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ABSTRACT

The ability to track and process large images while selectively focusing on areas
of interest has become extremely important over the past few years. This capa-
bility enables a significant reduction in computational resources, which ultimately
results in a decrease in costs when operating in the cloud or in energy when work-
ing with edge computing devices. A remote sensing task that can clearly benefit
from such reduction consists in detecting ships in open seas. In such scenario,
thousands of miles may only contain water without any vessels in sight. In this
work, we introduce an efficient cascade architecture that can be effortlessly de-
ployed in any machine. Our proposed approach builds upon prior related work and
evaluates the current state-of-the-art image-based machine learning algorithms to
accomplish our research objectives.

1 INTRODUCTION

Over the past few years, there has been a growing interest in using computer vision software and
advanced image acquisition hardware to address the challenges of remote sensing Tahir et al. (2022).
In this context, the development of faster and more accurate models has become a critical milestone
in this field Sancho et al. (2021). These challenges are mainly driven by the need to keep pace
with the rapid advancements in image acquisition hardware and to reduce costs by saving energy
and computing power. Moreover, the increasing urgency to extract relevant information from the
planet’s surface and to take global actions highlights the prevailing need of using multi-and-hyper-
spectral vision equipment, which generates voluminous and cumbersome data Hu et al. (2022). Con-
sequently, the machine learning community is focusing its efforts on improving the computational
efficiency and performance of current models to overcome these bottlenecks. This is particularly
interesting because some of the tasks generally performed by these models are related to segmenta-
tion Oksuz et al. (2021)and object detection challenges Qin et al. (2022), which are computationally
expensive tasks. To address this issue, a highly efficient model has been designed and built in this
work, which can perform real or near real-time ship detection in large open sea areas. This model
leverages state-of-the-art deep learning architectures for multi-spectral images, making it effective
and precise.

2 METHODOLOGY

2.1 WORKFLOW OVERVIEW

This section aims to showcase the overall workflow of the system, which seeks to automatically
find and identify ships in large scale maritime data. Some depictions will be done to show what the
output data looks like as input data goes through each one of the modules of the pipeline. These
modules are the following:

A sliding window algorithm (SW) that breaks down the large input data into smaller frames,
similar to Akyon et al. (2022). A black pixel pruning algorithm (BP) that removes frames with too
many black pixels. A water pruning algorithm (WP) that keeps only frames with a certain amount
of water. A ship pruning algorithm (SP) that predicts if a frame has at least one big ship Wightman
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(2019)Tan et al. (2020), and a ship detection algorithm (SD) that identifies the exact location and
category of a ship in a frame Wang et al. (2022b).

All these modules work together to quickly locate and track ships in large images. The sys-
tem uses simpler and faster algorithms to remove non-relevant images before using more complex
algorithms for object detection, improving previous systems and real-time applications with satellite
imagery Ozdemir & Polat (2020) Nalepa (2021) Paoletti et al. (2019). To build this system, we
collected and processed large satellite rasters, in the form of Red Green Blue (RGB), see Fig. 1,
and RGBN imagery, which includes the near-infrared channel.

1,500 km2

Figure 1: Large capture over the Mediterranean sea.

Figure 2: Sliding window using a 1024 x 1024 window size and a stride of 614 pixels.

To start, step one involves using a sliding window, see Fig. 2, to cut a large raster into smaller
frames for easier handling. However, some frames located at the edge of the raster may be entirely
black, which is addressed in step two.

By using the module BP, frames are kept only if they have a certain percentage of non-black
pixels. A percentage of around 90-95% is suitable, as it prevents the discarding of frames that might
contain objects despite the black pixels at the edge of the raster. For the purpose of illustration,
a Canny Edge detector Ding & Goshtasby (2001) has been used, as can be seen in Fig. 2, to
emphasize the difference between the left part of the edge, which is the end of the raster, and the
part at the right of the edge, which is where the fully black pixels are.

