{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# The unstratified Kelvin-Helmholtz instability: analytical approach\n", "\n", "\n", "#### Navid C. Constantinou\n", "#### RSES, ANU, 2018" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The diagrams below show the basic \"flavors\" of Kelvin-Helmholtz instability: unstratified on the left and stratified on the right.\n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Here we will study the unstratified Kelvin-Helmholtz, that is we will study the stability of basic state:\n", "$$\n", "\\boldsymbol{u} = U_0\\,\\mathrm{sign}{(z)}\\,\\widehat{\\boldsymbol{x}}\\quad,\\quad\\rho = \\rho_0. \\label{1a}\\tag{1a}\n", "$$\n", "along with pressure\n", "$$\n", "p_0(z) = P_0-\\rho_0 g z.\\label{1b}\\tag{1b}\n", "$$\n", "Above, $P_0$ is just a constant; our reference point for measuring the pressure.\n", "\n", "For simplicity, we consider an infinite domain.\n", "\n", "We have seen in the previous lecture that (1a)-(1b) satisfy the inviscid Boussinesq equations.\n", "\n", "Let's compute the vorticity $\\boldsymbol{\\omega}$ of the basic state:\n", "\n", "$$\n", " \\boldsymbol{\\omega} = \\boldsymbol{\\nabla}\\times\\boldsymbol{u} = 2U_0\\,\\delta(z)\\,\\widehat{\\boldsymbol{y}}.\n", "$$\n", "\n", "That is, the vorticity of the basic state is everywhere zero except from $z=0$. There we have a, so-called, \"vortex sheet\" with homogeneously distributed vorticity density. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Physical mechanism of the instability\n", "\n", "The above profile is unstable as we will show (spoiler alert). But before we start doing eigenanalysis of the basic state let's try to understand the basic physical mechanism of this instability.\n", "\n", "There are two ways to understand why this flow will produce instabilities.\n", "\n", "#### Vorticity dynamics (Batchelor (1967))\n", "\n", "Rembember (e.g., from Physics of Fluid Flows) that *(i)* in an inviscid fluid (like here) vortex lines are material lines, that its they move with the flow. Also, remember that each vortex line induces a rotating flow with strength proportional to the circulation around a loop enclosing it. Our vortex sheet can be thought of continuum of vortex lines aligned in $\\widehat{\\boldsymbol{y}}$ direction." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now consider we slightly perturb the vortex sheet as shown below. The vortex lines in regions like point A will be swept away to the right (since they are in the $z>0$ region) and likewise, vorticity of regions like point C will be swept away to the left. This will result in vorticity being accumulated in points like B. Thus points like B will increase their vorticity and induces a rotation counterclockwise, while points like D will decrease their vorticity and induces a rotation clockwise. But these induced rotational motions of regions B and D will result in the initial perturbation of the vortex sheet to grow even more. Thus we expect instability.\n", "\n", "
\n", "\n", "\n", "**Question**: Sure the vorticity dynamics above demonstrate a positive feedback mechanism. But does this result in the perturbation grown exponentially as is required to have a modal instability?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Bernoulli's principle and lift\n", "\n", "The other mechanistic view of Kelvin-Helmholtz instability involves Bernoulli's principle. Consider the upper region $z>0$. After the perturbation fluid above point A will increase its $u$-velocity by a bit to account for the slight reduction in the flow's cross-section. Likewise fluid above point C will recude its $u$-velocity slightly to account for the slight increase in the flow's cross-section. (The opposite occurs in the lower region.) But then, there is a upward lift in points like A (similar to the lift that an airplane's wing feel because of the different flow speeds on either side of the wing) and, for the same reason, there is a downward lift in points like C. These lifts will result in the initial perturbation of the vortex sheet to grow even more. Thus we expect instability.\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Study of the instability\n", "\n", "Now that we have an idea of what the physical process is and we know what to expect, we move on to the mathematical study of the instability.\n", "\n", "Assume small perturbations superimposed on the basic state (1a)-(1b). For simplicity we consider only two-dimensional perturbations perturbations in $x$, $z$:\n", "$$\n", "\\boldsymbol{u}(x, z, t) = \\big[U_0\\,\\mathrm{sign}{(z)} + u'(x, z, t)\\big]\\,\\widehat{\\boldsymbol{x}} + w'(x, z, t)\\,\\widehat{\\boldsymbol{z}},\\quad p = p_0 + p',\\label{2}\\tag{2}\n", "$$\n", "where $|u'|, |w'| \\ll U_0$, and $|p'|\\ll |p_0|$.\n", "Perturbations are denoted with primes." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The procedure then goes as follows:\n", "1. Think about the boundary conditions the perturbation fields should obey.\n", "2. Insert the perturbed fields in the Boussinesq equations, use that $u_0$, $\\rho_0$, $p_0$ are actual solutions to simplify the equations, and discard any terms that involve products of primed fields (in other words, linearize the equations). At this point you should end up with something in the form:\n", "$$\n", "\\partial_t \\phi = \\mathcal{A} \\phi,\n", "$$\n", "where $\\phi$ denotes collectively all perturbation fields and $\\mathcal{A}$ is a differential operator that depends on the basic state $u_0$, $\\rho_0$, $p_0$.\n", "5. Search for eigensolutions, i.e., solutions for which all perturbation flow fields have time-dependence $e^{\\sigma t}$. In other words, assume $\\phi = \\widetilde{\\phi}\\,e^{\\sigma t}$. This transforms $\\partial_t \\phi = \\mathcal{A} \\phi$ into an eigenvalue problem in which the allowed $\\sigma$ are the eigenvalues. If there exist eigenvalues with $\\mathrm{Re}(\\sigma)>0$ we have instability." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 1. Boundary conditions (part 1)\n", "\n", "Since the perturbation fields are assumed infinitesimal and our is domain infinite, it is reasonable to assume that far away from $z=0$ the flow should not \"feel\" the perturbations. I.e.,\n", "\n", "$$\n", "|u'|, |w'|, |p'| \\to 0 \\quad \\textrm{for } |z|\\to\\infty.\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 2. Insert in EOM ($=$equations of motion) and linearize\n", "\n", "Our basic state is discontinuous at $z=0$. Furthermore, at $z=0$ there exist initially our vortex sheet and this sheet behaves as a material surface. Thus, the regions in either side of the vortex sheet behave as two \"different\" immiscible fluid layers --- fluid cannot pennetrate from the upper region to the lower. Therefore, we consider separately the $z>0$ and $z<0$ regions. \n", "\n", "Since we are interested in the unstratified case, we neglect the density equation and any perturbations to the density field.\n", "\n", "We label fields in region $z>0$ with a subscript 1 and fields in region $z<0$ with subscript 2. Then from the equations of motion we have:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "For $z>0$:\n", "\\begin{gather}\n", "\\partial_t u'_1 + U_0 \\partial_x u'_1 = -\\partial_x p'_1, \\label{3}\\tag{3}\\\\\n", "\\partial_t w'_1 + U_0 \\partial_x w'_1 = \\underbrace{-\\partial_z p_0 - g}_{=0} -\\partial_z p'_1, \\label{4}\\tag{4}\\\\\n", "\\partial_x u'_1 + \\partial_z w'_1 = 0, \\label{6}\\tag{6}\\\\\n", "\\end{gather}\n", "while for $z<0$:\n", "\\begin{gather}\n", "\\partial_t u'_2 - U_0 \\partial_x u'_2 = -\\partial_x p'_2, \\label{7}\\tag{7}\\\\\n", "\\partial_t w'_2 - U_0 \\partial_x w'_2 = \\underbrace{-\\partial_z p_0 - g}_{=0} -\\partial_z p'_2, \\label{8}\\tag{8}\\\\\n", "\\partial_x u'_2 + \\partial_z w'_2 = 0. \\label{10}\\tag{10}\\\\\n", "\\end{gather}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 1. Boundary conditions (part 2)\n", "\n", "Now that we split our perturbation field in two regions we have to revisit boundary conditions: there must be some boundary conditions for both upper and lower region fields at $z=\\eta'(x, y, t)$.\n", "\n", "The vortex sheet moves as a material surface. This means that at the vortex sheet $z=\\eta'(x, y, t)$ the component of the flow which is *normal* to the vorticity sheet in the upper and the lower region should match the normal velocity component component of the vortex sheet itself.\n", "\n", "This may read a bit cumbersome. Let's think about it a bit more...\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Kinematic conditions on material surfaces\n", "\n", "
\n", "\n", "The condition that the surface $\\eta$ remains a material surface for *all times* implies a relationship among the velocity of each point of the material surface $\\boldsymbol{V}(\\boldsymbol{x},t)$ and the flow adjacent to either sides of the surface. Namely, the requirement is that the component of the velocity of the material surface that is normal to the surface at each point matches the corresponding component of the fluid at either side:\n", "\n", "\\begin{align*}\n", "\\boldsymbol{u}_1(\\boldsymbol{x},t)\\boldsymbol{\\cdot}\\widehat{\\boldsymbol{\\kappa}} = \\boldsymbol{V}(\\boldsymbol{x},t)\\boldsymbol{\\cdot}\\widehat{\\boldsymbol{\\kappa}}\\quad\\textrm{at }z=\\eta(x, y, t),\\\\\n", "\\boldsymbol{u}_2(\\boldsymbol{x},t)\\boldsymbol{\\cdot}\\widehat{\\boldsymbol{\\kappa}} = \\boldsymbol{V}(\\boldsymbol{x},t)\\boldsymbol{\\cdot}\\widehat{\\boldsymbol{\\kappa}}\\quad\\textrm{at }z=\\eta(x, y,t).\n", "\\end{align*}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "First let's find $\\widehat{\\boldsymbol{\\kappa}}$. The surface of the vortex sheet can be described as the zero-contour level of $H$:\n", "\n", "$$\n", "H(\\boldsymbol{x},t) \\equiv z-\\eta(x, y, t) = 0.\n", "$$\n", "\n", "(*Is this always true?*)\n", "\n", "The unit normal vector $\\widehat{\\boldsymbol{\\kappa}}$ is parallel to $\\boldsymbol{\\nabla}H$, thus:\n", "\n", "$$\n", "\\widehat{\\boldsymbol{\\kappa}} = \\frac{\\boldsymbol{\\nabla}H}{\\|\\boldsymbol{\\nabla}H\\|} = \\frac{-\\partial_x\\eta\\,\\widehat{\\boldsymbol{x}} -\\partial_y\\eta\\,\\widehat{\\boldsymbol{y}} + \\widehat{\\boldsymbol{z}}}{\\sqrt{1+(\\partial_x\\eta)^2}} .\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now let's find the velocity of the points on the vortex sheet $\\boldsymbol{V}$.\n", "\n", "A trajectory of any point $P$ is:\n", "\n", "$$\n", "\\boldsymbol{x}_P(t) = x_P(t)\\,\\widehat{\\boldsymbol{x}} + y_P(t)\\,\\widehat{\\boldsymbol{y}} + z_P(t)\\,\\widehat{\\boldsymbol{z}}.\n", "$$\n", "\n", "If further point $P$ *lies on* the material surface then for any $t$ we have that $z_P = \\eta$, i.e.,\n", "\n", "$$\n", "\\boldsymbol{x}_P(t) \\Big|_{\\textrm{on }\\eta} = x_P(t)\\,\\widehat{\\boldsymbol{x}} + y_P(t)\\,\\widehat{\\boldsymbol{y}} + \\eta\\big(x_P(t), y_P(t), t\\big)\\,\\widehat{\\boldsymbol{z}}.\n", "$$\n", "\n", "The velocity of the points $P$ that lie on surface $\\eta$ is simply\n", "\n", "$$\n", "\\boldsymbol{V} \\equiv \\frac{\\mathrm{d}}{\\mathrm{d}t} \\boldsymbol{x}_P(t) \\Big|_{\\textrm{on }\\eta} = \\frac{\\mathrm{d}x_P(t)}{\\mathrm{d}t} \\widehat{\\boldsymbol{x}} + \\frac{\\mathrm{d}y_P(t)}{\\mathrm{d}t} \\widehat{\\boldsymbol{y}} + \\frac{\\mathrm{d}}{\\mathrm{d}t}\\eta\\big(x_P(t), y_P(t), t\\big)\\,\\widehat{\\boldsymbol{z}}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now, for points $P$ on the surface $\\eta$ the value of $H$ is *always* $H=0$ (by definition). Thus, for points on the surface $\\mathrm{d}H/\\mathrm{d}t = 0$. But for points $P$ on the surface we have\n", "\n", "$$\n", "H\\big(x_P(t), y_P(t), \\eta\\big(x_P(t), y_P(t), t\\big) \\big)\n", "$$\n", "\n", "from which we deduce that:\n", "\n", "\\begin{align*}\n", "0 = \\frac{\\mathrm{d}H}{\\mathrm{d}t} &= (\\partial_x H) \\frac{\\mathrm{d}x_P}{\\mathrm{d}t} + (\\partial_y H) \\frac{\\mathrm{d}y_P}{\\mathrm{d}t} + (\\partial_z H) \\frac{\\mathrm{d}\\eta(x_P, y_P, t)}{\\mathrm{d}t} + \\partial_t H\\\\\n", "&=\\boldsymbol{\\nabla}H\\boldsymbol{\\cdot}\\boldsymbol{V} + \\partial_t H\n", "\\end{align*}\n", "\n", "Using that $\\boldsymbol{\\nabla}H = \\|\\boldsymbol{\\nabla}H\\|\\widehat{\\boldsymbol{\\kappa}}$ we get \n", "\n", "$$\n", "\\boldsymbol{V}\\boldsymbol{\\cdot} \\widehat{\\boldsymbol{\\kappa}} = \\frac{-\\partial_t H}{\\|\\boldsymbol{\\nabla}H\\|} = \\frac{\\partial_t\\eta}{\\sqrt{1+(\\partial_x\\eta)^2}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At last we can combine the previous to write the kinematic boundary condition:\n", "\n", "\\begin{align*}\n", "-u_1\\, \\partial_x\\eta -v_1\\, \\partial_y\\eta+ w_1 = \\partial_t \\eta \\quad\\textrm{at }z=\\eta(x, y, t),\\\\\n", "-u_2\\, \\partial_x\\eta -v_2\\, \\partial_y\\eta+ w_2 = \\partial_t \\eta \\quad\\textrm{at }z=\\eta(x, y, t).\n", "\\end{align*}\n", "\n", "\n", "\n", "We are ready now to return to our problem. In our case the material surface in quastion is the vortex sheet." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The kinematic boundary condition for our problem, in which $\\eta = \\eta'(x, t)$, are:\n", "\n", "\\begin{align*}\n", "-(U_0+u'_1)\\,\\partial_x\\eta' + w_1' = \\partial_t\\eta' \\quad\\textrm{at }z=\\eta'(x, t),\\\\\n", "-(-U_0+u'_2)\\,\\partial_x\\eta' + w_2' = \\partial_t\\eta' \\quad\\textrm{at }z=\\eta'(x, t)\n", "\\end{align*}\n", "\n", "These boundary conditions can be further simplified upon linearization. Because $\\eta'$, $u'$, $w'$ are infinitesimal we can drop any terms that involve products of primed quantities. Further, all fields can be evaluated at $z=0$ rather than at $z=\\eta'$ since, e.g.,\n", "\n", "\\begin{align*}\n", "w'_1(x, y,\\eta'(x,t), t)&= w'_1(x, 0, t) + \\underbrace{\\eta'(x, t)\\big[\\partial_z w'_1(x, z, t)\\big]_{z=0}+ \\dots}_{\\textrm{products of primed fields; drop them}} \\\\\n", "& = w'_1(x, 0, t). \\label{11}\n", "\\end{align*}\n", "\n", "Therefore our *linearized* boundary conditions at the vortex sheet are:\n", "\n", "\\begin{align*}\n", "-U_0\\partial_x\\eta' + w_1' = \\partial_t\\eta' \\quad\\textrm{at }z=0,\\tag{11}\\\\\n", "+U_0\\partial_x\\eta' + w_2' = \\partial_t\\eta' \\quad\\textrm{at }z=0.\\tag{12}\n", "\\end{align*}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Additionally, we have the *total* pressure of the fluid must be continuous accros the vortex sheet:\n", "$$\n", "P_0 -\\rho_0 g z + p'_1(x, \\eta'(x, t), t) = P_0 -\\rho_0 g z + p'_2(x, \\eta'(x, t), t) \n", "$$\n", "After linearization and some cancellations:\n", "$$\n", "p'_1(x, 0, t) = p'_2(x, 0, t) \\label{13}\\tag{13}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 3. Dynamical equations Versus constraints\n", "\n", "Our equations (3)-(10) comprise of dynamical equations (those that involve $\\partial_t$) and also constraints like the incompressibility equations (6) and (10). Our constraints essentially imply that the $u'$ and $w'$ fields are not completely indepentent but rather they have to be such so that the constraints are statisfied.\n", "\n", "(**Note**: The situation here is very similar case as solving for the motion of a mass on an inclided plane using Lagrange multipliers.)\n", "\n", "Often we can write our flow fields in such a way that the constrait is always satisfied. Note, that in doing so we have to write our flow fields **in the most general way possible** otherwise we might loose some of the solutions we are looking for. For example, perturbations $u'=w'=0$ satisfy the incompressibility constraints (6) and (10), but they are obviously **not** the most general ones. The solution $u'=w'=0$ would argue that there is no instability but that's not the case.\n", "\n", "A usual way to incorporate incompressibility in a two dimensional flow is to write our flow fields in terms of a streamfunction $\\psi$. That is, in each region we consider a streamfunction $\\psi_j'(x, z, t)$, $j=1,2$ and write the flow as:\n", "$$\n", "u'_j = -\\partial_z\\psi'_j,\\quad w'_j = \\partial_x\\psi'_j\\quad\\textrm{for}\\quad j=1,2.\n", "$$\n", "This way (6) and (10) are trivially satisfied so we can forget about them." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Recap\n", "Let's see where do we stand for the moment. We have:\n", "\n", "For $z>0$:\n", "\\begin{gather}\n", "-\\partial_t \\partial_z\\psi'_1 - U_0 \\partial^2_{xz} \\psi'_1 = -\\partial_x p'_1, \\label{14}\\tag{14}\\\\\n", "\\partial_t \\partial_x\\psi'_1 + U_0 \\partial^2_x \\psi'_1 = -\\partial_z p'_1, \\label{15}\\tag{15}\\\\\n", "\\end{gather}\n", "for $z<0$:\n", "\\begin{gather}\n", "-\\partial_t \\partial_z\\psi'_2 + U_0 \\partial^2_{xz}\\psi'_2 = -\\partial_x p'_2, \\label{16}\\tag{16}\\\\\n", "\\partial_t \\partial_x\\psi'_2 - U_0 \\partial_x^2 \\psi'_2 = -\\partial_z p'_2. \\label{17}\\tag{17}\\\\\n", "\\end{gather}\n", "Also,\n", "\\begin{gather}\n", "(\\partial_t + U_0\\partial_x)\\eta' = \\partial_x\\psi'_1\\quad\\textrm{at}\\quad z=0 \\label{18}\\tag{18}\\\\\n", "(\\partial_t - U_0\\partial_x)\\eta' = \\partial_x\\psi'_2\\quad\\textrm{at}\\quad z=0 \\label{19}\\tag{19}\\\\\n", "p'_1 = p'_2\\quad\\textrm{at}\\quad z=0 \\label{20}\\tag{20}\n", "\\end{gather}\n", "and at $|z|\\to\\infty$\n", "\\begin{gather}\n", "|\\psi'_1|, |p'_1| \\to 0\\quad\\textrm{for}\\quad z\\to +\\infty, \\label{21}\\tag{21}\\\\\n", "|\\psi'_2|, |p'_2| \\to 0\\quad\\textrm{for}\\quad z\\to -\\infty. \\label{22}\\tag{22}\\\\\n", "\\end{gather}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Equations (14)-(22) form a well-posed eigenvalue problem. (\"well-posed\" means that we have all equations and also all boundary conditions needed.)\n", "\n", "Can we do any further simplifications?\n", "\n", "With a closer look in, e.g., equation (14)-(15) we can see that we can derive a relationship that involves *only* $p_1'$. After $\\partial_x(14) + \\partial_z(15)$ we get:\n", "$$\n", "(\\partial_x^2+\\partial_z^2)p_1' = 0, \\label{23}\\tag{23}\n", "$$\n", "and similarly for the lower region:\n", "$$\n", "(\\partial_x^2+\\partial_z^2)p_2' = 0. \\label{24}\\tag{24}\n", "$$\n", "\n", "(Note that $\\partial_x(14) + \\partial_z(15)$ is actually the incompressibility equation.)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Homogeneity\n", "\n", "Our eigenvalue problem (14)-(21) is, as we say, homogeneous in $x$. This means that all equations and boundary conditions remain unchanged under the transformation:\n", "$$\n", "x \\mapsto x+\\alpha \\quad \\textrm{for any } \\alpha.\n", "$$\n", "\n", "Similarly, the eigenvalue problem is homogeneous in $t$, i.e., equations don't change under $t\\mapsto t+\\tau$ for any $\\tau$.\n", "\n", "These symmetries allow us to search for solutions for which all our flow fields are in the form:\n", "\n", "$$\n", " \\phi' = \\widehat{\\phi}\\,e^{i k x} e^{\\sigma t}. \\label{25}\\tag{25}\n", "$$\n", "\n", "Above, $k$ is **real** and often called $x$-wavenumber or zonal wavenumber; $\\sigma$ can be complex.\n", "\n", "#### Parenthetical note: Homogeneity\n", "\n", "What does \"homogeneity in $x$ really means\"? For a discussion on the matter refer to [Notes on exponential solution in linear systems](http://nbviewer.jupyter.org/format/slides/github/navidcy/Instabilities-in-Fluids/blob/master/lectures/exponentialsolutions.ipynb#/)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Back to our eigenvalue problem\n", "\n", "#### Pressure\n", "\n", "Let's first investigate what expansion (25) implies or pressure fields. Now (23) and (24) read:\n", "\n", "$$\n", "(\\partial_z^2-k^2)\\widehat{p}_1 = 0,\\\\\n", "(\\partial_z^2-k^2)\\widehat{p}_2 = 0.\n", "$$\n", "\n", "Using boundary conditions at infinity (22) and (23) we have that $\\widehat{p}_1 = A e^{-kz}$ and $\\widehat{p}_2 = B e^{kz}$. Last, after taking boundary condition (20) into account we get\n", "\n", "$$\n", "\\widehat{p}_1 = A e^{-kz} \\quad\\text{and}\\quad \\widehat{p}_2 = A e^{kz}.\n", "$$\n", "\n", "The constant $A$ can be anything. Actually, since $p$ has dimensions of $(\\mathrm{lenght})^2 (\\mathrm{time})^{-2}$ let us redefine $A$ to be non-dimensional and $p'$:\n", "\n", "$$\n", "\\widehat{p}_1 = A U_0^2 e^{-kz} \\quad\\text{and}\\quad \\widehat{p}_2 = A U_0^2 e^{kz}. \\label{26}\\tag{26}\\\\\n", "$$\n", "\n", "(This last step is not needed. But having variables from which you can read off their dimensions easily can help you track down potential error or typos that occur along the way.)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Streamfunction\n", "\n", "From equations (15) and (26) we have\n", "\n", "$$\n", "ik (\\sigma + i k U_0) \\widehat{\\psi}_1 = k A U_0^2 e^{-k z} \\quad\\textrm{for}\\quad z>0,\n", "$$\n", "\n", "and by evaluating it at $z=0^+$ we have\n", "\n", "\\begin{gather}\n", "\\widehat{\\psi}_1(z=0^+) = \\frac{-i A U_0^2}{ \\sigma + i k U_0}. \\label{27}\\tag{27}\n", "\\end{gather}\n", "\n", "Similarly, from (17) and (26):\n", "\n", "$$\n", "ik (\\sigma - i k U_0) \\widehat{\\psi}_2 = -k A U_0^2 e^{k z} \\quad\\textrm{for}\\quad z<0,\n", "$$\n", "\n", "which implies\n", "\n", "\\begin{gather}\n", "\\widehat{\\psi}_2(z=0^-) = \\frac{i A U_0^2}{ \\sigma - i k U_0}. \\label{28}\\tag{28}\\\\\n", "\\end{gather}\n", "\n", "**Note**: If instead of (15) and (17) we use (14) and (16) we arrive at exactly the very same solutions for the streamfunction in each region." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We are almost there! We haven't used equations (18) and (19) yet... \n", "\n", "#### Vortex sheet displacement\n", "\n", "Taking into account (27) and (28), equations (18) and (19) read:\n", "\n", "\\begin{align}\n", "(\\sigma + i k U_0) \\widehat{\\eta} = ik \\underbrace{\\frac{-i AU_0^2}{ \\sigma + i k U_0}}_{=\\widehat{\\psi}_1(z=0^+)} \\quad\\textrm{at}\\quad z=0, \\label{29}\\tag{29}\\\\\n", "(\\sigma - i k U_0) \\widehat{\\eta} = ik \\underbrace{\\frac{i AU_0^2}{ \\sigma - i k U_0}}_{=\\widehat{\\psi}_2(z=0^-)} \\quad\\textrm{at}\\quad z=0. \\label{30}\\tag{30}\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "But wait! How can **both** equtions (29) and (30) **hold simultaneously**. That cannot possibly be true... At least it cannot be true *for any value of $\\sigma$*. Only for some specital values of $\\sigma$ both (29) and (30) can hold simultaneously. These \"special values\" are the *eigenvalues $\\sigma$* we were after.\n", "\n", "After some fiddling around with (29) and (30) we get:\n", "\n", "$$\n", "(\\sigma + i k U_0)^2 = -(\\sigma - i k U_0)^2\n", "$$\n", "\n", "which can be true *only* if\n", "\n", "$$\n", "\\sigma = \\pm k U_0.\n", "$$\n", "\n", "These are the eigenvalues we were looking for." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "**Exercise**: At some point in the derivation we manipulated equations (14) and (15) in such a way so that $\\psi_1$ dropped out. We could have instead did $\\partial_z(14) - \\partial_x(15)$ and this way the pressure $p_1'$ would drop out. Repeat the eigenvalue derivation doing the latter. You should, of course, get the same eigenvalues in the end." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "**Question**: But did we cheat by searching only for two-dimensional perturbations? Two-dimensional perturbations are only a subset of three-dimensional perturbations, thus, finding instability for 2D implies that 3D are unstable as well.\n", "\n", "There is, unfortunately, a famous theorem by Squire (1933) that states that a flow will have it's largest instability for two-dimensional perturbations. In that sense not only we did *not* cheat but actually we found the largest instability possible for this problem! \n", "\n", "Why \"unfortunately\"? In the words of Jacob Bedrossian (2015),\n", "> I say \"unfortunately\" because Squire's theorem is *horrifically* misleading as it suggests all interesting aspects of hydrodynamic stability can be found in 2D equations – this is extremely false.\n", "\n", "More discussion on the issue when we talk about transient perturbation growth and non-normality." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Final Recap\n", "\n", "After we take a few deep breaths, let us now recap again.\n", "\n", "We showed that our eigenvalue problem (14)-(21) has solutions proportional to:\n", "\n", "$$\n", "e^{i k x}e^{\\pm k U_0 t}\n", "$$\n", "\n", "This means that *for every choice of $k$* there is always one eigenmode that grows (the one with $\\sigma = kU_0$).\n", "\n", "Through the procsess of determining the allowed eigenvalues we also determined relations between the various perturbation flow fields. All flow fields were determined up to a multiplying factor (the constant $A$ in (26)-(30)). This is because we have linearized the perturbation equations to begin with and thus any multiple of a solution is also a solution itself." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "For the unstable mode ($\\sigma=k U_0$) we find that (setting $A=1$ for simplicity):\n", "\n", "\\begin{align*}\n", "p'_1(x, z, t) = U_0^2e^{i k x} e^{-k z} e^{k U_0 t}\\ &,\\ \\ \\psi'_1 = \\frac{e^{-3i\\pi/4}}{\\sqrt{2}} \\frac{U_0}{k} e^{i k x} e^{-k z} e^{k U_0 t},\\\\\n", "p'_2(x, z, t) = U_0^2e^{i k x} e^{k z} e^{k U_0 t}\\ &,\\ \\ \\psi'_2 = \\frac{e^{+3i\\pi/4} }{\\sqrt{2}} \\frac{U_0}{k} e^{i k x} e^{-k z} e^{k U_0 t}.\n", "\\end{align*}\n", "\n", "From the above we can compute everything else. For example, $u'$, $w'$, or the vortex sheet elevation $\\eta'$. For the unstable eigenvalue $\\sigma=k U_0$ we have:\n", "\n", "\\begin{align*}\n", "u'_1 = \\frac{e^{-3i\\pi/4}}{\\sqrt{2}} U_0 e^{i k x} e^{-k z} e^{k U_0 t},&\\ \\ w'_1 = \\frac{e^{-i\\pi/4}}{\\sqrt{2}} U_0 e^{i k x} e^{-k z} e^{k U_0 t},\\\\\n", "u'_2 = \\frac{e^{-i\\pi/4}}{\\sqrt{2}} U_0e^{i k x} e^{-k z} e^{k U_0 t},&\\ \\ w'_2 = \\frac{e^{-3i\\pi/4}}{\\sqrt{2}} U_0 e^{i k x} e^{-k z} e^{k U_0 t},\\\\\n", "\\eta' = \\frac{e^{-i\\pi/2}}{2 k} &e^{i k x} e^{k U_0 t}.\n", "\\end{align*}" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### All these is good; but how do the eigenfunctions look like?\n", "\n", "Let us plot these fields to see how the look.\n", "\n", "(Don't bother with the code below --- we will discuss numerics in details in the next lecture.)