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ABSTRACT

Accurate yield forecasting is essential for making informed policies and long-term
decisions for food security. Earth Observation (EO) data and machine learning al-
gorithms play a key role in providing a comprehensive and timely view of crop
conditions from field to national scales. However, machine learning algorithms’
prediction accuracy is often harmed by spatial heterogeneity caused by exogenous
factors not reflected in remote sensing data, such as differences in crop manage-
ment strategies. In this paper, we propose and investigate a simple technique
called state-wise additive bias to explicitly address the cross-region yield hetero-
geneity in Kazakhstan. Compared to baseline machine learning models (Ran-
dom Forest, CatBoost, XGBoost), our method reduces the overall RMSE by 8.9%
and the highest state-wise RMSE by 28.37%. The effectiveness of state-wise
additive bias indicates machine learning’s performance can be significantly im-
proved by explicitly addressing the spatial heterogeneity, motivating future work
on spatial-aware machine learning algorithms for yield forecasts as well as for
general geospatial forecasting problems.

1 INTRODUCTION

Accurate crop yield forecasts can benefit governments, policymakers, and individual farmers by
providing better insights into various exogenous drivers that impact the agricultural markets. These
insights can lead to earlier responses and better-informed decisions to improve food security at
both regional and international scales (Becker-Reshef et al., 2022). Recently, machine learning
algorithms have been applied on Earth Observation (EO) data and have shown a great potential to
improve the reliability of these forecasts (Basso & Liu, 2019).

In this paper, we consider the use of EO data collected from the GEOGLAM Crop Monitor Ag-
Met System (https://cropmonitor.org) and tree-based algorithms to directly forecast wheat yields in
Kazakhstan, the 10th largest wheat exporter in the world (FAO). A prominent challenge negatively
impacting Machine Learning models’ performance in forecasting yields is the spatial yield hetero-
geneity due to exogenous factors like local farming practices or crop varietals that are not reflected
in remote sensing data. Lee et al. (2022) proposed to train a separate model for each province,
successfully reducing the state-wise prediction errors. However, in our dataset, due to a very small
amount of yield data available for each province (typically less than 20 data points), this approach
results in highly unreliable and overfit models with error rates far exceeding those of baseline mod-
els, as shown in Figure 2. To improve upon this issue, we focus on reducing the errors, especially
in provinces with the least accurate yield predictions, by using state-wise additive bias. First, we
followed the methodologies in Sahajpal et al. (2020) to create features from EO data and investigate
the performance of various baseline tree-based models, including XGBoost, CatBoost, and Random
Forest, in forecasting wheat yields at the state level. Next, each state-wise additive bias was sep-
arately added to the model’s predictions in each province to obtain the final yield forecast. This
approach shows a remarkable increase in overall performance, with the most significant benefits
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being seen in the province with the highest baseline yield errors (Almatinskaya). Furthermore, since
state-wise bias adds no computational overhead during the inference process, this technique can be
efficiently applied to improve yield predictions in other datasets.

2 DATA AND METHODS

2.1 COLLECTING AND EXTRACTING EO DATA

We use multiple EO predictors (https://cropmonitor.org/tools/agmet/) including crop phenological
information derived from the MODIS NDVI that provides a proxy for crop vigor and phenology,
MODIS Leaf Area Index (LAI), temperature, precipitation, SMAP soil moisture, and evaporative
stress index (ESI). These inputs are subsets to cropped areas using a wheat crop mask for Kaza-
khstan. The EO products used here are complementary and capture different facets of crop re-
sponse to abiotic factors (temperature, precipitation, solar radiation) and its variation by phenologi-
cal growth stage and geography.

2.2 DATA PREPROCESSING

The EO dataset has daily data spanning from 2001 to 2020. We subset this data to the crop growth
season (May - September). We use EO data (NDVI, growing degree days, daily minimum and
maximum temperature, soil moisture, evaporative stress index, and precipitation) to as input features
for training and evaluating machine learning models and to compute state-wise bias. We also include
information on the previous season’s yield and the average yield from the last 5 years as additional
variables in the model. Overall, we have 75 samples for each province (15 years x 5 months in the
growing season).

2.3 MODEL TRAINING AND EVALUATION

We trained and evaluated the effectiveness of the state-wise bias by applying this bias to the baseline
tree models (XGBoost, CatBoost, and Random Forest) to forecast wheat yields at the state level
in Kazakhstan. The state-wise bias is automatically calculated during the training process of each
model. Algorithm 1 presents the complete training pipeline to train models and compute state-wise
bias. We leave one year for testing, as suggested by Meroni et al. (2021), and split the remaining
data into training (10 years) and validation sets (4 years) for model optimization. To maximize the
amount of data used in the training process and increase the robustness of state-wise bias to unseen
data, we employed the k-fold cross-validation method each test year (Dinh & Aires, 2022). In each
fold, the error of each state was sampled using the corresponding validation set of the fold. The final
state-wise bias of each state is the average of the recorded validation errors in all k folds.

