, +2.0000000000000000e+00, +2.0000000000000000e+00, +2.0000000000000000e+00];

[-3.0000000000000000e+00, +3.0000000000000000e+00, +2.0000000000000000e+00, +2.0000000000000000e+00];

[-2.0000000000000000e+00, +0.0000000000000000e+00, +4.0000000000000000e+00, +2.0000000000000000e+00];

[-1.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +5.0000000000000000e+00]]

vs =[[-7.3029674334022148e-01, -6.8313005106397323e-01, +0.0000000000000000e+00, +0.0000000000000000e+00];

[-5.4772255750516611e-01, +5.8554004376911991e-01, +5.9761430466719682e-01, -2.7760873845656105e-33];

25

[-3.6514837167011074e-01, +3.9036002917941327e-01, -7.1713716560063618e-01, -4.4721359549995794e-01];

[-1.8257418583505537e-01, +1.9518001458970664e-01, -3.5856858280031809e-01, +8.9442719099991588e-01]]

t =[[+1.0000000000000000e+00, -6.9487922897230340e+00, +2.5313275267375116e+00, -1.9595917942265425e+00];

[+0.0000000000000000e+00, +2.0000000000000000e+00, -1.3063945294843617e+00, +7.8558440484957257e-01];

[+0.0000000000000000e+00, +0.0000000000000000e+00, +3.0000000000000000e+00, -1.0690449676496975e+00];

[+0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +4.0000000000000000e+00]]

vs*t*vs’

eig(a)

w_1 = +1.0000000000000000e+00 +0.0000000000000000e+00i

w_2 = +2.0000000000000000e+00 +0.0000000000000000e+00i

w_3 = +3.0000000000000000e+00 +0.0000000000000000e+00i

w_4 = +4.0000000000000000e+00 +0.0000000000000000e+00i

We see that we calculated all the eigenvalues correctly. Moreover, you can check the Schur matrix
by octave.

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | octave

octave: X11 DISPLAY environment variable not set

octave: disabling GUI features

a =

-2 2 2 2

-3 3 2 2

-2 0 4 2

-1 0 0 5

vs =

-0.73030 -0.68313 0.00000 0.00000

-0.54772 0.58554 0.59761 -0.00000

-0.36515 0.39036 -0.71714 -0.44721

-0.18257 0.19518 -0.35857 0.89443

t =

1.00000 -6.94879 2.53133 -1.95959

0.00000 2.00000 -1.30639 0.78558

0.00000 0.00000 3.00000 -1.06904

0.00000 0.00000 0.00000 4.00000

ans =

-2.0000e+00 2.0000e+00 2.0000e+00 2.0000e+00

-3.0000e+00 3.0000e+00 2.0000e+00 2.0000e+00

-2.0000e+00 5.1394e-16 4.0000e+00 2.0000e+00

-1.0000e+00 2.5697e-16 -4.5393e-17 5.0000e+00

ans =

1.00000

2.00000

3.00000

4.00000

w_1 = 1

w_2 = 2

26

w_3 = 3

w_4 = 4

We can see that we calculated all the eigenvalues, the Schur form, and Schur vectors correctly.

Another example shows how to solve real non-symmetric eigenvalue problems with eigenvectors.
Rgeev computes the eigenvalues, and, optionally, the left and/or right eigenvectors for an N by N
real nonsymmetric matrix A. For example, let A is four times four matrices:

A =


4 −5 0 3
0 4 −3 −5
5 −3 4 0
3 0 5 4


Then, the eigenvalues are λ1 = 12, λ2 = 1+ 5i, λ3 = 1− 5i and λ4 = 2 and the right eigenvectors are

x1 =


1

−1
1
1

 , x2 =


1
−i
−i
−1

 , x3 =


1
i
i
−1

 , x4 =


1
1
−1
1

 ,

and the left eigenvectors are

y1 = [1,−1, 1, 1], y2 = [1, i, i,−1], y3 = [1,−i,−i,−1], y4 = [1, 1,−1, 1].

Thus, Ax1 = 12x1, Ax2 = (1 + 5i)x2, Ax3 = (1 − 5i)x3 and Ax4 = 2x4, and y1A = 12y1, and
y2A = (1 + 5i)y2, y3A = (1− 5i)y3, y4A = 2y4.

Let us solve this eigenvalue problem with left and right eigenvectors for A using MPLAPACK
qd real. The prototype definition of Rgeev is following:

void Rgeev(const char *jobvl, const char *jobvr, mplapackint const n, qd_real *a,

mplapackint const lda, qd_real *wr, qd_real *wi, qd_real *vl, mplapackint const ldvl,

qd_real *vr, mplapackint const ldvr, qd_real *work, mplapackint const lwork,

mplapackint &info);

The corresponding LAPACK routine is DGEEV. We show the 14 lines of DGEEV are following.

SUBROUTINE dgeev(JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,

$ LDVR, WORK, LWORK, INFO)

implicit none

*

* -- LAPACK driver routine --

* -- LAPACK is a software package provided by Univ. of Tennessee, --

* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--

*

* .. Scalar Arguments ..

CHARACTER JOBVL, JOBVR

INTEGER INFO, LDA, LDVL, LDVR, LWORK, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), VL(LDVL, *), VR(LDVR, *),

$ wi(*), work(*), wr(*)

27

A sample program is following:

1 //public domain

2 #include <iostream>

3 #include <string>

4 #include <sstream>

5 #include <cstring>

6 #include <algorithm>

7

8 #include <mpblas_qd.h>

9 #include <mplapack_qd.h>

10

11 #define QD_PRECISION_SHORT 16

12

13 inline void printnum(qd_real rtmp) {

14 std::cout.precision(QD_PRECISION_SHORT);

15 if (rtmp >= 0.0) {

16 std::cout << "+" << rtmp;

17 } else {

18 std::cout << rtmp;

19 }

20 return;

21 }

22

23 //Matlab/Octave format

24 void printvec(qd_real *a, int len) {

25 qd_real tmp;

26 printf("[");

27 for (int i = 0; i < len; i++) {

28 tmp = a[i];

29 printnum(tmp);

30 if (i < len - 1)

31 printf(", ");

32 }

33 printf("]");

34 }

35

36 void printmat(int n, int m, qd_real * a, int lda)

37 {

38 qd_real mtmp;

39 printf("[");

40 for (int i = 0; i < n; i++) {

41 printf("[");

42 for (int j = 0; j < m; j++) {

43 mtmp = a[i + j * lda];

44 printnum(mtmp);

45 if (j < m - 1)

46 printf(", ");

47 }

48 if (i < n - 1)

28

49 printf("]; ");

50 else

51 printf("] ");

52 }

53 printf("]");

54 }

55 bool rselect(qd_real ar, qd_real ai) {

56 // sorting rule for eigenvalues.

57 return false;

58 }

59

60 int main() {

61 mplapackint n = 4;

62 qd_real *a = new qd_real[n * n];

63 qd_real *vl = new qd_real[n * n];

64 qd_real *vr = new qd_real[n * n];

65 mplapackint lwork = 4 * n;

66 qd_real *wr = new qd_real[n];

67 qd_real *wi = new qd_real[n];

68 qd_real *work = new qd_real[lwork];

69 mplapackint info;

70 // setting A matrix

71 a[0 + 0 * n] = 4.0; a[0 + 1 * n] = -5.0; a[0 + 2 * n] = 0.0; a[0 + 3 * n] = 3.0;

72 a[1 + 0 * n] = 0.0; a[1 + 1 * n] = 4.0; a[1 + 2 * n] = -3.0; a[1 + 3 * n] = -5.0;

73 a[2 + 0 * n] = 5.0; a[2 + 1 * n] = -3.0; a[2 + 2 * n] = 4.0; a[2 + 3 * n] = 0.0;

74 a[3 + 0 * n] = 3.0; a[3 + 1 * n] = 0.0; a[3 + 2 * n] = 5.0; a[3 + 3 * n] = 4.0;

75

76 printf("# octave check\n");

77 printf("split_long_rows(0)\n");

78 printf("a =");

79 printmat(n, n, a, n);

80 printf("\n");

81 Rgeev("V", "V", n, a, n, wr, wi, vl, n, vr, n, work, lwork, info);

82 printf("# right vectors\n");

83 for (int j = 1; j <= n; j = j + 1) {

84 if (abs(wi[j - 1]) < 1e-15) {

85 printf("vr_%d =[", j);

86 for (int i = 1; i <= n - 1; i = i + 1) {

87 printnum(vr[(i - 1) + (j - 1) * n]); printf(", ");

88 }

89 printnum(vr[(n - 1) + (j - 1) * n]); printf("];\n");

90 } else {

91 printf("vr_%d =[", j);

92 for (int i = 1; i <= n - 1; i = i + 1) {

93 printnum(vr[(i - 1) + (j - 1) * n]); printnum(-vr[(i - 1) + j * n]);

printf("i, ");

94 }

95 printnum(vr[(n - 1) + (j - 1) * n]); printnum(-vr[(n - 1) + j * n]); printf("i

];\n");

29

96 printf("vr_%d =[", j + 1);

97 for (int i = 1; i <= n - 1; i = i + 1) {

98 printnum(vr[(i - 1) + (j - 1) * n]); printnum(vr[(i - 1) + j * n]); printf

("i, ");

99 }

100 printnum(vr[(n - 1) + (j - 1) * n]); printnum(vr[(n - 1) + j * n]); printf("i

