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Abstract

Introductory computer science students often have considerable difficulty extracting infor-
mation from data structures textbooks with rather dense writing styles. These textbooks
are usually intended to cover subjects comprehensively, but seldom focus on keeping content
comprehensible. While this commitment to data preservation is admirable at heart, the author
of this paper feels that we can do a better job for introductory students by attempting to
balance comprehensibility and comprehensiveness. The Hitchhiker's Guide to Data Structures
is an attempt to present data structures to introductory computer science students in this

more friendly manner.
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1 Forward

While the purpose of this work seems simple, it has actually turned out to be rather difficult to
convey. So we'll try to illustrate it clearly here in a single brief sentence: this paper is designed
specifically as a guide to data structures for keen, interested students at the introductory level
of computer science.

This guide is not designed to discuss the finest and most granular levels of data structures
at a level that would satisfy a language or library designer. It also isn't intended to prove
things in any formal way, as there are literally dozens of textbooks that fulfill that exact
purpose. Instead, it is meant as a high to medium level overview of a broad spectrum of data
structures. Proofs are omitted in favor of intuitions, and prose is kept informative and brief.
Our hope is that a student in an introductory data structures course will find the writing style
and approach of this guide more engaging, appealing, and concise than 500 pages of proofs
and prose written by a professor who scarcely remembers what it was like to read a computer
science textbook for the first time.

While this isn't necessarily a criticism of proofs and prose (as it's certainly necessary for pretty
much anything in higher level computer science), my claim is that intuition and explanation
might be a better way to teach introductory computer science, particularly in the case of

students learning the material for the very first time.

2 Introduction

This paper is divided into a number of smaller, digestible chunks for the ease of the reader.
Each of these chunks, in turn, is broken down into further chunks, many of which can be
broken down into even smaller chunks, such as code examples and discussion, applications,
important terms and definitions, and important or unusual methods. See the table of contents
(page 1) for further details.

Some of these data structures, such as Nodes and Linked Lists, require very little algorithmic
discussion, but a great deal of definitions, terms, figures, and code examples. Others, such
as AVL Trees, will require significantly more algorithmic discussion, including examples and

discussions of applications. Regardless, most sections follow the following form:



Data Structure Z
<Fig. X: An artistic, hand-crafted example of the structure>
Important Terms
How Data Structure Z Works
Code Sample
Methods of Interest
Uses of Data Structure Z

Suggested Reading

These subsections allow us to cover the basics of each data structure whilst focusing on
important parts individually: as a result, certain data structures could have multiple subsec-
tions under any of the above sections, or no subsections at all.

Note that data structures falling under the section “Advanced Data Structures” lack a code
sample — this is intentional. Code samples for AVL Trees, for instance, can easily take up
around three or four pages of 12-point font, leading to an undesirable and unpleasant break
in content. However, since programmatic examples are extremely helpful for complex data
structures such as these, a “suggested code sample” has been provided in the “Suggested
Reading” subsection, a section normally used to simply recommend interesting papers related
to a data structure. It's also worth noting that all code samples have been provided in Java,
since Java still represents the learning language of choice for many undergraduate computer

science programs.

2.1 A Note on Running Time

Throughout this document, we will regularly reference the concept of “running time.” There's
no need to panic about big-O running time complexity and mathematical definitions here;

instead, the reader only needs to understand a few basic running time ideas[22]:

1. Running time is not equivalent to wall-clock time (e.g. “my program took 3.25 seconds
to exit”) or CPU time (e.g. “the CPU was running my program for 1.337 seconds”).
Instead, running time is merely a means of estimating the asymptotic complexity of a
program, and gives the programmer an idea of how a program scales rather than the
exact number of seconds that an execution will take for input of a given size. Begin-
ners often confuse these three concepts, and not without reason — indeed, experienced
programmers tend to use “runtime” as a term for all three, with meaning inferred solely
from context! In this guide, however, you should expect the term “running time" to

always refer to asymptotic complexity unless stated otherwise.

2. All running time estimates will be given as “worst case” estimates. That is; if we say
that an operation takes “linear time”, that particular operation could end up being much

faster for select cases. However, our estimates account for the worst possible case, so



actual running time should never exceed the running time estimate given here.

If you're not sure what “worst case” running time estimates mean, picture the running
time of a trip to Moe's Mexican Grill. While your average Moe's visit is likely quite brief
— perhaps 15 minutes — your worst case Moe's visit involves a kitchen fire that delays
the preparation of your delicious burrito by over an hour. A “worst case” running time

estimate has to account for these kinds of edge cases.
3. You need only familiarize yourself with the following running times:

e Constant: a flat cost (O(C)). Making one paper crane is a constant time operation,
assuming that you already know something about origami. In this paper, we'll often
use O(1) and O(C) interchangeably, since they mean effectively the same thing —

a single “unit” of computation, regardless of input size.

e Linear: The cost scales proportionately with input size (referred to as “n” through-
out computer science) (O(n)). If you want to bake n batches of cookies, the
amount of time you spend baking cookies scales linearly as n increases (assuming

you're a robot who doesn't get tired).

e Logarithmic: Specifically, base-2 logarithmic time (O(log n)). Basically, you can
think of this as an operation whose efficiency doubles with each iteration. Let's
say you're a robot designed purely for baking cookies. Every time you bake a batch
of cookies, you get so much better that you can bake the next batch of cookies
in half the time (let's not get caught up in real-world limitations here). So if you

want to bake n batches of cookies, you can bake them in loga(n) time.

e Quadratic: A series of n operations, repeated n times. (O(n?)). If you're familiar
with programming basics, that can be nicely expressed by a doubly-nested for loop,
where each loop iterates n times. A real world analogy: you have 50 books, all 50

pages long. Reading through all of these books requires reading 502 pages.

e Exponential: x" time, where x can be any real number (O(R")). This is the kind
of running time that you really, really, really want to avoid, because it grows so
quickly. If you're having trouble picturing this, think back to the cookie analogy —
except, with exponential running time, your ovens are wearing out because you're
baking an enormous volume of cookies. Because of this oven-wearing factor, each
batch takes twice as long as the previous batch. To put that in more formal terms:
the k-th batch takes twice as long as the (k-1)-th batch.

If we want to visualize this running time in an appropriately data-structure-y
way, we need only think of a tree. Let's say that a tree begins with its trunk,
starting with the root. This trunk grows upward and eventually branches into two
discrete branches. Each of those branches branches into two discrete branches

of its own, which branch into two branches of their own, and so on and so on.



The resulting tree will contain 2" discrete branches, where n simply represents the

number of times a set of branches branched.

2.2 A Note on Pointers and Values.

We shall use the term “pointer” in the following sections. However, the C-wary among you
need not worry; understanding this “pointer” usage requires no mastery of ampersands and
asterisks. Instead, you can simply think of the term “pointer’ as a value that happens to
point to another object (in this context, usually a Node), instead of a primitive value like an
integer or a boolean. While this is intrinsically tied to the address vs. value notion that all
computer science students should familiarize themselves with, understanding of that notion
is by no means required for comprehension of this paper. Fig. 1 illustrates the relationship

between pointers, addresses, and objects.

»

Address:

Address:

Pointer

Figure 1: A pointer to a Node. Note that this really just means that the “pointer’ object is
just a reference to the address where the real object is stored in memory. In practice, pointers
are used much in the way that a link to a Google Doc is used; instead of giving a “copy”
of information, a method is given a “link” (that is, an address) to where that information is
actually held in memory. If anyone changes or deletes the information at that location, the

change effects everyone with a pointer to that location.