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib import gridspec\n", "\n", "from matplotlib import rc\n", "rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':22})\n", "rc('text', usetex=True)\n", "rc('xtick', labelsize=16) \n", "rc('ytick', labelsize=16) \n", "rc('axes', labelsize=20) # fontsize of the x and y labels\n", "\n", "nz, Lz = 200, 6.0\n", "nx, Lx = 200, 4*np.pi\n", "x, z = np.linspace(0, Lx, nx), np.linspace(-Lz/2, Lz/2, nz)\n", "X, Z = np.meshgrid(x, z)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "U0, k = 1.0, 1.0\n", "\n", "psicomplex = U0/(np.sqrt(2)*k) * np.exp(-k*np.abs(Z)) * np.exp(1j*k*X)\n", "psicomplex[Z>0] = psicomplex[Z>0]*np.exp(-1j*3*np.pi/4)\n", "psicomplex[Z<0] = psicomplex[Z<0]*np.exp(1j*3*np.pi/4)\n", "\n", "ucomplex = U0/(np.sqrt(2)) * np.exp(-k*np.abs(Z)) * np.exp(1j*k*X)\n", "ucomplex[Z>0] = ucomplex[Z>0]*np.exp(-1j*3*np.pi/4)\n", "ucomplex[Z<0] = ucomplex[Z<0]*np.exp(-1j*1*np.pi/4)\n", "\n", "wcomplex = U0/(np.sqrt(2)) * np.exp(-k*np.abs(Z)) * np.exp(1j*k*X)\n", "wcomplex[Z>0] = wcomplex[Z>0]*np.exp(-1j*1*np.pi/4)\n", "wcomplex[Z<0] = wcomplex[Z<0]*np.exp(-1j*3*np.pi/4)\n", "\n", "psi = np.real(psicomplex)\n", "u = np.real(ucomplex)\n", "w = np.real(wcomplex)\n", "eta = np.real( 1/(2*k) * np.exp(-1j*np.pi/2) * np.exp(1j*k*x))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAFgCAYAAABUqWfgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXeUHMd17/+tnjyzYTYvNmN3kROxAAgQJBhBBUqiLAmkgmU96/1+Am3ZsiXbj7KObD/Zz342ZfnZ/snhkD72s5wUSMuWZEokAFJiAknknDYn7GKxeSeHrt8f07PT3VM9aWeme7D1OaeB2e7qqtvVt291V91bRSil4HA4HA6Hw+FwOBwOh8O50xH0FoDD4XA4HA6Hw+FwOBwOpxjwThAOh8PhcDgcDofD4XA4qwLeCcLhcDgcDofD4XA4HA5nVcA7QTgcDofD4XA4HA6Hw+GsCngnCIfD4XA4HA6Hw+FwOJxVAe8E4XA4HA6Hw+FwOBwOh7Mq4J0gdziEkE5CyFFCyBwh5GCByzpMCOknhMwxZHieEOIuZPkcTiokPSzoM8DhyOH2l8Nhw+3x6obbxtIk1zrjdc2JYyTbzztB7nAopQOU0keLVNZzAJ5iHHIDOAiguhhycJQYyeDozEFK6TG9heCsHrj95ajh9ngZbo9XMdw2Gpc0NirXOmOet5rs4Wq61jQYxvab9RaAUzQG9CqHUnoGQFWRyuck06m3AAaBj0Bw9ILbX04cbo9jcHvMAbhtNCKaNirXOktx3mqyh6vpWlNhGNvPPUE4nDufJ/QWgMPhcDgAuD3mcDjGppg2ajXZw9V0rSUB7wThcO5gJNe7w3rLoTeEkB4AZ/SWg8PhrF64PY7B7TGHY0yKaaNWkz1cTdeaCqPZfh4OcwcgPVxx96JqALMA9lBKv5wibTWARwF8jlI6z0jTGc8HwFGt+C1CyDMA+qW01QBOqY67Abwi5fcEpfSY9BD8XXyflDSdTJ2IxXT2A+gC8Cxi8YUA0BW/VkJIP4BnpBjQrJCuBQCgrjtCyFEAz+eSryofN4CvIHYdcb4nv14pzWEA8X1uAM/F02Raf4SQQ9LfAPBlQkg87TOU0mXX0AzK60SsvndLeb8g7T8M4MsAOimlhCHbI9L/1Yjd+0elNGn1Ndf7mOIe7o7nJV3vaQBfjl8Lh5Mr3P4W1v7KntddMpt0GsAxVh1nUV7RbLGUltvjBNwerwK4bVyZbSSEPC3l3YmYDXhKdewZxD4on6CUDmRpr5LsQTobxaozVX0y7alGXacrS37tL1BKl70oWNeeaZ2mk1WVhtv+O932U0r5VsIbYor9NGPfUdW+0wCeRuwhie87zEjXidikNepzD6n2uREzIJ2q/c8CmGPIOcfIl2YhU7/q7znZ3z2y38+ry8mwHp+R5U0Z10pzyTfDOnta9pt179wAjgJw51h//VqyZ1neHEMPDqrrSyWbW9rmpP8z1des72M83/g9lMuvquO4PM+s5H7yjW/c/hbF/h5m7DsN4PQK7psutljaz+0xt8d3/MZtY95sY4/6+ZEdO6oqO1t7pbAHsuOaNopVZynqXH3/WXWdyh72sOxZvD5z1Etu+7ntX954OEzpcxCJXkMAsVm3wXY36qLKHtNTSPRYxzmEWGMh51kkz6z9d4j1zqp7YJ/XkJPVUzuQoUxfhux6pPSzUu8naGzCpfgxRe90Jki9kTPSn4cYSQ5Kea90NuOkOpN6Yp+RpXkWqvqnsV7g56Xz5WRaf6nItjw1Wj3wAwBqKKXz0lYl5ZuRvmZ7H6V7GJclfr/mWWml/X+MxD3ncHKF29/82t+k+kRsBE2d55ehGtnNEiPa4lzKVMPtMccocNu4Qtsoy+MMgCfl+2VeAXGytR0se5Ap6jrLxJ6yzkuJdO0D8fqU5e1Gsi5kCrf93PYvwztBSp9TAJ4lhDytWn+bZSBOq/5mKeYLSDZccXdCOYcAnGScP5tCVjXzGcrUieQHfADArizKSkU1pfTr0u9HEasDOY8iPzFshxDr1ZVzClIjLjVqB5H8wg9p3yHVPc60/pjkUF62sPQjG33NhmqacKd7ArJ7qBGDqPUyxuFkA7e/K0duf59Asj06CLbd7EfuGMoW51hmtnB7zCkm3DbmD1Znz0GaCIfIxXaw6ihXUtrTFcK69idXMCjJbX8MbvvBO0FKHqmn9AnEHuA5Qkg/IeRpRi84kEEjQGNrty/Ha0lKu0eeRtoH5EdxM2mYBpC8tFQnkg1PTsTrSjIEBwF8V5VEyzhljKzOFPdF6pmNx9r1xPdpyYhYLKCcbBp2NbmUlw2sfLPR14xJcw9Za5J35sGzh7PK4fZ35aR6dqV9biTb393I8foNaotzLTMbuD3mFA1uG/PK9wD0SB/LceQfrrnYjqw+1LXI0J6uhOeQfO05wW2/Il9u+8E7Qe4IKKUvUEq7EOt9fhbAU4QQLde/tBBCDhFCnkXM/W4e+e0xzoVnIRkJYPnhqkasYcgnTwKx+lSV1YnknuOissJe4KzzylN5zIYh3/qqIukecjiFhNvfvMF6duPutOqPmh69XpzyaYszzY/bY04pwm1jfpA+jl9AwlvhIJI9lpmksB0Zf7jn2+ZlU5Z07ccghapLHRkrCYXMGW77s6IkbD/vBClx5LFylNIzlNKvS0rdk8vDI83o+xSl9ClK6XOsXkHZC+mKe2YzZADAC4SQZ6Tr/QpkKwXkkV1IHkGI976eAhQ9yVmRYZ2dkcpg3be4y2c+jH88tjQf5WWlY/nWVwase6iW4RAyfIHgcFLB7W9eYT27e5BlHHk6DGaLAW6PuT2+A+G2Me88i8QSq52q6y+0vXpS60AB6pxVljwkZjejUzwjuO1PwG1/DN4JUvq4JUVScwzJsZKZEF96Sk41pAdM9uC8AFkPuIxCND6HKaVflrbnpP/z+mIswYrvfBTAPI0t89WD3Oo0zgtILKW1DCGkkxDSQxOTErEagUOILQmZa+PqVv/OU3nZ3u9866sahbzSiIl8GbcexGIWC6E/nNUHt7/5oxrJ9jfJJquf6RzR0xYD3B7H/+b2+M6F28Y8Evd8Y9VpgexVko1KQUp7utKyJG+Casl+rBRu+6Wyue3nnSB3Cl9h7FMrV9xNLxPURoh17ucQc51Sp32UcX48j0zyZRFfMzwthJDnV2Aoj0ImI0lMVrQ80zFVrouebVmfA3CQ0SgckvVQPwFVvUq/P47kyaEyrb9jUMbOyo1TNuUdQ7KhrZbOYe3Xki2tvq7gPj4LQN7w9sTrVjL4y2uUczh5gttfiTzYX7VreSeSY6F7KGMkMMuy9bLFALfH3B6vHrhtlFihbYzzHGIrhbDCbbKxHansAZDaRgHJdZaJPWWdl0lZcb6HmD1JunZu+wFw258bVKe1efmWnw0x97hO6f9D0ra8ZrV07HnE1mruR2L95kOITd5EEXv5PCjt70FMeQ8h1gFwSNr/jLSp1wZ/RlbuYSTWND8tna8u/zBjX0qZpGP90n4qO+95sNfPPryC+nxeuqanJXnc0r6n43WhKuvZLPN3S/Ubz/+QRppnpLo6LP2Wr7OdS/3FXSmT6iZdeQzZ5brWKZPjkHT/47KdVtcP0uhrPu6jlP+z0nUclcp6GjEjrPszy7c7Z0unz9k+q+D29xkk7OPTqmtn2i9V2RnbY+hki6Xj3B5ze3xHb+l0K9tnB6vcNsrqTNPGpbMd6eyBKq8kG8WqM1XZTHua6jytshjy9AA4qnGM235u+3PaiCQoh2NYpImwnqWyHmWphzQeg7mWFiYGMxPZDlGDT/yzmiGEHKZG6G3mcEoUI9tfNdweGxtujzl3EqVkG0sdqV4Patl3bvuNjVFtf8mEw0jxWk9LkyOlS3uIEPIsIeSgtD3LcBHilACSq2E/Vbk/09iSVl9HzDVOc9ImzuqF6DiL+J0Mt8WrB25/OfmC2+P8wu2wvnDbWHSe5J0cpYmRbb9ZbwEyQYpHcgPoyvCUasTc3Q4jNtnM5yifeKuUSdWT3l80KTilhjFiDu8guC1elXD7y8kH3B7nCW6HDQO3jQUi3kkn09O8Lk/LKSqGtf0l0QlCE7Mi70GGDwKNLfXDKX2eA/A8IeR7ardCyUg+CsZMz8VAehHJaakuTlHgjWae4bZ41WFY+6uG22PDw+1xnuB22BCUjG0sUZ4BMIvYZKEHEatvJtz2Gx7D2v6S6AThrF5obGnaJwAcJoTMI2YUAWlpNErpo/pJBzcfTTE0PBaXw1kBBre/arg9NjbcHnPuGErMNpYif4zY6iKHAMynmVuF235jY1jbX1ITo0qxj25KqXq5IHW6+Hrhs5CWBjKqKw6Hw+GUGtwWczgcjr5wO8zhcDi5c6d6gpxCrOdwAIjN4Jxq5mCpgTgMAMRi3WWtrZcd1CiBsZ/K9oUmJmCuckNwONjnEUbnU8qy2Onjp9CoiNDYFExlDphrKjUy0kb0BRGenIFlTQ0Ehw3LJSYVKxOS1X+m3rf8N+M8ShEaG4eloQHEYlGWopmP9n7C2JeUPBIBjUYgWO3aiVJAxSiIYFIVqAHREEV9XhpdouEwwrduwdrSDBDCOIdmnC/zPNUxAkD0BxGeUOpDNkRmFhD1BGBtrQMRhERpWhWSwf1N7GProOjzIzI/D2vTGqVerESXUqUHEPV5EV6ah626HsRs0U6oQWhuGlSMwlbTkFqfpGOBibFpSmld1gXpR+622GbdZWmqA+vGpHv04kSXvIgueGFtqU+fGKpbrfgjhd1T/R1dXEJ0wQNLYz2I2cw+h7GPUICCInz7NkAIrDUpbrP6kU81lpHBOEd4aQE0GoHVXZM+cQZ6mlQswzZFfT4IdgeIEDtIs7BfVBRj7Z/ASLSCdjQd4clZEKsZ5uqKjNLTpB8KYdLaIgogcmsaoICloRbZ6GFM4AhCU7dgrqiEyVWWQsDMbV4mx4PTkzC7KmByOFMnzKTi1c0Dq72kFOGpWyA2K8xV1SBg6BPrXOlvMRhE5NZtmOtqIDjtqc8BEBoaXz122GrdZWnIzH6mInTzJsxVVcnvxIVCFBGamITJ5YTJnb03vuj3IzI9A3N9HQRb9u9AOSGKCI3fhKUx+Z24UNCw9E5sz/GdOBoFMZnyLFWaMkMhhG9NKd+JC4wYCCByexrmutqc6ioyNw/R74e1sQEQirMmiejzITK/EHsnLhJRjwfR+QVYGuqz12FKEZ6eBkQKS31dRvc2NLqyd+I7shNEPVszYusTfwUA0+BLPeLPAYCjqZW2f+43YgcIQOO6SmSNqpD4TQUAAl3+HU8/8gf/C1Uf/iBcO7Yl0kFKqziHJl7s48diR2J/S2UTIvst7Seyr7upv34BRCBo/d+HQcwmRcNNGB0uVP2GQIHpfzuGpTfOo/mZX4Zgt4FSWTpKQOOroAOgIpEdQ6JCRCmd9JuIid9Q7RfDYYz85ldQ/99+AdY1a2JppfREfi7F8u/lffHfNM1vuczRKIb+9ZswV9Wh7ec+y/wISaonxktTeHEOt985hsZHPxb7wCdIvNPKfwuq/UKaNDL9oTJdCE5OYPxPv4GmL30BsJglvZSEVelf/CKIbH9MvoTOKPUqcfFxPaH+AEZ+45uo+sj9qP3UQeZLoFqn1PpEwxGM/PZzsLU1ouFXPyalUemTKDtXpleJN1Ms3wAqxnQitp8s60lMN2L7vWcvYO4/foTm3/wSIKp0RkpDZLoEUXbP5fvl+ibTH1Dl36H5WQz8w9fR/L5PwL11D/v7SraPpUsRvxdLvRdRuf1uEKKtS/H/r/7Rbwwnl2JcVmKLbZ0ttPkPP5+wj2o9Xt6v9SUHLL5yCvM/OYH2P32KafMS5Up6xrJ5UtrlNHJbptLd0OgtTP7hX6LuqU/DKdl+yPVPrnMK+5jYH5lbwOhf/hnKd+1B1d4DyTZPkifJzmno7PK5FJo6Ovn6jxBamEXbh/5b2o9HtV5SuY7KbRmjvYy3qZ5rlzDx7W+h9dO/CGtLi3QOVdpIuS0kSEoDgWLxp2/CXF8Lx/YNMZsn7ZcPNrDbTmStS4RQjD/zbdha61H7qUeS9QlQ6AmAZf2J2TiZjsVtmfw35HYtZh8XX34Niy+9hjW/+yWYKysUto/I9JAo9sv1hMBz7iymnv82mn/xKVhrG7RtHqP9lO+HTH8U5p/Rjvb+49dRu+chVG3ZExdDlkB2KlH+rdl2qvZTVVs69aN/B6JRNH/hixAsVkCgsrZUVoZAme9uEADvmXOwdbTCVFe9vJ+odCn+e/gzX1k9dritlTb/1hdXLMPI7/0Bqn/ucbi2bVlxXpkw9U//CggCmr70hZw/0md/+CK8Z89hzW99sSgdIWIwiOGnv4r6z34m9rFcYGg0ipt//k1YG+tR/9nP5JxPeHYWC8d+ippDH1ke9CokwbFx3PzTP0fTb/56UcoT/X6M/e8/hfu9B1H12PtyyoNGIhj/xl/C2tKMuk99PM8SsvGcPYe5H/0E+Xh+MyE8M4PxP/kG6j79SZTt7skpj6jXC9/Fyyjbuwckg06QwV//rRXZ4pJZIjcbpEly5MwDyO2OlADeszewdPwSGn71o7EOkBypfuJBEJsFM999NY/SGYe5c8cRWphF03tXtmoZsVixeP085s6/kyfJjMXM916F4LKj5smHcs6DWMxo/LWPYen4RXjP9eZROuMwffwInC2dqNyyO+c8zA4XqrbvgxgMIrQwm/6EEmM12WIqipj9x+fh3L0Dzru25pyPudKN2scex8yRHyOyaNhQ2pwRQ0Hc/tH3UfPQe2BrallRXlGPD7P/9p8QQ+E8SWccIjNzWPjBUVR/4sOxDpAcKd++E64t23DrP76LUgp/zpTw7AwWTr2D+o8+GesAyRHX7h0w11YjNDaRR+mMwWqywwDgu3QZvvMXUffpT6zIS8H9/veAmM2Yf+lIHqUzDotvHEd0fgE1Hz+0onwEqxXes+ew9M6JPElmLOZefAmCywX3e3Of5oWYzaj/hU/Cc+oM/Ndv5FE64zD/0lHY13XDtWtnznmYXC6U77s75ok1O5dH6djccZ0g0qzMRwkhcv83N4A7ctIcGoli5p9+gqoP3Qtb28p6jgWLGQ2HH8fCT95BcHgyTxIag4jPg6k3XkL9/R+A2eFaUV5mhwv1938AU6+/iIjPkycJjUFwaAILL72L+v/3gyvqUAMAW1sD3I/dg+lv/QQ0Es2ThMah8ZGPoPn9n8yotzodt372I0weZQ7KlSyrzRZ73z6L8K3bqHryQyvOq3znbtibW3H7xz/Mg2TGYva1V0DMFrgP5N7JGqfi/Q+BEGDxxz/Ng2TGYu47P4KtuwPO3TtWnFftBz6M4OQEli7ceQsoWKpr0PHrvw17W8eK84rMzGHyf/0lgoOjKxfMIKw2O0wjEcz8549Q+ciDsDY2rigvwWJBzZMfw8LP3kBo4s56J44uLmH+pZdR9fhjMDnThK2lwVRWhqoPvB9zP/oxoh5vniQ0BsHRMSy+9TZqn/zoisN+rM1NqLj/Psx8/weg0Tvvnbjm0EdQ98kn8/JOPPuf/4XpF76fB6lSc0d0ghBC4jMIx9eUfko1k/DHEVtuKbP8ZG7vRO4mqnKHz1zANIflYQmMc0jcDZORbvHYSYi+AKo/ciDhjkziLr5U4d5L5JvsuDx/x5YOlO3djNnvHJXkih+nyrLlxxSZa1TOCp4J5pwOjE1+r9RpaSSCqh37UBUPW5ClTzpP5UKuSCNtVdv3wlpVi+njR5JkUMitdk1nyZclTHf15ULBuA9sF+9ll/BlPQBm/+0IyvdvhWNzx3J6ta7E77nCK56hbyBA9cfuh+jxY+EIY4RApqss+bRj+6my8GxQ3xNZlqzfSfeWxlxI5869A0JMMDvLNfVJcf/THKu7+2F4h3rhGbyRVJ6WzEYk37Y4bvPiukpkuqq2XSxdlWWjafOU5yXbPKLSNZa+isEQFr7/Eio/+AhMFc4cdTMWMkEoQAhB7Qd/Dp7L5xEYlz7IGI90Jm0SK02S3Uth81jnMu2uhslRy2apqkHd4x+FYGZE42ap54LVAveTH8LSy68hMrfIzohpZzR0SZWeadfiWbDsoiovsqy/lHmuolFG4u9A3xD856+i6lMfBljznmSKVKy5vALVDz2KmSMvQgyF4lUgrw5mW5XyXqeya7Ky4/lrnavZLjLaVHU6f38vgrcmYKnWnstG65WEhbmmCq57ejD/vReh1p+kdx4Dk3c7XEIsvnkcNBhC5SMr72QFAMe6bji3bcHciz/JS35GgYpRlO/fh7Ldu/KSX/n+fTBXV2H+yLG85GcUZn/4Isp27YS9c21e8qt670FEPR4sHb9zPMlpNIqlt98FMZlgKi/PS57ugw/Bf/U6/L19eclPi5KYE4QQ0oOY0T4k/f0MgO/K4hwPIbYmd3wo9Rgh5Gnpdw2Ao3fiTNhiIIS5f/8Zqj9xMKfJK7Wo+cTDGP7SX8F/dQj2jR15y1cvqCjCUu5Gw4Mfyq0TiwEhAtYc/Ogd1ZvrvzoE36UBtP/Fr+UtT5PTjpqPP4SZ7/4U5Y/sBlmBu7JRmL94AlOv/xiVG+4CTPkxodaqWlTtvBdTr/0XXB1fyktPeiHgtpjN0itvA2Yzyh/en7c8bY1NKN+xC9NHX0TLL/5S3vLVEyqKqNy1N6/DL44dm1H1ycch2Is0eWGBoZRi/vsvw7V/FyyNdXnr/HTvvx8L77yJhVNvo2r/A/nJdIWU2yw4fM8mtFSWJff1pDCBVPo3srQFgtXGnqgwjQlNHkyQKvrP7kN0bgGkzIkRMYhvjl7EYtRY4VbcDrMRg0HMHzmG6sc/mNc5PKo+8H6M/8k3EBgcgn1tR97y1QsqijC73ah+/IN5y5MIAmqe+CggiukTlwj+3j4E+gfQ8tWn0yfOEMHhQNX73oP5I6+gbN/dEIo0AW4hWXr7Xcz95AhcO3ckJoNfIZb6OlTctx+zP/iv2NwvBXonLolOEMmwnwHwZY3jXwfwddnfA/K/71QWXzkFYrOg4sHc469YWJtqUfFwD2a/9yqafu+/5zVvPZg89n2YHC7UH3h/XvN1rmkHAEQCvvSz4JcAM995BRUP7YK1sTqv+VY8uBOz//4aFl85hcr35e8jUQ+oGMX0O6+gdt8jMNnsefXOqNv7CPpvXEB4YTazVTp0gNviZMRQGIsvvwH3R94LYslvk1rz8Hsx9Bd/DP/wABxtnXnNu9iE52cx+g9/hdanvriiOS7UEEJQ9sBeQIxC9AcguEq7MyRwtR/BvmHUfHZlc1epEcxmVB14BLOvHUXlnv0wmfR/+T68bxN2dLXD4ixLfsnV9ASM/RfxeRCxWWFrWJO82oLaW0M+GSsrf1VZkbl5UEpRazHjCwT4o0FjhRFxO8xm6a23IdjtKNuTH++GONaGepTt2Y25H7+MNb+ScjXikmDme/8OU2UFqt7/3rzma++IvRNHfb4Vh9gYgbkXX0L5PXthqcnv+1j5PXsxf/QVeN45gYoD9+Y172JDo1HMH3sV7kcfyXmFIS3cjz6C8T/7C0Tm5mCpzu93SZw7Ihwmr6Ryz1wJy/6gsd+yyeJlaeQCQOHyr3YJRySM+R+9iaoP3wfBIiS778pOZ0UOJB1XuQNX/dx98F8ZQnBwXOnOmy6EQSVrzmELajQ8OJJculUuuuGlecxdeBeutm5miBMztCbFfrXLb3B2Cr1/+weILC2yz5XJyfqdM+luMJT7mWEAsv3BvlEEro+g+qOMsKo0xWnp0rJ7uNWMqp87gPkfvAFEwsmhBlBnyrjZBOxnZgVouYDHjxHGPV+8eg5i0I+q7fckuYJr6pL6shhu5KCA2VmO9Yd/B9bKmmT381WJ8gYQmc4oQwS17Z6cdHqayEteRuIGMMP/AHhePwFiNqHs3vzNMxgv1lJVg4rtPZh966eJKmGEG6QKVdDSN6aeauhxJmER8vPV4TaEAnNvvApLVQ3M5RXM8laq5zN//z3M/+CI4sar2ym5zWGGqqjDWRgba7+iPFYbCcj0WHmiOsRi8cevo+zeXTDXVuW37aRA5c67Y2WcPaE8lhBPUx/U9jKtLoFxTKUbre4yWJ1lEFijfKz8lg9RRD1LMJeVayw3ubKKM1dVwlJTBXO5C+12mXt3vt5nOHlHDIex8NPXUPnIQwVZstV98CEEevsQHBvPe97FJDI3j6V3T8K+rrsg+YcmJzH6tT9CdGmpIPkXi8DgEILDI3AffDjveROzGZWPPIT5Y6+CRiJ5z7+YeM6cAw2FUH7P3XnP21RRjtb/+dWCdYAAvBOkZFl68zwgUlQ8lF8vkDjWxmqU7d2M+R++WZD8i8Xc2eOw1zfB2VYYg2+tqoO1qg6z544XJP9iMf9fx1G2bzMsde70iXOg4uEeICrCc/xiQfIvFlG/DzV3PwyTtTCjzUQQMH/pJPyTd87EfHcyVBSx+NIbqHj//XlzA1VTde+D8F6/gtDtWwXJvxhE/T4snD+FqvvyE6fPwrlnGzyvn4LoCxSsjEITGptE4HIvKt57X0HyFywWVO1/EHNvvw5qALf1WCdUDr0KURHEZIbJVZZ/oQCAENBIBOKSl/d5lAiek6cBEJTv3VOQ/C31dXBu24KFV39WkPyLxeKbx2FrbYGju6sg+VsaGmCpqcbiW28XJP9isfDT1+DauQPmqsK8E5ffsw80HIb33IWC5F8sRK8P7oMPF2wJaSIIWHr3ZME6H3knSApSTdqlHFWLD1PnUgiYw71anhZEEmrx5ROofHQ3BJslMXoFMEc5M9oY51V9+F543r6MyPTccoWkHb0vwhsDa8QqydOCxkYG5s69jZqeAxBAmCOauW7LXiUgqNl1P+bOHYcYCSeNkjK9TtSkG3nNomJYEzmqhywVnjoAwrfn4Xn3CqoevzdpdHJFuiQ7V7BZUPHILiwcOZE8yq4azVfKnYch4kxINRou21/TcwB1dz+SPHKdB32K33PPwDXMnnyNnXaVQRS6IRs1J0ipb/JzgNR6CmjkS5RysIb+/eeuQvT6UHZf7sskp8PW0ARn1wbMvf1aQh6VjUjlqaE5Yq/Wq0x1FGDqY5LNkv29cOZdmCsq4eramJNtW/YCS9oSQjnu2gRTuQueN04xPS3UE0ErhUdG7SgdWWAKAAAgAElEQVQY+7TOUetSYn+ibLW9W3z5DTi2b4BlTX3mlZMllTvvRmRxAb5+2TKNKlsmF5OlS/nQJ3W6bF4diMkEa00dCBHybxvjgogU0dkFICoibkM4xoRSiqU3j6P83n0F64wGgMqHH4T37HlE5kpz6XIxFMbS8XdQcX9hOlmBWKdmxQMHsPTm2yXr5RCenoHvwiVUPvRAwcoQrBaU79uLxTfeKlgZxaDywQOofPjBgpbhv3IViz97vSB5806QEiTYN4bg8CQqDxbuxRsA7OtaYOtqwuIrpwtaTqEgJjNaHv8MKjbcVdByKjbuBAjB4vXzBS2nUCweOwl7dzPs3c0FLafyPXsQHLiJQN9YQcspFLffehne0f6Cl1N9134sXj+PiLe03UlXA0uvvAPX/p68TkzNwr33PixeOAMxWJpeDhV37UHTRz8NwgxdyA9EEFB+cD+WXnkHlJbeB2vU64fvnfMof09hY8RNDicqtvdg7kRpenmK4TDCC3Ogeej5uHrhAv7vX/013nntdbzz2uv4v9/86+VjxGoBsdsgBoMrLodTWIJDwwhNTKL8nn0FLce+tgPW5iYsvcNY7a4EIBYz6v/7Z+C6a3tBy3Ht2glKRXjPl6bn79Lxt2Fb2wFba0tByym/7x4Eh0cQHC3Nd+K5H7+MQP9gwcspv28/PGfOFWT55ZKYGJWjZOHlE3Dt2QhzTf4ml9Oi8uBuzHz3Vbg/9hAglJa6iAEfXO3rCu5IIJjN6Pjkrxh2MstU0GgUS6+dRc0nDha8LEttJVy7N2LhyAnU/3JhG5d8E/Eu4fbbx+BqW1fwspwtnbBW12H+4gnU3vNIwcvj5EZ4chqBy31Y88n8zbCvhWvdRpgcTixeOgv3rnsKXl4+ifpjE0ebXWUFd2YqO7Abzj1bcwux0Bnf2+dgclfAvrkwbupy3Hffh+G//TOE52dhcRcu3jobtrQ2Fizvi5MTzP3lFZWYn5tDZZUbm7Zvxwv/9M+K46ZyF+j4TYihMEz20nr/WU0svnEcrh3b8jrhshbl9+zF/JFX4H7vwYJ26hYC0eeHo0BzgcgRLBY0/fqvwlxbmu/EnhOnUfX4BwpelqW6Gs6tm7H45nHUfTK/E2EXmsjiIuaPvgLHpg0FL8ve3QVLbQ2W3j0Bd56Wvo5TWk9wkWC5/Wb6Ib0i732Vqy/LjZf6A/C8cxmVj+5OdgnPNmxBw613WRxCUb5/K0R/EP7zfZmFMKwQLVdbxX45Gm62wekpXP+rryUmLNXKN7natScCTSGTvaoeYiCAiNej7RLMkDmjqsu5emOFpAqt8p/rhRgIoXz/FsV+uWu3Yn8O+rScDwEqH+mB5+3LoLLRNcX3Cmu2wZVCCduNG2y3b0V1SWnnL56EraoWzqa12jqK7DamSziFFGL1oMKVdEV2pZRRhw4wwhbix7S2dMfVoQzMSSsZz4H3zdOwdbfB2tKARGhG7FwqD9XIgy4TQUDlzruxcOYdtn2R/ZbrplbYAiu6h6mjUOattllJ+cvTS9x68QVMvfSD/IYsqIiHKwlOO0zVFQhPTksHwLyfKUOrUulSUj7pbV4if8jKTcgc3zyvnYLrwK7Yh9VyWij0Kl/20dbYBHtTCxbPn0wbWrVcx1ptmIZoGbWjeiATsqWjHePDw9i0XT0yHhNQcDlALGZE5xZip+b5fYezcqI+P3znLxTcCyRO2a6dEH1e+K9dL0p5+SI0eQsjv/v7RZuw1FJfB9HvR9Sb/9H7QuK7fBViOFxwb5k45fvuhvfseYihUFHKyxeed0/C0tAAm7QiUCEhhKDyoQdAI9G85807QUoMz7tXILjscG4tznKJgsOG8nu3YfGnpRUSM3/pBJxN7bCUFX5kIM7oD/4Rs6cKE7dWKBZ/egbl+7dBsFuLUp5zRxcEhxWed68Upbx8QCnFwsWTcG/bW7QR5qptd6P+3vwuX8fJH1QU4XnrHFz35W9FmHRU7tyLwM0xBKfYo9pGJOr3wXP9Eso3bi1amcFrg5j4nf+vpCZIDQ7dRGhkAmUHChviKqdix24sXDhVkqFDheDqhQvYcldy6KxQ7oKlsVYHiTiZ4Dt/AUJZGezrCu9BBQCC3Q7Xzruw9O7JopSXLzzvnoR9bQdM5eVp0+aLW3//j1h87Y2ilZcPPO+eQNmunRCsxXkndmzaCGIxw3fhUlHKyweUUnhOnEL5vj1Feycuv2cvqt6bf4917t9XYiy9fg4VB7aDmIrXf1V+YDvG//CfEPUFIDgcRSs3V6goYuHyadTd976iluvevAtTx4+g7v73xSZsMzhRjx/eMzfQ/D8/W7QyicmE8gPbsfTaOZQdKN4H5Eqg0QgczR2o2FTYuWXUeEd6EZibQvXO0l5H/k4keH0I0UUPXHu2Fa1Mi7sKjra1WLx0FvYH1xSt3JWweOUcTGXlcHQU5wMFAGwbOiCUOeE9eREVDxWvU2EleI+fg31LF8zVlUUrs2JrD6Ze/iH8o4NwtRRnUCUVl0cmlz00krplpP1iwA8xGoktjQtVWrVHYQauJmNDw9h3//2x8s+dx74HDjBSUcx9+8eoeOw+WKoLtBoNJ2c8J0+jbHdPUUNTynb34NZzfw8xEIBgtxet3Fyh0Sg8p06j6kOPFbXcst27sHD0Fbjf/96SCFGMer3wXbmGNb/2+aKVSUwmlO3qwdKJUyjbXSLvxOEIbGvXwrWzuO/E/hu9CE/dRsV9+/OWp/G/1PSgGO6akg8qSfITlafBcsNOCEV0Zh7+K0Mof+CuJJdw1qoI6s0ksPcrV2BQupmDAI5N7TCVO+E7eTUhmtqeKXxeE27giVn981iZqnAUdTiDb2wAUb8Xlet3JIfSqNx3ma7iosZ+jfPieVes246odwn+8eFleZarhxFqkbfqWK5jQMsFnxVa5Tt5BWZ3GRwbWjJ0CU/WJ7ZOabiIS3JVPHAX/JcHEZ1bkIVYAXJdJ0RZ6UR9bZm4hGfzDKufednfgsmCpvd9HNYyd8rwAq3QLK1NSwfjlxnxeXD7jZdiLoB6uo/riCJ0ANnraCKfNDZPM1952kSenrfOwblzI4SyDDuFM3n4WTqi+rtiaw+WLp+Njd6rbJvW70zs3rJoWdi8dOUSCixdPovKrbuWO4XV5RTCHhJBgGvvNvhOXFSGLsh+a4VWpW1HAQjM9jW1Lsnt67Is8d80Cu+7F+Hat11WyXmqC7UuyPaZHC6UdW/C4qUzkhyyoln6J0+Twn6x0qbUKTlpLl+wO2B2KUeyM2kKtGjpaMehz/wCAOCd115nhMXESvCdvQrfuxdWVhgn74RnZxHoH0DZnuJ+PNq7uyA4HPBdvFzUcnMl0D8A0e+Ha3vxOu0BwLVjGyLzCwgOjxS13Fzxnr8Is7uyKCEecsru3o3AjV5EFheLWm6uCFYL6j71ZFHm4JETXVzC3E+OgEbzFxbDO0FKCM+7l2FtqYOtvaGo5RKTgPL9W+F5qzTWs3Y2r8Xan/81mGzF7aE32Z1wdWzA4o3SqKel4xdRtn9L0Sf3srY3wNJUA28JhMRQSjH+4r8hOHu76GWXd20BjUTgGb6RPjGnaNBIFL5Tl+G6pzgxw3LKN25HeH4OgZul8VLZ9PinUHV34ZZj1MK1bzsCl/sR9fqLXna2BHtHEZ33wLl7S/rEeaZiy11YunYBVBSLXna2RP0+3VbMcu2/C563S6NdX034zl2AtbkJ1sbCTarLgggCXHftgOfM2aKWmyv2rk6s+eIXiu61YnK54NiwDr4SWSXGe+YcXDt3FN1rxdrcBHNtTUnUExVF3P6XbyM8PV30sp3btoCGQvD39uUtT94JkoKkURSt0ZGsMkXKkQTWKFTcY8R78grK9m7OYNQyNlql3gihMAkiTILIOMYY0ZLlX37fNvguDkD0eJNH7zO1F+nSZlCfmnUv7aOiCDEcgqO+hTmSqjWiqb7XRJS2FKOqrHyaHj2E+gMfSDsyphgYXsmoaKqTCGND7J6KSx74Lw2i/N5taUZDEx4fcn0xCeJyGm1dYuuTIABlezfDe/KKbIQ/kT6768+yvpDimY4juz+BiREsXDkDs92ZPEoqr1YNXVrWIzH5WLrRdsFsRVnXJizduLA6PUFUOgQCDR1N6Bzb7iFzm6fwHGCP3geuDYKGI3BsX5/wWAKVyZvDpWZ4b82uMrg612Pp8jmlPsjF1hh5T2X34nkk6amku6nyYdo4AFGfD+ZyN8yuipT6q5AhC6j8wVG1R9bOZjR/4zdgcjnY3jzy+47M2tG4zQNDz9J5VSo9T6Aoy/vuRTi2dcPkcqjsdeqKoSnbUpImQQxX92aIgQD8o4NZexVptqFxT0owjrHaRQZJklMg6vcCmY4A5qBPv/d/vqEpi+vurQj1jyIyu5B9xpyC4b1wCc7txZtvSI6r5y74r91A1OvTpfxMoaIIGgrB1tKsS/m1n3gSVR8obmh6LkQXlxDo6y96iAcAEELg2rEd3hKYFyQ4PALP6bMQnM6ily3YbHBs3pjXziLeCVIiROY9CFwbQdm+zbqUb+tuhrmqDN4zxp4R2z8+hN6/+QOIYX1mWraUuwExiojPo0v5meI9dQ3mmgrYupp0Kb9s72b4rwwhumjsmcMXey/B1doFs8OlS/mVm3ogmIszQRcnM7wnL8OxYz0Emz73pXzjNizduGj4CS3Hvv8tzLz9ii5lE0JgrqtC+PacLuVnCqUU3hOX4dpXXDf1OCabHc7O9Vi8bnAvBypCDAYg2As3J1lFpfZ8LJamOjj3bEF03tjt+moisrCI4OAQXDuK75EHALb2NpjKyuC/cjV9Yh0JDAxi5Gt/pFhtrpiY3ZWgkYjhV4nxXroMc3U1rDp1Frm2b0Wgr9/w9eS7eAn2dd0w6dAJAgBlPTtBLJa85cc7QUoE76lrMNe7YW0rbihMHEIIXLs3KuYFMSKLNy7C2boWgkW/D8exH/4zZk78VLfyM8F7+hpcuzcW3e0vjm3tGphrK+E5YWx9Wuq9hPJ1+ow0AUBF91aseeQjupXPUUJFEb5TV+HcpU9nNACUrd+C8PwcgtOTusmQjqjfC99IP1xrN+gmQ2hgHGO/+eeGXiUmNHQT0fklOO/Sr57KN27H0nVjd6pFgwFAEHRr1wkhaPjip2Dr1OcDiZOM7+IlmOtqYWnU6Z1YEODcuhneS8aeF8R34RLsXWtBzPqtgzH1j/+MhVdf0638TPBdvAznti26vRNb21phqqww/DwzvouX4dpW/NDNOK4d21Dz0Q/nLT/eCcIiG9fzDFw708IKW5A9h4TQWCjMnk0gAlHsl7vVqkNflsMVBBGCLHyBtSndetnuvK49G+C70A8aDkvlJ7v/yv2mNW1Jhr7PCvdZFoxwBk//VZR3bWWnAZLcdxX3T5Q29f74+aLyPC338LK1G+Dpv5LsSpzNNadNCCT7DEMhFNvFn4KGw/Bf7EfZ7g1pXcLVusTUHZVupQw5iIsoEJTdvQm+09dk4VWq2BAtd/cM61FBJi7YKp0QwxE4GlpQ3rlF4fqfNixAS5fE5HMU7uMMN3NQwDvSh4XLpbVEdT4g8h+MsBX5BL1adi+u+yw7qBnKEC+SEcIQ6h9DdMkLZ8+G1KFbWvqa6fuVTFfVeml2VcDe1Apv72Vt/UsTtsDUS7DzUOefKrQmvs/bfw1mVxnsjS3scpnXnMXDnYGRtK5tguC0wXepD1i+z+y2jdWOmhhtJgAQZGnzpLKWxZfJ7jt7Dbb1bTBVOLV1g2Qc3RJDo2rU9z1ejeXdWxBZWkDg1njifA29kts+pi7J76+GHZTrAwXYnS+qx4cQEpsQNf5SkUWbmrJq0rQplFKI0lliMIS5F45BLIF5ZlYDvouX4Nq2VbePVgBwbt0C/9XrunlZZILv8lU4t+r30QoAjo0b4bts3AEvMRRCoLcXzq36DW4QQuDathW+S8adK08MhWFtbdVdn/y9ffCcOpOXvHgnSAkghsLwXxqEa9d6XeVwbFkLEMB/ZUhXObQIzU0jNDuFss5NuspR3rkZwZlbCM3P6CqHFv5Lg4AgwLGpXVc5XD3r4bs0ADEU1lUOLQSzGc0f/HlYK6t1lSM4M4Xbx4/oKgMnhu/cDdg3tMfmb9CR8u4tWOo17ojRUv9VuLo26fqBQgQBzh3r4TtzTTcZ0uE7fR3Ono26ymB2uuBoaodnoPj1NDbnQcjnSeuFItgcsblligilFJElL0YCsRAYYjFj6dWT8F/oLaocnGTEYBD+3n44tuj7rmdf3w1QEYG+AV3l0CI8dRuR6Wk4N+tbT86tmxCemEBk1pjhiYEbvSBmM+yda3WVw7F5E/w3eg3bqSZYLaj/zKdgrnLrKkd48hbmjxzLS176+UdxMsZ/eRAwCXBsaNNVDsFihnN7N3ynr8OxXd8OGRbmsgq0ffyXYK2oWplnzgqxumtgq22EZ+AKqqsP6CeIBt4z1+Hc3gViMUPPirJvagdAELg6DMf2dbrJocX028fg6tgIZ32LrnKUrd2IiWMvGLZTbTXhO9cL1936hUfFKVu3GbdffwkRnwdmZ5ne4iRRd+97QA0wxOLo2YjZb/0otvqJoF+HDIvI3BKCA+Oo/aVDeouCsq5N8AxcRd3+g0Ut9+/evIrPAWipKos5ZDBuEY1GIUbCsdXeWMfjPzL1upI5kyhyUaWnAIYDS/irsdh8KUQQ4Ni+Dr7zfLUuvQn09oNYLLCv7dBVDsFigWPDevguX4Fjo/HeiU3uSjR+/imY3drz3RQDS20tLA318F25ior79usqCwvf5atwbNwAYjLpKoe9uxMQRQT6B+HYYLx34vkjx+DYvEm3SXbjODZtxMwL/5GXTjXeCaJG5mlLVa6dy/tzeZfSaqDTuVQD8F/og3NbJ4jFrHCtjbvvAomwBciOJX4zsiYUrMEXAYC4XIIsASWgAFw7uzH3w7dQSyiovCLShb5kOSKoWS2y+0DU90cwoax9PSDKzpe/29Dkc9KWSdn3m8hOJwTKuqRAywc/A3Olm6k/oLL0MvkUxVOi3qPNsst/iiQk/j+F71wvqg89gPhqG/H9RJaPIAsjSKdLDOmXiX8HiVBeDwEgWM1wblsL3/leRSdIvDyqoVSUKNUtp+cRDF2Q6ZUYDuH2W0fgbFqbtIqPPF1CCCiqQEt/te6oXAeWPb4l3bBVVMNaXQ/voLEnJS4EyjAEaOqoPH3iN5YrVqm3yrsg/1YXQRJ5UCIzNkBkwYfgwE3UHv6I7MEBUrnTp4WhEBk0CbDVN8FcVg7v4A1Ubu5Jsi9JNk9dloauyp8J9XOlpaPyPAkAKkZhq66PdYJQMOtH0cZmg1om+X1Ass1y7VwPe9tnQQTl+UpdYrejmnaPxP9O1jtKSUqbFzuLgBDAf6EX5jo3rC11iK8CB0W9alVcFgqXKmxEtt/VuRG333gJUb8PZqtTmSbxCChtH0OvZI+LImpJSwRPIIz/88qF5ZOo7H7GO9FuvfkT+G8Oof2TvwwqYHkDAMh+UwJQ6RuGCgAE6Z6YZGlMsjoWKBD/5hFo7G8AxEQTRoFQEIEuP+fOHd2Y+ZeXNK6GUyz8167DsX6d7h+tAODYuAGLr7+ptxhMiMlkmI/p+s9+RncPAhaUUviuXkPVY/qvYCNYLLCv64L/2jXD3Lc4YjCIuZeOwt7dpbcosNTWwFxbC9+1lb8TG2CshpMO3/leOO8yxgPh3N6F8MQMwlPGcmsTwyHc+OuvIXD7pt6iAADstY0QzGZQMcMl/YpEeHIWkak5OLfrb8gAwHnXOvjOGc+92Dc6AGIywdnUobcoAICK9dsRDRh7Kb47Hd/FfpjcZbpNTi2HEAJXxwZ4h403Kn37+FGMv/hveosBABDsNlhbG0DDxnMv9l3oh2N7t64hQ3Hsjc0wOVzwDhnPFnuGrus6wa4cx7ZuCGX6rIrASeC7dh2OTQbRiY0bEL41hcjcvN6iKBBDIYz8zu8jNGGMCbStaxpBzOaYV56BiNyeRnRuHo4NxvDkcWzaCN9V4w14BfoGQCwW2Nr1jUiI47prO0T/yudn4p0gBicyPY/w+DRcO7r1FgUAYKmvgmVNDfwX+/UWRYH/5jDEcAjWqnq9RQEQGw298Te/D9/YoN6iKPBd7IelqRaWGn3dI+M47+pGePw2IjMLeouiwDN0Hc62bkOMNAFAw4HHULevuK7qHCX+831wGuSjFQDK1q6HZ+iG4Vb18I70wlpVp7cYy8y/eBwTf/LPeouhgFIK/6UBOLd26i0KAIAQAWUd6+EZMtbLd8TvRWBiFK4OY3ygmCpcaP3TL+gtxqomPDODyO1pw4SfWGprYK6pgf+6sTqkgwNDoJEILPXGsMU0GsXI7/4+goPDeouiwH/9BiyNDTBXFnfOIS2cGzcgPDGJyMKi3qIo8F+/Acc647wTV3/oMbgfeWjF+fBOEBXRYEBzJnMFDDfTDCasj52a9A4dyyx55QMK/6V+WBqqYWmsWg5fYM1kr1wVgb1ygnpLWhVB2kyCKM2MD5VMMbdQ5/ZO+C/1yypHXgnyLdMKSa7LpHpNk8Y73AtnSydMJrPmSgZas+MTCsUKHayVEVgz4cv3KWayp4BATLDXNcE73McsW7MeMkHhv64+prXFhAhc6odzeydSrbaRvCIMFMdYm0mIbYQAghDXQeXqCUmrxBAKa6Mb5jo3AlcGFG7pQNzFXH4jVXWQjX6xfqeEoLx7S7IuQKULstUPtPREcb6I5VWGtHRN69yIz9jrx+cbGo4kbB6QRkcTuhrXRYFQCEBsNQ+m3Ute3SgpX6lsCumjNZ0HlZZNzICU7Yz6GAWcbesQWZpHePZ25jZPpn/x37nYPa2yosEgfBPDcLWv03wWUralaex8UoUx98s3CntnE4I3RkFDIVXYX+p2lGX34jqhtnmsdjRJ1+IiEYrw+BSi8x44UnWCSCfks88tqS2V3RNn2zr4ZO1VUtumoTNMPYEqf9nKalrnM23e0gKcrZ2w1zdpl6e6vkybBc22U74rSR8oaDiUYQF3BvkYbc0ngRt9sNTXwVKt74Tlchwb1sF/w1heVP7ePti7Og3z0UpMJlibmuDvNVg93eiDY70xPO0BwFxXC5O7EoHePr1FScKp49K4LKLelXtH804QFeH5aUT8xvnY8F8egGPrWr3FUODc1gXfxQFDubV5h/vgajOGt0wcV/s6eIeNY/CpKMJ3eRDObcYYfQQAQggcW9bCf8lYs6s3PvQ4qrbv01sMBWaHS28Rikp0wTh2OHxrDpGZhdgKWQbBUlYBW22joWyMb3wAgtkCR2Or3qIsY1/fAhCCwI0RvUVZxnehH7aORpgqjPNMu9q6EZqfRmjROKGu9romrP3Er4AQ47yqClaL3iIUlcj0DKI+44Ri+nv7DDEvgRzH+nUI3OgzlFdeoLcXjvXGeie2r+9G4IZxPu6pKCLQ1we7gTpBCCFwrOuG32CdIDUf/TDK9+7RWwwFJtfKQxON07IYBSLAN6rxQcYY6chk1EHh+bE8CgXFxH2J4/EtNvIQuDoEx5YO5qin1siVctRTe4t7fMhHrOQj+AlvENlIFqFwbm2HuORDeHxKMUKinkRTcT2pfqsrK15hrFFBjdHKmt33o2Ld9pQjmqlGnkiqTTb6lW5kVL65WrvhnxiGGAoyrlN2Luv6ckGVmXoEKzw6CdHjh2NzR+y4Ko3WaGjC20NMqU9xnVSOuGuPjMZxbl0L/5VBKCYHZI7K5XdUVGsU0z85Bk/flaRRRfmod5LeyEY3FaOeGlsqr5DldEjet5oQAyFN/Url/aH0XKNQez3FbZ5yJJ/lAZCo8MDlAVgaq2GpKU9Kk7B7+btBzPvNsDmu1m54R/qYx9PZKaLSNbmXU5JOp7Cpck8BW1U9mt7zJARiYqfPS+XEC2TsY9gHYjbDvqkdvsuDGXoVJfYnvCJlHiTIzuaxvOD8lwbh2NYps3kqu5fK803rOuV1LFdHlWqybB4oYKusgaWiCr7Rfranj4aNU9uyZTE17GvKNhiJMgkF5s6/g7BnMVkP5ciPya5RcTwNync0RqWtZghBcGBQbykAAJRSBPoGDNcJYl/XhejSEsK3pvQWZZmKBx+Ac/s2vcVQ4FjXjcDQMMSQMbypQuM3IfoDcHQbZ2AQAOzdXQj0GWfKgeDoGHyXr+otRkHgnSAqBKtVuxOkyISn5hCZXlj+aDUKpnInrG0NCFwb1luUZSo23gWbgeLQAcDR2Irmxz6V5y/33PFfHYKtvQGmcmNN7ObY0oHI7XmEp40xsdjCxZOYv3RSbzFWPTQURtQb0FsMAIDvyrDh7DAAOFu64BsbMMwIpNVdg8qNO/UWI4nqJx5C+X5jfBBQUYT/2jAcWzr0FiUJV2s3vKPGGIGM+Dy4efR7iPqN44WwGhFsNgT6jfFOHJmZQXRhIbaUqIEwlZXB0lCPgEE6iwCgrOcuWGpr9BZDga2tFXWf/gSYvbg6EOgbgLWlGYLDobcoCuzdXYhMzyAyb4y58pbePQHPydN6i1EQeCeICsFqg/+mMT7u/VeGYK6vgqXWGJNYynFsakfg6pDeYgAApt95BbffPqa3GEkQwYTKzT0QLFa9RQEABK4Nw76pXW8xkrDUxeYF8V82xguEd7QfzhbjhD2sWgSCQN+43lIAAPyXhwzZCeJq6UTEt4TQ3G29RUE0FET/P/85wkvG6MyU41jfBlu7/qv6AEBobDrmkbfBGLPsy3G2dsE3ZowRSN/4AEx2F2w1xrhvqxVisyEwZIxQskDfAMy1tTBXGu+d2N7ViUCfMTqL5o++gvmjr+otRhLEbEZZz07DhJQFBgZh7zTeu565phomt9sw3iCBvgHYu4xXT/mAd4KoMDvK0PHJz7PDHGSw3D5zRsMF1n91SBm6AGi6YqvDGUxEhImIEEDTblqhMUx3XkkOx6Z2BK6PJNx5FeTBlTST+pY2T//VpAkr5e7dWi7hcZfvVJMDavOQI+sAACAASURBVJ6rNTkclPsWr57F2A++pemGnrYOtNJohhbFTlKHJVFKEbg+AsfGdk3X78REkYlQAbkreCa6ZCLqSSaVuqqeYDCu047NHQhcG1bIpLg2RkjZ8nGtKtJ6Rlmu4tJx0e9HcGoCzpau9DqgdU8z1CWFvmqcK3cPX23e2da2BpTt6EoK60qlu2o9jasHy+Zp6ana5kVuSx55WzqwPFElK4QByt/yyD7N8L84cn98tVt/Cn21OMthraqDb3wopc1T6xnT5iF5nzy9fGM9A/6JYQRnbsHiKNe8zKRwBq3frBNZBlO2XyukKWYLRYx+9e/gvz4Mpi2Kt5uCcn+S3kh1nI3NU4eu+q8Nw9pSB3OFgyGzzHYrbigS+1aCqgrVdsfV0onQ/AzCSwsp9QdyncjU5jHSa51LAHjHBuFsXgvmakxqvc0Vhf7I2p3l41Dch7yHZJYApjIX1vzKU3qLAQAI9A8Yzgskjr1zLYKDg3qLAQCx0AWD6qnn9FlMfetf9BYj9k5s0E4QQkisU80AHlhRnw/hiUnYu4z53K0U3gmihhCIkbAhJkcNXBuGY2O73mIwsW9sQ2RmQfcQBhqNwD8xAmdzh65yaGFyuLA0cBU0GtVVjsjteUTnlgw5+ggAjg1tCNwY1VsMBGduweR0wV67Rm9RVj1EIAjd0n+SRt+1EZhrK2Gpc+stChNnUwe84/q/LPluDsG5ps0wqxHIIdLXq/+K/iPa/msjcGwyph22VNbA7CyHb2JIb1EQWpiGq/nOfPEuKQQBYiiMqNcA78QG/WgFAFvnWkRm5xCZ1/mdOBJBaHQM9rXGrCfB5YTvsgHeiadnIHo8sHV26CqHFvbODgSH9I9KCE/egqmiHJbGO9Mjj3eCMBj7wbcwe/oNXWWIenwIT8zAvt44s+zLsdRWwlxbicBVfR/SwK1x0KgIR6MxXyoda9pBI2EEpm7qKkfg+jDMdW6Ya4yxFroa+/pWhEanEPXquxyfs7kD6z//NRCBm0a9EQNhDP3aNyGGI7rKEbgxBsf6Fl1lSIWzeS184/qPQPpuDsLZ1KG3GJo4NrbCd80YnSB2g3ZGE0LgWNMO380hvUVB+4f/H9T03K+3GBwAU//wLSy+8ZauMkQ9HkSmZ2DrMObAoLm6CqbKSt3nBQmOjoFSCmurMdsse0c7aCiE0MSkrnIEBgdhrqmBucKY78S2jnaEJiYhBvSdF83euRatv/+7d+w78Z15VSvEsaYdgZvDmq7CacMY0qHh3ip34w32jUJw2mFtrkkZ9sIMZ4DcJRey0Ab1igjScaJ0E2fNaB/PXy6rfUNbYtlBZthC4iddqWseo+4JBYjJjNq9D0MwWxWutCndcRmrvbBcvtWrfKhderVCaeQhDCaLDfa6JvjHh5Sux/LrYv3OBXXdy9x4A9elF28i261yCRcEadMKLUihU/Jj6XQpKbQBgLW1DoLDhlB/Yg4I5cobgKZLfDZVlKq+KeCfGAUNh7VDq9SrIqTRDU190ggpSOsqvooQbGZQShEcmmSEvYAZtmCS2cTl1WKAJF1NZfMEQYxt8fCFG2NwbGhR6W9yyJnSluevHhQ2KI48hKFpLULztxHxenIK30q1spFmWA3DhrqaO1G+dnNKGZLCblZUMfI/VG2qJBSR2UHH+lYEbowBEJPsUUI3lKGkapsnX42IZfNMRFwOLTUJan0BInNLCN+ah3Nja0x8WR7yG0yIusJyrCKWvWNkLb/nzqYO+CeGk0KrNH+rV8MSE+VotqNpfoc9iwjOTIEQgamP8udB8WzkS69k7zLslaBWF7b2NgSH9e1ADA6NQHA6YKk31gT4cQghsdH7QX0HBonFAvcjDxlm3g01gt0OS2MjgoNDusoRHBiC3aBeIABgXdMIYrEgOKyvh3RwdAw0HNZVhkLCO0EYONe0wzcxAkrF9IkLRLB3FPZ1zYbufbOva0Ggd0xfGeqbUX//Y7rKkI6anvthranXVYZA7yjs6405+ggAxCTA1t2c6FTTAUpFDH/7b+EzQGgBB4AgwN7RAP91/WyMGAwjMDhpaE8Qa1UdBJsDvlv6fqTU733U4J4gbXAf3Aka1s8N239jDKYKJyyN1brJkA7nmnb4p8YgRvTzwJq/dhpjR76jW/kcJbaOdgSHRnRdhSowPAxbezt7jhiDEOss0rcTxNbSjKoPvE9XGdJR+eAB3TuzAkMjhvUqAgBiMsHW1oqAjiExVBQx8c2/1b1jr5AY9wtbRxxr2iAG/QjNTusmQ6BvDPZu4754A4C9uxnB4UmIIf16CSd/+kNDrIyQCvfWPSjr2KBb+WIwhNDIFOzdzbrJkAn29fp2qoVmbkMMBQwbWrUasa9rgf+GfivEBAYnAQLYOo07RwwhAhwNrfBP6tcJsjR8HTPn9XWXT4e50oX6XzgIwWrWTQZ/7zgc65oN/SHnaGgFFUUEpvV77nyTI3A2GjMUeDVib2+D6PMhMj2jmwzBoRHY2o3dNtva2hAcuwmqYwfizH/8EGEd71MmlO+7G44N63UrXwwGEZ6cNL4+dbTrOi9IePIWaDAIa9uda4t5JwgDs6MMHU9+HpZyt9LNU+2SDDBd6pnumEmhIonM1C7/FCKCfeOwr29JhC8Qmdu25K4tdwmPufAm3MGX98tW91C6/4rLaeQz2stXToiVFdtYIQy2jtiHQXhkQuEyynIlTaoLFpnUpcwlNuJdwuzJnzFdrlkutkl/y0NZtFaI0XAV18qHtWqMGAzg5o+/g4jPy3YH17rODKBEVceMug8PTwCEwNbRoB2SQigzvEAe+hLXJ5ZOyVcXWg49kLmWmwSlC7o8tCGOfV0rAr1joMsxJykqRP08pSApaoHlSk0B/8QIrO5amO0uZWiTyvU/49AVLX1ShRFk8juLy72jqHl8Hxo++UDG4X8sHQW09Jxt8+S2LNg7BsfaRpispsQ9kD1zmit6yMnUfT6dHdBqgwA4G9vgvzXKtE2sTa2LivLkOprhih4LfRdi80ho2NwkeyerGq1rYsJqS5i2L7nNI4Ri8a1LmD9ySqEf8rAVuS7JV4qJp5fnzbJ56nBA9apDgd6bcKxr0g6tYoWVqq9TXnmsKkph79T2hdUOCWYr7LVr4JsY0Qx90syHpU/qdlSllwq9knTPPzkCZ2MbM7RVfn0p9UaxPFOa3SpFVNwXaSNa92YVYKooR+Ov/hJMlfrMn0BFEcGRUdg6jP3Ram1pAihF6OaELuVHFhaw+LPXDa+jot+P2//6HUR9Pl3KD42Ng5hMsDYZd3ADAGwdMc8ivTywgiOjsNTXweR06FJ+MeCdIBq42rpBzPrE1EUmZyB6/bAZfOResFlga2tAsE+fESP/5CgEmwNWd60u5WeKYLFi8cZ5BCb0ie0L9I/D1t4AwaLfCGgm2LubIXr9iNya1aV8/8QI7Gvu3B7vUsS6phq25hrdXgLiI/dGx9nYBt8t/dzV/VOjcDQY/9kJ317A/KvndSmbUgp//03De+QBgLOhFf5b+rRXYd8SwktzcDQY+4N3teFY1w1i0eedOHx7GjQQgM3gI9KCzQZrY4Nu86eERscgOJ0wVxs33A4AiM0G77kLCI3q4/kbHBmFtbnJkCuZybG1tUL0+hCZ1WeVvODwyB3tBQLwTpBkpI7/hatnMfLdv1XsZ/5WnJtB92vSSIJsmDc++jg4DnOdGxa3SzVqD8XvhAeIyitENsolpNjkI6aKiQFlI1kK7wDGqJWtuxnBgXHmKArT8yXdkJ/WaChjxCowMQpHQ0vMtVhejapRI62RfPVIp+bGmAA1qQzGCFl8FItAgL2+Bf5bY4lbLs8jmypKpWKKiRkTmYQGx2Mv3gyvIpZXiHpkXct7iLWpR9wVEwdq6HE8vaXKBXN1BUJDN9kj6ysZiWPolfoe1t/3PjQ88MG0Xh1qvSDyEfX4/lT6JB8dZUycKs8nqfxVBJH0sO+Lz8J7rn950t64nsU932Kj8Mm2LD4pKoAkuycfyU94LSXbPH//BJzr1iR5TSWETBie5P0Z2DsWGvZO/luhRxRw1Lci6vcivDiX0iuOqccs28XQP610YiSCwPQEnPWtikmhWXq7/FinqZpUx+Ij+QoPQ8X9Ue1Hwu45u9fEQpzEqNJLAwm7p9AxmbdHXJ8I2PrEsnkJvQTCk7MQvUG41q1JyCoXVXZuXPaMvUIY9afVvijqmHWPENMn/9RYyjYvVTsqLy9J/zS8QuJ/W2wurP/5/wFrZa1mG8vcwL4e7UrSOkCZaVbzxKgA4Dl1BpN/85wuZYdGRmGuqYHJ5dKl/GywtrUiqNvH/RisrdI7sYEhggBrS7N+9TQ6BmubsacbAABzZSVMFeUIjekz0Fz1wcdQ/UFjz7m4UkqmE4QQ0kkIeZoQ8kyG6Z8mhBwihBwmhBzOtjyLqxy+m0OgYvEnUQsO3oRtrbHdtOLYO5sQHNRn+VdKKVxt3bqUnS2OxlYEJvXyBLkJW2eTLmVni00nfaJUhGCzw1JRVfSyS41i22KTyw5/f/Hdi6PeAEI3Z+Hoaix62dliKauE2Vke+3AtMhHfEmxV9XDUGd/GOLrWgIYiCIwWf74vf99NWGorYHYb/0POUd+C4OwtiOFg8QunFPaaNYb/kNObotvhinIEh4ZAxeIvGBAcG4e11fgeVABga23RzcMBoHCs69Kp7Oywtbbo1gkSGh2DrbU0PBysLfrUExVFCA47zFXuopddTEqiE4QQchBAD4AuAGnviNQoDFBKX6CUPgegixByKJsy7fXNoJEIgjNTOcm8EkKDE7AbeCI+ObauZoTGbkMMhIpedv1970PdPY8WvdxccLZ0wmQrflydGAgifHO6hDpB1iA4UPxOkODUBK795VchRu7cpcDygS62uLMR/v7JnORdCf6BWyBWM2ytxlySUY2jvlWXFWKs5VVY/6n/AcFiK3rZ2WJy2VG+dwNEX/E/7v19E3B0l0a7HuuEEOCfLn7n49BL38KtE0eLXm4poYcdtrY0g4bCCE8VfyL60NgYbC0l0gnS1orQ5C1dFgyoeux9cD/6SNHLzQV7VycEhx7vxAGEp27D1mp8TxAAsLU269KpFhq/ieHf/l1dJ/ktBiXRCUIpPUYpfQHAfIanHJbSxzkK4KlMToy78pqsDlgqaxCYHE/tkp6rqzrD1ZWQmHdDcHACtrVrFG686rCUlBMFEqV7eMLtW7mpJ3hTuIcLVDFhYNxtODEBXGyzt9UCgoDQ6C1ZBcoqJ0eXcC1v8vjf0YAfi9fOg0aj7JCFNCEsbJdemrQluYPLwh9Y7rla7rqVXVvR9P5PJNKkuc7UlaN9oiIUiVCEhm+CmATY2+tShlaZBHHZJVweXqBwBc9Ql9i6CpiI1rGEm7lt7RoEhyYAUMhDEFKHAWVZgYxnNnBrHJaySphMFimEKVHNWmEwmrqhoUtyfVJPspt2f26PUd4ppi0GYnbN2dWAwOCkMjRLwyYm6aKQrLep9NQkKyMwOAl7ez0EM1GGekHDNV4RB5IBmbQdacIA5HrqqGtG4PbNpPAEZgiMInyLJvJS6aoivSx8S66v3rE+BGenkmVjbGr7J6+H3G0hkkKR1KF28jas46tPomxLayKkBYn0arsnP1+tW+rQP5bNi9tUgVAEBibg7G5MssGJa5BdQpJdl94PVuIcQWX/0+WqStIvIgKCyQxbdQMCt8eV907e/rEmN1XojkqX0umk9Lf/9jhslbVJYaXMsBfWsWxIE3KknvjYKPOiFtsOA4DJ6YS5uqrorvmUUoTGb8JaIp0gljUxz8HwRHE7EKM+P7znL8beiUsA145tqPvEE0UvNzg2DmIxw9JQX/Syc8Ha3Izg2HjR5/sKjY3D7K4EMRt7LsGVUhKdINlACOlh7J4FcDDbvOr2PwpbTcPKhcqCyPRCbFLUEgmHIRYzrC21CA0V1+D7b47g5k++o3xzNDhL/z977x0uR3mejd/Ttvdyqs5RryBRJEQVAgyIYjBgXGLH3YnjBDtO4tj5vvy+XP6uFLf4S+Ikjk1sg3uBgDHN9CJAAgkhJBDq7fTtvc3svL8/dmd3Znb2aMvMmkW6r2surebMW2bmmWfeed/7fp5Db6AY6+0qSvH4LExjA6DYt3cAKAnmJcMQ0zkI0VRP2y3MTcEy0B+DrH6BXr7YftY4/Ned3/NBQP7ILKxLeuv/u4E1MIr87yGt6cxLDyN9fF/P2+0UpXASiRd6219CCPJH52Bd8vaXVkmwDixAPtzbFUihkAWficMSPOOL9YKeY2LPlmt6/vEoRGMQ8wWYR/vDJmiOAzcQRHGqt4zW4vHjiPziVwDdP5912b1vgA/3VppYmpwGNzz8tg+KKsE0Ngoxk0E51dsxcWlqGqY+eea6Qf88La3Dh4qDl6PV2XIFvGdvhLXH2SJKx6dBu+xgvM6ettsNzIuGUTzR20mQwtwkzAMjoKj+MeHIK08jffiNnrZZOjkD08L+GXizPhdop63ncUEKoWlYBvpDMtRH0MUXmwY9CN52cc9jBPTbR6slOAohlwafS/esTSKKyEenYe2jj9biRAQT//ZQTyfV+Gga5UwBlsX9sfoIVJhF+XBvJ9UKkWlQLAez++2d8a3PoNuY2HnRxp7LCEqTU2BcTjCu/hkTm0ZHUerxJEhpcrqS8aSPFgaTTzyN3Bu9nZAuTU+/7VPjysF6vaBtVpQmeuuLi1PTMI32z3XqFP3zBdk6tPSRMQCgKEpTO1kNFLWToqidQj5bo1YWY2FMPfhTELFKhdSiJesAeT760olZmBcNgablVF7t32pKuFaGBJaqyxzUG0uJlb+raL11yi9R0HlpWkkPrkkYFg6idHK21j+9OaNadOpiaAbW4IiCMntKeYE6E4dIKpRd0ih9UdB7NY6R6qvJYppJJKRLQQBLYATF8Mz89tOJXSkuDmrXnqIISifnYF40eEpplZwSrj5GsqtWbUlLLlPPmiCzLVoEXZVf1eyPBsyLhlA6MdPIi5dRlKUMEU3tjKB+0HzPbHWfb/0muJat1aRYa0kIGmQqEv17HltSyGSIypbUNqvKMKOnv+khuvLF5VSu5lNC976IxEtv1bK4NPNZks+TbJWqXjS1rc5XngYBeAHFyQisSwcbpGOVjkJGl9cgpFHaW1M5g0oWULvv8io1pANyeYLZ4QXNmVGMTGseU/N5Yt1Oa7Za7YOmraqkMfLfxWQEROBh8Y8oz0FeX7Pfndqz1sUBZPdEW7ok3Wfr4iDEfAnlcLyWWU1LAiOXTEn2VGmmNZ8nZYWhKKB4bBaMwwJz0NkoBZRt8gvYkhSwXTTxS4pXR9VmrP5RFKIzIEK5tk/LZzXYkpYPlb1HFXar8ntmlx9jm98HmqK1+6j2yXr6RNlzqpDASM+3an8foTs/nMnW9pfmQgj/9Bc9nUAsTVc+7vsJptFhlKZ7uzBYmp6BaaTPrtPIMEo9lg2Vpmf6yp4oioJpdASl6d5Oqrk3b4Jt7dk9bfP3gXfiJEgClZlvOeZNmk0IuZMQsoEQsoG11iO3UwyL5L5dEDJJA7qpjeLxWZj7aOUekD5a53oaNbwYmYW5D7IRyGEJDqMY6p0jI6KI0sRc/9nTwiGUTvY2ILFrxbqeS99OA3TlixmXrba/OBVFaudRA7qojcLJCEhZhGVR/6zcUxQNi38Y+UjvfEwhNgvO7gZreftnPJHAeh1gXTbkj/VOmpg/FoJ18UBfrdJa/cMgYhnFZO+uk8npg2/lhp61d5qgOz/skI2JWQaZHa+inOod26w0Nd2HH/cjKE3P9HayaHa2rxgOAMCNDPeUMUPKZfB9eJ0q9tTb4PD2c9fB1CdxU7rBO3ESJIbGmW8PABBC2qIAck4PaIsVhR5+uJYm5mAa76+PMdPCQZBiCUKoI4ZlR1j80T+HZ836nrWnB8zBYZQS0Z5NFvFzcZAiD3Of2ZN5fBBFKdBuD5A9cQhTD/+8Z+2dRtDNF1sXDyJ/rHcTY/kTYZgGPWAspp61qQes/hHkY71bWXMvXosVH/zrnrWnByiKgmXxAApTaoWAccgfD8GysL8GlIzZCs7hQT7Wu8H3iad+jvTkoZ61d5pANz/M+nygLJaeshxKM/340ToMUihAiMV71ubIX/057OvP61l7esA0Mgw+0sMxcSQKwgv9Z0/DQz1lzOQPHEL457/qWXu/T7zjwr4SQnZRFKV27D4AT7Zah7RWQ4OCJTCMUngW1PI13bHRq5USGbUSgILuKhZL4OfiMC8crNF4gXrmF+m3RMuVaLhSPbR0DJSUTVqDvinKeNk0qR8jUhQgVubGRKC2csVArNRc63e9f5zHDsZtR2liFuxAoLafUFT9YnYjkVF1XyyVAEJAs+ZKJ6VjqsfJabKUar9E35XKKC6N1g2m6vsJhRq9noCqnQ4RgVpoEll7REX5tg0vxMo7/h4UTaO2QNCEFk412d8qKArgJ2bBeBxg3HZQlFjbr6T51n9LttTM3uazKcmeGBCQmpHUbw9DizW7AoAy6raloB4TCqbxAfAzMRC+BDDm2jGkq9QIMqjsJD95AnwqXrcFuV2o6N01CjckyUobtgTUnwECmZGipqcg8mlpNbW8z6CLL676NevCIGZPhkERERRN1eQKwPw2SlclEdKxQMVWGRDQ1ZshUhSoqm2VRRoMDRROhmFbFKzZOaHkPpLIbiNVu48VmZbk6Fs9w1OcfzMbkEtOULdlq38Y0X3bFTZaP4YofaG8LvnxlOJPlf0gkM6aQsXnAYBYzIK12Wr9JE362rUd194jsgoUzr32CCmOr0k0Vb+XfeV94CyV4Y8ke5GOme89SqEulTmVz6MBkGr5/PEwgu9ZVO0DJfO7sveIzB8TxcuSyO5Jiz6wmf9qct+bSZcsviEUYzOgyLkqOyGKe6np+yR/KXWbyA6WTkOsjxFElJE4vBv+VRc2vM9r46dqH2rNzXMOuizCK2QxfSmF0cUPS6AoCqbhoUrmk9Ur9engPBCLRQjRGEzD/cVmZVxO0HYb+JkZcP55STe6oDYmNr/905TLYVm8CAv/8SugehTMlZ+eAeN2g7HZTn3w2wjc8BD4UBhEEHqSraVw/DiEeO8WtX+feEcwQSiKWqLKef5r1f+vAfC9Tup2LF4FiuvNaiA/VaGdmkb6LyiYaXwIpZO9Wb1PH3oDR374zZ60pScomgEReJTz2VMfrANKJ/uPVQQAptEgQAj46d5EDa9Iq/prZeDtCqN8sXVREPYVIyjnil33sRXkj4dhXRjsSVt6wuIbRiE2CyL2Jk3iwd/8O+IHXu1JW3qCYhkUQ72RuYp8GYXJGKx9JK2SYPUNIx/tzQpkMRUFKQuw+Prrg/ftCCPHxNbVq0CZejQmnp0DaLpv0plKoCiqEu+iRxKG3Ot7MfWN/9eTtvQExTAgPI9yNteT9kozMzCN9J9/MQ0NAqIIPtQbaSI/M9d3E4+doi8mQSiKOp+iqK8DuB3A1RRFfV2V9ut2yHKeE0I+A2AJRVG3UxT1JQBHVDnS5wepb8ELr4b/vMsagnNpbc1PoLXVA35yDtyQD7SFUwTikwJJMjQBQ4m13/KAatJqqLR6VQvoJgvuRqv2S5sUTJWq1iEPEqcM8Fbvk7wMBcA8FkRpMtTauc6zmFW7lupqZNe/GJmF2T+kCs6mPEYdcE1aEa0EcENDYDZ1IMrapj5GFmCwpbalrXpukw/+BNGdW1sxh1YuF9SBFxVBdidCMI8NNNoJXdkYWlQEmpQ2KQgqS4lVe6vbg2QzzexJESSQqh+nDjRYC7Zb61vd1mmrCdyAB/xkSBGUTnnB58E8f1Y8r9XjSpE5WPxD9epVTanL1AOXattAU1tS26K8zlpQ1eZtvx0WIXvpi+U2YfLZserrHwLnNGvakiIwqswWqerFVNuqIhgqlLZPUQT5ExFYFwVkzw4Uz1HtkZPflBaDWdaC+s6HeXzKfJvFOwgillFKRGV2VrctpS+s26rUZoONagVVFUllNZ7nUUxFYPUOqY6T+Tw0sWOtrakhnOJaqQ9X3SutQND5Q9PY+8nvAoKgsIWaz6NEhY3VbaZS/3w+T/Kdkp2WpivxZWzj/pqtaQXlVfpB1C+g4uRacAanMC6t+0BBde+qm8U7hEJ8ThYAvDFQbtN73+w9qng/1n1oITYL1uYEZ7JrvqPbshnF9Zj/UhHV9a49v+rfkN2b3zN6PiaWwbvlarguu6Sb7reM0swsuGCgJ6vfesM0NITSbG8mQUqzczAN9edH69xdP0Fq6ws9aas0M9uXH/e0xQLW5+2pPXFD/beA2gn6wrMQQnYB2AXgy03+/g0A39DY1zXKxTySB3bDc+6FMHrOqDQZgmlB/60+AoBpwQBybxzrSVvFyCzMgf58QC2BIRQjvVlZK02GYDt3WU/a0humBUGUJkLoRbhFy/ACWId6mwq7X/H79MXpNybAsIBzjbHpWMv5Eopzyb5kgrAWO1ibE4XEHCweY1dPC8lQZeLF03++2DoeACmLKEzFwC3xG9pW/kQEpgEXGFt/UdUBwOodQjEVgSjwYBjO0LZozgzf8jNBUVvB73VMnMsju/t1OC++0PBAv6XZOXCD/edfAIAbGkThpe09aYufnQXXp5MgFXlVbz7u+dk52M4+qydt6Q1ucBD8TG/Y9ubxMZjHT48xcV8wQX6fIIKAmcfvAZ80PsBRaTIM01h/0f4kmBYEwE9HQMrG07CLkTmYA/3p8M3+IRQjxjsyIpRRmon276Ta2ECFWdQDjFz/gTOTIH2A6DNvYu6R3Ya3k5+IAjQFy6jxWm4jYPEMVlbvDUYhPguTywe6R3JRPcHYzDAFXcifNF5ylzsZhXXM2IkWo2D2DlRYGgnjfbFrwUqMXnST4e2cQXcgfAnRX92Lcg9iBvCzczAN9+kkyOAA+FCoJ0E/SzNzFclEH8I0NIjSbC/GxAL4SLTvpFUSTMODPWOCBD/0fpgXGLvY9HbB3Q8jVwAAIABJREFUmUkQDcipoozNAcZiq3y4noqG2So9U8VDlSiWpakQzGPBBhovTavpso3yArlsQS51UUtf1H9Tyxlq9HCoKOenkDCYxgZAhDKEcFyTStpwqTT2N2X4qqjUQ1fdAsfCFXUar8YxWrRricatkBs0pX43oY0rysqowRpltWjfZu8ASokIIJQ7o4bXLpb2dZX2C6EoUBZhGg0qaLxUk/tZo3PTYoO8QEtC1cyW1HYlUcu1ad/130q7IjCfahKkFVp4C4cWQtNI7NnRstyAkskLWrIZjb/N9/dK3dW+apU/zSCXbNnGfSicjDbYlpbPk2yxIhvEvD5RsnnpeSicjMAy7AFrZhT7tWxXIYFRQXrmWonnS7X47NdsWf5btVk8gygk5upSGA0JlqYUENo+jCLKspIvdQQXYfyy97X27EjQ5f3ZuFGyC6CUKyn9TN1mKvZUnIzUZDCShKWZzI+lRVBo9HNqnyeX1lAUQX4iCuu4X+GDlb9lfa7ZFVHYWNProL5+Gtew2fuwlY1hzTA5vSjG5xokoJrvxSZ+7tQ+jyDy5ksoJsKN73K5RAenOI92MM91VciSpN2ye3w6g3G5QFstKM0ZPzHGz/UvLd80NAjCCz3JEON/7y2wrFhueDtGgBscAB82fgGVD0cAUezbtK/c0FAlRo7BKE1NI72j/+J8dYozkyCnAEVRMPsHUYwaa3xiiYcQSsC0oP+CogIA47SBcdnBTxsfuMe5ZDU4h9vwdoyAJTiMhbd92vB2+OkwGLcDjMNqeFtGwDQWrKT45QVD28kc3Y/EnpcNbeMM9IF13I/8RBREl7QPzZE/Wflo7VdYPAOVSRCDYXb64BpdYXg7RmH8E5sQvGqN4e3kJ2J9bk+DhtsTISImtz+AUvb0yEjQz6AoqkLNnzN4TFwsQojF+1YOQzscoG028D2YLLKdtRqs22V4O0bANDqCwT/6pOHt8HMhMG4XaGufjomHBispfgVjx8S5fW8hs/0VQ9t4O+HMJEgLMPkGwCeihrbBz0QAQvoyM4wE04IASpPGToKkj+zDxAN3G9qGkaA5cyXjEMMY2k5pKgLTaB/b0ogfIAT8rLHPXSkagsnfnysDpxus436U8yXwcWOzK+VPRmHr549W7yAKiZDhk0WHn/ghUlMHDW3DSDhWDMMy4jW0DVIWUZiM960cBgAs7gHD5TClTAKkzPdlfJnTEdzgAISIwWPiUBigKHDB/pT0ViaLBgyfLMq98SZCd/3Y0DaMBG02w7Z6peFjYj4UAjfQv2M9NhisZIiJxgxth58L9a1kqBP0RWDUnkJGq5RkFiNX3gpi5hqP6wQqKqVEfeVnI2D9bjAWU3U/ahRrSbpQ+y3bz1Q58ur9td+yjtIUgSjjZkvHiBRV28/SYv0YkYZYPYahRYiEqWZbqDh4qTyRJDEjAfAzkRqFVH6mclp4S6G0mtBbC3PTKBfy9b+RxuMpEYBY/02J1T7LaeCQ0WpVoIisr4qTkHWeQn0KUSQgdP2ka2VEZT3SN8n04/fCHByEb/0mxfGKrsxnXw0ZA6r/yDrLT0fAjQZqVHHpXsmp+3Ibo2Q2JsmggOa2JP2tcvp1WxBBKfYLYu0iAaABuq7pIOXK3whFQKr7KzYGMFYzGK8T/GwYpvGBqv20Y0DQvobye06AYjQE18p1Nao1IKN4Q2YzkNkSaTxOcd9V7dbuLyU7hqofRsmKVNqq/o+majbTsb/pc0hSFACwBB249OEvgDaxNYkVoOH75D4PpPqoqvyg2ogkuxRp5KdiCFy2DAxdtVkAokhqQQAZWgQhlf2V54mq/pZLXwgUhtpO/EC5LyNKW1T4O1Hj/wAsrgGIQglCNgGz1aNtr4DSpjQkBZT8FFS+T4SI1OR+DK67UtOfErlf0/Cz8mdF6feo+h+0oJZQ1i6O9m9JngKgluVMKpc7NoeDX3sYG773UVBVN8WqfZ+qH5Itye0SqLxDgYrPk96fgkhDCKcglgTYxz1VewIg0iCKd2fj+VEUqVqu6rxbtCOFzcihti3Z8QqfJ7MZszuI9PTBmqSlVm8L71HFMbJxgfwuUyJQTITAmCzgLM76u1Lj3S6X46j/1vL7UwvNTgLKd6SW7O10hP/220Bxxn4+8OEwWK8HtMnYgLxGghsYMDytaXFyCuV8wdA2jEbkV/fCNDpiaNahUp9/3DM2KxinE3woZKikhw+FYD///FMf+A7BmUmQFkCxLPhMEqzHY1gb/HQY3Igxq0X5uTTib86gFMmAtprgWTME5xK/7pG9TaMBpLe/pWudapRiIZi8xqwM5JNzyEYnIOTTYK1OeBacBdZkAHWOiMjPTupfrwyl6Qicl+ofBZsQgvThCJIHQhCyRVgHHHCvGYZ10Kl7W6aRAErTEUMzxJRzGZh8xrxQxDKP8OFXQMQyzHYvHAOLwVkchrR1OoCiKJCyCD6VB+M2JtMGKYsoTCdgXaA/Q4AIAoqHT4KfnAEIwDo9sC1Zpjs9l7O5QbMmFBKhyiSIAShlYhW7duv/7Ih8CflDh1GKRkDRFLjxUZiXL9S9HdZlQ+5YBMVI2hD/BVSkMKzDDM5jg6jz97OYz6Ow7wjKiQQoioEpOATLokWgdB7WWdwDKCTDIEQEZRB5mM+lYPEOGZZtpHD0GIoTE4CJgWnROEwLRkC1m3v5DGqgWAblpMFj4rmwYSv3fCyG4vETKCdToMxmWBaOgxsZ1t3+uMEgcm/u07VONfhQGKYBY8bEpdk5FE9OQMxkQDscsK89yxA5CRFFFCeMHRPzoTAcF6zXvV5CCEpT0yienAApFMB4PbAsWgTWq/+zwQ0EDZ9UK2eyhk0WiSUemZdfASmXwfp8sCxZBMbx+x0Tn5kE0YJqlaEUi+DQ3V/Dyi/8AxiLrbJ6Nd+KmhbkKwiqoJYURcDPRGAa8WuuYEmB1ADUglcCUKyGKlawqqtUqSMRHLhzG+a2n4A16IB1yAk+U8Qb33oGjjEPVnz6IgxvXgqWomoroyIlW72nxdrqogC6sgIqW70Xa/2rDCdMo5WPVsV5Kta7W8ApVpRKsTDcK8+tHau1Yq/cTxSrWupVJOl37OReHNp6NyzOADiLE2W+AN+Cs0EEAbn4FByBhZorWJXrhLpBEOXqvXw1VCpr9g4geXiP5spr2wtYqlVEiqo4ZX46XLMn+QoWQytZRZItSUH8pP01u6raGCEEs88dwYHvb0dmIgHnYh84hxn52TTy4QwGLlyINZ+9GI7FgTqTqBqQEkDVpuor64QiYOhKG/JVdlpmV9yIH8JMJXAhUQ9ONFZPW75mMptZ/kf/uyIbUK+qq2xGvl++Gqq2OSKWETq8Hb6xc8CabYif3AOxLKCQDqNcymPppR+Gf/ycKg1H1n9plZRu0o/TcAGSQj0IKVD59+C3HoPJZ8fKOzbXbKsZU04qA5DasUCVuQSi6fNKoSSIIMK+wKN8biiiuXpPod4/yPw0QZ32QwQRqce3Iv3UVpRzeZiGh0AxDPhwGGKhCNcFG+G7cgs4m4amu8mKuLRaL/dtMiIELO4BFBMhYGjFPKv3MqOqLr1T8i91SklXqpJfQAEoJsNgTFZwJlvtHUFklCZKzoJDfX9thV/l92SHYOo//w1CPA5uYAAEBPYyD/PyhShNTIEdCYCycbKK612Vszy03p1y9gZNEVgCNjBWDoWpOJzD9tp+9XtU2i+vW21PWq85lhaRn4zBusALhgakWRBC1RmcIsXIGJkEiii6TVgh5VQaiQceQ2bbq6CtFnCBQCXzwewcaJsNnss2w3vR5XV6udx+ZNe7mW3JWUUggNUVBCkL4NNJWOyVycEGRqUE+cuPaNiTdF4y30doILBsI/zLLkB9pkjmH2XjLU2WCGS/Zf/nZ2dRnJ2Bff254KNRZHe/DrFUBH/P/TCNjWLobz6nHAHLGZXy+y3r/hkmSAV8KISpr/4zFn79H0BbLMa0EQ6DC+or6S1OTiH+8KPI79sPxuMB6/NCzOUQnQuBGwjCe+P1sK07W7fJEG5gAPzTz+lSVzPwoTDMG/VPLZ3dvQehu34MNhgA43KCFIqwn3sOSLmM0uQUzAvHdWuLGzB2sogQAj4U1lVaRQhBbvcexB5+FEIkCm5oCLTVAiEWQzmZgnX1KvjecyNMOqYuZnswCTL2d/9bVyktKZeRfmk77OefB9pqQXb3HpByGXwoDDGfx8DH/hD2c9fp1l67ODMJ0gI4tw+gaJRiYVhH9F+RAgB+NgaLTiv3hBAc/fVr2H/nNgxfsRRX3PVBuJbWWSbFeB7H7t+L17/6FGafO4J1X7oKtKX7NIemET/EdA7lTA6Mw9Z1fVqwjS+DdWSRLnURUcTU3icwvPoKuIeX45yb/xcsDiUbJzl3GPufvhNDKzdh7Px3g2K6XwkzeYMoxYxzZGI6BzFb0C0miJDn8frXnkJo23Es+9D5WHTLWTB76/c3eTiCwz/dhec//Wus+swlWHj7uboMIkwjfmQMZBaVCzmI2TxMHn0YWKVcEodf/CnyqRBsnhE4LYuw+l1/AqDyTGbCx2FxBUCIiHToOJxDS3Vp93SCdYEXmYPGaazzk3GwTgtYlxV6xKrnQ1FEvvNzlJMZuG/eAvv568Gw1Y/4EkHx4BHEHnsUJ//tmxh+/0dgW6pPoFGLO4hC0rj0r4zJhoFVl1bYOTrUV5ieRDE2B8f69Rj88MfABr2AuTI8IQwBAUHs3gchxGIIfu5jMI0Nd90mRVGwLvAhNxkHNizouj4t5CbjsI3pxyrKv3EAke/+HKaRQQze8WlYFi8FRdOgRAokW0TmtdcQ/93vkHl9N4Y/9HGYnN23zVqdoFkziqlwbRJEbxSSIXB2N2ime4YXIQTJnS8j/NB9cKw7D/b158K5YQOcGzaAsARCMYvSySlQNI3ixCQYrwesuz+DJf6+wAUCAEWBD0dgHjPm2eHDEZh1WrknhCD59LOIP/w72M87B6Nf/iuYRuo+pJxOI7X1JYR/+gvY1p6FwAffB9rU/ZiYGwhCzGQg5vOGBeS0rlgOyyJ9vktIuYzE40/CfdUVsK5eiQV/97/A+ZXjo/yBQ5j97n/DfcUmeG+6ERTd/ZiYGwhCeMa495WYzoAUCuB0YsyIxSLCP/0l8vsPwH31lXBderGC0VCcnELyyacx9Y1/ge/md8N9xSZd2uWCAeTfNHBMnMtBzOXBBfQZEwuJJEI/+imESASmsQWwLFqI4c99FkDlmSwcOVrJoiSKKBw9Buuy3o+JzwRGbQE0w8Lk9qIUN+4h5WciMA13b3iEEOz/zgs48MNXcP5XrsP6v7tWMQECAGavFas+uRGbvv9+pA5HsO3P7wefKXbdNhf0ADRtaDDLwc03wjbcvcMXywIOPX83Qoe2gS+kwbDmhgkQAHAPLsOaa+9A9PguHHr+bojl7iMzW4IjcK9ZDyIakxKMn40ADAMu2H0GHT5dwLbP34f0sRguv+sPsPITFygmQADAvSyA9V+5Fuu/sgUHfvAy9n/nBV1mkrlhP0ozxtlS+tCbOHHvnbrUVczE8Obj/w6KorHuxi/CGVyk+DtFUXAOLAZncSIXn8b+p7+H0MFturR9OsE26kV+yrgMErnJOKyjHl0m8UpTc5j76vfAeD0Y/j9/CedlFyr07RRNw7ZsOUY/ewc8l2zC1I/vROp1fVLTmZ0BFFLGTbQ6BhZidP31utSVPXwAEz/8TxRnpgEApuAAKLZxfWbwjk/DumY55r76HRT2H9Gl7cHrzoZ1xLhMY/nJuG7SqszWnQh/+264r7sSg1/6U1hWLlN8gNBmM1wXXYSxv/oSGIcTk3f+O4qh2a7bpSgKZncAhZRx45+Dj9+J5ET3K8GEEESf+R3CD/8GA7e9H4Pv+4OGYxibDdZVlXSiyd8+idC37kQ5lem67dMJFMuC9XrAh43xMYQQCDoxQYgoInb/b5F47EkMfOKjGPjIhxQTIADAOJ3w3rAFI1/8AkqTU5j9j/+CWOg+zgbn99Umi4yC7+YbYR4f67oekecR+uGPkH7pZZTTadBmc8MECABYVy7H8Of/FOlXXkXorp/oktrWPDoK+/rzQETx1Ad3AD4crtlstyhnc5j59nfAh8MY/fJfwbvlmgZJh3nBKAY+/hEMfOwPEX/4EcQeeEifMXEwaNgzBwC5PW9g7s4f6FIXH4li+l/+HRTLYvTLf9UwUUdRFKzLloJxOCrP3HfuRHpb7zM1npkE0YCCalzdTJ4girFwA+Wyff1C9R+JsksB5UwOYibfIF+QKL40SE0GIwWwlKi6LC3WpDAsJeLI91/C5KNv4dJ/vRkLNi9SHKPePAvduPy7twGEYOeXfgtSLIGGsk6pLxJNmKErG6X6G0UR0BwNLugBPxepUsM1OM+ya9DqfZCucykaRmT7U/X7I11/SaYgu2eUSKobaltNylAWcezFXyCfmMVZ13wOVru/Jm3Q2ly+cZx97eeQi08jemSnoj40lJO1SdBwLAhgcnoxfNUtoCkZXZlonbMi0qICyj8pK+DnouAGPKAZpkrXh6ZdSQFQpfunsA9KBApF7PybB0HRFDb9121wjzmb2hJNEYxuXoxL//VmTD76Fo7cvR0sJdY3qa2q7SrsB0TRD2kzD/sgprIQq0G/5M9MW2jyvJbikUp8GZX9qO9bfR+p31eivK/Z8AnYfQuw8opPw2RyNLUligAO7wIsu+TDOLHzfkQOv9JQp5YtNfid0wSSZIup2qR9zI3CbBK0KNRsRrIvuS1Kfo+p0tm17LX2W+bz8tMJ2BZ4au1JdUlBqBmqElxTbq8SvV/u74RoHHPf+G9Yzl6OwGc/DMbenBlH0TR877oWg7d8AHP3/xKZN/c0+L6aHaLR72ltFlcAxXRUwwZJfdOwY/WxIFVZg+pv4bdeQi40Ua2DVDa5HTfpl+K8AOQnT2L6F3fBt+kqBLa8u7khUABlYuH7w/fCteVyRO+6p5IqUCatqPkOoObjKEr+7qzLSRm6ci/HbjkHAxvHlbYk81nqTbr3ajuT+01poymC/HQCjgXuiu3I3uG1d7vK56l9tDQXl925F9G774P/Ux+A+/or552kY6x2jHz4E7AuXobJH30XfKoyaai+9g3vTLkPqv2/cu8tzgCKqbCmX5RkLwp/BShtRvFOVr4jCS+glE3A7Aoq7UUKcK7up/pcZP0nAo/88SMY/egfwXneqSUC/k99ALTVgrlvfh9ivli3NdmzrRzn1O/J6Q42GDTs417MVt77esgX4g89gsyOVzH8Z5+Bfe38bGvT4ACGv3AHSFnE7He/D7FU6qrt2mRRxJjrxIfCSDz1TNf1EFFE5Ge/RGk2hOG/uKPC9JkHlsWLMPKXn0dxYgKZHd1P3LM+L/y33qwLq0QLfDgC1u/run6xWMTcnT8AxbIY+cIdp2RM2M9Zi6E//QzS27Yj8dgTXbUNVJgg5VRalwk6LfCRqG6SoeKJk7AsGsfQn3z6lHE/zONjGPjIhxC55z6kX9mpS/ut4swkSIsIXroF7tXnGVI3PxsDaLrrlfupJw7g6K9ew8av3QDfWa2lmjM5zbj4WzejlC5g77ee7Xq2khvyQZg1JoVTfuoEEnu6z1+dnDmI5OwhrLri07A4fC2VMdt9OPvazyO49MKu2weA6K6tyE0e06UuNfjZKLih1s6rGQgheOOfnwafLuKib94EztEaTdl31iAu+MfrceinuzD1ZHfpM9lBL0BRhjGLSvFI11IYUSxDKObgX3gull/2UdBMawpD/9g6LLnw/Tj2yr3Ixqe76sPpBPtiP9b+33fDqBmh/FQCttHuVovEQgmhf/0JzIsXwP+J97ac+s913gUIXv8ezNz/865X8M3OQDV4qTErazNvPNM104QQgtDvfgP3hovg33xNS+wbiqLgfs/VGP7bP9Nki7SL7Ikojv5oe9f1aEHkyyiE0l3bU+nEDCLf+xV8H3kP7Bee21IZimEweNsHYB4cwdQvfgCR7+5jzuIKomgQE6SYiQIgMDu788VCNg2aM2HBJ/4M1kWt0appixnBz38CABC9+/6u2j/d4L1hC+znnmNI3Xw4AtB01yv36R2vIvnsVgz+8SdbjmHB2GwY+uwfQ8xmEb33N121DwBsIAA+bMwYpnDsODIv7+i6nvz+A8gfOoKhz34anK+1sSPn92HkLz8Px4UXdN0+ACSf24rCseO61KVG5eO+O1YRIQSRX9wDsVDA4B9/quVYOJbFizDwyY8h8fhTyOza3VUf2IC/MiY2KD21EIlU2ugCRBBQzuXhWH8egh//SMvjH/t55yDwwdsR/dW9KE3PdNWHdnBmEqRF2IYXwuw3Joc9PxMFG3R3lXIsN5XAnm8+g7O+sBn+dSNtlTW5Ldjw99dj5rkjmHykO0oqN+Qz7qM1EYHJ271kyDOyqhL/w9XejCdndQIgOLT1x0jNdUfHTh/Zh8zJ7iYJmkGYi3U9CTL5yD7MvXAUG/7hBpjc7QU+C5w3irVf2IQ933wGuelkx32gORZswA3eIElMKRGBydPdi3HytUdw6Lm7AKBtCUVg8Xosu/QPYXUb41feiWCtJgQuWQqabe3F2i5ykwlYu/xojf3sERBeQOAzH2x75cm98VI416zD1L13Qyx1LlE0O/0gYhmlbLzjOppBLAsoZeMwu7p7diiKwtgf/jGCW25uuxzjdqLw1hGE//OXXU30COkCjv30FZCy/pNF+dkUIBJYRztf3BDzRYT+4xdwXHIenFe2NwFPMQyG3/9RiKUSwk8+1HEfAMDs8qOQNmgSJB0Fa7Z3lYmNT8Zx9DtfQ+7Y4bb9cGUi5CNwbbms4/ZPR1gWLTQsVWdt5b7FDyjNOkJhRH91LwLvfy8sixe1VZZx2DHwiY8iu+s1pLucZOCCAQgGMUGESLTrj1YAsK1ZjbH/78unZICowbpcACEI3fVjFI52t6iXe2MfCocOd1VHMwiRKFgNaU87SG97Gbl9b2HwUx+fl9mpBeuK5fDfejMiv7wHfLTzRWKa48C43RAMYmDx4UjXk0WxBx9B6Id3A2h/TOzceAGCH/1wT1MZn5kE0YKcvovKVpiZwLGf/ru2bAH1fS1BFdVeCMXADfnnpfEqaNkSPVySrIhlvPG1JxDcMIZFN61WUnUpUXOjQRS0X+9SL9b9xSa89R9bUQqnFRRxtkodrlN5SVWi0yiN4YZ8EEJxWcYE2flqXbT5rqWKRs3HozC5A8r9MlqtInuHBhVbLBRw6Lkfgc8mwbGWSrnyKTZR+ZsmFMx2L46++HOIxWLTtprRwKV+mjx+8IlYI338FLbUoI6RHShdc746CaJF41VLqySKv/xeF+dS2Pft57H2LzfDs9itoHpLcpZmdiXZ09JbViN4/ij2fPUJUGK5tl8ubZBLrDSp4Kgyi+aiFQqyKqtSzb5agfz6Vn+PbHk/3MvXtS6tktPFRSAbOoHZ/c9jbN31Sup3WfVbw5akNvwL1gKiiPiJvQ1yggapgTGL+m9faEi2aIpg/z8/jpnH9ylkB/JN7uMk22+wXbWcgRJBl3kU5tKwj7pr7bUjYQCA3J5DSD/3KgJ/8gHQNkt79onKoGHwxvcChCDy3GMNtthgo5pyA4AzOarBLKONci4tvycdo7ZdDRlNKZsACIHVHmiQG2pJGBr6DiC+40UkXt0G2mzRnihqwf+xAz7k9xxC5qmXG/xg3WagkI+qJXi2UTeIIEKIprUlMKr3ZVP/pyHHKk7HwbksMDvNCilgg03TlU3yebWMQxRB7JePgWJoeD9cYT81jCm1fKJ0/QjAWCwYvuVDSOx8CZmjBxrGNs3emWrZisVRkVcRUVT9nTS8IyX/BpWdKdsiVRkN4AwswoorP6WSDRKlH9SQlUobEQlmHr0H1pFx2BYubWMcVj+QG/DDsnQUpWMT4Kvvm0YZad2uzgAoHD+B6W//pyF1C5Fo2x/kchBRRPhnv4R19aqOmQqmkWH433sLovc9ACHZ+WIOF/CDjxqzkMN3eZ3EfB5zP/wRyql0x4FbKZoG4/Ui/JOfdyUf4gJ+8BFjWOR8JNJVsE8+GkPsvgcQeN9tHQdXdV52CSxLlyDys+4m7rmg3zB5VeAP3g/b2rM7Ll84dhyp51+A98bO44XZz1kLIorI7nmj4zrawZlJkBZBcSbkp46hXMzrXjc/GwU32PnK/cRDbyJ9Io51f31FVwH9xm9YBc+qAbz5b52n9OKGfODnjHFkoiDA5Otcrza19wnkk3NgTd1lrhlbex1ohsP0G51r/ExuP0oJg2Zz52Jd2dO+bz8H39phjF23suM6KIrCuV++AunjMZx8pPNo1hV70n81GwAsg6PgHJ2t0opiGUe3/xoDyy6Cc2BxV/0opEI4vPXHSM4e6qqe0wVCtoT0Yf2fnfxcBqQsdswEEUs8Ij/4DTzv2Qzz4tGO+0GbzBi84X2Ivfw88rOTHdVBURTMTj+Kaf0H33whA7PDB9bcmR/l00mEn3mo6+wLrN8D34evR/yeJyAkOgtsafLawFg45KY6/8hphtx0squgq8UjU0g9uQP+T90K2tz5tbIuWAjfJVdh9nf3QhQ6C+xtdgZAxDL4XKrjfjQDa7bBEVzYcfnUvl3ITRzF4I3v6zqgcfKh5xD57/t1TRH5TgVtMqF45Jgh8Qm6/WhNv7gNfDiCwPtv68omHBdthHnBCKL3PdBxHazfD8Eg+QIR+K5W7uO/ewL8XAh0m8wGNbw3XgfQNBKPP9VxHazfByFqEGMm2jljhhCC6P/cD8uyJbBvOL/jPlAUhcAfvA+l6Rlkuoh7wQYCXbFJ5oN5wShYt6ujskQQEPnlPXBddknbzCs1+LkQQnf9GPnD+gRAnw9nJkFahMntA0ChFDdgUBlKgBvoLII8ny7i0A+2YdWnL4LF150joygK6754BcLbjyO842RHdXBDPpSTGYiF7jTIWhi79WPwn99Zqql8cg5zB7Zi0YZbWo7ECtXDAAAgAElEQVTb0Aw0w2LRhlsx+9bzVT1z+zD7BmBEhDUxV4CYzoEb7MyewtuPI/zKSaz9i8u7HlBafDas/OSFOPDf2zvOPsQNeA2ZBCnMTuLwf3+14xn5fHwahJQxdu4NXffF5h3B4MrLcHLXbw2L4fBOgm3U3ZXMqhlyMykwNg6cqz35l4Tkgy+CAuC+eXPXfbEvWgb3ug2Ye/y+jj/ILE4/Chn9B5XO4CKcc+vfdlw+9OxDMA+OwnVW5wNKCY5N54EbHUD8nic7Kk9RFFyrByHk9H9f5aZTsA13NglCRBGRH/wWzivOg2VF5xMEEvybrgYRyoi9+nxH5TmrExTDotDh+24+HHnhZwgdfKnj8pkjbyG4aQtMnu4koADg+8hNKB6ZRHaHcWko3ymQPiqN+CATorGO5QvlXA7xRx6D993Xg3E6u+oHRVHwv/925Pa+ifyBzhYpuIAf5WQKYonvqi9aGPzUx+HadGlHZUuzs0g9/wL8772lK9kRUJFp+G+/FcmnnwUf68weuEFjxsTlXB5iLt+xPeXf3IfCwUPw335r12Ni1uWC5/prEX/o0Y4nDzmfz5BJteLJCUz+0zc6HoOWpqYBQioTYl3CvGAUrssuQex+48fEZyZB1JBTjGX0S5rhwDrdEBLRRtmCSsrQAC0qv+z/QigO01Dlo1WLxiuXoTAq+vexn70Ci8+GxTetUmY7qNF0y6ApEXT1t+Ymo/V6Frqw6Na1OHjnS6BEFdUcyiwxWhIG00Bl0CeE443ne8prr30QRQBSFpCfmaik49Kg8Cp+y6m01fs4+erD8Iyshmdwef04FUVXQRtX081V1F7P0AqsueYOmK1ejQwgjdkS1DRk59KzsPiDdyjtpmUar8b/q5sQrryATIMeTRqvXFqllhJQooiDd76IJbevg2vcrZEtoW4zcntS/lZmL1pyyxqYvVYc+ekOZVuUdsYjdeYNbtALPhSHkuPcQpR+ORVfZUsgQCkWAREEUBStKTNoZmPS5vCOYd0Nfw2O0ZBVNcvG0cSWKBFYsOZqFDNxRI++qpHRA6f2Me9ASLIAtWTLPuJCfjrZNCuH3E6Z6sWbz+dJEobCTBK2YRc4Rpk5RkvCoPB7AMrxNOIPbIXvQ9eBMXOKTDGVk2likBqHSPc5cMX1KMxNIXOkGqdpHomJwmdVN7PDj1ImVrM/uQ03lRLO4/OkeovJMErZVONzo+qD2udRAAqzE0ju24Wha28FBarRplux81ojFSp28E/fB/8Hr6410pi5DLXMMHJJqXSPL/7XWzF6+SJFlrVmPg+1d6DS58mlWVK9hZkk7CPOmo2ps6lVbFspc5X2Z155C6XpMHwfvLbRluQPyKlQLUpzJgxc9W5EXnwC5WxaU26qZQ/1+0dV7CkdbZTAaPg8xW2S6m5ybDY6CZrmGo6vtS+q+qkaf43c9GH4Ltjc1JbmVa+oxmas1wX3jZch+rPHgbKgkCjTdN0XnUGFCcK4XBCMmASJxcAGOpvUSjz2JFiPG86LNurSF9PgAFyXXozYgw93NCHN+ivnIXQ4OdAMRBBQnJjsOEVt7IGHYVt3NqwrluvSH9vqVRj5wh1gvZ0twNnXno3hOz6rS1/kEKJRgKIq6YrbBBFFxB56FK7Nl3clO5LDddkloG1WJJ54uqPybMCnuy0BlXggRBA6zqBjXjiO0b/5YssBY08Fz5ZrIESjyL76mi71NcOZSZA24F17IRh7dzPLaoglHkIsBbYDJkgxlsPx/9mDVX9yCWhWv1u5/CPrkZ1MYObZ9me+aYsJjNuhuySmGIvg2I/+BaLQ2Wz68FlXYfy8eVIwdgCHfwylXBKFDijnhBDkpo+jXNBXXiWE42A8DtBmru2yM88cQn42jWUf6n6FVgLN0ljzmYtw4v69KMZzbZfnBrwQoqlKOkwdUUpEwbk7G2TNHXwJiam3dE3nxpptGD/3BpRLxqQ+eyfBvXIAwY2tRfpvB9npFGzDnVFBY795AabxAdgv6lxPqwbndMO3YRPmtj7c0WqI2eFHIaP/YOnk7ocx+1ZnkkmTN4gFt3wclsHO5UJqcAM+0A4r8vuOd1S+EM0ieai7TDdayE6nYO3AnkhZROxXT8N946VgXHbd+uNacx5M3gAiO5/tqLzZ7kNRZ3siREQxE4PZ3r4vLhdymH7iXhC+pKsv9ty0CabxwY4lVqcTnJdcCMahn40CgFgqoZxKt5ylRA4hmUL6hZfgvfnd+trEte8CHwoj9/qetsvSFgtou1331Xt+LoTpf/7XjsdGnmuugu+m7pmscpjHx1BOJDuKgUIIQeHYcYh5ncfE0RgYl6ujbGLZXbtRTiTgftcVuvWHYhh4330DUs+/gHIm23Z51ueDEE90PPnVDEI0CraDZw4AUltfRO6t/bo+c4zDDu+N1+tuD2qcmQRRQZGDXrWqNXDpFtgXLGmN/dGs/mo0MmnFR4gmAACcxsq9PBCf1krTyV/vgnORDyOXjClXsJqseNZW6NWB3eSrXSCw+8xY/gfn4MiPd4BBWbGSdcrVewDcgAdCOKYILNby9ZGv3MiuMZ+MgbHawXKW+sKN6v40W+Xks0m4AotgdQQaVzYVK/WyAJiy/9eDuBEFi4QiwOTuR3By5wOqAIWqlSyNlVEaFE7e933kp453Zkvy1VDZNeZDcXCDvsYgu1RjcFtKZksMKePw3S9j6QfOgc1rarISSjTtqZktSfsWXDYGx7gHJ3+9SxlAUMYYkYLsqlfauUEvQAjK0WTbtlSDenW6ak8mt79hhbFxhZQo7me5VMDE7kcglHIaq5tNbIk0s7X6CikIMLj0YgyvuEzbfiRbPK3QyFZiKRG+lQGsu+NiZSDUJj6PQsUnndJOaRGFuRTswy6VXYo1BoE8qKbcN5dTGSQe3wn/ezfX6bKUamsTks0ELnwX+FQCqYN7G4P3qphmavaQxe5DMRNtsmKvskWpXZXf0wp+WcrEYXH4GtlN8mdHg8UkZNOgaQ6u5WsV56lgHbR9oSqbMBvF5FfuQvHYdENASwX7rOoH5b4s9OxB7PnWcw3suBqzTfH+BSgNW6qxLasbgzJyM0k4Rl3KALxVv6dlV9KWfnEvhEQGnndfUvd3NVsiIFRT0uS8tkSBQvDiaxDb/SKEXLY1VpHCnrwoZmIaTDUNnye1q+UTZbbE5zMgogCLzdfAfNPyofJ+Rne/iNzJI6BZruHvnbwmpGtMW00Y+eIHwQXcCvuRj8nOoALv9VtgWdJdTCw1hFhF/sp2sHKffOY5cCPDsK5aoWufGKcT7s2bEP/dkx2zQTqViTQDH4uDcTpBm81tlxWSSViWLNaN3SBH7LcPIfabB9suR1EU5r73fRRPTOjaHz4a7YhVREQR8d89DteVV4CxdRdqQA3b2WvABfxIPtu+PJHz+wBRhJDQVxLMx+IdxU0RCwXEH34UYl7/BTzXpkvhutzYrF1nJkHaQG7mBOJ7tutapxCOg7ZZwNjbi8xcShVw/Dd7sfJj67vWqWlhyXvXIjeTQvjlE22XZQe8EEIJXfvDd7hyn4vPYPcD/4hSXv+AbgAwctZVSEztQz4513ZZzuVDKanvi1EIJcAG2w/sGNp2DPlwBotvX6drf4DKy23lx9bj+P17wafbc5S0wwrKYgIf1jcuiG1sCZzL21+1Dx16GazJCv/4Obr2R0I2Po2Dz/3wTGyQU+DgT15FdlrfZzo3k4ZtuH2mX/zBbTCNBmA7X9+BNwAwFiu851yM6I5n2h58mx0+lEt5CCV9V1KK2RjM9vaZi1NP3YuZ5zoPMDgfTKNBODauRvyBF9suax1yIjejry2VkgWU80LbTBBCCKIPbIPnuo1gbPrQiuVwLj8bnNuP6K72B99mhw/FrP7MoqGVl8Nkbe86iXwJ0de2wr/xyoqk0QCEf/wYUi+9aUjd7xQUjp9AevsrutYpxGKgbba2afXlbBbpF7fBc+3VhoyJXZsvgxAJI7//YNtlOb9Pd9mQEI2B9XXAIJ+axsT//SeU02ld+yPBc/VVyO19E3yofXYd69N/skiIxTtiFeX2volyKg335Z3FXJkPFE3Dc+3VFTZIrr33M+1wgOI43SUx1qVLYD97TdvlUi9uA223w36u/t8OAFCcnMLc9+82bEx8ZhKkDRQjs4ju7DxzihaEcALsQPsfrZMPvgFr0IHhTfrOwkswuy0Yv2E1jv5iV9tluaAHfFjfSZBSMl4NTtse5va/APfQirYHWa3C5h6Ce2g5Zt9qf1BpcvvA6zwJwofjHQXZPfar1zB+4xqYnPoPvAFgeNMSWPw2TD6yr61yFEVVmEUhfSdB3Geth2tZe5MgYlnA7P7nMLR6Myi6u0BizWC2e5GcPYz41JnB93w4dv8bSBzQV8KQnU3DOtTeJIhY5BF/bCf8t15myMAbAPznb0IhNIXc1NG2ypltFT9QzOn37Ah8AUIp17Z8oZSMIXX0DXjXdJaushV4b7oY6W1vgo+0N6FhG3ahGMtDKOgXuDA7kwZoCtYBR1vlcnuPozQRhud6feIZqEFRNIIbrkRsz0ttS0tNVSaInjBZXVh0/s1t06jj+3aAYli4V+sn3VSDNrGI/s/WM5li5kFpegbJZ7fqWqcQi3f0cZ9+cRtYnxe2s1br2h8JjMMBx8YLkHz62bbLsl5vjeGiF4RYrCO2TOq5F2BbvbLroLHNYBodgWX5so5YDqzPgMmiWKwjmUfymefgvPjCjlMHnwq2c9aCcTqQeWVHW+UoigLr8+p+nRwXrIft7LPaKkMEAalnt8J95WZdpTBysF4v8gcPIb/PmGDVZyZBtCCnVIqVjQLAOb3gU3EQGUVTi2rfDoRIHFzQ3UCJVdN45fIFqlzGxG/3Ysl7z64E8VNTvJvRvlWbmupbO776e8UH1yG2ZxrZw3M1Oq+cKi6nhCv6GPRACCdQ58WqtzYvFAH8Gy5HcNMN80pMFAFJRUDIZxE5thNDKy6r0Go1ZQuNNPKmm4LeW6f0Dq+8HJnwMaAsKujfWnRxua1wruokSJPzaZciTlGVSTXJnpRBbOv3Sh0QMn1oDrG9M1jxgbX1wLpNJDDz2ZOW7Ul94BiCJbedjYnf7AEjCgqpgTrwrzLYLgEX9ECIJBptqEoNb1tyIBLMPXE/+FRCIa1SyAw07hspleAfW4eBRRfU779C6tKGLantsGpLLGdFcMkFmDv4kmYfTjfIJVtyqYJtyInCbKrBZzULZjmfndKUCKpUQjGag3PEodmeJCWrbPVnK/n8XtBmDq6LVynssmVUtQ2KIqrn3+TwwL3qPER2Pa+wUYVkQOF3KvsZmgVndqCYjauObbTVhuCYDX+vlGEoDme/63Ow2PwNPk1h06r90ddfgG1oIayDY53JSRXPfeW3PCA3AFhXjsGybBT5fcfrwVBlfkYpdan/doxUPgZKc6kGaajapijUpTLzvW+LoRSsARtMJqoeuFeSHqqC7MplpbEHt8F9xTpwHkf93NqcW2uQhagkIq7l5wKgkDy4u6kcUOudZ7F6UcqnQPiyyn+pba/x/838XmJiH8KHd1TfzaSp1Et9PpzdheFNN4Kh2a6kVHX7UY5hQAHuLRegeDKEwqEJ0JIEuLqdQQWszwshbsDHfZuTIKRcRurF7XBtutSwjzEAcF+5GYVDhyuZMNqAEdfJfeVmeK/f0laZciaD7Ku74Lq8syyLrcJ9xSYUjh5ve/We9Xl1Zzh0MqlWPHESxRMn4dpsnBSDomm4LrsEqa0vdXCdfLraExFFRP/nN21LbMRiEfbzzoFjo3GLG4zdBscF65F6ofMMYvPhzCRIGzC5fRD5EsqF9gM8NkPlo7U9Jkjo5RMoJQsYu26lbv3Qgn3UhYGN4zjxYHur9xUmiL56Nc7pgdkXbKtM9NgumO0+uIf0p6nL4R5eibU3fLHtl2/g/MsxeNV7dO2LEG5fDjPxwF4MXrwI9hFj2DISxm9YhWI8j9Ar7aVfrk2q6YRyLoPYzq3tv3jMNixc/x4wrEm3vmhhYPlFSM0eQiGlf7DGdwpsQ05kZ/ULXJiby9TqbRWEEEQf3gHPteeDYo1hBknwnXspUkffBJ9tj+Vgsnt1ZYLQNAOnf2FbacZJuYz4WzsROPdy3fqhBYqiMP73n4Bn89pTHywDZzfh6rtu19X/ZWfTbdkSAJRCSWRePQTfDcawQCTQLAvf2osQ2dOedKjC/iEo5fXzxfGZt5AKH2m7nHvZWnhWrdetH1pgfS44N65C9JFXDW2nn8H5fCCFQtuU/vkgxBJtr9zn9r0FMZ+HY4NxzCAA4IIBWFeuQHrby22Vq3zc6zsJwno94AbaGxNndu4CG/DDsmKZrn1Rw7p6FUa/9Bdtj4ndV10B33v0S2BACOloEiT14vZK3I4OA4W2CseFF6CcSiJ/oD2Jld72VE5nkHr+hUr8wzbA2O3w3/Ye0Kb2EzG0A9elFyO//yD4SET3us9MgrQB1ukBY7GhnNVPSydEEmCD7rbKnPzNXoxeuwqc3diPMQBYePMaTD5+AEK+deosF/RAzOYh5ou69ePwD76O7ER7dPDBlZdi9bv+xDCaugSKolAWiggd2tYWdZZzesA525dCNYOYK0DMF8EFWq9TyJUw89RBjL+7fS1gu+AcZoxeswInHnijvXIDHvAR/QbefCoBUBQ4R+vPXSEZxltPfAdiWT/KfDPY3EMYP/8mUG18aJ5usI+6UC7qlzEoO5MGZzfB5Gw9yFzuwDQKJ8PwXGPsxxgAWIfGYfEPIr6vPf292eatMEF0wuzR7Tjw4o/aKkMxDFZ8+ItwL21vcqITUAyD7JsnkN0/2VY5z4oAGJN+E1m52Sxsg+1JYWJPvg7LkmFYlgzp1o9m8K27BPnQBHLh1q8Ta7aDZjhd7amYi9dkW61i6rn7kNjfvky3E/hvvQTO9Ut70lY/gvF6QNususaXEOJxsN72xkXpF16Cc+MG3dJzzgfnJRchs/NViKVSy2VYrxdiNttWmVNh8h+/jsKx422VcV1+GYY++8fGj4lpGmKhiNRL29saE7MeN1iPnmPiPEip1FbaXrFQQPa13XBedKFu/WgGxmaDff35SL+4ra1yek+CCPE4QNNg3K0vBJTmQpj5j//SPXOjFkwjw/C956aOMvycCmcmQdTQoF9KFEyGZrH6z/4B5kDzQcop2dAqiYgQScIU9KiyeTTSeCUqrRBNIbzjJBbdtFqZNUFOy6XL4KSNEptvsuPk1F55pPvhS8bBWDmEnztYo/KqN7WMhw1UHiQhOg8bpNmF0rj2YqmEUnQOrNnScE+UVOz6VszEIeSzMFtcGhk8mkgSTrmpy6EmiyA8j2M77kMufFJBJdaUt1S3YnQOB779txBP5US07ElDZiREq1HVNeRVWtIqmiKV+2rjMHzxWD3bi4ZcgJbsZT57qh6jzLqh/P/CG1Yh/PIJlOOZuv1CGX1fkSkGgKlLJoiaEs4nY2AdbtA0oymDkUurpP3hg9sBQsBQnMye1LbRji0RhZ0oZDEiMLLiclisnkZK+GkEedYpeXYNlhax7o824OK/vawuW6jamNpGmaoNncpOC6EU7EN2ha9VZPRQPUMMJSL+1OtwbVgGk9/ZkJGEkt20rsebBKBAwXf2RYjt216R3WlIHRTSlaqNmq0elHKJU/u9qm01zW5ULVNMh6vHNfrBBmlodcuHJsFaHaBoRjurl7yM1um3cP3k1z35wpsI/XJrUzmpWp7CUiJe/aensf+uVxqkLer3qOQ35/V5lIj8XBoOyZ4oZTYslhZV2boq9yz+5OvwXXOeRsaY+vnNK7lqxUdUqzA5PXCMrUB8/46a7LepRLTaHC1SMNu8KGXjquMafZumLWnUX5sEqfng+d+15VwWsTe2gbW75n23zm8s1a0Fe7KtGIXvirMrvkgmmTmDCmiOw8Kv/j1MgwO61VmZBGn9o1VIJJA/cAiOi43/aAVQiTnCsMi+vrflMhITQYjrs5gjFovgQ2HQ1tYnfYR4AmI2C9bT3qJrpyA8j+g996E00fpEa2lmFif+1//RLf2rJBlpZ1It+9rroG1WWFcby7SX4LzwAuTefAvlTOvMVr3lVUI8Dtbjbou5k36pkiTEiIkJLbivvFzXCTIJZyZB2gSfToBP6+PISLkMIZZqS74w/eRBOBd64V6hf2orLdAsg/HrVmLi0daD0tBWM2iHtRLHQQfwqWoaYWfrL8bpvU/i+Cv/o0v7rcBkdcI7shrhI62v1DJWB8qFPASd7EmIJMG4bKDNrVPTJh55CwuuWwWa7Y0r8KwZhH2BB9NPHmi5DBtwQ4ildYsOTcoCrEMLWj9eFBE9tgvBJcbpHhvaJAT7n/k+4pPtSdFOF5SLAuIHo7rVl5vLwjbU+sq9yAuIPf8WvFcaz26Q4Fm5Hnwmiex064w4s82LUk4/FlUxn4TZ2vr7qpSO4+A9/4JirP3sWZ3Cd/W5SO06ilIbAVJZC4vMlH6r2dk27Sn1+nHwySzcl7efsapT+FZvRPzgLojl1lfyzDYPijraE8OY2gqymzjyOjiHG/bR3rEzUjsO4+jf/bxn7fUbhHhCt3SdRBBQTqXbki9kdu6CaXgI5tERXfpwKlAsC+fG9ci83HpAS9piAW21oKzTJIg0mdLOR2H80ccRufd+XdpvBazbBeuqlW1lD2Icdoi5vG72JMQTYJzOtj7U09tfgWPjBkNjy8hhXrQQrN+HzKuvtVyG9XohJJL6ZUwRyjAtGG35cCKKyO56DY4LjZVuKtokBLP/dSdyOgdIPTMJ0iZmnv0tojv0yRBTjqcBQsD5W6cgTT2+Hwu2rDSczibHgmuWI/b6NArhNmYqA24IEZ0cWToBmjODNrc26y0KPGIndiOwZIMu7beK4OINiJ7Y3fKgkrHYQHGm2iRPtxCiSbD+NiQeoTRie2awYMsqXdpvBRRFYey6lZh6bH/LZVi/CxBFlBP6fKS416zH2G2fbPn4dOgohGIO3rHeffBSFAXO4kD06Bk9uhYyUyk8+tH725LpzYfsbAa2AXvLxydfqcQxcG5crkv7rYC12OBcuBqJQ7tbLlP5aNVbvtD6wDt26FVYAyOw+Id168OpYFk6BMt4EPHnWp9AtA3aa3Fh9EB2rj17ij27D