];\n");

101 j++;

102 }

103 }

104 printf("# left vectors\n");

105 for (int j = 1; j <= n; j = j + 1) {

106 if (abs(wi[j - 1]) < 1e-15) {

107 printf("vl_%d =[", j);

108 for (int i = 1; i <= n - 1; i = i + 1) {

109 printnum(vl[(i - 1) + (j - 1) * n]); printf(", ");

110 }

111 printnum(vl[(n - 1) + (j - 1) * n]); printf("];\n");

112 } else {

113 printf("vl_%d =[", j);

114 for (int i = 1; i <= n - 1; i = i + 1) {

115 printnum(vl[(i - 1) + (j - 1) * n]); printnum(-vl[(i - 1) + j * n]);

printf("i, ");

116 }

117 printnum(vl[(n - 1) + (j - 1) * n]); printnum(-vl[(n - 1) + j * n]); printf("i

];\n");

118 printf("vl_%d =[", j + 1);

119 for (int i = 1; i <= n - 1; i = i + 1) {

120 printnum(vl[(i - 1) + (j - 1) * n]); printnum(vl[(i - 1) + j * n]); printf

("i, ");

121 }

122 printnum(vl[(n - 1) + (j - 1) * n]); printnum(vl[(n - 1) + j * n]); printf("i

];\n");

123 j++;

124 }

125 }

126 for (int i = 1; i <= n; i = i + 1) {

127 printf("w_%d = ", (int)i); printnum(wr[i - 1]); printf(" "); printnum(wi[i - 1]);

printf("i\n");

128 }

129 for (int i = 1; i <= n; i = i + 1) {

130 printf("disp (\"a * vr_%d\")\n", i);

131 printf("a * vr_%d’\n", i);

132 printf("disp (\"w_%d * vr_%d\")\n", i, i);

133 printf("w_%d * vr_%d’\n", i, i);

134 printf("disp (\"vr_%d\")\n", i);

135 printf("vr_%d’\n", i);

136 }

137

30

138 for (int i = 1; i <= n; i = i + 1) {

139 printf("disp (\"vl_%d * a \")\n", i);

140 printf("vl_%d * a\n", i);

141 printf("disp (\"w_%d * vl_%d \")\n", i, i);

142 printf("w_%d * vl_%d\n", i, i);

143 printf("disp (\"vl_%d\")\n", i);

144 printf("vl_%d\n", i);

145 }

146 delete[] work;

147 delete[] wr;

148 delete[] wi;

149 delete[] vr;

150 delete[] vl;

151 delete[] a;

152 }

You can find this file as
/home/docker/mplapack/examples/mplapack/04 NonsymmetricEigenproblems/Rgeev test qd.cpp

, and compile this source code by:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgeev_test_qd.cpp -L/home/docker/MPLAPACK/lib -lmplapack_qd -lmpblas_qd -lqd

The output of the executable is following:

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

octave check

split_long_rows(0)

a =[[+4.0000000000000000e+00, -5.0000000000000000e+00, +0.0000000000000000e+00, +3.0000000000000000e+00];

[+0.0000000000000000e+00, +4.0000000000000000e+00, -3.0000000000000000e+00, -5.0000000000000000e+00];

[+5.0000000000000000e+00, -3.0000000000000000e+00, +4.0000000000000000e+00, +0.0000000000000000e+00];

[+3.0000000000000000e+00, +0.0000000000000000e+00, +5.0000000000000000e+00, +4.0000000000000000e+00]]

right vectors

vr_1 =[-5.0000000000000000e-01, +5.0000000000000000e-01, -5.0000000000000000e-01, -5.0000000000000000e-01];

vr_2 =[+2.8486703237279396e-65-5.0000000000000000e-01i, +5.0000000000000000e-01+0.0000000000000000e+00i,

+5.0000000000000000e-01+0.0000000000000000e+00i, -9.0207893584718088e-65+5.0000000000000000e-01i];

vr_3 =[+2.8486703237279396e-65+5.0000000000000000e-01i, +5.0000000000000000e-01+0.0000000000000000e+00i,

+5.0000000000000000e-01+0.0000000000000000e+00i, -9.0207893584718088e-65-5.0000000000000000e-01i];

vr_4 =[+5.0000000000000000e-01, +5.0000000000000000e-01, -5.0000000000000000e-01, +5.0000000000000000e-01];

left vectors

vl_1 =[-5.0000000000000000e-01, +5.0000000000000000e-01, -5.0000000000000000e-01, -5.0000000000000000e-01];

vl_2 =[-4.7477838728798994e-65-5.0000000000000000e-01i, +5.0000000000000000e-01+0.0000000000000000e+00i,

+5.0000000000000000e-01-1.7092021942367638e-64i, -3.4184043884735275e-64+5.0000000000000000e-01i];

vl_3 =[-4.7477838728798994e-65+5.0000000000000000e-01i, +5.0000000000000000e-01+0.0000000000000000e+00i,

+5.0000000000000000e-01+1.7092021942367638e-64i, -3.4184043884735275e-64-5.0000000000000000e-01i];

vl_4 =[+5.0000000000000000e-01, +5.0000000000000000e-01, -5.0000000000000000e-01, +5.0000000000000000e-01];

w_1 = +1.2000000000000000e+01 +0.0000000000000000e+00i

w_2 = +1.0000000000000000e+00 +5.0000000000000000e+00i

w_3 = +1.0000000000000000e+00 -5.0000000000000000e+00i

w_4 = +2.0000000000000000e+00 +0.0000000000000000e+00i

...

This can be confirmed by passing the output of the terminal to Octave, as shown below.

31

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | octave

a =

4 -5 0 3

0 4 -3 -5

5 -3 4 0

3 0 5 4

w_1 = 12

w_2 = 1 + 5i

w_3 = 1 - 5i

w_4 = 2

a * vr_1

ans =

-6

6

-6

-6

w_1 * vr_1

ans =

-6

6

-6

-6

vr_1

ans =

-0.50000

0.50000

-0.50000

-0.50000

a * vr_2

ans =

-2.50000 + 0.50000i

0.50000 + 2.50000i

0.50000 + 2.50000i

2.50000 - 0.50000i

w_2 * vr_2

ans =

-2.50000 + 0.50000i

0.50000 + 2.50000i

0.50000 + 2.50000i

2.50000 - 0.50000i

vr_2

ans =

0.00000 + 0.50000i

32

0.50000 - 0.00000i

0.50000 - 0.00000i

-0.00000 - 0.50000i

...

We only show the first part of the output, since the whole output is lengthy. w 1, w 2, w 3 and
w 4 are the eigenvalues. vr 1 and vr 2 are right eigenvectors. You will see you obtained correct
eigenvalues and eigenvectors.

The final example shows how to solve a singular value problem [29]. Let A is 4× 5 as follows:

A =


1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 2 0 0 0


Then, a singular value decomposition of this matrix is given by A = UΣV t as follows.

U =


0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

 ,

Σ =


3 0 0 0 0

0
√
5 0 0 0

0 0 2 0 0
0 0 0 0 0

 ,

and

V t =


0 0 −1 0 0

−
√
0.2 0 0 0 −

√
0.8

0 −1 0 0 0
0 0 0 1 0

−
√
0.8 0 0 0

√
0.2

 .

Let us solve the singular value problem for matrix A using MPLAPACK dd real. The prototype
definition of Rgesvd is following:

void Rgesvd(const char *jobu, const char *jobvt, mplapackint const m,

mplapackint const n, dd_real *a, mplapackint const lda, dd_real *s, dd_real *u,

mplapackint const ldu, dd_real *vt, mplapackint const ldvt, dd_real *work,

mplapackint const lwork, mplapackint &info);

The corresponding LAPACK routine is DGESVD. We show some lines of DGESVD are following.

SUBROUTINE dgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU,

$ VT, LDVT, WORK, LWORK, INFO)

*

* -- LAPACK driver routine --

* -- LAPACK is a software package provided by Univ. of Tennessee, --

33

* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--

*

* .. Scalar Arguments ..

CHARACTER JOBU, JOBVT

INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), S(*), U(LDU, *),

$ vt(ldvt, *), work(*)

* ..