3 The Proto-Structures

“A list is only as strong as its weakest link."”
-Donald Knuth[13]

3.1 Nodes

Figure 2: An artistic, hand-crafted example of the structure. Note that “Node” represents the
object itself, and “data” represents a field within the Node object (see “Code Sample” for a

programmatic version of this very same figure).

Important Terms

e Data: any piece of information that a data structure is intended to contain. This could
be as simple as integers, or as complex as novels or entire accounts on a social media
site. One of the primary concerns in data structure design is scalability— that is, the
ability of a particular organization scheme to remain efficient even at massive sizes. If
you're having trouble picturing what kind of growth this entails, picture the growth
of Netflix's television and movie library, or Facebook's growth from a few thousand
college students to over a billion worldwide users. A good data structure and associated

algorithm doesn't break (that is, malfunction or slow to a standstill) even when it



increases in size from 10 pieces of data to 10 million pieces of data. See Fig. 2 for a

visualization.

How The Node Works A generic node doesn't inherently contain anything other than a
data element. While this may seem to simple to be interesting, nodes are not to be dismissed
— they represent the basic building blocks of many data structures. Indeed, a data structure
would be useless without the pieces of data it contains, since the primary purpose of a data
structure is to enforce some kind of order on a set of elements of data. However, nodes are
seldom as simple as class containing an integer data element; in linked lists, you'll commonly
have a next field of type Node (3.2). In doubly linked lists, you'll find a prev (previous element)
field of type Node, for backwards list traversal (4.1)), in addition to the next field. Tree nodes
can contain a wide variety of fields depending on the number of children allowed (4.4), and
graph nodes will commonly contain linked lists or arrays of edges (5.3)). However, there's no
need to worry about this mere preview; we'll delve much deeper into all of these topics later.

Code Sample

public class Nodef{

int data;

Methods of Interest Luckily for the reader, there aren’t any methods that every Node
class must contain. If you're studying data structures using Java, you'll likely want to include
a basic constructor, but even that is not entirely necessary, as data can always be inserted
manually after instantiation using the default empty constructor (which is precisely what you'd

want to do if you were to use the above Node code example).

Uses of The Node Since nodes represent the most basic elements of most data structures,
they have a vast multitude of uses. However, in isolation nodes are only capable of one thing:

containing data.



3.2 Linked Lists

Insertion: O(n)
Deletion: O(n)
Space Complexity: O(n)
Lookup: O(n)

Figure 3: An artistic, hand-crafted example of the linked list. Note that this figure refers
to insertion at the end of a linked list, which indeed requires O(n) time. Insertion at the

beginning, on the other hand, requires only O(1) (constant) time.

Important Terms

e Nodes: simple data structures containing data and a pointer to the next node in the

list. These pointers from Node to Node are the “links” in the “chain” of the list.
e Length: the number of nodes in the list with non-null data. The length of Fig. 3 is 3.

e Head: the first node in the list. In low level languages that lack classes (C, for instance),
the pointer to this element is actually the pointer to the list as a whole. In Fig. 3, this
is the leftmost node (the rightmost box, however, is the linkedlist object itself).

e Tail: the last node in the list. In Fig. 3, this is the element on the far right.

How The Linked List Works Linked lists represent perhaps the most basic data structure
possible- a collection of unidirectionally linked nodes, each containing only data and a pointer
to the next element of the list[19]. While this may seem like an overly simplistic concept, it

represents a base from which many other data structures may extend functionality.



Linked lists are used to store arbitrary amounts of similar data. Linked lists have one chief
advantage: scalability. That is, linked lists are capable of scaling from length 0 to length
50 to length 1000 to length 1 using insertions and deletions without ever copying the data
elsewhere or reorganizing elements. This is a significant advantage over, for instance, arrays,
which are created with a fixed size. If you create an array with size 100, and want to add a
101-th element, the only option is to copy the entire array into a larger array (a operation
taking at least linear running time). But if you've got a linked list with 100 elements, you can
insert a 101-th element in constant running time at the front of the list, and then you've got
a linked list with 101 elements.

Linked lists do have some choice of design features, though. Some implementations assume
a non-null head and tail at all times, to limit edge cases and null checks. Other implemen-
tations assume only a non-null head, or only a non-null tail. These non-null heads and tails
contain no data and are referred to as “sentinel nodes.” However, the sample implementation
provided here assumes none of these- an empty instantiation of this linked list truly contains

no nodes at all.

Code Sample

public class LinkedList{
//in a basic linked list, we only need a reference to the head
Node head;

//insertion creates a node, points its ‘next’ element to the
//current head, and then uses the new node as the new head.

public void insert(int data){

Node n = new Node();
n.data = data;
n.next = head;

head = n;

return;

/* deletion searches for a node by checking data one element ahead
* of the current node. When we find data we want to delete, we just
* skip the deleted data in the ‘chain’ of pointers by replacing
* our current node’s next value with the deleted node’s next value.
*/

public void delete(int data, Node n){

if(n.next == null)



return;

if (n.next.data == data){
n.next = n.next.next;
return;

}

delete(data, n.next);

return;

//lookup- ‘walks’ the list, comparing lookup data to element data.
//if element data matches lookup data, returns true. Returns false
//only when the ‘walk’ reaches the end of the list.
public boolean lookup(int data, Node n){
if(n == null)
return false;
if(n.data == data)
return true;

return lookup(data, n.next);

Methods of Interest

e insert (O(n) or O(c) depending on implementation):. places an element into the linked
list. Typically, implementations place elements at the front of the list since this makes
insertion a constant time operation, and ordering doesn’'t matter. This is called prepend-
ing. However, many examples of linked list implementations for introductory classes
insert elements at the end of the linked list instead, making this a linear operation. This
is known as appending[19]. Some types of lists can provide insertion operations that
are even better — sorted lists, for example, provide O(n/2) average insertion time [3].

The above code sample implements a O(C) insertion strategy.

10
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Figure 4: A delete operation on a linked list.

e delete (O(n)): remove an element from the linked list. In most implementations, this

is quite simple: Picture elements A, B, and C in a linked list as follows:

A: node before the node you'd like to delete
— B: node you'd like to delete

C: node after the element you'd like to delete

In a barebones linked list implementation, these nodes will contain only two fields: the
next Node and a piece of data. To remove element B, you simply have to make element
A’s next field point to element C[19]. This effectively “cuts” element B from the list,
and you'll never have to worry about it again. This method takes linear time because
if an element occurs at the very end of a list, you'll have to walk through every other
element in the list to reach the desired element. However, there are some complications
to this kind of “lazy” deletion strategy; for instance, this kind of deletion doesn’t actually
“get rid" of an element, so any pointers to said element will still function after deletion.
In C, the offending element is typically “freed” from memory, an operation that simply
tells your program “I'm not using this memory any more.” However, Java provides no
such option, leaving the burden of proper pointer handling squarely on the shoulders of

the programmer. As a general rule: keeping pointers to elements in a list is a dreadful

11



thing to mix with deletion operations, and should generally be avoided. See Fig. 4 for

an illustration of deletion in a linked list.

e lookup (O(n)): most implementations of a linked list will include some kind of method
for detecting if a given piece of data is present in a list. This method is actually quite
similar to the delete method, as it traverses the list starting at the head, checking to

see if any element's data matches the data provided[19].

Uses of Linked Lists Unlike Nodes, which are really only useful for building other data
structures, Linked Lists are useful for an incredible variety of applications. In general, however,
linked lists are used whenever you don’t know how many elements you might have to deal
with, and there isn't an upper limit that could allow you to use an array instead.