The fundamental motivation for computing state-wise bias is that we observed baseline models are
often biased toward values close to the mean yields, underestimating high yields in provinces with
high productions, as discussed in Section 3.1. These high yields can be caused by factors typically
not covered in satellite data, such as political and economical forces that allow some provinces to
be the main wheat producer of the country. Although we have incorporated the regional information
as categorical data in baseline models, the models still suffer from this bias. Therefore, state-wise
bias is proposed as a simple yet effective technique to alleviate this spatial heterogeneity problem,
resulting in a significant decrease in both MAPE and RMSE, as shown in Section 3

3 RESULTS AND ANALYSIS

3.1 MODEL PERFORMANCE

Overall, the MAPE and RMSE of XGBoost complemented with state-wise bias are 22.5% and
0.095 Mg/ha, respectively. Our model explains 57% of the yield variation in our dataset. Based
on the scatter plot, we observed that the model performs well when the yields are average or low,
but it consistently underestimates the yield by a large margin when yields are much higher (≥ 1.75
Mg/ha). Those high yields are often from provinces with the highest wheat production, such as
Almatinskaya, or in exceptionally good years.
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Algorithm 1 Model training and state-wise bias computation
Input Input features X , targets y
Output model f , state-wise bias b

1: (Xtrain/val,ytrain/val), (Xtest,ytest) = split X,y
2:
3: for each (Xtrain,ytrain), (Xval,yval) ∈ k-fold split do
4: Initialize model f
5: Fit f(Xtrain), ytrain

6: Evaluate on f(Xval), yval

7: Done training model f ▷ End training model for current fold
8:
9: ŷval = f(Xval)

10: for each state do
11: state bias = mean(yval [state]− ŷval [state]) ▷ state-wise bias for current fold
12: b[state].append(state bias)
13: end for
14: end for ▷ End training k models on k folds
15:
16: for each state do ▷ Final state-wise bias for each state
17: b[state] = mean(b[state])
18: end for
19:
20: Return model f , state-wise bias b

Figure 1: Scatter plot showing relationships between multi-year predicted and ground-truth yields
of different provinces using leave-one-out year testing strategy.

3.1.1 COMPARISON TO BASELINE MODELS

To investigate the effect of state-wise bias, we test various models on different out-of-fold test years
and compare the performance with and without state-wise bias. Our comparison involves both full
dataset evaluation (national level) and evaluation by each province (regional level). Table 1 shows
that the RMSE at the national level is decreased by 8.1% to 9.76%, resulting in an overall im-
provement over baseline models. The most significant improvements are observed in Almatinskaya
(24.04% to 28.37%) and Yujno-Kazachstanskaya (6.95% to 8.84%) provinces, two provinces with
the highest multi-year wheat yields and highest forecasting errors. Specifically, the average multi-
year wheat yields of Almatinskaya and Yujno-Kazachstanskaya are 1.793 and 1.601 Mg/ha, respec-
tively, while the national average yield is only 1.103 Mg/ha.
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Table 1: Percentage change in RMSE of state-wise bias compared to the vanilla model (negative val-
ues represent improvements). The RMSE of each state is computed using all cross-year predictions
for that state. We computed the RMSE’s percentage change by subtracting the RMSE of vanilla
models from the RMSE of state-wise bias, then dividing the result by the RMSE of vanilla models.

Province XGBoost CatBoost Random Forest
Akmolinskaya -0.47% +1.13% -1.74%
Aktyubinskaya +1.54% +1.35% -5.60%
Almatinskaya -28.37% -24.26% -24.04%
Jambylslkaya +1.35% +2.49% +0.08%
Karagandinskaya -1.37% +0.55% -0.72%
Kustanayskaya -3.85% -2.64% -3.55%
Pavlodarskaya -0.65% +2.86% -2.18%
Severo-Kazachstanskaya +2.38% +26.86% -15.42%
Vostochno-Kazachstanskaya -4.48% -4.11% -1.17%
Yujno-Kazachstanskaya -8.84% -6.95% -7.69%
Zapadno-Kazachstanskaya -1.38% +0.14% -0.62%
National -8.90% -8.10% -9.76%

3.1.2 COMPARISON TO REGION-SPECIFIC MODELS

Figure 2: Comparison between wheat yield forecast errors of different models. Each MAPE in each
boxplot represents the performance of each leave-one-out test year, spanning from 2006 to 2020.

Besides baseline models, we also compare our approach with region-specific models, an approach
that has been used in several works to forecast crop yields Lee et al. (2022). Figure 2 shows that
when a separate model was trained on each province, the MAPE has unusually high variance (green
boxplot), ranging from 5% to 110% and having a median of 40%. This is due to limited data
available for each province (75 rows), causing a highly unstable training and serious overfitting
issue for this approach. Therefore, although training a region-specific model achieved excellent
performance when there are many data available, this approach is not suitable for our case. On
the contrary, the performance consistently improves in all baseline models when state-wise bias is
introduced (orange boxplot). Although the median MAPE was not improved by a remarkable margin
(from 22% to 21%), the maximum and Q3 MAPEs are significantly decreased compared to those
of the baseline models. Specifically, the maximum MAPE decreases from 48% to 42% for Random
Forest, 46% to 41% for CatBoost, and 47% to 37% for XGBoost. These observations indicate that
the proposed state-wise bias is most effective in difficult cases (cases with the highest errors) while
having positive yet small impacts on easier predictions.
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4 CONCLUSION AND FUTURE WORK

Machine Learning models are frequently biased toward average yield in the dataset, resulting in
higher errors for provinces with crop yields far from the mean, as shown in Figure 1 This issue is
exacerbated by the spatial heterogeneity between different provinces/states. Our simple state-wise
bias approach can alleviate the margin of errors in such cases by “debiasing” the errors computed
separately for each province. This results in significant prediction error reduction, especially in
provinces with high multi-year yields. Based upon these observations, we aim to further explore
other more effective spatial-aware algorithms, such as unsupervised spatial clustering, that are robust
to geospatial variations.
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