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ABSTRACT

Poverty maps derived from satellite imagery are increasingly used to inform high-
stakes policy decisions, such as the targeting of humanitarian aid and the alloca-
tion of government resources. These maps are typically constructed by training
machine learning algorithms with country- or continent-scale data, but many real-
world applications are focused on specific urban or rural areas. This paper shows
that satellite-based poverty predictions are less accurate at distinguishing levels of
wealth within urban and rural areas than they are at distinguishing wealth differ-
ences between urban and rural areas, investigates why this may be the case, and
documents the implications of these disparities for downstream policy decisions.

1 INTRODUCTION

Satellite-based poverty maps are increasingly being used to inform critical policy decisions, from
estimating interim sub-national statistics (Hofer et al., 2020) to the targeting of humanitarian aid
(Aiken et al., 2022; Smythe & Blumenstock, 2022) and social services (Gentilini et al., 2022). Such
poverty maps are typically constructed by training machine learning algorithms to recognize poverty
from high resolution imagery on a relatively modest amount of ‘ground truth’ data, and using the
outputs of such algorithms to fill in spatial gaps in regions where ground truth data are not available.
The deployment of poverty maps for real-world policies requires that the maps provide accurate and
fair estimates of living conditions on the ground, particularly in settings where policymakers may
consider such maps technocratic and therefore ‘objective’ measures of poverty (Kondmann & Zhu,
2021).

However, results in past work have hinted that machine learning models based on satellite imagery
may rely heavily on indicators of urbanization observable in imagery as a predictor of wealth, and
therefore have limited predictive power across just urban or rural regions. For example, Yeh et al.
(2020) document that a satellite-based machine learning model for the African continent explains
much less of the variance within urban (R2=0.40) or rural (R2=0.32) areas than in all areas together
(R2=0.70). Zhang et al. (2022) document urban-rural accuracy disparities for land-cover mapping in
China, and Engstrom et al. (2017) add complementary evidence showing that nearly all of the most
important satellite-based features used in satellite-based poverty prediction models in Sri Lanka
are related to urban build-up. These disparities are particularly concerning in the context of policy
deployments of satellite-based poverty maps that are restricted to just urban or just rural areas — a
fairly common approach in anti-poverty programming (Lindert et al., 2020).

In this paper we build on the existing literature to more thoroughly explore representational dis-
parities in satellite-based poverty maps between urban and rural areas and their implications for
fairness. Using survey data and satellite imagery from seven countries (Table 1), our analysis pro-
duces three main results: (1) we document substantial disparities in the degree to which poverty can
be estimated from satellite imagery between urban and rural areas, (2) we show how such disparities
propagate into downstream policy decisions by simulating a hypothetical social protection program
using satellite-based poverty maps, and (3) we explore more generally the role of indicators of ur-
banization in predicting poverty from satellite imagery, finding that proxies for urbanization explain
most of the variation in wealth observed in satellite-based poverty maps.

∗These authors contributed equally to this work
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DHS Year Number of
Clusters

% Rural
Clusters

Tiles Per Cluseter

Minimum Mean Maximum

Colombia 2010 4,868 30.1% 16 38 88
Honduras 2011 1,128 56.2% 16 54 86
Indonesia 2017 1,319 57.8% 16 55 87
Kenya 2014 1,585 61.2% 16 57 86
Nigeria 2018 1,359 58.8% 16 56 86
Peru 2012 1,131 38.8% 16 43 85
Philippines 2017 1,213 64.0% 16 59 88

Table 1: Summary of datasets.

Figure 1: Distribution analysis of imagery features across urban and rural clusters. First and
second dimensions of per-country PCA projections of the MOSAIKS features. Across countries,
these two dimensions explain between 93.5% and 98.5% of the variation in the 4000 features.

2 DATA AND METHODS

Survey Data. We use ground truth wealth measures from the most recent demographic and health
(DHS) surveys from seven countries: Colombia, Honduras, Indonesia, Kenya, Nigeria, Peru, and the
Philippines. Each of these surveys was conducted in 2010 or later and interviewed between 20,000
and 60,000 households in 1,000-5,00 clusters. Clusters are small groups of geographically adjacent
households, sampled at random or stratified random in each country. Clusters are roughly equivalent
to a neighborhood in urban areas (for which the provided cluster center location is jittered with a
2km radius) or a village in rural areas (for which the provided cluster center location is jittered with a
5km radius). Our ground truth measure of poverty for each cluster is the average asset-based wealth
index — as recorded in each DHS survey — for households in that cluster. Each DHS survey uses
a country-specific rule to define which areas are rural and which are urban; rural ratios range from
30% to 64% (Table 1).

