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ABSTRACT

The communication between ground stations and low earth orbit satellites is lim-
ited by a window of time as well as by the signal transmission speed. As a conse-
quence, machine learning models for remote sensing need to be reasonably small
in order to be transmitted and loaded to the device. Top performing deep learning
models in the literature usually include millions of parameters, which limits their
potential use on board once the satellite is in orbit. This paper is inspired by a pre-
vious work, PRANC, which explores the feasiblity of using a linear combination
of multiple pseudo-randomly generated frozen models for classification purposes.
We extend its use to semantic segmentation of building footprints. While this is
not a reduction technique as such, results demonstrate that these type of models
can be easily transmitted and reconstructed on board without compromising the
model performance. In particular, the network reaches a competitive performance,
while requiring only hundreds of kilobytes.

1 INTRODUCTION

The execution of machine learning models, such as deep neural networks, under storage, compu-
tational and connectivity constrains has led both the industry and the research community to ex-
plore and propose different techniques to overcome these challenges. In particular, a lot of interest
has grown in the fields of edge computing, split computing, model efficiency, model compression
and their combinations. Among the aforementioned techniques, we divide them into four different
groups: 1) model compression, 2) designing lightweight efficient models, 3) update compression,
and 4) random initialization.

Pruning is a compression method based on the assumption that not all the weights and connections
of the neural network are equally important and relevant, so some of them could be removed without
causing a significant degradation of the model’s performance. Cai et al. (2022) survey comprises
different pruning techniques according to their granularity. Quantization is a compression method
that can be separated into weight sharing and representation of weights in fewer bits. Some relevant
researches in this area are Mary Shanthi Rani et al. (2022); Martinez et al. (2021); Girish et al.; Lin
et al. (2022); Xu et al.. Knowledge distillation is technique aims at training a small model using
the knowledge acquired by a bigger model or an ensemble Hinton et al. (2015); Touvron et al.; Lin
et al.; Chung et al. (2020); Crowley et al. (2021); Tan & Liu (2022); Ganesh et al. (2021). Other
compression techniques can be found in Nie et al. (2022); Gabbay & Shomron (2021).

Another research line focuses on designing lightweight efficient models. Cai et al. (2022) names
some of the most common strategies to design lighter models, these are using efficient convolution
layers such as 1x1 convolutions, group convolutions or depthwise separable convolutions. Some of
the models that can be considered edge friendly due to their reduced size are SqueezeNet, MobileNet
or ShuffleNet.

The update compression is useful in the case when there is an unreliable connection between the
server and the edge device while the training data is available on the server. Konečný et al. (2017)
propose two communication efficient methods for reducing the uplink costs: structured and sketched
updates. More recently, Chen et al. (2022) propose postdeployment updates, where only the updated
parts of the model are compressed via matrix factorization and sent to the edge device, with the
inconvenience that this method can be applied only to CNN or DNN.
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Split computing is a framework that divides the DNN model into head, executed on the device and
tail, executed on the server. The result is then sent back to the device. An exhaustive summary of
the state of the art can be found in Matsubara et al. (2022).

Recently there are several researches that are related to randomly initializing models. In the paper
Parameter-Efficient Masking Networks (Bai et al., 2022) the authors propose a new paradigm of
model compression: expressing a model as one randomly initialized layer and a number of masks
that will adjust the weights as needed. Nooralinejad et al. (2022) also propose random initialization
of weights, in this case, all the weights in a model are initialized randomly and multiple random
models are combined to give one final prediction. For this, each model receives a coefficient that
determines its weight in the result.

One interesting use case consists in transmitting large models to low earth orbit (LEO) satellites. Due
to communication constraints, it can be prohibitive to upload accurate deep learning models. Hence,
it is of paramount importance to find alternatives to upload new models without compromising the
performance. In this project, due to its simplicity and remarkable size in terms of parameters, we
extent Nooralinejad et al. (2022) work, Pseudo RAndom Networks for Compacting deep models
(PRANC), and adapt it for land use classification.

The rest of the paper is organized as follows. In Section 2, we explain in detail Nooralinejad et al.
(2022) work. In Section 3, we describe our experimental setup. In Section 4, we present results
from our experiments and conclude the paper in Section 5.

2 METHOD

This research builds upon Nooralinejad et al. (2022) work, PRANC, which uses a linear combination
of a set of randomly initialized models (basis models), reducing the problem to finding the linear
mixture coefficients that will provide the best classification result. The method looks for models that
are functionally similar to pretrained models, rather than close in the parameter space (see Fig. 1).

Figure 1: PRANC is a linear combination of α randomly generated models

Given the task of training a model f(.; θ) with the parameters θ ∈ Rd so that f(xi; θ) predicts yi, the
authors propose initializing the basis models with parameters {θ̂j}kj=1 using a random seed. Then,
the weights of the final model is defined as:

θ :=

k∑
j=1

αj θ̂j

where αj is a scalar weight of j’s basis model. The authors argue that there are infinite solutions for
θ, so the search is reduced to finding the one with the smallest residual error.

argminα

∑
i

L(f(xi;

k∑
j=1

αj θ̂j), yi)

The model can be trained, reconstructed and stored efficiently in terms of computation and memory
usage, with the limitation of having to transmit batch normalization layers as they are. More infor-
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mation about the PRANC method, optimization, model storage, reconstruction and experiments is
available in the original paper.

