
Published as a conference paper at ICLR 2023

AERIAL VIEW LOCALIZATION WITH REINFORCEMENT
LEARNING: Towards Emulating Search-and-Rescue

Aleksis Pirinen1, Anton Samuelsson2, John Backsund2 and Kalle Åström2

1RISE Research Institutes of Sweden
2Centre for Mathematical Sciences, Lund University, Sweden
{aleksis.pirinen@ri.se, anton.b.samuelsson@gmail.com,
j.backsund@gmail.com, karl.astrom@math.lth.se}

ABSTRACT

Climate-induced disasters are and will continue to be on the rise, and thus search-
and-rescue (SAR) operations, where the task is to localize and assist one or several
people who are missing, become increasingly relevant. In many cases the rough
location may be known and a UAV can be deployed to explore a confined area
to precisely localize the people. Due to time and battery constraints it is often
critical that localization is performed efficiently. We abstract this type of problem
in a framework that emulates a SAR-like setup without requiring access to actual
UAVs. In this framework, an agent operates on top of an aerial image (proxy for
a search area) and must localize a goal that is described through visual cues. To
further mimic the situation on a UAV, the agent cannot observe the search area in
its entirety, not even at low resolution, so it must operate based on partial glimpses
alone. To tackle this task, we propose AiRLoc, a reinforcement learning (RL)
model that decouples exploration (searching for distant goals) and exploitation
(localizing nearby goals). Extensive evaluations show that AiRLoc outperforms
various baselines as well as humans, and that it generalizes across datasets, e.g. to
disaster-hit areas without seeing a single disaster scenario during training. Code
and models are available at https://github.com/aleksispi/airloc.

1 INTRODUCTION

We propose a novel setup that allows for controllable and reproducible development of and exper-
imentation with systems for UAV-based SAR operations.1 In this framework, an agent operates
on top of an aerial image (proxy for a search area) and is tasked with localizing a goal for which
coordinates are not available, but where some visual cues of the goal are provided. For our task,
which we denote aerial view goal localization, we assume that visual cues are given as a top-view
observation of the goal in the search area (see Fig. 1). This provides a streamlined proxy setup, but
note that in a real SAR operation such cues could instead be provided e.g. by the missing people,
assuming they have been able to send information about their surroundings (e.g. ground-level
images). To enable this, our approach can be modified to allow for more flexible goal specifications,
e.g. by integrating an off-the-shelf geo-localization module (Wilson et al., 2021; Zeng et al., 2022).

There are many cases where GPS coordinates of the goal are not available or reliable (e.g. satellite
navigation systems are susceptible to radio frequency interruptions). Hence there is a need for
robust aerial localization systems that do not rely on global positional information, but that can
operate reliably based on visual information alone. To further mimic the situation on a UAV, it
is assumed in our task that only a partial glimpse of the search area can be observed at the same
time. In many cases, a UAV could elevate to a higher altitude to get a generic (lower-resolution)
sense of the whole search area, but this is often impractical, e.g. if the battery of the UAV is running
low. Adverse weather conditions could also make it risky to operate at a high altitude. To tackle
our task, we propose AiRLoc, an RL-based model that decouples exploration (searching for distant
goals) and exploitation (localizing nearby goals) – see Fig. 1. Extensive experimental results show

1Also relevant for many types of environmental monitoring applications, e.g. in forestry management.

1

https://github.com/aleksispi/airloc


Published as a conference paper at ICLR 2023

Figure 1: Overview of AiRLoc, our RL-based agent for aerial view goal localization. Note that
AiRLoc only observes a glimpse of the full search area in each step. See § 2 for details.

that AiRLoc outperforms heuristic search methods and alternative learnable approaches. We also
conduct a proof-of-concept study which indicates that this task is difficult even for humans.

To the best of our knowledge, in addition to us relatively few prior works have considered
inference based solely on partial glimpses of an underlying image (Rangrej & Clark, 2021; Rangrej
et al., 2022). In contrast, most earlier RL-based methods that have been proposed for computer
vision tasks – e.g. for object detection (Caicedo & Lazebnik, 2015; Gao et al., 2018; Pirinen &
Sminchisescu, 2018) and aerial view processing (Uzkent & Ermon, 2020; Ayush et al., 2020) –
assume access to at least a low-resolution version of the entire scene or image being processed.

2 AERIAL VIEW GOAL LOCALIZATION

Task description. The task is executed by an agent within a search area, which is discretized
as an M × N grid that is layered on top of a given aerial image. Every grid cell in the search
area corresponds to a valid position pt. The agent can only directly observe the image content
Ot of its current cell. In each episode, one of the grid cells corresponds to the goal location. The
image content of the goal cell is denoted Ogoal and its position is denoted pgoal. Note that the goal
position pgoal is never observed by the agent; it is only used to determine if the agent is successful,
which it is as soon as the agent’s current position pt and the goal position pgoal coincide (pt = pgoal).

