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ABSTRACT

Bioacoustics, the study of animal vocalizations and natural soundscapes, has
proven to be a valuable source of data for wildlife monitoring. Just as a human
would use contextual information to identify species calls from acoustic record-
ings, one unexplored way to improve deep learning classifier in bioacoustics is to
provide the algorithm with contextual meta-data, such as time and location. We
developed an algorithm to classify 22 bird songs for which the location can help
to distinguish the different species. We explored different multi-branch convolu-
tional neural networks, trained on both spectrograms and location information, as
well as a geographical prior separately trained on location to estimate the prob-
ability that a species occurs at a given location. We compared the classification
of the models to a baseline model without the spatial meta-data. Our findings re-
vealed in each case an increase in the performance of the classification with the
highest improvement obtained with the geographical prior (F1-score of 87.78%,
compared to 61.02% for the baseline model). The methods based on multi-branch
neural network proved to be efficient as well and simpler to use than the geograph-
ical prior as it requires a single model. Adding metadata to the acoustic classifier
is a valuable source of information to improve classification performance, with
room for further progress, and opens new opportunities for generalizing models.

1 INTRODUCTION

Wildlife monitoring has become even more important as biodiversity is declining at an unprece-
dented rate and effective protection measures are urgently needed (Almond et al., 2022). To this
end, bioacoustics, the study of animal vocalizations and natural soundscapes, has proven to be a
valuable source of data for understanding animal behaviors and biodiversity monitoring (Samuel
et al., 2023). Therefore, it has become common practice to deploy multiple digital sound recorders
in remote areas for an extended period of time to record and study populations of difficult to observe
species (Gibb & Browning, 2019; Sugai et al., 2019). However, it generally results in long-term
monitoring of high-resolution data that can be difficult and time consuming to verify manually. Pro-
cessing automation has rapidly become a major issue in ecology in order to facilitate the analysis of
these very large datasets. With its high ability to solve complex problems, deep learning has become
the heart of the new challenges in ecology (Christin et al., 2019).

The use of deep learning in bioacoustic is still quite recent and not many studies relating its use can
be found before 2017 (Stowell, 2022). The most common approach is to convert the raw acoustic
recordings into a succession of spectrograms or mel-spectrograms – a visual representation of the
frequency spectrum of sound over time – and treat the problem as an image classification. This
representation generally gives a fixed image in time of the sounds and deprives them of their con-
text. However, naturally, an expert in sound recognition would use a wide variety of contextual
information when identifying species from acoustic recordings. Therefore, we hypothesis that one
way to improve deep learning in species classification is to provide the algorithms with contextual
information.
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Figure 1: Example of spectogramms recorded for two species, European serin and Cape Canary,
occuring in separate countries

Adding contextual information to deep learning classifiers in bioacoustics has not been widely ex-
plored, to the best our of knowledge only three studies have attempted this (Lostanlen et al., 2019;
Madhusudhana et al., 2021; Roch et al., 2021). In these studies, the authors focused on the contex-
tual information contained within the soundscape. However other meta-data, not directly contained
in the soundscape but correlated, such as time/date and location, can provide relevant information.
For example, two species of birds may have very similar songs but be found in different parts of the
world (Figure 1). As it has become common practice to record the meta-data associated with each
sound recording, it is then all the more interesting to valorize these data by incorporating them into
deep learning classifiers to improve their performance. Therefore, the objective of this study is to
enhance deep learning acoustic classifiers by adding spatial meta-data. To achieve this, we explored
existing methods from image classification and applied them to a bird call classifier.

2 MATERIALS & METHODS

2.1 DATASET GENERATION

Xeno-canto is a well-known website created with the aim of sharing wildlife sound from all over
the world (Xeno-Canto Foundation) and now stores a large dataset of bird songs recorded around
the world (Vellinga & Planqué, 2015). In addition, each recording is associated with user-specified
meta-data such as the country of recording, latitude and longitude and time of recording. To build
our dataset from Xeno-canto, we firstly selected the ten most recorded families in the Passeriformes
order, the most represented order in Xeno-canto database. From that, we sub-sampled the number
of available species by retaining only the ten most recorded genus in each selected family. Then,
based on the observation of the countries and the number of available recordings per species in one
genus, we chose 22 species with similar songs but with different spatial distributions (Appendix A
Table 2). The recordings were downloaded from the Xeno-canto database in .wav format and we
manually labeled song occurrence within each audio file. We obtained 6537 occurrences of bird
songs of various length from 967 audio files. We obtained on average 189 segments per species and
per country with a large standard deviation (std =168 , min =24, max=1044). To balance our dataset,
we set the number of segments per species and per country to 200 and processed data-augmentation
or reduction as appropriate.

