Contour Integration Cheat Sheet

Natalie Frank

July 28, 2021

Definition 1 (Residue) Assume that f has an isolated singularity at z_{0}. The residue of f at z_{0}, denoted $\operatorname{Res}\left[f, z_{0}\right]$ is the coefficient a_{-1} of $\left(z-z_{0}\right)^{-1}$ in the Laurent expansion of f at z_{0} :

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, 0<\left|z-z_{0}\right|<\rho
$$

Theorem 1 (The Residue Theorem) Let D be a bounded set with a piecewise smooth boundary oriented in the counterclockwise direction. Assume that f is analytic on int D except at singularities $z_{1}, z_{2}, \ldots z_{m} \in \operatorname{int} D$. Then

$$
\int_{\partial D} f(z) d z=2 \pi i \sum_{i=1}^{m} \operatorname{Res}\left[f(z), z_{j}\right]
$$

Strategies for finding residues $2-4$ on this list straight from in 7.1 of Complex Analysis by Gamelin.

1. Partial Fractions decomposition
2. If $f(z)$ has a simple pole at z_{0}, then

$$
\operatorname{Res}\left[f(z), z_{0}\right]=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

3. If $\mathrm{f}(\mathrm{z})$ has a double pole at z_{0}, then

$$
\operatorname{Res}\left[f(z), z_{0}\right]=\lim _{z \rightarrow z_{0}} \frac{d}{d z}\left(\left(z-z_{0}\right)^{2} f(z)\right)
$$

4. If f, g are analytic and g has a simple zero at z_{0}, then

$$
\operatorname{Res}\left[\frac{f(z)}{g(z)}, z_{0}\right]=\frac{f\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

Exercise 1 Prove 2-4 above.

Contour	Uses
Semicircle Contour limits: $R \rightarrow \infty$	- integral from $-\infty$ to ∞ - $P(x) / Q(x)$ for Q, P polynomials with $\operatorname{deg} Q \geq \operatorname{deg} P+2$ - $P(x) / Q(x) R(\sin (x), \cos (x))$ for P, Q, R polynomials with $\operatorname{deg} Q \geq \operatorname{deg} P+1$ - If in the previous bullet $\operatorname{deg} Q=$ $\operatorname{deg} P+1$, use Jordan's Lemma: Lemma 1 (Jordan's Lemma) Let Γ_{R} be the semicircle of radius R in the upper half plane. Then $\int_{\Gamma_{R}}\left\|e^{i z}\right\|\|d z\|<\pi$
Unit Circle Contour	- integral from 0 to 2π - for rational functions of $\sin \theta, \cos \theta$ - Goal: turn into an integral of rational functions around unit circle. Use the substitutions $\sin (z)=\left(e^{i z}-\right.$ $\left.e^{-i z}\right) / 2 i, \cos (z)=\left(e^{i z}+e^{-i z}\right) / 2$
Keyhole Contour limits: $\epsilon \rightarrow 0, R \rightarrow \infty$, integrating along $\ell_{\epsilon, R}^{1}, \ell_{\epsilon, R}^{2}$ is implicitly a limit as well	- integral from 0 to infinity, denominator a polynomial in $P(x)$ - for integrand with a branch cut, typically z^{a} or $\log (z)$ - the integrand will assume different values on either side of the branch - In order for the integrand to have the right form on either side of the branch, irreducible factors of P should be $(x-a)$ for real a. One may first need to perform a change of variable if this is not the case

Contour	Uses
	- When integrating through a singularity on the real line and that singularity is a simple pole
Theorem 2 (Fractional Residue Theorem)	
Let z_{0} be a simple pole of f and let C_{ϵ} be the	
arc of angle α (in radians) of radius ϵ. Then	

References: This cheat-sheet summarizes 7.1-7.5 and 7.7 of Complex Analysis by Gamelin. All theorem statements are from this text as well. Look in the textbook for proofs, worked examples, and more information.