In each episode, the agent’s start location p0 and goal location pgoal are randomly sampled
within the search area (p0 ̸= pgoal). The agent then moves around until it either reaches the goal,
or a maximum number of steps T have been taken. This limit T represents time and resource
constraints. In our task formulation, an agent has eight possible actions, which correspond
to moving to any of its eight adjacent locations. An agent may in general move outside the
search area, and if so, the agent receives an entirely black observation. There is never any ad-
vantage to moving outside the search area, and thus it should be avoided (it is easy to avoid given pt).

AiRLoc agent. The state st contains the currently observed patch Ot, the goal patch Ogoal,
and an encoding pt ∈ R256 of the agent’s position. As described above, AiRLoc has eight
possible actions at, which correspond to moving to any of its eight adjacent locations. During
training, a negative reward is provided for each action that does not move the agent into the goal
location, and a positive reward is provided when the goal is found. Specifically, after taking ac-
tion at−1 in state st−1 the reward rt = 3 ·1

(
pt = pgoal

)
−1 is provided (1 is the indicator function).

Policy overview: In each step, the state st is processed by four modules to generate the cur-
rent action distribution πθ(∗|st), where θ denotes all learnable parameters. First, Ot and Ogoal

2



Published as a conference paper at ICLR 2023

Table 1: Results on the test sets of Masa (col 2-3), Dubai (col 4-5) and xBD-disaster (col 6-7;
col 8-9). Movement budget T = 10, T = 14 for setups of sizes 5 × 5, 7 × 7. Results in col
2-7 correspond to models trained on Masa-train. For col 8-9, models were trained on xBD-pre
at different geographical locations than those in xBD-disaster. AiRLoc outperforms the baselines
across all datasets and search area sizes, and localizes goals using fewer steps on average.

Agent type Success Steps Success Steps Success Steps Success Steps
AiRLoc (5x5) 67.6 % 6.2 68.8 % 6.3 66.1 % 6.5 72.8 % 6.1
Priv local (5x5) 64.2 % 6.5 65.6 % 6.5 63.8 % 6.7 67.3 % 6.4
Priv rand (5x5) 41.0 % 8.0 41.0 % 8.0 40.8% 7.9 40.8% 7.9
AiRLoc (7x7) 59.0 % 9.4 57.2 % 9.7 50.7 % 10.2 55.7 % 9.9
Priv local (7x7) 56.3 % 9.9 53.7 % 10.2 50.5 % 10.2 53.6 % 10.0
Priv rand (7x7) 25.2 % 12.3 26.9 % 12.0 25.5 % 12.2 25.5 % 12.2

are passed through a pretrained segmentation unit (a U-net) which predicts building segmentation
masks for Ot and Ogoal. Second, Ot and Ogoal and their segmentations are passed through a patch
embedder which yields a low-dimensional embedding ct ∈ R256 of what the agent observes and
what it aims to localize. The patch embedder also outputs an exploitation prior ut ∈ R8 (see
below). Third, pt is added to ct and the result and ut are passed to an LSTM-based temporal unit
which integrates information over time. Finally, the LSTM output and ut are passed to a decision
unit which yields the probability distribution πθ(∗|st). This decision unit first projects the LSTM’s
output into the action space dimensionality, then adds the exploitation prior ut, and finally generates
an action distribution using softmax. Note that we use an LSTM rather than a Transformer for
the temporal unit, since we want to keep the overall architecture lightweight – the model weights
occupy less than 4 MB of memory, and inference can be efficiently performed even without a GPU.

Patch embedder: To extract relevant information about the relationship between Ot and Ogoal, we
use an architecture similar to that by Doersch et al. (2015), who consider a self-supervised visual
representation learning task where the spatial displacement between a pair of adjacent random crops
from an image should be predicted. We pretrain the patch embedder in the same self-supervised
fashion as Doersch et al. (2015). During pretraining, another dense layer (with input ct) is attached
to produce an 8-dimensional output ut, which is fed to a softmax function. The eight outputs
correspond to the possible locations of Ogoal relative to Ot, assuming these are adjacent. When
using the patch embedder within AiRLoc, we take advantage of both ct and ut, cf. Fig. 1. Note
that ut can be interpreted as an exploitation prior, as it is specifically tuned towards localizing
(’exploiting’) adjacent goals. Thus, feeding ut to the temporal unit as well as directly to the
decision unit allows AiRLoc to learn when to explore and when to exploit.

Positional encoding: Positional information is represented similarly to Transformers (Vaswani
et al., 2017). Note that AiRLoc never receives global positional information, i.e. it is always relative
to a given search area. Such information may be available during SAR within a confined area,
where a UAV can keep track of its location relative to the borders of this area.