In step three, Near Infrared (NIR) sensors are utilized to take advantage of water’s light absorption
properties and discard non-water areas.
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Figure 3: The frame contains a ship located at the edge of the raster

In step four, a state-of-the-art Convolutional Neural Network (CNN) Albawi et al. (2017) algo-
rithm is utilized to predict whether a frame corresponds to the class ”ship” or ”no ship.” The al-
gorithm is trained using an EfficientNet Koonce & Koonce (2021) architecture, see Fig. 4, which
automatically extracts the relevant features of a ship and classifies it as one of the two possible
classes. If a frame class happens to be ”ship”, it is kept for the final step.

Figure 4: Frames labeled as ”ship” with EfficientNet

Finally, among the different methods available in the literature used for ship detection (e.g. ReDet
Han et al. (2021), Oriented R-CNN Xie et al. (2021), RR-CNN Liu et al. (2017)), we adapted
YOLOv7 Wang et al. (2022a) to locate ships using rotated bounding-boxes in step five. This decision
was made after most recent improvements authors reported in their paper. As can be seen in Fig. 5,
this fork is able to predict rotated bounding boxes (x1,y1, x2,y2, x3,y3, x4,y4), unlike the original
version, and processes independent frames rapidly. This module is initialized at the beginning of the
execution and waits for a frame before providing a real-time prediction.

Figure 5: Detected ships with YOLOv7.

2.2 TRAINING, VALIDATION AND TESTING

Except for the ship detector that was trained and validated using the full DOTA v2 dataset Xia
et al. (2018) (see Fig. 6), the rest of the stages within the cascade were trained using Satellogic
multispectral imagery, L1 product1, at one meter resolution. EfficientNet was trained and validated
on a custom dataset containing around 500 ships, 80% for training and 20% for validation. To assess
the full cascade vs YOLOv7, we carefully split several captures into validation and testing, leaving
a total of 3,291 km² for testing. Quantitative results are shown in Table 1. Regarding training times,
EfficientNet took 20 minutes, while YOLOv7 took 33 hours, in both cases, using a single Nvidia
RTX A5000.

1https://satellogic.com/products/multispectral-imagery/
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Figure 6: Precision vs Recall and F1-Score vs Confidence curves after having trained YOLOv7.

2.3 PROPOSED (MCPN) VS BASELINE (YOLOV7) PIPELINES

Outputs MCPN YOLOv7
Area (km²) 3,291 3,291
Sliding Window time (s) 0.51 0.40
Sliding Window input frames 8,980 8,980
Black Pruning time (s) 20.33 20.18
Black Pruning input frames 8,980 8,980
Water Pruning time(s) 3.72 -
Water Pruning frames 3,836 -
Ship Pruning time(s) 27.26 -
Ship Pruning input frames 3,440 -
Normalizations and conversions time (s) 34.00 37.90
Ship Detection time (s) 32.81 121.42
Ship Detection input frames 1,002 3,836
Total time (s) 118.63 179.90
Sliding Window frames per second 75.69 49.91

Table 1: Test results with proposed cascade vs YOLOv7.

The pipeline has included sea and ship pruning modules, resulting in an average frame-rate of 75.69
FPS, which represents a speed increase of approximately 51.65% compared to the baseline algorithm
that solely utilizes YOLOv7 without EfficientNet and the WP module. However, there are still a
small number of false negatives in some images when compared to the baseline algorithm. Out
of the total of 336 cropped positives processed with YOLOv7, there are 23 false negatives using
Maritime Candidate Pruning Network (MCPN), which accounts for roughly 6.8% of errors

3 CONCLUSIONS

As a result of comparing the baseline algorithm with the proposed algorithm, it can be concluded
that the proposed algorithm has improved the performance in terms of speed by approximately
51.65% and has a slightly higher error of 6.8% in different weather conditions. This error originates
exclusively from the ship pruning module based on EfficientNet, and it is currently being improved
by increasing the amount of data in the current dataset. Efforts are also underway to address the
impact of having clouds and sunglint in the images in the future. In the former case, we believe
that these cases could be dealt in previous stages without the need of having a cloud detector. In
the second case, we could either include more cases in the dataset, so the full pipeline could learn
from them, or use image processing techniques such as filters or contrast enhancement to mitigate
the sunglint. Maritime Candidate Pruning Network is an end-to-end solution that fully integrates
and leverages different well-known computer vision techniques along with current state-of-the-art
deep learning architectures to conduct real-time analysis.
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