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Abstract

Understanding and properly estimating the impacts of environmental inter-
ventions is of critical importance as we work to achieve global climate goals.
Advances in machine learning paired with the growth of accessible satel-
lite imagery have led to increased utilization of remotely sensed measures
when inferring the impact of a policy. However, when machine learning
models simply minimize a standard loss function, the predictions that they
generate can produce biased estimates in downstream causal inference. If
prediction error in the outcome variable is correlated with policy variables or
important confounders, as is the case for many widely used remote sensing
data sets, estimates of the causal impacts of policies can be biased. In this
paper, we demonstrate how this bias can arise, and we propose the use
of an adversarial debiasing model (Zhang, Lemoine, and Mitchell 2018) in
order to correct the issue when using satellite data to generate machine
learning predictions for use in causal inference. We apply this method to a
case study of the relationship between roads and tree cover in West Africa,
where our results indicate that adversarial debiasing can recover a much
more accurate estimate of the parameter of interest compared to when the
standard approach is used.

1 Introduction

Advances in machine learning and the increasing availability of satellite imagery have
catalyzed the use of remotely sensed measures of human activity or environmental outcomes
in research seeking to infer environmental policy impacts. The effort required to directly
observe and collect outcome data on-the-ground may be prohibitively expensive or time-
consuming. Remote sensing, particularly via satellite imaging, offers a huge opportunity
for measuring outcomes at a much lower cost and time investment to researchers. This is
especially applicable to those developing and testing interventions to mitigate the causes and
effects of climate change, which frequently need to be evaluated at large spatial scales and
remote locations. To translate satellite imagery to manageable representations of outcomes,
researchers take a small number of images that have been hand-labeled or cross-referenced
with on-the-ground measurements, and use them to train machine learning models to predict
the desired variable (e.g. proportion tree cover). Trained models can be deployed on a much
larger set of images to obtain outcome predictions at all points of interest, requiring a fraction
of the data used in impact evaluation to be manually labelled or collected. Impact evaluations
commonly use these machine learned outcomes to make causal inferences about interventions
by estimating the effect of the intervention (or “treatment") on the outcome. Standard
causal inference frameworks assume that there are no unobserved variables that “confound"
the relationship between the treatment and outcome by influencing both the treatment
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and outcome variables. When using predictions from remote sensing methods as outcome
values, the relevant assumption applies to the outcome predictions (see examples in Figure
1). Even in an experiment where researchers control a randomized treatment assignment
mechanism, it is possible for this assumption to be violated if the assignment of treatment
influences the outcome prediction error. For example, imagine a randomized experiment
where treatment (e.g. a carbon credit) inadvertently increases nearby manufacturing and
air pollution. Increased levels of air pollution could result in systematic under-predictions
of the outcome of interest, introducing a dependency between the prediction error and
the treatment. In non-experimentally randomized settings, opportunities for dependencies
between treatment and outcome prediction error proliferate, related to common concerns
about confounding variables in observational studies. Suppose that we want to understand
the impact of building roads on deforestation. Roads tend not to be built on steep slopes,
where remote sensing methods also tend to over-predict tree cover. The effect of slope on
tree cover prediction error may be misattributed to being far from roads.

To remove dependencies of this nature from remotely sensed outcome predictions, we propose
the use of an adversarial debiasing model, inspired by prior work in algorithmic fairness
(Zhang, Lemoine, and Mitchell 2018, Celis and Keswani 2019). Adversarial debiasing has
been used in this field to ensure that algorithms do not make systematically inaccurate
predictions on the basis of race or gender. Our approach adapts this tactic to generate
satellite-derived measures that are unbiased for true outcome values across the range of the
treatment variable, improving the accuracy of downstream estimation for impact evaluation.
We describe experiments demonstrating the usefulness of this method for obtaining accurate
estimates of policy-relevant parameters in cases where standard methods fail.