3 EXPERIMENTS

Baselines. Priv random selects actions randomly, with two exceptions: i) it cannot move outside
the search area; ii) it avoids previous locations. Priv local selects actions by repeatedly calling the
pretrained patch embedder (which assumes the goal is adjacent to the current location), subject
to the privileged movement restrictions of Priv random. Finally, Human represents the average
human performance from a proof-of-concept evaluation with 19 subjects (details in the supplement).

Datasets. We mainly use Massachusetts Buildings (Masa) by Mnih (2013) for development
and evaluation. The data contains images of Boston and the surrounding suburban and forested
areas. Models are also evaluated on the Dubai dataset (the Loop), which depicts urban regions
surrounded by dry deserts. Finally, we also train and evaluate on the xBD dataset by Gupta
et al. (2019) which contains aerial images from various regions both before (xBD-pre) and after
(xBD-disaster) various natural distastes (e.g. wildfires).

3



Published as a conference paper at ICLR 2023

1 2 3 4
Intial #steps to goal

40

50

60

70

80

Su
cc

es
s r

at
e 

(%
)

AiRLoc
AiRLoc (no residual)
AiRLoc (no prior)
Priv local
Human

1 2 3 4 5 6
Intial #steps to goal

30

40

50

60

70

80

Su
cc

es
s r

at
e 

(%
)

AiRLoc
AiRLoc (no residual)
AiRLoc (no prior)
Priv local

Figure 2: Success rate versus start-to-goal distance on the validation set of Masa (averages are
dashed). Left: M × N = 5 × 5, T = 10. The methods are generally more successful when the
start is closer to the goal. AiRLoc performs roughly on par with Priv local when the goal and start
are adjacent and outperforms it at larger distances. AiRLoc is also more successful than its ablated
variants in all settings and on average. Right: M ×N = 7× 7, T = 14. AiRLoc is best on average,
despite having only been trained in the 5× 5 setting. Priv local is better when the start and goal are
close to each other, while AiRLoc is better when they are three or more steps apart.

Main results. From Table 1 we see that AiRLoc obtains a higher success rate than the baselines,
both in search areas of size 5 × 5 and 7 × 7 (AiRLoc is only trained in the 5 × 5 setting), as well
as across different spatial regions and circumstances. Particularly relevant from a SAR-perspective
in disaster-hit areas, columns 6-9 contain results on xBD-disaster. Column 6-7 show that AiRLoc
generalizes quite well from having been trained on an entirely different dataset (Masa) containing
satellite images of non-disaster-hit urban areas to disaster-hit areas at various other spatial locations.
Results are however improved further (col 8-9) if models are first trained on non-disaster-hit images
from the same dataset (xBD-pre) and then evaluated at different locations depicting disaster-hit
scenarios. The runtimes per action are 20 ms, 13 ms and 6 ms, respectively, for AiRLoc, Priv local
and Priv random (thus negligible compared to the movement overhead of an actual UAV). Please
see the supplementary material for visualizations of agent behaviors in disaster zones.

AiRLoc variants. Fig. 2 shows ablation results2 for AiRLoc. No residual omits the prior
ut in the decision unit (but not in the temporal unit). No prior entirely omits ut in the architecture.

Human performance evaluation. The results of the proof-of-concept human performance
evaluation in Fig. 2 (left) indicate that our proposed task is in general difficult, since only slightly
above half of all human controlled trajectories are successful. We also see that AiRLoc and Priv
local achieve significantly higher success rates compared to human operators.

4 CONCLUSIONS

In this work we have introduced the novel aerial view goal localization task and framework, which
allows for controllable and reproducible development of methodologies that can be useful for
automated search-and-rescue operations, e.g. in regions that are heavily affected by climate-induced
disasters. The difficulty for humans to perform well on our proposed task shows that it is a
reasonable first step for model development and evaluation, even though several challenges of
real use-cases are not fully reflected in the task. Relevant next steps toward making the proposed
methodologies more practically useful include making the goal specification more flexible (e.g.
allowing for a ground-level image description of the goal); requiring the agent to explicitly declare
when it has reached its goal; and considering even larger search areas.

An RL-based approach, AiRLoc, was developed to tackle the proposed task, in addition to
several other learnable and heuristic methods. Extensive experimental evaluations clearly showed
the benefits of our AiRLoc agent over the learnable and heuristic baselines. Code and models
have been made publicly available, so that others can further explore and extend our proposed task
towards real use-cases within disaster relief and management.

2See the supplementary material for more ablation results and a seed sensitivity analysis.

4



Published as a conference paper at ICLR 2023

REFERENCES

Kumar Ayush, Burak Uzkent, Kumar Tanmay, Marshall Burke, David Lobell, and Stefano Ermon.
Efficient poverty mapping using deep reinforcement learning. arXiv preprint arXiv:2006.04224,
2020.

Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning.
In Proceedings of the IEEE international conference on computer vision, pp. 2488–2496, 2015.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by
context prediction, 2015. URL https://arxiv.org/abs/1505.05192.