A sample program for dd real is following:

1 //public domain

2 #include <iostream>

3 #include <string>

4 #include <sstream>

5 #include <cstring>

6 #include <algorithm>

7

8 #include <mpblas_dd.h>

9 #include <mplapack_dd.h>

10

11 #define DD_PRECISION_SHORT 16

12

13 inline void printnum(dd_real rtmp) {

14 std::cout.precision(DD_PRECISION_SHORT);

15 if (rtmp >= 0.0) {

16 std::cout << "+" << rtmp;

17 } else {

18 std::cout << rtmp;

19 }

20 return;

21 }

22

23 //Matlab/Octave format

24 void printvec(dd_real *a, int len) {

25 dd_real tmp;

26 printf("[");

27 for (int i = 0; i < len; i++) {

28 tmp = a[i];

29 printnum(tmp);

30 if (i < len - 1)

31 printf(", ");

32 }

33 printf("]");

34 }

35 void printmat(int n, int m, dd_real * a, int lda)

36 {

37 dd_real mtmp;

34

38 printf("[");

39 for (int i = 0; i < n; i++) {

40 printf("[");

41 for (int j = 0; j < m; j++) {

42 mtmp = a[i + j * lda];

43 printnum(mtmp);

44 if (j < m - 1)

45 printf(", ");

46 }

47 if (i < n - 1)

48 printf("]; ");

49 else

50 printf("] ");

51 }

52 printf("]");

53 }

54 int main() {

55 mplapackint n = 5;

56 mplapackint m = 4;

57

58 dd_real *a = new dd_real[m * n];

59 dd_real *s = new dd_real[std::min(m, n)];

60 dd_real *u = new dd_real[m * m];

61 dd_real *vt = new dd_real[n * n];

62 mplapackint lwork = std::max({(mplapackint)1, 3 * std::min(m, n) + std::max(m, n), 5 *

std::min(m, n)});

63 dd_real *work = new dd_real[lwork];

64 mplapackint info;

65

66 // setting A matrix

67 a[0 + 0 * m] = 1.0; a[0 + 1 * m] = 0.0; a[0 + 2 * m] = 0.0; a[0 + 3 * m] = 0.0; a[0

+ 4 * m] = 2.0;

68 a[1 + 0 * m] = 0.0; a[1 + 1 * m] = 0.0; a[1 + 2 * m] = 3.0; a[1 + 3 * m] = 0.0; a[1

+ 4 * m] = 0.0;

69 a[2 + 0 * m] = 0.0; a[2 + 1 * m] = 0.0; a[2 + 2 * m] = 0.0; a[2 + 3 * m] = 0.0; a[2

+ 4 * m] = 0.0;

70 a[3 + 0 * m] = 0.0; a[3 + 1 * m] = 2.0; a[3 + 2 * m] = 0.0; a[3 + 3 * m] = 0.0; a[3

+ 4 * m] = 0.0;

71

72 printf("# octave check\n");

73 printf("a ="); printmat(m, n, a, m); printf("\n");

74 Rgesvd("A", "A", m, n, a, m, s, u, m, vt, n, work, lwork, info);

75 printf("s="); printvec(s, std::min(m, n)); printf("\n");

76 if (m < n)

77 printf("padding=zeros(%d, %d-%d)\n", (int)m, (int)n, (int)m);

78 if (n < m)

79 printf("padding=zeros(%d-%d,%d)\n", (int)m, (int)n, (int)n);

80 printf("u ="); printmat(m, m, u, m); printf("\n");

81 printf("vt ="); printmat(n, n, vt, n); printf("\n");

35

82 printf("svd(a)\n");

83 if (m < n)

84 printf("sigma=[diag(s) padding] \n");

85 if (n < m)

86 printf("sigma=[diag(s); padding] \n");

87 if (n == m)

88 printf("sigma=[diag(s)] \n");

89 printf("sigma \n");

90 printf("u * sigma * vt\n");

91 delete[] work;

92 delete[] vt;

93 delete[] u;

94 delete[] s;

95 delete[] a;

96 }

You can find corresponding example files for various mutiple-precision verions as Rgesvd test Float128.cpp,
Rgesvd test dd.cpp, Rgesvd test gmp.cpp, Rgesvd test qd.cpp, Rgesvd test Float64x.cpp,
Rgesvd test double.cpp, and Rgesvd test mpfr.cpp

at /home/docker/mplapack/examples/mplapack/05 SingularValueDecomposition/. In dd real

case, you can compile dd real version by:

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgesvd_test_dd.cpp -L/home/docker/MPLAPACK/lib -lmplapack_dd -lmpblas_dd -lqd

The output of the executable is following:

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out

octave check

a =[[+1.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00,

+2.0000000000000000e+00]; [+0.0000000000000000e+00, +0.0000000000000000e+00, +3.0000000000000000e+00,

+0.0000000000000000e+00, +0.0000000000000000e+00]; [+0.0000000000000000e+00, +0.0000000000000000e+00,

+0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00]; [+0.0000000000000000e+00,

+2.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00]]

s=[+3.0000000000000000e+00, +2.2360679774997897e+00, +2.0000000000000000e+00, +0.0000000000000000e+00]

padding=zeros(4, 5-4)

u =[[+0.0000000000000000e+00, +1.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00];

[+1.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00];

[+0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, -1.0000000000000000e+00];

[+0.0000000000000000e+00, +0.0000000000000000e+00, +1.0000000000000000e+00, +0.0000000000000000e+00]]

vt =[[+0.0000000000000000e+00, +0.0000000000000000e+00, +1.0000000000000000e+00, +0.0000000000000000e+00,

+0.0000000000000000e+00]; [+4.4721359549995794e-01, +0.0000000000000000e+00, +0.0000000000000000e+00,

+0.0000000000000000e+00, +8.9442719099991588e-01]; [+0.0000000000000000e+00, +1.0000000000000000e+00,

+0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00]; [+0.0000000000000000e+00,

+0.0000000000000000e+00, +0.0000000000000000e+00, +1.0000000000000000e+00, +0.0000000000000000e+00];

[-8.9442719099991588e-01,

+0.0000000000000000e+00, +0.0000000000000000e+00, +0.0000000000000000e+00, +4.4721359549995794e-01]]

svd(a)

sigma=[diag(s) padding]

sigma

u * sigma * vt

To better readability, you can pass the output to the octave. The output is following:

36

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | octave

octave: X11 DISPLAY environment variable not set

octave: disabling GUI features

a =

1 0 0 0 2

0 0 3 0 0

0 0 0 0 0

0 2 0 0 0

s =

3.00000 2.23607 2.00000 0.00000

padding =

0

0

0

0

u =

0 1 0 0

1 0 0 0

0 0 0 -1

0 0 1 0

vt =

0.00000 0.00000 1.00000 0.00000 0.00000

0.44721 0.00000 0.00000 0.00000 0.89443

0.00000 1.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 1.00000 0.00000

-0.89443 0.00000 0.00000 0.00000 0.44721

ans =

3.00000

2.23607

2.00000

0.00000

sigma =

3.00000 0.00000 0.00000 0.00000 0.00000

0.00000 2.23607 0.00000 0.00000 0.00000

0.00000 0.00000 2.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

sigma =

3.00000 0.00000 0.00000 0.00000 0.00000

0.00000 2.23607 0.00000 0.00000 0.00000

0.00000 0.00000 2.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

37

ans =

1 0 0 0 2

0 0 3 0 0

0 0 0 0 0

0 2 0 0 0

You will see that Rgesvd, the singular value decomposition solver solved the problem correctly.

There are more examples in /home/docker/mplapack/examples/mplapack/ as follows:

� 00 LinearEquations/Cgetri test *.cpp ... samples of inversion of complex matrices

� 00 LinearEquations/Rgesv test *.cpp ... samples of solving linear equation of real matrices

� 00 LinearEquations/Rgetri Hilbert *.cpp ... samples of inversion of Hilbert matrices of
various orders.

� 00 LinearEquations/Rgetri test*.cpp ... samples of inversion of real matrices.

� 03 SymmetricEigenproblems/Cheev test *.cpp ... samples of diagonalization of Hermitian
matrices.

� 03 SymmetricEigenproblems/Rsyev Frank *.cpp ... samples of diagonalization of real Frank
matrices.

� 03 SymmetricEigenproblems/Rsyev test *.cpp ... samples of diagonalization of real matrices.

� 03 SymmetricEigenproblems/Rsyevd DingDong *.cpp ... samples of diagonalization of Ding
Dong matrices.

� 03 SymmetricEigenproblems/Rsyevd Frank *.cpp ... samples of diagonalization of real Frank
matrices using divide-and-conquer driver.

� 03 SymmetricEigenproblems/Rsyevr Frank *.cpp ... samples of diagonalization of real Frank
matrices using relatively robust representation driver.

� 04 NonsymmetricEigenproblems/Rgees Grcar *.cpp ... samples of solving non-symmetic eigen-
values problem using Grcar matrix (Schur form)

� 04 NonsymmetricEigenproblems/Rgees readfromfile *.cpp ... samples of solving non-symmetic
eigenvalues problem using matrix from a file (Schur form)

� 04 NonsymmetricEigenproblems/Rgees test *.cpp ... samples of solving simple non-symmetic
eigenvalues problem (Schur form)

� 04 NonsymmetricEigenproblems/Rgeev Frank *.cpp ... samples of solving non-symmetic eigen-
values problem for Frank matrix

� 04 NonsymmetricEigenproblems/Rgeev random highcond *.cpp ... samples of solving non-
symmetic eigenvalues problem for high conditioned random matrix

38

� 04 NonsymmetricEigenproblems/Rgeev readfromfile *.cpp ... samples of solving non-symmetic
eigenvalues problem using matrix from a file

� 04 NonsymmetricEigenproblems/Rgeev test *.cpp .. samples of solving simple non-symmetic
eigenvalues problem

� 05 SingularValueDecomposition/Rgesvd random highcond *.cpp ...samples of solving singu-
lar value decomposition problem for matrices with high condition numbers

� 05 SingularValueDecomposition/Rgesvd readfromfile *.cpp ... samples of singular value
decomposition problems using matrix from a file

� 05 SingularValueDecomposition/Rgesvd test *.cpp ... samples of simple singular value de-
composition problems

6.5 Rlamch values and specifying precision at runtime

For MPLAPACK, Rlamch routines are vital since they return precision-specific constants. Exceed-
ingly, these values control convergence behaviors for such as eigenvalue problems and singular value
problems. Thus, for example, we cannot say binary128 version of MPLAPACK routines run output
if we use the same Rlamch values for binary64 and vice versa. In table 9, we show Rlamch values for
MPFR. The default accuracy for MPFR is approximately 154 decimal digits (154.127 = 512 log10 2). In
table 10, we show Rlamch values for MPFR with MPLAPACK MPFR PRECISION=65536. This accuracy is
approximately 19728 decimal digits (19728 = 65536 log10 2).