The authors of this work perform experiments for image classification on several datasets such as
CIFAR10, CIFAR100, Imagenet and show that the PRANC method outperforms SOTA model com-
pression methods such as knowledge distillation or pruning while using less parameters. Another
important conclusion is that a larger number of base models leads to higher accuracy.

3 EXPERIMENTAL SETUP

To run our experiments we use the original repository created by the authors. We adapt the code
accordingly to apply the PRANC method on semantic segmentation tasks. The dataset used in
this work is the ISPRS Potsdam dataset1, which contains six different labels: impervious surfaces,
building, low vegetation, tree, car and clutter/background. We use for the semantic segmentation
task DeeplabV3+ (Chen et al., 2018).

We first train the baseline model to ensure that we obtain similar results (Wang et al., 2022) on the
Potsdam dataset. Then, the PRANC method is applied to train α models initializing their weights
randomly and optimizing alpha coefficients. Since the model is meant to be run onboard, we reduce
the number of randomly initialized models. More concretely, we train with 5, 10, 30, 100 and 2402

models. The intention of the experiments is finding how much the performance changes with respect
the number of participating models and comparing it with the baseline DeepLabv3+.

For training and validating the DeepLabv3+ models, we use six GPUs with 24GiB each. For the
models composed of 5, 10, 30 and 100 alphas, we use a training batch size of 28 and a validation
batch size of 10, while with the 240 alphas model the training batch size needs to be reduced to 20
in order to be able to load the data into the memory. Each type of model is trained five times for
100 epochs. All the models use an SGD optimizer with a 0.09 learning rate and a 0.9 momentum.
The loss function used for training all the models is a Focal loss. The PRANC method uses a
step scheduler, with a step of 50. For the baseline models, the learning rate scheduler is a cosine
annealing scheduler with warm restarts. 3.

To measure each experiment performance overall classes, we use F1-score. The value obtained is
the result of averaging the five runs. We also report the IoU, sensitivity and specificity for each case.
The best performance is extracted using the validation partition.

4 RESULTS

Table 1 shows the results of each of the experiments we conduct in this paper. The models composed
of fewer participants seem to perform nearly as good as the one with 240 baseline models. In par-
ticular, the difference in performance is below one percentage point. This is an interesting finding,
since using a higher number of base models, as the authors suggest, may be prohibitive onboard due
to energy consumption and time constraints.

Regarding the model size required to transmit the PRANC model and the baseline, while in the case
of sending the full DeepLabV3+ model, we need to send 103 Mb, 26,678,870 parameters, it turns out
that for the PRANC model we only need to send 456 Kb, this is 55,517 parameters. Those parame-
ters include the random seed, the learned alpha coefficients, as well as the parameters representing
the mean and the standard deviation for layers other than convolutional or fully connected.

Figure 2 shows a qualitative comparison between the baseline, DeepLabV3+, and the PRANC model
with 240 (240A) random models. As can be seen from the results, the classes representing low
vegetation and tree are the ones with the lowest performance, as it happens in other implementations
to predict the Potsdam dataset Wang et al. (2022). Small differences seem to come from better
defining the contours of some classes, or missing trees without leaves.

1https://www.isprs.org/education/benchmarks/UrbanSemLab/
2We did stop at 240, divisible by the maximum number of gpus we had, since we did not want to significantly

increase the computational cost onboard.
3https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

CosineAnnealingWarmRestarts.html
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Table 1: Qualitative results averaging five runs per experiment.
Model F1-score IoU Sensitivity Specificity
5Alpha 0.8494 0.7484 0.8421 0.9617
10Alpha 0.8435 0.7416 0.8409 0.9599
30Alpha 0.8429 0.7398 0.842 0.9601
100Alpha 0.8485 0.7478 0.8416 0.9617
240Alpha 0.8572 0.7604 0.8548 0.9633
Baseline 0.8868 0.8049 0.884 0.9697

In general, none of the models, including the baseline is able to capture the red areas as background.
Those instances are usually predicted as any other class, depending on the context: clutter around
building gets labeled as building, while clutter around low vegetation gets low vegetation labels.

Figure 2: Comparison between the baseline and PRANC using 240 models.

5 CONCLUSIONS

This paper, inspired and based on PRANC, explores the feasibility of using this technique to create
accurate models that can be easily transmitted to remote sensing satellites. In particular, we con-
duct multiple experiments with different numbers of base models and compare their performance
to a baseline DeepLabv3+ model. In comparison to the original work, that used large numbers of
baseline models (under 20,000), we use a relatively small number (under 240) and with minimal
parameter tuning achieve a mean F1-score less than 3% short from the baseline’s performance, and
less than 4% when using a combination of five models. These results show that using randomly
initialized models onboard permit transmitting effectively accurate models that only require 456 Kb.
As an ongoing work, it would be interesting to explore how to further improve the model. For in-
stance, instead of training the PRANC model from scratch, we could train it via distillation using
the baseline or smaller models (to reduce the computational cost onboard) as the teacher. While
this research focuses on transmitting models to orbiting satellites, these finding could be also used
reduce the storage required on ground.
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