Mingfei Gao, Ruichi Yu, Ang Li, Vlad I Morariu, and Larry S Davis. Dynamic zoom-in network for
fast object detection in large images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 6926–6935, 2018.

Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi,
Keane Lucas, Howie Choset, and Matthew Gaston. Creating xbd: A dataset for assessing building
damage from satellite imagery. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pp. 10–17, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Volodymyr Mnih. Machine Learning for Aerial Image Labeling. PhD thesis, University of Toronto,
2013.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580, 2022.

Aleksis Pirinen and Cristian Sminchisescu. Deep reinforcement learning of region proposal net-
works for object detection. In proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6945–6954, 2018.

Samrudhdhi B Rangrej and James J Clark. A probabilistic hard attention model for sequentially
observed scenes. arXiv preprint arXiv:2111.07534, 2021.

Samrudhdhi B Rangrej, Chetan L Srinidhi, and James J Clark. Consistency driven sequential trans-
formers attention model for partially observable scenes. arXiv preprint arXiv:2204.00656, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Alexander Sax, Bradley Emi, Amir R Zamir, Leonidas Guibas, Silvio Savarese, and Jitendra Ma-
lik. Mid-level visual representations improve generalization and sample efficiency for learning
visuomotor policies. arXiv preprint arXiv:1812.11971, 2018.

Humans In the Loop. Semantic segmentation of aerial imagery.
URL https://www.kaggle.com/datasets/humansintheloop/
semantic-segmentation-of-aerial-imagery.

Burak Uzkent and Stefano Ermon. Learning when and where to zoom with deep reinforcement
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12345–12354, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.
org/abs/1706.03762.

Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A data-driven framework for visual
deep reinforcement learning. arXiv preprint arXiv:2202.10324, 2022.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

5

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.04597
https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Published as a conference paper at ICLR 2023

Daniel Wilson, Xiaohan Zhang, Waqas Sultani, and Safwan Wshah. Visual and object geo-
localization: A comprehensive survey. arXiv preprint arXiv:2112.15202, 2021.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre Berges, Sachit Kuhar, Dhruv
Batra, Alexei Baevski, and Oleksandr Maksymets. Offline visual representation learning for em-
bodied navigation. arXiv preprint arXiv:2204.13226, 2022.

Zelong Zeng, Zheng Wang, Fan Yang, and Shin’ichi Satoh. Geo-localization via ground-to-satellite
cross-view image retrieval. IEEE Transactions on Multimedia, pp. 1–1, 2022. doi: 10.1109/
TMM.2022.3144066.

6



Published as a conference paper at ICLR 2023

A SUPPLEMENTARY MATERIAL

Figure 3: Examples of AiRLoc (red) and Priv local (dashed green) on the test set of Massachusetts
Buildings (left, middle) and Dubai (right). Models were trained on the training set of Massachusetts
Buildings. Search area size 5× 5, movement budget T = 10. Recall that the full underlying search
area is never observed in its entirety (they are shown here for visualization purposes only), i.e. the
agents must operate based on partial glimpses alone. Left: AiRLoc takes the same action as Priv
local in the first two steps and then takes the shortest path to the goal (’G’). Priv local also reaches
the goal. Middle: AiRLoc first deviates from Priv local and then follows the same path. AiRLoc
reaches the goal faster. Right: AiRLoc follows the same path as Priv local until it is adjacent to the
goal and then moves into the goal, while Priv local fails.

Visualizations of agent trajectories. In Fig. 3 we show qualitative examples of AiRLoc and the
best alternative learnable approach Priv local on the datasets Massachusetts Buildings and Dubai.
In this case the models were trained on the training set of Massachusetts Buildings. Fig. 4 - 15
show several visualizations of AiRLoc and Priv local on disaster-hit search areas from the dataset
xBD-disaster. In this case the models were trained on non-disaster-hit data from xBD-pre, where
we have ensured that this training data depicts other geographical areas than those in xBD-disaster.
See more detailed information about each dataset further down in this supplement.

When inspecting these visual examples, keep in mind the connection between AiRLoc and
Priv local, where Priv local is essentially an ’exploit only’ model that is optimized to localize
adjacent goals. The action distribution of Priv local is obtained3 by feeding its final output ut ∈ R8

through a softmax. Our full AiRLoc agent takes advantage of this exploitation prior ut and
decouples exploration from exploitation, as explained in the main paper. AiRLoc thus decides when
to resort to Priv local’s exploitative behavior (although without the privileges) and when to explore
independently.

3Subject to privileged movement constraints, without which it performs abysmally (see Table 3).

7



Published as a conference paper at ICLR 2023

Figure 4: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (5 × 5 setup, movement budget T = 10). The start and goal locations are denoted
’S’ and ’G’, respectively. The numbered circles show which locations are visited and in what order.
Recall that the full underlying search area is never observed in its entirety (they are shown here for
visualization purposes only), i.e. the agents must operate based on partial glimpses alone. AiRLoc
takes a different and slightly shorter path towards the goal location.