2.2 PREPROCESSING OF THE DATA

Each recording was downsampled to 22050 Hz and converted into a mel-spectrogram to be used as
an input image to a 2-D Convolutional Neural Network (CNN). Mel-spectogram has the advantage
of being smaller than linear frequency spectograms and gave better results in our case after compar-
ison of the two formats. We performed a Hann analysis with a window size of 46 ms (1024 samples)
with a hop size of 10.6 ms (256 samples) and 128 mel frequency. Similarly to Kahl et al. (2021),
we restricted the frequency range of the spectrogram between 150 Hz and 15 kHz as most bird vo-
calizations occur between 250 Hz and 8.3 kHz (Hu & Cardoso, 2009). Using our manual labels,
the songs were extracted from the spectrograms and divided into segments of ca. 3s using a sliding
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Figure 2: Architecture of the geographical prior trained separately to the baseline model. From the
8836 probabilities obtained (represented in orange), only the 22 species involved (represented in
green) are retained and multiplied with the corresponding outputs of the baseline model.

window approach with an overlap of 1s. The resulting spectrograms each had a size of 128 × 259.
Each spectrogram was paired with it’s latitude, longitude and country of origin which was obtained
via the meta-data associated with recording on Xeno-canto.

2.3 MODEL ARCHITECTURE

We explored four model architectures along with different ways of representing the meta-data to
determine which approach would yield the best performance We implemented a baseline model
without providing spatial meta-data (Case I). We tested two multi-branch neural networks with dif-
ferent meta-data pre-processing (Cases II and III). Finally we separately trained a geographical prior
and combined its output with the baseline predictions (Case IV). The four classifiers were trained
and tested as specified in Appendix B.

2.3.1 CASE I: BASELINE MODEL

As baseline, we used a simple CNN architecture consisting of two convolutional layers (8 kernels of
size 16×16, and ReLU activations) followed by a max pooling layer (4×4 kernel), a flattening layer,
and 2 fully-connected layers (32 ReLU and 22 softmax units respectively). The softmax activation
function was used to obtain the probability that the input signal corresponds to each species.

2.3.2 CASE II: ONE-HOT ENCODING

In Case II, we tested a two-branch convolutional CNN (spectrogram input in one branch and meta-
data input in the other). To achieve this, we assigned a unique number (n = 28) to each country
used in this study and converted the number into one-hot encoded vector. The first branch used the
spectrogram as input, and this branch had the same CNN architecture as Case I. The second branch
used the one-hot encoded vector as input and was concatenated to the flattening layer in branch one.

2.3.3 CASE III: META-DATA EMBEDDING

Word embeddings are well known within the field of natural language processing. It consists of
mapping words to continuous number vectors, and facilitates a dimensionality reduction of the cate-
gorical variables while keeping meaningful information in the transformed space. We used a multi-
branch CNN, similar to Case II, but the input to the second branch was the names of the country of
origin where the recordings took place. We added an embedding layer to map the country names
into an 8-dimension transformed space. The output of the embedding was then concatenated with
the flattened output of the first branch.
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2.3.4 CASE IV: GEOGRAPHICAL PRIOR

A geographical prior was developed by Aodha et al. (2019) to enhance image classifier with contex-
tual information. Inspired from species distribution modeling, the model estimates the probability
that the object category represented in the image occurs at a given location. It is trained and applied
independently to the classifier using only the location and time data as input. Therefore, the proba-
bility that an object is represented in the image knowing its location can be estimated by multiplying
the probabilities of the image classifier with those of the geographical prior (Aodha et al., 2019).
In Case IV, we replicated this method and applied it to our bird song classifier. We used the entire
dataset of Xeno-canto to train the geographical prior which contains calls from 8836 species. We
took latitude and longitude as input, which we treated similarly to Aodha et al. (2019). For each lati-
tude or longitude value x we calculated [sin(πx), cos(πx)], resulting in vector of dimension four for
each input and preserving the continuity of the geographical coordinates all around the earth (Aodha
et al., 2019). As output, we got the probability of presence (close to 1) or absence for each category.
The architecture of the prior was exactly the same than proposed by Aodha et al. (2019), with a first
dense layer of 256 hidden units followed by a ReLU, four residual layers (He et al., 2016), and a
final dense layer of 8836 output units followed by a softmax activation function (Figure 2).