Satellite Features. We obtain a set of tabularized features summarizing satellite tiles in each coun-
try we study from MOSAIKS (Rolf et al., 2021), accessed via siml.berkeley.edu (Carleton
et al., 2022). The underlying RGB satellite images are from Planet Labs in 2019. Features are gen-
erated through an unsupervised machine learning approach based on random convolutional features
(RCFs), which are shown to carry skill across a variety of prediction tasks (Rolf et al., 2021).

RCF embedding functions are essentially a wide and shallow feed-forward convolutional neural
network with random but fixed (non-optimized) weights. We use RCFs as convenient way to obtain
images features with a single, fixed featurization method across countries. Figure 1 visualizes the
feature distributions across urban and rural instances. These embeddings of satellite imagery –
which are created completely independently of the poverty prediction task, or any downstream task
for that matter – already encode a high amount of signal as to whether a region is urban or rural.

In urban areas, where DHS clusters centroids have a jitter of up to 2km, each cluster is represented by
around 16 MOSAIKS tiles; in rural areas, where DHS cluster centroids have up to a 5km jitter, each
cluster is represented by around 87 MOSAIKS tiles (Table 1) — thus each rural cluster is represented
by approximately six times as many tiles as urban clusters. For each cluster we calculate the mean
of each MOSAIKS feature across all tiles that fall within the jitter radius of the cluster centroid,
weighted for degree of overlap with the cluster extent.
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Figure 2: Performance measured overall and within groups. Panel A: Fraction in variation of
true wealth explained by predictions (R2 score) is higher overall (yellow) than within urban areas
(blue) or rural areas (red) Panel B: Rank correlation (Spearman’s ρ) between predicted and ground-
truth wealth are higher in each country as a whole (yellow) than within urban (blue) and rural (red)
regions in each country. Panel C: As a result, a simulated aid program that targets the poorest 20% of
regions in urban (blue) or rural (red) parts of a country generally has lower accuracy than a program
that targets within the entire country (yellow).

Methods. Our machine learning simulations begin by assigning 75% of regions in each country
to a training set and 25% to a test set, uniformly at random. Following Rolf et al. (2021), in each
country we train a ridge regression model to predict average household wealth in training set regions
from the associated satellite-derived MOSAIKS features, tuning the ℓ2 penalty via three-fold cross-
validation. We then use the trained model to produce wealth estimates for every region in the test
set. We report the mean and uncertainty across 100 simulations in all our results.

Our analysis focuses on understanding differences in how well satellite-based poverty prediction
models perform between urban and rural areas (both predictive performance and applicability to
a downstream decision-making task). First, we document patterns of representational disparities
within and between urban and rural areas, by measuring predictive accuracy (measured with R2 and
Spearman’s ρ) in the test set overall, in just urban regions, and in just rural regions.

Second, to understand how representational disparities manifest in downstream policy applications,
we simulate hypothetical social protection programs using satellite-based predictions. We compare
the precision and recall (equal by definition in this application (Brown et al., 2018)) of a hypothetical
geographically targeted program that (1) is run in an entire country, targeting the poorest 20% of
clusters in each country as a whole, (2) is run in only urban areas, targeting the poorest 20% of
urban clusters, and (3) is run in only rural areas, targeting the poorest 20% of rural clusters.

Third, to explore the importance of urban build-up as an indicator of poverty in satellite-based
poverty prediction models more generally, we compare the accuracy of two sets of predictions for
identifying poverty in each country as a whole: (1) regression predictions from a model trained to
estimate poverty (as in the first two analyses), and (2) probabilistic predictions of each region being
urban, from a classification model trained to predict whether regions are urban or rural.