Figure 5: Successful examples of AiRLoc (left) and Priv local (right) on a post-wildfire scenario in
xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes a different and significantly
shorter path towards the goal location. Note that Priv local visits the location below the start loca-
tion after 2 and 5 steps, despite its privileged movement constraints which tries to avoid previous
locations. However, in this example, after the 4th step there are no unvisited locations to move to,
and so it has to move somewhere.

8



Published as a conference paper at ICLR 2023

Figure 6: A Successful example of AiRLoc (left) and an unsuccessful example of Priv local (right)
on a flooding scenario in xBD-disaster (5× 5 setup, movement budget T = 10). AiRLoc’s location
#7 shares forest-structure with the goal location, which may have been an important visual cue in
the last step.

Figure 7: Successful examples of AiRLoc (left) and Priv local (right) on a wildfire scenario in xBD-
disaster (5 × 5 setup, movement budget T = 10). Both agents take the exact same (and shortest)
path towards the goal, i.e. AiRLoc fully resorts to the exploitation prior in this case.

9



Published as a conference paper at ICLR 2023

Figure 8: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in xBD-
disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes the first same step as Priv local,
then deviates and takes a shortest path towards the goal. Priv local reaches the goal using several
more steps.

Figure 9: A successful example of AiRLoc (left) and an unsuccessful example of Priv local (right)
on a post-wildfire scenario in xBD-disaster (5×5 setup, movement budget T = 10). AiRLoc moves
in the same way as Priv local for the first two steps and then deviates. Note that AiRLoc does not
take the shortest path towards the goal but nonetheless reaches it well within the movement budget.

10



Published as a conference paper at ICLR 2023

Figure 10: An unsuccessful example of AiRLoc (left) and a successful example of Priv local (right)
on xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes the same path as Priv
local for the first six steps and then deviates (it is adjacent to the goal when the budget T = 10 is
exhausted). Priv local precisely manages to reach the goal within the budget.

Figure 11: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes a different and much shorter
path towards the goal location.

11



Published as a conference paper at ICLR 2023

Figure 12: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (7 × 7 setup, movement budget T = 14). Note that AiRLoc was only trained on
search areas of size 5 × 5 and movement budget T = 10. AiRLoc takes the same first two steps as
Priv local, then deviates and reaches the goal in fewer steps than Priv local.

Figure 13: Unsuccessful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first two steps as
Priv local, then deviates, but (like Priv local) fails to reach the goal.

12



Published as a conference paper at ICLR 2023

Figure 14: A successful examples of AiRLoc (left) and an unsuccessful example of Priv local
(right) on xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first step
as Priv local and then deviates. Note that AiRLoc even moves outside the search are at one occasion
(location #8), but still manages to reach the goal well within the movement budget.

Figure 15: Successful examples of AiRLoc (left) and Priv local (right) on a post-wildfire scenario
in xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first step as Priv
local, then deviates, and reaches the goal twice as fast. Priv local precisely manages to reach the
goal within its movement budget.

13



Published as a conference paper at ICLR 2023

More details about AiRLoc. Positional information is represented in a similar way as in Trans-
formers (Vaswani et al., 2017). Note that AiRLoc never receives global positional information,
i.e. it is always relative to a given search area. Such information may be available e.g. during SAR
within a confined area, where a UAV could easily keep track of its location relative to the borders
of this area. Let (x, y) denote the agent’s coordinates within the M × N -sized search area (thus
x ∈ {0, . . . ,M − 1}, y ∈ {0, . . . , N − 1}). Then the i:th element pit of the positional encoding
vector pt ∈ Rd (with d even; for us d = 256) is given by:

pit =


cos (x/1002(i−1)/(d/2)) if i ∈ {1, . . . , d/2} and i is odd
sin (x/1002i/(d/2)) if i ∈ {1, . . . , d/2} and i is even
cos (y/1002(i−1)/(d/2)) if i ∈ {d/2 + 1, . . . , d} and i is odd
sin (y/1002i/(d/2)) if i ∈ {d/2 + 1, . . . , d} and i is even

(1)

Policy training: To learn the parameters of AiRLoc, we first pretrain the patch embedder in a
self-supervised fashion (without RL; see details below). We then freeze the patch embedder weights
and train the rest of AiRLoc using REINFORCE (Williams, 1992) with Adam (Kingma & Ba,
2015), batch size 64, search area size M × N = 5 × 5, movement budget T = 10, learning rate
10−4, and discount γ = 0.9. Training AiRLoc takes 30h on a Titan V100 GPU.4 We apply left-right
and top-down flipping of images (search areas) as data augmentation. We also employ within-batch
reward normalization based on distance left to the goal, i.e. rewards associated with states of equal
distance to the goal are grouped and normalized to zero mean and unit variance. We use a pretrained
segmentation unit (one can simply use an off-the-shelf aerial view segmentation model) and it is not
refined during policy training – see below for details.