In table 11, we show Rlamch values for GMP. The default accuracy for MPFR is approximately
154 decimal digits (154.127 = 512 log10 2). In table 12, we show Rlamch values with for GMP with
MPLAPACK GMP PRECISION=1024. This accuracy is approximately 308 decimal digits (308.25 = 1024 log10 2).
In table 13, we show Rlamch values for Float128. In table 14, we show Rlamch values for Float64x.
In table 15, we show Rlamch values for double. In table 16, we show Rlamch values for dd real.
We intentionally reduce the overflow values so that sqrt does not fail. In table 17, we show Rlamch
values for qd real, respectively.

We can change the default precision at runtime for GMP and MPFR by setting environment variable,
MPLAPACK GMP PRECISION and MPLAPACK MPFR PRECISION, respectively.

Let us show an example by inverting Hilerbt matrix. Rgetri Hilbert mpfr inverts Hilbert matrix
of order n, where n = 1, 2, · · · via LU decomposition. a is the Hilbert matrix and ainv is inverted
matrix, and InfnormL is the residuals.

The output is following:

$ cd /home/docker/mplapack/examples/mplapack/00_LinearEquations

$ g++ -O2 -I/home/docker/MPLAPACK/include -I/home/docker/MPLAPACK/include/mplapack \

Rgetri_Hilbert_mpfr.cpp -L/home/docker/MPLAPACK/lib -lmplapack_mpfr -lmpblas_mpfr \

-lmpfr -lmpc -lgmp

$ LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | grep InfnromL

InfnormL:(ainv * a - I)=+0.0000000000000000e+00

InfnormL:(ainv * a - I)=+0.0000000000000000e+00

InfnormL:(ainv * a - I)=+4.7733380679681323e-153

InfnormL:(ainv * a - I)=+7.6373409087490117e-152

39

Table 9: Rlamch values for MPFR (default setting)

Rlamch E: Epsilon +7.4583407312002067e-155

Rlamch S: Safe minimum +9.5302596195518043e-323228497

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +1.4916681462400413e-154

Rlamch N: Number of digits in mantissa +5.1200000000000000e+02

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -1.0737418230000000e+09

Rlamch U: Underflow threshold +9.5302596195518043e-323228497

Rlamch L: Largest exponent +1.0737418220000000e+09

Rlamch O: Overflow threshold +2.0985787164673877e+323228496

Rlamch -: Reciprocal of safe minimum +1.0492893582336938e+323228496

InfnormL:(ainv * a - I)=+2.4439490907996837e-150

InfnormL:(ainv * a - I)=+1.1730955635838482e-148

InfnormL:(ainv * a - I)=+2.1897783853565166e-147

InfnormL:(ainv * a - I)=+6.0062492855493028e-146

InfnormL:(ainv * a - I)=+2.7228330094490173e-144

InfnormL:(ainv * a - I)=+8.2005323578699814e-143

...

$ MPLAPACK_MPFR_PRECISION=65536 LD_LIBRARY_PATH=/home/docker/MPLAPACK/lib ./a.out | \

grep InfnromL

InfnormL:(ainv * a - I)=+0.0000000000000000e+00

InfnormL:(ainv * a - I)=+0.0000000000000000e+00

InfnormL:(ainv * a - I)=+3.9929525776415436e-19728

InfnormL:(ainv * a - I)=+5.1109792993811758e-19726

InfnormL:(ainv * a - I)=+3.2710267516039525e-19724

InfnormL:(ainv * a - I)=+5.2336428025663240e-19723

InfnormL:(ainv * a - I)=+8.3738284841061184e-19722

InfnormL:(ainv * a - I)=+5.0242970904636710e-19720

InfnormL:(ainv * a - I)=+1.0718500459655832e-19718

...

In the first case, we calculate in 512 bit accuracy or 154 decimal digit accuracy (154.127 = 512 log10 2),
and the next case we calculate in 65536 bit accuracy or 19728 decimal digits accuracy (19728 =
65536 log10 2). The results show we can specify how many bits are for multiple-precision calculations
at the runtime.

6.6 Summary: a basic strategy to use MPBLAS and MPLAPACK

Unfortunately, We do not provide concise manuals for MPBLAS and MPLAPACK since LAPACK
is very well documented. If you want to use some specific routines, first consult LAPACK users’
guide [3], or alternatively, https://www.netlib.org/lapack/lug/.

Following is the basic strategy to use MPLAPACK routines.

40

Table 10: Rlamch values for MPFR (MPLAPACK MPFR PRECISION=65536)

Rlamch E: Epsilon +4.9911907220519295e-19729

Rlamch S: Safe minimum +9.5302596195518043e-323228497

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +9.9823814441038589e-19729

Rlamch N: Number of digits in mantissa +6.5536000000000000e+04

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -1.0737418230000000e+09

Rlamch U: Underflow threshold +9.5302596195518043e-323228497

Rlamch L: Largest exponent +1.0737418220000000e+09

Rlamch O: Overflow threshold +2.0985787164673877e+323228496

Rlamch -: Reciprocal of safe minimum +1.0492893582336938e+323228496

Table 11: Rlamch values for GMP (default setting)

Rlamch E: Epsilon +7.4583407312002067e-155

Rlamch S: Safe minimum +6.4447927660133239e-1292913987

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +1.4916681462400413e-154

Rlamch N: Number of digits in mantissa +5.1200000000000000e+02

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -4.2949672950000000e+09

Rlamch U: Underflow threshold +6.4447927660133239e-1292913987

Rlamch L: Largest exponent +4.2949672950000000e+09

Rlamch O: Overflow threshold +1.5516402719316431e+1292913986

Rlamch -: Reciprocal of safe minimum +1.5516402719316431e+1292913986

Table 12: Rlamch values for GMP with MPLAPACK GMP PRECISION=1024

Rlamch E: Epsilon +5.5626846462680035e-309

Rlamch S: Safe minimum +6.4447927660133239e-1292913987

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +1.1125369292536007e-308

Rlamch N: Number of digits in mantissa +1.0240000000000000e+03

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -4.2949672950000000e+09

Rlamch U: Underflow threshold +6.4447927660133239e-1292913987

Rlamch L: Largest exponent +4.2949672950000000e+09

Rlamch O: Overflow threshold +1.5516402719316431e+1292913986

Rlamch -: Reciprocal of safe minimum +1.5516402719316431e+1292913986

41

Table 13: Rlamch values for Float128

Rlamch E: Epsilon +1.9259299443872359e-34

Rlamch S: Safe minimum +3.3621031431120935e-4932

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +3.8518598887744717e-34

Rlamch N: Number of digits in mantissa +1.1300000000000000e+02

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -1.6381000000000000e+04

Rlamch U: Underflow threshold +3.3621031431120935e-4932

Rlamch L: Largest exponent +1.6384000000000000e+04

Rlamch O: Overflow threshold +1.1897314953572318e+4932

Rlamch -: Reciprocal of safe minimum +2.9743287383930794e+4931

Table 14: Rlamch values for Float64x

Rlamch E: Epsilon +5.4210108624275222e-20

Rlamch S: Safe minimum +3.3621031431120935e-4932

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +1.0842021724855044e-19

Rlamch N: Number of digits in mantissa +6.4000000000000000e+01

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -1.6381000000000000e+04

Rlamch U: Underflow threshold +3.3621031431120935e-4932

Rlamch L: Largest exponent +1.6384000000000000e+04

Rlamch O: Overflow threshold +1.1897314953572318e+4932

Rlamch -: Reciprocal of safe minimum +2.9743287383930794e+4931

Table 15: Rlamch values for double

Rlamch E: Epsilon +1.1102230246251565e-16

Rlamch S: Safe minimum +2.2250738585072014e-308

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +2.2204460492503131e-16

Rlamch N: Number of digits in mantissa +5.3000000000000000e+01

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -1.0210000000000000e+03

Rlamch U: Underflow threshold +2.2250738585072014e-308

Rlamch L: Largest exponent +1.0240000000000000e+03

Rlamch O: Overflow threshold +1.7976931348623157e+308

Rlamch -: Reciprocal of safe minimum +4.4942328371557898e+307

42

Table 16: Rlamch values for dd real

Rlamch E: Epsilon +4.9303806576313200e-32

Rlamch S: Safe minimum +2.0041683600089728e-292

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +9.8607613152626399e-32

Rlamch N: Number of digits in mantissa +1.0400000000000000e+02

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -9.6900000000000000e+02

Rlamch U: Underflow threshold +2.0041683600089728e-292

Rlamch L: Largest exponent +1.0240000000000000e+03

Rlamch O: Overflow threshold +1.9958403095347197e+292

Rlamch -: Reciprocal of safe minimum +4.9896007738367995e+291

Table 17: Rlamch values for qd real

Rlamch E: Epsilon +1.2154326714572501e-63

Rlamch S: Safe minimum +1.6259745436952323e-260

Rlamch B: Base +2.0000000000000000e+00

Rlamch P: Precision +2.4308653429145001e-63

Rlamch N: Number of digits in mantissa +2.0800000000000000e+02

Rlamch R: Rounding mode +1.0000000000000000e+00

Rlamch M: Minimum exponent: -8.6300000000000000e+02

Rlamch U: Underflow threshold +1.6259745436952323e-260

Rlamch L: Largest exponent +1.0240000000000000e+03

Rlamch O: Overflow threshold +1.9958403095347197e+292

Rlamch -: Reciprocal of safe minimum +6.1501577861568104e+259

43

1. See https://www.netlib.org/lapack/lug/node25.html to find the name of driver routine.

2. For example, If you want to compute the generalized singular values and vectors of a matrix A,
you will find the routine name as DGGSVD in https://www.netlib.org/lapack/lug/node36.html.