Linked lists are often used as a basis for more complicated data structures with superior
running time or more specific purposes, e.g. array lists, stacks, and queues. Advantages of
the linked list include seamless deletion (you aren't left with a null element, as would happen
in an array), effortless resizing, and a relatively small memory footprint compared to similar
data structures like doubly linked lists, trees, and vectors, which are typically more pointer-
reliant[10]. Disadvantages of the linked list include slow lookup times, slow deletion times,

and difficulty of backwards traversal in the list[19].

Suggested Readings The following articles are suggested to readers interested in learning

more about linked lists:

Paul F Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 122-127. ACM, 1982

Athanasios K. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica,
21(1):101-112, 1984

K.L. Kluge. Method and apparatus for managing a linked-list data structure, July 13 1999.
US Patent 5,924,098

12



3.3 Arrays

Insertion: O(1)
Deletion: 0O(1)
Space Complexity: O(n)
Lookup: O(n)

Figure 5:  An array.

Important Terms

e Index: individual labels for each element used for quick access, used much like the "next"
field in nodes of a linked list. In most imperative programming languages (including C,
C++, Java, and many others), these indices begin at 0 and end at length-1. In Fig. 5,
indices include 0, 1, 2, 3, 4, and 5.

e Length: the number of elements in the list. There are 6 elements in Fig. 5, so it has a
length of 6.

How The Array Works Arrays are actually quite simple: let's say you have an integer
called x in a program. Maybe that integer contains your favorite number. Your roommate,
Steven, notices that you've got this nifty favorite number program, and wants to store his
favorite number in it as well so he doesn't forget. You help him out and create another integer,
cleverly named “x2", to contain his favorite number. He tells some friends about it, and soon
enough half of your town is knocking on your door, asking you to store their favorite numbers
in your incredible machine. But you don't want to store their numbers in individual integers-

keeping track of that many names could get messy. Instead, you cleverly solve the problem

13



with an integer array, which is just a fancy way of saying: a bunch of integers automatically
lined up one after one another in your computer's memory. This solves the naming issue
through the use of a single name and an integer label (an index), like favnumbers[2] and
favnumbers [77].

While arrays are a perfectly legitimate data structure, they usually aren’t implemented di-
rectly by the programmer- even in introductory computer science classes that revel in “teach-
ing by doing.” However, it is useful to know how arrays work. Essentially, your computer
just grabs a chunk of memory of size <lengthOfArray> * <sizeOfDataType> when you
create an array. When you access an individual element using the a[i] syntax, your computer
is actually simply performing a quick calculation and accessing the memory found in the a +
i * <sizeOfDataType> address of your memory space[22]. In this case, sizeOfDataType is
measured in bytes, which is how every data type, from integers to Bufferedlmages, is actually

stored in memory[22].

Code Sample

//create a new empty array

int[] a = new int[2];

//insert -11 into index 0 and 42 into index 1
alo] = -11;

al1] = 42;

//create an array with the same values in the

//same indices in a single line
int[] sameAsA = {-11, 42};

Methods of Interest

e Length (O(C)): Returns the length of the array. Typically, high-level language imple-
mentations of arrays store their length in a field so that it can be accessed in constant
time. However, extremely lightweight forms of arrays — including those in the C pro-
gramming language — don't store the length at all, forcing programmers to store the

length of an array in some other way.

e Index access (O(C)): Technically, accessing a particular index of an array is also a
method call (at least, in java): you can think of the afi] syntax as the same thing as
calling index(a, i). This simply returns the ith element of the array. Index access can
also be used to store a value in a particular index. Lines 3 and 4 of the code sample

above illustrate index access.

14



e Lookup (O(N)): Unfortunately, lookup in an array, as in many simplistic data structures,
is still a linear time operation. You still have to traverse the entire array to search for any
individual element, so there's no avoiding this[10]. A sorted array can slightly improve
the average running time prospects for a lookup operation, but the worst case remains

O(N).

Uses of Arrays Arrays are used everywhere in computer applications. Whether they're
being used to hold somebody's favorite numbers, pixel values in an RGB image, or even the
calculations for a dynamic programming method, arrays are used pretty much anywhere that
a programmer needs more than one or two of an element. While linked lists serve this same
purpose, arrays really stand apart because of their constant-time indexing, which is extremely
handy in many computational tasks where a programmer would like to avoid potentially linear
linked-list access time. Arrays are of particular interest in vectorized languages, including
Mathwork's MATLAB and Wolfram's Mathematica, which allow a programmer to perform
scalar operations- that is, to apply a single function, like multiplication, to an entire array
of elements[17]. Arrays are so common that we even have special vectorized hardware de-
signed specifically for the manipulation of arrays in certain optimized languages and array
implementations, like FORTRAN]20].

Suggested Readings The following articles are suggested to readers interested in learning

more about arrays:

Edgar Chavez, José L Marroquin, and Gonzalo Navarro. Fixed queries array: A fast and eco-
nomical data structure for proximity searching. Multimedia Tools and Applications, 14(2):113-
135, 2001

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22-30, 2011

15



3.4 Strings

S-\'r;ng
o1 ]zL) _3__) g
|t | oot | ded | e

Figure 6: A String. Note the null terminator in the final bucket of the array.

Important Terms

e Length: how many characters occur in the string. Due to the null terminating character,
C-style strings have a length of <numCharacters> + 1. Strings may be of variable or

fixed length depending on programming language[10].

e Null terminator: ‘\0' is used to indicate the end of a string in C-style strings. Some
programming languages omit the null terminator entirely[22]. In Fig. 6, index 5 contains

the null terminator.

How The String Works A string is really just a highly specialized array that contains
only characters. Interestingly enough, Java Strings are immutable — any time even a single
character is added to a string in java, all of the string’s contents have to be copied over into

another array of slightly larger size[27].

Code Sample

//create some strings

String myStr = "All of these worlds are yours-";

16



String myWrn = "except Europa. Attempt no landing there.";
String cat = myStr + myWrn;

Methods of Interest

e Concatenation (O(n + m)): Appends one string of length n to another string of length
m. This is done by creating a new array of length n+m, copying the first string into
the first n indices (sans null terminator, if the language uses one), and then copying the
second string into the last m indices. In the above code sample, cat is the concatenation

of myStr and myWrn.

Uses of Strings Inevitably, even the most stubborn programmer will eventually find himself
forced to output text in some way or another. Any time you interact with text in a program,
you're working with Strings. Strings also have the advantage of easy, typically built-in con-
version to most other data types. For this reason, Strings are many language’s type of choice
when accepting runtime arguments, input given to a program when it's run. For instance, if
you're running an instance of a java class named “Test”, you can simply run the program like

so:
java Main myFirstArgument mySecondArgument 42

This runs the program with “myFirstArgument” as the first argument, “mySecondArgument”
as the second argument, and “42" (note that this is a string, not an integer) as the third
argument. In java, you can access these arguments as args|0], args[1], and args|2], respectively.
Conversion of strings to integers (and, indeed, most other data types) is built into most high-
level languages, making data manipulation a simple matter from here.

Suggested Readings The following articles are suggested to readers interested in learning

more about strings:

Stuart E Madnick. String processing techniques. Communications of the ACM, 10(7):420—
424, 1967
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4 \Where Things Start to Get Complicated

“Let us change our traditional attitude to the construction of programs: Instead of imagining
that our main task is to instruct a computer what to do, let us concentrate rather on explain-
ing to human beings what we want a computer to do.”