More details about the patch embedder and segmentation unit: Our patch embedder architec-
ture consists of two parallel branches with four convolutional layers (ReLUs and max pooling are
applied between layers). First, Ot and Ogoal, with their segmentations channel-wise concatenated,
are fed separately into one branch each (cf. Fig. 1). To enable early information sharing between
the agent’s current patch and the goal patch, after two convolutional layers, the outputs of the two
branches are concatenated and sent through the rest of their respective branches. The two resulting
128-dimensional embeddings are then concatenated and the result is passed through a dense layer
with output ct ∈ R256.

Pretraining backbone vision components is common in RL setups, since it often yields a
higher end performance (Sax et al., 2018; Parisi et al., 2022; Wang et al., 2022; Xiao et al., 2022;
Yadav et al., 2022). Before training the rest of AiRLoc with reinforcement learning, the patch
embedder is therefore pretrained (in the same self-supervised fashion as Doersch et al. (2015)) on
the training set of Massachusetts Buildings using the categorical cross-entropy loss. This loss is
computed using the 8-dimensional patch embedder prediction and a one hot encoding of the true
goal direction relative to the start location (recall that during this pretraining stage, the start and
goal are assumed to be adjacent). The Adam optimizer with batches of 256 pairs of image patches
(start and goal) and a learning rate of 10−3 is used during this pretraining phase.

For the segmentation unit, we use and adapt the U-net model for biomedical segmentation
applications (Ronneberger et al., 2015). A publicly available implementation of this U-net5 is
used as a starting point. However, since the patches (partial glimpses of the search area) are
smaller than in the original U-net, the network structure is altered. This altered network consist of
four downsampling convolutional blocks, which reduce the spatial dimensions of the input into a
3× 3× 64 embedding. Then, four upsampling convolutional blocks are used to recreate the spatial
dimension of the input patch (thus the segmentation unit outputs a binary 48 × 48 × 1 building
segmentation mask, although in general the segmentation unit could obviously include more classes
as well). The segmentation network is pretrained on the training set of Massachusetts Buildings
using a cross-entropy loss with Adam, batch size 128, and learning rate 10−4, and is kept frozen
when training the rest of AiRLoc.

Random seed sensitivity analysis. Table 2 shows the results of a policy network initilization

4All methods and baselines are implemented in, trained and evaluated using PyTorch.
5https://github.com/milesial/Pytorch-UNet

14

https://github.com/milesial/Pytorch-UNet


Published as a conference paper at ICLR 2023

Table 2: Seed sensitivity analysis of the various AiRLoc variants on the validation set of Mas-
sachusetts Buildings (search area size 5 × 5, movement budget T = 10). The results on the first
lines of each block are the median-performing AiRLoc models and are the ones we have evaluated
in the main paper and in the extended ablation study in Table 3. None of the AiRLoc variants are
sensitive to the random seed used for policy network initialization. The worst performing seed of
the no residual variant of AiRLoc performs better than the best performing seed of the no prior vari-
ant, and it is also somewhat better than the alternative learnable approach Priv local. Similarly, the
worst performing seed of our full AiRLoc outperforms the best performing seed of both the ablated
variants and Priv local, which again motivates our design choices.

Agent type Success Step ratio Steps Res. dist.
AiRLoc 72.6 % 1.49 6.0 2.4

AiRLoc (other seed #1) 72.2 % 1.45 6.1 2.4
AiRLoc (other seed #2) 72.2 % 1.51 6.2 2.5
AiRLoc (other seed #3) 74.3 % 1.56 6.2 2.4
AiRLoc (other seed #4) 75.9 % 1.53 6.1 2.5

AiRLoc (average) 73.4 % 1.51 6.1 2.5
AiRLoc (no residual) 68.5 % 1.49 6.3 2.2

AiRLoc (no residual, other seed #1) 68.6 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #2) 69.5 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #3) 68.2 % 1.60 6.4 2.2
AiRLoc (no residual, other seed #4) 67.2 % 1.57 6.4 2.2

AiRLoc (no residual, average) 68.4 % 1.54 6.3 2.2
AiRLoc (no prior) 65.9 % 1.56 6.5 2.4

AiRLoc (no prior, other seed #1) 64.8 % 1.56 6.7 2.4
AiRLoc (no prior, other seed #2) 66.6 % 1.56 6.5 2.5
AiRLoc (no prior, other seed #3) 66.6 % 1.50 6.4 2.3
AiRLoc (no prior, other seed #4) 64.9 % 1.50 6.6 2.4

AiRLoc (no prior, average) 65.8 % 1.54 6.5 2.4
Priv local 67.0 % 1.54 6.3 2.3

seed sensitivity analysis for AiRLoc and its ablated variants on the validation set of Massachusetts
Buildings. The AiRLoc variants are trained6 with five random network initializations each, and the
results for the median-performing models on the validation set are reported in the main paper. The
seed sensitivity is low overall. Even at worst, our full AiRLoc agent outperforms Priv local. Note
that we report two additional metrics (aside from the success ratio and the average number of steps
taken per episode). Step ratio measures the average ratio between the taken number of steps and the
minimum number of steps required (lower is better). It is only computed for successful trajectories.
Residual distance measures the average distance between the final location relative to the goal
location in unsuccessful episodes (lower is better).