3. Find the definition part of DGGSVD by download LAPACK and extract to find dggsvd.f or you
can find on the internet https://www.netlib.org/lapack/explore-html/dd/db4/dggsvd 8f.html.

4. Look for Rggsvd prototype definition of MPLAPACK and change the variables appropriately to
fit to MPLAPACK.

7 Quality assurance of MPBLAS and MPLAPACK

7.1 Testing MPBLAS routines

We performed quality assurance of MPBLAS as follows.

1. We believe no bugs in the reference BLAS [2].

2. We input random values of binary64 for matrices, vectors, and scalars to BLAS and MPFR
version of MPBLAS for various sizes of matrices, vector, and leading dimensions (It means
MPBLAS and BLAS may fail with error codes) to a routine.

3. If the difference between the two results is within tolerance, we regard the quality as assured for
the MPFR version of MPBLAS the routine.

4. We also check the error codes by xerbla and Mxerbla and always these error codes are the same
for the routine.

5. Do the same checks for all routines in Table 3.

6. Then, we input random values of a multiple precision type (e.g., Float128) for matrices, vectors,
and scalars to this version of MPBLAS and MPFR version MPBLAS for various sizes of the
matrix, vector, and leading dimensions.

7. If the difference between two results is within tolerance, we regard the quality as assured for the
multiple-precision type version of MPBLAS.

Since MPBLAS routines only consist of algebraic operations, this method ensures that all routines
are correctly implemented.

7.2 Testing MPLAPACK routines

Until version 0.9.4, we did the same method for quality assurance of MPLAPACK. From version
1.0.0, we ported lapack-3.9.1/TESTING/LIN and lapack-3.9.1/TESTING/EIG for all precisions using
FABLE. The original test programs use the FORMAT statement extensively. Interestingly, FABLE and
FABLE’s Fortran EMulator library translate these FORMAT statements almost perfectly except for
printing out multiple-precision floating-point numbers. Thus our modifications to the testing routines
were minimal. Furthermore, it took several months to pass all the tests for the MPFR version.

First, we review how to test LAPACK linear routines:

44

$ cd /home/docker/mplapack/external/lapack/work/internal/lapack-3.9.1/TESTING/LIN/

$./xlintstd < ../dtest.in

Tests of the DOUBLE PRECISION LAPACK routines

LAPACK VERSION 3.9.1

The following parameter values will be used:

M : 0 1 2 3 5 10 50

N : 0 1 2 3 5 10 50

NRHS: 1 2 15

NB : 1 3 3 3 20

NX : 1 0 5 9 1

RANK: 30 50 90

Routines pass computational tests if test ratio is less than 30.00

Relative machine underflow is taken to be 0.222507-307

Relative machine overflow is taken to be 0.179769+309

Relative machine precision is taken to be 0.111022D-15

DGE routines passed the tests of the error exits

All tests for DGE routines passed the threshold (3653 tests run)

DGE drivers passed the tests of the error exits

All tests for DGE drivers passed the threshold (5748 tests run)

DGB routines passed the tests of the error exits

...

We omit the details of how we test the linear routines, but ./xlintstd tests all the linear routines
used in LAPACK. Details can be found in the literature [30].

Corresponding ported testing programs for linear routines /home/docker/mplapack/mplapack/test/lin
are following:

� mpfr/xlintstC mpfr

� mpfr/xlintstR mpfr

� double/xlintstC double

� double/xlintstR double

� Float64x/xlintstC Float64x

� Float64x/xlintstR Float64x

� Float128/xlintstC Float128

45

� Float128/xlintstR Float128

� dd/xlintstC dd

� dd/xlintstR dd

� gmp/xlintstC gmp

� gmp/xlintstR gmp

� qd/xlintstC qd

� qd/xlintstR qd

where we add suffix “R” + “mplib” or “C” + “mplib” for xlintst, respectively.

We test MPLAPACK routines for MPFR as follows:

$ cd /home/docker/mplapack/mplapack/test/lin/mpfr

$./xlintstR_mpfr < ../Rtest.in

Tests of the Multiple precision version of LAPACK MPLAPACK VERSION 1.0.0

Based on the original LAPACK VERSION 3.9.1

The following parameter values will be used:

M : 0 1 2 3 5 10 50

N : 0 1 2 3 5 10 50

NRHS : 1 2 15

NB : 1 3 3 3 20

NX : 1 0 5 9 1

RANK : 30 50 90

Routines pass computational tests if test ratio is less than 30.00

Relative machine underflow is taken to be : +9.5302596195518043e-323228497

Relative machine overflow is taken to be : +2.0985787164673877e+323228496

Relative machine precision is taken to be : +7.4583407312002067e-155

RGE routines passed the tests of the error exits

All tests for RGE routines passed the threshold (3653 tests run)

RGE drivers passed the tests of the error exits

All tests for RGE drivers passed the threshold (5748 tests run)

RGB routines passed the tests of the error exits

All tests for RGB routines passed the threshold (28938 tests run)

RGB drivers passed the tests of the error exits

All tests for RGB drivers passed the threshold (36567 tests run)

RGT routines passed the tests of the error exits

46

All tests for RGT routines passed the threshold (2694 tests run)

RGT drivers passed the tests of the error exits

All tests for RGT drivers passed the threshold (2033 tests run)

RPO routines passed the tests of the error exits

All tests for RPO routines passed the threshold (1628 tests run)

RPO drivers passed the tests of the error exits

All tests for RPO drivers passed the threshold (1910 tests run)

RPS routines passed the tests of the error exits

All tests for RPS routines passed the threshold (150 tests run)

RPP routines passed the tests of the error exits

...

The file Rtest.in is same as dtest.in of LAPACK, except for the first comment line. For other
precisions, we similarly performed tests. We verified that all tests passed for all precisions. Currently,
complex versions do not pass for driver routines. Nevertheless, users can test MPLAPACK complex
linear routine using Ctest.in by modifying the 15-th line from “T” to “F” so that not to test driver
routines, many tests pass. Thus, users can use complex routines with caution.

Next, we review how to test LAPACK EIG as follows:

$ cd /home/docker/mplapack/external/lapack/work/internal/lapack-3.9.1/TESTING/EIG/

$./xeigtstd < ../nep.in

Tests of the Nonsymmetric Eigenvalue Problem routines

LAPACK VERSION 3.9.1

The following parameter values will be used:

M: 0 1 2 3 5 10 16

N: 0 1 2 3 5 10 16

NB: 1 3 3 3 20

NBMIN: 2 2 2 2 2

NX: 1 0 5 9 1

INMIN: 11 12 11 15 11

INWIN: 2 3 5 3 2

INIBL: 0 5 7 3 200

ISHFTS: 1 2 4 2 1

IACC22: 0 1 2 0 1

Relative machine underflow is taken to be 0.222507-307

Relative machine overflow is taken to be 0.179769+309

Relative machine precision is taken to be 0.111022D-15

Routines pass computational tests if test ratio is less than 20.00

47

DHS routines passed the tests of the error exits (66 tests done)

...

There are 20 input files for testing eigenvalue problem, singular value problems, least square fitting
problems, other related routines. For MPLAPCK, we use following input files:

Rbak.in Rbal.in Rbb.in Rec.in Red.in Rgbak.in

Rgbal.in Rgd.in Rgg.in Rsb.in Rsg.in csd.in glm.in

gqr.in gsv.in lse.in nep.in se2.in sep.in svd.in

We modified original Rbak.in, Rbak.in, Rbal.in, Rbb.in, Rec.in Red.in, Rgbak.in, Rgbal.in,
Rgd.in, Rgg.in, Rsb.in and Rsg.in so that testing program can process the data correctly.

Corresponding ported testing programs for eigenvalues and sigular value problme solver routines
are in /home/docker/mplapack/mplapack/test/eig, and we list them as follows:

� mpfr/xeigtstC mpfr

� mpfr/xeigtstR mpfr

� Float128/xeigtstC Float128

� Float128/xeigtstR Float128

� Float64x/xeigtstC Float64x

� Float64x/xeigtstR Float64x

� dd/xeigtstC dd

� dd/xeigtstR dd

� double/xeigtstC double

� double/xeigtstR double

� gmp/xeigtstC gmp

� gmp/xeigtstR gmp

� qd/xeigtstC qd

� qd/xeigtstR qd

where we add suffix “R” + “mplib” or “C” + “mplib” for xeigtst, respectively.