2 Related work

Recently, other studies have pointed out cases of systematic prediction errors in a variety of
remotely sensed variables. Balboni, Barbier, and Burgess 2022 review recent work focused on
these issues in deforestation prediction models. One such model which has received almost
10,000 citations, Hansen et al. 2013, has received criticism for systematically under-predicting
tree cover in tropical forests as well as dryland biomes (Balboni, Barbier, and Burgess
2022, Bastin et al. 2017). Fowlie, Rubin, and Walker 2019 show that two satellite-based air
quality prediction methods are down-biased for high ground-truth air pollution values. In
econometrics, where remotely sensed variables are also becoming more commonly used, work
has shown the prediction error of night lights data to be greater in rural areas (Gibson et al.
2021). Other research is also focused on techniques for avoiding downstream estimation
biases due to prediction error (Alix-Garcia and Millimet 2020, Garcia and Heilmayr 2022,
Ratledge et al. 2022, Proctor, Carleton, and Sum 2023). Our work is distinct from these as it
focuses on addressing the issue in the prediction modeling stage, rather than the estimation
stage, and by the approach of directly incentivizing the prediction model to avoid dependency
between the prediction error and the treatment variable. Ozery-Flato et al. 2020 also present
an algorithm that applies adversarial models to a causal inference framework, with focus
on re-weighting observations to improve covariate balance between treatment groups. In
comparison, our approach focuses on removing estimation bias that is propagated from
outcome prediction error.

3 Methodology

Our methodology is motivated by a simple example of how impact evaluation may be biased
in the presence of systematic prediction error in remotely sensed variables. Consider a
scenario where we seek to estimate the effect of some treatment X (ex. carbon crediting or
road construction) on an observed outcome Y (ex. tree cover). Imagine that the true model
relating these is

Y = γ + τX + ϵ, (1)
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where ϵ ∼ N (0, σ2), γ represents the expected outcome without treatment, and τ ∈ R
represents the homogeneous treatment effect for all units. Suppose that it is too costly or
time consuming for us to directly observe Y1, . . . , Yn for n units in a study, so we instead use
remote sensing methods to obtain machine learned predictions of them, which we assume
are the sum of the true outcome values Yi and prediction error (of unknown distribution) νi:

Ŷi = Yi + νi = γ + τXi + ϵi + νi. (2)

Suppose that given these values of Ŷi for units i = 1, . . . , n, we go to estimate the treatment
effect τ using linear regression, as is common in this setting. This will produce an estimate
β̂ for τ that in expectation is equal to

E[β̂] =
Cov(X, γ + τX + ϵ+ ν)

V ar(X)

= τ +
Cov(X, ϵ) + Cov(X, ν)

V ar(X)
. (3)

We see that for the regression coefficient β̂ to be unbiased for the treatment effect, it is
necessary that the second term be zero. It is typical to assume that Cov(X, ϵ) = 0; in a
randomized controlled trial because the treatment assignment X is randomized independently
of ϵ, and in an observational study where the ignorability assumption is necessary. However,
even if this is true, the prediction error ν may continue to bias the estimate of τ to the
extent that ν is correlated with the treatment variable X.

Our approach for generating accurate predictions Ŷi with minimal correlation between ν and
X consists of combining a primary prediction model, Mp, and an adversarial model Ma. In
our work so far, we have implemented Mp as a logistic regression classification model, and
simple linear regression for Ma, which predicts the treatment variable X using the residuals
from the primary model. To train the model we use a loss function combining the log-loss of
Mp and the scaled MSE of Ma:

Ltotal = log-lossp − α ·MSEa (4)

where α is a tuneable hyperparameter. In our evaluation of the model, we cross-fit predictions
in three folds to optimize the use of our fully labelled data set, and evaluate the model for a
range of values of α. We expect that at higher values of α we should approach predictions
whose errors have no correlation with the treatment variable X, but potentially at the cost of
overall prediction accuracy. When α = 0, the model reduces to a standard logistic regression.

4 Experiments

We apply our method to a case study on tree cover in West Africa. From the data set
produced in Bastin et al. 2017, we use 16,908 hand-labeled points that are coded as forest
or not forest as the "true" measure of forest cover. We utilize time series of corresponding
satellite records from the Landsat 7 ETM sensor, and calculate median and first and third
quartile values over time for each point, following the approach described in Hansen et al.
2013. Our key independent variable for this case study is the distance from each point to
the nearest road, which was obtained from the GLOBIO global roads database. We also
incorporate control variables in some experiments including slope, elevation, aspect, and
aridity zone to compare model performances.