-Donald Knuth[13]

4.1 Doubly-Linked Lists

~

[Code |/l Node

nul|

Iret Vet
L i
data data

null

Insertion: O(1)
Deletion: O(n)
Space Complexity: O(n)
Lookup: O(n)

Figure 7: An artistic, hand-crafted example of a doubly-linked list. Note the “prev’ field in
each node.

Important Terms

e Prev: pointers to the node occurring before the current node in the list. In Fig. 7, you
can see that the first element of the list contains a null prev pointer, much like how the

last element of the list contains a null next pointer.

How The Doubly-Linked Lists Works A doubly linked list is really just a simple extension
of a standard singly linked list. Instead of nodes connected only by forward-facing “next” node

connections, a doubly linked list also contains backward-facing “previous” node connections.

18



Thus the list can be traversed in either direction — starting at the head and ending at the
tail, or starting at the tail and ending at the head — or, indeed, starting anywhere in between
the head and the tail and proceeding in either direction! While this choice doesn't necessarily
make it any easier to access arbitrary elements in a list (since the elements in the middle will
still take n/2 movements to access, which is still linear time), it does open up the possibility
of constant-time access of the tail. However, the most useful aspect of the doubly linked
list isn't access time for elements; instead, doubly linked lists are generally considered more
useful because backwards-facing traversal can make many operations a great deal simpler and
a great deal faster for certain data structures that extend list functionality, like queues (4.3)).

However, doubly linked lists are not without their costs. Perhaps the most significant cost
lies in the space taken up by the additional “previous’ pointer in each node in the list. This
seems insignificant for a small list, but consider the amount of space that those n pointers
will take up for a linked list of a million elements. Doubly linked lists also have the downside
of additional maintenance- deleting the i-th element suddenly takes more work, since not only
do you have to modify the i-1th element’s previous pointer- you also have to modify the i+1th
element’s previous pointer[10]. While this operation retains the constant running time of the
singly linked list, it becomes much more complex and error prone from a coding perspective.

As a result, operations as simple as sorting a doubly linked list become more tedious to write

than their singly-linked counterparts.

Code Sample

public class DoubleList{
Node head;

//inserts an element of data in a new node

//at the head of the list

public void insert(int data){
//create a new node in which to store our data
Node n

new Node();
data;
//this node points to the head

n.data

n.next = head;
//as long as head exists, point it back to our new node
if (head != null)
head.prev = n;
//our node becomes the new head
head = n;

return;

19



//walks through the list, searching the NEXT element for
//matches with our data
public void delete(int data, Node n){
//cover the special case of empty list
if(n == null)
return;
//cover the special case of head contains data
if (n.data == data){
head = head.next;
}
//if we’re at the end of the list, we didn’t find this data
if (n.next == null)
return;
//but if we get a match
if (n.next.data == data){
//splice n.next out of the list by altering
//the previous pointer in the node after n.next
if (n.next.next !'= null)
n.next.next.prev = n;
//and the next pointer in our current node, n
n.next = n.next.next;
return;
}
//if we haven’t found the element yet or terminated, keep searching
delete(data, n.next);

return;

//lookup walks the list, returning true if any piece of data matches data
public boolean lookup(int data, Node n){
if(n == null)
return false;
if(n.data == data)
return true;
//’walk’ the list here by recursively calling on next

return lookup(data, n.next);

20



Methods of Interest The standard doubly-linked list uses the same functions as the singly-
linked list — insertion, deletion, and lookup — but with slightly more overhead, since the
doubly-linked list functions have to account for prev pointers in addition to next pointers, and
sometimes update the doubly-linked list's tail pointer (if such a pointer is used) [10]. Simply
compare the linked list code sample to the doubly-linked list code sample to see just how large

a difference these back pointers make in the insert and delete methods.

Uses of The Doubly-Linked List Perhaps the most compelling usage of doubly linked
lists exists in the construction of queues (4.3). Since queues typically require access to both
the front and the back of a list, it's helpful to have prev-pointers — that way, you can insert
at one end of the list and delete from the other end of the list with both operations costing
constant time. This is also possible using arrays, but with a catch- arrays have a set size, and
queues can vary wildly in size, making doubly-linked lists a more suitable choice.

In a singly linked list, one of these operations would have to cost linear time[22]. If you're
having trouble picturing this, consider deletion from the end of a singly linked list. Even if
you keep a pointer to the last element in the list, you'll have to traverse the entire list after
every deletion to get a fresh pointer to the new last element in the list, making deletion a
linear time operation no matter what.

This ability to traverse a doubly linked list backwards in addition to standard forward
traversal allows one to treat the head and the tail of the list similarly, since you can walk from
the tail to the head, or from the head to the tail with the same running time. This is an
exceptionally powerful tool, as we'll see later when we investigate data structures built using

doubly linked lists, such as the queue.

Suggested Readings The following articles are suggested to readers interested in learning

more about doubly linked lists:

Mary E d'Imperio. Data structures and their representation in storage. Annual Review in

Automatic Programming, 5:1-75, 1969
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4.2 Stacks
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Figure 8: On the left: a diagram of a stack in memory. On the right: a common, more concise

representation of the same stack.

Important Terms

e LIFO (Last In, First Out): describes a data structure in which elements are removed in
the opposite order in which they were added. In Fig. 8, datal is at the top of the stack,
and thus it was the “last in” element— that is, the last element added to the stack via
the push method. It is also currently the “first out” element— that is, it will be the first

element returned if the pop method is called.

How The Stack Works Stacks are commonly built on top of a standard singly linked list.
Indeed, the structure of a singly linked list is highly appropriate for the stack’s last-in-first-out
behaviour, as it ensures that a user will only ever access the element at the “top” of the stack
— in other words, the element at the front of the list — making push and pop operations in a
stack constant time operations[22]. As with the relationship between doubly linked lists and
queues, it's also entirely possible to implement a stack using an array— but this type of stack
implementation is inherently hamstrung by the immutable length of an array, which requires
potential resizing, awkward left-hand shifting of elements when the pop operation is called,

and right-hand shifting of elements when the push operation is called.

22



If you're still confused about how a stack would actually behave for arbitrary input, consider
the following: if you add 1, then 2, then 3 to a stack, removal will happen in the ordering
3, 2, 1. Each element is “stacked” on top of the previous element, and since you can only

remove elements from the top of a stack, you're left with LIFO behaviour.

Code Sample

public class Stack{
Node top;

//push inserts an item at the top of the stack
public void push(int data){

Node n = new Node();
n.data = data;
n.next = top;

//new node replaces the old top node
top = n;

return;

//pop deletes the item at the top of the stack
public int pop(){
if (top == null)
return -1;
//save the top’s data, replace top with next element
int data = top.data;
top = top.next;

return data;

//returns the value at the top of the stack without deleting
public int peek(){
if (top != null)
return top.data;

else return -1;

Methods of Interest
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e Push (O(C)): adds a piece of data to the top of the stack. In the above code sample,

this method works exactly the same as our linked list insert method.
e Pop (O(C)): removes a data from the top of the stack, returns that element

e Peek (O(C)): returns the data at the top of the stack without removing it from the

stack

Uses of The Stack Perhaps the most common usage of stacks exists in the form of
arithmetic and boolean statement evaluation. Calculators, both logical and arithmetic, are a
common application of this ability. While infix notation (e.g. “242") is easy to understand
for a human, it's significantly more complicated for a machine, since such a task requires
the preservation of precedence and association. Postfix notation (e.g. “22+") is significantly
easier for machines to understand, and can actually be evaluated in a highly efficient and
relatively simple manner using a stack. Indeed, this efficiency is exactly why TI-84 graphing
calculators have scarcely evolved in the past 20 years, as extra computational beef isn't really
necessary when it comes to evaluating basic arithmetic.