We test MPLAPACK routines for MPFR as follows:

$ cd /home/docker/mplapack/mplapack/test/eig/mpfr

$./xeigtstR_mpfr < ../svd.in

Tests of the Singular Value Decomposition routines

Tests of the Multiple precision version of LAPACK MPLAPACK VERSION 1.0.0

48

Based on original LAPACK VERSION 3.9.1

The following parameter values will be used:

M: 0 0 0 1 1 1 2 2 3 3

3 10 10 16 16 30 30 40 40

N: 0 1 3 0 1 2 0 1 0 1

3 10 16 10 16 30 40 30 40

NB: 1 3 3 3 20

NBMIN: 2 2 2 2 2

NX: 1 0 5 9 1

NS: 2 0 2 2 2

Relative machine underflow is taken to be+9.5302596195518043e-323228497

Relative machine overflow is taken to be+2.0985787164673877e+323228496

Relative machine precision is taken to be+7.4583407312002067e-155

Routines pass computational tests if test ratio is less than+5.0000000000000000e+01

DBD routines passed the tests of the error exits (55 tests done)

Rgesvd passed the tests of the error exits (8 tests done)

Rgesdd passed the tests of the error exits (6 tests done)

Rgejsv passed the tests of the error exits (11 tests done)

Rgesvdx passed the tests of the error exits (12 tests done)

Rgesvdq passed the tests of the error exits (11 tests done)

SVD: NB = 1, NBMIN = 2, NX = 1, NRHS = 2

All tests for DBD routines passed the threshold (10260 tests run)

....

We performed tests for all the 20 testing files for all real precision versions. All the tests passed for
mpfr/xeigtstR mpfr, dd/xeigtstR dd, double/xeigtstR double, Float128/xeigtstR Float128

and Float64x/xeigtstR Float64x. Some failures are using gmp/xeigtstR gmp, and the errors are
related to precision loss in arithmetic; we should raise error threshold by a factor of 10 or 100, and
we do not consider such precision loesses are serious, as we can raise precision at runtime. We do
not perform test for csd.in, because GMP does not have trigonometric functions. MPLAPACK stops
when users try to use cosine sine decomposition. We do not fix these failures and planning to drop
the GMP version and integrate it into the MPFR version in version 3.0.0. Besides, some failures are
using qd/xeigtstR qd, and the errors are related to underflow. This will be fixed in the next version.
Currently, complex versions are not ready for use. The LAPACK routines passes the tests, but driver
routines are broken. We will fix in version 2.0.

In summary, MPLAPACK routines for all real precisions are reliable.

49

8 Fortran90 to C++ Conversion

Until MPLAPACK 0.9.3, we used f2c to convert FORTRAN77 routines to C (until version 3.1.1,
LAPACK only required the FORTRAN77 compiler). Unfortunately, the resultant source code was
tough to read by a human; we replaced many tokens heavily using sed, and finally converted them to
user-friendly, easy-to-read C++ programs by hand.

We simply use REAL, COMPLEX, INTEGER, LOGICAL, and BOOL to support all floating-
point types. These types are abstract, and using typedef to specify the actual floating-point type
(e.g., typedef mpf class REAL for GMP. See mplapack/include/mplapack.h for details).

The main differences between Fortran and C++ are: (i) array index starts from one, (ii) loop index
may be incremented or decremented depending on its context, (iii) treatment of two-dimension arrays,
(iv) when calling subroutines, the values are always referenced by FORTRAN, but we can choose call
by value or call by reference in C++. For (i), we use the same array index and decrements the index
when accessing the array. (ii) we judge the direction of loop by hand, (iii) we expand two-dimension
array using the leading dimension; we translate a(i,j) to a[(i-1) + (j-1) * lda], and (iv) we
changed call by value when possible.

In MPLAPACK 1.0.0, we used FABLE [31] to convert all BLAS and LAPACK routines. In the
original paper, they could translate dsyev.f without modifications. However, the resultant source
code also depends on Fortran Emulation Module (FEM), which is unnecessary for the MPBLAS and
MPLAPACK parts, and the treatment of the array is a bit unnatural. To make the resultant C++ code
more natural and readable, we further patched cout.py and passed through sed. Then, we modified
the source codes by hand. For MPBLAS, conversion is almost automatic. For MPLAPACK, there
are many hand-corrected minor syntax errors, interpretation of numbers, casts, and other corrections,
but we can compile many of them without modifications.

More important part is translation of TESTING/LIN and TESTING/EIG from Fortran90 to C++.
Thanks to FEM, the written statement of Fortran can be used directly without modifications. Ac-
cording to ChangeLog, it took approximately three weeks to just compile programs in
TESTING/LIN/xlint{C,R} mpfr and TESTING/EIG/xeigtst{C,R} mpfr for MPFR, although through
check the results are required, and it took four months for real version and still ongoing for complex
version.

9 Benchmarks

We have provided reference implementation as well as a simple OpenMP accelerated version for
MPBLAS. It is shown in Table 4. In Figure 1, we show the result of Raxpy performance for Float128,
Float64x, double and double-double, and Figure 2 shows the Raxpy performance for GMP, MPFR,
and quad-double, with and without optimization. We used CPU for AMD Ryzen 3970X, 256GB of
DDR4 3200MHz memory (ECC Unbuffered), and took benchmark inside Docker environment. GCC
version was 9.3.0.

For these benchmarks, We performed Raxpy calculations for each precision ten times and took
the average for OpenMP implementations, and three times for the reference implementations. The
peak performance of the reference Float128 version was approximately 60 MFlops, and 2.2 GFlops
for the OpenMP version. The peak performance of the reference Float64x version was approxi-
mately 660 MFlops, and 7.0 GFlops for the OpenMP version. The peak performance of the reference

50

Figure 1: Raxpy performance on AMD Ryzen 3970X for Float128, Float64x, double-double,
double and (simple) OpenMP accelrated results.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50000 100000 150000 200000 250000 300000

M
F

LO
P

S

Dimension

Raxpy performance on AMD Ryzen Threadripper 3970X

_Float128
_Float128 (OpenMP)

_Float64x
_Float64x (OpenMP)

double double
double double (OpenMP)

double
double (OpenMP)

double-double version was approximately 365 MFlops, and 6.0 GFlops for the OpenMP version. The
double version is the fastest, and the peak was 8 GFlops for reference , and 17 GFlops for the OpenMP
version. These results are not competitive to OpenBLAS or Intel MKL. The peak performance of the
reference GMP version was 20 MFlops (512bit accuracy; default), and 750 MFlops OpenMP enabled.
The peak performance of the reference quad-double version was 32 MFlops, and 1.3 GFlops OpenMP
enabled. The peak performance of reference MPFR version was 10 MFlops (512bit accuracy; default),
and 400 MFlops OpenMP enabled. Thus, the MPFR version is twice as slower than the GMP, this is an
unexpected result. One possible reason might be the C++ binding for MPFR do unnecessary copies
whereas GMP does not, because GMP C++ binding tries to reduce copies multiple-precision numbers
using template programming.

In any case, enabling OpenMP will significantly increase the performance of Raxpy. However, the
performances are not stable; as we can see from the figures, there is some considerable performance
degradation especially using quad-double, GMP and MPFR.

Users can take performance benchmark on your machine:

$ cd /home/docker/mplapack/benchmark/mpblas

$ bash -x go.Raxpy.sh

and resultant files are Raxpy1.eps and Raxpy2.eps. They correspond to Figure 1 and Figure 2.

In Figure 3, we show the result of Rgemm performance for Float128, Float64x, double and double-double,
and Figure 4 shows the Rgemm performance for GMP, MPFR, and quad-double, with and without op-
timization. We used CPU for AMD Ryzen 3970X, 256GB of DDR4 3200MHz memory (ECC is not
enabled), and took benchmark inside Docker environment. GCC version was 9.3.0.

51

Figure 2: Raxpy performance on AMD Ryzen 3970X for quad-double, GMP and MPFR, and (simple)
OpenMP accelrated results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000 200000 250000 300000

M
F

LO
P

S

Dimension

Raxpy performance on AMD Ryzen Threadripper 3970X

GMP
GMP (OpenMP)

MPFR
MPFR (OpenMP)

quad-double
quad-double (OpenMP)

For these benchmarks, We performed Rgemm calculations for each precision five times and took the
average for OpenMP implementations and three times for the reference implementations. We used
square matrices for the benchmarks. The peak performance of the reference Float128 version was
approximately 64 MFlops, and 2.4 GFlops for the OpenMP version.

The peak performance of the reference Float64x version was approximately 665 MFlops, and
18.8 GFlops for the OpenMP version. The peak performance of the reference double-double version
was approximately 365 MFlops, and 11.2 GFlops for the OpenMP version. The double version is the
fastest, and the peak was 6.8 GFlops for reference and 15 GFlops for the OpenMP version. These
results are not competitive to OpenBLAS or Intel MKL. DGEMM performance by OpenBLAS was
1.46 TBFlops with Ryzen Threadripper 3970X (This performance is almost 77% of theoretical peak
performance at rated core clock; 1.89 TFlops= 3.7[GHz] × 16 [AVX2] × 32 (cores)).

The peak performance of the reference GMP version was 19 MFlops (512bit accuracy; default), and
693 MFlops OpenMP enabled. The peak performance of the reference quad-double version was 33
MFlops, and 1.3 GFlops OpenMP enabled. The peak performance of reference MPFR version was 11
MFlops (512bit accuracy; default), and 390 MFlops OpenMP enabled. Thus, the MPFR version is twice
as slower than the GMP.

In any case, enabling OpenMP will significantly increase the performance of Rgemm. Moreover, the
performances are stabler than Raxpy results.