Extended ablation study. See Table 3 for an extended ablation study of AiRLoc on the validation
set of Massachusetts Buildings. In addition to the no prior and no residual variants, we also show
results for the following AiRLoc variants. Priv applies the same heuristic as the privileged baselines
(never moves outside, avoids visiting past locations). No sem seg omits the segmentation unit and
uses only RGB patches in the patch embedder (which is pretrained with RGB-only inputs).

Dataset details. As described in the main paper, Massachusetts Buildings is used as the main
dataset for model development and evaluation. There are 832 different search areas in training
(70%), 178 in validation (15%), and 178 in testing (15%). Since top-right and left-right flipping
of search areas is performed during training, and since search a area of size M × N = 5 × 5 has
25 · 24 different start-goal configurations, there are in total 832 · 4 · 25 · 24 ≈ 2 · 106 unique training
configurations. As the various agents are trained for roughly 50k batches each, and since each batch
consists of 64 episodes, this amounts to 3.2 · 106 training episodes.

6Each model is trained until convergence on the validation set (typically happens within 50k batches).

15



Published as a conference paper at ICLR 2023

Table 3: Extended ablation study on the validation set of Massachusetts Buildings (movement bud-
get T = 10 and T = 14 for setups of sizes 5 × 5 and 7 × 7, respectively). Adding the movement
constraint privileges of the random baseline and Priv local does not yield any significant improve-
ments for AiRLoc - it even reduces the success rate for our full AiRLoc agent. Conversely, in the
bottom of this table we report results for Local, which is the same as Priv local but without the
privileged movement constraints (thus Local may visit the same location multiple times and move
outside the search area). Different to AiRLoc, which also lacks any privileged movement con-
straints, Local performs abysmally when it not given such constraints. Mid-level vision capabilities
(semantic segmentation) are crucial for AiRLoc’s performance. The fact that the ablated AiRLoc
variants generally result in a lower success rate motivates our design choices.

Agent type Success Step ratio Steps Res. dist.
AiRLoc (5x5) 72.6 % 1.49 6.0 2.4

AiRLoc (priv, 5x5) 68.8 % 1.47 6.2 2.3
AiRLoc (no residual, 5x5) 68.5 % 1.49 6.3 2.2

AiRLoc (no residual, priv, 5x5) 71.9 % 1.52 6.2 2.5
AiRLoc (no prior, 5x5) 65.9 % 1.56 6.5 2.4

AiRLoc (no prior, priv, 5x5) 67.1 % 1.56 6.4 2.6
AiRLoc (no sem seg, 5x5) 62.6 % 1.52 6.6 2.4

AiRLoc (no sem seg, priv, 5x5) 64.6 % 1.56 6.7 2.5
AiRLoc (no residual, no sem seg, 5x5) 61.1 % 1.56 6.8 2.4

AiRLoc (no residual, no sem seg, priv, 5x5) 62.6 % 1.59 6.8 2.5
AiRLoc (no prior, no sem seg, 5x5) 60.7 % 1.67 6.9 2.5

AiRLoc (no prior, no sem seg, priv, 5x5) 62.2 % 1.69 6.9 2.6
AiRLoc (7x7) 57.6 % 1.54 9.6 3.4

AiRLoc (priv, 7x7) 51.4 % 1.49 10.1 3.3
AiRLoc (no residual, 7x7) 50.5 % 1.54 10.1 3.4

AiRLoc (no residual, priv, 7x7) 52.3 % 1.54 9.9 3.5
AiRLoc (no prior, 7x7) 50.5 % 1.59 10.2 3.6

AiRLoc (no prior, priv, 7x7) 52.1 % 1.59 10.1 3.6
AiRLoc (no sem seg, 7x7) 48.4 % 1.56 10.4 3.3

AiRLoc (no sem seg, priv, 7x7) 47.7 % 1.69 10.7 3.2
AiRLoc (no residual, no sem seg, 7x7) 46.1 % 1.59 10.4 3.6

AiRLoc (no residual, no sem seg, priv, 7x7) 48.8 % 1.64 10.4 3.7
AiRLoc (no prior, no sem seg, 7x7) 42.4 % 1.79 11.1 3.4

AiRLoc (no prior, no sem seg, priv, 7x7) 44.4 % 1.82 11.0 3.4
Priv local 67.0 % 1.54 6.3 2.3

Local 19.9 % 0.79 8.5 6.1

During evaluation, one randomly generated but fixed configuration of each start-to-goal dis-
tance is used per search area, which results in 712 fixed validation and test configurations,
respectively, in the 5 × 5 setting (4 · 178 = 172). Similarly, when evaluating on the Dubai dataset
(the Loop), there are 196 search areas and thus 784 fixed evaluation configurations. The grid cells
of the search areas are of size 48 × 48 × 3, with 4 pixels between each other to avoid overfitting
models to edge artefacts (each cell corresponds to roughly 100× 100 meters).