Table 1: Comparison between the different techniques. Incorporating geographical prior information
directly into the CNN improves model performance.

Baseline One-hot
encoding

Meta-data
embedding

Geographical
prior

Accuracy 97.62% 98.52% 98.43% 99.19%
Sensitivity 61.34% 84.31% 81.81% 86.96%
Specificity 98.72% 99.23% 99.17% 99.57%
Precision 70.21% 80.20% 78.69% 91.06%
F1-score 61.02% 78.77% 76.87% 87.78%

3 RESULTS AND DISCUSSION

The addition of contextual metadata to deep learning classifiers in bioacoustics has been poorly
investigated although it can bring relevant improvements. We showed in this study that methods
developed for image or natural language processing can be adapted to bioacoustics and used for
this purpose. Therefore, by training a geographical prior on longitude and latitude data to predict
the probability of species occurrence at a given location, we improved the F1-score of bird song
classification of 22 species from 61.02% from the baseline to 87.78%.

The classification of bird songs is challenging, due to the fact that certain bird species possess rich
and diverse song repertoires featuring highly complex sound sequences (Samotskaya et al., 2016).
For the basic model, the main errors mostly concerned a multitude of species wrongly labelled as
Saxicola rubicola and/or Troglodytes aedon (Figure 3). An analysis and visualization of the spectro-
grams did not provide an understanding of the origin of these errors, further studies are warranted to
fully understand the nature of these errors. However, with the geographical prior, misclassifications
between species from distinct regions were no longer observed (Figure 4), suggesting that location
information was the missing piece of information contributing to the improvement.

The geographical prior has the advantage of being distinct from the classifier and can therefore be
run independently. However, a representative spatial meta-data dataset must be available to train it
which may be difficult to obtain for some species. We tested other methods based on multi-branch
neural network that proved to be efficient as well and simpler to use than the geographical prior as
it requires a single model.

We showed in this study that adding spatial meta-data can enhance a classification model. In addi-
tion to improving species identification and thus monitoring, they can also contribute to the general-
ization of species classifier. With the addition of meta-data, a single robust model can be generated
instead of creating various species and geographical specific models. Furthermore, the present meth-
ods can also be used for species sound detection and become a valuable source of information to
improve the precision of the detection.
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A APPENDIX A

Table 2 outlines the different genus, species and the total number of records which we used to create
our dataset. The country for which the audio files were recorded in is also listed.

B APPENDIX B TRAINING AND VALIDATION

To train and evaluate the efficiency of each method, the bird song dataset was split into a training
and validation dataset. For each species and country, we randomly selected 70% of the downloaded
recordings for the training dataset and kept the remaining 30% for the validation one. The data aug-
mentation process was then applied only on the training dataset. In each case, the model was trained
on 40 epochs with a batch size of eight segments and a learning rate of 0.001 using the Adam op-
timizer. The training process was performed ten times and evaluation metrics were calculated each
time from predictions of the validation dataset. Therefor, each time the confusion matrix was build
and the number of True Positives (TP), False Positives (FP), True Negatives (TN) and False Neg-
atives (FN) obtained. From that we calculated accuracy (TP+TN/TP+TN+FP+FN), sensitivity or
recall (TP/TP+FN), specificity (TN/TN+FP), precision (TP/TP+FP) and F1-score (harmonic mean
between precision and recall). For each metric, we calculated the average value of the ten trainings
to compare the four methods. For Case IV, the geographical prior was trained once and the resulting
probabilities were multiplied to the probabilities obtained from the baseline model. We therefore
repeated this process ten times as well. Models were implemented in Python 3 using the Tensor-
Flow and Keras libraries (Abadi et al., 2015; Chollet, 2015). Audio processing and spectrogram
construction were performed using Librosa library (McFee et al., 2015).

C APPENDIX C CONFUSION MATRIX

Figures 3 and 4 present the confusion matrices for the baseline and geographical prior model respec-
tively. The latter produced overall better classification results.
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Figure 3: Confusion matrix associated to the predictions of the baseline model (Case I)
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Figure 4: Confusion matrix associated to the predictions of the geographical prior (Case IV)
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