Users can take performance benchmark on your machine:

$ cd /home/docker/mplapack/benchmark/mpblas

$ bash -x go.Rgemm.sh

52

Figure 3: Rgemm performance on AMD Ryzen 3970X for Float128, Float64x, double-double,
double and (simple) OpenMP accelrated results.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000

M
F

LO
P

S

Dimension

Rgemm performance on AMD Ryzen Threadripper 3970X

_Float128
_Float128 (OpenMP)

_Float64x
_Float64x (OpenMP)

double double
double double (OpenMP)

double
double (OpenMP)

Figure 4: Rgemm performance on AMD Ryzen 3970X for quad-double, GMP and MPFR, and (simple)
OpenMP accelrated results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

M
F

LO
P

S

Dimension

Rgemm performance on AMD Ryzen Threadripper 3970X

MPFR 512bit
MPFR 512bit(OpenMP)

GMP 512bit
GMP 512bit(OpenMP)

quad-double
quad-double(OpenMP)

53

and resultant files are Rgemm1.eps and Rgemm2.eps. They correspond to Figure 3 and Figure 4.

10 History

M.N started developing MPLAPACK as a by-product of an arbitrary accurate semidefinite program-
ming solver, SDPA-GMP, around 2006 [14]. The first MPLAPACK (formerly MPACK) version, 0.0.1,
was released in 2008-7-15. In 2009-2-5, we released SDPA-GMP 7.1.2, and MPLAPACK supports
SDPA-GMP, SDPA-QD, and SDPA-DD [15, 17, 32, 33]. In 2010-01-13, we supported Windows via
mingw32. In 2010-5-21, we supported MPFR. In 2012-10-13, we released a fast implementation of a
double-double version of Rgemm for NVIDIA C2050 [34, 35]. In 2017-3-29, we moved the web site from
http://mplapack.sourceforge.net/ to https://github.com/nakatamaho/mplapack/. In 2021-4-
1, we renamed our project to MPLAPACK. In 2021-4-11, we supported AArch64 and released 0.9.4.
In 2021-10-1, we released 1.0.0.

11 Related works

We can relate our work in two main directions. (i) acceleration of multiple-precision extension to BLAS
(especially on GPU) and (ii) development of a multiple-precision version of linear algebra packages.

For (i), In 2009, Mukunokiet al. [36] implemented double-double version of matrix-matrix multipli-
cation kernels for NVIDIA Tesla C1060 and evaluated the performance. In 2010, Mukunoki et al. [37]
the quadruple precision Basic Linear Algebra Subprograms (BLAS) functions, AXPY, GEMV, and
GEMM, on graphics processing units (GPUs), and evaluated their performance. On an NVIDIA Tesla
C1060, their BLAS functions are approximately 30 times faster than the existing quadruple precision
BLAS on an Intel Core i7 920.

In 2011, Nakasato [38] implemented optimized dense matrix multiplication kernels for AMD Cy-
press GPU for various precisions. Their result includes double-double precision, and attained peak
performance of 30 GFlops.

In 2012, Nakata et al. [35] implemented double-double version of Rgemm on NVIDIA C2050. In
their implementation is complete Rgemm implementation; thus, their implementation can be used for
real applications; it can handle all the sizes in matrices, and supports transpose of each matrix. They
attained 16.1GFlops with CPU-GPU transfer included, and 26.4GFlops (25.7GFlops with CPU-GPU
transfer included. Moreover, they applied to semidefinite programming solver and attained ten times
acceleration compared to CPU-only implementation.

In 2012, Yamada et al. developed QPBLAS packages for CPUs [39], as well as in the QPBLAS-
GPU package for GPUs in 2013 [40]. These correspond to the complete set of double-double version
parts of MPBLAS, accelerating CPU and GPUs. Note that memory alignment is different from
MPBLAS and written in Fortran 90.

In 2014 and 2015, Kouya [41, 42] implemented optimized matrix-matrix multiplications using
Strassen and Winograd algorithms using MPFR, double-double, and quad-double precisions and ap-
plied them to LU factorizations. Strassen and Winograd versions are twice as fast as double-double
and quad-double precisions running one core using a simple blocking algorithm. Furthermore, there
is no significant performance difference between the Strassen version and Winograd. However, when
we used MPFR, the Winograd version was always faster. He also found a significant loss of accuracy
when performing LU factorization using Strassen and Winograd versions.

54

In 2016, Joldes et al. implemented CAMPARY: Cuda Multiple Precision Arithmetic Library
and applied it to semi-definite programming [43]. However, it was a prototype implementation and
somewhat slower than our CPU implementation of ours [15]. In 2017, Joldes et al. implemented an
improved version of CAMPARY [44]. The significant result of this paper is that they improved Rgemm

performance on GPU for various multiple-precision versions; 1.6GFlops for triple-double precision,
976MFlops for quadruple-precision, 660MFlops for quintuple-double, 453MFlops for sextuple-double,
200MFlops for octuple-double.

In 2019, Hishinuma et al. implimented Rgemm kernels for double-double precision on MIMD type
acclearlator PEZY-SC2 [45]. The performance of their implementation of Rgemm the PEZY-SC2
attained 75% of the peak performance. This value is 20 times faster than an Intel Xeon E5-2618L v3,
even including the communication time between the host CPU and the PEZY-SC2.

In 2020, Isopov et al. [46] took a benchmark for several level-1 multi-precision routines for MPFR,
ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP,, and MPRES-BLAS. MPRES-BLAS is an
ongoing effort to develop a multiple-precision version of BLAS like MPBLAS on GPUS The[47].
MPRES-BLAS defines a new arbitrary precision type suited for GPUs and fastest among CAM-
PARY [43], CUMP [48] and GARPREC [49] when the fractions range from 424bits to 848 bits.

In 2021, Kouya [50] acceralated dd real, qd real and triple-double precision version of Rgemm
with AVX2 using Strassen algorithm [51].

For (ii), Kouya has long developed C libraries for multiple-precision calculation using GMP and
MPFR, including matrix operations [52]. He calls them as BNCpack and MPIBNCPack. At least, we
can back to 2003 to find there was MPIBNCpack version 0.1 [53]. In 2011, version 0.7 had released,
and it can solve linear equations and eigenvalue problems, and many multiple-precision functions not
directly related to linear algebra. From version 0.8 (2013-03-11), BNCpack and MPIBNCpack are
integrated [52, 54].

Saito developed ZKCM [55], a C++ library for multi-precision matrix computation for quantum
computer simulation. He implemented matrix inversion, singular-value decomposition of a general
matrix, the diagonalization of a Hermitian matrix, and other operations.

Arb is a C library for arbitrary-precision ball arithmetic developed by Johansson [56]. It uses
ball arithmetic to track numerical errors automatically. It can perform and solve a wide range of
matrix operations, e.g., LU factorization, inversion, eigenvalue problems, but it is not an extension of
LAPACK to higher precision since employed arithmetic is different.

Multiprecision Computing Toolbox by Advanpix for MATLAB is a toolbox of MATLAB, can solve
many arbitrary precision matrix operations like diagonalization of real and complex non-symmetric
matrices, singular value decomposition with outstanding performance. They seem to employ a sim-
ilar approach to ours to convert LAPACK to multiple precision versions, but details are not open
and do not replace LAPACK [57]. Symbolic Math Toolbox (SMT) of Matlab also provides such
functionalities [58].

RalphAS has been developing GenericSchur.jl [59], and it calculates Schur decomposition of ma-
trices with generic floating-point element types in Julia. However, it is not a replacement for the
LAPACK library.

Johansson et al. also has been developing mpmath [60] can handle linear algebra (linear system
solving, LU factorization, matrix inverse, matrix norms, matrix exponentials/logarithms/square roots,
eigenvalues, singular values, QR factorization), written in python, and it is not a replacement of
LAPACK.

55

Mathematica [61] has multiple-precision versions of the eigenvalue problem of non-symmetric ma-
trices, singular value decomposition problems, and other solvers.

12 Future plans

In version 2.0.0, we finish RFP, complex version, and mixed-precision version, and in version 3.0.0,
we plan to implement optimized MPFR C++ wrapper and drop GMP version.

Acknowledgement

First, we are grateful to the LAPACK team for making an excellent library. This work was supported
by the Special Postdoctoral Researchers’ Program of RIKEN (2008, 2009), Grant-in-Aid for Scientific
Research (B) 21300017 from the Japan Society for the Promotion of Science (2009, 2010, 2011),
Microsoft Research CORE6 (2010), the Japan Society for the Promotion of Science (JSPS KAKENHI
Grant no. 18H03206) and TIS inc.

The author would like to thank Dr. Imamura Toshiyuki. Dr. Nakasato Naohito, Dr. Fujisawa
Katsuki, Dr. Umeda Kouzo, Dr. Kouya Tomonori, Dr. Takahashi Daisuke, Dr. Goto Kazushige, Dr.
Himeno Ryutaro, Dr. Hishimuna Toshiaki, Dr. Katagiri Takahiro, Dr. Ogita Takeshi, Dr. Kashiwagi
Masahide, Dr. Yuasa Fukuko, Dr. Ishikawa Tadashi, Dr. Geshi Masaaki, Dr. Mukunoki Daichi and
Mr. Minato Yuichiro for warm encouragement.