+4LV4CxG0/nl+BachaIWEb6ZOu+2GT16BoTZN1Vn4d7oPX4BLHDu+BZfn5Pxz/mMT/Su46iMKnfpOs7CdH7H0DqOX0yxAjJJEBIyyv3hBBkdrwKxwXGSxLlsK8/H4XDRyCkWp9oZTwe3VbvhUQCtNXSsvxHLJWQ3f06nBf0dkzsvHADsq/tbpnZQTscoFgW5YQ+PqacSIBpg/nCR2MoHj8Bx4be2RNFUXBu3IDMjtbHeqzbDZTLbbFH5oPjgvUY/NTHWz6+cOgwxHwe9rXtZZPpBhRFgXY4kNmprxTyzCSIBrTkDLWo5E4PhFSi7ewd1SQA9TYooBxLgmIZsB5bhWKtQbuWSxeyx8JIH41i4bXLZJTeOg1XTt1lqXJlk1F1zbSg+L+JFmCiBbBUuSK/UclqJEmMb5kXzoVezD1zUFPCwNQou6hRdzm/C+VYQkENl0fybwec3YXARe8CBUqRyUOi8UJETboAAqSm9gOg4BlaqYpQL8kbTpEdRmiW6aOZ/KFCPfcOrgJndaKYitQp5CpZRY02DoCuxqUQUolGavh8UB0gXWMhmgAbcDVQqGloS6tCzx6Aa6kP3iWexuxCMnmBmRYqtqNhT2qbYqmykiZes6W6pGHhluVIHY6gcDLcILFqpIITcF47wNCV56V6XpqUZvX/tZ5PAuRnJ8Gnkg1ZERSb7L5zJgcWrr8ZHGtRyWC0Kdua9qRpU03qqUoZAgvPR2LyTYjFQt12TjPU/FzVhqTfruFK2rpiKF2x06rNqW2Uk8o1ZIeRlaHLyIcycA7ZVbJCUfFbkjDQFEH0mTfg27QKjImt+2vUfaCmbar2NTznqneN+jcI4F1+PhJHXgcRyvNIXOrHmyxulApp2fHafg8iAbRsuEwqW/VvgdFz4PItlv19/uchceQ1eJev18zwAQ1f15r/k2/SAyvzdzTgv2INhHBCIQVUy5rkshfHoB25UKZBAqN+j9Yyxszj80iJ///Ze+8wSa7yXPw9Fbo6p+nJO2FndzYn7a5yWqGIAAFGAmEjGQyIYGNfX9s4XN8LJplg/2xfrglCCESUEApIIlhEJaRV3px3ZifP9HTOXeH8/qiu7qqeDtVBsyNL7/PUszW9p+tUn/rqq1Pf+d73Qy6ShbvHbqyyVYFaxRAKIuUR+f0x+C/buKRCSVPV1PTjWIF6pI09y1rgHdmGyPEXq1eU0fkjQgHB5kE+HSvYGIVWNYiR1c3gp6r5w4K9yNkUEsHxkv3ovl/pfKhC4V29Df4Nu43P0ip0KtPPUsNYF+5haM9oCluvF44N/Qj/7lDxOfU6SuC8XkhtemmVIlEQngPjMBdAzE/PQJxfgGPXOW3p3yws/X3gOwNIvbzf9HfaOU6c2w3PVW8w3T5z+CgIyy4bxUODbdMmsE4nxEVzAURCCFivp220oUb1ZVIv74Olv6+t9C4zcOzeifzkFPLzC6basx43QEjbMotyk1OQYg0E9Fwu+N92w7Jo8Ojh3L0T6QMHoeTapzf5ehCkQfAub9voMFIoBtbvNp12Nf/YCfi39jYsuNYqCCFYddUoZn5tXsGYC3gghRqrZFANQqAHnedfZbp9dPowfAObG6pg0A4wLI9tb/o47F7zwnYd5+6B0NHdlv4bzQSZ/fUJ9L/hlVUJrwR7txO+LT2Y+91JU+0Jy4DzuWprzDSA2Ud/jPjxfabb27096F53cVv6bgSe7rVgeSsiU4eWve+VDt5hAe+0IDWfasvx0gsp0yv3ciaP2POn4b9sY1v6bgTuoY2gkojEtDlfLNg9ACjy2fb44v41l8LlHzDVNpcIIxOeg3fNtrb03Qh6broAg4wOiBwAACAASURBVB+5xnT7jo0BrHt7e65nakGtHmfvMvecjr04DigU7t3LL8DpG9mO+JnDUCRzgo2CzYtcmzJB4pEzOPLMt0y3J4Sga+tlELzL+4ICAL49mxF+7EhDIo+vFXA+b9teWuVoDKzHazrTJ7VvP6xrVqsr48sIQggcO89BqiEKgxdSpD1zGEtfL7wNBEHShw7Dvm0LCPvKVjErB2Ph0f8PH28oqOB5wx7wbQpCSJFYQ5Sh1Isvw3HOjrb03Qh4vx/C0ADS+8wF1QjLgnW720YbWrznx0jvN69xY+nrhfuSi9rSdyOwrRsFsQhIH2ofTfz1IEgFFFfvlbJVBgrwTg/ERKziKnPVVQdi3NeEtaRwDHxx5X7pVr4iGXziFPr2jBhWsLR9vrAipa1alYTb5OKmX73Xf84TpZgVwpPKGQGDV40gdnQB+flocfW+XHRTvyLKB9yQwrHKK/bVoBs//ZhHDzyHxPH9pdWsKqtA2ufD596Ioe1vqbJSWbZiWVjphEyNK/aFfWgroXKtlf9SFgpECcFjT4OKkjELpSzTQGvfsfVC2HoGlq6Kmp5rlRpKobhqT1BXsDSB0XLRRo5RkJ+LIHZsAQNXra0srKtbWdf29XajzwAptyXDCqkmvFtmr32Xj2D+iVOljCKUMla0faPYrqdgT7TsfjKbilUaKikehcVVEuPTrpN+9VPbT8ycwInH7wJVlOJqaNXMIJ0tQW9Tmr3qP5dp9eMU9hnKYGjnW2F397wmM0FIcdVdL2ZZ8k2OThtywYTB5sp9HlMYtEo+r3gsyEgvpOHptS0Rhi73bQyhiL1wCqyVh2fbQEVh6KJwYpO+b4lf0w5DAZYT4B7ejOipfVUFRvU+z8I7QQgLMRVd4vcM9qj1I5XZrs5WpUwSp/c9CCWfr5h1Yrg3KCA4/dj6h5+E4PQvXeEv/+1m/Z0hm7KSgKi6MQxB+uQs4i+NGTJ4DEKluowQ/7AT227ZtCT7Q/8cFRip+B2jPRl9Xn4xAc7Kwe5ly4RWl4qyMqAIP34E/otGwVlYMAwFU+azDbZEKo9FTVDjprcZZ98oCMMgPnW8claRbPxMsHqQy8RU/6Rlf1TwecXnWbnP0/m9fErVlzH0aRCdNvY99uvvID553JglUmY/FbNCqijrln+sz2Qt33yXbEDP23eDoardvI4SWK8HcqxN1OdoFJzPfEAjve8A7NuXP8gKAI6dO5AbP2O6Sgfr9UKOtSdYlHjmWaQOmK+yF7j5JvhvaF/p2UZARVGtEmOyioj74gshDJjXbKsFKRY1nQkiLgSRn5qG45ztbem7Udi3b2tMbNfX3gwss+OUOXYcC9/+Xlv6bRSEZdHxjrfC0tO+CmqvB0EahGPVWgzc8MdtOZYUioP1m9MDSU1FkTgdQt9lI23pu1G4BrxwrfZj4anTptpz/vZlgsSP7kMmOGOqbS4VgSLmwAvm+dhtBSGYeOkRxObMrdQmxo9ice9v29K1HI6BN5kJMv/EKbjXBuBctbwrKBr6Lh9B4uQiUtPmJk+c3w053Lo9UVmGlEqYLk0cntgPCrqsHHQ9AkM74PAtj+Dbqw2X/9OlGLi49clSPpGHlJXg6LKbah964gR8F4yCsGfn8ekd2YrYxGFTomiEMLDYPMhlW58sZdMhzIw/bTrDLhOeAWdb3qxFPWIvjmHiW4+bakspxdOffxrxqdZ1h1LzKTi67KZ8hiLJCD9zCh2Xrmu532bAsBzcQ1sQHTe3AilYvZDFDGSp9XTkXDYKi9Xc80dMxxEZexm83bx+WjvB+53oecs5Z+2eX8mwjY6i6723tOVYaiaIOZvIzy+oVJityycmrIeluwt8dxfSB81lanJeT9tW7lMv7UN+ZtZUWykShZLLgXWYe761HwThBx9G5oS5zN/0kaOI/bZNuovRmGlNkNSBg7Cs6gcf6GhL343CsW0r8lPTEENhU+1ZrwdyG+yJShKUZBKsyYyZ1Mv7AXr2VuScO8+Bpa99GmOve/QGwdkcsPcNteVYciQOzmQQZO7xU3Cv64S9x9WWvptBzyWrsfCkuSAI3+GGFIq1JX1UTETBO805spl9j2L8+ftb7rNZMCwHT+96RE1SGMRYGPHDrQv9UEohheKqiKgJLPx+DN0Xr26532bh6HPDPdqJ+cdPmWrPFeypVUipOAAKzoQ9UUoRmTwIX//yiT9VwvEn7kJ0ur2K2P8dENjYAVuHreXjFOkLnfUniUpeQnjvafguPjsvrQDgGtgAOZ9BamHcVHvBpq7et4pcJgaL4AIh9acNuWQER+7/F+QTZ09M0nfBOiSPzSEXqi8eRwjBmd+dQeR068Gi1EIadpMBtdiBaVBRhuec4Zb7bRbe1VsRO3MIilJfvNBiU58v7bCnfDYOwWbueRWdOATBHYDV1x7qaDOIvjCGQ/97+aprvFrAOh0QhgbbciwpFjNNbUnvPwDL4EBDmg/thn3LZqQONBAEaZfWRQPjFPnZLxC+/ydt6bcZMBYetg3rkDY5TtJiqKFKKdVAFQVSNAbOY84+0gcPw77l7M31+M4ALH29pmkpnKc9QTVNC4Tz1PfFVFGQPngI9rMUeNQwf8e3kT5ivsJkLbweBKmASuJcpdRLBSe++XlkZ6eWUBvMdwCAUEjhGDi/y5DGqwmU6tOsOUbBwlOn0Xvp6iXp2iW6gTF1tyRsqVSmwDBKcdNTGgxUiDJhy/5LBhHZPwOayhhSiyulj/IBF2hOhJLOln6z/vdXQ4XUVikRA+/0VhBtK9tXFMSmj8Dbt6kiVUVL4TVQYAzCf1U2rY1UntK7lMJAZMDXt0l9aZWNfVdKSeacHojJWMl+KqX2VjIhvcgsAZRUBlSUwAdcS66FXnCXYxTIiQyiB2bQd+lQWbp26fpX3NfZjN6WBEaqaEv61HIDJaaw33PJMIJPjxnEUcvT2rWN97sgR+KmqQbl41Ycb7sLa/74r8A5nMZUal0qv7afWZyCmE3C32u0p0pCkCijtzCyuunbG/9GRcrMkuNSgDAcIhP7m9FHfFVDo3WVbNdI/zt23xE88U9PGHyb3k4FRgJLFBDQop1qtqq30+xiEoLbAquNGMR8VVs1Uhji+ydBFQr/rsEidWsJDQbGtHrDhatjs6TMD5BKPoO3wtm7FrGJwyaoBBSC4IaYiRtoCwbaVZmfqmjjMkU+E4Ng9Sw5vr5f7TjxiSMQPJ2wujoq0koNm+73NzQ4xXFeaisMobAP+WHt8SDy3FjpeVWJWlXwc45OO7KLSQP9T2DVTfN5BBQMFMMzVGCN1JhsMAlXt60oyqvZrkbz059jZO8peHYOgbNxYJmltFJVbLdBmhWtvL9kPlP4171qPRRZRGp+fIkotNEmAI4RwLAW5DPxirakbaXnrd7v6XylTDE8ei0G115ptDXNzstorLGJQ/AObAZDiaFd1d9nFkUxVN0NVkaJ0a6brduF8NOnILap6t1/F1BFwdRnv4DctLls3VqQY+ZX7tMHDp21LBAN9i2bkD11Gko2W7ct6/WC5nKm2taD2QwHqihIHz4K2+bl16/Sw755E9KHzWnqtItepaRSgCybGic5lUJubBz2Zax2Ugn2LZtN612wHndbxonzuNH38f9pSow4PzkFOZmCbdPyVZSsBMKxpvVT6uH1IEiDIISBkstCjLde6kqOxE0JWebjWUQOz6P7wuGW+2wFvk3d4N0Cgnsn6rbl/GrGihxpjcJAFRmszQHeVb9ufDo8DTGbhLd3eRWwy+Ht2wBFkZBP14/6804P5HQSikm+ZDVo48z56mcKBfdOwOKxwbuus6U+W0X3BUMIH5yFmKifWs11uCG1gQ5DWA7Wrn5Tq9kMy2PVtmvBCWcrjVSFr18Nqr0uymcEIUD4ROt+OLWQhsNEFggALO4dh2/nIBjL8ooul8MzuAnRSXOTJYvVg1y2PS9uDre5NNTo9GF4Bja1pc9mQQiB/8I1SE+YSy92dNmRWsi03K9qT+YylBafOQ3/+WeH4qqB4Sxw9axFzES2GSFErRDTBnsSrG4INnOrtK7etfCP7Gy5z1ZgG+iArd+L8N6xs3oeKw2EYSCnM5DbUP5VisZNZTjIySRyE5Nn/eVeGB4CY7Uic7T+qrS20t5IFY5KoJIE1uUE56s/J85PTkFJp2Fbf3bnxPaNG0BFEbKJ3855PJATSdNldauhkQyHzOGjYN0uWPrPLvXYtmkDsqfGTAXKOI9HLSndIgjHQejvM1Wgg/A8fNdfC9Z+dufEalDtaFvmxK8HQZoA5/RASrRmfFRRIEWSpl5aQ89PQPBa4RkNtNRnqyAMQfeFw5h/ZrxuW8ZqAWO3tvziShgWaz/4d7AG6gvhRKePwhkYOusvrbzgwK63fwKCo/5Dind5IXT2Qsm1NvmWInEwDhsYga/bduHpMXReMAzCnB2dCw3eDV3gXVaEnjcXVJMiiZadXuTFp3Dm/jtMtbV5e9C/xXxVolcKnp51ELNJpKPmOMCvFTi67EgF2/DSGszAbval9dkz8J979mhkGjyDm5GNzSNngm4iWN3qyn2L6F99CdZte0fddoosIjF7Ep6Bs7taBAAjH7kCaz90mam2Hev8YIXWqyekghlT+jKpyQgyU1H4zl/+qjDl8AxsQGzKHOVODaq1bk97f/t5xELmAgo9W/bAEWiPWGIr8J83jPBz42f7NFYc2qF3QRUFciKhlv+sg8zR42BdrrZqAzQDwjCwb9qA9KH69w5jtYIIQss6DoTjsOp//a2piivpw0dhXT0M1t46bbQVsG4XBj/9CXAmsjI4rxd8Tw+UTGsZM3IsBsbhAOHqL1ikDx2BfdPGs6b9pkEYGlSDasdO1G2rZcy0OieOP/4k5u/4lqm2lr5eeK++sqX+2gHbhnWQYzGIs3MtH+vsLmc1CELIxwGcBuAHAErp7TXa3gjgagD3Fj66CcAXKKW1RS306ZQazQJqlqRma7zTXdAWgPnUS30qKwAlqaZq8R2uotq4lgar7XOFevShZ8+g69wBsCyKab0AijQYAEXaAqBSahgoxeOwqCRiI0MuxMAYECjayriCUmhMt6+AQJEJus4bwMH/+yRYIkMqfIcpUHgAQNKl7XJ+F5RoopgaTovpzCYcTaGplEpCXFyEs2u4+DkxXJ9CWrQC9G3Yg8DwzlLaLXSUGOhScbVLoaVvA2o1oAogAKjmGAktnjulFKT4O/TCmRSQCeR8DvHYBNyFFwHKGM9J646zOrH2vX8DAFDKUnsrntESnoe6Iq7qy7iKY6+l8QLa9VEKX1ew+NwEtv31nmJKOIBiSnhpv2BXjGLClgC50BdHAKUguy9SFobmDIp/K4wMhSPoPm8VQs+dQeDy9aU+CnbPKEzxfuB8LkCSoSTSIHaXcWyqmFOl9HoxFgFhWGNKuNa2aBeAnE1j7Jl7sebcm8AztsLn1Ghbss5+FGq0y2oPJr0tEf1n+nuj5CuITGDhHBjYdh1Ysrzl7WphWXwxQZG6AKBIg1H3Zbg7rchEsiCyCN6iDiaDUvUGFgpYKCqdipRWlWRQg8/LLqbh6rIV7V/WgoMKoBQ+UxiC+EwS6ckIAucP6u4z3SXV0xR0vgIoVaJYYqoVzMRgt+UskILtWZ0+WN2diM8cR9fohTV9nsXiQj4XN3xupBFQ1V416kPxnEmpcwrEI5MQbF5Y7G7o7bVI05DVfZZw2HzDX4N3FSp/MCV/V6x2ox22Gn2hzu1T6Nrg77R9lihFH8IyQPrELDiHAPugq2RLBdoTUHp2XvDRrYWKQtozVTbYEoAinUW1J7WdDAZMoT+RskgvpuHuFMAxMhTobKlguwoIFEoQfnYczpEOOLocABTIhDH8noq/GUa7qgcDZURzOTo/p3Xj6duAyWcehJiMQRDcOluiS/YFwY18oUJMeR+a31P7oSV709sSAWRFQi4TAc8IxeOXTlC1Pa357OHHwNqcCKzZBcJQUEoqUkb1Llc/XzM3ULrdAiVTO22WKV2Tnqs2IHF8AYtPmhN5fKWxLH7YBFi3G3K8NVFhOZEEFMXUi3Lm6DHYNqw76y+tAGDbsB7hhx5R54R1zofzuCHHWwsgyokEpHDElA6L58or4Dxvd0v9tQs0l0Nm/AzsG2sHx1m3C6v+7q9a7k+KxU3ZElUUZI4dR+Dd72y5z1ZBGAa2DeuQOXoMju1ba7bl3G5QUYKSybSUmSFFooCJ0slyMonQvfcjcPNNYGxnOajmcsH3putMBbjq4VWTCUII+QKA05TSHxcc/ZqCU68GP4CrAPwSwBcAfL0dzh4A3Ou2w9rd2qqEHFEfGKyvtno+pRTB5ybQdX57hKdaRWDXKuQiaSRP11+BZH3q6n0rSJ85iemH65djUmQJFAqszrOj7FyObDKIY7/7JuR8/Wh2emYc+RbpVXI0UaQg1ULiVBD5RA6BXf0t9dcudF8wiOCzZ+pGs7WMqVYzi6RkHLyj/kpTfO4EEgunwfJCS/21C/2br4TNXX/lZzmwUnyxq9eB7e9eD1lsLW02GcyYoi8sPncGjkEfbD1np6JSOdx96xGdrV+FymJ1I5+Nt7xidHT/PYgs1l+hkvJpCM4O01VkXmmcvPNpTP20fjnJTCSLqefnW+qLKhTpUNacPT0/iY7dK+O5bvV0QnB1IDZ9tG5bzZ5aQT4XLx6rHhZOPAOlDdVo2gHPxl6seuvZKaFZjpXihwHAcc52WAZam1PI8ThACFhX7XkMpRSZo8dhq/MyvVywrR+FHItDnKvvO1i3G1KLQZDM8ZNY+M7367ZTS9JS8B3+lvprF/LzC5i//U4oufr3cnZsvGURWTkeB+uu71/yU9NQslnYRs9+Rh4A2DZuMEX10DKmWs0skmJxcCbGKXP8BLKnx0Gs1pb6axe811wFvqt1Sv+rJggC4DZK6Y91f/8SwIdqfYFSuoZSSiiluyilpkpwEKC4qmYU1SytOvg27oZ73balqxEU6pJflbr0xT4IhRxJgHHZwfJcRWFRbcUpPb6IXCiFvvP6l4i56cVQ9UJ/AhGLIoBWRiyKpy7ZdOKWJQHLkpCqQSS10IfDL8C7rhOh5yeKInN64U2WKQlbcj6nygGsp+hYtiqv/1xMxMA53BUF9fRaZvGpI9j30OcBWSkTVSsTZNMLner39ZtU5fOy71YUhiucm8O7CiwnIDF32iAyt0TsEMDcbx5E4uTBimKB1Y1UPZC2YihHEmB9RpHd0lYS24u+MAHf+k7YPRaj0KRBDLUk+scRo53o7ackNCnDyoiqrZW114QFBUYqCqTqxSf7zutHNphCbiqk2pJOTJDVie6yVg6MwwY5ltQtZ+qyKUzYFyggJeLgHO6KQo3aijihQGz6GDw960DAlNmRURy3JPwH1W6q2U5hYyQFjKRUF0M1CKyW7EpMJXDs8W+b+LHLgmXyxbSiz9P8nsvP4Yq/2QGHgyl+rvk8ze+xTEEYtczvafbIERmZYBquLsHg7/iyfhlCEX72DDrPHVgiwGkQs9SLWBaVLU382Ar+bYm/0wtHKoCnZxTx+ROgslzV5xGJQuBcUBQJcj5d+n+9Lcq0IF5axecVjpfPxiFYnEtEgI32Chz51VexeHxvVV9d7uf0q/nm/Z8xQ8L4/Cz9zTIKArtWIfLiJDjdc4rR2YTm88KHg/jZx5+qIiSubgyh4KBUfY7KsRQUicLbJZQ9V3WCu0QBo0gIvTyNwK6B0jNfJ8JZPh+oaEeEmpluLBn7aqKnnp51iM0eX3I9DTYlUQi8PrOozCdqouOgJX9WsDXNPzIyRT4TByEseNZeJjauPyaQT0SRjS/A3buuoj1VmxOYsR+UjWtxvAHdfEYnUF8Q1p19ZF+dDpYNy+KHzcB13u6WRUqL9IU6q9L5mVnIySRs60db6q9dYF2qloQpCoPbbUoXoxbkWMwUZSh98DCmPvuFFaMlJgysArFYkD1VP+4Wuu9B06WHq0GOmQuCZI6dgDA4cNazGzTY1q+DHI1CCi7WbMcIAojV2noGVjxmbpyOHodt/eiKyL4C1ODN/B3fbvk4r4ogCCGkkiJWGGpUu60ww53OBmewuPc3LfUjRxOm9EDCL03BvTYAwbcyblAA6Nrdj9CLk3XbcT5XMeOlWUjJOHinmZX7k3AFhlbMDUoIA3f3GsTn6j8YOYcbUrLFDAeT9rT44iQ6V0gWCABY/Ta4RvwIvzhVty3nd0FuMRPEvXEHnIO1J0+UUsTmjsPTe/bKoJaDs9hhdZz9LKfl9MVSWqzb5oXvHMX80dayqJLBDByB2v6VKrT40rpS4OpeA1nMIR2tXZVBEFS/kM8174tlOQ9ZzsEi1PbFmnaNs3O46b7ajcDOAcSOLyAfr52VZw/YkI3mIYuVKX9mkAxmC8eqvVoWPboAOSfDt+3sCvHp4e4ZRWL+VN2XJsHqblkTxCI4Mbz26rrP69j8cQgOP6yus6uHpofFe/bnYsvph828tOemphH7ze9a6keKJ0yJWGaPn4RlVT9YE9UslgvWdaPInjATBHG1/NJqeuX+xElYVw+vnDkxy8K2dgSZ4/WpZCptqNWX+wRYT/05ceb4CVjXrW2pr3aC87jBd3chc8LcOEnx1jJBHDvPgbVOFgylFJljJ2Bbv3LmxKzDDi7Q+pz4VREEgZrGVy7xXjdXihByGyHkxsK/t5npSMzEkUvWVpMXE1GE9v7WzOGqQiqs3NdD5OUpBHasnIkSAHTuXoXwvhkoddLQOZ+zZTqMnEyomSB1EJ87CXfXynFkAODpXotkcLxuO87ZehBEjibAeWvbkyLKiOyfQdfusy8wp0fgnH6EXqofBGG9LkjR1uzJt/0C2PuGa7ZRZBHOjkG4e1bGShMAMAyL4R1vOdunASyjL6730goAx34xgZl95qp/VIIiU6TCOTjqvLTGToYgJnPo2L5yfDFnscHpH0CsDiWG5QSwrIBcrnkfo33XYqntY+ILp8ALTtg83U331W641gTAu62IHKqdrq7ZQGqxeUG+VCgLq9cCzlJ7NTv4/BT8m7vB2S1N99VuuLrXQMwmkInXHieL4EI+15pItd0ewNDqPXXbMSyPrtELmu7nlUD3ZStinrFsfliOxyFFax9aikQR+81jZg5XvR+TK/fZk6dgXXN2KyqVw7Z+FJkTp+pWNGnHS6ucSJgbpxMnYV27MigeGqyjo8iNjddtx7rdLVfRkeL1g0VUkpAbG4Nt3cqZ6wGAde0aZE+cqtuOdbsgx1qbE7svugDW4aGabWg+D+vw4IoKFhGOQ8fbWp8TrwzSbn1UqqMWBgBCiJdSWslDPw8gqnEeCSFfJ4TcWJY+iML/3QZAfSAQBsn507A6/EtFtwr7nN0NOZMClWQQjq2vjWpIZVVTMLVMEL2gGwOqE3RTwFIZkf3TGHnTnpKAZSFVGzCKoQqMVBRv4xm5KIqp0guWrmwplCmKBcqUUUUsoQrAiShM4HQhMk3MTSEKurd3QcnLSJ6Yh3dzbzF9Vx1LahCzlGOJJem8VEtlrhCgLk+L7txzPRix1FRLBQdKqdhiJoFMbA6errW6FF+tjZrCq2+vpuuiKAao9kcrptFSoqbl6/7QzgTalylQirbrxPq6hs5D5+iFunTkQntKiudHqZoJkpkeN/z+hqaXhBY0QZwGYV3NlrQ03sixGVBZQee2bjAFqkFRaFInhqqlgmvH0fZZnR2V25RCNZFdCqUwFgylRbsCAyi09B2ZIZAK3+na1YeXvvg4CFWKlAKgROVR92mBXpVsZGQMoLKE2f96AN3nXwfO4TIKo+qEJVnGgnUX36J+LunblAmjKiXhP71IajVbAnQCmURnD2yZ2qNeGFVnVysEy+aLCUuWCFiWi/e6Oq3IhNKwMmrWCIOSCDBDFFXcEhQCU8oqUSgDmTJgiYJkOAsql+gLYABZJ2YpFa5F+OVpeEYDsHl4ZGUFklLy00RhCudO23aZdBqSBtqIXuQSFHB3r0V84RTI6BuMPk/zcQWbtQguiJkEiFvnYDQRS803UfV7JRFXCijqHzbeg93nfwwWxgrItKh3TPTCqASIz5+Cu2stGAoouvuEKqTYr/65Smjjvk4vGgrd/aQJWJYLjLMs8IYf3AKXlwXHqKXINWoVgCL9z93BgzBALpwG3yeALdiPBqZI1VMgMGJFn5dZTMMZsKrHZgCgUPpcKQnuKiBYfHEKnbv7i74ZAGSqgC2UKSQKDONaXMwtowGVDU3p30r0onK6SNn/WSwO2Dw9SMydgmt1d+E8dM9SSfV3Ft4JSmXIuQx43lagDZeuSYl2Q4t2SPXnTYGF+f2QZRE9/btLF1FHbyREfdZ2rjoHCqe3JXWjFX4DoZU/N2NgRjFU45yM0T2DmGqOffmxjHNiguzJ03Durl6imHO7ICeToIpiqtRmJcjxeF2aB1UUZE+fRueF5zfVxysF68hqUFFEfmq6pmBpOwRk/Te8qW4bKR6HOL+w4l7uXReeB/clF9Ztx7pdyE3UXxirBTleP1iULQRkhDpBgOWGbXQtQvc9WFdsl3W7ISeatydFFBG+/ydq2dsaWjyMIKDrfbc23c9KxqslEySKgvq1DjXVfiilL5aJPv0SwN9XaXs7pXQ3pXQ3x1uRmK/NWeMcBZHGdPPGJ0US4Ly1RVETYyGI8SwC289uGbBycFYe3g2diOyfrt3O64QcTba0YsS7vOBdlZ73JbC8Fesufx+sK0Q4UgPLWaDIIsRMbTvxb78Ifdfd3HQ/lFLI0STYOvYU2T8N78ZusMLKin0GtvciH80geaY2rYHzOiFHmg+CSMkEIi8/Xbdd8NSzSATHmu7nvzmWzRdTmSITTNU8GUeHtaWV+2RIFWmzd9QWwA2+NLPiMvIAwN25GsngOChVarazWFzI55t/XjEMB5err25qdc/ai9C/8Q1N9/NKgXNYkJyqvQLLsAze/8A16FpXf5W1GlKL9bOKZFFG6OA8OleiPXWvQTxYe/6jZQO1XiZy6wAAIABJREFUYk+hxeOIx2tTanOZGCYP/xJUaU34+L8pls0PMzZrXR0H1u0GKFUrvDQJ9aW1dqZZfmYWSiYLYWR10/28EmAEAZZV/fXHydU6HYbzesF5a8+JGasVXR94H7jOlUMjA9RxoqJY98XdfenFCNx8U9P9UEoLGTO17Sl7egzC0CAYnm+6r1cC1rUjkBMJiAvBmu1atSc5nkDi988ApHYoIPHMs8WA0X83vFqCIGEsjXx7AaBKxBuEkHJuZBRA9VB2ASwvQBZrqxdzdic4pxtyrvnJt/rSWpvTGN43DddIByzulaHGq0fH9j5E9tfmonM+F2hOBM00r+x+8mufQ2qiNjeO4Xj4Vm1ZMdxHPU4/cw9mDtfWj+HsTlO6J9WgpLOgogSujj1FD8zAv3VlBdQAQPDa4BrpqEuJYb3OlugwUrKgPm+rPU4zB36NTKL2w+c1jOXzxVYOyZna19uzylF9adwEkos5WF18TfoCVSiC++bQsQJfWp2BYchyHqk6uiAahaFZTE/vxf6X76rbzu7pgcO78sYpMRbCL27+IfKJ2s+ijmFXXSpLLSQXs3D4awfUIsdCoDKFb/PKCtoDgKtrBPFgbV0QjhPAspaWgiD5fLwutSq2cBIL48+qJc1fRzmWzQ8zVmvdih6sywnW7YaSbWFOnIjXrQyTPXkalv4+sPazr8tSDuuaEWRP1148YT0u0FzOVIWUapj81D/XDbYwFgscWzevyDlx8Pt3I/rr39VswzqdpvRhqkFJpwFZBuuqvTCYOz224gJqgBrc4Hu6ka2jC8K6XZATzdOG5HgcYBgwde6n6KO/glhHqPXVipW1JFwFlNIXCSHljt0P4FeV2hNCRgD8khDi0z0QvFDrqdcEZ3Fg9JJbVLV8rUIMAKKrTc+wLNZ/5JMAAEWfdtkA5FgSnNdlSMNkGWMab2T/DDq29xWpCwCKavaAmtIrFNJ7NXV6AIY0XimTx0s/n8f4S1HEFrKw2jkMbvdg69Vd8PY7C30pYAsriSJlAd2iopbmqxACmSFQCvmqndt7cObhw2CpDJZhit9nZKaYSqplJsjxFJiOxkSsCAUgyRAjIbAWoZiSuyTNlQJHH/0qekYvRqBHrattuG6yjrKglP9dyp8Vc2lQqkCwOHHqzK+QyUXgcQ2iO7AFvOAo9cdo50ehcEzpRLTFqjIKgzswjMUzLxtoFAYaBgWy89MYu+f/Yf3/+CzA6eKStexKlx6tFDiBfIFeBRhTdwmhIFRB9NAs1t64xWA/5Snhpf3S5xr1hQVFdDqJ/f81j6lDcWQSErw9Vgzv9GL7dT2w2FiValA4OVExuheZIUXbUogCqXBchSjo2N6L2MEZrHrbDsiF3GeJ0GKKu0RUe5JjKQOVquYzXjfGhBb0ZexOEMIYKm4U21JATMeRSyzCHRipSK1Cmf1o6d5QdBQYSpFMzCEYPoJEcgYKldEd2IK+rp2lsLOuqgPR2ZXqkUt0DO160hUSrl5OX+we8qF7Rzf4ApWF0/k+rcLL5R9cC57IYIv0LQUaQZEhSpEao6c1KFApDQplkA1l4AwIxv/XjIoBOMogMhZBPpZF547eUgUP3b3FEs1GK1O5aKESRX5iGulnD0GcmgUoBe/xwb52I+zrN4BQtjqFQe839L5MoeAZKxyePiSCY/A41OCDVmmj2E6mEHgn8rlkyV5pqY2+TyKXKD2UQdEU85moeh/Jpd+nfU3zd6G5w5g+9Tts2fOnSygvBvpLDboGpRRicAFcfxfy8/OIPPxTsJ0dsO/eDGHNkJFupKctECMlU7vuWgUz34gXvJ1H5NA8+i9cZaBWaVWwAOCRv30a3aMuXH7bOvCMZLAlQKUIFZ+vhe/ofV46lIW7216yp8J9q1AFSuEYof2z8K0PwGpjkZV1z3wYf4/m+2SlNICEUHXIJAmZ/SeQ2XcMcjQKAgaWrl44t++ALVAWhKJl+9q1MFD71M0dGIGYSyKXCMHmDBR9ntqm5Pt43gkxmwCRlQL9pWSXpb5K/pEAoIzmywjyuSQEzlmyR62Vdj6EIhE8DXfH6mJVpMIlV6sYFehVGtO2/GdqUPJ5JA7uR3rsJORkAoTn0PG+m8EIFuO3yqiX+vu4SCtllOI87GxjOf0w43Cg69Y/qtmGcBwGP/1/6p94DciJJLh6QZBTp1vWA1FyOaRefBnZsXHIsTiIVYB1eAj2bVtbKidrHVmNxWefq0lhYF2FsqaJJBihdrC0EqgkQQqFQOp8d/bLX4F7z2UtVeyRkylAUcC6XQg/8nNIkQisq4fh2LEdrLN5UVph9TDS+2uXLM9NTmHuP7+Gwc99qil6lZYdUSuoRhUF2bEzcO+5vOHj6yEuhpDatx/5iUko2SxYnw/WEXWcGEvzmk/WkdXIjo3DfclFVduwLlfr2VcuV80xlqIxSKEwrGtaCxblpmeQPnAQ+alpUEmGc9c5cJ67q6VjtgMrZGptCj8qq4F+NYCva38QQka0/y+k/H2oLCL+Lqi10esiERxHJlZbHCwXCUJMNi9wJJmhLxychX9rc6tqlFI8/cMJfPbKJ/Do/1OjicPneOHtteKlR2bxheufwgOfOoRMon4Fhkrwb+2BmMgheaa6KCFjF0B4DnKTq/dSOgmAgrNXd2SymENi/jQs9trpgdWgKBJOn/kNnnzui5ieexYA4Hb2g2OtmJh5Ck8+/yVMzT7b1LEBdaU2HZmGLOWrtmGtdij5HORM7dT/apBjSRCBB7FWd7jJsRCkVB7+zc0JFmZiIh789GF84Y1P4eWfzcHdrQY/KAV+8e8n8ZkrHsPT90w2TX3yb+lB+OBczTYavappUAprT+3qHomFMfBWFwRn86rTlFIcPP4jhKOnYLcF4HGugtXiAQCcGv8VFhYPN33sFYJl8cWKomDq8TM12+TTEmYO19UDrIpkKAdnoA4V5kAQ7mEvBE9zGXlSMIyFf7sDc5/+MvLjE7D09sAysApyKoWFe76PyX//ElInjjR1bABwBVYjHhqv2cZicSEvNn/v5PLJ+qKoodNg+eZXaLMzk5j6z3/D5Ff+HUo+B87tBt/bAym4iPn/73bMfeErkOPN/QbCMujY0oWFfbWf67zAIrHQ/CptcjELRx17Wtg3j8C2nqb7yOw/ipn//W9Y/ObdUDIZWAZWge/uQm5iHFP//q+Yvut2iNHmxIItVhcEhx/x8HjNdoLF2VImCM/ZYbX6araJh8bgDrQ28U4dPYjQzx4BKIUwMAC+pxvEwkMMhhC680eQU5mWjn+WsWxz4uzYOPLzCzXbiAvBpsUsKaV16TCUUuTGx2EdGW6uD0VB/PEnMfnJzyDy80cBEAgjw+C8XiSfewFTn/k8Fn98P5RMczZhHRmGkkrXpDAwdhvAsk3rOGgvvLXGSclmkT01Bs5X+/6q+n1RRORn/4WJ//MpxJ/eCwAQhgbAWK2I/eYxTH7y04j//pmmjg2oL/e5ySko+ervHozdBiWThZJu7lrIiQSIINQMNOVnZlXBz9XN6YHIqTQWf3Qfpj7zeaRefBms16tmlSgKIg//DJOf+Aziv3+m6TmxsHoYubHa8592VBsSBmoXSsieHgPrcYPzNx8gpIqC4F3fQ/bESfBdXRCGBsF61Tlx+Kc/R+pA7aDYK4lXRSYIAFBKP0QI+XjBqY8AOFUm6HQj1IeA9tmvCCEfL+x3APglpfR2M33NHv4tBFcHBjpuqN7ml/fBMbgWHZc2XpFMyeZAcyJYd/VoajaYQDaYgreJl9ZcWsL3/vpFjL8UwVs+vg67bugDyxvjXaefD+MnnzuGL7/zafzRf+xE16inoT4EjxXOYT8iB2bRNVj5HAkh6up9NIlmGHdSqhDNtTurZkWkFifAMCzsvr5SNoZJ5PIJ7Dv4HeTFFLasfxc6/RsAAJ0dG9HZsRGUUgTDR8Bw6tmrvPvGUnMdvn6AYZBanIBzVWVlZS3II6USsNSp8FIJcjQJ1uOsmfoYOTgL57C/QK1qLPA1dyKB733sBVgdHD787d1Yvcv4cJVFBc//ZAaPfOk4jvxuEe/6lx2w2BtzLb4tPcjMJZBdTIJU4buyXieUTA5KLg8wjb+QutZvhXtka82fL2WT8PRvaCqNNBQ5iVR6AYN9F+K8bR8Byy61eo4TcPDoPeiL7sLo6JvBkFdfqvdy+WJFVPD43/4SQ7/9Q1gclT3I3NEYvv/Bp/DJF69r6polQzk46uiBLBxYQGBLc9SF1POHEfzqvRDWrUHvZ/4aFl8XiFQQDhYJaCKHyGO/wfQP7oT/wisQ2HMdGl2bcAWGMf7yQzVXIC0tvrSKYhJOZ20qXSIyAW/vhqaOH3n+Kcw/+gDcO89F33tvA7EIoDzgf9P1UDgKORtH4vGnwTjtTYsvBrb2IPhSbdqQo0NAeKL5YFGqjj1RShHcv4Cd16xv+NhUURC++1HE/+spuK+7HJ6rrwDDqkEnRiJg8oC4uIjFBx/A+H9+Cb033QL36k0N9+PuGEYiPI7uwd1V26j21Pw4nbPj/QCqJzsqslg4l8aDIIqYx/yjD8N35TVwbtkB+/ZtoHbVz1KOghIKUAXizDxm//E/0PmxP4Jt/copG28Wyzknjv3qN+C7u+C/4c1V2yz+6MewbVgP71WNawLRbBZUksA4qy8MSpEI5HiiKRFLJZvFwre/i9z4BPxvewuc5+4CYY3P3syJkwjf/xNM/+t/oPv974Wlt7FAJet0gu/qRO70GCzdlZ8XhBCwLmfTL65yIqFSemuUB86NT4DwfMPnDwBSLIb52++Ekk6j+09uhW2z6j8cW7fAsXULKKVI7z8Ixqr6uGZ8sfbSnZ+crJrVo2VwyIlEU1knWoZDLeTGxmHp7QFjbXwumZ+Zxfw37gRjt6P3L/4U1tXDhv+nkoTEs88j/JNHkDl0BJ1//EcNZ4VYh4cghUI1g4OsywUlkwGVJBCu8dd5x/atcGzfWrONkkzCtrG5OXH6yDGIwSA8l12Cvr/+SzCWpfM4RhCw8K3vwnXR+ej4g7c1LazcLF41QRAAoJR+sc7/fVH392n9343A2TGI6MyRqmnJlKo6DtpLeukkyg5UqQIKAZS4uuLP+ZwgBGWp1Won0SMzsHbY4ep1gGMkXXWYEu2FL99nJGTiIr7zkeeQT8v4mwcvREefBSxklEcINp3rwsjdu3Dvp47hG3/8DD707fPRu75wo2k2qABKwSC1dF6tWgJHFPi39CB2aBY9b96u+w3GtFLW44QUS6ppvA3eQ6zNjs5LrgXDcEWRfUNqtQKkFs7A0TEAFqyRplCW5gsAjKSotIVCu1jkDHjWhl2b3geOtRY+L11EAqDLtxEAkE4sYv/xu7F9y62wCm5QhqjHAwq0GN33dFQVluGwec9HYPX1GtKQ9Sr2DMeBEayQkglYKs0Kyz4zFKmBmgmiBkFKabysbp9jFMQOzsC/pVetRlCh2gbPKBCIWNgv2dXC0Qhuf++z2Hp1F971yfXgLAwAuViJCABgAS65qRebL/Hh67e9jDs/8Cw+cPtO8E6rgVqlf7eTQcAVOB4KCNz9Tgg+G5JHZuC+SA3I6StvMIQWNU/keBKMV/fgqlbWp2wMswuz4MDD6gqUvlZMs1ZtpnvdxWBGKApDYaBWQaZg9HQYqbS/GDqK/Yd/gJGBK0AkCg4sIC9NnR7uuQR+5wj2HfseJDGDzaM3gvA6Nyyh6JWpXKIarJAs7CKWwxdzAgvWwiJyZAH95/YY/J1WwcjTwUEWFdB0BlYXD7ZAdQHUSlc8ZDCEwkpKkS+ZMFAoAxGsSl8IWIq0Qigw+D+JsFg8GMSGm7cU7xuOUcBp9EGFVvV9yadeRvDr98N38/Vw7rlYvZZlAThWsCJwzfVwrl6P2bvvgpxOou/qm1T6JZb6u/JqRkShcPuGIGbjyKeisNp9xuowslbRw4F83kiHMdo+Vf+VFVC9zRXGorNjE6w2v+o/jUMEyGpGXTIyicFN1xZoYqSotUYUGHzfEgqMLCF+8AX03nQrnNu2qddI7/QIBet2wvvmqwFGQfg7D4Lt8KHjHZeUWIEFmhKg+o1ihTKdv1t3wyjWXzsAvkAjFdhCpRgiF6sLuQM8pl/KwsqIxepCxWsFBSwUcFBgJSJkaP6LgimcSSqcgy/AwcqIYKmCbOG+lRkCGQSxyQSykSy6d3Sq9C7KgNPof4wCRinZT9GWUFhJ+9r9SL98At0f/yCso8NAninZU2G4+EAAfbd+ELHHH8PMD78F3PBueNftLLUxUJOozp6oxu6ByzeI+bG9RbpfJfqfhVeDIMXPdMfU+lL/T/1tlJBiX4ooIpqegtc9ZJy4E9XnAQDL8dh15d+o7fX0VoUY7KnclpR8HpM//iakZAze/B4QpwuEY4oPXK0p39WJ7r//CKL3PoL5L34TPX/7Xji39BfGvqzSEEr7WiWflYLlmhMLQ0PIHDtWs00rqfnFDIcaL6658QmwXk9dUdAlx06nMf+1O0AlCf1/91dVv28bXYvev/xzhO69D7P/9yvo/dhHYOlrTENNWD2M7NgZuGpUr1HHqbkgCONwwPvGa5YEcPTIjo9DGBqo2abqd0+PgXU60Puxj1QMDhBCii/N+fkFBO/6Hro/9H5wHvOLqITj0PvnH60ZpGEsFhBBUMepiWCOnEjW1QPJnh6HsHq44WPnJqcw++WvwnHOdgRu+oOKwQfCcXBfdAFsG9Zh/mt3YO4rt6Pnwx9oKODCdQbAOBzInjlTldak/UY5kQTnazwbPj8zC2KxgA9Uz3x2X3ZJw8cFgPTBw5i/8y74rr8WACoGQADAe9UbYFs3ivlv3AkllUHne25uynabxauJDrNscHYMIhmehFJDlZyzu5YGQUxCjidVMRpH9RsiemgOvs3dDUXfZEnBD//qJUh5BR/99m74emvfcLzA4t2f2Ygd13Xjjg8+h/BU2nRfAODb1I3IkdrpxazH0TSFweLxo/OSa2u2cQQG0b3h0oaOK0oZ5PNJdAc245xNt4Lj6jsmq+CBYHFh38G7IEqNpei5OobAcLWjwN0XXgfe01z6ohxPgfPUjpZHDs3Bt6Wxh0loIoU7P/Q8znlLL276zOZCAKQ6fL1W/Ol3zoWcV/C9v9oPWTI/YSSEwL+lG5FD1SkxrNMGMKTpMrmLTz6K8L7fV/1/RZYQmTgIRZYaOm4sPoEDh3+ItUPXYPWq+vxSt7MPuza/Hzxnb6if1xwI0LExgPkD1QW5nIVV92SoOt2sFpLhPJz+6vdmLpFHdCyGzi2dDR03feAUgl+/D4EPvg3uay6u68ftw2swcMuHkTi8Dwu/e6Shviw2DyxWNxLRiepteCdEMQ2FNpguV0Bf9074vNVX5RVFxqrRK+D01aablSMXDoKwHAb/+M/g2rTN1Hfs525B9P5fIf7bFxvqy97lgHfYUzM9efXuDux6e+304GqQ8goycalok5Uwf2ARzj4nbB2N3fvh7/8X0i8dR88/FAIgNUAIgf+iPeh5842YeeiHdYXFy+HyDyEVn4MkVRe55C2OpjNBMrkwXtr/TdAatpiITiKdqE2/KAelCqYf/C6kRAwDt34UvL82pZFwHHzveQvc11ysW5V4HZUgDA0iNzEJKle/ZqzT2TzNI5kEWBaMrfpcLDd+puEsECrLWPjWd0EVBT1/9uH6VVUsPAJ/+C7Yt2/F3FduhxhqjFYmDA0id6YOhcHV/DjxHX74rr269jkMD8F9WWNzYjmdhpxMwnnODnR/yNzLOt/hB+tyYv5rdzRMIbIOD4HUyYzwXX9twwEvDXKyfhAkd+ZMw0EQcSGIua99A67zdiNw8011sy94vx+9f/GnoPk8Fu76Xs37pxyEEAjDgzUpMaxDFYZv1p4iP39UrQ5TBVSSkDpwCFRqbE6cPT2G+Tvvgv+tbzaVGSYMDqD3Yx8F61j+OfHrQZByUMDpGwBVZOQiC7oVt9KqHClkgsiZVGklotLKhA7qKqG6L8eTYD0OMCwpCrppQpbaFjsyh47NXcWVLF63CYxU3LTVUSsj4tF/OYKFk0nc9tXt8PsBgRFhJaKhjbZpn1kYBTd/YhTDO9z4/l++BEbMQmBECIyorpgREQIRi6KE+s2/qRPJiQiQyahigaBgGQUso4q6EULBeRyQEylj6kKllXtt7HT7iZOHEX7hKcO4aqufpCBE6e0eRceqrSAyDNcKMi2KWBK5sFqlUEBWcPjovTh28mEQWQGjQBV3k5TSd8r2iaKABYNto+8EISyOHLtPXeVX1GMykmK0E+0cCucbnzuJfQ/9c+F8SitwRGc7HedcBsHXVXksKqGQZUQILWSCOIoiu1p2kWY7cjKD9HQMHRs7K15HTSCVZ+TCKqkIRszinv/5AkZ2enDzP66BrWBrVqLaVLktaZ/7/cCHv7oV88cT+OW/Hqloc6VNtWeOKGBA0bG5G7HDc0UxQ211VxMMZFgGrNsBJZEqrZRWs6UKdiWnkyr1SH/P6uwqE57FycfuAmS5ZGMKVTM+pCp/yxRnJh7HQM/5GO65sNCmzH6kkn1p+w6LDxtWvxmEAvHopLE//SaXVmOLGSmvERAA3VsCCB8LqbbCKEb7YSQ43QDLE2TD2YJYqli0RZ6odk1AK9ifBIERkQrn4Anw4BkJfJlP5RkF0SPz4O0cAmtcuvtFKd5bLFEM/psQQJwLY/Zf74H37VfAddlO1L+ZVVi7+rDq5g8g9NzjiB3bV9VOi8+iwj5DCVzeASQik0t8HpEVEFmBwNoBUMi5VPEzvV2qmSFGeyWK2g6SjGPHH0YuGQYj6Y9Ni+fAMwKGR68Gx1gMWSqq+HTZPlWvbXp6DKfv/CLyC3NgwJi6lUEA25a1CNx2I4LfeAjZk1PF8Tf4voIPUffV68YQikf/4pc48cDRos/TskC0az602YmLb+wt+rTis7Owr2Vr6n2eZnNiRM3w9AW4Cr5O3RYPL6Jrc0fRfjiiGM5VfX4qxUw+QijiTx5A/NG96P27W2BZ1WUYi4oojKNn5/kIXHQlph78FsRoWH1kKFDTd3TPp5I9qdfI4eoFw3BIhadU+9Iy4HSbwDoh5lM6v6gU/R6RCqmOMjX6wYLd5XNJsIwFHOXUz3R+VevrzNFHEZx4QecHUXzGF22obMvOTiI7N4mhd34InNONqo8HvbA2Q+B9x9WwbRhCfnoBSjpjmJMVr0fhntfmZ681CEMDoKIEMVhd74J1uVQxzSagrdzXChbnzkzAOjTY0HHDDzwEcWEB3bf9CVi7uRcsQggC73wHLIOrsPDt7zb0AigMDUKcX6hZ/YV1Opsep/TBw4g/WX0hBwDsG9bDsc28ICpVFAS/832E7nsQAEzTEQjHoet9twIMg+APftSQ9kXm2AlMfaa2HI1nz2XguxpbfNAgJ2rTYeRkClIoDGHQfNBeyYuYv/M7sK5dA/8fvNX0AjXrcKD7g3+C/NQMwg//zHR/gBosqhVUIywLxm5Xg4hNQA0W1ci+mprGwp13gTY494z9+rfw7LkMnsvNB+P4rk503Ph2gBDkzlRf0Gk3Xg+CVADLC9j99n+C3Vc9Fc67cRd6r3h7U8evt3KvSDJix4PwbzLPQz/2ZBBP/XASf/Ll7fB0NaY6zTAEf/i5TcgmJTzypeOmv+ca9oMVOMSOVV+xYd0OyLEmHf7EKaRrrGLlkhGcePJ7Rf6wGUzN7kU0PoF1w9c1fD4cK2Db+puRTC8gmzMvxmh1diCXDCGfrv6d8MFnEDv8QsPnBAByLAW2hj3Fj82DtXFwDZmPqj/8xePIpiS8+7ObwDCN8Zi83QLe/x9b8OQPJnHiafNltfybuhA9FoRSgUaigXU7mhZHlFJJcLbqqwOpxQnYvT1gucbun63r34U1Q7VXZ6ohEh/HCwfuQCr9ekneStjxge249nMXV/1/Qgg+fNe56Ftfe9WnGpKh2pkgC4dC6NroB8Oae1RSWcH0vz8A2+bV8L79iobPxz6wGt1XvAXTj96NfCxk+ntO7wASseolpnle9Q95sXFfLCt5TM3vhaJU97MTp36L4Mx+88fMZTH5i+/Dv/MSCJ2Npzs7L9oOz1W7kXi6MZFhW4cVwSPVV3cTiznc/b8OQcw1njGTDKnjY/dVV8CaPxRC1ybzosu5mTDmvvoQOm59I6xrG89QCVx6LWx9w5j++Q8Lmlb1wTAsnN5+xKOTVdtYeAfyUnPP9byYgoWv/ryilCIRnYTL21hWkb13CGtv+/umMioppVj42kMIfvsXDX/3tQDGasXg5/4Jlp7q96rz3F3o+IPqOnq1ICeTYGvogVBJQn5qGkIDQZD0oSOI//4ZdH/gfeDcjZVbJQyDzve8G0oqhfBDPzX9PUtvDwjHIjdZ3RerQZAms6hOnKxZHlcMhdWMgwYCN/EnnlK1UmrovVQDY7Wi6323ID8zAzlifk7MBfyQFhchxaoXl0g8vRfJF19q+JyAQlCthj3lJidBrFbwnQHTxww/8BNQUUTnu9/ZsG4F5/Oi609uRfyxJ5CpU/ZWDzUDawpUqTEndjVvT0oyWVNzJTcxCUtfb1UqSzV0vvcW+N78xqbOKXv8JGa//JWaAsPtxOtBkCpgOSvy6eo3KO/ywhpoTuFdjiXBuqtHpVPjISh5Cb715qKgmbiI+z5xCFd+cBiDWxsTONVgd/O45Uub8cw9UzjzYsTUdxiOgXddJ2JHq1NiWE/zQRApnVRFUasgtTiBRPA0mAoClJWQzoRwcuwX2DDyZliF5tLsbFYfLjznz2Gro2yvh8XmBW91IbVYfVKZnZ9Cctx8AEoPOZYE56k+TrFjC/Cu7wIx+SI39kIYe380hff8yzbYXM3JBq3e4cGVHxjGvf940HQFIt/6AJSchNR49Zc/rgV6lZxOgrVXd/ip0AQcHeYn3rPzL+HUmV+BYbimBU79nhF0dmzEkeP3m35JeS3B4uCRS4oQM9UndcM7vLA6G7dTRaFIRkQ4agSad5fxAAAgAElEQVRB5g+F0L3F/Etr6OFnkJ8Lo+tDNzQlJAYA/l2Xwt4/gplf32d6dc3lXYVEbKqqDbEsD5YVkGuiQowWOOH56j5mfuZFSKL5lOjZxx8CaxHQden1DZ+PhsB734jOWxoTJu/a1IHg4drBpWcfmGmKXpUI52H38GC5yn5WkRQEj0XRaTIIQinF9H/+DI6tI3BffW7D5wOoQcK+a9+F3OIcQi89Yfp7Ls8AktHqL3KaxkwzlQ/yYqoYlKuEbCYMSUzD6TMX9FGkPMYe+iZy4QUwlsbLjgLqOHV94E2IP74fiRcbow+9VsAIQs2XVs7nrRkkqYV6QZD87ByoLMOyypyArZxOY/Gee+G9+sq61S+qgbXb0XnLHyL+xFPIjtemuGggLAtLfz/yE9XneqzLCaVZ7ZQ645Q7M4Hs6THTIpniQhCRh36Kjne+oylNCUDVIVr1Dx8H5zc/J+b8fjAOB3I1xik3MYnMsRNNnVM9OkxuYgrCQL/pYEbm5CkknnkWXe99T1NCqgBgXT0Mzxv2IPi9u6Fkq1MN9bAMrALN5yHWqMyk0tCa1+KpJUacOzPRULZMYu9ziPz8UTA837TAqW3DOtg2b0LwB/fUDP60C68HQSqAyEDw1LM49uuvL6EtaFt2cQ7H7viMqtqlfa/afED3H4RQKHF15Z4U/ma1rZAWmzoxB+egDzYXu4S2ILCSIb3Wyoh48mtHYHdzuP7Dg+CJBCsRYSESLEQy0GDKv6enNvBExtrtTlz67j48+MkDIGKJEqMJyekpDAxUuoVvQwCJ4wvFlFF9KikhhSBIIlWgAlXhCumhayKnE+AKlWEqXYf04iSc/lWGVF69mFuRulBIw82mFtHdsQW9/q1qmreeriDLxQ2K8W9DirisgFUIQsHjOHrkPjCSSokx0BZ0+6CqkKDD1490aKqYxq6lJGup4ZzNCTmdNAohVkrnrSC0K8fTYN32Yiq48RpQJI7Nw7+xswK1ymgPPJFBJBEPfeogLv2jVRjZ5jTSqEhlaov+b30K+Zs+Ogirg8Xvvn5yaWo4o+jS1NV9m5uDY5UHyRMLut9REpxUhXbtkBNpQ0pzXVsqbEPv+TM4+keMadQ66lIqPA2nf2AJtcqwFa6rmE3i+KmfQuBdBmpBuT1BUYobkeVi2jjR2d6GoeuRTi9iemqvgW7D6OgGeoHf1woIKDgi44fv/Cmmn5lWqXkaZYWRYCXq9sAnDuDJu8aKfk9vlyxRQEAr2jFNZKBIFB0dTPFYKi1G9XkckbFwOIyezb4CdaJEYdBTFzXfJ4ZiCP7gt+i77Y3gvfYSBVK/1YJGeSEEfVe8A6mp04gef0lnr1RHi9Godermcq+CIueRSQSrUqosnB1iLmWg+ZGCXRaFUvW+r2CfYjYBAgY8IxR9nZ4KKOezSKeCcLn6y/otURj0/pvKMqR0Av1XvUutvFXhsVDu9ygpaR0X6UccA0IVTH3hbmROzeqoJKXro9FMGELBMzJ6NvoQORUFcnmDP9IooL5CFcBcJL3kGWllRFUclSgGmp/m8zLhHFwdfIlOqrM5gZEQH49Czsvo3egt2ViBplM81wL9jyEUsccOIn1iBt0ffCMYhhgEtxvxfbzDjZ4r3ob5p38BKZVY4vtUv6b3iRROVz+SsWkj9Um3WVg7FCpBkbJL/F5xTkRpyZY0nydT9Pm2YOvad+hsUzHQYpKxaVgEN6wWTwWKqeYTafEeWHj2V8iF5sA7vUvEXyvZUvHzMoquMNwD/9suwcxXfwrkxRINU3d99EK7rzUknt6L+a/dUfX/89MzmPz0PzcVGFPqCFnmJqfA93TXLHmqR/Tnj4J1OuG95sqGz0UP6+phuC66AIt3/9i0noMwOFAzE4RxOlpaua/10pqfnIQwYP6lVQwuwrFzB5w7dzR1PhoIyyJ96AiCd99rrj0hEAZWIV9nnJSWxql6oDU/OWn65Z5KEkI/ug/uyy9tOqCmwffGa8AIFkQf/bWp9qzdDq6jA7mp6eptWhin3v/xZzVLBOenpk2PkxxPIPzAT8B6Gsu6qoTAO94OcWEBiUKJ5lcSrwdBqsDh7UcmvgBZqrwixPA8xFgYcqYxMVFA1QSpRYeJH1+AZ525LJDgeAq//+EE3vZ36+sKV5rBm/5iBOmYiL33VndOevg3dCJ2tBYdxg453vgYAQBjsYH3VK9NnQpPw2FytQgAOvzrsHntO5o6l3LYrX7MBvdhMWIue6N79GJ4ekar/j9rd6gaM01AjqdqlluOHVuAb725tL9n7z6DTFzCG/+8cumyRsDyDN729+vxxHcnsHjG3G/zru9E/Hh1e+Lcdsjx5sZJCHTj/2fvzaMcOcur8VurpNLaUkvqfZ2effMs9ng84w0bGwPGLA6QEAKBhBACCXyQ5DucfJD8Qn5ZSEIg7GtM2A0YbOPd4/Hu2T371t0zvXdLLbW2klTr90dJ6pKqSiq1e4Z8Ht9z6pyZLqlKKj311vs+z733oVjrLP662z6GUP8WW8caHdsDzhFEV2Trkj6LHizjxoreWyEsoUp/JSCyugVzp63ZaWJBwfyEvcqKHpmExlDyBM2ZZNl4AblYHpHV9ipcU/+1F66VnfBd13xb0lqw/iAiO16PmecegCI1ZlIxLAenK4RsukH1fgkSBlVV4HN3gCDMny/ZzDQIggTntdfOnSAp9N35AXBtzen7TY9FkaDcTkx+7RFbi6/WoQB2/NkmqBaSO4omwflpZBeaayMOaPHkqSOFmTmZQEuv17Ldsx5yQcDUd55A2+9eD6Z1aexOPfxrtsAZasf0S/Y06V5/Bwr5BETR/NnN0kuXVzE0B85pzYYJR9Zj686P2TqWkE0idugpdNxwF0imuRaUZgi+bTccna0QYulXfKxXG9iuTggzs1BE83uDYFlI8fmmTTIBrXJff3E/AYdNFogwO4f0s89rvg3L0GUi+KY3QM5kbC/I2O4uFMfqyGHcS/cEIZ1OMHUYF8XxSbBNLNS5dWsQ/r13Lemz1IJuDSG77wDyp+3NiX3X74JzaIXl/ldyneRsrj5jZmzC9nVKP/0slEIRLW94/ZI+ix4ETSP41juReuppiHF7UnG2u7NBsmjp14lti9ZltnR84mNw20yQJR95DEwkUrczkl1QPi9a3nTHkltJN4PXkiAW4PxtIEAgn5w23U+VvAVkfgka6zRfd9GaORuDf6W9RetD/34Wq3eHMbTDOlnQDFweGrf86SAe/9oIirnGusLA6jD46TTElPmDj/K5oWTzUKXmNdZdd/4+AuutacAOdwDeSOPFuqoqePnYPUilral3zYJzhdDdvgPDFx+zNflu6VgDX7t1EoT1hUC76/c1N4MqSlDyRct4ElJ5FGYztqRVxZyEvd88j9d/ZBBO9/J0z161M4TVu0N46N/tPRgDq8LInGvgMbOEJEgxPoOz//F/LBeUsqgZmdnxA8nnE5ic3ocVfa+3XBg2i87oNgz2vLKq1asV4dWBukkQT5CpJDSaQTYpgmYION3mE+XZ0wtgPQz8XfU7LwFA9twsEnuOo/0PX79kGUwtQldppmKxE8/Zer3X31nfF4TmIEjNJ6RbvL24ev0fWe5XVRnRjqu0VuYNsDB6FONP/qTpz1APkfe8DvnRGSy8NNzwtbSTxpb3rq2biOjf7APRkGphRDYpWibUAGD2ZBLRNfYSarO/PgSSpRF609JkMLUgCALtN9yFxOl9yCemGr7e5Q6DpFhk0+avZWgnCJAQlxBPx0d+jtHJpy33iyJfVy6jx/SBR8C19cLb98oTjwBAOhj0/+3vwtm5PPOpVxPYjnZAVSFOm3dwK3sLKEtYkMmNvAnGJ2xLYZK/fhDc+rVwrRhs+nOYgXS50HLbLVh45LG6hqdlOLq7IMXjkHmLObHHDYXnl0T1j7z/vfBsty680MEWOAetu3iVoSoKZr72rWU1oGSjEfh27UTigd/YmhNz69bAVScJwrQG65p2WkERRKiCoHVOMYGczkBOpWyxOpRCAQuPP4mWO26zzUJqBG7NarhWDSH5wEO2Xu/o6kJxop7HzNKYRcLUNC5++jOWDCelWAQI0tb3FmNxZJ5/ES13vnHZ5j++nTuWJfHUCK8lQWpAqBrNkiJouHxR5OenFumXOkovSbMgKBpSjYShzoEr2gc5kwPt5zSqJanrCgMVhCIjMxJHaFVrjXxBrnQ7KFNpY2cSOPnkLN708UHNoV63lbu6VFF6azfda/UdFW54RwRON4WX/nvUIGEo09HLUoZAjweUk0ZuJFaRYeg7xdB+zftEzuoeCDbo4YQK8BfPQykWUaWk0dF4+3e8E4HWFabyhYqjvaIiHjuJhdQoOKalipZLyPKie31NJ49Feu/i36FU7+vr2A0+P4/5uZM1FPTyZ1j8PEpRwLk934GQXah2ty9JMXz9a9Fz1wdM6bymF6f0QiWrTUIpP2dwtadJBfnzM6A5Br5uX1WnBJqs/j0ZQsa+HwzD6aaw663hqjgxlVBZxBJDSNVxSIq488/7cOKJWSwMJxbjh5B1516kGQdXhpAZjoNSJFDEojN/WRJD+zkotcyiUizVu2RyNgtFFDT/GH0cqSoIVUXi3AGcfPQ/zaUENbICJ+3FxlXvRsjbr+tCpACStpnGUc0GvRxB0qjgYjGLwy9/G2Ixay7rkq6srgQEAThICe2r/YifSZbGvUUpDFPaAiEKuaQmb3AQRpkCCdUQqw5CRD5ZhDfIgCWVyrGcpa4xDlJE/HQC0dWB0n6lSsJQ7uhRlltM/PfzCO5eDW5Fm3YPAhZ6Nh30cq2avxMAKJpB9OrbMHvocciFglG+UNPByONp11gZOgmg/t8sxWkdPUrjXlU8lqV7tXGqKODzceQys1WSQFJSK1LAoG8Aa1a9vWrsK49reukOZAXTBx4Gw3ktZaYNFZM18iKCAJigB+E3bcXEPc+AUJWqzlj6jS09t879Zhj7v3OySgqjl/N94htrsOV6r0FK6iREUIQKGkrVuFge8/LJIvxB2vS4DCEjdiqBzjW+qs40VRKr0jNT4XlM/fRFtP3ebtAsWSVtJOrGU0kzZCItIlTAHemBv289Zg4/vviMKXcF0seWpIJUCXi87cimJyvSp2rpCgGGdkEsZM3HPBUGmWB5fCwUF0CqpK5jjE4+KinY98K/ITF3qrrDm/7ZqouT6Kab0XXD20HWfm+bQ2XVtS2HFaEi9uAhTP/4OUP3nvKz80oEybJgohEIk+aJMcLpBChqSQsyOctbVu5VWYY4PWMrCVIcnwB/4iRa3rR0ryEzeHfuAEHTSD/dOCHNRMIgGBrClPl1Ij0eQFWhWCRJrKCqKvLnztdNxIR/9522kj/8y8dQGBkF3WrfGNQOArfcDHF2FvzxxobVSrGI2W99F1LKnHXFrV+H6Aff1/RnUHJaEs4qnooTEyBdTtChxt5MqT1Pg3K76yaeloKWN74BuSNHIcyYJxT1YLs6IUxMWSbNltptSM5koYqSJVsq89J+TH/xy7aORQdbEP3A+5Yt8ViGnM5g+stfh5xbGtPFDl5LgtRB//a3I9C5xnQfQRAIbb2hbrcJK8hpHpTX3Bg1N74ApSjBP9T4Bn3qm8PYeEsEbSuW1hnBChRD4vYP9+Hpey5CyNd/4JMUCd9gCJnz5k6+5e+pZJoLYkUUcOEnX4GYNq8A84kpJC6+3PA4qqpgdGwPujp21HWkXwpYxo0NK9+FgM9aU1cGSTHIxC4gN2+e0VUkAdnR0031EQe0hBoAkBbxlBmOwbeiFUSDDi8CL+Hp713ArR8ZBMUs77DQtdqD9TeF8cTXGldqAytbIedF5CbNDdgo/9LkMHI+C9pl/fvzySm4A9bdoMoQRR6KIiEcXNX0Z2gEhuYgiDmMT9ZvgXeloWd7GHd87mrL6tKKLT5surH5ym0m0aByfzqFyKrGUoTcSAzzL5xH+7usu9gsFcHV20A5XIifeqHhaz3eDmQz05bXiaU5iEuQw4zHDmJ4+inL/VNT+1EoNO4MkLx4DEI2ifCmG5r+DI0QfccO9H7ghsZeGQCKGQGnH7NmQ0yd5zF1vnmGQyYpwtNizoZRZBWxc2lEVzc2H5z81VEwAQ7BG+23ubSL6NZbkRx9GfmktZl5GR5vBzIZ6+ukMYuajydB4sHQ5s8rQUhDFHl4PB0Nj1PMJuAMROAMLs2Msx5oP4fpn70IKdu8zO7VjNZ33Q3XmtWm+wiCgP+mG0BaVODrQcllLd8nzs5BlSQ4OhvHxMKjT8C9eRPYqP3OinZA0DQCt92K1FN7oQj1WYcERYFpb4cwYX7vlBkvzSaL1GIRM//5NUgL5nOj4uQUci8fa3wcRUHy4Ufhv2E3KLe9tsF2Qfm8iPzhH8A50NfwtQTLojA8ain1UAQB/Kkzzc+JS9eVtPhuwuQ02M6OhowFpVBAeu/TCNz++mWRVenh6OoEt24NFh5p7A3i6OqAWixCmjfvarZU7xQ5V599JUxMgbVxz8m5HFRJArd+edh4epAeN+R0Gumnn132Y1fOccmO/CqAN9wH1m09aWnb9UY4Wu3poMtQVRVKhrfsDpM+H4Mz6gXrq+9AHB/N4sRjM3jdHzemvi0FW++IgHGQOPyrxhIS34pWyyQI6WBAONmmF65lmZHVwjV58Rjmzr/Y8DiJxHnw+Xn0dC7/AgUAWluGtIqYhXa6DIIgwLV0IL9gLq+SiwVc/Pk3IOWa08ApGR6kywGSMZ98Z4fj8A02Tqgd+tUEHByNzW9Y/gklANz2p/049ugM5i/WH6wdfiecEQ/S58zjiV6iHEbic6AaJEG4QOMBf+TiEzh+1p75V7MgCAJ9nddjYupFSFJj2u2VAlfAgd6rI5aTlpXb/bj1fY1/u1pkkyK8FotWAJg5k0JkVeNF6/iPXkJo5wpwffZ8nJoBQVKIbLgRsePPQFHqTwY93nbIUsEyIcEw7iXJYcQ6i1ZFkXD2zH0oFut7KKiqipnjexBecx1o5/ImowGA8bsR2NYPKd24uhpe1YLYcBqyZF5Ze/R7U3jsvxpLRmqRSUqWniDJiRzEgozIyvqmcYogYeKXh9Hxjqttd/NqBly4C/7utZg92njy7fF1IFsnCcIuUV4lSDxYi3jKZKZB0y44nPWTj0JuASfu/UfwcXveZc2iZedKsEEPpn7duNByJcHZ3wc6YP3bBN98R9MJCFVVSx4OFpLeySnQoSBIl6vucYSZWfDHjiNw681Nnd8uPNu2gCApZPcfaPhaR2cHhElzM0uCZUEwdNNJkHI13ErmwR85asu3JH/qNKREEr4br2/q/HbBrVkN0uWCnGs8J2Y72iFMmc+JFZ7H7Ne+2TTLQc7lQLpclokLYWoKbEfj+ULmpf0gXS64N29s6vx2EbjtVuQOH2noDUJ5vaD8PggW5qhLZYIo2VzdhKUwZS8JknzwYcS+/8Omz28HBEkicMvNSD/9nC0p2lLwWhLEBGVaKD8/haO/+ieoikbv1Hf0gAosnDyA7MhpW01PylALAlRRWpTD1EgYcudj8A+VpDA10gWGVCo024M/Oo+hHUEMrnfBQWpdEcoSmOpOCEK1k32Vq70AJyGA1b++tHmcMm56bxee/68RMOoi1bzyeXQ03pahIHKjsYp7elVHD2hsEDmbqy+B0UtEVG3RCgCUk6vqLlD+dz45DXegQ0fjNe/Q4uWiWD90NxwEZ6DlVnXxkOXK36s2XYcPQlKq5A/l4w1ffBwnT/2smtprQuXl/O3gk1NVVPHy96YdJdkQn7MdS4DGBNE6w6hVnYbKEqvscAyBFaGq361KWkXIoBQJL9wzihve2wUnW9NJo0oCIyzKBixiSf96vcyqfx2HgW0tOPDjEU3OoKOK6+VVJKHCP9SK7HCsqgNHuVMM7eegihJUoahRw23GkzPcgZardppS71VZ0eLJ37HYJaFKXqX9flIhi6mZg+iKbC9JEGo6aTSKpXI81XTf0Musoi1rwFAuTE8d0CjoJRlM+TNcSSCgViRbj/3dfhz44flKFxe9/C87y+O+fx2BoxJ/i7HIEDIIQjXGKikiv1CEP0hV7WNK3WVkvoiF8Rw61/i0e0UnYSh3xqIJBVI8jdjeM+h553ZDV6bqDYudYsxQE6/6+GxduR2KJCI5cngxDsoxqosPJ+kGw3DIZad1Y+FibLGEC6LEL3bx0MdqSQ4DabGbEUoxKoo8HKRLF99qRSLBZ+egqio8rkhJ8mIiYSh9j46NtyKydle1VGYJIV25lkCVlFTK8Dj4e18Df25aJ1dalI+Wx5qOlW7IgoLseKpK6lKWuPhbSPALQun/ZZmUFjMkFNAVaWD1mJdLCmgJklXSq7K0av5sEt6IE/5QWS6zKLGidRKruT1noCoqoreu0c0LVIMMCOVuOVaSK/31rXnWRNddj+TwYa1TTM0YV5ackLIKn7sdPB+HWhRAlmVVuucmS7kgCbwmBawd91CKEd24V46f3tbtcDMh7Rmsl9hICnKZaXjcbSBrOsBUy8CAuRPPgAt2whXsXPxuuu9tP5hQuSf19yrNAB13X42JXx4CRKnqnr9Su8MAQHFiEhP//79YUvMz+w/aNsYsQ8kXAEWxXNwXJ6fAdjaWwqSffhau1SttLdyWAoKm4bthF1J79jb086i3uCcIAqTbDaVBkqAWSjYHEARIzjwZJExN2/rubFcnwu/93WVngeiRfOA3iP+wsfdTvetEciWPmSalEEo2V78zzOSU5m9TB6qiIL33Gfhu2L3sLJAyHD3dcAz0If1MY+Yv29mBooW8inK7oQqCpWGx5TG7OuHbucN0X0WC1uA6ydkcsvv2w3vdzqbO3QzcWzaDdDqQfWn/JTn+a0mQOmBdfhTScyhm5k33Z0ZPITt6uqljluULlNd8IEsPx+EbrK/TK+YkHP71JHa9234rrKVg590dyMQFnH6mfqbSv6IV2QsJKBbmp5SPg7IEJgjpcIEgzQegfHIargbyBVkWwDIeRILmkqblQlvrRswnziLHm7MXyvBFBuFwmxvjkRQNknU03SFGzvCWUhhFkJAbSzZkgpx9ehaZ+SJ2vMOe8dhSsfs9PTh432RDw13fQAjpYfN7rnzfKJnmJhBcVz9aNpkP+ICKwV3vgadBp6HpmUNwsj60BqzNvF4pSILCqoE32ZJYXUmgaBITR80ZDvmcgvu/MY1CrrnFSSYpWTJBZs5lQVAEQv31jdnG7j8Oz2AY3jWNpVRLBUmzCK/didlT9SmhBEFoviBZ80klQ7sgSM13bhBkHgxlPsZkczNwOVtANzAUVmQRge51YN2vvNOJFRifCy1X9+Pizw7XfZ3Tx2L9GzohC+bx4mlhkEk0NgWvRSYpwROwiKezGUSH6rNAVFXF2L2H0PWWjSDZ5TGmNoOnbRAOfxhz5+ozKTm3VtHP5c2NqhmKgyA3zwQZjF4PzmH+HAy3rsNg361136/IIubP7UNk7e5lM+EzQ+imtej7/R1Qr7Dkcz3QPh/EmVlICXOZcv7ESfCnzzR1zPIi16oqbWfRquTzyO4/CN+uS8P4LcO781rIqRTyDb4j29kBcWbWUspBud1N+xzIuRxIzgWCNF+2CdPTYNvrM3kVQQDl88G9Yfmldnq4t24Bf+IkxLn6c2Ln0ArQFt1uSJYBwTJLuk5WCTVFFCHOxRrGE3/sBOQcD++Oq5s6d7PwX78L2Zf2NWQ5sO3tEK2SRaVkVrNJNedAf91OLuE/eE9D89jMS/tAt7TAtXplU+duBgRFIfSOt8IxcGlUD68lQWqhLlYgWMYNxuVDPjFVxUYoVx1ol9vQItfSC69cvclp2Vza66qwJcrmjyShInthHoHBFl3VXqlU7cuV+6MPTMDlY3DVzYGqqjtLyBqrgxCqDSvLFSvdZqjmV/YtVuh9PgJb3hjF/nvHtYoZuWjypmepBAcDUCUFhfFE1fepmFl6XVCyfGNjNx1cnb0YeOdHTCpZKlRRgljIwO1rM68WlQz7hocfwZlzv1o0oFRq2B8GQzfZZKsxszSp/HvZMFr8/Zia2l/FBKn9XKH2dejb+OYS06C6SgoVoPTxVM8kUFcNVLI50F6uYuhWroxShILCRAKqrKBlILBYxdKxirTfVMLhn1/Atje3ocWnVmKm1vSvUjE1xIuuGkrqYq6qsi7BSYjYcrMfLg+N4/ePVxkG6mOdJmX4B4PIXEiAJhUdw0W7PxivJhOTc7wt/X8ZySMvInPuhHaddMaNhAKQoBDsWg+Kdi5W2PW/YanaPjt3FJ2RrZrhbY0JKmTZRizVxFOZFaJnJ8kqwv4h+Ll2EKJsiO8rCQTUypjXvsqD2XPpSjzpmW+tQe0mEVN8dfwRAhiUjVEFQ+WeXxARCBCV8VNvJD1/LoVIvxucQ6kYB+tjlCRUQJYwfv8JdN21CTS1WLWnyBr2h13UVOz1xsmtq3aAj0+AT0xVjx+6Sj4UFR4uimx2pqq6XmZnsIQTosRDFU1itWKwqtsna5X8DR1vRrt/TZWhdPk1hfwCPG5tHCZLBr+1456YTePIzz6LYmrewILTf9f6Y57+RaU/1TBtaEJB11uvwszec5DTvK5yXzYUX2TB/e7nN6J3rXuRBaIbs4JBArmFGhZcKZ4oQgFVfsbqDXhVAbmUjFAIVeNleZs9m0b7Ko+B+aY3R82cnUXuwjx671xXYbeQsGmKWu9y6VkhCkCCQHTNLsydfQEQZRNjce13pkHD5Qoim53VWB2yWsWKZEinJgPVx5KixRNUlOKvetwr5lM4Nf4bqJJYMZPWG+56HK1o8fRUj3k1zKL01BkABII9G43zMrN4sro4hD6WFuOp/AxlXDR637oRLAsDq+hKBeXzgvJ6rav3bnfTlXu5NCcmXeYScHFmtuGiNbv/ICiPG6615n4lywWKc8F91eaGshOmvQ2qJEGMmRcQl3KdnAP9aP+zD5vuUwQRcibb8Dolfv0A5n/2i6bOuxQ4OkfzW/UAACAASURBVDvgHOxveJ3cG9cjeOcbLfcviTGT4y39QMRZLaHLNEgWZV54CZ5tW+q2j10OcBvWg2AdyB44VPd1bEc7hGlzH6dywqfZeEo//6KlgS1BUXBvXN+wM0zu0BF4d157SZPRAMCtWwtHV+eSOio1wmtJkAbg/G3gUxYtwZxuyPkmdX3ZPEi301TvK2YLyM/l4Buob/L34k/GseN3ukBSlzbwAODauztwcu880nPWBmGMm4WrzYvMiHX1Xm6yck85nHCGzal9JEVj6zv/HlwdJoiiSJiZPYKgv3EL3eVAZ2QLZuJHoar1b9LZ4RdRzJobHPW9/UNwDzT3EJczvCWrKDMyD1e7D4ybtXx/araAM8/EcO3dl4ZCqgdFk7j2dzrx0s/NtY1l+AZCyM9kIOWM2XGCpkByzqaZIOmzR1GYMz/vzPE9GDv8YMNjbNn4h+iKLk/Lyka4MPUsjp+997Kc6/8FRId8iI3mIIvG+8vjp0EQQDrR3OKkHhNk+nwO0QaG01PPXIQiyIjetPwmubVgPS3wd6zC3HD96r3bHUWWN58ssbQLKhTIitDUud1sECxtXlkb6LoRG9a+u+77YxcPwsG1wOG59G1H/Ru74Ip4MfHE+bqvmzmXweHfmD/Xt9/qx19/szmX+1xKhqoCXgsmyPS5LKJD9VlFF+4/hfCOPjhbl9fo3AzBgS2QxQIWZutXtD1cFLk68dQsEyQvpjCeOGzaWlxWRLx4+EvgC+bPxzJaOtdh/Vs+CZK6dGyZMqRsEY/dfQ8yF61bdF9pYNrbIFp0taDcXNOV+/Ki1YzhIOdykNPpugwHVVWRfu4FeK+71pIlsZzwXnsN+OMnIaWtfZAojgMV8EOYNk8WUW6uaR8H0um0THKQLIPef/p7MG3WHoWKKCJ34DBcK4eaOu9S4dlxDbIHDjVcuKaff9GSWdT+px+Ca01zz9d6TBBhahp0KASStZ4TS8kF5E+fqcuSWC4QFAXvtdcg8+K+uq9j29sgzc+bMkYImgbhcEDmmxuLc0eOWiYzFx5/EgkbLXzbP/pheHde+usEaJ8p9oMfL/txX0uCNEB4YDvcLeYyAcbjA0we5vWgZHhQHvNFa240AZIh4e6ypgzPnElh5mwW2+669ItWAOjZ4EPbCjcO3Fd/4eodCCE9bJH19nCQs83doPEXnsDEwz8y3Sfk05AKOdOJVOX985pMqTV4aSsDZYRDa7F9wx/X/UwAMHV2L9Kz5l1SHC1hUI7mMs9KxrrTUGYkDu9AfSnMofsm0DbkRdfa5vuxLwVb39yOyVMZzJy1nkB4evwgaBLZC+aTYcrrajqe5Ly1MWo2dhFokLxKpydAECRoanl6xTeCz9OJufkTEMXm5QuvRkRWeLHr93shmkgYSIpAW68DxcIS5DD1Fq0rGixaHzqLjtcNgXJad5hZTrQOXYP4hUOQJeskhsfTBj4/D1kx6oMZSnvuCLL9mFJVBXvO/AcyBXNJRJafs+xGo71fRezCAbQObrvk1SJAkwRt/ee3oP/O+hLImTNpPPgF80SJ20cj0t3cfZ5Z0OQzZkm1Qk7C/Hi+bhJEyouYeOwcut64rqnzLhUU40CoZyPmLtQ3efTUSaoxlAtiE7EEAKKcB0M5TWOBz88jy8/CwVgngYRCBvlMDIyrvrRouUB7HHB3+DH+UHOy51czvNdstzSWpHy+phMRMs+D4iw6eUzPgKBp0K3W8xhhYhLi7Bw827c1dd6lwtHXCyYSRnZf/XuHba/nd8FBaXLRuvDYE4j98Kem+6RUGkouV/fa88dOACRxSbp4mMG9aSPaP/5nDeMh9cQeFIZHTPcxkXBDNkItlBwP0iKexOlpsB0NWCAv7QPb2QGHjZbMywHP1VshjI3XbZfLRCMASUKcsWKDcM17p+RyloyZ4oWLGuuvDooXx0DQdNO/z1Lh6OkG//JRKIXl7dj1WhLEBHpaaGvPVQh2rDPSSlUguP5a9L7tg9YSmMoBF/8p57RFq97Qrfzv/MU4PD0B0AxZZYxali44SRHHHxjDyh0tiLZRYEvUcHOjSv0mGTa3XjJTa56qowC7SAnXvT2Kw/dPgYYEvZmlnh7u6w8idzEJuiTrWTSzVEH7NTlM5XLUmwuXrq2UTmkZ5PI119F1Z048hQv7flFN462RocxMH0Jb60bQKmWQIOhp4NBvssmm26+n9WpGb4vmg7RKwUX7wGdj1ZRw3WeCCnC+KArJGVO68tTj92LuyftrWd91jd7krMYEWaTfL1J6c6Pz8A8EjeaAJeo/DQmH75vAjrd3wEVKNb//ojyq/G83WawTU9UGqpX31sRVtIvBiqsDOHb/RNVnWqSHK2AZAt5uP/IX4hWqeNV38+jiqWQQqOpjqvZ6qaUkiJMzSA0IFSgkZ+DyRQ3mgGVplSIWcfjIt7AwP6JRwsvSFaXaZLdhLBniySizKh8r6OoGy3gQnzteZfR7JYEgoI03pASvn8BbPzWIgFczOXXUxNa3nlyBrTschnGPIWQQUE1jNZuSEQxq8oWylLBsLD1zPoeulS4wpASGlKokDAyhQErnMP3CGHpuH1qUoOnkW1VjXB0DSxNmftW4oJe+tHSuA0GQSE2cMhpalsYYjzMMQEU+G68ysSRkGayqVb8kIWuMVVXRjFH1MSpKkIQcBDkHWqGr5FuELEMScnjx5S8hn42VDH5VkLK2lSUMucQ48pkYWnu3VMZA2xIY/fUzuZZlCWCtwbi/2welIEJI5krjS+k5pZOndA65kZjIA4VClWzFSQhYGM/h/VcdgZzNG+KJhAoaimHMKy4UQNFAi1dGrewqMZIGSQFdK5xwlGQyjlJMlZ+fk3tHQbsYRK7pBQlN/lclrSp/dRvun0TNs6Pi/akf9xSgtX8bklMnIRdyVbK/srQKpXjK5WOLcaQbs1g4IEr56ueoKJXiSa2Y6+pjShBzYClOJ/+TK3KtXG4OLkcLaNAgZAWkpOgkVtpnnh1+AcMv/Ggx/tXqmDKNpzqxZWZerP8bSajouX0Ik4+fBaUuypKvZHi2bbFcSPt27UT0g+9v6njaYsyiPe7MLJhopO5COrv/IFyrVoL2X57EGEEQ8O64urGEoT0KccY8ebwUTxBpIWVZrEk9sQfzP7+v7vuz+/bDs3ULCPrSM6gAjZ1Ct7Q09AVh29ogWCzu4z+5F4n7f9PUeesyQaZnGrKKsvsOXHIvED2YUAjOwQFk91vHE0HTYMKtEKbNEyUkxzXsxlML7TpZJR9n60qGlGIR0//5VeTPmxd0LwWcKwZBcm5bbaCbwWtJkAYQChmM7L/XtD2hIgqWFHsrKFkepIV8IXthHr5+a8qwIqs48uA0tt/ZXFveV4ptt7cidiGHmTPW1XtvXwsylpV7DnK2uYqRXOBBO81v0PzCDFz++tdgqO929HbuauqcrxQZfhovHv5i3Xa5Lp+1vAoECSnbZIvcbN5aDnMhCW+deJo6kUJisnDJ2uJa4eq3tOHQA1NQ6izqff3BZY0nyuUG7TFOkhRZQiEzD65OPMXmT4OkGAQDzVHkXwkIgkR760ZMzx25bOf8n459903jwEPmbLPZCQGJOfvu6LKsIpeW4QsYjZezSRHpuIi2QWuH+bHHR+Bu8yC4/vLdOyRJIdS9CbExa+NPimLhdASQLRgnngRBaj4Osv1KSvm1LGUcY3L5GAiCAue0rtJyvjas2/3HYC9T5b6Ml/72SZz5oXV703A/B5ICZoaNCxHOQyKXUZBJ2V/sZhZkeP2UKcNhejiPcI8LNGs93Rp9bBTdtwyCpC/flMwb6Qfj9CA+YX2d3FwEBSEFySRmNCZIoS4TqBYESHgc5sbvuUIMbpd1m2lVVREbP4zW3i22z7cc6LxxEMUEj7mXrSu1VxKkVBrxn9xravqpCAKEyebaSys8b70Ym5kB01Zn0SrLyB06As+2yxsT7qs2Q5yZtWR6AAATjUKcNV/ck24OCt/cHEbhrRkOwvRMXSkMAATvuhO+m65v6pyvFMLYOCb+8fOQ63xXpr3NUjYEgoBcR3ZkBoW39gQRZmbrxlPx4hik5ALcV21u6pyvFJ7tW5E9cLCudIhpi1omi5bCLKLcblA+kzmxIEKanwdbJ574YydAOpxwDV26JgG1IEgSnq1XNUw+NovXkiANQJI05oZfRDFtnFQWErMY/q9/a+gDoYeSzYNyWyVBEvD2mTslA8CF/XEUMiI23Wo9UbgU8EccWHF1EEd/Y/1w8/YFkZtKQxaMrvqU19W0h4Oc57XKvQnyqRm4AtYDmSwLcHNhuJzW1/JSwMu1w8H6EIubmw0BGhNE5FOm+ygnB7nQpKlY1twTRC5K4GfS8PZaX4NjD09jxTUt8Ias9ZGXAptfH0Y+JWLskLmHDAD4+luQHbX2mFGalMMMvPfjcHcbkxiKJCA8dA1cvojle2fnXkY0vB4kcWlapVmhM7odfT03XtZz/k/GxMkMDj1qngT5yt9M4+Ef2dft59IKVBXwmCRBZkZ40AyBULe1NO3io8Pou23FZZF46NHasxkL06cg1ZFJeVxh5EySIIC2cG1GDiPIeRAgQJHGMSJbiIFzhkBadPAqPxf9kcs3USqj84Z+jD8xYrlAZxwUwr0cElNGjbXbr32fTNJ+EiS9IMNrEksAMD3MIzpg3Y6ymCpi8sVJ9Lzu8iVZAS0pFu6+qm4ShHOGQBAksnljPDFU8x4znb512Nx5l+k+tyuMaMi6a0U2NYECn0CwZ5Pt8y0HWJ8DV//d6+HvDVzW8/5PBcHQyDz/IsS48fksTE1j8vNfaCoxJud4kC7zObE4M1t3MZY/dx5KsQBu46XtdlILOuDXqvcHrRPSTFsUYiwOVTLOiZdmIGudLNKuU53KvSCAbYuCCV56XyY92O4uUF4P+GPHrV/TFoWcMk90UG5304t7xUJepRSLkJMLYKPWc73c4ZfhWjUEqk6L3UsB9+aNkDNZFEcvWL6GbavnxeNumgnS+amPw2nScUUVBXivvQZMxHqdmT14CO6rNl2y9sFW8F53LQK33LSsx3wtCVILVS9h0NoKMi4fCgtz1VR5FaAdHABV63Nuh9JLAHIur5MvlLoJEAooQkH2YgIt/VonD30nljJF+8xjk1i9uxVeD1H5u7WEoZlNT+017/Sx/Y5WHH94CiwhVrol6CUMgT4/oKgoTCaNrv1eF+RMXsfLRfW/dde+DN/KDXB3a5NnPc1VFgoQ+BQ4b8QoXyj9bseOfR8XJ54ByjTxGilMFQ28QuWVzDdRNH19bXcPQlJAyiqiwbWYmztW6s6gVsUSoaho7dyIDbd/osaNX9toJwc5n1+8DmYxVbpm5etbZoKUqbvlzjzFiXlABby9fmOHBFIGTUg4/sgUtr0hXJJUydWdEKrialFG4CaEGimVVTwZJTJl2VbAq2L1riDOPD5ZoYdXtlJMtQz4kb2YNKW7Ux4XlFxeRw1vcEuLIvjxEe13q5IaqGAYDv3XvAM06TR2SFA0KUxyYQRtoY1a5wNZrnQagq4LTJW8wCqWqjZzmVVZEgNJAUf70eodAESp0u3jSgIBtRSDWjx1DTowM8xXdXEpx5Y/QCCfNsYiQ5S7w1T/vZjSKtvhFqVqzGMJGfHhDNoGXHAyanVslrbifAaxo7Pov6WvJFtUFmWAWJQ4NtXVo5bKb9I9hVABX7AfDOtGYvJ4ddcMeVHO4Ha0au26ZbVqfIIkgyEdEKWcMU6VkhymPOaJIiBJcBBODLTsqHSa0XdFyvExeByt1eOwTv6XiV/E/kc+B1UUqyVoug4xenVHtYyj5uGge17or2tZMkKRi78DTSrovbEb+XgOiZNzcFASHJRU091KxN8/sBnX3h6o7nZFinDTEjw+EsXU4jhXHvMoqKAJxRBPhZQIfwtZPX6Wjjc7kkPnoEs3xi3KSmlSxuTTF+AOc4hsCFXFkrm0qlY3ZRJDFv82dItRgNb2jUjHRiDms7oOQSrI0kapJDhHEDw/V93FSpLBQkuMiWLOOL4BWkzVjHlZfg58PlHdNaYk12r3rUNHcJMW1/KiJKcsr0rMnEKgdQUcjNdUJlsls4KlAs0YU6VtsbOaqusspICEiq7r++AOMaChyauuZFAcB8rrrXTaqN0HRYHaoOWnHgqfryOHmavLcOCPHAW3ds1l8yXQw33VJuQOv2yZ8GGjEUBRIMaNiXuKczW9aHVv2gDnoEkhJ5+HnE6DaatTyPnGt5Has7ep8y0HCJKEe9NG5I7UYZtt2YyOT/6F6T6S4+qySMwgW3SHEediAEGAtljcq4qC3JGXLzsLBABIlwuuVSvrSj2YtqjpPQcAJOdqilmkCCIKw6OmbC7K7UbrO99heU8pxSIK54fh3nqV7fMtF5jWEFyrVi5rl5jXkiA2wHmjyKeMNKSyXEMu2B/MlKy5kaWULaIYz8HXb165VxQVJ5+cxcZbrQe6S4lNt4aRmi1i6oQ5i4HmGLiiHuQuGiUMlMcFhS80Fbgtm6+Fu8s44BMkjTW3/CmcXvOBTBBySC6MIuDrs32u5UQ0uA7JhWGIkvmARBAkirkkJMG4n+voR2CDfXMvVVGg5AqmTJDcWAKuNi9oC9PGyWMLSMeK2Pi6y8sqKmPT6yM4+fgMFMV8AuHrC6AQy0LijVVGyuOC0oQcRkwlceFH/wlFNsolkuPHMX/BWnJCUSx2b/9L+L3dts+3nJiaO4zDJ+/5rZz7fxraV7gxM5o3lVH5AhQyC83IFxSQFOD2Gh+Bk8M8OgbNK5MAMLpnAr4eHwIDl78yTBAkQl2bEJ86avkat7MV2aI5Y0aTw9hfoHBMAEPB60z39bZux2DHjZbvjU8fgy/Ye1m6eNTC4Xciuq0Do0+MWb5GLCqYGzMfR979kRAiHfYNbzMpBT6/BRNkpIC2OvE08thFDNzSe9lZRQDgDnTCwQUwP2NdqXU7W02ZIDSpMaVExb686vzCCxhLGenMiirjzOSjEETr6njPiluwevvv2T7XckJVVNz3rvswedB8EXKlgYlGTKUe5cVnMwt8KzmMzPOQMxlLJoiqKMgdOw5u00bb51pOuDdvhJRIQJgwl8STLhcov8/UF4R0u6Hk800xZnzXXQvnoLFyTzAM2j76YTBh87mcnMmgcH4EzhWXl2lWhvuqTcifOWdpaEmQJKRE0nS/c7Afnu1bbZ9LlWWoxaKpbEicnQMdDIJkzMf14sUxyJksuA2Xx5y6Fu7NG5F7+ajlOomNRrTrZJJg1ORV9u85KZHA9Be/bJoEyR09jtxh66QV6XCg+2//Dxy9PbbPt5zIvLQfs1//9rId77UkiA14W/tAGGgLAMk6NM1a3j6tTcnmQXqMNGt+IgGCIuDuNNdOjx9JIr8gYO0N5nraSw1PC4P+bQGc3mOti/X2BJAbN1LSKY8LUFUoefuT79k996OYNE68SIqGLzJgObGOx0/C4fDB5748zs618Hm6sGPLx8DQ1pPek09+FalJo9u8K9qNls07bZ9LyWkPDTN5VW4sCW+P9SLt9JPTGNgehLvl8nS2qMW6m1qRTQiYOLpgut/T5QdIAvkJ83hqpjuMUuABggTJGDPb8xeOIDs3avnebHYaJEk37PpzqeDhokikRiAIzVFnX41oH+TQ1u9EdsFIL/b4SaQX7CdZ0ykZHh9p7uEwkkf7QJ1F655x9NzY91tZtAJAsGMdUrHzll1i3M5W8MUEFBOZJkO5ICr2E4jz/EWMpcyThC42AI+Fh4OqKohPH0Nr+wbb51puXPO/d2Pbh6wXSPsfiuOLf3LKdN/dfxRCz6B9mWA6KcMbMI4RkqBgdqyAdgs5TDEjYOrADPpu/O1MKAmCQKhjA+L1kiCOEPiiUfpAEiRokoXQpMcMQxrnP3lhARdjL1qOs0Ixi2JhATRjfV9eShAkAV+XD6NPTfxWzv8/DRqN3mROXJK1NLMgk3lzOYw4OwdQFOiQuYSjMDIKJV8At/bydACsBeXxwDnQD/74CcvXMJGIqTEo6XI1zZhJ/Op+UwkSQdNwrRi0lCbkjp0AHWwBe5m6ndTC0duDrr/+JEintbx0+otfRv6UsV23o6cbvp07bJ+rHHckZx5PTNS66McfPQ7X0ArLTkWXGtz6dZDTGQjj5mMMHQ4DBAExZsYs4iDzTaxDeR6gKBAmCaHcocMo1JHlCJNTIB3sb23+w7a3IX/mbNPGwlZ4LQlSAwK1lHigZ+1t6Fx/S7WjvQIQKon+uz8MNmifnaHkNE+QWgfy/HgCXLsPDgdKEpOydEGTL5zdM4UVO4II+NGwC4ybEOAkJW3TdUXgdNTy6r8LNcdYpAYvuuaL2HBTK84+NVNF561IGAgFvt4A8mOJKhopSaigPdriU+V5jRpej6Oqahn++Zee0hg2NZTw6Zcfx4V9P69IkmrlC/OxUwgH14AsyWBQI1sxyBbK1G9RJ1EQq+UKenq4aXePGkmM2xGCkE9rFHJ995rSv13eMAqpOcN3EzNJTD9yL1RFrXuJiBJ9tzzg014XCAKgiMXOPPx4Ar7eQKXLUG2HhHN7Z7Dx5lBVLFU6DenkLvU6wnCkWIkpNyHCTYilmDOXJZS7ejgIEUE/sGJHEKcen650SnCQUkm2o8DhIMC1eVGcmAddkviU3fspjxNKLl83jqokVHkelNOlJTL18gIFKKTm4PJFqjttlGQFqiDi4OGvI5k4b5ADlCnhi90PzKUuEKXFzUoyUyOzKsttCFmGzxmFk/VhPn5K69pwBYEASp00RDhIEa0h4F8eWIfWVtIw7t15N4eP/FXAMOaxhAySgGHsK6RE+AOk6Zg3O5pHzwBTfQ5SkwEqGR5TB2cxcHNXRbpVHu8oYjFGtXEORvlfg5glasYEM4mWL9gHkmKQip1d7Oihk/25mRBUVUYhP6/JCnRxxxCsxlKTauKy3BGkRtqV4McQyw1XyQIJSYYiCdh76ovgs3O6bluLEoZcagpCIY1Q65rS+FfaSjK0KllMGTVyBtNrZNHFo/wcLW80ocDfzoGGAjlXAF0afyrPM1JEzyCDubECGLloeJ4+8sM49j+RgpsU4CaFStyQpXFUP+a5SQG5lISWAGGImYXxLBQZ6Bmgq+K1/DkmXpgC62XQvrFF6zxD1sirCBNplZmU1CKWqroPqYtzmspvoqhobd+Ahfh5yEK+EmPl35GQFLjZEHKFeLX8rzTm0YQTkpAzxI2h01BpzBPlPBgwVV1jytIqlnaDJdiSPEapSHIIWcXM2Es4dfiH1eO0rtuQ6WY1qFjEFUkq2lYTU2XZb98NXRjdOwGKMCZhrzS0vPF2BG692fB3giTR9md/AiZsv1hnZfgpzsXAtIYsF/f8sRNwrVpZd3F9qcGtXwv+uLUHHBONQJwzkw1pi3TZZrJIVRSkntwLJW9MYCcfeQzz9/7S8r38sRPgNqz/rS1aCZIEEwlDqmNwykQiEEySRWIigfhPf26bMVOWzpglMoS5OTAR67Uaf+LkZWsfbAbKzcG5YhC5o+YJaa3bTsAyqdaUHKbkm2IWE1qyyPw6KYKIqS98Cflz5u3lLwfY7i5QPh/4E+YFjGZx+Xmq/w9ClopIzJ2Db8A4kLi7V0BuQo4o5/IaM6IG+YkFeLqtK/cnn4ph1+/32j9RCaKoYu+Tebx8sIjYrAwXR2LDVSyuv9kJf2tzP//6m8O47x/PITnJg4kaHzy+3gDmXjZmcym39lolywORxsZMGt1LBeUwDmR8YgoOh3Wngf6+m8EozbMbVFUFQRBICXMYzR6Cg+TgZ9sQcfaDppozDk2kRvDyqR9g93WfBmB8gLt8ES0JUvsZJBHJI88jcsObQNh4sCvZPEAQIDljAObGkmjfssb8803wmDufxbqbmmcVJeZlPPVoAaeOC8ikFbS1U9i0zYHdNztB0809ZNfeGMYLPxrHzZ8w32/JLPI2J4eRC3lTk11VVVBIx+D0mVcHkkmt/VfQP2D7XHqkhDmM5Y5CUWW4KB9Cji4End1NTUYIgkC4ZTVi86fQ0WafFvpqxYWTPCiawKrV1fn7ju7yPW+PDZJOKfD6jPemUFQQnxTQ3m9+/w0/OwuuxYHWNc3fO+LcPPL7TkEYmwGggvG2wDOwGs5e86qqFUiSQktkNeJzJxEJGO9xlubAUC7kivPwcNXPFIZ0Ii/Z70AlKUUwpHF84YUkCmJa82cwgcvVivXb3w+G5Wz+IovQJrwEEvc/CDmTARUNwrVtLdiu5jvx3P/RPRjaHcWOD6wy7OsYcEEWVcyOFzEwWB0Lh18sINpG4uZb7T3cMykZ/UPG587kaAGBVhqclwZvciGGn55G765OkBRpN3QBaIuiwrmLKBw5C3khBUIl4Whth3v9RlCe5swPvS3doBkXEvPnEIkamTtuRwj54gIUVTY8zVjKCaEJOYyoFE2ZILniPNwO6y5D87FTaI0snaaeePhhSIkEwNJgBzrBbV4HKtyc+WHv7i4887kXED9rzl68kqAUCsifOw9u/TrD86zZjhEKnzev3M/FLCUeAMAfPwn/625s6lyAJpngj59E8cIFSKk0SIcDjt4ecOvXgvJ4mjoWt34dEr96AFJyAXSLcf7ORCPI7jtg+Hs56aPwecDG7VpOfpgxZoTJKdB1DE9b7rhtSYmi8py4OD6B1JNPgfJ44OjvBbdubdMeLPkzZzH7nXvQ+7nPmrboZaJhU78LVRCRee4FBN/yJhA2zqnwPECSpq8VZ2NwrVpp+j4xFoc4OwduXfNJEDmTQe7YCQjjE1AKBdAtATj6+8GtXd20cSi3fi0yL+xD8M13mO5nImHTpFqzchjZ4p5TFQViLGZpilo4dw4gSLiWKK0qXhxD+rkXoEoymFAQzqFBOIeaM5gnCALcxnXgjx2H92r79gFWeI0JUgvVaGYpFXI49/T3IPMZgwHX+APfR+roAaPxGAAQmr+bWnJ/U1UFSjYP2uusGLpplQYF+ckEvOXKva5qcvqkkgAAIABJREFUTxMyMpMZxEZ5bLi+pa4hJUcKJVaHBAdEPHFfGnftnsJnP5XA5AUR4RABVVTwrS+mccd10/jqPyWh5Gsr/Pr/C5WNISR09dCIDrpxbu+sZtxaYqrQJYO3QJ8XuYkFAErFtI4gVJA0AZJzVuQb9UCoOoaDk6sUT8uVn2I6BpcnvFhJLJmmEYpm6ufj2uF2BCtma0SNMWBtxV4VBVxIHcTzcz+CKgigZRIOOCFIOZxe2IunZr6DYjGtq/AbK/6EpGgmcKUtwHVChYpUctQQS4SiwuUOo5COV/5WjhmKbc5jRs7lQbqdoCiUqlcACRWEooCfWECg11thgZSrWU5SxPDT02gb8qCzi64wM6oNcaWqqiVHikC+iK/+UxK3XzuNb385DamgoC1MYvKiiL/5RAJvvG4aT9yfBYfFqqkZK4QlZLClKuim6wOYHc4hN5PRMYsWP6u324/8ZLJSmasY13mckHN5aHQsoFH52DOwGj13vq+KxQVFS44wTrfmL6OrTutZRSH/ClAKWWMKWV0NrcSCLEMQshhZ2A9IUoUJxIBFWpjFkcRDEIS0VlWXdSyRWvZI+Tyl2Olq3YLOyDat0n4FgYAKBymCJSSwper5I/81jSd+MGOIq7MHsvjw2yZLFXptcxIyGELVDFYJBU5Crmz5tIRAgDCMeYmxHFQV6B+galhSWnyOPDeD/uvawFDauKev1uuNifWVeymVQewrP8TUX30euX2HQTA0SIcDxbGLmPzOVzH+1S+AvzhiahZaZWQpL7JCQuE1mI+f0VhoilqKtcXNzQbB5+OGSjwDBpKc1zHbSmw4RQFUpfrvkgRRyoMBWz32yTL4/DwclBs0aB0zarF6z4BGKLSqilFpZmCp34rzcxj/7leRPrIfgNaBgaBpFE6excxn/h0Lv3ikOj5K4x2JaiPLirE4KaPnmihGnp1eNBkvsYoYQkZLC+BtoRC/yNcwOCQEAgCfkqpihiNlzRgVKjhSrtqXTcsIBmAY8+ZGeXQNsAbGnZMUwaoCRp+bweD17RWTVL2xrlksEQRQPDOCmc98GXOf/yaEsQmQTicIkkLmyEGM/cvnMP2z70PKlRJdNUao+mdp+XchVRItoSEk4mcWn1cVlqMKjg5AhYJCPlHDfJNBEyykMrNIH0+qCsiKjmmpjXlbgncgxHQBgqhtpdhUZBE+R1THKlIqbJRiIY1MahytrWuqGJWVTcea0rMrMydeRn78YunRQGgLSFVB+rGnkX5sL1BhFJUeIzqGkZ6RU44pbyuLN/5/2xBosnj0aoSczWHuW98z7XAy973/tt3GUlUUKPm8aeW+3mJMjMUhxeNNSWFUVUVm/0GM/+0/IP7jn0KMz4PyeKBKEhYeeQzjn/0cEvf/Bopgv9sREwmDiYTBnzBngzCRsNYhpobJQFAUCIfD9sJVyZVlHmaMmbjldVIVBY7urqaYOaosI7VnL6Y+/wWoigLS4QDl9ULOZjH/8/sw/tm/h5xtTorg6O8DZMlSZsGEwxBjJgyH0kLdjAFjBo1V5DIsqlVFgRS3jif+xEmwnR2gg/Y7SiqFAhK/fgBjn/l7pB5/EqokaYbBc3HE/vtHGP+7f0D2sLXfnBm4NashTk9DWjBPtGrXySiHaZYJwq1bi8j732v4u8LzoLxeS8YMf/ykltwxSWRZQc5ksPDEHu0/FAWCJEG5ORTHxjH3ve9XYrsZ+HZeC++Oa5p+nxleG81twOHygyBpFNJxMK5qFoJUyEFM22vNqBYEQFFAuk08QcYX0L613fR9556NITrIIdjpAtA4kSAUVXz2L5N48uEC/vxTHrz7PRw4bjHfpaoqnnisiH/+XBpP7yng378eQluvPbbD6hvCOP1MHJveZcyoenv8kPMihEQOjlB1Rp10lxeujaFKEhhfCyhH9XVSVRWFTBwuC1PUc6MPa5+x+3Zb5xGVAg4lHkROTmKV51oAKty0H2u8mhGgoipYkGbhoDgU5BwoggVDNtYLUiSDoG8A8eRZBCLGCmSwcz24NiOrh3KUBvyCzQE/l6+wbPQQ5rOQC5KlJ8ipp2NY04S3zMSYhI99YB6SqOJLX2/B9Tc5QJGLDxmeV/CDe3h8+pML2PNEEZ/55yAYtnFmt7XbhUifC2eejWHd24wPH2+PH3MvnzX8nXI7tQSWIAJozPqhXG6wrcaqH+10Y/NbPq39p2hMMCSS59HXsbvh8ctICtM4kngYTsqDHm4dfEwr1vtuqOyXIYMiaMwVL2BBmsOQ71pbGXCvKwo302H7c7ya0dHnwLEXs6b7Th0XtMmmjaJCOqXA6zcxRR0toiVCw+WhkKupzCuKiuHnY3jdX2+x/Xn5oyOY+tefgemMov2zfwa2rRtEUTsvKRBQ41kk9jyK8Xu+gsj1dyB09U2w8wWC4ZU4I/LIZKfg83YZ9rvZIHjB+FyiCQdExb4OnSQoOCljdTQnJMCx5tVHQczhhX3/gS07Pwany96kcuHkQUw9/GO4V68H1z8EAPDt3gUAUFgFYnpx4idMzIHtsidB7d/Vjpe+eQL5tACvyUf5y68PYmgFgVr9hM9P4uJ5+7KHdEqF12cWTwI6B8wrmGNHF1DMiujZYY/hoqoqkvc9jfmfPAHvzdcg/BcfBM1qTBxSIEEWCRQnJxD/1S8x8vV/Rtc73g9P1B6LLdi6CiNnHjKlnbO0S2MWCUm4Xf6qfQzpgKjajycvEwJMxrwVoesAmjJVsSSTw3A4/eDcERu9wABFljD98C+xcGw/2u56NxzoRfC227R9DhUKqyVeVEnG3Dd+isBdN4IZsMeeWf/m5tm4r0bQLQGAoiDG4gb2hJzNQkraY8sohSKgquaeIHNxuFYb508AkD91Gkx7G+iAPXNqRRQR/8FPwJ84gZY3vgHenTtAsotzXlVVwR8/gcR9DyB/6jQiH/gDMCFrZpIerrVrkD91Gr5dRj83JhyGWihAyWZBeatZc6TLaXvhqkoS6GALSGf1WNJocZ/45a9B0BSCb3mzrfPIOR6z3/4uxNkYQndp72EiYYTe9hbtfLKMwugFUB43pIUUCJatSHvqgWRZOIdWIH/ylClTyL15o2m7VkrPmLHxWyt83jSWpIUFqKJUJwlyCq615sxpM4jxOGa/+V1AVRH94PvgWrO6ai6nFItIP/s84j/4MfInTqH1XXfbShwwkTDo1hDyp87Ae61xkU9HwigeOGj4O+VyQRVFqJJk6zyUmzM1I6Y8HnR/5tOW78ufOYvAbbc2PH4ZhdELmPvuPaCDQfh2XwdHVycc77q7sl8RRZAMg9yx4xDGJhC44zZbc2K2ox1sh/l6uVm8xgSxAYIg4fSEUEgbM5WUg4Nsd9Fa1qu5jYt7fmIBnm6/2dtw7rkYVu+yNyDneQUf+0Acxw4L+MlDYbz/jzxVCRBAoxPdfKsTP30gjJ5eGn/w9hjGRo2dM8ywcmcIw/sTkASjqzAXdoNkKXMzS3fJx8EGHOEohv7kb0CQ1VQyVZERXb0bnN980jifOAvOZW9xr6gy9sV+AQUSrgu9E52uVQZTNpIgEWS1xee57Et4KfZzCLK9rGVrYAjziXOm+1iXH+6QsdsIQVFwhNttd9HRWssZB3x+MgnKScMVNulCVJQxsj+JldfZu04XhkW8564Yevtp/PTBMG642WkYpDiOxAc+5MEvHgrj8AEBH/3DOPJ5e99h7e4Qzj5jvK8AzRw1N540TMzJkpzMDrMIAGJ7H8L0k0bNbDEzb9r1qYytV30I0ZA9CnaiOIED879Cm2sFrgneBZowJmcoQns4MYQD47njOLGwx7bWdWTiKYxM7LH12lcz2vscmBo1Lrq8fhKiABQK9q6ntmg1PmynLojo6DNftM6cSoFfENC7w94CPLv/NCb/4QfwvX4Hon/1R2B7jcZ0tMeLyJvfjs7feT/izz+OuafutxUTNOOC19eFRNJcm8uxQeQEY6cuhmwuCbI+cDP6Pcakj9cRQVdgk+l75pPnQBA0HE57C5TUqcOYeujHiL7hbnS88w/ABIzZCjocBB0OQpydx9invoLUIy/ZOnZkTQs4P4vRF8zHmFVbPPAGjJPG9i7aNKlhhUxagc9vFk8COvvMCwznXphH1+YQWHfjRK6qqpj99sNI/vJpRD7xXoTe+2ZQXmNi19HZhe4//AgCV12LsR99DZlha78CPYKtKyEIGWRz5sbnHBsEL5rFk9N2dxhRKWLPzHeRl4zeAAl+DJJiXoGPRjZi87YP2ZocK7KE8QfvQXbkNHo++OfwrTe2cSQIAgRDa+wnksDU330ThQvWhu96pGd4fPd3Hrf12lczCIoCEwqa+xNwLih5mwyHssyjZiGtLe7jlgwG/tQZcGvMEySGcxSLmP3Gd1Acn0Dnpz4B/43XVyVAAC0m3BvWo/NTfwG6pQXTX/iyacXdDK7Vq5A/N2zaaaOSLJozq95zthkObEc7uj/zaRBk9ZikSjJ8N1wPts18TsyfPFXXB6P6WBKmv/QVQFbQ9b8/Cc/2rYbzERRVkUIkH3wI0//xn7YNKrm1a8CfNDYEAADa74ej25jMJ2gaTHub6bU1g8YqMkmCxOIgSowWw3sEEcWRUbhWm0tlaiHMzGLq374Epi2Kjv/15+DWrjGMTaTDgcDrbkLHJz+OwvAIZr/5XSiCvTUWt2a15XViwq0Q52LGOXEpWWTXYybxwEOY/+WvDX8X4/MQLNrwAkDHxz8K9yZ7Zuf5c+cx8+Wvw7P1KrR/9MOGew5ApVMP6XIh/exzmP/ZL2yvf5IPP4qFR1/5WPxaEsQEZUoodNRLp6cVhXS8QiutSBgcLijFfP1+9CWUkwCUx1mht1KkAjGZg1wQ4e/2Vmi8moxBBimJGH0pjo27/BWzNVNTVFICq4r47J/HEJuW8dOfB7F+BQkHocJpsnGkirAX+NrX/LjmWhYffvccUrMCaqUQVecjRazZ5gYUYPZorCLXYcoUZEqFu8OH4vQC6BoaL+lxQckX6pu6la6hlMugEJs20MFJkkbPpjvAsl6DQVohmwCfj6PVN1RFqa02Q5UqRqekpGCtZxe2+94Eh+qAKklQRZOtRNldy+0EQzhwMPYrSEW+RhojG87Z5l+D9UPv0GjqslJFCYes4PgD/4rs7IiBEr7ifZ8C19Zd3ySwdE1VvgBSF0tlCnVxKgmuww+GVCvGqGXj0amX4yAIYGiLt2IQaBZPbkJEZjqPj7wnhl27WXz56wGEPQBHarFTG08OQsWaFRTu/WUQs1MSPvuJBFhVrBgLVgxWayQGG64PYOTFeZCyCIaU4aCkionr/2XvvePkusr7//e5bXrdXrVaaVVtSa5ywza2KW7UAKEZCC2QQhKSkIT0/PiSUBICAQKE0JtDM3ZsjG2wjXuTJavXlbS9Tdupt5zfH3d2d2ZnZndkO4SQfF6vsdZ3bj3z3Oec85zn83nC5cwiJ5l1n60sPqmVqyvZy3VBljXWouBsOol07Jo0/OmDDzOy+8fV4rVlapVVmMdQvOjCWKI62RU0GNuuSucenz/IgG87mwMXIywHWTLdzzJbkpZFVGnjwsiNTOWPcSj58wpKzIItVdJtXKqBJnSmZ5ub0PyqQAjpUhgqKFsDaxVmJ0xEqbgo/uxXTNoi7m9vpy08ZXv0KxIdiQKLPs+vSPzCIZu2aYlSps1Yi1TCyZMFege0ChrgEo1i+OEJ+rZFCUXUCqFhp66YZe7gacY/djNtb34R8ddcjVCVWr9XYa7BDVvpf+27SDz9MNOP3l2R6l8tIrro82xJPLaeucTRpb6qgrLlVyNuJsgyOoIudSynWF4Jt5b8nu0gHblkpyUTaZqk8xOYpewyIVWLNu8aegKb3Wsu0A4dl8IwlzxKS3w9SpUg9IKQpazqP5EQGtzCwOveS2z7hSvYgvvRO1vo+v3XMP3l28k8uLcBhcFe7JsM1eHNnz6fzZfG8NQIiZs8+L0pPvLbJ6v6vIAwedMbvXzsHyNlGpWz6PNUQKvweR4h8WCTSTm0x3DFoSuopRMni6xZq9YIpurC5tjDMwxd0rokgF5BBVwUFi9/Zr5zH6mfPk33X70N/7byYL2hyKdC+5XX0XbFdZy+9SvkJk7VUmJktc8ztADhUA+JmcPlPquaThrQo+SKc8uooAv0qoK7Cmku+TxkuVzlgu+zLMxilqKTRXVEFa3GKuV5bPTb5POJKmqVsBwwbexCDr8Rq7alSqHdhXdCgpmcwUzPseYNv4W3c+VqGMLQaXvPqwjs3MrI33wFazq52IdWCuxqFeOxWJtOeuzM07d/FaG1tWLO1Jnc+/3uWK8JNNK6sNNppGnW1QSRlkXh6NGGWSJV+zoO01/9BnY6Tdf73tswE2Dx3r1e2n/jJryDA4x/+l+xUqlVr+FdtxZpWRSHT9Z8JxTFDRbN1qvo4Ws6CGKnM5TGxmvv19CJ33gdarA2IGrOzGLNzDbVTuAGHFpf+2o6f+vdTWmjtPzaK1F8PiY//+91y7YuR+Cc7bS9+Q11v5NSMvL3H6dQpw17/+QP6wZI6sHOF1B89ahVbkCtXiC1ePwEKAregdWzvKy5BBOf+Tz+LZtof8ubVtVGMTo76Hrfb2PNzTHzze80NcH3bd5E/vCRuoEfva0VJ1+ooZAs0oaazCyyk0nX/y5D+oGHSN7+4/rHZLMogUDT+jLzT+4ics0Lib/8xlW1UXzr19H5W79J9uk9JG67o6nzK4bRUET2TPB/QZAmse78X6Nn24trtgf7hvB1DzR1DidXcPngRvXKU24kiWKo+NtrHc/I7jlsSzJ0Qf0skUp89p8yPP1Eic99OUZ7R3OCPKoq+Mgnogyu13n/exOY5srRHN2jsu68CEcfri3VBRDojZAfrU2FdDNBmusY5w/vY/Q/v1GzPT16mPGD99c9JpE4js8bx7fK6qOUkkOZh8haKWJGV90V+3pQhc65kZdiS4t96XtX3d/Q/IQD3Tiy1tEIIdzqDXUyiwpTo5iZJlNJc/Wj3vmxJIHe+vZy7OEZ1p0fRTNWfvVNU/LH751j3ZDGhz8eRVGa4BgA7R0qn/tSnEcfLvLZf1pdgHHo/AhWyWFsX+0z+9oDKLpS1plZgjA00FScXHP2ZBfzKJ7adipkZvAE62dYHTjyQ46euLPud5WwHBMpJVtCl7M+0LxIU0hr4ZzotUwXG6+AVqIlso5MrrnVyl9lDGzw8PWH12Mso1tFowqvfYOfBpWza5BJS8J1VvpHhk26G1ADjzw021QGVXE6w/CHvkv0+ouIXd98eT9/zwC9r3wbk4/eSfrk6srn8dh6kulT2Hat/fj1KAUrjSOrKR2aMLCx6vqlengydTtz5ljN9gPTP62baSKlZC51nFh0deG03PQIk4/9BMXw4O+pTYVuhODOLbS//XpGPvFDcicar1otoPfsKIa/fn9oeAWH9tT6kVTS4aknmtMGyOcllkVNZlE+5zA7ZdOzpraPKWQtTu5JMXjR6vaUfPQIM9/7OX0ffD3ewebLXLbsvJL4tosZvu2LmNnGlRkWEI+uZy55rO53fiNO1mxEr2qunawybUYT1e9XznT9u1+v7bPm85P8/LF/wLJW9/V2qYC3pZP1b/wDjEhz9BahKLT+xo34NvaRenz1igeKpjCwc+WJ9P8WtP36a4m+6Jqa7b4N6/E0MaEENwgiDKNmkmROzyB0HTVcu3JfODEMEjx16BPLkbj9TgrDJ+l499vRwo0F9SshVJW2m96I3tbG1Fe+vmoWgmIYeAfXkj9UP/NXa23Fmq5TYtrnazpYlH1mL9Pf+HbN9tzBQ6Tu+3ndYwpHjrr0ijqCrZWQUpbL787gHVxbd8W+HhSPh453/gZOPs/sf3x/1f3VYBBPb0/d9hRCgG3VzSwqjo5hJVcPRoFrT3WpVTOz6K31x3r5w4fxrh9clUYiLYupL38Vo6eL1te/tiZLphG0aISOd72d/KHDTWUueNcPIkslinVK5WqxGChKjX6KMAxQlOa1Uxq0kzU9g9Zav0+a+dbNJG67ffVzF4tIx6H1ta8m9tLaOXMjeHp76HjHW8nt299UUM23aSOlkdGmz98I/xcEWYZcfgYpa6N1ujdUl8sa2biD2PbmBFpc+kIdPZCRJL6uMKLORPPk4zOsOSeC4V05qLHrsQL/9i8ZPvbZOL39Zyb1ouuCf/hklLERi898fPXB0saLYxx7pH6qYKAnQq5OEEQ5AzqMXcijGrXtlBk/Qmay/iAtHOphaM1LVj33aO4Ap3J7aVxDrzF0xcOO6Itp9zQ3YD966m4OHqpfuswTbKEwX9sxjt/9fVIHmxNTcnKFuvaUH00S6K7f4R97ZIYNF60+QPz0x1JMTth85JMxdP3Mqr70D2h84jMxvvjpDE8/vrIzM3wq/dsjnHi0zoqSquDripAbre4AhRCoAV/T9uQU8ot6K5UopmfwhmodvpQOidRxopGBFc8rpWRP4iccTj/splifYQm6mNHJZS2vRVOMVSkQAV8bOza88YzO/z8duUTt5ErTBfE2DWtZZqnHK/jbv4/Q2tpc8DedduprOJysHwQxizandidZv3Pld0dKydGP3Y53bTttb6ydIKyG4MAGOi56KSfv+Qal+ZWDoeFwH4pQSaZrV8/8ukspyZnV/nyh0ospm5u4mk4JXVSvdtmOycnUkzUBFgCJw2DvC4nHVq4Q4Zglhn/6dcxVnrERIi+6gM63vRijZfUVy1yyxP+79C5mR2v9RWe/wdSYhVmqfv/2P2Pyjptqgzz1kE65x4ZC1fY0etJtn67+2iDI8ScSGD6Vrs0rL24UptKc+PhttL/pagJnDTR1P5XovOJleGLtjNzz7VV9TCw6SDJ1Esep/V39RoxcnSDImWiCmE4JFQ1FVL+jOSuJRw2iKrXtNJs+RjDQiaatvPqYnT7F/q9/CCuXqaG1rgahKPT88etou/68pqhol/9mcyvrvyqol34PoIZDdceswXPPIbTzgqbO3UjDwZyeQWttqTvRLBw5imftwGIqfSPkjxwldc/PaH/bTegrVE+pB6GqtN/0BqzpWRJ3/GTV/X0bh8gfrh8E0RtmzPiwz4A2pPhq34HCoSMUjh2ve4ynv4/Yjdeveu75Rx4j/eAjz2ZIjBrw0/62m5ouLTt36+3MfOd7db/TWluw6rTT7M3fI/v0nqbO36idrJnGk/v8oSP4Ngyteu652+7ASmVoe9Mbzrjqi97WSvtb30TyzrvrZrtUYqFaUaFOGVqhqmgtccyZ6rmDEOKMxFHtBu1kNqCgSdsmf+QY3nUra0xJKZn+6jdI3HFn00GiSngH19LzgfejeDyr+mK9q5OOd77tjK+xHGd8l0KIdwohagqECyF2POe7+SWAbZfIZSaWKahL0pPHePrmv3LTjqVcTCktTI8x99SD7sEr/WYCnHwBJeCrUrVXkBTGkwR7IlVpvAtUhdNPTDF0QbRaWX6xaotLg3HyJf6/989w028EeMElejl1V+AVgoCi4BdqzccrlKV9BPS2Cj7xyQhf/XyGE3tzy2gx1am8Z18SZmRvCrI5vIrppoqWP+HeEIXx1GI66UK6shrw4uQLS3GkSq5HJe1Dlnl9Xn+NCnwxPYs32FKtbG9LFFsS8nfQEd2EsN102kUKQwVtJV9IciB5H5sDlxIgVE79LiFLJSiZi39XfrCW9pGmRZAIXfpaCoUkxUK6TnUPZ7FiTdDbSiJ5HBboMBWVYrzBFoqZWTc1fOEjQfH4cIqFamZH5d9i6V8nV6ihVilCkh9PEeoNV6Xx6sLGzuQZ25/irItDS9SUKgpMiYAocXRPjq99YZ6PfzJKZxwCwv249qLgFbU2FVCUsq0J/IrkqhcY3PRWP3/9B7MVFYjMqopDCza9cWeUU09M41HMxUpDC59gT5jCeBJVOIu2pAiJEvAicwVEEzy08MZt+LsGqlLwpSMpzs/i87eUq24s/T7Z1BiWVSQeHKiqlOBWS7AXKxtMZg8zUzhFn7HBpRWUaQSV9JYaeyofu0BFwHaYmD/MU9O3uP9frr7BQlWjckq6YkvaQ2dWevB/OgrzVh0KoMWfvvEkt349UUE7cPAIyTe/NM/po1aFLaoYQkFBVPg81+/NpyUtUVGmzdh4hQVFk+lxi4G16hIVsPxujOxOIBQY3BZapG15VMulLpZpMYqQTP7nLuYPT7Dm925A0YRrn03YaGVlsfbzr8LX0sXYgz+sof1V+kNVKsTCA2VKjF1hNza61NAVbzWFoWSiWm6Xbxbnl2yxVALHBsdZ9HlYFk6piIOFZqtVfjRXdCfDPgI1VEDVFvS2nItXCdSllS7QMcYe/U+Q0H3Zy5e6gtV8HpTb093WesP5GBEPhRMTVVSkhepq7scmElMJxHVOPDqLLqzF6ixeYTIwoOA4kBrLExBmmR7l0BKB7LzEK8Ff9nt+oaIKgY5S5fPMjHuzHVFRVYVo+nSBlnaVqN/GK8zFa3uEyfFHZ9hwYQSv4SzSvbQKW3Kfx+boJ+8muKGL9lfsXKwUU0UprfhbLOtHkS41pv/q15MdH2buwCNLVYYWfF75N1Esh2igFykd0qmRGjppQAmTtzI4ZmnRFqRpojqqS6+qoErJkitQLC27yu8Z0mDAc3aZYrpUSSZXnMOvRaqpgI7r+xKpE8Qjg3VopUvvg7RtTv78ZqKD29B8oSXbWW5TNVj6UtHclegjf/QVMntPV/wO9pItKa499Ww8szKq/9Mhi0XMiVrtrPzhI5z6i7+pmawUR0ZJP/hwU+d28vVLdVozs+iNJq1Hj+EbWjnTzCkUmPnmd4hcefmzLuephkK0ven1pO75GcVVVpx9G4YonjyFU6jN7NBaW7Bmn1smiNOI5rFChoPR001g21krntecm2P2+z+k5dWvOKMKMlXX6eoksGM7ViqFnVk5+1fvaHfLrNb7rrUVc6Y28Kz4fM0XC8jn61fQmZmr2052NkdpdAzvKkH0dfEzAAAgAElEQVSQwvBJ0vf9nPa3vLGuoGgz8G3cQPiyS5j+2rdWrUDkHVpH4Wj9BV+9QbDIbafm7CmwfZtbsacC0nGwZmfR6rRTaWQUWSqtGgTJ7tpN/vARQhc1prauBqEoZHftZurfvrRiIEQI8axKGi/HGQdBpJRfAF4shHjVsq9ahBDfec539N8MRdFIJE/UbPf4othmAatYXZmgODfJ7GP3NnXuhpkgo2n8PbUrQmbR5vTuJEMXrqyw/6V/SaFq8Pt/VJs6eCa46GIPr/g1H3/3pwlsu7Hx9W0O4PFrnN5V67ACPRFyY7Wpa26J3CajlMU8iqe2nYqZWTzB2oh+LjfDk7u/gO2sLDx0KPUAUb2DHs9zX8nZl76PA6n61JwFxMIDFIsp8oXadop2bSLcUTupVb0+7GLz1WEU/zK1cCnJj6UI9NRmgpx6ahZvUKN3U+NBnG1LPvRnCV71Wh/n72wuLbIR/vADIYQCX/xs/WoeCxi6MMrJXYn6Yrs9EbKj9e3JbpJeFT/vBQR6ap331ut+n2C8v2Z7InmCUKBrxdVH0ymyP3U/Q8Hz3QH8c0BUbydRGmc0X18M638rilm7bifY1qktrrJX4qtfzvHMM81V9EinHUKh6lXMsdPusT11Vu4PPZZiYMfKNLJiIsfJf7ufte+5CqO1udTrehBCoe/y15Aa3kfy1L4V942FB0ikh+t+59ej5Kzqd0crV1OyWD0TZCFbZDllMG+lMBQ/mlLrHw6d+jFjMytnsuUS40zvf5A1l78WRV+ZU70asocn2Ps7X2H+RH165gLWXdjCoUdrs05CEZU3vDtSk+0WCgukhExm9QBWKi3RdVjeZY2ctOhZUz8r88hjSTbsXLlfn3ngGImnTjHwOy+pu+LeLIxwnO5LX8bo47dhFRqLGKqqQSTUSyJTO/7x6VFAkrerJzm6MJrOKgqqUdb7akV2+4Jnc3a8tuKAlA7J7Cli4ZUzLyeeuRermKX7ohuauo9GEJpKYHMvRz5+J47VHF3sfwOErtWdkGnRKE4uX1Pm1ZyYJPWz+5o6tzu5r5MJ0mAy5pRMisOn8K4S2EjeeTdC14let3p28ErwbRwieP65zHznuyvqORi9PQhdp3CidpVfb2mpWbkHV3+k2ZX7hhkOs7NodarYlCanGP/kZ9yFlRUwd8tteAfXEryweSpvI8x86z+Y/cGtK+7jG1qPNZfArBMU8m3ZXDe4dcbBIm9t4Qm3nWrnDoVjx1H8PoyuxhW6pG0ze/P3CF28s24FmzNB7MbrQUpS99y74n6+9esoHD9R9/fTWhvYk8/bdMnlyBUvwLt2oHqjEHT/0R/g6a8t2lA4dhxPX8+KeiB2Lsfs935A7Lprm66s1AiegTXkjxxrutT2c8GzLZEbBU4IIV4lpfw+gJTyHiHEi4QQ35ZS/vrzd4u/WKiKh2TiBP1dF6HYggVmjNcbQQiFYmoGf2hptUE1vDjFQlV9+hosClnmUf3exQwJ93oOufEUXVvaiM1micscquUQcXJk901wgSO5HIvAviKOLvB5S/g9JaQh8PgsZlMFvvXFNJ/5XJQWv3tSXSjo5fiWgkAtX0ypiHk5ONjlhzBxUHAf9K/+PMTlL5jmJ9+f59rXhLDLy0y2UDCFii5s0GDtOWFGds2w5YpW9HL2CkCkN4A1X0TO51C9Okq5QdSgBydXTpttJOhWbrv4zitRCk7Vio6QoOpefKF2N3sCEJa70picPU6pNI8mNXfVsbyKDixlaABrfdsXRdkkIE0TFiZZFTxF6cjFQacEWEivVW0op8EN+c7n4dQPmM2dpCUwsLiPEAJU91ifEcTvbSE5d4KuYBvl4iAIRxIrl861KmxGOBX2tBLK7efki6h+L6oiy9eWyEwOO1eivdVL68w8RtEmLPKEZYHTd49y4/oA/fsSSFXg9ZXwek0cj8DrN/F5LW7+fpaJMZtvfDNWFtUV6OVn01Ea2tICTBzU8v+rPskH/yLE7743yate6yfaq+A47nG2omBKt0E2n+tHOpKJvQni2/2ujQGacAh0h0gemFxc5V14TjXgQS50jPXsqWIVcOq+22nZtBMj2rIopIeU+EPtqAVXzHFRfBLoaDmLuKdnKauoypbcTI3p3DEM4aVf2+IKAVrWEtfVkSw4DuksOQShCOSCLdn2YkqlR/Oy3n8eR9IP0+Vdv1R+uJJiozSnmP2rBMeWzB7PsFBleiEro3+NwsHdBQJlO9EFeIVCLKJQyIAHt11VITBQEYBf6It2ajoO6bSkPeKu5hekm4o1edokHhO0OSWUSYlesvAULYQpMe6d5cbNYfqemSWs+kiqfmxdQRMmmmKRDxgc++Jj+PvjdL9kM/OmXJaltPCSL3vIil0qV/G9kXY6zrma04/dQvy6jSiKWhZVLr8D5SyLmL+Po6fvxi4V0K0l28Ky8Kth8mYSdLedpGUhbBsNA9MqICsDIbYD0hX0pWx/GoILvddiWLq7r66VfxeTmNHlvg8L6VmAVGBi9hmi/u7yO1W+18q/bYEv2Mrg1W8h2DGIvSCSWqc9qlDRlgvtqiiSwKZO4pdt4NCnfkbPp65HCLEoLA6UBaFNNu6McPs/HcGruJoaC5mUAO//szABYQH2os/rKJdPNucV/FGtwu8JNKHgraB0FDJFwiGFgKJRlEt96dRpkzV9CoFUES1to5cshA1qMkfbgXmufosgsmeGlObHMhQ8momuWJgelZwFRz5zLwNvuhBfd4RcqdZ+GrHvasxOQnzThczteYjRp+9k/bZXln8XFn8XHImwHWKhAebSw6yLX+xuXxBAlRqaMMgX5wjIgOvzbBvNVrFkCadYcn2VdAV2kRJsC4Q7iJdCYa40Sk6m6fNsXgxuCk1Dkwq68Lu+tWx7wlIQQmHHmtcQ8vdV25ItEVIs3t/ckcfpu+DlaIYPu+IdqsqKqWySJfe6aEsL2bk9b7yMfffuZfTWZ1j76m2L2SCAK86sNFfh4VcJwuOhcOw44RdcWrVda4mDomDNzKIGloQ5FZ/3jIRR602srJlZomsHaE2nMSwb3bbRbQvn+DAdQI/jYJ0ewVRVSppGUVMxVY2CrpPIZknd93M63vm2VSkzzSD+8hsZ+dDfM//EU4QaBAuEquIZWEPx+ImaqjVaawtONlejw3AmK/eRq690xxXLoPi86B211V8KR45iZ7Or6lxEr7kKxeM5YypvPcRvvI7Rj32CwqUXNcwY0GJRtNYWCkeP10yUG1X7OWN7WhYscjLzyFKJYDhMSyqF1zRRbQfNccg+vYehzk7aT53GVhSKmkZR1ynqri0VNY3JRx/HSqXovOHapu5hJSiGTvzlNzD9tW8S2nkBWrx+INyzdgBpOxRPj9QEK/R4vK4gqGtPzVET5269ndAlO2t+A6OOLQEEztmxahZIbu9+tEiE8BWXNXUPK0GLRYm99EUkbrudwPZtKMZzf48bXutMDxBC3Akcl1LuKvPgr5JS/rT89ePAO5/XO/wFQ9e8REJ1SjUpKkYgRjE7h5+laKBi+LAL+XKnXu1IdNumd2aWzlyCnswc0b1H6UrPs/7DNxPL5ghn8kTn8wRm5vEfmIJ/eajmuh8EuKkxH84GJjXw/20GPpnFiSnQokCXhtOtIns0RI+G7NYgtHriTzSm8O7fDvLJf8xw1Y1BaLBQt+68CM/cX5vh4O8MgoDcWBplcGmFXPU3H/U2Yi2oBWDZ+7zpJe9BLUpYVgYzlRwmFh5oeD4pJVkrSURvW6QgPFeEtDh9vi0cnn+Ui/xrGha8GVrzEnze2gi0Vcpzet+ddJ9/LVToVbRecBWNZgKBQpHuZJrOXILudALfxCzrHtnPmt2HiKbzRHJ5gqkcQcB483drjn/Pwh+vbSwytQn446DA85o57LiCiCsQV3E6FUSPDn0asleDTt2dfa6Cq1/k4YILDf75oxn+6p/r15PXPQr92yIcezxBfHu18F+gK0xuvFanptlMECklM4/cQ2RgKwZLDn/u2FPM7H+QbVf8ds3+HiOMv47aeiW6/Rtp1/tRrOc+eADo927lZH4fp3J7Wetpjk/9q45QS/2Or6df5+5ba1e0w2GFVLrOuy0lzNko4yZizKZ4rMTfSTj3U/NESpJwwkEkHd406fCOvETZfrrmFFcB7M3BfzQWp80C6aif7G9+jbmgn4Q/wFQ8yEg0zmgkxlhLhLFgnGlPFKcJvmz79hcys+9hpo49SufQJXX3Cfu7EEIhlRul1ahewfFpETLFWqE5Teju6v0qpqsIlahaKwLZ6V1HZ7B2wJorJShZ88SCtdlVCyhkZ1GjEaIDzZXZawYD77ySp972BaYeH6HjwtpVLIANF8Uw3rcGx5E1Is93/WcO3bG5/mVL/ikWVbj7jjY62mq538KRiBELMW4jJmz67szzYUsSfM8cwSkbkXJQUg6fn3QI2MD3a/u9lwN8oH5a+AJSArJ37CPx4DCzoQDJsI+pYJiRaIzRlhijkTgjwTjpOivpNfesKPRd9HIO3f5ZetZeii9Uf7AbCw9wcvwhHGlXaXcIIfBp4bqZILK8pKKuMpxMOJOk7Fn6PJurtj8w8y02hi6hXV+eki5oCa3FUTUa9dhCUdj8sj9AUfWG+5wJVJ/BwFsv5tCXHqT/xq3wXzf2/h8DxeevuzosVBUtGsGcncOzZumdV7yNq57otk3v7CxdiSRdyRSRw0fons8y8MUvE8nliGbzRHI5IqkU/pFRqFPGE4BPfbbh/drAnKqS+f4tJPx3kfL7mQsGGI9GGYtFGY+V/41GyTZR6UINBohccxXJO+4keO6OhoEF77q1FOrogixMdM3ZOTy9S+Mbd3Lf3Ji40cp61++8t+72wvETK05apZSYU9NNV11pBkZPN6GLdzJ36+10ve+3GgZW4q+4sW7VHzubI/njnxC74dqqqiuRa16IaNBZBQsFepIpOlJpupJJfLNzrH16D/179xPNZQnnC4Qz84QB48MfbXzz//Sphl+ZwJzXQ/KTn2EuECARDJAIBJiIRBiNxxiLRRmNxZiMRrCa0ArxbzsLz8AaErf/mLY3vb7uPoph4Onvo3D0WE0QRGtpwZqrQxvyNmdP0nFI3f1TAju2UTEkZv7xJ8g89Cjdv1c7JlajkVUFdkMXnk9g+9nPSguk7vlecCnpnz9I5qFHiFz5guflnPXwbDJBLgA+B1AOhFwthNghpXwaeB3whefzBishhPhj4DgQL1//88/n/gCq6mFNX/0G79txHf5IddqU5vHSr2lcdGw/A7kEa5LTrJ2Zoi+dZs2/f70+32hi5dTdM4EKRC3guI3r/htDRhXkoIYzqOMMaohBDWdQg0EFKvqCN70lwFf/PcvNX5vnVe+oLyi17rwod3z6JGbRhor3XtVVvO0hcqMpgoNLHafi9zRdzWP0e18htGYzrUNLvDKzME8+MUEsXpsul0ydZLD3yobnmy4Ms3vuDl7Y+hbU51ELeDBwLo8lbqHoZPFSnzrSFncHfMsHaELRmDjyAC0bd+IJLnWMQX+QvuQsfYeeoT81zcDsNP2To/QDXR/8q9oL7Bt+fh6mDB3Q5yUcWjmNUiogO1TkoI6zXsNZpyPXa1jrVegSSyt6QvD+D4R49ctmeev7TNoG6rfT2vNinNyVZPn0398dpjiXx86boC51jIrf25Q9yVIRpEQ1qicKxcwsap1U/Fxumj1PfJFLt/02qlr/Xk9l9xL39BAUISTN0S9WgyJUzgu/FJ/vzATc/rvwi/DFsU4PvUM+oLpj33GhB0PUUv96ooK2URvtlhzKcRPtmMWrHy/y5jEb31lLgQ0v5eDyndX289zIXxAAAskcJFdOSbUUhZF4jBOt7QzH2jjR2s6pSBungm1MBSMsRCdU3UP39msY3X0XbWvPR60zI1MUjUigl0T2dE0QxK9GmLLrpLELoyk6TMKZ4mDpCS72VdMMEqUJfCKKV62m1SVzo/iMGB49VHdCKqXk8MNfI9K3mc4Ln/uq2gI87WH6XnY2s3snGwZBwm0eLn1lO4pSO0g8sKfE2HCpKgiiKnBOp4pnVxHlhIV63EI5bvHpBwp03ZVH/9RSYPbi8ocfVZ/72abZLiAiITKeprtOELgSGa+H0Vic463tHG9rZzjazolIB8PxNkoVqxjBzkEiXRsZOXAPQxfWH3xHgr1IxyKTnyTi7676zqeGydnV97JQ6cXCXDUIYspSDbXKkQ45O4Wh1AZynjl9C2FvB/299cdjhewcsycP0HLWZc/LSvYCOl96Ft3bW1ENFXcK9MuLX4QfVrweIlddWfe72Muux+iuthPV546JL913gMG5OdZOTTM4NUVfOsOaL321/ghsujZY+2yhAm22TVudSiPLkfT7ONHWxon2No63ty3+faKtjWLF6nP4BZeRvu8B0g883HBC5h1cS+que9yMu4pAiaLrqJEI1sxsdRDE23yGw+QXv4J/21mELjhvcZudyVCamMQ3VEurLp4YJnbdSxueL7d3P9Nf+yb9f/sXTZc8bQbRF1/N+L/8K3Y6gxapTwkNnF1fp0RoKun7HyB08U6M7q6l/UMh1szMsnb3M6ydnmZgeoY1I6MMAJ1/+pe1J6ojKPpcoAMdhSId4ytX57OFYDISZritjWMd7RzraOd4u/vveDSymLonhCB2w7WM//Onib7kRQ21WLyDa91KSMugtcSxU2kc06zKdFJ83qYyixayRZb/7tbMXF1bMCcmmfjXf6P3gx9omJGRfuAhfBuGVi1BfSZQdJ2Od7+joebN84Vn00+/CzfYUUmDeXW5EzompfzT5/H+FiGE+AfgcSnldxf+Xwjxawv//1z3XzxOSkZGHsHvjRPr3LSUfuwIBjo2MJQcY3Dfz1mfGmPj7BgDySl8Vgm+98Xn9HyWKsiHDCyPgq0rSF0wfnKeSK8Pf1RFt2yUkkQzbVTTQZQkVtLBfwZzMJF0EE+VUJ5yB8ALg/6AAGethrNJp7RFw7dJ5S/e6OevP5fmdTcFMTzCpcMo6iKFYeN2HyCZPjBL9GwfeplLoAmHQFeIwmSKMBK1vF0NlOkwq4gECgml2Sno3bhEE5GQmTjOycd/yPnX/0VVaqxjW7TGNxAPrlmkLQjLcUXacCkvR1OP0OfbiuooYFpLPDvbXqQwyAoKAyzT5VuI7toK6OVrS4nH8HBZ5DUojg5mebCkCMRCWrriYDHPrkPfZNtZb0bVw+X7FmiaRr8nyEXDe9gxcYChuTGGEmOsSUyjPhuZ7mUwdYVc2MD0akgVLMtierxA56YAqi4RNuglG61ooxQlStHBTEqalXwSDohxG8Zt1AeXtnsB6RM46zTsDTqFzSqXb9V52cU6X/uXBH/+j64TtR2Bqbi2VJA6QzuCPPKd06jSQi9TP3TFJtzlZmSY00lE+W8hJIrfgzWbXnU12y5TixTD66ZIl4UZS/NzeALxGmpVem4YVTVc7YRFalU5uGhZFIopDqTu5/zo9QTwupQq94GWbMm2q2xpAZXUKqGqSxQsxwFdJ0AIp1QiZc4RMdqrqAYLFKtfBvyifLFdcvjW/zvB7/6F2wl6hYlfMVnfKznfUgncWkDfb+LZb6EdsPjGeLk9v76UJVJ/vXtl2EGB4xfYuuuLk/M2yaykbcgVa5YmiCKopoNSkigFG1+m1PSiseY4DMzMMjAzC1SXwk17vBxp6eZotIuj8S6ORrr4EYKZo4/T03/xMlqAK/4cC/SRzJyGUPn5SyaYJj4C5K00TrHoluUuU7k0qWFZBZyFAJ50kNJGIpGWueh9iiKL6RRciozqIMoUhn3ZexkIbqfXt7lso65NexU/a1ovcAU1VQehlQd9joJwYG7yAPn0JBuH3rF4LiFFtZDlahBLr7wilihHW3/nMiKeIuBSMz2K+2y6Yi3S6+796mms+QKv/90OvMIioLj94PpOyN5l0XJzFv8BG2O/ibLfREnV3lDjHJfGsMMCK6jg6ApShbFxCyWoEe4wsIUCRdBKDkpRohYdlPkSvpJDs/UHQoUim8bH2TQ+XvPdWCjGcLR90Zb2rNnBfz78bQqbriGoxRftSbFcAWgdnaC3g+T8CFGj06XDlPtSnwiSN9NL9D/TQi1zS0qlLLpQK/yeRNo2zkL5XKFgySIaqiuUWp4kFpwCEumK7No2lDPrpBDMZU7QHlxf9sELflMiNNePjx2+l2x2irazXuDaTgW1qgktYne/BbahkIu0Uk0ThNfFSR6eIrTOQDfKtLuyyPgvC35Rfhggff8D6O3t+DZtqNrevXEDm0fH2HzgEJvHxtg0Osb6ySl8pgmff25j4pKqkvF6KeoapqphqirZ6WlobUH6fWi2g2FZGJaNYVnoto03myW0gnbHckRzec45eYpzTp6q2u4IwXBbKwe7uxY/T168kz33/IzwZRfXzQbxrOl3KQwjo3iXlQjWWuI1q/fNTloBzKmpKso2QOHocWZvuZX+v/7zqu3StvFv3dIwE0RKSfLHPyF82cXPawAEXJ2Y3g9+YMWgpD2fZfIL/07Hu36jmkZlGPT6/Vz+9B527Nvv2tXoGAPTM6hNVG1aDUVVJe33kzd0l45t2eQTCZTeHhxFQXEcPJaFx7TwWCYe08Sby7N6np0LVUq6kym6kykuWRaIyRoGx9vbONbRwf7ebg52d3Pv4ACJu+6h7Q2vq3s+z9o1ZB55DCllVXtq5UpH1lyiir6ieL3YmZX194BFkdnltCFrbq6+bsrxEyheT8MAiJVMMvv9W+h877ue1yAIgNHZgVMqUTo98rxmLVXijIMgUsrvCiGeFEIMSCmHy9u+J4R4NbAyaei54V1Syg9U/P9dwAeARg78TPdfRCYzQjw1zGWqxWB+knWZcdZlxunK15aIWwkOMBmNMB4PM9ES4dixU0y0RSjecB6Fdi/pkJepEyM88NG7eeGtb6Ul7hDzuE6xdGKCz7zqPv70X7cz2C+Je93oXUgpEFYKjJ02edULRvnsZyJculknWoBQXqIkJZ4ZUMccxJiFGLUQYzaMWYhifUciJKjH3dUu/XZ3RfM9wJuA5DUT+C/zktjoQ9vskB8ysIIqukehd2uYE08mOefsauP0d4Zrypoqfi+yWHKjkKLa7BbU5BeGt1Z2HulUO/zi/ByGL4xtFRfF/cBdQe/ruwzVUnEsu6b83lxxhLQ1zXmx63FsG6QNy5zKc8WR+cdp868l6umq+U5TfZTy07RNPc15mSDr5scZzE6wPj1GrJSFvXc1fZ2SqjLSEmOiJcxkPMTBB3eTv34n8zt6ScQCWDGVg99+gInZHJd8/BriIRMhBGGtwO4vPcOeOyd4/5e20hkpoWqCkJonJFx7u+Obc3z4gwl+9rNWuoUkmhMYKYmRAG1WIsYslFEbZdSGURMm7YYDTZGXqHtN1L3mYqDtB8AYJurIBM55HmY3B5AbBfMD7krlwI4wuZTF7PA8njVLoRg9YGCEPcwPz+HvqlhF8XuxT4yXxcqWfnM7l8MpmajlK0vTRAuGUQ1PlY2V5hNE2zfUdDDJxHF8nsZpfyfnd+NXI8T1LjBtpHTOuCTjShgvHuNw7jGu6HhL3ZX/XxL8YnyxgHu/NM37dur0TNjEDuUIHyjgPWihFM5sUCQDArp16NaY0OBz9+T43b+N4ulXsWKCQlTwsrfOceF1Xt78u1E8XkFW6mQcL3/59tMIQ+MNH9qEN6CSlgFSlmujacvLLX/0CMmjc1z9kRtQMhqxgomRkvhmS7TPZWifyNA5laZ7NknXXIrWTGNxynCxwHljxzlvrLrs4fGnb2Fk/BAn/J0cC3Vx3NvJNG42TDTYx8nJR2ps0aeGsLEoyTwesfROaUInL+eRVNu+g40jHZTyOSxKODg40kYtv2NSSvJOBk0Y7vUq7jHi7SKgdmDZJYSsHVqcOHAH7QMXontDFM0iiqZD01P9lSGEIHFklpM/OcoVv7et4X5Hf5yi9Vw/7QfmiR3M4TtgsuOI6Uru/OHq5eEXIFtU6NWQnSqPjFkczDq85r1hRI9CIQaTBcllr5jl325rZcNWnYJikHMMLFNy/fZjvP3P1nDOVVHyepC0404EUpaPubyXL1/xTTa8cTtD128nnjfRUwJfwiKayhGdztExmaFnJkn3dIqe2QT+UuNshe5Mgu5MgktOH1rcVgQO/eyTjLZv4Vigi6OhLoa1dvJlfxMN9JLMjwLV+gc+NcRs8bTrM8vb3OwPQYkilQRCiaREscq/Kih4hK/q+Lwzj4qGIbzV2600RWuekLej7nOVivNMnnycwYtc+TnpOEipsGpUvElI2+HRP7mDs964mYvf/Oyqi/wC8AsbExeHT9J7fJhLCgV3cjrmTlB7EmdW4toWgqlwmPFYlIlohKMnTjLREid92cUkQiGSfj/jp05z+DvfpeXv/hLF51tMry+OjjH2kX+k911vR4vHagIR5swMI3/39/S89c10dHcRK5XcTy5Ha2aerkSS7kSCrmSS7kSKrmQSTwPhUEVKBqemGZya5rqK8qwZ4MCHP8rRDUMc7O7iQE83B7u7yHq9LoWhr4fCseO1QZB4rEbMUvF6kYUCTqmEYlTnIcpi9btjZ+ZrhFnNuTm0cAinWKyijwhVJXzVFQjDQFZojy2gcOgIpZFROn/zHUsLgqr6/I2JpSRxx534t26pokktQPH7kBOTDD6xi3P8PraMjLJ5bJxNo2O05HJwZ/Nj4qKqMhaPMR6NMB4Oc/jJXWSuvJyZwQHmwmFSPh8nfnwXs9kskXe8FWEYi8+Z/MndZPfspfM970LxemraKX3/A8x+74es/+AHaHEc4qUSLfk8sWyWlsw8nckUPYkE3YkkPXMJOtKN+49AqcTZI6OcPTLKK55cEvscO3qcg7NzHBxYw4Gebvb3dHOyrRVHUfAOrMHJZrGmZ6qCC6rfh+LzYk5MVgdBfF5KE5NIx6mipDjlMfFCEEOaFmo4jCiXoV1oDyuRwFXkeJgAACAASURBVLdlc82YuHD0eEPtEoDUz+5Hb2tdFI1dfv3nivknniJ5x530/uWfPS8aP8shmqmL3vTJhLgaOEdK+bHn7aTuec8F7pFSxpZte1JKWfPmnun+ldiqGvIxKQnI5lMsZoDDwGFF5YjPx+jWbewaPsrBqSlKioLi96GEfDiZLM58OQpnaKh+A6FCaXYpfVr1KOheDVWH7MxSyrJQQDcEHq/A5xPYtmR2qjbirWmgawJdB10XGAsfDXpUwTobBi3JoCnpL0r6C5KugjyjoWim38PM5iD3JSU/eHwO87o+nEv6iK+LYre2sPd7x9j/mYfQo348vS14umJIf4C5W9yyaUrQjxqJoMYiFPYfdlfCFQXV50f1BSglZ0FCy1mX4JglMif2geNgFbNoup+tO99GITfHsWd+hKZ6KBSSLBBOFKER8XbR7hskVZxkLj+M5Zi0ewfIlpJknIWOSKCisUHZhiMdTsnDqGg42AgEA2wiRhvHOUCe+fIqPsTUDoaMcxh3hjlcfJKSLCBxGApfzLrwBQQ1m0EnwWBxkrWlGQaLk/TlJvE0md3hAMNlexpdu57RDZt5evwUu/bs5hTgaBpqOIDWGqF49LQrliVA8RpoAQOnUMKaLy3ajOrR8PhV7JJNIbNk06pWaU8K82mb+WWVEIRwtRB1XaBpYOhi0aYCOvRJwZAjWWdK1pYkA0VJf1669KwmYXkFiQ0BJjeF+db9s+wSCqWX9hO9oAOlqxUrEueBP7yd6afG8HbH8PbGUNviFBMF5h/aC4qCEg6ixSIIVad41J08Ck1H9flRAgF0bwgcyJ46hNAMNMOHtC16z3oRwpSc2PMjFEVHVQ1su4jjmLz4/L9m15FvMp06goKGKjQM1YdAMG/N0mb0IxzBlOWqwSuoqGj0KOsIyjCT8hQZUigoaOj4CTHEWcwzzwn2IYSCLLPpt3uvwO+JcX/6ZvKOy7m/uPU1RAI9tIkC64qTrLOmWVeY5JLMkSellM9dyv1Z4hfpi8/xKHJXqfn+yVbgqANHBIz4BekOlfNfHeb1H51jCgj4BfGYis8Lh4+5RqoqEAwKgiHBzIxDsaxDpGq474ZfJZOyKVUEkFVNoHpUdK+K6tXITOSQy6tpCYFQFdBUd3ClqghNRSgqPqEwBAzZDhsthyHbYsg02WiaROtkEDVCVvVwwtvOUW8rt8/t4bAaJhnZhkdpw4cPXXi5d/qr2NIkoITxixA+/KScOZJyGoGCBy9efFhYzOMGrlU0dAwEgjxZ4nQQVduYkmNYskhBukGcbu9GNsQu46mZ2yjY8yCgZC8FeBRFp7/nEhRvkLGRhynk5wi3rkULRJg7WVFBRlEJrz+LwPpNZE4eojQ1jpsgItHbWom97kbM5BSp236GogqEcMWM1/7RjcT6/Tz9nq9QnEhhzbs/3jseeQNtep6WU/OsPzJF35E5Wg5madmbJpho3jllFDjowKhP8LLfinFKF/z+V5L8dMxmXrgaNH3dGrm8w7Fh97yG7tqT1ycYG1v6LXUDvD4Fj1cwM2UvZSwIUHUFzaOgeTWkqpKdqBMkU4RrP6oCqrb0r1BoURXWOZLNlmSjY7HRtNhomqyzzDNa5Zo0Ihz3d/KMVLkzdYDR4DrynnUElCg+NUQ6P8ETqdvQ0AkoUfwE8IogI/ZhTEqoaHjx4cFPhgRmmXLlWpMXHQMPXpLMYlJCR0cIFZ8aZHPwMnal76LoZFGFjqJolOws23pfierxse/UjzDNPIqqo2oeQi39zI49Q7B1ANXrpzg/RyE5AQgUw4PqD9J6+YtwzBKzD/0UNMUVgPTohG+4CmNtP8lbbseamkIAirSJntNP31suJ3nn4xz9zH3YRYu+y/t45ScuRc9bbByeZPDQNG0HMmz/j9H/NX54i8cjH3McgqtUGqnEDHAIOKy6Y+KRHdvYfegwB6dn3DGxz4caCGDPzy9WtBC6jvB6QCg4FRNKoWkIjwGKglO50i2E+52uIwwd6Tg46TolWhWl7IPdf4WqlX2xQrcQbJCSDbbNkG0zZFlsME3WmtYZjYmHW1s50NPFk9kcjxw7zrELzmVu82b0zg60eIzUAw+RvPV21FAIvaMNraUVxe8l/TO3wqASCKBFwqjRCPmD5TGxqqD4/KgBP+bsHAgIX3IxTqlEft9+pO3gZLMoAT+d734npekp5n7wIxSPFyuRcM8BoGl4Bvrxb91C6dQI+cNHcMwSgS2bMWdmKS2U/1XcdyR243VI0yT98wcRuoG0LYSiEL3marzrB0nc8ROs2RmQblDcN7SO2HUvJfPY4yRuvQM7mwXbJnbDdURfdBWRbI7NY2NsGRljUzl4NjQ2jtHk3LNyTHx6w3pOb97E3uFT7Nq9h1OA1DSUYAA1FqU0fMrVABMgDA+K14NTLCEXMm6EcO3F43GzHivpSIpSYU8GTj6/dFwlVLVsR9U2ZagKa4ANjmSTbbPRsthomWwsmbScQXZSztA51OUG2B7ed4DdqsLxc8/BGlqH3taKGg4z+dkvUDh2HK21Fb291aXIZObJPb3HnUuFQmjRCGgaxWPlMbGhu/YUDKCGQkjpUDh0BDwGqt+PLJlEr3uxKzb9w1tB1933rlBEWhZrP/FRJj73RfIHD0G5ndRgAKEomOMT+LZuQWgqud3PuA+i6yiGQeiSizC6Osnu2k1pbAw0DdXrRetoJ37DtZQmJt1qTqKckW9btL/1JrR4jNN/8yGscqC1+/3vw9PbQ3ciwdaRMbaOjLJldJQX7d3/nHzx8xoE+a+CEOIa4HNSynUV2wZx6Tf1HP4Z7V+J84WQTzT4rgQcVOGgASNxhZ3vCCI2eXjX3yQ4NmxRdOUH6O/VOPTgAC989Wke31VElsXSdQ1ecrWPoydMDqyiufC8QCz+Z6kKSh34hMJWVWW7orJNSs6WkrNtm1bZfOrnHPB0+fMMgmcwOIyKKYSbZi1d8TT3819T6UJVPBh6gEIxhazQRxGKRqR9iPnE6eoSx0JgtHTgFPM4lul2HplUVdqh3tWOsb4Ha2KG4vAYitfAiAXQ/RrXXLuRDdNZ+h49znbLYmOiSFuyOXVmcFcVDupwNChgm84BXXDzAYvxtENrXOHaq4IUipIvftMdECwEVzes07n0Qg8/ujPL9Exl1QTweqFQWPHnfvaoXClodAEhaBUKW1SVs1HYAWyTDmfZJv4zuKkjwG5ce9qLyl50RlFAiLItLdmTfB7oQ1WPgIKu+TGtHLLKVhV6hq5gbvog+eR41RGxTeejtbcz8+Cd5RWb8kvv9RK/4aXk9h2gcOBQxSGC+LXn4+ltIb/7CL5sjo05k3MUyUVxg7NtSd+RWYLp6lVe4Q5a/zsH378UvngM2KOoPKNqHGnrZ/qqV/Lg0/czc2gX0jYXB4DtN90EUjL1nW8vpvUjJVpPC76eFjK7joH5X5virpQZH4JysY4G5qoqMKjDDh12CMHZEjZbkrVFUJs0cRt38rHgi/f5dPb4dKZ1FccRSFsiLRunaLlUruUVB8Tq/UUz8BpRHNusCooAhLU2VKmSsKv51QZeDDwUKSBQkDiYy5Sx2+hGx8M4w24AR/jQhYd+pY2L9Aj99jgb7CxbMRmys3hW0ciqxFEEezWdfcEYB6KtPJmf53BiCsexCAwM4entJfHwfciFKFk5Quw/dwtOJkPhwImqthSG5tKMzOe3rxOU2UflS61kTz4VNhtwtirYocDZDmwuSbqbq2gLQFrAbun64t1CsDdgcMCnkReqO66xHJyShVOylt6vxZttor9YBZrqQwiBaVXr7IT1DuJGD8PZ6hKKGgZnqxdzxH56Mai3gA76MPAyzSgFls7nJ0SfOoStSKasU6wRgq3CYTuCC7Uw65wUvWaiiqb6f37YRRHYpyjs0VT2BgKcuPJyDnW0c+iW27CmZ9yKP7h0kN4/+2PGPvlpSqdG3IOlBFXBt2Uz5vQM1sTkGbXBs0KzY2JFYavmjonPRrrjYtOi9Qwms7NC8LSU7rujKuzxeDmo65iK4tLGbAfHKvvh5QGm5+HdARBeD2oohDWXqKbTGDq+9espnjqNM18xJlYEekcHTi6PtEwUjwcrla4eE3d2YPT3YU1OURwdQxgGWjiE5vGw/cLzODuRZGj/IbbZFmfNZ+nJNs58XI40sEdV2evxsL+/jz2qwlNj48znCyiBAP4tm5Alk/lHH6t4SIHe0Y5n7VqyzzyDnF92PcOA0hk4vTNBs2NiVWGzorJNUdgObHdszjKtpsfEDnCs0p40jWd8XkZUzb0Hx6X2S3OhX19mp8+1X1dVlEAAJztfXVhCVQhfdSX5vQcwK+mYQhC88Dy0tjaSP77LvZ+FibDPR/y6l5Dbu5/CocNVx4QuuxSjo43c/oP48nk2F4ucjeCcYICzpMPmkTFiy8Rfn6sv/p8SBPk14B+WOfAokABiUsrkc9z/XbhaJ5wH5z0BFGMq81s8FLZoTPfpfH9vjsdmLSbnJN1dGr/+aj+5vOTvP5IhmXJwHIltSy4818eH/qSF93xgioNHSyzKAwi44mIP55/r4dvfn+fUyJIhaRr8+pt9tHVqfPrjmar31fAKXvEHA/z4C6Okpyu+UMDf5sfM2ZiZOhPvRs5eCLfMqyg74grnq3r8qN4AuuHH44/SYdlsTE+zKZdki13kXKGxUdpoTU46S8ABBLsR7Pn/yXvvMMmu6tz7d1Ll3DmnmenJM5ogaZQlJKGEEiBApA8Mxr4EJ0ywL3DxBRP0+cH3GttcEHAxBoEESCCjDEgo5zR5puN0rq7qyumEff841TXdXdVhJCEc3ufZUs8+u05ce+29137XWkgcxrbmjkDZG31++SoW/ev1hKRpaL4gpWR8keLwnreP8JWXMP2V/0VHOkO/btIP7GgOsR3on0nirZGybDnkWjVymx1kNzkZdBv89ECRF1MW27ZrrO/WOHhQ57EndKIzJiVd4PfJ7N7uoqlB4TeP5EmmLeYSJpawd7QtS9DZrpJMWYxPLpaldesVBgZM9LK4KCq0djnxhRQOPbt4MunwqTSsDzJ9OImRX8EwV5Ensdh3X5ZtyziSvfg3jUq96vSiOj2oTg8ed4SeXIqN6RibCgm2CYtdskqztXZjYBx4CZkXkTgClTJlE/tZKE8L5ep1Q40B0dHaRvjNb2Lu9jvRZ2bQhKDHsjittYGzT19H9+OH6Z+O02eKNYXs/Xcw+X5ddfETksyop4EBXwvHQq08S5En0lFOGFkMPUekdxfhTXsY/NX3KCZmEZZhB8INhPBv34nQIPXkk5jp9Mn+LUvUvfMSSgcHSD+z2HdXCzjY85HdHP35UWIHFtOXz7q2HkmSePT2xQH3fH4Jr08iOm1VzT3A7iIS5czJC0TS6ahk3EY3ToYVcjogEpGpq5MJBGU6W2V8J0xCoxat0ybbgd2aRGgZ98ZamJQlXlJkeyErSRwFjiDZy0RL2K5iCwv8jiypy8OJCwtRZfw4hyuZZIQ4B1mPRT92FqszpQgbRIb2NQR5nUdB1hjyNnE80MrRUDOPpaZ4xsiSECXq+/aiSwbRQ49g6UXMYg4hBK7mNiSXEwsTPR6zd1mFKO8wy7jWtaNH4xjJLBRPGi29nSEK0QxmyazEFnMGNFrWe5k6kqaQWWykWb/FQS5tMjFm1gopVMG8MXyhrEkSuJy2wc0SdliY+XWLzydRF5EJhSUamhQanBKhYYP6ExbdCYu9GmyyQF2jzcgEjioyL8gSB2WJw+Wx/ThQFOU0ufPWmaUy9TpBQqqaT/SxBRdeDvEsIGgA1mNxhbSezZJJvTXEVgTBmmdcev7/Wnr4GWDW5+VwaysH21s5WBfhqZET7M/mKGYyqKEQvr27sApFEnffay+ihYWwLFxdXYSvuoLZH9+GPj1zUh4kcK5bh6uzg8yzz2EudK1RFPznnIUS8JO4+147Ns08HBrhKy8n+cCvq5ghSjCIVSws3uGvHK/8p3pOrJbnxNbiObHksRkriteLEgrSbFpsmo2yJZ5gW7HITlVlo2mirlG+S8ABReElSeJFSeKIZOvhkfltOzGvi/n99R2HAyUYwIgtnhP7zj2b8CVvYOrv/p6ObI5+w2AjsK2+jm1CsGkugfcUjERjkTCHWls51NbKi5rK02PjHM/ncXR0oNXXURyfoHB8EDOdAsNEcrtwtrej+L3kjw1g5fN2xkkhkMruQEowgFUoYCUXuKbIMmpTI8ZM9KRSVBS0+jpkj4fikuCjksuFo6WZ0viEHb9oxZclVX+f8pzYNk4skCdZRvF6kb0eZI8HZ12E3mSKLbEYW+cS7LAsdmoqLUuNySsgJkm8JMu8KEscwZanQ0hMLxjDxdIx/fWUp/kdoPlrA46ONiLXvInYz36BMTuLQ1j0mBY7mpo4c/NGel96mU2xOH2W9brMiU/ZCCJJ0geBTwCfFEL8bEH9m4H7hRBrd6xd+zUvBm5bQuXrBQaorcBPqf1CbOh2i7//YR+FRhW/UsQrF3nq4Tx/9u4prrnORWurwu6dDq69wsPRYzovv2CgyDKyDLKQeef1AXRd8P2fpDEMgWFASRdcfIGLrRud3PzDBE8/XyCRMcnloKFJ5tq3ufnsp5NoLpk3XO0jkxbMxCRiccFFb6mnbU8TH+x/hI5tAdZf3M5c1CSfLLLp/XsZeiLK6F2HCZ/TTzZaoBTL4Nm3jezxGdRIAH2uiDmbwYjHyT9/gMhVV6N4PVizSYxYnNSB52k690p8DT2UUjH06Azxw0+heQJsu+DDKEVbqZXiUcaOP0Qufox3bHgbfclxO75FYZrewgw+a+0MCB2JUZyM4GIYJ0M4OIHGFAqTkkYaMDEwZRNTmJiSgSmZmMIgaUapd3bR4OpBl0qUpBK6mUcXBXSrRDo3STjcRyDSjV7MUDQzFPUsqehxAk3r8XdtpFRMoWeTFJIzFGLT9F56HQ3JKM2JWZqmp+iIx9jRv4716Qzd0zO4TiGlrq5KzK7zEd0YILXZTWGzytxGD66wTkC2B+ZvfXGSH9yc4cb3eLj6TS4uOsvFo48VGRu1cKkKsgx1IYU3XRxgfNLg3gezdsw4Q6Drghvf4iMYkvjqPySYjevEkxbZnGD7DpWtp2k89VSRm76c5a3v9dHVoxFPSqQKCpFGlZatEZ5+KMvd/zjMade2cd4n9iLJEv/2Ny+SGM8TOzhD47l9OLpbaLhgI5mczJGPfgvV5yZ0/RswYnmMeILSyCSl8Uma3vserNkkZixBYWyE3NAx1r3r41ilIkZ0luLsFPHjz9Lcfw6dvReiFCyEsMhGRzi0/zY2Bnt5Y2AjvZkJ+vLT9OSn6SzOnlJw2DRKWY5cDOHkBA4mUJlAYxKFkmRiSpYtU5JZkaWiyJOzknR7d+JyBClRQjcL6BTQRZGSkSWdn6az4zxkWaVo5SgZGbs+OkTjxnNR/D5K2SR6IUVqcD/u5k46t+6kMRmlaS5G68wU6y2LzQ11dlTzTPaUaLZZt8KzhiC5K4h2XSuXf+rA73vy/brp4kZ3g9iz88MU3fYEx3ApPPPo18ilpmjecA6y10dD/z7koJ/ZkefAMjE1CeGQcDQ04+hqIzs1RGlqCgsDS9aRnQ4Cl+yB9Czp+x7DTOeRinnkYpGWN26isc/Pr993G3v/bC9uWUekM+QTOg3NMle+s45nH4jz3b8e5F0ftQOIZWIl+npk3v1BHzdeOcOFFzjxeiSmpyxaG1Q621VyWXBqMtNRgxNjJj+8Pc22jU4+9bEIE1MGo+M6jz9TYGJa599+1MzAaImjwyWOHDW4+TtZvvejCPvOdpKzFKJ5jecfz/OFP5/hox9r45w2P3WHsvgPFag7lKVuNIN8CkN61OVkIOBnwOvjuN/HsNPDuOpiQnMQFQpWQccqFRGFIqJYxDJKWMUS2dgowjLp3XoNlHQMPYdeyGAWcxhGnkIhSa40x8bGiyiVMhT1DCUzR1aPkTNTbHDuwRQGBTNDwcqSEFEaaaWXAPVkqCdDkFm242EHXjpIUbc0Z/pqz6Z4GHY1M+BtYdDVxEColRPBJixJxnQqFKQ8T9z3edz+BkJd2+nYeQVFuUjsxAtIsoJVliVPZx9yY4jU4AHMdBpLMbEkA601jHvHRvTRIYovHMDMFZGKOeRSgfZ3nInbyvHEx24H4Py/PgOyGfS8iVIosPvCALIMP/zMEYo5g0//Ywd7d8k880CSX9yWZXRQJzpt8ld/HaCjWWHvdhc/uSPHZ7+Y5GN/GKCzXWV62mL4hMF9D2a58To/Z53uZnzSYHhM5xv/N8UH3uXng+/3MjiqMzBo8PCTBX772xJPH25GkuyYN2MxlZ/cPMet/xTnBz/eQstoEd/BIsFDeZqOpPDOrd3AZAGjfi/H/X6O+X0Mun2May7GnE4mJAdJQ2AZBuRtebJlqYgoFcnERnG6Q3T0Xoih5zHzGYxiFsMoYJRyzGVG8DkbaPNvpVhKUtKzlKw8s8VR3LKfLscWCkaaopWjILLMiRk2soUWTCJkqCdLEwlOp45O8nSRJ3AKjFQLGJSdPCMM0o3n8YfTv/kvo4frGxtE30f/G9GAv2Lozx06zPQ3bsa7ZxdqKISzqxPv9q2UpqYojp4ASbbjCgiBd88uhGGQfeY5e7e6vDB0b9qIo6WZ9ONPUjwxZi9qSzpqMIj/zL3M3nIrkseNd+cORKGAmclgZnP4zzwd97o+hv7k4zi6uvDu2IqZTGPms4QvfyP5Q0fJPPMMnu3bsVIpjGQK72k7KI1PoIaCWLkceiKFGY+Re/kAkeuuRna7MRJJjHiczHMvUHfNVTi7OjFiMUrTUTJPPIkaCS9KSavPzpJ44DdwfIAL3/uuSiDPTeMTbB6fwL/GoKcAJVlmyOdjwO9jwO9nwOthxO1mwuFgXNPICGHr32IRUdIr/UaUdIojo7i3bMK9aSNWNoeVzdqx0XI5rHyB0tg47v4NOLo7MVNprEwGM52hcOw4rv71uDf2YyZTmMkk+vQMpZkoHddfQ/NMlJbZGC0Tk7TH4+xcv471mQxdM6c2Jy4oCsdamjlcjnkxH0cl5TkZpyr2s5+Teuhh/OechW/Xabj6esgfO24bYmRblmSvB8/mTRiJBPnDR8ubbibCtPCdvhvF4yFx3wOYuTxWLocolnB0d+Lq6iR/bIDEXfcQOPds1MYG+7huoIQCODs6yB06QvKe+/CeeTr1b74WkIjd+hP0+BzFkVG8O7fjaG3Bu2snQtcZ//LfoQT8hN94CWY6jZ5IUBobR5+aofE9N9qyNJegODJC4dgArZ/8OCKfR4/Nok/NkHn6GYIXnl/JuiQsi+LIKNHv30LXpn7O2ralLEuTbBofp28minoKBqaUpnE84Oe4zx7XRzwexpxOxpwOJlQN3dBtN6FSqSxXJaxSCTOVwojOErjoAtRgoCxLefv/+TxmKo0+MUngDRciaypmOoOZSmNmsxQHhwhccB6y14OZTGIkU+RfPoCzq5P2nTtoic7SHJuldXKK9UKwua6OnmiUzmzulObECaeDFwyTQ329HDt9D1/711telS5+pVncvkrFpGpjPjiqJElioXHkNUIcWBqtMFS+bi3lfartKyj6VBKNdogvTVgowmLrWSq/eEKlu9WeXXolk5wwaV8ns269C61sr5KRKEolcMC7bzzZwS0sTCHIWSXe/nY3b367k0J5q6cgJMajguNHDb7yzSa2nWfvQ6QtNynTVf5bpWN7kK2XNrP93ZtI6Ha84rThIn7wAN7OCO1v3kO6ZC8WksNpxv72R3R9+69B9UHRFrHRj/w1zo523L19KAUJpQTF6CRI4Glqx9PUjtIJHl8jo0/dgVBAlFOdunz1tHeezVOTT3HAHWbA2YxUDv4gFXUa83G6CuMoM/dyrlbHJqtAi1nbHqYh6KNAHzUGCQFpHMxKHmJ4SSou0oqXjOJmVhg8l4vS6l2HrAUxVAeGQ8OQFAyHhu7QeGn/zfSHeoiEOnBYBqpioskmmXyCFkmiPTNHQM8RLOUJloo0WSYN99SIC3Zk9TRbUbfGy6pM+k0bmdkY4MT6MNk+J9nBKe74zAt88ov9BNVi5bkc5Tgzb3xbmDtvy/GBvwjRGhZkLYudZ2qcuU9CKwcl1JDJiyKRZnjH213IZRmzXYks8sLiox/xYiIolmWpJARFITE+beHxSrzvz+vxBRTSwkXWKsuG6UFuquOurw9z9gf6wWVHKzn7c+eR0t08f9NDRM7fjLbZ3jByljTqb7yYzOMH8F1wOqJky1LhpSFm/vm7eLZstmWpCGYuy/GvfgZZc+JqaEVp6EEtCIxChmIugZAlhCIBCoFIN62texmIHuDZnjfxnN8OqiSVDBz5Ap2lWRoTLxNKv8B5WhPrjDg+UXtC7sdkGzm2UZ2a1ALiuIniJSm5ScsuUoqbtOxk0JxhWDfodnVgOpzomtPOgKQ5KDkcZLPjHB++k9MbNqABsmKhKiZuI00yOkS/pRPOpQiU8oT0InVOF63TY3inRqvug8zKUbtNWWKkzseJ9RGiW+s4sS5CfKMXq1Pirv/5ArJe4m1v6oBPHVjxPK8DXjddXFAclDStLDOAIrH57A/gcPkx3QqmsxzQS4bQxl0AmE67gP3tXd3duLq7MZ0C4ZrfTTRR68O0vO9SANwOHX85IPXIN35Fw7ZG+t+2nZCWJ6Da1MugmkdVcnjqC3j8Cm/5WCuyLBGQC3jkEmNTBgcPGHzru2GaWxRckoQmSfzRh+doqlf48ufD5UeQWLdO5YGH8lx5hRMLDXBzz69UPvQncZq7oK5T5bRz7H720CNFhkYFO/YpZIWGcDjZeb6TrfsKPDmo0/z2Jo6fa/frpOFGyxsEDufJf/MAnQei7GsP0T0Yw12ovbvUUCjSUChyJrNVx3RZJuoNMu0PMusOkHZ5STnryShuBvQCKc1NyF+PMGQMSUYYEpYBhiQzOfk86eRRdvtacegltFIRhzCxITMvEAAAIABJREFUcmNkMi+ySyoRoEhA1gkIE6+waOcEjirjZ65cloeOzAEsxp1djLs6GHI3M+htIaV4eCl6N0FXiI6GbVgOFatMvRGKhOr0Ut+6HVe4mZZdb0QAitNF3ZYzT8qSa15iwLtpiy1XLgvLKaAsT851nfi32GlCPa4SHoetp3xqgUBPmPYLe9lwbT8BzZaxgJInqNrPtHHfNFa+RN+uELpc4KzLApx1WYDDT2W47+dZ3vJuL05J4JLgg3/s4ab/neKiC51ceJ4LRZKQkbnkOp2uboXrrnNCOSWuLkyyOZOefpn2DQ7Ow8E5b9S49+xZxmMK4TqFnOXAGXLw9j9t5mffS/B4BrZc3UziSo8d+FcImILggSz5Lz3GbreDrUKifWyupqFNBrrTWbrTWS6u8Z1ymoPJQIioJ0jS4SXpDZAOekii8VJiEk/7DrzeMLrSgKnLWKZESVKRdJPjx2+nzt1Et7cV1VGPZpRwWyWywsJn5lgv5fDLJfwYhCyDkIAmDtTYSayW86VISQ6OKX7Gna0MORsZ9jQz7KgnIRs8ePwfOS+yFaZ/s+p5fsd43fRw2uUiuiTdqbt/Ax2f/4wdd2ABHM3NOJqbq84haRr+fWfUPL9/3xlVx4xUCn0mStMfvh93/4aav3N0tOM7bQfBC89bVJ8YGcXR3ExoQX1peoaZm79L11e+sCgjyvBffApnZ0clqCNAaXwChMDZ0Y6zox0voDXWE//5vy26jlZfT/D8cxl//ElejETYvzB7hRC0xefYODhE+y23sre9jW3pNB3x2skVHJZFfypF/zLBNZNuN1OhIJOhIHGfj2RdhJTHTaxYYnhkFGXrZsxIHXqzjKEo6IqCoSgYwOzff53mdb0E2ttw6joOw8Sl6zA3RwsSzXMJwtksoXyBcLFIi2nScOtPq29iDalnp5xOXlIUhvadXmF5DDY2kBsbZ/bHP6H1HTfUDMDq33cGmaefJXzl5Sgee33jXr8O1ldfQw2F8J95es3rhy6tpXnASCSRXC7CV11eMyOOGg6RvOc+wpe+oRKktuFddhrx2R//BN+eXYuy7USuupzs/gOL5DZ/5Bgz3/0enq1bKnVmOs3of/88ssuB1tqMq8+WMzOVsl2UypBkGVdPN/59ZzB24CCPvPV6HtnYXznu0HU2TE3T99TT9D7yOHs7O9gyNb2soS2g6+yKxdkVi1cdsySJmYCfyVCImN9HwuMhEQqR8HqZGBpiqqTj7u1G1zRKqkpJtTMz6YqCMTJK+raf0bmxHwcC1bRwGjr+RBIxOERXSadOTxLM5YkUSzS6XLSeGMM7UmNOvEomG1OSGAwGOdzeytHOTg63tnCktZmxSIToLbcBgoa9u+Ffb1nxPKvhFRlBhBDfWqb+p5IkfeBV3VHt8z4nSdJSRR0BHngt2q8GWbZppE88nGH7bgde7+q/ORX84DsZetZpnHGeq+Z0r5Q3GT+Y4spPbao6lptME9mxOE+7mSunBXU7sVZJc6843VjFxR3J4Y+g51JYplHJCgDg8dSjqm6SqVFcvgXaSZKY0YLMaEGO5mf4u/wQZ9W/E6+ep7sUpc+M0W3EaTOTtIkU9WKxT9dS+CnhFyV6zIQ9+1z6DPFfrfxQg/fAYI36zCxMHa1xYGXMhHwcc7sY6WthYmMzA531nOiPMLp/gKF/fZrLPryPoMN+Jr9aINjqZvpYmpmhHMH11TbO7nUO7nqyBbdbZt4x6LXEYw+XeMf7/PgCte2rwy8k8YY1wh1eUkso0Kf95fmkSk4yC+wNVr6I7Fk9lZrstNuYpcXf1+ELk5uuVoKhQCeDQ/djWjrqApuqLqsMuJo5HonwaH6EJlcH613X0FBM0GvG6TZitJsJ2q0UHVYSb5WALLgnoF7kT8pcLXmK3bnygz13c+36o0+s/LsasCSJ8UiQAa+T4e3dHOtpZmR9hOg6HyWnRsBRrCyW/FqBsJTj7A/0E3b/jnxaTxG/b13sdAfRi1kymVk87T2r/+AUoCfzDN95kHM+f8GybQaeTbJ+lw9ZXjyRmzxhoGrQ2LR42ZVOW6zvXX2YDfhlUmmLpczMtg6F8RPVOqL/NA+/+Xmyql53qwxta2DmsxfyxetvYfuNu/Hv3UjrZIL2wwl6j0XpGZ+lazxO91QM1wrUW82yKtlFlkW0lqJdgMHv164vvFS7fgWUkDkheRmUHESVVsaUMEPOek4oIR5M3s5672aaPetB02wfQECRNObSw3Q01N4oWn/aDeB1/Q60MGRH4+jZEutv2MpyrnnHn09z+Tuq0xLuPsPJ2WculhvLEmQygkBg9SwOAb/M5NRiRdfcoqAoMHHCIFx3cmxQVIn1O7wcfzbFlnMWZAGQJFINLkbPrmP4Tw3+5m8fY98P/gC/ptB8LEXX0Vl6xmJ0nojTPR6jPTq3YipLj16iLzZDX2ymdoNjDwEPLf9Q+UmIv7DMserJ/mrIoTIqeRiWfIypLQw76hlSIsRVv+2TBvORwQFwaR72rf8ATs1/ytd6rfH71sOSLKMEA+QPH8XZ27Ns+sxXitSDD6O1NOPaUGMVDFjFIqXxCVxvvb7qmBGP417yO1Eo2EExF2RRWQ6y212VulaLRDATyapsK1pTI7LbRXF4GM+WzSd/IEmM10UYr4sQn5wkf+QYrZ/9KwL5gh0cdGKS/olJuqOz9M5EV8wsAhDM5wnm8/RPTtVu8OMaRouFuGOZOc5sDI68gjlxwM9Rl4uhjnaGOzs41tzE4dZWho8eI/nrB2m7+qpF7dVwmNL4RFWmk3k4Wprp+Px/r8qS81ohf+QowfPPXTYlcHFoxA4mGqnWxfVve0tVnVUorim9sOy2DTpL3bPUSJjiifGq9q7ebubuvhdL1xdlQilpGvs72nm5rZXxI8fwbtxA+E8/Qlt8jk0TE/RPTNE7M1PJaLQSC0kWguZkiubkCjJ38/9d+cH+8Ru16x97fOXf1YAlSUyEghx3uTm+YR2H21s50tLC8aYmisvoldBlF9dMU/1K8EpS5H6rbOi4VQiRkiQpCPwK6MFeeg4Cy6waXhVuXZLT/BLg/8wfLFP7di04vmL75SCQKFj2i9ckA6W8yy4Mi899MsH17/TzoQ97cZWplKawcJRzhWqShFyJMXVydWkhMMuTAwt7x14vL/oKQiaVkXjfx0IUcVAQ9rULlkax/He2oHD2+9ZRv7GevFAwhK2EDUshN5Wm9Y1BDCEzH9/KzBSR3M5ymiKp9vyrfJuy04VZzJ/k9Ujg9EcAQTE3h+qst+sV228yGOgkkT1BY6gfrHnnZBnJsu+pO7yXkcyLzBijNDm6OCi3c5B2hGlW/PHcVolWI0GbSNFupWizUjSIHA0iS53I4fgdBU5dDrosMx0IMREOMeb1cWj/S8y89WpGeroY7KwjE7a/g+o0cTnsiaXXWaLxgn4aL+zHEDq6dfKbeIJeIt0+jj2XoWOd/f40y8Ah2c8vI/C6LH5xR4atG2W2bZpneQi0stxoWCjMpxaUWE6edAR6+fsWhExBKHzibyNkDXWRLM3LdEmoNG2LcMNXdmAIlaKlVu47F8sz+dshIpedVpElISS8p23Ata69/O/a71BI2JkwNAdmqVCO4GcziRzBeuYGnkfIIMoiI2QJf7AdSZJI5iaoc3XYB2Q7owaAJDTWhfbxcuw+Or3bibojRInwhNF9MjiTaRK2crYclQ0jjSJLg8jSKLKERX5NfoWvJbKag6lQiMlgiBGjxMG5OLG3XMdgex0j7SGy2Tzjf/ol1n3unWgRP26njtdRYvqe/QweGeOsT+8D7G9SFBquliCKlCN7CjEgfsd4XXQxgFBkrDITxJYfidjkfkYO3sPWt34axeGqyJp98ZN/V4X7WyDTQoBV+TeYlkx2MkPDnk5az+nCQkIXMnpZ1+pCoSA02neG6T/NU+lbDmEgWxYjo4KWNpWSpIAAE4ELi7mUhTsgUSz3X1lIlDBtZqDQscrK2eG30HVI5i0UVzm2AtDUpnJizKIg7P48f92+0wJ878sTpLISDo+KLpTKvRpCQQm46b1+K8e+9zRb92xhpLWeg/WtFPbav9dLKlZeojWepOdEjN7xGL0zUTpnYrQkkjSnkoRzaw9o91ohjYMZ2cuM5OWIlWZUclDStjGuhpiWfFiyUgmkMh+dH+CcphuR5ifQqoIo65CQv5Njk79GqDJClRDqYlmSHU5yhQTxkYM0bjzbzkozr6NWszWI6j9NS6roTndnA2+87V3Iqowu8ujl8VKXT36r6z/Rx/oNCgXhQBNmZb7x6H1ZOtth4xYHYGIhMEzBV74cpLlTIicMFCRkJEwEJWFSKAcytxB4A5BIWRSEVRkfTFWhqUVheFTQt121Zao8LvTtDnLgqTQFS1skS7pQMIRM6wW9uL/9MsM/eoa+D57Ly/1tPNXTDUChqGEUFRwlnc6xBH0nZumdjtI9Hac1nqAlmaAlkcCjv76GXAuISx6ikodZycMz5gQZtY+k2sW4FGBO8bK/9DgSElv8uyqLW6EoPDH7E7aG34Df3VIZj4Qq4/e0YVm/20DKp4DXTQ/XhGkSveVWAuedTegNF77i09SCVSwSeuMly6ZtFYZJ8OILcbS3VR0z4nOodYsXs2Y+j+xyrSkNrOxyYS1dtNZFQAiMuQRafV2lXpJlnN1dFIZGFhtBFiB44fmkHn6U3P6DSNu28PS6Pp5etzjtsrdQoDs6S080Su90lJ5olJZEguZEkuZEEof5+sqcLstMhu058bjHy6GXXib25msZ6upkqLGBdHlxvxTeXTvx7j6tql4J+FHr6ykMDdc0ggDIDgeZZ57D0daKo6WaTfRqUP/2t1YHC10AZ3cX9e96e5V8GMkUuQMH8e87Y9Exz5ZNOHu7V72unW1GrTKqqXV1ZF+o3ghwdNrz4NLoWIU1suh8skzo8kuZveU2AueeXTG0PbBt68lGQlCfTtM7E6VveoaemSitiXJ66LkkDek08uscZybrcDAZDjEZCjFSLHIwkWDu+msZaqhnpL6ebDbLif/xBTr/2x+iBE4amdNPPEVxbIz6tyw2dmqRiJ0W/TXoFysaQSRJ+hLwFHZqrYrZSAhxczk2yLewgyc9ADwNRJZjibxaCCE+JEnSJ8oBnuajWi/0Y3gLtlL/yRrbnxJUTeKP/zLMV/57jLe+3UVr/erKdK34+OdthZ1bpo96ghoXfazMAlnyzVsu2kCgv3GRncPKFda0cw+2wjeXMEEUhxvF4aKQjeOdN4KUEQp0MRs/DNVjDwAOxUOXbydHko/SUNdecwGalzSOK3Ucp25RvSTby/2AKNBAnnqpQEAU8KGTzu8ngky3swkvOpowUCWBgkAVJgoCozSHLsnInnpKimoXVSMnWQxNHkbddB7JQIi430vC5WVw9CBHY5O43v1hdI+M6QAjlWRk/0u07d6BGgyA00LGIPHzB3F11eE6dyEDBgrTadwNCiwxWHacVsfwc3Nww+L3txCP3J/jV3eY3Py95XNwnwpKJcH/uinBe//YjyskUVxGngKNLgKNLjJLtj+TR6Ic/OYTnHvFrkX1rj77Y+trcMlXnK4qZpHTH6GYiVfluZdllYC/nURq5KQRZAmaPOsYSj3DQPppNvvOrm4gSczJHuZkDy/JjYsPyTKqMKmTitSLHEFRwC/reKwsyexz9DpbaVbcaMJEk0w0LFRR/j8myfwssjsCTh+GpKCrKiVFYbqUYSqXQNl0Fgmvh5TTQ8Ln4Zkn7iaxfhvyhRdjuWz9MPf8Y6SefJzWndsQTgscZmUAsrIFiJxU+MISxF+eqPke/un6B7ngj/prHnu98fvWxQ3dexk//hBTL/2Gtj2Xv4onWQz/hib2fPEKJHn5XZStFzYQUnKwJD5FS4fKW99bvUOcTgkC/tXHCr/f1pSplEXYdVJrtneqHLy7+n66N3tQHTIjLyZZv6+u6jhA/zt2MHjHQaK/PkjjxVuqjgtZZrw+zLi/jkf77GsqBQm5aN+vJ1OiJZakOZ2kMZkmmMnhio1jHnqCvo7thIXAUyqimabdbwwD1TKRzRK5fAyHqwldcaAjYwiFkqQwUZwmKTnQnL2kZBcp4SAlHPwyczcN7ktwqjarUVgWB4qPISGzWW0vG/QhayYZKLzIdu/iRZcpDHSjiFtd/A1C3k4KpST5YgKno/Z7MvU8I0/djqe+A1dbV802p4rYI0fJaCaBi9pXbLf57DB+pfr7fvfrCa55s6dsBLGhqhLvfKdnTUZdf0Aila4eANo6VSZHq5lzG/YE+OW3JjB1i1oO2rIis/lDZ/L0Z+6h/dqdEKzeUS85NI62NXOs3v6GclFGKcuSUhBEEjmaUwkaEynCmRyBQg716PN45qbpbd2Ir1TCYeiolonDMHCYBpplYpQy5IwCDk8zBjKmkDCQKUgah7PHUV29mI5G0kIjIzSGzQy/yT/DJv87MSXZDg5oWTyYu40tShsNir3AkiQJVXJQtBYb+yRJomBmyBoJ/LQsOjYZ38/Q5MNr+AK/e/y+9bCkqoSvupz4T2/Hf+bpKK8hRbq+BsNjIRSvh8iVtXW/d/dOnB2L+53IF5Dda5wTu11Vi1bZ60VyOjFi8UVGEABXbw+5w0dYDorfT+C8c5m785d4Nm9cxCSZR9bl4kBHOwc6qvWFZFlEstmKQSSczRLI5VAefoyIqtDc0U4gn8dhmKimXTTTtGNIxOLoioxVX09RUyvuDXnTZPzQEYwLziMZChL3ekl4PYzuP8jA9AzyR/4Iq6xzjbkEJ156mc7TdqD4T+rXuXsfwNHajHfhAlySMOJzKH5/FTvI1dtNYXAI/xl7l31X2Zf3k33+BZo++P5l25wKhGEw98t7CF58EYrXs2w7NRSscu0CKJ0YY+6XdxM468xF9c6uzjXfg+xy1zSqGXF7Tjw/tgHImoazs4PC4FBNIwiAd8d2kr96kMR9v6Lu+muqG0gSs4EAs4EATy0xtgFohkFTMklLIkk4kyWUyxGIx1F+9SCtvT00uN22/p3XwYatjzXDJDczg6ivw/T5bBcZVaGkqsSSKWaSSYyz95HweEh6PCS8Hl6+8y7iO3ciXXJhJZ5Q6pHHSD/5NG07tp18bsvum1ahsMgIIiyL4sBQzfcw/qWbCC+jA04FqzFBPgR8EhCSJA1iGzuexQ6A+q2yIaRXCPHHr/pO1gAhxFdXOfbVGnWvGS692sMt307xz19L8z+/GFj9B6vg6GGdL/5Nmq/c3IjLtfzU5hc3HaXz7FZ6zqi2oK7/A7tzphdssnh39NH6mbUpEcXlXuSbBvYkwOGLUMzEbMLkAoRDPQyOPIBpllCXmY71+ncznj3ISO5lepzbarZZDkKSSEpukrKXgTLdaVof4UUzyzlN78TjilToqWgqwmG3sRwqD7/0Nfo630Bjxx5MZ5ld4ZSZTRzjWHSI0/ZejeWUMcpj4cTMIEWvj3Z59WllcWAMjCKcu5hm+cT7vs+ZX76cyL7Fxo4tV3RgxlamOH7oE2HedckYv76/wEWXrG2AXgnf/3aGu+/I8cE/WV42izmTv7v2Id73zb04WhZfMzuRwttS/dv4Tx9CbQzjPn1X1bGlkF1um1m0AA5/HcIyKeWTqOrigSYY6mYuOQyN59Q8nyRJbAifwzPTt9Ph2ohfrb2QWQ6GpDCt+JmW7OeSNJUD6d+S0ho4s+F6pIWy5LRlSWgKKTPOEy9+nXNP+yMUn62UTaeM6ZAYPHAnej5F92mXVuJSmE44+ti/EfH5Cayy2yQ5NFBkzOzigdHVEiQ3kUIIUbUj0bguwMizi7OV/D7x+9TFsqzQcdpVHH/k+zRsPBPFWU1hPVUc/dr9hE7rxH9p97JtRl9O8fhPxvnQF6oXytv2uNl7usZSX6vvfi9MyL+6fpl3cUilLMKNJ9u3dahMjFY7a6iazLpdAQaenlvWCOIMu+l9zxkMf/sh6s5eD8qpUY2LmoMT4QZOhBtQiiDnTY7c/vf4Nuyjb/ebAVCKAqVkG/WUgolcspiYepbhkQc5d+OHAJAMA6loP8Pjo9+nxbWObnd5XDBMDKPIAQRnyR5WI6ubGEyWBtjqOX+Rq+Zo9mWixRHOaLlhUXu3I0hv2/lILN8nPaEW6tedzugTP2P9dX8Cr5I7ZmSLDP7D/fTcuHKstvu+fhypVOK9n2ytOjZxwqC1Y/FiaWTY4KtfSHPzN8Moyso6JhiQSaWqd/vaOlXGR6qNIH07fJiGYPRAmvrttRcLjfu68Pc3M/Cth+n6+HUrXr8KkkTS7SXp9nIs1GbHI0vFOPLoL1h/wfsJtW1EKQiUkm24UQpW5e+XX/w+Hi1If8dlSCUDqZyOVzcL/Cp7lHMDZ+BVw2AYCNNkqjjEpORkg7T6d9QkBxlR7e7lUQPkjWp3M7+7kUxhGXee3wN+33Ni3+7TSD34WxL33E/dm6991ecrjU8Q/8W/0fiB9y1yB1iK2O2/wLN1sx03YglqGUfcmzfSXMPAUAuy2425xD1FkiTUSAQ9FsO9JFCFa10fc/fcj1XSl3ULCl1yEZknnyb18GMELzh3TfcxDyHLxPx+Yn5/xUiSffFloukUbZ/+BFpd7fFPCMGJ//EFIm+6Et+exXO33KHDRIdH6bru6kX18eOD6H4fTWuZE4+MgGksNoJgL06bPvQHVd/Gt2e3naVtBUSuuoKxL91E7sAhPFuq3f9PFcnfPETmuecJXXbJsm2sQoHxm75G84c/hLbEHUaPxWq+37l770drqMe3q5r1shSy24W1JK2rVleH0A3MVLrK+OLq66UwMAiXXFTzfJIsE3nTFUz9n2/jP+uMmjF4VoKuqozV1TFWd3LeEP3Rbegd7bR8+EPLsqWK4xNM3PQ1Ov/8TypxW+YR++kdmNkcjZdduqh+7I47CQb9+FedEztAkjBzuUX7yVpdBD0Wrzkn1lqa7ff0KrGapD8ghJCBvcA3gT5spTooSVIM29LcK0nSa7N98u8AFlKFdjzvRlCwNApCpYTGRz7bwOSURdaQKAiZopAoCEFB2AEuc8KsKgVhnWwjbKpzWpf59CdSBOtULIeLnOWo0FPt62mUhEq+JPPoj8bQLRndUiiaKrqloFsKseNzHPvuk1jCpuBa5SK5XGhN9avyeYU0v2gt2DTg+SKDM1BHMTtnB7OUpYorgy/YjiyrzOXGEIqCUGx6spinIKsKqsPNhsg5DGSeIa8UwKEhOTQkh8MW9gV/LyyoatkHV7UXiqqCIVscyjxCb/D0kwaQ8nVsirNdcmaKQjFBINJjB1IsFyFDITuL018H5eeYp8ybxQKyy12TSm+nKCv/KSQktwsrWyhT6SVMS8YUCq6WIJnxFIaQMYRcodC37W1m21UdFWqxvuTbFoRGXYeHd/1RiC98LsVsTi67s0gUhEROiLLcVMuULWei3MaWw6FxwTf+d4YP/1UE2eM4KcNCQxcqRWG7Vx1+JkN6toin0UdRaBiWYhchkxlP424N2s9mSeUikzswhB5NLHarWkgFXyBmitONVbLdq+blSfUGkBWNfD62SJ4sVSYY6SWZHsVUxKLvKdSyW4yqUufrodmzngPphxGKgqTNy5Nmy4tqlyp5cmi2rKlqpf2cGWUsf4iN4fNtA0hFlhTbFUeWEYrCXHoYn7cZ1eVb0gckCpkYDn/dSXmZl6dCHsXlYYX1FiAhSTKyx4WZLVbkyRISzpYwVtEgEy1iWIotS5ZdOnbXM/TMqfu9/4dG2Z1qcbH1ULBzC6GureRTs7acsUAkF/bjWliSLW7uyeNM3XcAd0+93Y8rfUKp9N+CpXHgkTmmBnJllwHV7tPC7mv/8o0Uzz1nkBUaWaFREDI5SyLSquIMSGQtqzI+6MLCRCwYGywUjy1+MylBruzWVhAKDR1OYlGTRE5Z1KcLQqN3b5jjT81V7m/+vvVyfzaETPt1O5FdGqP/8iiVzIsscWtb0IEXDRlLxoTowUfRM0la915R85tYiv3vueQwoWA3qLJd5l3cVIW8kcTjDFf6LKqCqdiLXYfDe7LPOhx2VgBZPjk2qCqaw95tNlXLPqemgabhcYbJm6nKOSvXViR6Oy/G6Q4vvmfl5H0LCdr2XEEhPUvs6BOL+vT889vvQ9hlgQzN/z3fj4WQGP3eo6gBN63X7MCw5HJRFowFCkVL49AjcVwhV9W4EEvKJOcsGjqdZTcohYKQOTEl+M2DRXSZ8nzClic7rbBYND44/RKplEXOksgKhWxZnpo6HIydMMvXclSKcLlo3xzgyDNpipaGUXa7rfQFS8EUCn0fu5jog0dJPDtUmW+IBc+/EirvUgKBYOzBn+BvW0+wfaN9TGHx91EkLFkwlxomFLDH9crYoCjkLHtB5XaEbBcpzdb1pmygKa7KXGJ+bAAWjRM4NDTFjYFu+5fPF0XBo4XJWany3KY8JikKHl8Tmrr8jvJ/NUiyTN3112AkklVMz1OFsCyit9xqswhWMIAIwyD96GM1jxXHJ5i79/6qetnprGJwLAd70VrNztLqI3a2kiVwdnYgybJtFFjunOWgnIl77sVIVBvXTgVWoUDsZ3cQuvSSZQ0gAEYsjplI4lrXW31sNoZa431Y+XwljsVqqMVwkCTJZjnUeE/u/vVVxpil0BrqCb3hQmI/vQOrtEpAw1VgxOdI3PcAkWvfhLxCLJjCwBBmJosaWho32H6Hal31eyocPY4xt2I84QpqMYuUYABJVTFi1Rtbrt4eCkPDK/Ynd/8GvNu3Mfvjn77qflcYGCTz5NPUXX/Niu5ihWMDONpaqwwgAPpsDK2+WhatfB65RvulkGTZdkNb6jZUX2dnr6mRWMC1ru91MYJ8EOygSkKIm4QQlwohIthGka9gTxX2YhtFjkmS9M+SJO181Xf17xjbdrv4/7/ViCyDrr9yv6offjfDiWGDP/vsyq4QI/vTmLpF27ZqAYvvn2b6t9URm2M/eYiZr9+6pvuotXP89xDwAAAgAElEQVQP4PTXUchUd1BZVggGu5hL1qYozaPVu4mQo5n9c7+qCvZ3KjiSfgxFUukN7l6x3VxyELcrgttV/T6LmRhOX7UiM4t5FNcaFb7HhZWrHhjdrUGyE7UZH7/+p6Ps/3V0xfO+64+DXPBGN+ariMxnWYK/+vM5duxxcvHVK1NSjz81R9euOhStuusXZrN4WquZIFa2gOJd68DoqpInSZJw+utsZtESBEJdWJZBKlPbDWQeGyPnk9XjjGRfXNN91IIhdF5OPECnbwdhZ8uKbeeSQ4QDtemIxfQsLn+1m5N1CvLU/tWP4t22+PyOej+tl21CmNX9pWtPPdHjr3n28f+wkCSJnoveQ6Btw6vyCzWzBUb/8R46bjwDb9fyrmsAg0/H6d1be9L5s+/Eic0svg/DEOzZMsWRQ6tP5iRJIhCQSC/ZvW/ttNlJkyeqz7H+9DBjLyUo5Zd/fllT6P2zy5m641kyLy8/SV8NxbkZJp+6m9azrkZ1Lr8IFEIwlxggEqwx8TaLlMwc7iVsMF3YrkWqvHrQQlWyF7PGkkxRHjVEwUhjWtWKNJOb5sDxlQMHai4fnWdej+atngifCjIvDjF953P0fOwyZHX5xH/FrMHEgSTrzqger6KTOrICre2LibqppCAQXBtLJRCUSKdFdaDdLpXJkdqxOfpODzPw1ApBcAFvTwPtN+xl5Ov3VDHZTgXxA4+Tmx6h85y3rtgum5nGMAqEA9X085w+h0sNIEuL35NuFStyshranBvYHahmDjR4evA7GqvqJUki7O9e07n/q8DV10vTH7wXJOlV6eLUg7/FmJsjsoSdsBTFkRMIS+Dsqt57LQ4Nk3vx5ar6ubvvI7rGLBKy2121cw92HIdai1ZJVXH2dFM4NrDieX2n78HR0UH0hz9+VQvX+B13IjudBC86f8V2hWPH0Robai7u7UVrbSOIsla3IU81wwFAq69Dn63NWp27615y+w+ueN7gJRfh2bYFXkXsHWFZRP/1Flzr+vDu3LFi28Lx47j6eha5pczDSCZfvbGohjxJsoxaF6n5nlx9PYhSidKJsRXPG7n+avTJSdKP1DYIrgVWsUj0Bz8mcP65q7r4FI4P4KrhXgNgzM6i1teYE5/Ce2r79F/iXnJ+NRTCd/qemnrF3ddLaWJyTedeCSuOqEKImibLslHkq0uMIvNMkd9JTJDXC/ETOSxr9UX7P9yU4m8+lXhFC/yZaZOvfzXJX38xtChKey0ceXyOrh0hHJ5qz6XseBJPaw3rZXLtAe0UlxurUMMIEqinmK6dTi4U6mUuubIFTpIktkYuJqVHGco8t+b7WYjJ/HHG8ofYEb6saqKzFPHkAOFw9cQboJCO4aphBLGK+UpGk9WgtTWi1lX7DLpaQ2THa1v2E5N5Xrh3Zeqs0yXzF58N4/VJjA6/MkuILEvccKOXz90UWTXw1/En43SfXntH5LTPXUr/+6vT2NkxZlZfoIDNBDFrydMyRjVVdRLwdxBPrjyBcCoetoQv4kjyUZL69JruZSGEEBxMPQxIbAietUpbyzaCBKuNIEJYFDIxm1m0sN6ysErFNcuTGvZXgjrOQ5Iltn7qUjxNvqr29X1+rvqb1amX/5mgGytnkQIoZRMc/sGXKMwuEzV/FURv+Q1ayEvH22unb5yHUTQZei7BujOqjSD5nEU8alYMFvNIpwWZtMDlXlv8KH9AJplcPDn2+mTCdQrjw9VGkM4tfmRNZvSFlReugW0dNF+/lxNf+/kpjQ3zsAyd0V/+C4GuTYQ3rGyMzudjFItJIjX6Tk63d848S4wghighIaGsIU67JjkIqo1V465Hs89Zy4VBVZxMRl8gX1j5PdX17SLYtZlSeg7rFVqlnZ0N9H78KvxbVqbeDz8Tw+FRaN9UHUemu9/FXQfX41ziIptJW/jWEF8GIBCQMU3IZpcaQTSikwalGgGj1p1Zx8AzcTsuyArofPc+VK+TiX/4xSua/xSiE0w8+gvazr0Wh2/lTaDE3CA+b232Ra40h0erMf8RpTUbQVTZgSZVj23N3n46A7UXT10tK48f/9lgzMbW9J3n7ryL2Vt/+opkwkgkmfvlPdTf8JZVY4vkjxzF1dNd0/VEX4bhYGZXTse5EMsZQbT6OvRo7Tmxe30f+VVSyEqyTMM730Zp9ASpB3+75vtZiMxzz5N5+lka3vuuVbNj5I8ew1XDXQjKTJAaDAerUEBa40aOo6kJpYaBRa2rw1jGCGLMzZF9ceXMYLLDQd11VyM5neizq6e0rgVJlvGfvY+Gd7xt1Tlx/thATbcqgMb/792El7h4gP2e1pIdBsruVblljGo13pPscuHs7CB/9NiK51UDAepueAuxO+6kuIrBpBaEEMze+lMkVSF8xWUrt7UsCgO1jSDCstBrxMoRpoko6Wt+T2owYLNGF0BSFBre+faahjytpdkOePsq8ZokTljCFFk+6s1/AORTBiOH8zZldQll9KSbjMpFVwe4/6483/lOvkI3LQqJnGWXebeGwnydkMs0Zxlvo5N/uauNc68InHSDqVCr7TJPmdV8TrYucquQK1Tn9FgaV2sIw5IX0FLLi1av26Y8r5AZBkB2uk9mh5Hm6cESzmADhfQsAnGSll6mqIbqekllxjEo2S4n89TjeReGMkXZ5Qqzve4yjqWfZFofqVCi5yMmVxWHZrs6aBoJK8b+1G/YGDqXgLdlEX16IT1VyDKWJBFPDhKOrLNdXhZSnWWJYiaGK9CwyBWm4g7jdq/oNTT/DgMXnUHdjZdWUYBbrtxO37v31qTQd57RzNEn5iiYahWVfXFReeD+EtdfFuWp501yllKh0y+VpYKQyi5Ytiw98KDOyJTEeW8K4G90Ln+NMuV6+xWt9J7fRtFSbVeLeRceUyYzlcWUVSykShECHF3NqA3lyepKMjXvXlUqVGjP88UZqKeQiZ38Lgu+USSyjlhqEKHIFRcrUaYhU3a3QlVp9vfT6d/O84l7yZO3qc0LXGOq5Em1Cw6N4cLLTBcH2dVwFYrDvYA2P19OuuGkSjPoRp5g2bVqkSwVUwjTwBmot/tEmeJtlNMCK+61UaUnv/wvxG5/tOIKY7sgyUw/OsTYI6MVt4x5WTJQ2XJNbSPff1YYer7KtU0odpnXVaoviLetj9E7v4NRyKye0aOMefp+/Y1voOczb0UoGmZZj1Zc2xa4AiTnDNaf3UDLjvoqV8nhEXvRGOnwULBUuwiV2aR9M1pQo1jptxIGEhacHBvK44MvIBNPUnZ/mB8TNFq6HYyMmIvdMy0NQ3PSuSvC0ScSZb0jV8aHeT1lWHbWsPb3nIfWEGLiK7dgFo0FfjE1Xs7CDDuWxcRdt2DpRTouuAFJlk6OEwv6xXyJpwbweBtxuINV7m05M4lT9Zf7n1IZK3TZRJWdi/qspKn2zpwinxwbyuPDvqa34XXXL3KNVB1edrffgMtZfV2nN4zbVUc8OVjl2lYp5X5sIRi+8zucuP8WLKxFbjHVQmQfEELCKpRIP7YfNeQncsGWSp+ufIcFblZFS8XT5OX/sffeUW6d57nvbzf0NpheSA57pyRSVKOoalmWrMiWY8f2iWPHieMsJ7GvfVKcclOcGyfnODfxsXPs2LGc2Encjo57lWR1UZ2iKPY6HJbpmIIO7PLdPzaAAQZ7YwBKpM8V9ay1F0FsDDaw8X7t/Z7neW/96AZMWa2RXOUtjfFJSBXm5U+2vErBF1HZdrW3Mpcojw2WkNAFNeODJ2xvrkzNSZVYylge2pYEEQJOnxE1saQLhYEr2hGmXUK9YKq29FbUfgdLSKBpDP7JL5N5+SST33JYzIn6G1YeD4xsmuHvf5nY6iuIrd9ekVrVHSVp1fTMCdraVpXGhpK0qiS/zRhzBD3xioSqEk/oaIqvMpeojA2ShKQq87Gkqswwxc+n/7VGiouqUpSKHJt7GlMWVWOQjJBlotHXjPq7KVi5HLpbadYqhK7cSubFl0g9savla6ixKH1/9F8JXra4h5wcCLjKKoypBJrTjnQ2jxxobmx2TYJ0dqK7JIR8q1dRGD6NVWjsHq/GYnS+591M//AnZPcfaOrzlJE/NczUN+4jfs/dePvrfYSqISyL3NFjdaWCy9CnptA6nXfuneQOTojs3EH8rnoWVXjHtcRc/Cz8a1aTO3q8qURZ9uX9nPvUp1te4GcPHcFIJgltu6LGZNMJQghC27Y6VvYRloUxM1Mx9KyGp78PNd5cQQOnkstgS3/cGDP+tavJHWmcBAEIbb2c8HVXM/GvX8WYbU6eU8bcw4+S3X+Qrt/89UVLXBfPnsPKF/CtdGB4zsyCada1u3IbakYOAzD2z//C3COP1T2f2bef7IF69pAky4Svuaqp926Ei1098v94aH6Fw08ubkC4Yo2Hv/p0J5/+2zm++dXmssyjIyYfeu8UiUmTZSubq6u+8z1LufLtzoOupEgElztkvdN2EqQZKH4/Zj5b1yl5Ix1YRhE9X29kFA73oyhephdhgwB0+gdZF9vJ3un7mcifauozJfVJdid+wJLgJpYGtyz6+kx+kqKepi3mkKUUgnwqgTdU3+Gb+azt4dAEjJkk2b31mf7AQJzIKueSX4NXd5CcKDBxcvHd1+vfEOAt7w7x4V+f4tC+5koJPvrzPB/7wBTPPNE8LXnnewdpH6wfGPJTGR5751coTNXHcu/vvxv/2ubcsBVfADOfrXveG+kg78IsisdXMZc6g2EuXn5mbdtOwlonzye+R9ZoTh4ynN7L0eTTXBa/nZC2uC54evY4kfAAmlYfG/n0FLLqQfPXyobK7BelSSaI7PVgput/t+k9ZzjzwNGm3uO1DsMsLFqOUpIkBm56O2owzNB9/4yRaWy8VsbMdx9l+odPo/i9eDoWN7mOdAf41c9eiepxcPZPWqze4scfqB1OkyVWR9O791G58jfV6Bv0cG7IRcJwbRcndi1u1ChrCsv+9B2YcxlGP/UNrPzifYywTEbvv4/MmRMMvu2DdjniRTCTOE487ryr5rZzr1sFx914NyQKZ8gZ9b9zZ2gFquL8PvHYSmamG+/Ugh1PS+/8NdKnjzL24Heaoq1buQKjf/8Npr/1CFaxOQZJz9ooV/7KoOO5//z7Ue7923q22w1v8PMX/625iXel2tCCeApFFCJxxVESo/kUlm1tY+jpxePJ29vGwMffSeI7TzLz3fqJqxP0dJLTX/s8WiRO302/vOgOrWUZzE6fIB53Xshli9PO8SQKaHKTu4+SB1MYmKL2d5OQODH9FDn9lfk3vBYgaRq5BtVPyvD09dL5nneT+N4PSTZJ0TemZxj7wpcwUyk83fXyIydEb9pJ+FoX5p4iO5ZXtXLZpmn5SsCP5bRz39mOyOcd/Qm8S5cge7RFJTEAgU0biL/lLia+8p9kDxxq6jMVzpxl/Iv3Ern+OsI7rl309froGFYm68gEEZaFkXBhzGSbly8Ys3OOVXE83V14XJI0vjWrMWdnMVwYNdUIbNlE+OrtjH3hSxTOnmvqM2X27Wfi3n9rKoEAdn8fvfkGx7K95uwcZz/xt5ip+t+7+zd/Hd9gc8lQ2e/HytbPiW3ZkAuzaO0a8ieHsIqLj9Ptb70braeb0f/5BfTp5nzj5h59gpkf/4yu9/1qU+0ud/gI3mVLHRNkxtQUkteLHK5lMJfbkNJkPEkej2O7yx89Tnr3nqbe43zwehJkASKdXtZc21y1gRveGOBTn2vnoZ/lF5XQPP9MgXf90iSKIhGONHfbT+2d5en73LOgV37idnpvry99GN6xCd8mZ+3WQsg+P1gWll7b2LRgFElRyaXqPS1kWSHetorE7OKTSoBl4ctZE72OPbM/42T6RdcssBCC0dwxnp3+Lr3+NayNXt9UXffE3HFCwV7bWG8B9HwSyyziC7vIYZqk/hVOnGX889+pf/+5LI+/9z/JT9d3cqF2H9t/eQC9gWa/DEmS+Oj/3cYb7/Lz/ndM8tJu987PNAVf+VKa/+uD03zkj6Pc9fZ6+YQTfvb5U7z4Q2fvjdSZOWSvirdjQUemG6R2vdzUoglA8fnc5TCpKcffPhy2zXZn504t+v6ypHB5+x2EtDjPTP1vpovuXiKmMDiU2sWR5FNcEb+DLp+zx8dCTM0ec13I5VO2ye7CuLRKPijNymHkgA8rU3+fAv0x0mden3gDeL0RhFh8ESqrGsvu+SBaKEpu9EzD11qFIlNf+t/MfvcxvMu6m/4sT997mMRp52TmpquC/MN3HaoUtMv87u9HFq3kUUY4IjkmQQYGPYyccm5/q67vYvTQHJnE4olQNRJg4BO/gZFIMvqJL6KPu09EzUyas9+4l/TJQyx7x2/jjTkneqshLJOZmRM2I88BmcI0AU/9It6wCk35gZRxaPYJpgqn654/MbWLo5POC/LOjvX4fM35fXjbulh+z2+TOraPke/8R8PX6mOTjH3ySxizafr//H3InsUlPemJLN/4vWcpZp0TJqPDBfoH6+Uc+18qcGBvc/2w1yfh9do+IgvRu6xBPF3bztAzzVU/CW5ZzsCfvIuZ7z5O4svfQTQwMsydHmL4q59FDUcYfNsHkJXF79Pc7DBCWLbJrgOyxRkCnvq5mtGCJ4hWijvdqk3Aa4oPTfGTKV5iZtQOUKJRV1nFQgQv20zX+95DZu++RXf7c8eOM/KPn0VS1KYX3vmhU6Seftb1fPf730toe71kL7j1CldWxELIfj/CMOqMOdW2NlAU9In6flNSFHxrVpM9fLipa0RvuoG2N7+J8Xv/jdmHHnFNtgohSO/ew+hnPkfoym203f3mpubEuSNH8Qz0O5aFNeeSCN1wZsy04OFQODXM1DfqvQfNVIqzf/spTIdkkRqNELp6+6KMGbDnxPF77iZ42RZGP/M58qfcPa2EZTH38KNM/Ou/0/aWuwg7xIATZn76AOkXnOX6+qS9uF/IJrF0nfSLe5pKUEA5CeKUVOvAmHSeE3uXLUVSFPIu5WGrIakqXb/xPjzdXYx++n+SP+n+N1ZRJ/Ht7zHzwx/T/RvvI7ChuQo82UNH8K9b43hOn7RZRXVz4lwOJAmpgSltNdySRWpnh6sM7dXA4iPRJQZPyEP3hnYKFmiSiSbsBWze0pDl+Y7KKuWPrn5jhOtuC1KUJP7p72fo71e44VYfXd3ziY7//ok5vvmVNL/+oQgf+K8xLNmuFgJUZDDla+QtrfL4+R+cJp0osPYemy4LYAjFpr9mikwcmMK7fhBJsan0ZXf28M7LMAqKM9W5jBI9tUzfNws5ZI+38rwkyfjCHeSzU0SUlTUUVYD2+BqGTj2EJUvIsgxy6WKqcCzMMBjbRkCLsW/6QcYLQwyGLqfDtwxN8mBikiicYTi9l5nCCOtiO1kavXyehqaqFa1YRSIBFQnDVPI47fE1WGrpNSWqM0A2OYmsaGihKNYCt3+7mkeT5kbBcnUY+/8WNj2YUJDsSJLZ4SQdbaEKhR5AlxXe8glbV1ywingke9JrV4opxVJVPkxD5qOf6GDdFRmWrfMykxE8/3SBq3f48Pshm7HwBRQO7C9y7+fT/N3n2tl5e5h8+XrYFGqoj6WipbDrvhFu+cj6SizpYv6zps4kCQ7EEFJtLBkzGcY/cx/L/uXj0ARrRvYF7IRAlbwKwBvtwDIKFPUMHl8YIYvKbyRrKm2xFUzNHacjtgapfG+EQqmZ1MSUIklc0XEXR+ee5rnp79PrX82S4CZinl5kJApmlonCEEPpPQhhsb3rl2nzl3YmqmKpLK0CKtR5w8gzlzrNylVvqlQTEqVFrJAhl56sSKtE1fczy/4yitKAPk+lTcpBP+ZUolKpo3y/vX1xMmdn0U0JQ5Erv0/BuvS6ao8nhOzxYJXucVm6YD9mXrIhgeLxsuxtH8DyyeQSE0w/+TCRa69FG+xHUhQkAcWzY0x89l+RfBr9f/MhAivbEQJMy6b7A5VqHkCl2lM2kePxfzrApltvnpculNqZIixO7UsTiasM9M+z+yxLpq1P4tc+7CMvBDql0p9CoJfkBVlrnlViIhGKqcwm7TGhenzoWh7g7NdnSzLJ8vO2hCE6GCDS6+fEk+MsvbOt9B2UynewK1lJlcdqPMLAX/8m41/4EaN/8RnCt1xL8KrteOLdIEnoUwnmdr/EzJOP4OnoYfn7PoYWjiKK8zFty0dE5Xcot4FU6gymqRNtX4mw5HmDX0UBy9657wyttGULZUgWulS0q3moam3ZGlkG5PmS6ACShKb4MNBLlTzm2zKyzGxmtFLlCbBlFLJEvH0Nsd71tbGklB/PjxflfsvfPcDyX/souTlbBpAbPoncEUFti5f8f3Rkr8rMN3+E2tlG9+++FSXgwxJG/RhR+k300uPhJ8aZOJnG9PooWAU0yazEkiIEI0NFOpcFyJd+a7MU6N/89xkCAYk1W+xEq4Jd7scCDGrjqYhCOKowPSeRt+ZjJi80upf5OXNKpyjm5xV5oaFbKsuv7eGBzxwlNaPji3krlcOAShW66sfBy1bR99cfZPwfvs65P/oHInfcQmDDZtRoBGEY5E+PMPfcU6T27CZ+5fV03nwXkqlCef1Q1Y6RpPk2LQumE0eJxVciax4E9j0SqgxCYBp5imaGgL9jfj4AIJk2E0QtSR6h3MGWYlGef16SUMvtXjbmny9VMwp64mSN2fn+X5EQapN6u9cQZL8Pb5PlZcFOhAQ2b0SSJKZ/9FO09jiBjRtqFpOJb3+P5JNPEbvtVmJvus3RlNIJ6ed3Y2VzjkwQK5+ncPYcvhX1JpfNLophnr5v5XI1MgFJlku+IJP4VtZvqATWr2P2wYcdy3k6IXrzjagdHUx9/Vtk9+4jcvMNBNattReDRZ380WPMPfYEhaEh4m+9m8j1zXvRZA8eIrB+neM5fWISyeNBidYyIIUQWNnmqnlAWTZUn3yXg0H0qQT65BRKqH6DrvO/vLOp94dS9aF3vA3v8kE8fb1Y+Tz5E0P41qxC1jSsQgHZ66Vw+gyzDz1C12+8t65krxuEEKSefob43Xc5ntcnJx0X92YyyeRXv8bSv/0EeBZPtsoBN4+ZDqxcDiuTRQnVbuBKqopv9Upyhw4TWL928WtoGl2/8T5mfvRTRj/7eYJbryCy41q8g3YyxUgmye47wNzD9iZBz4c/1DSTxczmKJwapv2tv+R4Xp+YROt0YNKUWEXNtm3Z78ecq98A1KqSRc20q1Zx6c2sm8B/fHQP2395gCtvaqwnK0MuTaBCIYl//sc5/vqPZ/D5Jd7zm0E+8kdRrrney51vC7JukwcTiSZ8VxFCcPjxSW75bWdGx/SRKZ77w5+x88cfqTs3+e/3E9yxDc/A4jud5ayvWciihWt3ynyRTnJJ5+om8fgaDh35NtncJCG1udJjXf4VXN/zawwlX+Dg7GPoIo8iaZhCR5E0evyr2Nnza/jVxenpZRhGnpnkKQaX3+p4Pp+axBvpQJJqG6JlFBGm0bSHgxL0I4o6lm4ga/PNRpIlAgMxUqdn6bi8ngKYT+s8+sXjvPl3lhFu4mtJksQd94TQJJP9u/P88YenyWYEgaBENiP4zs+72bjFww939eL3yzRboGj0WJq58QIrr3OmvqXPzBIYqN8pLUs2lKCPZozfFb9ztSFPsA1JVsmnJvD46ttVR3wtp848hlharzF1giTJrI3toNe/muPJZ3h+6nsIBIqkYgodrxxkaWgLy0KXuVLknTCdHEJVvEQizpO+fGoSX7y+soxZaF5aBRDYth7JQWoWWNKG7FXRUwVov/Qm3NUwjDz7X/x3NlzzvqZeX27jwrIw0knO/vNnK2VWl/z3v0braid6x00Eb96GFpKB5qQLp3eNEO4N0LHCmXH11U+eZevNEd7527X94O6nchx8ucj7PtRcfxaOypw7Xf+Z+pZ7mRrVKeRM8NbKKCVJYuWObk7tGmXpnc6T3oVQQn46P/xOMs8eIXn/EyR/9vh8AsI08fT00fnme4hu2IZabJ4sOj1+iFh8BarqhWL9zmamkGBZe71lmG4VKjvyzUCTfehW/eQ74I1zZtrdhDsxeRidAl19zRWw0yJtKCUvpJmnHiNzcB+SqiKEIHDFZjp/5910fOhXUcIKiqf5SgbDu0ZYsaPHcUKXTZnMTen0Dtbfj9ScRXdvczJasOMpOVf/ufpWeDnwjLOEt2ddhGC7j9NPnWPNnc15EHmX9dD3yY+SeugZkj97lJmvfRdJUxGWAMsiuG4DS97/u4R6SgvHJm/V9OQRegacNd+ZwjQg2XKYBaFmx1NzjDxFUlkb3Wkn4RYg5O3EMM+/As5rCeP3foXw9dcSWLf4ggyoLHxkv4+Zn/yMqW/eh+TRiN58I213vgn/ujWErt6Od6C/6c8ghCB74BBtd97ueL4wfIbxe/+NZZ/6ZN25xHd/QPjaq/D01EtlFqI8J7ZyWViQKNC6Ot3NUdevY+qb92FMTjnKK5wQ3LwR35/8IbMPPULif32byWwOyetFFApIXi/By7fQ+e6PN+0/YX/uHPkTQ7TddafjeX1iAq2rs67/EcUiWFbz3inBAKJQQJgmUlUispIsGp/At3zQ8fPNPvBzYnfcjtxEEkGSpEoSK39yiImv/qd9fzweRLHIwJ99HN/gMpb85Z819X5lFM+NYCZT+F1i2m1xX2Z1NG2M6pIEUeNlZtEESsghqbZxA3MPP0b8nrubWvxLikL8LXcR3HYFsz99gNHPfQEsC0nTEMUiSixK5PodRG7Y0bBk8ELkjx5F9vvxuCRC9clJvAP156xctumEGkBwy2ZMJ9lQZ6c97ubzSE2ylFrB60mQBRCApCq8/OAEm2+Io5RGWFm2kEXVTl9py8JEwiyxRX7lt+O864Mxzg4bTIwa9A6oZC2N7TdrmEjkBZhCRqd6B8Yzv2Nf2qkBGDpSYHYkx4qdfRQstbITXGYazA2nCC5pw5Jsxkf1bvLc/c/h27J+/gs1cAuUVYbFEX4AACAASURBVNsgrGyOWr277Y12kp8ZrzKSE1ilXRFPMEI41Mfk3DGC3Z1IpZ0WAZVdF4mqHRpLAkvgVSOs67iJNfHryRpzFIw0muIjpMXtCjDlxq4o8zv2im1IVvohanbvp2ZPoCpeorGl87t8JRNFgGx6El+kq8QAkSo7yOWFuuz3u+/clyCEhFRyLDdTeaS2cMVYEeyFa+r0XMU8rrzjZwgFxeNj93fOsOKKKNtvs5MMMmKeAWJReWwiVxhGRaGwdqvCT3b7OXPSYHbGpKNboWuZRkbIWF6ZjGUzkoqiiglSiSUPBTEfV/seG6N/UxRvPEDaLLGKLKUSxwN3biCdlSsmu+WdcTOdR/J6QNGaWjPKJU+QCuOmfF9VBV+kg2xmknDPSnvntbwTa0q0d6zn8LHvkSlMEvZ0lG88Uuleiqq3QpJAsWMsovSw1f8WDEsnrScwhY5fieBXI/MZaEme3zGW5x+XzXWBkhmrzOTcMdraVtssEajEPqXH+dQkseVbakxfocQE8flrKStlOBhQ+tYuQ/WYtpFx6Z4DBLqivOF7Hyj9Pvp8LFXt8l4qkGSVxMQB8oUkXn+0wr6BBbEl17Zfb1cPA+/5IIYokEucQ1iWPUnTFMI3XQceCyHMyk8iFuxwV5ggJaPjU4+fZfkN/RhCBQEFSbN34QEFi5GhAm98f7DSd4M9PuzZa/LC43ne+dtxFKnEBEGgC7vdlXf6wR5HfBGN2Tm9wvIAux23LbE/z7lTOvE1dgJRFwq6ZZtqLtvRx0/+4gUKRQlZnTfOBpvNUm7j1Tv5IBO4YhOBKzZhTucwzkyCZCcrvX5bYiDpVfe42iy1aoyo/k0SE4foG7hm3mxULb/INrktGhmC/k6EKte0ZUMUUVW/zfgoy5+EALl00WrmiKygqX50ivbzVW056O8kb6TQJQNFtX8L28zbfk0mN8n46B46l1xRwySq+27MP1/+bn3vfj/F3DT6zAzCK6H02SwiyeMBMb+qF6Uxvny/KwyjkjGqWTQ58+wYl//9tRUT7UKpz1aw0FSTj3xhPR1L/eRL72tiYAqZ2TmBP6JV4qYcgxYSxZKZbjmWTCETiirMzEnz7MBSXHUMBjn39UTJ+F2rxFN5jjF4Qz+nHh9hxR2rS5+73B5slmD5e4qqxih5NCJ37CR0y42Y52Yw55LIloKvvQ/Z60UpAmUGfKNYKj3O52fJpMeI96xFqBKifF3LvnjGmMHviSF7PAjDqrwtkoRu5W0/p3LclFkgEiWD09LzkoQkySyPX2XHUfV8Q5XZuOTNFZNuO5bkecbQJQZJkcnu3dd0EqSM2K03E73lJozJKbvcaGkx72REuRiK50Yw5+YIbHSm8OuTk86LeyFIPfkUwS2Lm65CqU0riqOEQevsRJ9w3hhUY1E8fb1kDx4i2mQSBECJhGm/527id78ZfXLKbjvBAJ6e7kUrwDghe+gIciCAd+kSx/P6xKRjkqZVD4dqxsxCxofW5X6fJI+H1NPP4Vu5gsCmejl/I/hWLGfp3/wV+sSEzaCIRVHb7fGqlQQIQO7gYdvnIuRcjSh83dUIoz5ja2VzSD5fTeKnERR/wDGWJEWxk0UTk/hWOCRBNm0g8b++jT4x2bRfDoB3oJ/u33o/VqGAPjaOVSyitrWhti9ePdIJ2QOH8K9b68ro0CemCG2tr1xoteAvAziyq8D2Tln6N3/Z9Pu0itc9QRyw4ZZuDj8yjmU2uc1eBUmSWDKose1aP31Lmt+1WYi5sTzrbu0h1OGcsUsNzxJcWp8dtnQDUdBRmjRGBXczS1/UnQkC0BFfx+RU45rfbpAlhZAWp92/lIina9ESuG6Ymj5MR3xtHdOjjHxqAn+0vgOpGFk2KYdRYmGW/s/fR4nUd5jdN60htsZ50JNVmZXXd3Pw0eZ01gvh88ms3uBh+w4/y1d5ULXzm4RFe3xc/U53c9PwYJzwaof7lM4hh1qIJb8fq1hwrOvti3aRd4knrzdMJLyEyenmNLULocoaMW8P7b4lBLToeXX2QlhMTh+ms8N5kmVZJoVUAl/UgfqXa40JUjh5jokv/9jxXHY0SW68OYPP1zJkWcUf7GB6rDUX/crfe734li/Hv3Jl05TMhRBCYOoWK2923gXJzOn2zv3y+jaSnjMJR5tPXkWiCqnZegaF16/Q3uthdMh5V3rZNV2YRZOJl1ovHQ2ghIL4Vi7Ht2I5aqz5Hcdq5NNTZFPjtHc5t51sfgoJydHDQbfyTe/cA6xtv4E18Z11zwe8cZa0X4klnLO17Z3ryCRHKORac9EvQ4214V++At/yQZRwcz5MC6Fniiy/ZSlLrnSe1GpemctujqN66uM1PWcRiTUfx+GoTMrJaHeFn+mxIvmMMyVjxY39nH36HKbePLulDEmS0Do78K1agW9wsKUdx2okRg8QCHXjDzmPq5n8FAFffSwJIdDN5pkgAEennySRrfeYMS2duWxzhoyvdQQ2byK7/0BTRsELIUkSWlcn/tWr0BzKsjYLc3aWwGWbHSUWAPr4BFpXfbsSuo4wjKZ3pSVJQgkEnM0suzrRJ9zncv5NG8ju29/Udequqyh4errxr12Nd6D/vBIgANn9Bwls3NBg0TrpeJ/K37fZ+6RGowz85Z86MkeCV1yOx4XlIykK/vVrye4/z7WDR8M70I9/7Wo83V1NJyMWQmmLEd5xjet5T0+PI1PJymabrqAD80wQp7ajdXe5xpMajeJZMtByFaHKdb1evMuW2u2uo97HrhkI0yR74CDBLc7JKmEYGNPTLkm1bNOsIoDC8GkS3/6e4zk9kbCr0FwAvJ4EccDqnZ3kkzrDe39xBoXrb+zkXZ92rzacGp4huKR+wlqWL8jB5icBit8lCRLppJBOIFwqNHR2bGQueZpC8RezYLOESWL6KB3t7jTwXNL2cFgIM59FUlVkrbnssSTLaJ2x0u5kLbpvXsPAbe6mW2tu6uXQIxOYRusTiFcLl9/Vz7Z7nBdypm7yyHu/QfbsTN250LY19H/yQ01fp5wIcI6nLnJJ94VaR8d6JhPNuaVfCMwmT2OYedrjzgZQhcw0Qlj4nJJqhWzTCTUAK5Mj9dhLjucOf2EXQ/c5n7vU0N69kcTI+U0qXw1IksTt/+MNLLnKWVo4PpRDUSW6ljjIF2YtwtEWFq0xmeSsc1/bt9zL6Mn63SQAj19lyTW9DD9yqulrvdqYHj1IINyDz++cRMnkp/B725Dl+gmrbraWBPEoAUcjVUXW2DBwBx7VeeIVCHbiD3WROM+k2qsBX5ufm//qOlSv88T9Z/ee5b5PnXI89/9+cyk3vbk5iS6U5DAO8dS1zIck2bHrhIHt3QhLMLp78bKoFwqJkf2097jvEmcLCYJeh4pvQkdgthRP0/kzpIr1yflscYZnj365qaplr3X4N6zHTGconG5sPH0hEdi0ke73v9f1fFnmsRAV+UKLC1dHan5JDuOWDApu2Uz+xBBm6hczJxamSe7QIQKb3Jk2+sQEWreTh0MWyeNpOvkiKQpaPO5YQja07QpCW91lh4FNG8nuP3heSbVXC+Ht2whf5bzGEobB2b/7e8fqLYHNG+n7WL0NgRvKiQBHX5CuLvRx96RaYPNGsvt+ceNV/uQQoljE7+YvM5UAy0J18QRpJVlkZnOkX9jteG76ez8i+fgTTb9XK3g9CbIAAgkCAW752EbksLciUSkIrWI2aT/nKR3aeR6eihSmKBSbzmrZdNWpcYNd3zpH0ZQrRnxGSQZTpjpf8We30n/P5RXKrYX9r1kw0HrbkQLBKuqzC8rmqL5ARQ5TfXjbuhGWSS4zPW8ep9iHkCWCkR78/jgTs4cqxpL2eQWUkumkWqKflmmoqmLrz50OTZt/XPV6+33kihGqkO1jJjWMaenE29dUTFvnpTsSpjAoZKbt71Gm2pbozkY+g+IL1hilIjnoFqr+O/zhfyT9/LGK2aBZogdnZwrs/cwuCnlRodAbQqFglujq1/cRXxZickLM//6VWPIsiCu1dGhkhIfMojGm1r5nTVypFIXKCz+ZZNc3zlbo8+VY0ksU7bkzGVJD06jRYIUyX/GSk2XUaLhWh7Awrqr+W+7wzXyVvKpsNhjrIpearPwW84dtONfRvYFk+iw5I2VTj0sxJCq/vYKojielQSzVHNWxNP+eQlEqcYUiMTFzkPa2VageP5Yi2dKvqrjKpsfRfGEUf6AmnpDAyGcr/jINm10pxOSgHytbQBim3W5LhyFkAsvipIZnbGPFqt+qLI25ZCBB15KttPVucI6Z8uMF/VY13d4RpTYtKrFebs+2jMBCqphaHr1/mMnjSVsuUBoHyn2yLhR610f5qx9txdS8VW3YboeekErnUl9dmy1LVBY+74t6SM1ZdeNDXmi2OeqJPAVLqzrUyucYvGUZpx8dtg11qyRtouaovwd1j6m9f9XNvUbiVjrKbSNxbh8d/Zvnf5OqdoMskS4mKlIYatq1gm7l8ZTlC9XtVipJFMpjg6aBqnA2fYBnRr5eGRuq33M0eZCx5OFS/1E+pMrRvfRKDLNYNVZIdbHlGEML46nqnlX3l6I8Hgt7fCgb7VpCoqjDrv/nCWZH8+iWXDqUqnhSOfFyBsOkdowoxYAS8iL558eD8thgyzCVungKRDVmZ8WC5z1IHg8dAz5OnyjUxFP5cwiPh75rBjj50BlbMlkVSzVxVboNdlwt1ujm46f6oCxTlcom1FDU0ySnTtLRt6mqrZcORULIMun8FMFApy2TrRofdMmu6KF5gvXjAJLDmFGSV4lCZXwpjw0BfycgkdYTVWOGXJFXXUpQAn7id9/VtA/Cqw1jdo7kU880XDR3vufdRHbWm4cKQ0fr6mxpV1oOOEsYtO4uME0Ml1KknoF+1HgbmV/QwjV37DjCMF0reVjFIsbMLFp3fVLfymSRHarJNMKZT3yS3MF69q6ZSpH4zvcdGcEAgY3rUdvjmMlfTLIo/eIekruedj2vT0yij42jhB2SzrJcVzGmESpJEJd4KjZIggQ3baRwahjDwTD0YiC7dx/+dWtdGX362DhKNOKY7GiVCaIEbKNdR8ZMTxfFsfNj0y+GS683bxJX/9oqulc1H+ivJl788RhPfW0YyUV/KiyBJ+rHE6sPME93G8s+81FkX/P6ONmFCaJ6A2i+MPk55917SZLo7NzIROIX0+GPJ/bT0b4WRXH+rrn0FAjhygRpZeceQPJomOn6jkxWZIbu20t2xLmj8gRUPvAf1xPr/cVMIJ765hlS4+4Gb8nhWbzxAGqovqOb+vpDjH/mm01fS/Z4QZZd5FXdFNLTWIZzKcVgqJtgoIvxX0A8CSGYSByks919ByWXHHdkgUApnpo02QU7CQJgZep/l+DSOJnh10szAgQjvfStuv4Xcm1LN3n2U08xN+w+AZFk6HGQwgB84E97+JUPNa8ND0UVsmkLw8HtuG9VgDEXJgjA0p1LKMzmmdp/YSYKjVDIzpJKnKKj7zLX12RzUwT99Tv3UJbDtCC5kzWKZn3/AjCbOduw/xhYfRNL1tzc9LVeTUzuHeP0gyfwRtzH5rGTWbqX1/cjhbzF29buZ/hY86yEcEwh5WCMCtC70s/4Ced7CDB423JOP3IKy0ETf6Exc+4A3kCMYNSZTi+ERTZvJ9UWQjftNuJkdOoGN6NdWVYJeNvI5NwlwZcSojffgKen+bLirybSu18k9cQuV4mHsCzkYNBRKqN1dDDwZx9H1pqXp8sB53KdSihkVz9xWZBJkkTwss1k977c9LVeTWRe3Etg0wZXf4yyT4dzNY8sSguLVrCrmDjdJxSF5GNP2EwBB8g+H30f+zBqLNrS9V4tJJ94CnMu6Xpen5hAiUYdF/8zP/wxE1/9WtPXkn1ekCTH++Tp7sKYSiAMZwmn1teL1tVJ5qWLH0/Cssi8vJ9AAy+d4viEY0INSkmQFpJqciAAQmDl6/tiT3d3Q8bMK8HrSRAXCCH42kdfZGjPxc/AvfjjcS5/c32lkTLmjk/x49vvxXLQ7BozafInWtOxKr4ARi7jeM4X7a6UCXRCV+cmZmaHKBSd3eYvFCzLZCJxkK5O9waaS47jCcRQtPqOzMhnWlq0gl0hxkw5JItCXrwdQdKn3BeuubkiD37+xEWXxCSnigztnmHDG+srmlRec3KG0PJ6fTWUPEH8zeu6JUmymUUO8WQnowS5lPuksrtrC+NTF7/Dn02dplhM09nuXjc9NzeOP+rc4Zu51pIgSiiAd0Ufll4/+IWWxcmPpzCyzsmiSw0zY4c5tvu+i37dsWdOI0zBwHXu5SHv/ch+fvJFZ4r44ZeyzCWaq0AD9qIVbC+Rhehb5WfsZNbVp8ob9tC9vY/hn59s+nqvFhJnXsIf6SEQcV8gZXKTjotWgKKZa33RajonhEK+zkUXrdPjh5kZvfiyuzMPD9FzzQBawHkxZhoWE6dy9K6u70dSM7aJcqgFeVUkqpCccUmCrPAzesJ5zAcY2LHE9pl54eJ7YkwN76G9f4urhj2Xn8ESBkGfUxLErjgnS837BIQ8HXgU57476O8kk309CQL2omj83q9QGK73T7nQyOzeQ3BbvfliGcWz5xj+4z93ZB4YySSFM2dbup4SCGBmnJOEnp5uimPuc+LAZVvIHT2Omb64c2JhGGT37SN4uXsyWh+fQI231ZT+LcPKtFbNA+yFq9N9UgIBlHC44cLVzGSZuf/Biy6JMebmKAydInj5FtfXFEfH8fS6zPUyOTux0SQkWbblVZn6/lbr7gIh3E1kJYng1svJvHjx5dH5k0OY6XRD81p9bNzVtNXMtJZUk4NBPEsGEA5zYq27C2N6GqtYdPjLV4bXkyALIITtlG6gYujw3A/G0EtSlTIduoamamnUyxOcjqrXVP1tcQHN+uyJAmcOpNjwpiWVqjDVdHjDUpg9OYsnHgBVrUgyypTc1IvHmfjct+crUrhw86spqWVPkHl6atm1XcIf6yY7N4ZQHOjoikQoNkDA387Y9P5KRYBqucH8/5UaWUJFzlB9qApoKmhqjWyhmj5