# Contour Integration Exercises 

Natalie Frank

July 28, 2021

Exercises for contours discussed in class: First go through each problem and try to guess the correct contour. Afterwards, show each statement.

1. Show using the residue theorem

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+a^{2}} d x=\frac{\pi}{a}
$$

and then compare with using the artangent function.
2. Show using the residue theorem

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)^{2}} d x=\frac{\pi}{2 a^{3}}
$$

Compare with differentiating the previous problem
3.

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x=\frac{\pi}{2 \sqrt{2}}
$$

4. 

$$
\int_{0}^{2 \pi} \frac{\cos (\theta)}{2+\cos (\theta)}=2 \pi\left(1-\frac{2}{\sqrt{3}}\right)
$$

5. 

$$
\int_{0}^{\infty} \frac{\log x}{x^{a}(x+1)} d x=\frac{\pi^{2} \cos (\pi a)}{\sin ^{2}(\pi a)} d x, \quad 0<a<1
$$

6. 

$$
\int_{0}^{\infty} \frac{\log x}{x^{3}-1} d x=\frac{4 \pi^{2}}{27}
$$

7. (2011 January Problem 1)

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+3 x^{2}+4} d x=\frac{\pi}{2 \sqrt{7}}
$$

8. 

$$
\int_{0}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}}
$$

9. 

$$
\int_{0}^{2 \pi} \frac{1}{2+b \sin (\theta)} d \theta=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}, \quad a>b>0
$$

10. 

$$
\int_{0}^{\infty} \frac{\log x}{x^{3}+1}=\frac{-2 \pi^{2}}{27}
$$

11. 

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{e}
$$

12. 

$$
\int_{0}^{\infty} \frac{\log (x)}{x^{2}-1}=\frac{\pi^{2}}{4}
$$

Challenge: can you find two different contours one could use for this integral?
13.

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\pi
$$

14. 

$$
\int_{-\infty}^{\infty} \frac{\sin (a x)}{x\left(x^{2}+1\right)} d x=\frac{2}{\pi}
$$

15. 

$$
\int_{0}^{\infty} \frac{x^{3} \sin x}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{2 e}
$$

16. 

$$
\int_{-\pi}^{\pi} \frac{1}{1+\sin ^{2} \theta} d \theta=2 \sqrt{\pi}
$$

17. 

$$
\int_{0}^{\infty} \frac{\log (x)}{x^{a}(x-1)} d x=\frac{2 \pi^{2}}{1-\cos (2 \pi a)}, \quad 0<a<1
$$

18. 

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos \theta+r^{2}} d \theta=1
$$

(This is the integral of the Poisson kernel)
Filling in details from Class:

1. Prove Rules 1-3 for finding residues on the Contour integration Cheat sheet.
2. A method of showing

$$
\int_{0}^{\infty} \frac{1}{1+x^{b}} d x=\frac{\pi}{b \sin \left(\frac{\pi}{b}\right)}
$$

for $b>1$ was explained in class. Fill in the details
3. Two methods of showing

$$
\int_{0}^{\infty} \frac{x^{a}}{1+x^{2}} d x=\pi \frac{\sin \left(\frac{\pi}{2} a\right)}{\sin (\pi a)}
$$

were explained in class. Fill in the details.
Instructive Examples with contours not discussed in class

1. Use the following contour to show that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{\pi}}{2 \sqrt{2}}
$$


2. Show that

$$
\int_{0}^{\infty} \frac{1}{1+x^{b}} d x=\frac{\pi}{b \sin \left(\frac{\pi}{b}\right)}
$$

for $b>1$ by integrating over the contour

3. (Jan 2008, Problem 4)Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

by integrating

$$
f(z)=\frac{1}{z^{2}} \frac{1}{e^{2 \pi i z}-1}
$$

about a suitable contour.
Credit: most problems are from [1]

## References

[1] Theodore W. Gamelin. Complex Analysis. UTM. Springer, 2001.