Stacks are used in the popular Shunting-Yard Algorithm, which uses a combination of a stack
and a queue to convert infix mathematical notation into postfix mathematical notation[4].
Indeed, this algorithm actually represents the easiest way for a computer to evaluate infix

notation — conversion into postfix!

Suggested Readings The following articles are suggested to readers interested in learning

more about stacks:

Rohit Rastogi, Pinki Mondal, and Kritika Agarwal. An exhaustive review for infix to postfix
conversion with applications and benefits. In Computing for Sustainable Global Development
(INDIACom), 2015 2nd International Conference on, pages 95-100. |IEEE, 2015

Richard E Ladner, Richard J Lipton, and Larry J Stockmeyer. Alternating pushdown and
stack automata. SIAM Journal on Computing, 13(1):135-155, 1984
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4.3 Queues
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Enqueue: 0O(1)
Dequeue: 0O(1)
Space Complexity: O(n)

Figure 9: To the top left: a diagram of a queue in memory. To the bottom right: a common,

more concise representation of the same queue.

Important Terms

e FIFO (First In, First Out): As you might have noticed, this is precisely the reverse of
LIFO behaviour. Elements are removed from a queue in precisely the same order that
they're inserted. Since datal was the first element inserted into the stack via enqueue

in Fig. 9, it will also be the first element removed in the event of a dequeue.

How The Queue Works Similarly to stacks, queues are typically implemented as a slight
modification of linked lists. Queues, however, lend themselves much more readily to a doubly-
linked list implementation, since elements need to be accessed on both ends. With a doubly-
linked list, both accesses can be completed easily and in constant time. Singly-linked lists, on
the other hand, will invariably require some linear time operations to implement deletion at
the end of the list[22].

Code Sample

public class Queue{
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//this queue implementation has two nodes with null value
//at all times, to simplify edge cases (otherwise we’d
//have to account for null nodes all the time

Node front;

Node back;

//creates a new queue with an empty front and back node
public Queue(){

front = new Node();

back = new Node();

front.next = back;

back.prev = front;

//inserts a new item into the front of the queue
//NOTE: actually inserts AFTER front node (which has null values)
public void enqueue(int data){

//create a new node, insert data, point prev at front of queue

new Node();
data;

Node n

n.data

n.prev = front;

//next value becomes front value’s current next value

n.next = front.next;

//the current node after the head needs to point at this node
n.next.prev = n;

//front of queue now points to this node

front.next = n;

//deletes (and returns) an item from the end of the queue
//NOTE: actually inserts BEFORE back node (which has null values)
public int dequeue(){

//if the queue is empty, return error value

if (back.prev.prev == null)

return -1;

//grab data from the last non-null node in the queue

int data = back.prev.data;

//’cut’ that node out of the queue

back.prev = back.prev.prev;

26



back.prev.next = back;
//return data we just grabbed

return data;

Methods of Interest
e Enqueue: add a piece of data to the front of the queue (the head of the list)

e Dequeue: remove and return a piece of data from the back of the queue (the tail of the
list)

Uses of The Queue Queues are one of the most common data structures, making it
difficult to pin down just the “most popular’ use for queues. One of the areas where queues
present the most advantages is concurrency and messaging- whether you're dispatching jobs to
50 threads performing gene folding, processing transactions for a national bank, or dispatching
movement updates to 16 players in a Call of Duty online multiplayer match, queues are
a magnificent equalizer, ensuring that each element of data spends a (roughly) equivalent

amount of time waiting for processing.

Suggested Readings The following articles are suggested to readers interested in learning

more about queues:

John Guttag. Abstract data types and the development of data structures. Communica-
tions of the ACM, 20(6):396-404, 1977
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4.4

Trees

Insertion: O(n)
Deletion: O(n)
Space Complexity: O(n)

Figure 10: An artistic, hand-crafted example of a right-sibling, leftmost-child tree.

Important Terms

Root: the first and “top” node in the tree.

Leaves: All nodes with no children in a given tree. datal is the data contained in the
root of the tree in Fig. 10.

Height of Node: The number of edges on the longest path between a given node and
a leaf[27].

Height of Tree: The height of the root[22].

Children: Nodes accessible from a given parent node in a tree that differ in depth by
1. In a binary tree, these are commonly simply “left” and “right” children. In other tree

schemes, there can be arbitrary numbers of children[27].

Parent: The node through which another node is accessible in the tree; that is, the last

element of the path from the root to any given node[27].

Depth-first Search: Often abbreviated to DFS, depth-first search represents one of the

most popular tree search algorithms in use today. In any depth-first search, a specific
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order is chosen for child node exploration. Often, this order is simply left to right, but
it's perfectly within the bounds of a depth-first search to explore child nodes in a right
to left order, or any other order of preference. In such a search, the entire subtree
with its root at the first explored child is explored before the second child. Then the
entire subtree rooted at the second explored child is explored before the third child node
is explored[22]. This property repeats within each subtree. This search is particularly
applicable in state search, where a heuristic (that is, an inexact rule of thumb) is

commonly used to determine which child node should be explored[27].

Breadth-first Search: Often abbreviated to BFS because most computer scientists strug-
gle to pronounce the word “breadth,” BFS works in a way practically quite different from
that of DFS — indeed, in a breadth-first search, each child node of a given node is guar-
anteed to have been explored before any of the given node’s grandchild (child of child)
nodes are explored[22]. However, this search also means that you have to “remember”
lots of nodes at any point during the search, since a lot of time is spent waiting for
visitation sibling nodes before a node's children can be explored. This is typically im-
plemented using a stack. This type of search is most useful when no heuristic seems
applicable for a problem. Interestingly enough, this search behaves in a manner quite
similar to that of topological orderings in graphs, which we'll explore later (5.3)). Often,

this exploration can be written quite simply using a queue[27].
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@® Pre-Order
) In-Order

® Post-Order

Figure 11: An illustration of various traversals of a tree. The line indicates the order in which
a depth-first search visits the nodes of the tree, and the dots indicate the points in the three

different traversals that the contents of a node would actually be printed.

e Pre-Order Traversal and Printing: Pre-order tree traversal is simple: nodes are printed
(or compared) in exactly the order that they're visited in a depth-first search recursive
method. In other words: a node is visited and printed. The first child is visited and
printed. If that node has no children, the second child of the original node is visited
and printed; otherwise, the first child of the first child of the original node is visited and
printed (Fig. 11).

e In-Order Traversal and Printing: In-order tree traversal is slightly less intuitive, and
makes little sense for trees in which nodes can have arbitrary numbers of children.
However, the general idea is this: a node is visited. Its left child (or left children) is
visited and printed. Once all of the left children of the original node have been printed,
the original node is printed. Only then are the right children visited and printed (Fig.
11).

e Post-Order Traversal and Printing: Post-order tree traversal is essentially the opposite
of pre-order traversal: instead of printing a given node before any of its children have
been printed, a given node's value is only printed once each and every child of that node

has already been printed (Fig. 11).
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How The Tree Works Trees are everywhere in computer science, and have a wide variety
of specialized forms in literature. Luckily for you, this section only details the most generic
idea of n-ary trees. First, it's important to establish the different methods of representing
a tree, which can vary significantly for trees without set limitations on numbers of children.
Unlike binary (2-child) trees, which have the luxury of maintaining just two child pointers (left
and right), n-ary trees must account for arbitrary numbers of children.