Initially, we compare the performances of baseline approaches, where α = 0 and our prediction
model is a standard logistic regression, when 1. only satellite data is used to predict forest
cover and 2. when satellite data and the additional covariates are used. We compare the
estimates produced by regressing these forest cover predictions on the variable of interest,
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ground truth baseline baseline + covars adversarial model

(Intercept) 0.278 (0.006) 0.553 (0.004) 0.571 (0.004) 0.524 (0.003)
log_distance −0.040 (0.003) −0.075 (0.002) −0.086 (0.002) −0.046 (0.002)

R2 Adj. 0.007 0.061 0.077 0.043

Table 1: Regression summaries of ground truth forest cover and predicted probabilities of
forest cover against log distance to nearest road (in kilometers). HC2 standard errors are
reported. All models utilize n = 16 908 observations. This adversarial model used α = 50.

distance to the nearest road. Because different classification thresholds led to very different
results in our experiments, we use the predicted probabilities of forest cover, rather than
binary forest cover class in our exploratory work for this case study. In our ongoing work we
plan to address how choices of the classification threshold factor into our modeling procedure.
In addition to these baseline models, we repeat the procedure for a sequence of nonzero α
values to assess the adversarial debiasing model performance.

Note that while we developed this model with causal questions in mind, we are not claiming
identification of a causal relationship between distance to roads and forest cover in this case
study. Rather, we wish to see regardless of if someone has found a way to get Cov(X, ϵ) = 0
whether the analysis would still be biased by the presence of measurement error. Here,
setting aside the issue of likely omitted variable bias, we find that measurement error presents
a separate source of bias.

5 Results

Our baseline experiments demonstrate that compared to the parameter estimate obtained
using the Bastin et al. 2017 ground-truth data, both estimation attempts using baseline model
predictions result in inaccurate values (Table 1). When looking at the map of prediction
errors (Figure 2) from the standard logistic regression model without covariates, we observe
that the errors have a spatial structure beyond the spatial presence of forest cover (including
covariates does not meaningfully change this behavior).

However, we find that when we use predictions from the adversarial debiasing model, we can
recover an estimate much closer to the true parameter at only a small cost to the overall
accuracy of the prediction model. This depends on the choice of the α, but we find that the
estimate quickly converges to the ground-truth value as we increase this parameter (Figure
3). Work is ongoing to experiment further and provide guidelines for tuning α in realistic
settings where the true parameter of interest is unknown.

6 Conclusions

The use of remotely sensed outcomes in fields such as environmental policy impact research
is rapidly expanding, particularly in the areas of deforestation, electrification (night lights),
and air pollution. Outcomes related to many of these measures are key to achieving global
climate goals, and are the focus of many climate-focused impact evaluations. However,
researchers who use off-the-shelf satellite-derived measures of these key dependent variables
are likely introducing bias to the results of their inferences. We formalize the problem,
identify potential sources of bias, and provide researchers with an easy to implement method
to reduce bias originating from dependencies between prediction error of remotely sensed
variables and the key independent variable or treatment.

There are limitations to the current work, and efforts are ongoing to continue assessing the
behavior of this method given different choices of data sets, primary and adversarial model
combinations, and loss functions. In a causal inference setting, dependencies introduced by
this model between the treatment status of some samples and the outcome predictions of
others may warrant additional statistical developments to ensure that variance is estimated
appropriately for causal effect estimators.
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(a) Classical measurement error (b) Attenuation

(c) Simple confounder (d) Mis-identification

Figure 1: Causal diagrams where X represents an intervention or treatment, Y represents
a ground-truth (but unobservable) outcome, Ŷ represents the remotely sensed prediction
of Y , ν represents measurement error of Ŷ , and γ and Ψ represent various confounding
variables. (a) Classical measurement error: measurement error term ν of Ŷ is independent
of observable variables. This is the most commonly assumed structure, if measurement error
is considered at all. (b) Attenuation: measurement error ν of Ŷ depends on the value of the
true outcome variable Y . (c) Simple confounder: measurement error ν depends on a variable
Ψ, which also influences the treatment variable X. (d) Mis-identification: The treatment
variable X influences a confounding variable γ, which contributes to measurement error ν.
The contribution of γ to ν may be mistaken as a contribution of X to the outcome Y .
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(a)

(b)

Figure 2: (a) Distribution of points labeled as forested in Bastin et al. 2017. Green points
are forested, beige are not. Note that the sampling intensity of this data set varies by aridity
zone (generally sparser in the north, denser in the south). (b) Residuals from a baseline
logistic regression model trained on satellite imagery data to predict forest cover. These
prediction errors have a clear spatial structure. In this instance, we chose the classification
threshold of predicted probabilities that optimized the overall mean squared error to visualize
classification error.
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(a)

(b)

Figure 3: Results of tuning the hyperparameter α in the adversarial debiasing model for the
Bastin et al. 2017 case study.
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