References

[1] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[2] An updated set of basic linear algebra subprograms (blas). ACM Trans. Math. Softw.,
28(2):135151, June 2002.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[4] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[5] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw., 34(3), May 2008.

[6] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3 blas performance opti-
mization on loongson 3a processor. In 2012 IEEE 18th International Conference on Parallel and
Distributed Systems, pages 684–691, 2012.

[7] Jack Dongarra, Vladimir Getov, and Kevin Walsh. The 30th anniversary of the supercomput-
ing conference: Bringing the future closer–supercomputing history and the immortality of now.
Computer, 51(10):74–85, 2018.

56

[8] NVIDIA. Basic linear algebra on nvidia gpus, 2021. https://developer.nvidia.com/cublas.

[9] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing, 36(5-6):232–240, June 2010.

[10] D.H. Bailey, R. Barrio, and J.M. Borwein. High-precision computation: Mathematical physics
and dynamics. Applied Mathematics and Computation, 218(20):10106–10121, 2012.

[11] David H. Bailey and Jonathan M. Borwein. High-precision arithmetic in mathematical physics.
Mathematics, 3(2):337–367, 2015.

[12] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[13] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Rev., 38(1):4995,
March 1996.

[14] Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus,
Makoto Yamashita, and Zhengji Zhao. Variational calculation of second-order reduced den-
sity matrices by strong n-representability conditions and an accurate semidefinite programming
solver. The Journal of Chemical Physics, 128(16):164113, 2008.

[15] Maho Nakata. A numerical evaluation of highly accurate multiple-precision arithmetic version of
semidefinite programming solver: Sdpa-gmp, -qd and -dd. In 2010 IEEE International Symposium
on Computer-Aided Control System Design, pages 29–34, 2010.

[16] Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi, Kazuhide Nakata,
and Maho Nakata. Latest Developments in the Family for Solving Large-Scale SDPs, pages 687–
713. Springer US, Boston, MA, 2012.

[17] Nakata, Maho. SDPA-GMP, retrieved September 23, 2021.
https://github.com/nakatamaho/sdpa-gmp/.

[18] Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239):2, 2014.

[19] Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, pages 1–20, 1985.

[20] ISO/IEC TS 18661-3:2015 Information Technology - Programming languages, their environ-
ments, and system software interfaces - Floating-point extensions for C - Part 3: Interchange
and extended types. the International Organization for Standardization, Chemin de Blandonnet
8 CP 401 1214 Vernier, Geneva Switzerland, 2015.

[21] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. Quad precision floating point on
the ibm z13. In 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), pages 87–94,
2016.

[22] Xiaoye S. Li Yozo Hida and David H. Bailey. Quad-double arithmetic: Algorithms, implementa-
tion, and application. In Technical Report LBNL-46996. Lawrence Berkley National Laboratory,
2000.

57

[23] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[24] T.J. Dekker. A floating-point technique for extending the available precision. Numerische Math-
ematik, 18:224–242, 1971/72.

[25] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision
Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

[26] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.
Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw., 33(2):13es, June 2007.

[27] Andreas Enge, Mickaël Gastineau, Philippe Théveny, and Paul Zimmermann. mpc — A library
for multiprecision complex arithmetic with exact rounding. INRIA, 1.1.0 edition, January 2018.
http://mpc.multiprecision.org/.

[28] R. T. Gregory and D. Karney. A collection of matrices for testing computational algorithms.
1969.

[29] Singular value decomposition, retrieved September 24, 2021.
https://en.wikipedia.org/wiki/Singular_value_decomposition.

[30] Susan Blackford and Jack Dongarra. Installation guide for LAPACK. LAPACKWorking Note 41,
March 1992. UT-CS-92-151, March, 1992.

[31] Ralf W. Grosse-Kunstleve, Thomas C. Terwilliger, Nicholas K. Sauter, and Paul D. Adams.
Automatic fortran to++ conversion with. Source Code for Biology and Medicine, 7:5, 2012.
https://doi.org/10.1186/1751-0473-7-5.

[32] Nakata, Maho. SDPA-QD, retrieved September 23, 2021.
https://github.com/nakatamaho/sdpa-qd/.

[33] Nakata, Maho. SDPA-DD, retrieved September 23, 2021.
https://github.com/nakatamaho/sdpa-dd/.

[34] Maho Nakata, Yasuyoshi Takao, Shigeho Noda, and Ryutaro Himeno. A fast implementation of
matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite
programming. In 2012 Third International Conference on Networking and Computing, pages 68–
75, 2012.

[35] Maho Nakata. Poster: Mpack 0.7.0: Multiple precision version of blas and lapack. In 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis, pages 1353–1353,
2012.

[36] Mukunoki Daichi and Takahashi Daisuke. Implementation and evaluation of quadruple precision
blas on gpu (in japanese). In IPSJ SIG Technical Report, volume 137, pages 1–6, 2009.

[37] Daichi Mukunoki and Daisuke Takahashi. Implementation and evaluation of quadruple precision
blas functions on gpus. In Kristján Jónasson, editor, Applied Parallel and Scientific Computing,
pages 249–259, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

58

[38] N. Nakasato. A fast gemm implementation on the cypress gpu. SIGMETRICS Perform. Evalu-
ation Rev., 38:50–55, 2011.

[39] Susumu Yamada, Takuya Ina, Narimasa Sasa, Yasuhiro Idomura, Masahiko Machida, and
Toshiyuki Imamura. Quadruple-precision blas using bailey’s arithmetic with fma instruction:
its performance and applications. In 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 1418–1425, 2017.

[40] Japan Atomic Energy Agency. Quadruple Precision BLAS Routines for GPU QPBLAS-GPU
Ver.1.0 User’s Manual, July 2013.

[41] Tomonori Kouya. Accelerated multiple precision matrix multiplication using strassen’s algorithm
and winograd’s variant. JSIAM Letters, 6:81–84, 2014.

[42] Tomonori Kouya. Performance evaluation of multiple precision matrix multiplications using
parallelized strassen and winograd algorithms. JSIAM Letters, 8:21–24, 2016.

[43] Mioara Joldes, Jean-Michel Muller, Valentina Popescu, and Warwick Tucker. Campary: Cuda
multiple precision arithmetic library and applications. In Gert-Martin Greuel, Thorsten Koch,
Peter Paule, and Andrew Sommese, editors, Mathematical Software – ICMS 2016, pages 232–240,
Cham, 2016. Springer International Publishing.

[44] Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. Implementation and performance
evaluation of an extended precision floating-point arithmetic library for high-accuracy semidef-
inite programming. In 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), pages
27–34, 2017.

[45] Toshiaki Hishinuma and Maho Nakata. pzqd: Pezy-sc2 acceleration of double-double precision
arithmetic library for high-precision blas. In International Conference on Computational & Ex-
perimental Engineering and Sciences, pages 717–736. Springer, 2019.

[46] Konstantin Isupov. Performance data of multiple-precision scalar and vector blas operations on
cpu and gpu. Data in Brief, 30:105506, 2020.

[47] Konstantin Isupov and Vladimir Knyazkov. Multiple-precision blas library for graphics processing
units. In Vladimir Voevodin and Sergey Sobolev, editors, Supercomputing, pages 37–49, Cham,
2020. Springer International Publishing.

[48] Takato Nakayama and D. Takahashi. Implementation of multiple-precision floating-point arith-
metic library for gpu computing. In Proc. 23rd IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS 2011), pages 343–349, 2011.

[49] Mian Lu, Bingsheng He, and Qiong Luo. Supporting extended precision on graphics processors.
In Proceedings of the Sixth International Workshop on Data Management on New Hardware,
DaMoN ’10, pages 19–26, New York, NY, USA, 2010. ACM.

[50] Tomonori Kouya. Acceleration of multiple precision matrix multiplication based on multi-
component floating-point arithmetic using avx2. In Osvaldo Gervasi, Beniamino Murgante, San-
jay Misra, Chiara Garau, Ivan Blečić, David Taniar, Bernady O. Apduhan, Ana Maria A. C.
Rocha, Eufemia Tarantino, and Carmelo Maria Torre, editors, Computational Science and Its
Applications – ICCSA 2021, pages 202–217, Cham, 2021. Springer International Publishing.

59

[51] V. STRASSEN. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356, 1969.

[52] Tomonori Kouya. BNCpack 0.7, September 2011. http://na-inet.jp/na/bnc/.

[53] Tomonori Kouya. MPIBNCpack 0.1, September 2003. https://na-inet.jp/na/bnc/mpibncpack.pdf.

[54] Tomonori Kouya. Tuning technique for multiple precision dense matrix multiplication using
prediction of computational time, 2017.

[55] Akira SaiToh. Zkcm: A c++ library for multiprecision matrix computation with applications in
quantum information. Computer Physics Communications, 184(8):2005–2020, 2013.

[56] Fredrik Johansson. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic, 2016.
https://arblib.org/.

[57] Advanpix. Multiprecision Computing Toolbox for MATLAB, retrieved September 23, 2021.
https://www.advanpix.com/.

[58] Inc. The MathWorks. Symbolic Math Toolbox. Natick, Massachusetts, United State, 2019.

[59] RalphAS. Schur decomposition of matrices with generic floating-point element types in Julia,
retrieved September 23, 2021. https://github.com/RalphAS/GenericSchur.jl.

[60] Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arith-
metic (version 0.18), December 2013. http://mpmath.org/.

[61] Wolfram Research, Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021.

60