3 RESULTS

Consistent with past work (Jean et al., 2016; Engstrom et al., 2017; Yeh et al., 2020; Chi et al.,
2022), we find that satellite-based wealth predictions explain a significant portion of the variance in
ground-truth wealth within each of the seven countries we study (mean R2 = 0.47-0.70), and there
is a high rank correlation between wealth predictions and ground truth (mean Spearman’s ρ = 0.72-
0.83). However, in most countries performance is substantially lower when predictions are evaluated
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(A) R2(w, ŵ) (B) ρ(w, ŵ) (C) AUC(u, û) (D) ρ(w, u) (E) ρ(w, û)

Colombia 0.70 (0.01) 0.83 (0.01) 0.94 (0.01) 0.72 (0.01) 0.70 (0.02)
Honduras 0.66 (0.04) 0.82 (0.02) 0.95 (0.01) 0.75 (0.02) 0.75 (0.02)
Indonesia 0.58 (0.03) 0.78 (0.02) 0.93 (0.02) 0.72 (0.02) 0.71 (0.03)
Nigeria 0.65 (0.02) 0.83 (0.01) 0.87 (0.02) 0.58 (0.03) 0.72 (0.03)
Kenya 0.58 (0.03) 0.77 (0.02) 0.84 (0.02) 0.60 (0.03) 0.55 (0.04)
Philippines 0.47 (0.09) 0.72 (0.03) 0.90 (0.02) 0.53 (0.03) 0.63 (0.03)
Peru 0.69 (0.03) 0.83 (0.02) 0.96 (0.01) 0.77 (0.02) 0.74 (0.02)

Table 2: Relationship between urban build-up and predicting wealth from satellite imagery.
(A) and (B) Predictive accuracy of satellite-based wealth predictions measured with R2 and rank cor-
relation. (C) Predictive accuracy of satellite-based urban/rural classifications measured with AUC.
(D) Rank correlation between wealth and an indicator variable for being urban. (E) Rank correlation
between wealth and a satellite-based prediction of being urban. w represents ground-truth wealth;
ŵ predicted wealth; u ground-truth urban (a binary indicator), and û predicted urban (a probabilistic
prediction between 0 and 1). Standard deviations across bootstrapped runs in parentheses.

within urban (mean R2 =-0.05-0.41 ; mean ρ = 0.51-0.71) and rural (mean R2 = 0.06-0.55; mean ρ
= 0.45-0.74) areas (Figure 2 Panels A, B). There is heterogeneity across countries in terms of which
areas are hardest to predict: in two countries (Colombia, Peru) ranking accuracy (ρ) is higher among
urban areas than among rural areas. In the remaining five countries (Nigeria, Honduras, Indonesia,
Kenya, and the Philippines) ranking accuracy is higher among rural areas. In all countries, at least
one of urban or rural areas has substantially lower predictive accuracy than the country as a whole
(mean difference in R2 > 0.2; mean difference in ρ > 0.1, Figure 2 Panels A, B).

These disparities in predictive power between urban and rural areas propagate into reduced accuracy
in downstream policy decisions using satellite-based poverty maps. A simulated social protection
program aiming to select the poorest 20% of regions in a country using satellite-based poverty
maps tends to have relatively high recall and precision (54-71%), whereas programs identifying the
poorest 20% of regions within urban or rural areas have lower recall and precision (38-73% in rural
areas and 48-65% in urban areas, Figure 2 Panel C).

More generally, there is a strong relationship between wealth and urbanization across countries
(ρ = 0.53-0.77), and urban classifications from satellite imagery have strong performance (AUC =
0.84-0.96, Table 2). It is thus possible that distinguishing between levels of urbanization is central
to predicting wealth at a country scale. In fact, the difference between the predictive accuracy of
satellite-based wealth predictions and satellite-based predictions of a region being urban for iden-
tifying wealth is relatively small (difference in Spearman’s ρ = 0.07-0.22, Table 2), suggesting that
representations of poverty in this featurization of RGB satellite imagery beyond urban build-up are
present but limited.

4 DISCUSSION

Our main finding is that representational disparities in satellite imagery between rural and urban
areas lead to differences in predictive accuracy for estimating poverty from imagery, consistently
across all countries studied. In particular, it is much easier to differentiate poverty between urban
and rural areas than within urban or rural regions. A key implication of this result for real-world
deployments is that while satellite-based poverty programming at a country scale may be accurate,
satellite-based poverty maps may not be as useful in guiding programs that require accurate differ-
entiation across just urban areas or across just rural areas.

The main implication of our results for researchers in machine learning and development economics
is that a focus on building predictive models that can distinguish wealth levels within urban and
rural areas will be essential for making satellite-based poverty maps a useful and fair measurement
tool. Other digital data sources, such as mobile phone data (Blumenstock et al., 2015; Steele et al.,
2017), social media data (Fatehkia et al., 2020), or information from crowd-sourced maps (Tingzon
et al., 2019) may be helpful alongside novel modeling techniques for improving within-urban and
within-rural differentiation.
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