As for the xBD-pre and xBD-disaster data, they again depict data from non-disaster-hit (xBD-pre)
and disaster-hit (xBD-disaster) areas,7 and the respective data splits are from different geographical
areas (thus there is no spatial overlap). There are 902 different search areas in training (xBD-pre),
and since top-right and left-right flipping of search areas is performed during training, and since
search a area of size M ×N = 5× 5 has 25 · 24 different start-goal configurations, there are in total
902 · 4 · 25 · 24 ≈ 2.2 · 106 unique training configurations. During evaluation (on xBD-disaster), one
randomly generated but fixed configuration of each start-to-goal distance is used per search area,
which results in 5212 evaluation configurations in the 5 × 5 setting (there are 1303 search areas in

7More specifically, xBD-pre contains the satellite image subset depicting various locations prior to hurricane
Michael (found in the tier1 subset of the xBD dataset), and xBD-disaster contains the satellite image subset
depicting various locations after various natural disasters (also found in the tier1 subset of the xBD dataset).

16



Published as a conference paper at ICLR 2023

Figure 16: An example of the human performance evaluation setup. Each participant was given a
set of 12 different such games (a game is a search area and an associated start and goal location),
and there was no overlap in the games played by different participants. Each search area was of size
M ×N = 5× 5 and the movement budget was T = 10.

xBD-disaster and 4 · 1303 = 5212).

Description of the human performance evaluation. To compare the performance of AiR-
Loc with a human operator in a similar setting, a game version of the task was developed. For
fair comparisons, this game was designed to resemble how AiRLoc perceives the search area.
Therefore, in addition to receiving the current and goal patches, the human operator is also aware of
the borders of the search area, and knows the current position as well as the history of all previously
visited positions within the confined area – see Fig. 16. In fact, the human operator can even see
all the previously visited patches, while this information is not provided to AiRLoc. We decided
to provide humans with this additional information as they have not been trained for the task at
hand. Based on this input, the human operator can move to any of the eight adjacent patches. The
movement is selected by clicking with a mouse cursor on one of the eight dark squares surrounding
the current location in the Player Area, shown on the left in Fig. 16. The game ends either when the
movement budget T = 10 is exhausted or when the player moves into the goal location.

The age span of the 19 people who participated is between 14 and 42 years, with an average of 26.4
years and a median of 25 years. There were 13 men and 6 women (68% and 32%, respectively). For
each human operator, 12 unique search areas from the validation set of Massachusetts Buildings
were used, as well as a few sample search areas for the player to get acquainted with the controls
of the game – the participants were able to practice as long as they desired, and no statistics were
tracked during this warm up phase. The exact games provided span a subset of the games that
AiRLoc and the other baselines are evaluated on, to ensure that the comparison is as fair as possible.
However, each human is not tested on the entire validation set since it is impractically large, and

17



Published as a conference paper at ICLR 2023

hence there is a higher uncertainty in the human performance evaluation. The difficulty settings
were split equally over these twelve games, with three games per difficulty (here difficulty is the
distance between the start and goal patches, ranging from 1 to 4 steps away).

Even though the human setup is very similar to that of AiRLoc, there are some concepts that
do not translate well to a human controlled setup. First, the positional encoding of AiRLoc is
difficult to translate to human visual processing, and instead a map of the positions was implemented
(thus the participants receive explicit information from past locations, different from AiRLoc).
Second, the human participants have not trained on the task like AiRLoc, and their visual systems
are likely not tailored towards handling the quite low resolution patches. On the other hand, humans
have implicitly conducted a lifetime worth of generic visual pretraining, which AiRLoc has not.
Third, the human participants have a limited time to complete each game (60 seconds). Such a time
limit was used for the convenience of the participants – we wanted to avoid that the participants felt
like they had to spend several minutes per action to squeeze out the maximum possible performance.
The 60 second time limit was assessed to be more than sufficient for completing each game, and
the participants agreed with this. These discrepancies, in conjunction with the limited number of
human controlled trajectories, somewhat limit the reliability of the human baseline. Nonetheless, it
is still a useful indication of the human performance on our proposed task.

Acknowledgments: This work was partially supported by the strategic research projects ELLIIT and
the Swedish Foundation for Strategic Research project, Semantic Mapping and Visual Navigation for Smart
Robots (grant no. RIT15-0038).

18


	Introduction
	Aerial View Goal Localization
	Experiments
	Conclusions
	Supplementary Material