One common approach to this problem: simply maintain a linked list of children in every
single parent node, allowing any number of children. This has the advantage of simple
traversal, but the disadvantage of significant space overhead in addition to significant traversal
running time overhead. Such an approach isn't perfect, though, since any traversal of such a
tree must traverse both the tree and several linked lists, significantly complicating the code.
Another popular approach is the LMC-RS (LeftMost Child-Right Sibling) representation (Fig.
10), in which each node need only contain three fields: a piece of data, a pointer to the
node's right sibling, and a pointer to the node's leftmost child. In this way, trees of immense
complexity with highly varying numbers of children may be constructed and traversed with

€ase.

Code Sample

public class Tree{

Node root;

//inserts a sibling immediately to the right of a tree node

public void insertSibling(int data, Node n){

new Node();
data;
//the new node now points to the old right sibling of the original node

Node temp

temp.data
temp.rs = n.rs;

n.rs = temp;

//inserts a child beneath a node
public void insertChild(int data, Node n){

new Node();

temp.data data;

//the new child now points to the old child node
//through its right sibling field

Node temp

temp.rs = n.lmc;
n.lmc = temp;

return;
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//traverses the tree using lookupHelper
public boolean lookup(int data){
if (root == null)
return false;

else return lookupHelper(data, root);

//if the data of the current node matches data, return true.
//if the current node is null, we’ve hit a dead end- return false.
//otherwise, explore the children and siblings of the current node
public boolean lookupHelper(int data, Node n){
if(n == null)
return false;
if(n.data == data)
return true;
//uses OR for return because data is present if we return true anywhere

return lookupHelper(data, n.lmc) || lookupHelper(data, n.rs);

//delete method cut for the sake of brevity

Methods of Interest Unspecialized trees contain few, if any, methods of interest. As you
can see in the above example, lookup, and insert work in much the same way as they do in

any linked list.

Uses of The Tree A clever use of trees with arbitrary numbers of children is tries. Tries,
unlike many other specialized forms of trees, never hold a full value at any node- instead the
value of a leaf node is the entire path from the root of the tree to that node. Tries can be
used to, for instance, create a tree for every word in the English language, where the root
node of the tree has 26 children (a through z) and every path from that root node to a leaf is
a word in the English language. Such constructs can be immensely useful when, for instance,

one needs to traverse every word in a language without saving each element discretely.

Suggested Readings The following articles are suggested to readers interested in learning

more about trees:
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Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of computer and system sciences, 26(3):362-391, 1983
Donald E Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163-180, 1985

4.5 Binary Search Trees
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Insertion: O(n)
Deletion: O(n)
Space Complexity: O(n

Figure 12: An artistic, hand-crafted example of a BST. In this hierarchy, data3 < data4 <
datal < data2.

Important Terms

e Left Child: in a BST, the left child contains a data value of lesser value than its parent.
In Fig. 12, data3 < datal because data3 is datal's left child.

e Right Child: similarly, the right child contains a data value of higher value than its
parent. In Fig. 12, data4 < data3 because data4 is data3's right child.

How The Binary Search Tree Works Binary Search Trees are actually an elegant ex-
tension of the traditional tree structure. A BST is binary (only two children allowed, a left
and a right) and obeys a single organizational rule: any given left child’s data is less than its
parent's data, which in turn is less than that parent’s right child’s data[22]. This ordering
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makes BSTs extremely useful for search algorithms, as it makes it much easier to

down” the location of a particular element.

Code Sample

public class BST{

Node root;

//starts at the root, so insert calls are cleaner
public void insert(int data){
Node n = new Node();
n.data = data;
//if the root is currently null, our job is done-
//just save our new node as the new root.
if (root == null){
root = n;
return;
X

insertHelper(n, root);

//walk the tree, using comparisons to decide on left/right move

public void insertHelper(Node temp, Node n){
//if our data is larger than the current node’s data,
//we belong to the right
if (temp.data > n.data){
//call recursively on right child, unless
//the right child doesn’t exist- in that case,
//insert our node as a new right child.
if(n.right != null){
insertHelper(temp, n.right);
} else{
n.right = temp;
}
} else {
//call recursively on left child, unless
//it doesn’t exist, in which case we insert.
if(n.left !'= null){
insertHelper(temp, n.left);
} else{
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n.left = temp;

//starts our lookup at the root, handling null root case, matching root case,
//and starting lookuphelper otherwise based on comparison to root
public boolean lookup(int data){
if (root == null)
return false;
if (root.data == data)
return true;
//search to the left is data is less than root’s data
if (root.data > data)
return lookupHelper(data, root.left);
//otherwise search to the right
return lookupHelper(data, root.right);

//walk the tree, comparing our data to nodes to move left or right.
//if we hit a null node, our data doesn’t exist in the tree- return false.
//if we hit a node with matching data, return true!
public boolean lookupHelper(int data, Node n){
if (data == n.data)
return true;
if (data > n.data){
//search to right
if(n.right == null){
return false;
} else{
return lookupHelper(data, n.right);
+
} else {
//search to left
if(n.left == null){
return false;
} else{
return lookupHelper(data, n.right);
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public void delete(int data){
//delete has been omitted for the sake of brevity

Methods of Interest

e insert (O(n)): The binary search tree's insertion method begins at the root and traverses
down the tree, comparing the item to be inserted with each parent node and traveling
down the appropriate path until it finds a null path. The item is then inserted in a new
node in that location[22].

e lookup (O(n)): Works similarly to the insertion method, except returns true if the item

is already present and false otherwise[22].

e delete (O(n)): Works similarly to lookup and insert, except it deletes the matching node
if present. When the matching node is deleted, its right child takes its place, and the
left subtree of its right child is transplanted to the far right of its left subtree[22].

Uses of The Binary Search Tree Binary search trees have fewer uses than one might
think due to one major flaw: balancing. If this isn't immediately clear, consider the following:
insert the values 1, 2, 3, 4, 5 into a binary search tree. The resulting tree is extremely lopsided,
and has no left-children branches at all. In fact, this resulting tree actually behaves exactly
like a linked list with an extra null pointer at each node. It's this weakness of binary search
trees that results in a worst-case linear running time, causing most implementations to prefer
self-balancing trees- including red-black trees and AVL trees (5.1)), which we'll explore in the

Advanced Data Structures section.

Suggested Readings The following articles are suggested to readers interested in learning

more about binary search trees:

Thomas N Hibbard. Some combinatorial properties of certain trees with applications to
searching and sorting. Journal of the ACM (JACM), 9(1):13-28, 1962

Edward H Sussenguth Jr. Use of tree structures for processing files. Communications of
the ACM, 6(5):272-279, 1963
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5 Advanced Data Structures

“An algorithm must be seen to be believed.”
-Donald Knuth[13]

5.1 AVL Trees
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Insertion: O(log(n))
Deletion: O(log(n))
Space Complexity: O(n
Lookup: O(log(n))

Figure 13:  An artistic, hand-crafted example of an AVL tree. Note the similarity to the BST

we explored at the end of section 4.

Important Terms

e Self-balancing property: AVL trees are called “self balancing” because they enforce a
very particular rule: no two children of a given node may differ in height by more
than one[22]. As you can see from Fig. 13, AVL Trees look exactly the same as a
balanced BST — the two differ only in their balance strategies (namely, AVL trees follow
a balancing rule, while BSTs do not).

e Rotation: When a value is inserted into an AVL tree, the insert method traverses the
tree, comparing the value to be inserted with each subsequent node and picking the

right or left path based on the outcome of the comparator operation. Once the new
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node has been inserted, the insert method then travels back up the tree from the point
of insertion. At each node on the path back to the root, a comparison of the left and
right child heights is made; if any given node happens to fail this comparison (that is,
the height of the left node differs by more than one from the height of the right node),
the tree “rotates’ at this position to fix the imbalance. Similarly, a deletion must also
traverse the path back to the root from the point of deletion to account for potential

new imbalances[13].

