Problems

1. (1996 January \#3) Show that $f(z)=\cot z-\frac{1}{z}$ has a removable singularity at 0
2. (Gamelin) Suppose that $f(z)$ is an entire function such that $f(z) / z^{n}$ is bounded for $|z|>R$. Show that $f(z)$ is a polynomial of degree at most n. What can be said if $f(z) / z^{n}$ is bounded on the entire complex plane?
3. (2016 Jan. \#4) Let f be meromorphic on \mathbb{C} but not entire. Let $g(z)=e^{f(z)}$. Is g meromorphic? Is g entire?
4. (1996 Sept. \#5) If $f(z)$ is an entire function which assumes the values 0 and 1 , show that for any complex number a and any real number $\epsilon>0$ there is a point z_{0} such that $\left|f\left(z_{0}\right)-a\right|<\epsilon$.
5. (2014 September \#2) Show that if f has an isolated singularity at z_{0}, then $e^{f(z)}$ cannot have a pole at z_{0}.
6. (2017 September \#4)(a) Classify the singularities of $f, \exp (f), \exp (1 / f)$
7. (Gamelin) Show that if u is a harmonic function on \mathbb{R} that is bounded above, then u is constant.
8. (2021 January \#4)(a) For $a, b \in \mathbb{C}$ linearly independent over \mathbb{C}, define the lattice $\Lambda=$ $\left\{n a+m b:(n, m) \in \mathbb{Z}^{2}\right\}$. A meromorphic function on \mathbb{C} is elliptic (for the lattice Λ) if it satisfies $f(z)=f(z+\omega)$ for all $z \in \mathbb{C}, \omega \in \Lambda$. Show that an elliptic function which does not have poles is constant.
9. (Gamelin) Show that

$$
\int_{-\infty}^{\infty} e^{-z t^{2}+2 w t} d t=\sqrt{\frac{\pi}{z}} e^{\frac{w^{2}}{z}}, \quad z, w \in \mathbb{C} \operatorname{Re}(z)>0
$$

where we take the principle branch of the square root. (Hint: you can use the fact that this integral equals 1 for $w=0, z=1$.)
10. (January 2021 \#1)Find all holomorphic functions on \mathbb{C} such that

$$
f\left(1+\frac{1}{n}\right)=\frac{1}{n}, \quad n \in \mathbb{N}
$$

11. (1991 September \# 6) Find all functions $f(z)$ satisfying

- $f(z)$ is analytic on $\operatorname{Im}(z)>0$
- $f(z)$ is continous on $\{\operatorname{Im} z \geq 0\}$
- $f(z)$ is real on the real axis
- $|f(z)|>|\sin z|$ on $\operatorname{Im} z>0\}$

12. (Fall $2020 \# 1$) For every positive integer p, classify the singularities of the function $f_{p}(z)=$ $\frac{1}{z^{p}}-\frac{1}{(\sin z)^{p}}$
13. (Fall $2020 \# 2$) Find all entire functions f such that $|f(z)| \leq e^{x y}$ for all $z=x+i y \in \mathbb{C}$.
14. (1995 Septempter: P5) Find a function $f(z)$ that satisfies

- $f(z)$ is analytic in the upper half plane, $\operatorname{Im}(z)>0$, and continuous up to the real axis except at the origin
- $f(z)$ is real when x is real and $x \neq 0$
- $|f(z)| \leq \frac{C}{|x|^{3}}$ when $\operatorname{Im}(z)>0$
- $f(i)=4 i$

Is this function unique? Why?