How The AVL Tree Works The heart of the AVL tree lies in the rotation method- without
this strategy to resolve imbalances, the AVL tree simply could not function. This rotation
method must account for the following imbalance cases, each of which is named after the
location of the misbehaving subtree (of excess height). Two of these cases are simply slightly

more elaborate cases of the other two, and require a single rotation to reduce to a simpler

% f‘*@g g %
d

Figure 14: A single LL rotation (top) and a double LR rotation (bottom).

Case.

1. RL (Right Left): The left subtree of the right child of the current node is too high.
To resolve this case, we rotate the tree into RR form. To do this, we “rotate” without
touching our current node; instead, the left child of the right child becomes our new
right child, with our original right child as its new right child and its original child as
our original right child's new left child[13].
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2. RR (Right Right): The right subtree of the right child of the current node is too high.
To resolve this case, simply “rotate” the right child so that the current node is its new
left child. It should retain its original right child, and its original left child should become
the new right child of the current node[13].

3. LR (Left Right): The right subtree of the left child of the current node is too high. To
resolve this case, we simply rotate into LL form in the exact opposite way that we rotate

RL form into RR form[13]. You can see an example of this rotation at the bottom of
Fig. 14.

4. LL (Left Left): The left subtree of the left child of the current node is too high. To fix
this case, we simply rotate the left child of the current node so that our current node
becomes its right child. Just like in the RR case, our current node inherits a new left
child- the former left child’s right child[13]. You can see an example of this rotation at
the top of Fig. 14.

Methods of Interest Typically, AVL trees only use the standard tree methods- insert,
delete, and lookup. However, the insert and delete methods include a twist — after completing
an insertion or deletion (which involves a traversal from the root to a location in the tree),
these methods have to return back up the tree, checking for newly-introduced imbalances.
To do this, most AVL tree implementations include a balance (Node n) method for these
functions to call as they recurse back up to the root[13]. The balance method may then call a
rotate(Node n) method to balance a node with an identified imbalance in accordance with

the rules discussed above.

Uses of AVL Trees AVL trees are commonly used for sorting, data storage, and a variety

of other tasks.

Suggested Readings The following articles are suggested to readers interested in learning

more about binary search AVL Trees:

Caxton C Foster. A generalization of avl trees. Communications of the ACM, 16(8):513—
517, 1973

A fine implementation of an AVL Tree can be found at the following address, courtesy of
Florida International University:

http://users.cis.fiu.edu/"weiss/dsaajava/code/DataStructures/AvlTree. java
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http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java

5.2 Binary Heaps
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A binary heap
actually looks like
this. Note the lack
of nodes! No pointer
overhead here.

Insertion: O(log(n))
Deletion: O(log(n))
Space Complexity: O(n)

But it’s a lot nicer
to visualize a heap
like this!

Figure 15: A beautiful representation of a binary heap.

Important Terms

e Heap property: There are two main variants of binary heaps- min heaps and max heaps.
Both types of heap follow a special heap property: each parent node must be either less
than or equal to its children (for min heaps), or greater than or equal to its children
(for max heaps)[13]. Note that there is no explicit relationship defined between children
through this rule, unlike BSTs.

e Min heap: All parent nodes are less than or equal to their children. In a min heap, for
example, data2 < datal and data2 <data3 in Fig. 15.

e Max heap: All parent nodes are greater than or equal to their children. In a max heap,
parents must be strictly greater than their children, so data2 > datal and data2 >
data3.

How The Binary Heap Works Though heaps are typically visualized as trees, they are
typically actually implemented using an array. As such, they usually can’t be navigated using
the left and right child pointers that you'd normally expect a tree structure to have—instead,

navigation of a heap is typically done using indices. (see “Methods of Interest”) Traditionally,
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the root of the heap occurs at index 1 in the array rather than O[I3]. (If this doesn't make
sense, consider the basic case (traditionally starting at index 1 for ease of computation) of a
three-element heap. The root occurs at index 1 (aka "i"), the left child occurs at index 2 (aka
“2i"), and the right child occurs at index 3 (aka “2i+1").

Methods of Interest

e leftchild: To access the left child of the node with index i in the array, simply access
element 2i [13].

e rightchild: To access the right child, access element 2i+1 [13].

e parent: This same property can be used to traverse back up the array using parents-
indeed, to access the parent of a given node with index i, one need only access element
floor(i/2), that is: i divided by 2, rounded down to the nearest whole number[13].

e insert: unlike a traditional tree, insertion can only occur in a single position in any
heap- the next open space in the array used to represent the heap. As a result, values
must “bubble up” after insertion into a correct position, as it's quite likely they won't

be placed in the right part of the heap initially.

e remove: Typically, only the root node is ever removed from a heap. As a result, there
is a very particular procedure in place to ensure that a removal doesn’t break the heap
property. When a value is removed from the heap, the root is replaced with the final
element from the bottom level of the heap. Then the “bubble down" procedure begins,
wherein an element (starting at the root) is compared to its children and swapped with
whichever one is greater (in a max heap) or smaller (in the case of a min heap) until

its position no longer a violation of the heap property.

Uses of The Binary Heap Min heaps are often used as cheap, ready-made priority queues.
A combination of a max heap and a min heap may be used to keep track of a running median
of a set of elements. Heaps have also found popularity through the heapsort sorting algorithm,
which, as you might expect, involves dumping a set of elements into a heap and then removing
them to produce a sorted set.

The heap occupies a very interesting position in the computer science world, since it is a low-
overhead (since it uses no pointers) data structure with significant benefits- most notably the
ability to sort input with minimal effort due to the bubble-up/bubble-down process. Special
variants of heaps, including the Fibonacci Heap and the Pairing Heap, are often used to

prioritize elements of input in a variety of different algorithms.
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Suggested Readings The following articles are suggested to readers interested in learning

more about binary heaps:

Michael Barbehenn. A note on the complexity of dijkstra’s algorithm for graphs with
weighted vertices. IEEE transactions on computers, (2):263, 1998

A fine implementation of a binary heap can be found at the following address, courtesy of
Washington University:
http://courses.cs.washington.edu/courses/cse373/11wi/homework/5/BinaryHeap.

java

5.3 Graphs

|

Figure 16: Three possible graphs. The first is undirected and sparse, the second is directed,
and the third is undirected and dense. All three are unweighted.

Important Terms

e Edge: two nodes may be connected by an edge. For example, in Fig. 16, nodes a and

b are connected by an edge.

e Sparseness: graphs can either be sparse (with relatively few direct connections between
nodes, as in the graph on the left in Fig. 16) or dense (most nodes are connected to

all other nodes directly, e.g. the center graph in Fig. 16).

e Adjacency list: in sparse graphs, adjacency lists are used to indicate the existence of
edges between points. Typically an adjacency list is full of pointers (or indices in an

array used to represent the graph) used to access other nodes in the matrix[22].

e Adjacency matrix: Dense graphs commonly make use of adjacency matrices to indicate

edges, made with 2D arrays, due to their quick access times (constant, compared to
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linear for an adjacency list). However, adjacency matrices are typically inappropriate in

the context of sparse graphs due to their quadratic space complexity[22].

e Undirected graph: a graph in which edges (X,Y) may be traversed both ways ((X,Y) or
(Y, X)).

e Directed graph: a graph in which edges may only be traversed in a single direction.
That is; the edge (A, B) from A to B means that there is a way to get from A to B,
but does not mean that there is a direct path from B back to A, which would be called
(B, A).

e Shortest path: the path with the minimum edge cost (or number of edges) between

two specific nodes. Dijkstra’s algorithm can find such a path in quadratic time.

e Minimum Spanning tree: an acyclic subset of edges (that is, a group of edges where
there aren't any loops) in a graph through which any node may be reached. Prim'’s
algorithm and Kruskal's algorithm represent two popular minimum spanning tree algo-
rithms (though Kruskals' may also produce a minimum spanning forest, if used on a

graph containing islands)[22].

e Minimum Spanning forest: Like a spanning tree, except it isn't necessarily connected. In
graphs that contain islands, spanning trees are impossible since it's impossible to connect
a component to another component if there's no edge between those components in
the first place. As a result, spanning forests are often used as a form of compromise,
since they satisfy the spanning component in as satisfactory a way as possible in such

cases.
e Weighted edge: an edge with a cost associated with traversal (such as distance)

e Topological ordering: create a subgraph through the traversal of edges to non-visited

nodes beginning at a particular node.

How The Graph Works A graph is a collection of nodes and a collection of edges.
However, don't be fooled into thinking that a graph is some kind of geometric object; instead,
it's better to think of a graph as a combinatorial object- a collection of points and a subset

of possible connections between those points.
Methods of Interest Typically, general graphs don't require any particular methods. More

interesting are the algorithms used to analyse graphs, including Dijkstra’s Algorithm, Prim's
Algorithm, and Kruskal's Algorithm, to name a few[22].

43



Uses of Graphs In recent years, Google Maps has become the most evident example of
a graph in daily life. However, graphs have found a wide variety of uses in daily life: bus
networks for public schools and cities, shipping routes for companies like UPS and the USPS,
utility routing for power, gas, and water, and even garbage collection in Java can all heavily
exploit graphs for optimization.

While the usage of graphs to find shortest paths and minimal spanning trees is certainly
evident to even an individual inexperienced individual, graphs can also be useful for more
abstract problems. Maximal matching, k-coloring, and flow problems all represent more ad-

vanced applications of graphs.[smith]

Suggested Readings The following articles are suggested to readers interested in learning

more about graphs:

Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Else-

vier, 2004
A fine implementation of a graph can be found at the following address, courtesy of

Princeton University:
http://algs4.cs.princeton.edu/41graph/Graph. java.html
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5.4 Hash Tables

NEPEREE

Insertion: 0O(1)
Deletion: O(1)
Space Complexity: O(n)
Lookup: 0O(1)

Figure 17: An artistic, hand-crafted example of the structure.

Important Terms

e Load factor: The load factor of a hash table is simply the portion of the hash table that

is currently occupied with non-null elements|26].
e Modulo: n mod x is the same as the integer remainder when dividing n by x.

e Hash Function: maps a value to an index in the array that a hash table uses for actual

value storage[26].

e Perfect Hash: a hash table in which every element of the value space maps to a unique

element of the index space, and every index maps to a unique value[26]. n by x.

How The Hash Table Works Hash tables, also known as “hash maps,” are mappings of
values to indices using a hash function. Hash functions are so immensely complicated that
we won't be able to go into much detail about them for this guide, but we can focus on the
general gist: a hash function takes any value that your data can possibly assume, and outputs
an index in the hash table's back-end array[26]. For this reason, it's quite common to use

modulo sizeOfTable in your hash function, so you can only ever get input producing a valid
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index in your table. It's also important that your hash function always behaves the same for
given input (that is, it must be deterministic)- so a hash function can't contain, for instance,
randomly generated numbers[26].

The simplest “hash table” is really just a normal array — for instance, if you want to store
integer values between 0 and 50, you can easily make a hash table that uses the exact value
of the integer to be stored as its index in the table. If you wanted to store integer values
between 50 and 100, you could just use an array of length 50 with a hash function of input
— 50. Both of these examples also produce what we call a “perfect hash’- that is, a hash
table in which each element of the input maps to a discrete, unique index, and each index
has a unique value that maps only to that index. However, most hash table implementations
aren't quite so ideal[26]. Hash tables are commonly used to store all kinds of data, but as an
example, we'll consider the storage of strings.

A common, easily implemented hash function for strings simply sums the integer values of
each character, and takes the modulo sizeOfTable of the number produced. This hash
table certainly won't be a “perfect hash,” though- consider the word “a”, which maps to 97
using this hash function. All lowercase letters have a higher integer value than a, and since
there’'s no word “b" in the English language, the 98th index in the hash table will never contain
a value. And that doesn't even account for the 97 positions in the array before the 97th index.
Since we seldom see perfect hashes in the real world, our hash tables are often at least half
full of empty elements[26].

As a result, hash tables are often designed with a specific load factor in mind — typically no
more than 50% fill [22]. Keeping the load factor below 50% is extremely important depending
on your hash table's strategy for collision resolution. Collision, the term we use to describe two
values that hash to the same index, is usually resolved through one of two common methods,
though other collision resolution strategies do exist. The first of these two strategies is known
as separate chaining, and essentially makes every element in the hash table into a linked list.
When a collision occurs, the offending element is simply added to the linked list at its index.
While this solves the problem of non-unique hash values, it does make the running time of the
lookup, delete, and insert methods worst-case linear, which essentially defeats the purpose of
using a hash table[22].

Luckily, separate chaining isn't the only collision resolution strategy. A different strategy,
called “double hashing” is quite popular, and essentially involves computing a second hash
function in the event of a conflict. This second hash value is then added to the original hash
value to create an entirely new index, which is then used to store the value. If the new index
also contains a value, the second hash value is simply added again, and again, and again, until
an empty slot in the array is found. In its most basic implementation, doubly hashing can be
done without a second hash function at all- instead, conflicts merely use 1 as their second
hash value in all cases. Unfortunately, this tends to create clusters of filled indices, which can

inhibit lookup, delete, and insert running times[22].
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If you're still having difficulty picturing how a hash table works, consider the United States
population. It sounds like it would be awfully difficult to map a unique array index to each
US citizen, but in fact, a simple perfect hash function already exists — in the form of social

security numbers.

Methods of Interest

e hash (O(C)): Calculates an index in the hash table given a value.

Uses of Hash Tables Hash tables are easily one of the most useful data structures in
computer science today. Any task with large quantities of data and a need for constant access
time can benefit from hash tables. While this task likely sounds quite nebulous right now,
that's becomes it's such a pervasive task in society — social networks, insurance companies,
game developers, and even the US government all use hash tables for an immense variety of

tasks.

Suggested Readings The following articles are suggested to readers interested in learning

more about hash tables:

Ward Douglas Maurer and Theodore Gyle Lewis. Hash table methods. ACM Computing
Surveys (CSUR), 7(1):5-19, 1975

A fine implementation of a hash table can be found at the following address, courtesy of
Princeton University:

http://algs4.cs.princeton.edu/34hash/LinearProbingHashST. java.html

6 Summary

The study of data structures is a study quite unlike any other. While many fields of study
are constrained by the natural world, or the laws of physics, data structures are limited only
by the bounds of human creativity. Any task that can benefit from data organization and
increased efficiency can benefit from the implementation of a data structure.

Because data structures are so useful in so many different contexts, they have become an
essential tool for any and all computer scientists. However, understanding data structures
fully also requires a proper understanding of concepts like memory allocation, space and time
complexity, average running time, and worst-case running time. Hopefully this guide has

helped you understand these concepts (slightly) more thoroughly.
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