dfs9EZghLGLR3rAV5XrowL1+AbHrCXrRW07dL/9o7986u0PYNYp7yXJYwhAOYqWyJAlxLDQ4tizN3ahZLSDbFuSw3KUljLFXjkXuHOPLMbA31WBfKAmmVk8yqQSzVvLZWWlOwNJ79cYL2ZUHa17RVKgBUx5IhZIKDcXpvW4cpZPuwqmQCqSxyKFBFeXa5XVW0ecUfxCzY96n6vsteL95gnHxyopbirM4/7uq+jGT6HJni9PzvrThIoqqlMaWYcYynKklVRVZTdvyvosmPJl6mvX0tqi+EpcqOVPlcchxfW3eFvl3dVirx5FBxwgmS38+S//Yh1HisQqMvH/6l7Vz1L/8FS9Uq8rdyHF1qEDKo/jATw89TKCTr2nJdn9WEFKnmsWBeTliSFJYlDGceOMaSm5cjPB67Dy5JGKr775HjWSK9AYpCRRdqzbm/+92zvPhsoa4tG9gSg7xQayRvnqidCJiakWrHFkujY2UEPW8xcbZY03eUxwhdyCy9fQ3DD5zA0K0aGUatNGa+WEb1Y0e4yIwWSkemzr5Ex7LL52Uw5aPUhgzZJJufJhDsqunTURQM2cQSBqonWD8+SFKpElRtW9Y8IQyriKkwL70sySQCgS4y+SlM2ar6DLUSneTMac4demhROVXN8zSOr4Wyo4XSmGJBcPqhkwzcurpGAlMtr0rlJK55Rz/xldE6aVWi5AnnifrJWF4ylrcSTxYSupDrxgdfzEOyIq+qna90rgwzdjI3H0tVn8mwFPB6GLhhGcMPnqjqg+Sa71ZdVanclqTqeFp4r6r7xOp2W/U75PNzJMdP0DG4rbYPVufHiXRxEo8WxOML2f15SR6LKlMkj6b6necaUKoOVjs+rOi6jpU9O+fHlyqZ5JrBN7G0fwdUy3GU1g0GXwuQZBlhmqSfd9btXygUx8YonhtxrEBR/Ro1GnE0ycwdOMTk177V0jXlYNCZ4QBoPd3oY+7eZt5lS21JzEVeuOYOH0WYFv4N7h55+vi4vfB2gL1z32BO7AA5GMDKOidTtZ6uhvdJUmTmHnyI/LETLV3zlSKzew9aVydar3u5ZE9vN8FtWx3PWdlMy/dJCQYd5TCyz4cSizVMFoW2XkHh1DB6wplVc6GQfuFFAps2NPT10MfH0VzYYa0yQZSAn/4/+CjqgrLUAJ7eHvr+4KPnbYLbCK8nQRrgsrsG2PuzcYzixctUTgxlWHdjJ20D7sGTPjVNeJmzAZ2ZyiKHW2Q4+IOO8gUAf6yH3GyDjkyS6Om+nNHJPS1d85VidPIlOts3uEphALJzY/jcdu5blC8AhG/cSmDLSsdzsY09jsycMjwBlY239bD7uxd3Z83jl9nxvhUNnaH7b1rBwB3OMhC7Okyr8RTAzLnEU9ROqrkhEGgnEupnbGJvS9d8JbAsg/HEfnq63Y28hLDIJSfwx5wHTvM8mEXZ/ScxpuspmbKmEFndhXSJTrYXIhjrxx/uJDF88SaVQggKMzkGb3du7wDFnMHM2Ry9q5x/99SsWWF3NANfQEb1SKRn63dCwnEPobjG+HH33cX+GwYxiyaTz168ndrc7BiZ6bO0L3NfoGRzCQQWwUD95LvM6HDbiXeCzxNlTdfNVMrpViHk78LnjaIX3VkOXUu3kkqcalj57NVGMZmn68p++nYOur7GF9J4+5+vJRCp36VNzZj4gjKaQ9UYN4TbFFIzzkyknlVBpoazGLr73GbZG1cy+thJjNzFY6Qlhl4kEOshGHNnwmYy466sIt3Moymt7Wbn9RSJ9CnHcwFfOx6ttQXPaxmh7VtJ73nJ1evhQkAfnySwaUOlvK7ja8bGXWn5ZjaL0qLXhRJchAky6j6HkSSJ0PZtpJ57oaVrvlKkn3+B4GWbG8p+iqNjrpKmVnfuAcJXX4Vv9SrHc97BQYSL9BnsBEBg82ZSzz7f0jVfKSSfj+jNNzacEwcvv4zwVVc6njufeLIZM85j0mLMIq2rE89AP+kXLt4ay9J1si/tJbR9m+trhGWhj0/gcUkmWecRT7ljxx39TyRVtSv1nGeVv0Z4PQnSAGtu7MYyBIcev3iTpY23dPP+z7sHHkBqaJrQoIt8IZlFOa9Fq3MD9cd6yM9NuFaIAejpvoJUZox05vxKNLaKop5lYvogfT3OnVQZ2blRAm3OMhAzl2mppClA8MoNBDYvdzy3+jevZc0Hrm3499vuGeDgQ+Nk5y7epPKatw+w/e3upXEtw+Tlz+yiMOM84Mdu345/s/tC0AmqP+geT9FucrONqw70dm9ldPxFhMMi50JgcvYoCEF7fK3rawqZaSxTd5TDCCFalsMATH75h2T3Oe+CHPrHhzj0xWdaer/XKiRJonPpVqaGXkA0pC68ute8/p/eSs92Z18CgKkhOyHh5OFQLFgUchbhtubLHEqSRDiqkHKTMKwOMX7C3UhO9WkM3LyCs/efX5np88Hk8eeIdK3EF3IvfZnOjOHzxlCVegqxbrTu4eBR/CzvuBZZrr+3mupnx9aP4fXW7yaV4Q91Eu5YztTx55q+5iuFrz3INX99G4rXPR72PzjGnp86j6FdSzy85+PuseiESEwlm7Iwjfo207sygGWKSgw7offqAdSAxvijR1u67vlCCMHU0G46ljee/6SzE4T8zrvZuplrOQkykz3DgXM/cTyXySV47NlPYpqvPg37/48IbNqI0A2yDmaYFwrByzbT/Vu/0fA1xdEGO9LpTMuGn3IggOWyaNV6e9DHJxrKOELbt1E8c5ZiAybEqwkznSaz7wDha65u+LriyBhar/Oc2MpmWjKyBPu38bskQeJ33UHbnW9q+Pfha7aTffllx8opFwqR664hfK37fRKGQeI738dMO//+ket34FvjXg3SCXIwgOWSVNMWSaoBhK/eTvrZ5y6adCi3/yBIMgGXqjBAxcvEqd0JITAzrcfT1Lf+tyszaPKb9zHzk5+19H7N4PUkyAIIpHnqudfD7X+wnkBnCL1UaaMoVFsS4yRHqK7OsfCoqyxTX3Xm8J4Me+6fqJItlCmqcqVKhCUkBt68gZ6bVlfJYKSKhMFI5VpnggSCGPlsHT0VCXzxHoRlkEsnHBz17ce+QBttsRWcm9pju6dXVYqpSA+qZTJVcobaY97JH7VUGUAuPzcvixid3ovPGyPathxLlavkC/Of3UQnn57C39br6Ppv5LMogeDi1SSqONHZl4+TuO+xOtqzIWSMgsnEM8MUi6JGwlCpAiAU+rd1s+zKdibOFuopyk4SK8slpqqp0gv+rpoq/9C/nWbPA5M1tPnq6jWGkJkbTnH8f72MULSaSkPl7xi6bjPeQfddOafbVSm5XC1RKNGd/fFesnOjzvKqEt24u/cKinqG6eTJisQJWa6l0jtUC3KMpwX0+9pqArbT/7nJF+nuugxZ81TiiAWVYTKpcVRfCDUQrqPRC7OIMA3kQHA+XNxuThWnXgkHMVO5Gtp8WY6hRALMnUjMV4cpHZcUKtVHoGP5dtqWbkFIVp2Ewa04has0ZgGdv5reb5YkJKe+uZv0RG5BdZ6SXKD0rzce4O6/2Ijw+ChY8/15QWhMT9sLT0/MX9eWdaFgIpce18pogjGV6Rkq7bu6PXetCnPuSNZu59aCqmEladvSO9cxtmuI4myu8n2cJAyLVg5beMvqpCISpmUydfIFOlddXV+xp0rCkMmMEwp2VyQroqotF0UBRfYgezz140OpskxdW1ZlDo7fT0qfdpReZooJktnROllO9WfrXn0tplmsyD6dpFXlGHQdH0T1Yf9RWSpZbtOmkMklcuz5mwfJZ8z5saHSruflVS/9eIyTL6crsVTdp7f1B7n53b01fXw5nixkDNS68cETs5NOiZK8Si9JZQqWhhTw0zbgZ+Ropq4CXXm+YckaS+5cz5kfHsAozTXKkklLSLXfvxVU/2nVRwTYKwAAIABJREFUuJxODJNPThBfvq1WdlX9G6oSmewEwVBPZa5R3Z/rVh6PGnCea0iU/qZ2fFA9AXQrv0AyaceO1x/FMAukilM1MXSpQvZ4iL/1l1BbqI7xSpA/OURm775FXxe+9mpXjwczk0U5L/mCCxOktweh6xgupp8AWns7vlUrST97cRKt6ed3o7XH8a4YdH2NVSxiJBJ4+lw2BjNZlFBr9yl76AizDzzkeE4YBtmDhxqyhnyrV+FdsQI9cXGM4GcfeoTMy/sbvkafmCT52BNIqvN8K7T1crz9zc+JwY4n00U25OnrRV8kCRK8citmMkn+2PGWrnu+SD79LKErtzYsl1wcHUOJRBzbligUoGRW3Ars++Tc7pRgEH1ktKX3awaXcHfeHLa/fSkDm2MX5VqPfGmIY7sWZ51071hBdK3zTkjHr9xE2y/f1NJ1GzFBVG8ALRAhO9c4+Pp7tzM6vvuC75gIIRgZ201fz9aGdLbc3AQI8MXc5DCZxp4gDjAmZ0g97Vx5wDIsXvz490mdmnH9e0mWeM8Xr6V/w4V3xC5kDB76wgkWSxwnTybwd4UcK8MIIRj9H/ehj7emRVT8QQyXDt8f66WQmsbU3ascqKqP7q4tnB2/8DTJbC5BYvY4A32Nd1CyyTECUWfan1GS/rQaT3LIj5lyvk+h5R2kTlxcDej/yfAGovRvvg1JvvCJoOTRcY5/6UmE2bjxRLr9XP0rziyrSFzlk9/fSLS9+YoEAOGY6iiHAehZHWL8mLujPUD7Zb0E+2OM/mTxhcMrxdzwfoSwiC9xN6cGSGfGCQad++HieezcA0zMHSFbcJ44nxt9gVOnHm749x2DW1l21T0tX/d8MPaTl0mdmETxN2YFTRxL0rOqvroFwLM/neZHX2ptAhiO2ddLzTgzD3tWhxeNp6V3rSd5aJT00FRL1z4fTB7aRduSzXgC7iweyzLJZCcJOUirAIpGzvYEaQEe1Y9h5rEcmIeKrBHwt5PONF6kXEqIXHcN3mXu7NJXE7MPPkzu8JFFXxfcssmmyzug7c43Ervt1pauKzeQwyihEEo4vPju/Y5rSD3z3AUxc6yGEILU088SuuaqhnPisj+HqydIpnXGjJFIkHGphCMMg/Evfrmh34Uky/T+zgddf7tXE1Y+bydsFmGTFkdGbfNYh3LQQggmvvKfLftzyIEAVtolqdbXiz451TBOlECA4OWXkXrqwrOD9YlJ8kePEd7RmNleHB11ZV+VpT+tJh/lYADLxVDY09tD8fUkyIWHQKrs3pfZGA//ywl++NmTFCx7F6VuN6Z6x951Z9/jel4XKhMjBocem+Syt6+ovP/8Dp9SMe6bOpJg91/+DN2aN/Kzqnb31HgUtb2tZpfTdbemtAOjBEMIQ8c0io7GcP62XrJz47W7M1VmlpYq09G5EUX2MJp4uWa3r3bXvWxIOb+TX3NUmZYtNFgt78zPpIbI5RL09l5ZuzNTs+MnkZkbwRfuQNE8FSPL8q6TkErVPAItNtBwECtl0/aqzRSFkMDnw98XZebETO3ufZWBYXk3/+F/O83R3cmSKWr1bq9atQOsusfMQgPUMqOo6nj6e5N4gyorb+6v+Ry6kCufw7AUZk9ME1rZYe9aVpnsmpaEkTVIP7kPYVg1xndSo90/yWYWmflMvYmlLOFr60aSJLKpMQdmEVil37G3/yqmEofJGcl5dlEVG6hihucWS9Xsj7JxYolhNG/eKHN24nli0UGCkZ4FO8fVO5F2EqTMKqr5XtiVhoDW5DDCZoJYJSZIebe+fP+DKzrJT6bJzhVrjAkvNZTvv1CgmJ3lwPf/Ab2YrTCL6pg3LRAcnAwshZA4+/19tF+9HK0rWrdzXzFIFQo//e/72ffodMWQsmBpFbagqXnpXx/BlNW6/t8QMhZSXZsuCoVgm8bsjOVovN2+MsrUqTT5okRBaLWG2cI2QjWFQv9bLuPcD/aiGwsYIFDFRnK5KQtNZp0MUUuPJw48Qcfqq5CqGFTVjK7y43RmjFCot9SOa82zdSuHRwtU9fNV40PZGLWqLZcZYZoaQLdytWNNiTkSDPeSzozPt/kFrK7ykU2Oc+aln9SPeecRS/MxVWUqLSSMosXID15iyduuQCCXmF7zv1uZWZTLCRKnM3SuidWwf8pzjMN7spw4kKsxzy4ziCwhYQi5bnwQPi+aV2J6hsr4UP2+naujjB5NV+Yb1WzBcnvw9rTRtnUZZ7+3d4HJbu13XWyO4RZT5UPPp5gZ2kvnuh3zbX6hcaoM2XwCIUwC4Z75GKuaJxStHJoWqI8ltdRxK7Xjg1AUNI/NatCt/DzjUJEr404o1EMmM14z57nUMXP/g8z89P4Leg19eprcocOLLsYKZ84y8ZX/dJVKqrFYQz8RJyjBIKJQcC9d2tvT0McBILhlM5Kqkdl9Yb0cckeOYkxPE756e8PXFUdG0bo6XT1DzosxEwq5el3IPh9qvG3RZBHA3MOPkh861dK1W0XquRdQAn4Cm92rnUDJN6XPmekh8nkye16CRTZIFkIJBV3vU9nLppGJLED4umvIvLwfY3a2pWu3iuSTT+FbtXLRctj2fXKRVmWyIEktVxtSgkF3L57+PozpmVddOnXpzarPA20DQZ7++jD5TPPlDlvF4/8+zJItMfo2Nu6sZw6Okzkz45rxPf1nXyb9rDNbwQ3lHWxXH4e2XnKzIw3fQ5YV+vuv5szIMxdUtz88sovu7svweJx3zMrIzowSiDk3UNvDoXUmiFKuDuPy/UIrOkmeWHzHbOJ4ike/fKqla7cCyxLs+tow29+1HEVt3MSFbtG2wYXhUCoHrJyP0a4LE0RWVHzRLrKzjTO60ehSwpEBTo883dK1W4FhFhgZ370oCwQgM3OOQJvzwGjmMshef8vO1fF3vYH4u9/geM7f38bq32o8+bvUoAUiWIbO5OELFxPF6TTjPz9I/1udneHLEEJw6CdnsFxKXr/4wBR/867GtFsnhNs0VzPL7jURLEMwNeTuCwLQe/t6zEyBxFPHWr5+s8hMDJOZGKZr/fUNX2foOQr5WUIh5z5GN7Joamv9C4CmBigazpOlUKiHXG4aw3BnmwFIssLYyw+TnWqtfGYrSDxxBGFY9LzBXVsNkJnK07YkSOcK53EtPaMTamuNVSRJEuE2jbQbE2RNhIkj9SZ0CzHw9q2M3X8Afdb5fr8aSBx8Gm+0k3D3ioavS6dG8fnaXNkeupFFa9HI1KuFuX7TR1zfs7dvO/F4ax4Ar3Vo7e0kH9+FVWjcxl4Jko88jnf54KIsgcKpYfTJSdc58cin/2lRCcRCyCVZiKuZZV8vxXON58SSqhLecQ3JJ3Zd0Dlx8pHHCW2/EiXUeE5cPDfivri3rPOrDhMKunqnAHj6+pravS+OjDL30KMtXbsVCMsi+fiTRHbuQFrEXFMYBt5BZ6ZTOR7kFmVDctD9PskeDa2rc9F48i4fxLukn+TjT7Z07VZg5fOkn3ueyM4di762eHYEj4ssyPYD8S96rxei7ZfudPWR0bo6aXvzHa96W3o9CdIENtzWiz+i8fS3LtxkyTQEN36g8QQAYO7YFOGVHa7ni6MJVy2bG8o72IZLEiQQ7ycz3biBAvT1bieXn2Zq9sIYqaVzkyRmjrFkYPEGmp0dcU2CWMU8wjJbT4LEwngGOh3rWAMEV3SQOr54EuSa96zg0KOTTAy5Dx6vBKZusf6mTrY1MEQtY92HdrDqvc47CGaylM0NtpjNDQQxsu6Ge/54H5mZxeNp2ZLrOTf+AoaRb+n6zeLs2PNoaoDODufKOGWYRoF8eso1CWLkWq8MA6DGQq4mxpIis/I92/FEmjeMfK1DkmR6ttzMxIHHsYwLQzEuTqbouG4lsa2N205mKk92pkD3Gmfq/tykjnkeVcVCbSqpaedFqzeo0rY0yPjhxgtX1e+h+84tnPvmcxds8j3x8mPElm/BG3I26C4jnRpFllX8fucxq2hkz0sOEwl0o8jOSYFgoBNJsr1IGsEX6SC2ZAMT+x5r+frNwtMeZtlv7mxoiAoQGwjxOz+8Dc3nPHanZgxCseZNdssItamkp12SamsjpCdy5GYbL2Tj2wfx98cY++GLLV+/GZh6gYl9T9Cz+aaGdH6AdGqEUMh5XAc7CeJpMakmSTIBbxuy5Hzv2+OraW9f09J7vtYRvOIyZJ+X1FPPXrBrCMsi9oZbFn1d4dyI6440YCdIWp0Tl5IBlos5pmegf9FFK0DkumvRJybIHbowRrLF0TFyR44SuXHn4q8dcb9PVi4PltUyE0SNRNC6ulwZM80kiwAiN91Adv8B9MkLI7sThklg00ZC11y16Gvb77nbVT5lpjP2nNhBKtMISjDoarQKNsthsWSRJElEb7mJ5K5nsPIXZk6cfOIp5GBoUbaMlc/b/jIuSRArnWk5lsCOJ7fKO5KiEHvjrS1XnFkMrydBFkAIKrRQXdiyAVPW2PH+VTz61dOkC1KNkZ0ulHk5glUrSag5Sq8vLKCk6iUq9Z1/uokVNw4sOCdX5AtlKvbssQTBld0YJQM/s3QIIWFZFmYqhxJpkBF2MHqTFAXZ68PMZao93mzKuQz+zn6KmWl0M1tLKS4Z35XlMVogTH/f1QydfQRLgWqT1GpJS61pmfNRbYRZpqcOjTxOe3w1oXBPyTDP2fROIMjOjuCP99U+X5HC2J2RGmzCGBUqVF+tu52ln/oQsqZVpAtlI0VLSPTfcwVb/urOGvlC0VIplijG5d+1fU0bq6/v5IF/PlWRxCw0QqyRXC2IpXLclOOwTMHXhULeVDFVL2/8/Y1oEX8lPqulVeXPlssYjD87jGGIGpPdeXkV+DctB0lpbKQoiZp7qPiDmLksFqLOlFZIEIj3kZ0dcTRRrFDpFYmOzg14PCHOjD+LUOSa+KmRWS0WSwulNIqMgcnwyJMsXXojkqKWqNVu0qpRJCR8bT118gAkMHNp1EBo8TiqDikhkdq1nzN/9LkaM8WK0a6QOfvzYxz5jxcrFHrjEjNGtSVsUg0tvm31lUiywtSR5xxp9U35fS6Qg9h9p30E1vSx7s/vRkhyxaTWsOzfo1rCMHo4hTekEewNo1uqfQilIpmcmTYJxD2VPr9a2mJgyw0Wjg8FoeFv85KcMWrafo056toYI4eTFblmtUynWq7Q9/aryJ6aYvaFoRqZW+19qDoa3aoqBY0A8jPjzA7tpeuym2rbdp3ZMaTTowRC3UiqWjtulGQsRTOHxxOqjA8VSVpJ3lKRO9Q8L7N26R0s6bumaryQsFT7kFSNq6//Q8KxJSWJnX1US6vKn7tny61Mn9hjV0BbIHWrM0l1uznMy9kQzP8OJoQ2L6PzTVfMx5El17TnsrzqzN4Zxs8UquSTtX1+tMdH+2CoVoJbOmch1Y4TJYmtLlQCbZ6KvKpazpu3NIL9UTS/yuiRVGm+UyWtqjosFPrfcRXjP3gRI1OoksI4yOurJZMNblv1PZ469DSK5qVt1baq2FkgXyr9/qnUCKFIX008VCQqimQn1bSQ49gA1M0/yuPIroP/zNjcofn3q5huSxjo7DvwdfLFuco4dalDUhSit9zE3COPuS6AXyk63vE2AhvXL/q64tlzeFzYIjbDIbcoS2IhJFVF8npdmSDe/j6MqcSi1HwlEiZ83bXM3v/zC5KQnn3g5wQ2rl9UuiCEoHhuFE+/m3yhJOltkeGgdXXS/4cfczXQjNy0k65ff8+i7+Md6Me/djWzD/y8pes3AyEEkqbS/tZfWnQBbeXzZA8dca3CIkkSvjWrW2Y4KKEgVjbjGgOe/r6mkkWBLZtRgkGSTz7V0vWbgVUoMPfIY8Ruu2XR71c8Nwqy7F5uOZ1pmVUEkH7hRc79/afdz+/ew+zPG/t9tYrXkyBN4vK3LOGuP1mPrLy6tywzq/Mfv7eb9HRztMLwinZim1yyb5lSNrdF+QKAGghh5px3732RTmTV09Tu/dIlO0lnx0nMvLpU7HR2nLHJl1k+6CwfqEYxN4dRyBKIOw+MRi4Nkozsa30HMvvyCcyki7Yv4kfxqli6uxt2Gbf+3lo6/j/23jtOkrO+838/VdU5TU/Oszu7O7urlVY5ISGUI4goIYLxz0RjYxufOWPj1/k43/nO+Gw4cAAZY4scJIRMECgAApSzVtqcZift5JnOsap+f1SH6p7u6jSrXVn6vF6129P9dFV11ZPq+3w+n+9Gz7oPjHsfWuD2365vBXhl9xzP//efIqponF2bBxj4b7/T8Dkobi9oKlq6crTa1d5PfOV4zRS4QkhsHL6SY5O/IZNZXyr29NxTSEKmr/fsmmXjqzO4Ar1IcuWBPpuIIbsbm2QBSE472ZXq0oZsJMn0z0+cpOGVCElW2HD5uwmMWLN3msHC9x9l4f7KJm9rzsMmcfpbNlZduY4uNy5fAEMOE63CBAHo2dbG3L7ammB7u5eem87k+Ld+s+59zOwTPyMwfBqe7tpMs2h4Bq/PauU+1pQcJpFaZTUyWfVzpyuIptZ+OPN2j9Bz1lVoFingm4Gu6xz85NdYebw+N//ffPY5DjxYnWn6rv+xlfPeaP2gUwlGfarMmpJkQeeWAPP7a9en7qu2o/hcLNyzvsZ8WibF/PO/pPucK2uaHuu6Tix8HK+vyvxHU8mqyabqkyTkqvIqSbKxunKUSLj2/OfVBO+FF9DxtpsNL7d1hBqNMfflf68agCiHvb8f58YNFT/T4nHQ9aYeyGRv9dV7W083wqaQquPBNXDV5aSnpknsX1+GdHp6hthzL9B2w3U1y2ZXDC8F+0DlObEajYIsIxpkOAAk9h2oeq9kj8cIgFtkiMkjeOP12Lq6Gj5+LcRf3M3sP36prnEwefQY8//+taqfO0aG6fu9Dzd8DpLXi57JolcxP7UP9JOanql5jkKSaLv+akI//yVqfH29MSKPPIaw2/CeZy0FBkhPT2Pv660qAVej0YYDj4AReAxXN+vWYjFiz73Q8H6t8FoQpE7YHDJnXNdHMpIhGV2/yPeDtx9hdSaBu81eV/kz//RK/Nsr66uRBMG3XoocaDx9mezyVs3oISQJV7CP2HJtOZDD4WOw70IOHb0PTV+/ieXhYw/S1bEdv6+2i3RsZQrF4cHurpzVR40b8gUhGq/+x//fnSQPTVf9/Fe33cHs4xM19zOwI8AVH9mCpq7fA4qa1bjv8wcY3tlWk1YMEDpgSKuqBUFSk/MkD1Z/0KiGvMyomiTG3T6Alk2RjNZ22O7t3onTGWB8+jcNn0c1ZLIJjk49xMaRK5Gk2hTz2PI07vbqKdGyiShKg9IqAMnvQYvEq646+LZ0Ezm6gppe3we0Vzp8/VuweYOkQ+uXPSezHGHu279C8dY3CRy5sIfLP3FW1c/HLgxy1tXVZYvV4G2v7uEA0LPdCILoWu1+Y+DWC0mOLxB5bG/D51ENibkpQkd20Xf+DXWVj4am8fqr99npTOPyBYCF1f0cOPazqp/PTD7Bc0/fXte++s+/AVdHH/o6BkLCj+wmcWQO77baqRQ1VWPxwCo926pnoXvhwQXi4er1ohq8NYJq3dvamNtTPaNZHkKWGPjty1i85wmyofWTcc4/80skxU77tto09XQyRCYTqxoEyeSCGHZb4/XJrnjIZKrMf4TA6+sjGqo+7r8aIdlteM46Ey2eWFd6/ur9D5JdXUVy1bdI1fXuW3EMD1X+UEgErroC2dfEnNjrqZqpQsiyIfWYql0nlEAA3yUXs/LDn1Qd65vByr0/w3PmGXVlVklPTiP7fMiByvJNNSdfqGfeWI75O75OaqLys4Gu60x++q/ryvDjGBmm7dqr6gqY1AtdVVn5yU9xbBip67elp6awD/ZXZUKkZ2dJHas9vy9HXhqiVqlPjoEB9JzEpBa8552L7PcT+sVDDZ9HNaixGKv3/5zg9ddapsXNI2XBvsrvr1FWERQDj1UZM4MDpI/Priv77LUgSBl0RE4yYFBV81KXVI7y/LU/eI6ffnG8hKpaIkcoyx5TeM8si8m9nhrP8PC3Jrn6j09DxWbIXkzHLrzO0VLnX5xn6ucHC3TbcgmD5HbT+Z5rEQ57XVTnAgQoHi9qPFqBCmxkVvG0DxJbnV6TIaASdXVkwxWkMxGm558poaoWKaamTDGSVNgKcgVzOUliKXSIxZX9bNp4TY72LKHlqKqVnP+jq1N4OoaM9ytQ5rNm+YL53legPosy2rzsd5MNxddk9FB1Y/Nu7GB532KB9pzPxJKn0ZfUi7Tgc29/gpceCa2hKpslVBWzEZmkMfnv/urbs0SW0rz+w1ty9OecrEszUflNNOyV/Qv4tuSkVax1/g89tIuVe0zBhzrrkuRygSQZsqPy7ACSwRSxe4JEV6eKWQDM9cS0ociMjl7H5PHHiKVXDInVGqlUlbqUzxwhl9Kbj0w9hMPRRl//eRUp1+WU/tjKNJ72IVNdL5X4qImokWHJVH+q0ejNFHLZ5wFdR4smiu2YYsYF98YudF1n9fDKqzc7jGzqX0xtODp9kAPf+jsycYNJU8+1N39gzmyhA7PfeAjXaC++i8YK8pGsSepmli9kNZnHv3qQpZn0mn4+/3rHNX1sv7qvMD6Yy6i6ZGQhK2/Pmg1Hm4t4KEssLa9p3xlNJri1k3Q0y9JUgkwuy4yGKJEv5CV6SruPnltfx9wdD6AmM6Cb618dk92yTCk6Gscfupu2sXNxdfZXyRpTbE9ZssSic3jbhopyNzkvNzC2dDaGzeEtjg+FbE5ybv+i5L18O7Y5vKSzscJ+NEUUssPossDt7yUWmUUVarFvEYJK4xcSLO97isM/vB1N10szmZiqTmldqvB37j01kWbu3x+g57bXowQ8hXpWLjPJS6wWxuNkElnat3VWnD/EE/AvH9vNwvHsmrlERpfREahIJd/Nl3EX5FXKmvEno8t0be9gbu9KTk4loRUyIZXWf00XtL1uG46BDma//qtSaVWd40L53CIdXWXhmV/Sf8mbcnKp0s/N0iVdgkh4Gpvdg90dKM3klasTKc1YGbU5fWuzy0nS2vqUHxtkgc3uIa3GixJek3RLkwVe/wDRSFHC+RqKmPvyvxmpR9cBmfkFwg8/SvvNN9UlOUgeHbdcGZY9btpvvgnJ3jgrT/J6rX0cBgfrCoIAtF1/DdnVVSKPP9nweVRCfM9e4nv301bFRLIcqYlJ7EODVQMBxsp94w+tkDNHrRYsEgJbXy+pyfr8FPVslum//SyJA+vDgA3/5hG0eJy2a2p7y4CRacgxOFj18+gTT7PaRPBBcrtAiKoeM7Lfh9wWqOs6CUki+MYbCT/0azKL67MQtPqzB1A62vFecF5d5dNT0ziGql8nLRpFaoIJInu9oGlVZWb2gX7QNNI1Muk0gte68wZx+e+O8cjXx5naU52yUy/u/qs9jL2+i02vq48CNvngIWZ/dbjq58nDMyx//1dNnYvs8pCNVafmuzsG62KCANgUF6MbruHwsQdJpasbZNYDVcuw78iPGR68FI+7cn7zcsSWp3B3VG+g2Xi0YVPUPGS/p6ocBsA/1k1o/0J9+7JJjL2+i3v+1x6yTZgompFNa/z8S4e59o+34fTVN+CHDizgG6t+TdVwHNnf+HUSQqC4vZbmqJ6OIaLL9bFMOjq20h7cwr7DP2yZ2h+OzjB1/HG2jN5QFxNIU7MkVo/jqSKtAsjGYyiuJjr8Nh/Bd15jpG2s9LnTxsDVY3XJq15t8A5uwdnZz8xDd7e8r/jucVZ/uYu+D99Q12pRMpTikc89RzpefYX9/i8eYXJ342OEt91ou7HVyvt2tzvx9rhY2Fvf5Kf7rReCrrP0/dYd5VdeepLk0hx9l76prvKx8AwCDA+nCtB1nUyTTBCbzU26yso9gNfXj65rxMO10zMCeIe3kpibZHXv0w2fSzlW7nsaya7Q+eba7AaAxX3L+Ae8OP2V2aB5OUsz8ipvh43oUnUT4e7T2lkZj5CO1jYaFpKg/6M3svzAc8T3Hmv4XMzQdZ3jv/gB7t5h/BvPqOs7eVZRtTaazkSRZUdd7L5y9HbupCNY3fy0rX0Uh6s6U+fVjLYbriX00K/rkoZYQdd1Fr93F+4dp+HaWp8RbeyZ54jterHq56ljE6w+0FyARvZ6USPV58SOocG6H+5lt5vgjdez8uOfWu6zHmjpDEt33UPgqsux99Q3J05PTdV4aI019dAKuetkESxyDA2QnqwvWCQUBdf2bSzd9YOWV/u1TIbV+x8k+Kab6jYyrfVwr0ajTRl+CklC8nhQI9XnxI6hIdIT9c2J3aefhnNsM0t3fr/lOXFqYtIIPL715roCj1omY6THtWKCRJtkggT8BG+6oep5SA4HnnPOfo0JciKhQ+nqvZbbcisnwxf1ctbNQ3zvL3aTTIuSlbpyY8tKqzoZXTFW9XSZK39/jBs/tZN0nmmiy4XjGSv4smnlXmJ57wK+rT0F1oGul67epw5PE318T+6X1O/SqAtQPL6Slfvyzd01SDK8SEZNrmGAlDAxZGO1r2/wAryeHvYe+Q+03HuFTSk1uazE/jDKCQ5P/QIdjQ0br6y6Um/eNKETXZ7C0zmYW6UUpatLGB4OittXccWvaqXIr97ngiAlK8kmMzzPll5W9y+gapSYFRbYPTmGT75uXPqRbWTTOj/9/KGSFbw1r8tW+crrnG6z8Tv/eiFn3DxSccWvnFWU1SVed/s76bxsS4FVZDbZBciGYkh+bymjqBq7yFzdRC5DTCJaJCTlVlzz5Tydg8SWJ02rxxXuZYENIjE2djOh6CTTi8+WGeJWrkslf8s540RUdh+6m77ecwl2bC5ZkdbMDBSzKWrE0Gm62vtLGS2mLZtjgpjbU9V6ZHotbDba3nw5ktttaseiwERQNYkdn7oe346BwuevKpQzDUwbkmDw2ncSPrqb0MEXKhscV7lchTlD7gY6Ng0w9OfvxDHaX9KnalVW72d3L2Pz2PDs21MDAAAgAElEQVQMBQpsq3z/nW+nv/nWJMtzmTUml5lcG9QQFccGZ7sREFhZ1EoYIBmtaHDcta2duT2ra0xRC6v3FOuQbrPT+9E3sXj3wyQOTpe15SqdX1lbRkA6vMzsr39E76U3YfP4SseAAstLlKzeR0JTuP29SHZ7yfiQNzzN6mk0PYvN4SsZGwrtVxjsjbUsQgm7w4eqpcmSNfr4EoYgSHY7bm83kfBUmZGxiRGSYznqAmxeP72vu5HZh+4hE1lZ8/stUTAKNba2Gy5k4M/fhVCUknpUZBVJJfdu47WbeNO/3lDC/sxoJpPdRQ0hQAm4S+cYOTZIfv/m9/PfdQRdRFcyJMvM3PObb0MQxSkzu6/INjOzArNmtikC1+YBOm66gLkv/hA1kSl8VtdAarqWoX3PEh3fz8A1txpyTIu2bmZ4eoODpew901iQVuPYbV7Te1JhfMgbo5YbbOfrXWfHVjo6t67p//NbsGcbm3a+pTjneQ0FuLdtxXvu2Sx+67stSRmEEARvvJ6Od7y17u+kJiYtH1pTE5PEXqgeJLFCrYd7++AAmbn5utME+153EbbuLha/e1dLD64rP/kpoNN2TW1/PDCCS6mJKRzDNR7uWwqCWD/cpybrl1UHr78GLZVm5d77mjqfPCSbjb6PfbQuj4s8Bv7rH+PeeXrVz9VoFNnX7HXyWF+n4cGqsqJyCCHofMfbSB4ZJ/pk84F7LZNh4ZvfwXfxhbg2b6rrO3kD12rplgHUSHP1SbLbabv2KsugVff73o1zw0jD+656zHXb06sI133iNMPV/Fhz2tjj+yMc3x9m5Owg/p76dI9aViV0YIHAtip+IBgPrc2s3APINVbuXW09SLJCrM7VeyEktm97ByuhI0wfby6N2uLyfiZnHmXHtluQ5fo8U1LxFbKpKJ7O6qZ9ajyK7G7uOnX+fzfR9ubq6cjazhxkxx9dVh9FGLC7FW75m7N46s4JwvPN6Wqf+/EM03tC9I75q/p7lCMbzyA7FBRX9euqhmLIgeY6fMXjs2aCdA4RW56qW4fvdAbYsvmNHDj0YyKx+lZ3y3Fw/GeoaorNm+rzMwCILk3ibutFtjmqllHjkZIgSCNY/t4DJPZV15gm5sJM/kd9Zp2vNjiC3fS87kaix5qjzuq6TvTRXQhFwXde/SkwF/cs0rW9vapJtqbpxFfSeNvr67PMUOwSDq9S1cwSoPu0DhZ2159K0HPWZtquOZe5f7gLNda4mZquqkz/x9fx9G8kuPOiur8XWZnE11ZFqw8FJofd1nhf7HZ1cvF5f1w1rSnApu1vJNBZ38QOoGPnJbj6Rlh66tcNnw+AGkuwcs+vEULgGKzf4C8VSePurD4PiK2kcbfZkJXGp2vedjux5XTVhy5Jkejc2s5iA/Wp+z1XgBAsfqU5Zl56eYHjD95Nz2U34Wir7zrpuk5kZQJf0KI+paPY7c2N66HIFIeOWj90LczsIrr6mi9IJbS/9WbQ9abp+ampadIzx3GObkSp4ltRDj2bJTU1jWPEYq7XykOrz/rhPm8MWS8bREgSXe+9jcT+g0Qebc5gOPbibsK/eYSu972nbolPdmkJLR7HXs03heZX7gE63vEWAldeXvVz55ZNdLztzXX7oUhOJ93vezfhRx4ja2GSaYXo088avhX9fXVnctGSSYTNhuSwmOtFok35y0Ad9Wl4iNTkVN3XSWkP0vG2N7N019010+tWw/IPfoieTtP+5jfW/Z3UsQnsA/2W9a+Vdrf8o3tJjldnGmaWl9c1O85rQZAm4PTZ+P07L6Fns49Eg2ZlkcUUX/vDZ3nqzsYMJxPzURSXDf9WC/lCC0EQxeO1lMMISTYkDEv1mwK5XO1sH3sbBw7fy9JqfS75eURjs+zefyejI1cTCNQf9YstT2Jz+bG7A1XLZOMRFE9zHZnS7kf2Vqdv2wMu+q/YXHcwAmDknHb+5P4r8Hc7G55U7n94kTv/4kWWJht7uDl05y6e+uQPLcsM/Pm78V1W3fzRCrLbixq3klcNoakZEqH6tX39vefS072TF/d8q2GZ1dTsU0zPPc0Zp70LRanfAT26NGEZUNNVFTWZMDxmmkBi10FSR6sPYJlQkr2ff4ishfTi1YzOc95A39VvR9dUtHR9K3J5hH78MAv/eg/ZpVBD30ssJ+g+o7rpaSKURtfA29F4EASMB9foUvXf0ntGJwt7ltCy9Uvoun/7GiSXg/kvfAc9W/9qra7rzN57F5lIiIHr39WQmXR+5b4aMukoQkgoSuNZuiRJwe3qsDyfYNcYLm/9wQghJIZu+i16rngjuq431Bfr2SwLn/8m0Sf2NGR+qGU1vnXTXcy+MF+1zOiFHfzhna+re59meNrtZNMaKQsz9+7TO1jcU38QRHbZ6fvErcSe3E3o3sYmo2oiweT3voJ341baz7607u8lY0tk03F8bdX74nQmhq2JgJrx3Sgzs89YlpmfeobF6fXNTPCfBbLbTf8nPo69p7vhrBXZcJj5r9xB5LHGFsuyyytITqc1Lb/JFWmoLYcRioJ9aLAho0xbZyed77qFpe/f07DvRWp6hsVvfpv2N97Q0Ep4amISua0NxV89uKRGIk0/3Cttbcie6nNi2evFc9aZDaWVdW4aZegvP4Xi9zc8J47v3svCN79DtsGAXOihXzP35X+zLNP7ux9siFlihuz1WcthhofQUykyc9XHgnJ4L7oAz1lnMvdvX21YZhV++FGiTz5N9/t/2zLwU47UsYnqRsQYY6GeTDbd7hL79lt67WiRKEvfv6duBlYtvBYEKUcJBbpUUmCmPavYCK1o/M31D/P4j+ZI5mQuZsNU85bSbCwt6vzT+58l0Ofiqk+ckaOsKiX7Lx6vlILt6A1y1X98EJzOErp23uhO1wVCUbD1dViatpl+Zglkjw81Hl1L9zcZyXm6hoksTawxiCzZymQF3T072bjhSnbt+zbLkfEiHdosj5GLkgVdEcTSSzy756t0dZ7O8PBlBbM7Xc7JFszSmxJjS4isTODpGCqcj5liWzCyjEXXBEHWGt9VoPfqEP7V80z9ty8bl9REE87TzzVdsP+rT7P/a8+UGuBpxfqTUpUC7TlPT7b5XcwcS/OFdz7J8aPJgmTKLIsxU+ozusz+J0N87eMvcMXHtjF2zVCJBKtEfpOXd5mkVUsvzuEb6yk573KzSMnnQnI7S69JOcovUe6yyZ4cs6jMDC9PQZcdLpz+biLLk0Vz1AKlvtK9NerN2NjNOJxtPLf3DtJ6smi2WKU+IQlmFp9n/5EfsX3r2/EFhirWH6rIrKJLE3i6RtbUoaLJrjHwyF5fRep8RUNFU1uUA17UUMxksmuSYyBwb+xEUiQW9y6Q1V593bVZzlZSl3L3QkgCIQkWf3M/E9/+EmoyUVnCUNb/RR58jOXvPUD3x96JrStYuP7mdqDqUkFiYpYwnPcnl3DOR89dMz7kt1hUJzjgxtbmKWnH+bacwTChLB8fkrpCUlfwdDgIL2Vy8kjTvnMGx+2ndZJNZVk5slrsY8pMLM3jgq4LhN1B35++h8zMAvP/fCd6uvShWOilJtBgBEAWHvwRkX27GL71Qyhuz1qj4yoShoyaJBFdwNs+vFbmlpMhpHLyBZSiQWXR3FTKyVZESVs22ruxPfr051hc3l+QwpSMQYogmQnx3EOfJ6umilIdi3EBAbLThZBl5n/1YxZ++ZPSCXhZvcpfMz2dYeGfvkt2YYXeP30vwmY31aGixLBQj0zjwsL+FbSshn9LR4n8NqUXZVCabMPT6zXNE2yFepXUbWh5k92y8SGjyziDRoBpdUlbM4/J1+fO07pYeGnRNF4Uz88szzNLxeyDPXT/4W0sf+t+Ig89Zao0ZQ3PVLHUeIypb9yO5HDQf8Ntxv3ENNSaxgezDEaXIbI6gcMdxOb2Q24eUJgLmEx27XYvRbNUUTI+5PuTovSqKLOyOX1kMnE0oZfs02y+7g0OE1kx5j+vYS2EJKHGYkz9z/9D9Jnn6vqOGokw+49fQunoaGg1GsDW3cXwX3/a8gFOKApKZ+NZugBkn6+q4WcejpFhUhar1pXgPeds2q69irmvfJXk4SN1fSc9N8/cF7+M5+yz8F/xhoaOlzo2afnQCnmGQ3MPrZHHn2Tm8/9kWWblZ/c37M0ie9xkFheZ+ewXyCzUF6RNHDzE/B1fp/1NN+I5a2dDx0uNH8M+ZPFwr+tIbnfd/iLlqMUEkd1ulK7OhoJqQgg6bnk7SsDP7Be/jBqrnOa7HJEnnmLp+/fQ9Z7bLOVklZA6NoHDIginhnNz4hPFmBkwsvfUa0pcC6915y3AHbBzw389je//xYv8/J8PolqszOm6zh2/9wzuNhu/9U/no9ir03grIbR/nnTIWi7R+b7raX/HFQ3tNw/Z40VLp9Ay1WnYns4RokvHGo7MjgxfzvDAJTz/0leZmX3G8vuLywd46oUvEQyMsm3szQ2n7IosHsPXvcGyTCtMEMlpJ7u4allGyBILT4w3vO9An4v2YTdffNdj7H/Y2lw1Fcvyjf/yPJf+9kYufX/9lG8w6uLKnjnadvRVLaMlUhy87X+Snql/hdAMxeMjG7OeQHg7h4ktNjaBkGUbO09/L7Ls5Mln/5lwxCJirKkcmfgFew/ew/atb6enu7FBMZOKkYws4O2q3uHnJT/NMkHyQZBqkBQZ/9YeVnevnxv2f0a0X3AZuqoy8e//QGrOmhqaeGEvy9/8Cd1/cBvus7c2dJx0OMXibuu2GRz08PGfXYXd3bhBI+QlDNVXOexeO22jbSy+VP+KERgstt5PfZD0kSnmPvtvZJer92NaMsnx732N1eefYOhdH8LZVb2vqITo0gSSYsftry7fTKej2OzNtRsw2CDpjMVkyeEjEZ0nutJ4mm/v5h2sPvsYs3d9A7VG+s/wA4+Qnpil55PvR2lr7PcsvTRHcHMQm6s6tfj+v9/N9/+iOQaC068g2yRiFsyirh2dxOdjxBcak/d6ztlG9+/fwvJX/4OV7/7Y0qwuNTvDxL//IwiJ4Xd9BMnWGEsqsjyBr9169TuTjhpBtSZgs3sAw6i3GnxBw8xb19cvzel/NsgeD+1veRML3/wOK/c9YMmK0nWd2du/guzz0fPh99eVmtOM1MQkWo2Hvo63vZngdfV5Z5RD8nnREknLeu3cMEJqvPE5cdt11xB4w6XMfvFfiDzxlOX347v3cPxzX8C1bYyOW97W8Jw4dXQc50brttMKE0RyOFBXa8yJJYnE3tppcsuhBIPYOjqY+ewXSOw7YFlWSyaZ//evEbjq8oYDRbqmkRqfsGTY6Mkk43/yZ2QWm5sTyz6vJRMEckG1BlPwSnYbPR96P8JuZ+bvP28pz9JVlZV772Pxu3fR9d534Tn7zIaOpUYiZBeXLK+TGo2CEEgW7CAryD6fZRBEKAr2wQFLyUwjeC0I0iLOfvMg7/vieTz53Unu/AvDgCnfoem6zuzBKAceXUIIwdv/6nTe/+Xzm5ocP/+/7mP+YeuocfLgZFOab6AQFLCSxHi7NpBNRklFG6OZCSEY3XAVWze/iQNH7uXpF7/M0spBNN2gZeu6xmp4gl37vs2u3d9gZOBSdmy7pSHqNYCmZogtT+Lt2lC1jK5rZGNR5BYfWq0GrbbT+wjvn0dNN2YSJisS7/zbM7nkfRu44/ef5cd/V9rpa6rO/ocXOfTEMg6Pwsfvfh1Xf2xLw4NibCpEOpQkcJq1vwyqhuxvsiPz+FBj1npOb9dGIgtHG963Ijs4Z+f76Wgf4+kXbmff4R8Sjc0V7omqZphbfIknd32J6bmnOHPHe+ntaVzWE12eQLY5cQaqU+qz8Qiy042QGwtq5mEf6EbyWK8sBE7rIzHfmqP8f3bILg/D7/k9nH2DTH7xc4VASL5OaIkksaeeQ0ulce4Yo++//x6e809r+Dizj0/w60/93LLNReYTzB1oPnuYt8NBbNGa6tl9RjcLLzYeGLP1dtD7lx9BCInjf/l3rP7wfrKh4rmqsSihxx7h2N//H9KL82z4wB/jGtzQ8HEiS+P4gsOWfbjh4dB8EMRu85K2kMUJScYbHCa81PhkyTM0ysjv/BGpueOM/8PfkFkuHfOyqyHCv3gEXVXxX3cpfZ/+XWy9HQ0fZ/GlebrPsM7wEFtK4fQ2F1ATQuDtsBNdrB7I8fV7cXa4WNrVuNeS9+Iz6PnUh4g98xIz/+1zxJ56Hi0XNNJ1nfTCAos/vIfJL34O58AIQ7/1EWRX42NKZOkY3vbqUhhozRPEbvfi8fSiqtUXgXzBIYQkkYqtNHWMVwt8F55Pz4feT+Q3j7L4re8CpXPi9MxxEvsOIISg61230vvRDyHZG5cOzn/1m8Rf2m1ZJjl+rGF5Th55ZkR+ZbsSHBtHUMMRssuN1YmCCezb38rS9+/h+Bf+mcS+AwVjWV3TSB4dZ+4rX2XuX+8gcPWVdL7ntoYkJWBkkklNTePYuKFqGV3T0GKxppkgks+QDVnNiR0bN5CamGzYOFfIMl3vezf+yy5l9vZ/ZflH95Z8rqsq8T17SRw6jOR0MvDJTxC8/tqG58SZhUW0RALHBgt/mUgUNK2p7DCQe7i3qEsAzo0bSB5pfE4sOZ30/v5HcG0bY+azX2DxzrtJH58tzn/SaaLPPc/M33+eyONP0vuRD+A99+yGj5M6NoHkdqF0VWdXqZEIkqf5ObGttwfJaS2RdWwYQV2xDrzVi+ZG1v/E0KGQhSGjyUg5HrWMXgwZaaDlGplNUtlwUS8fvTtIbD5ORpf5yWf28tL9s6TjKolwhtOv7WXkol46t7Sh6hIZXZDRjAqSp6jmX2dz7+epqWBo0GMTqwR2DhTo2kBJJg9dF8z876/T84e34NixjZIMANV+a+4jIQwqFkIy6P0+YzJXoApj0EhtXj92TzuRpQlcw53FY0tAob7rJuq5mTsMfQPn09axmYmJX/PCvm+i6zoOu49MNo6mqXS0j3HBeX+Ax9NdoEIDkKPG5s8DuXjcPDVVlyC6YkRA3Z1Dhd9WomoRoCbjoGsoVeQLay9S6Z9ywAeqihpJogUNGqZeck8kPFt60VWd5X2LOM40HqAloSPlTlbSJaS8tEGCZG6xxCZUNASXfGQ726/uIxnOkNJs3PnJZzn23CqRhSSSInHxezbQf14f9g4bKc2g7QOFLDBAgTpvvG9QmwGyuoQt6OG8v74RW9BLSi3Wn3y9VzVBdiUKimxkLsk27oaveMuMUc0yBoz/vT0bST5xJ+l0DIfsyZ1Hsf4IWVBxXBUCIWxs3fpmurvP4Oj4gzz+/D+gKE5k2UE6FUGW7fT3nc/I8GXGKl++PuSzTuRfm87HXMd0KTfx7hwBScrRtvNZJXLfwQgaNscqEqBD4MZLkW0aeiEgWPzNqiaRFRIbPngZLrtKtrVMaK88iPI2LkrackkXJ0B2Oul767vxnXMe9q4estEoE5/9DEJRjIHZ6aAr2IZj+wj2kX6guEpZ7EeN+g+UZOTJy5MWds3SdWZvof+W0I2xIQ8JXrr/OPvvn+IDXzc8D1RdQhbGsSShoeUycGR0QxaTR74dO9pdLL20WiKFgdL23XF6Dy/e8UJBIpXVDckCGPVGo9iui7/R+F8J+un+rx8g9tiLhH/yC8I/etBYBRTGRE8JtBG8/CqC516CpMulkgWM+yFM96E0k4rxR3hpnEDnBuP+6aI4Puj5fwTpTBS73WfIYHI3UpeMkxQ6hWxSRpstXmJy7dTu8JLKxkxSGHO7Nl77OkaILB0tkXDmfwPFw1YcLxyd3Yx89E8I73oGJRgkOT3F7Fe+YvjPRGPYBvtwbtuMfaQLyeGhkCWmcL2L44JW9jpfr7bcdhYut05Wk5GFjpS/SRpIknHRIotpOkb9JDWbMUbk6hK6jCQ0dARaLjuMsX+pUJc0BO4OJ6HFTDFLWGHuURwjunb2Mr9rjr4rtxRkO0Ahqw0Y7aKYWalYn5ybR+j79McJ//RXLH/nBywmvo3s86JnsmjxOM6No/S99/14R7cbX81Urj/V6pWqpomHZvB2vrXQH4hC/S5Wi1Qmit3hM2Q2ZtmheZ95aSX5fsN4LQs7F1z8R7nzEKaxoNj/yDY3F9z8Vw0vzrwa4d6+lYE/+5NCgHX57v8gtutF9HQaLZ7Ac/ZZuLaNYR+onmHCCtlwmOziIs5No5blZr/4ZXre/766U+6aIXs8IARqJILSHqxYRmlrQ25rIzV+DFtHe8PH8F18Ic6xLYR+/kvm/vXf0DUdJeBHjcXRs1ncO7Yz8Mk/wd7b0/C+AVITE4ZRc420r+h6854gfj96xvCBEK7KD6+O4SF0VTVS0FoY2VaCkCSCN1yL58wzCj4Q83d8g+T4OGo4gpBl/Je/HtfmTXWb6q79DT66P/g7lj4W2XAYoSiIpuUwvpq+Hc7RjSzdeTdqLG7ps1IJks1G561vx3P2mazcex/Tf/N3SG4Xwu5ADYWQnE58r7uQwNVXGs97TSB59BiODSOWQSY13DyrCKDtqtpqhvY3v7HhgGA1vGKCIEKIPwWOAO0Auq7/i0XZdwDXAHfm3roF+Iyu6/UJ8JqAJ+jA324DNM596yAjZwexOSUGdgTwdjjQWniAWdo1iy3gxDPURqpKIFXLZNFiCeQG6bh5CCHlzFGt6Vq+rhEiC0fpHm7OHMjlDLJ1y81s3nAd0dgsqXQYm+LG5+tHsTVukGdGZOEonvYhJNlGNRJmNmfW2awcRg76Cd5yNVg0QNlpY+NvXYDsrM+9uxJ6NhfP75L3bWT7lXEC3U56t/qwue2oLdQnm8dO7+tHSVoE5dXVGErA03BEPQ/Fa6Rc1lW1akTYGehGcbiJLo7j6NnR1HGCbRsJnvUh0ukokcg0qprB5WzD6+lFyK11b+GFI/j7rSdPzQdBDKiROKmpafznbKhaRkiC8IF5nN3Nr5qvF071fhjAvcm4Z8Juo+u229A1Fbndj23TAEKS0Kv2DrWxtOs4W9623bJMbDGFp6O5iRKAt9NpKV8A6Dyjm+hUmNRKHEew8QmNEALP+WfhPu9M1JklslPzCCFQfO04O/sRQiAyQHUmeFVomkp06RiDY9aTmXQ6gtvVnF4foLvnrEJApBra+3cgO5ofV4QsEzj7AjQJlPYOOt/2drCB3NeFMtCR6x+br0/BbV04ZWvT49hSCm9nC/Wpw2FptAvQeWYvR3/aXJYlAMnlpO1t19F203VkDk+jhsMIXcbZM4ASCCBlRFN1CQxplZBkPMGBNYsSeei6bshhWmAWhUIT2O0+nJ7qD7NqJkki2hwdfr1xqvfFstdbeKj0XXQBzk2jCJsNx8hQ06aJeaSOHEX2+VA6q7OvtHTGMGhs8oFMyDKSx1NTwuDcuIHk0aNNrawD2Dra6bz17bTffBPp6eOo4TCS2419aBDZ3dqcOHVkHPvIkKXUKP/7ZH+Tc+KAn7YbrzdFMNdCcjhou+YqhK35ObG9vyjJDFxxGe7l01ECASNTSQPGnhXPz+XCc4b1HFSLRJH9vqbnxLLfhxaznhPbenuQXC5S4+O4dzTOVAVwbdmM6482o4YjpKam0NNplPZ2I1NOg5KzciSPHMV92jbLMq1k0AEjU1F6egbX1i1VywhJIjU5hRKsHJxsBK+IIIgQ4jPAU7qu35X/WwjxjvzfFdAOXA18GHgW+NCJnnib0Tvmo3es+UpQjqVdxwme0W8dfVvNdWRNBkHAkDBka0gYfN2bmN3XXApBMxTFQVtZ1pdWF7oj80fxWUhhwHholewOJJu9qamrZLcRfNsVyDYVqB5FGP3ti3DKWZqe+ZkweHqAwdOL2W5aCagBPPqxu9n8vnPxn1vdS8Q+2EX7rc35ywAoHiMin41HsPnaKpYRQuDt2kh4/ggdTQZB8rDbvXS2l/o7tHKZNDVDdGmCgbOutyynxqLI7ubbenpylrm/+ya+b33Ksn2/8D/vY8MtzU2y1guvtH5YsjsKEwld0Qssg2aRjqQIH1mma2d1GRlAdDGJp6P5SZm302EpXwDwDwdwtrtYen6G/is2N30sIQS27i4cQUOSITICkWlukpdHfGUGTc3iqyVfSEVpC2xo+jidnduKLJIq8LUPW3r6NALZ5cJz+unoNh1NqeAk2yBmfnmIqZ/t5erPXmNZ7vz3bGLwrMZXmfPwdDqJ1ahPXWf18twXHicTS4Oj+WmhkKQCpVxkBdI6JLUKzx/G2zGCJClUi/6r2RSalsVub74vPnzwp3R2bWdoY3U/gdW5/Yy/8KOmj7FeeKX1xfaB/qZZH5WQPDKOY3SD9Zw4Ysxlm324B4MhUHP1ftNGwo881vQx8pCcTpybNra8HzOSR47i3Gi9TzUSQXK5mn5AlhyOunxXgjde19T+K8ExMtwwo8QKM//vHwlefy2ubdUXvWx9PbRdZ91XW0H2+0DXUaOxqowVIUk4Nm4gefhI00EQ8/Hcp1kv2DQCLZ0hdWyC9jfeaFmuFX8ZgPT0DHNfuYMNf/vXluXmv/qNulgjtfCKCIIAH9Z1/ZOmvx8APglU6/DRdb0xt8j896BAFy2XMBSemk0kAFWTsAnjYVgzuLsV96uaaM8GDVoUXpslMBkTjTUvYRj74MVEQypZzaC55mnPZrptZtUwo5H9HrTGZHcFGBKGSJFFaqIGixw91dc7yviTd5FORXAoRkXXJUolMIXXejE6rFG4fkIvLWKWpOSlCkjF12aqMyUShiJtVRMakcVxusYuLi1fRnvOxMMoXr+VSmgtTJIj0Fm56+d4dm5A2Wk4SauaQMufR47qnJwLs/8bj3HOJ9+AkASSWVpVRns216cC9VgUKfToxe/mae4FurMuUMlTl40MEoDh/q+vlVbFFxMs75rB0XuVUZ8KFPoi1VnXBfaBLuwDXWQzFG6WrldWD+kV6omRc14YQRB/W6FMOd3Z27ORlfFdhWaj68J0PB2U3BeyZccoSNMEIq83rnBuxkvkXT8AACAASURBVPmJQvk1VOeCtKqUKh9ZNsypPN3Dayn0pt+QiYdRPN4KsoAqJ2M+L10gBXzoqQxaIoPkchSyDUEphT545gBLL6yPG3YLeNn64cL3y6QKFa+xqYz1zsz/m+tZqayw0MY0CTVHfc9KEk6Pi6u/91t4et1kc/IlSZcKY0S+f4ssphg8q70omRF6YZ/ospF1A0FKK66KqSbZgaPDTWw5RVJV0IRESjOG6XyWJwAVmY6z+ll4bobuN4wV5Drlv0crk2eYr4EouR4VLleF9povbpbGFNuTbrSdhSN4gv1Idmcui5apw1fyjACddDqC3ekvBjK04jkZagZhjEGmQIe5LYcjM8zNvcCmrTdayCQFx488it3po23DTlNdEiUyjJJ6Zfr9DaOK7EXVJLI59qCck7nNPT2NzesojPPmMQKJQn3a/tYtKEIlk8teJIn8OKJBbi6h6tKa+pQ/B1eHi/kDocL4kJ9jmKUx/k2dKE6FhV1ztJ0/WjhvszyvvJ2sC8z1SlDS1+Zfh+ePEOjeZGT30fL1zXSdEKQyeYNqP5oiIVTTxKKgmTFlGiN/zNzvkQV2h59UOlo6Fsil44W3a5R0snm/n3XEy94Xn0oIvulGtBpeH2o4ApKE1CT1H4wHyWwtH4fNm1i66weo0Vhu3nNqwDD7HMf/+kssy6nhcEuBIoCVe+/DtXXMMoiTWV4m9MAv6Lj17U2zKU4EsqshUkfHUTqtA8323l7svdYLIFbIs5/USMRStuPctJH4i9ZeNycDqWPHjCDNSK1MQxHkQMCyjBVkvw89lUJLpSwZPs7Nm+rOrmSFU17cKISopLtYxohq/6eHmlbRVQ1Hh3Xn6hjqZvB//25LOinF4ycbtR7gnf5ubE4f4fnDTR/nRCC+ehw1ncTXZR31blW+AJB46TDJw9YPpLLbzuS9ewgdbsxE9kRj8blpHB0e3IOV2Rl5rN73JOFfPd/0cYQkI7s9ZGoxi3o2EVueQs1Yr1S+3IjMHcHbOYwkW9M3s1EjqNYslLYcY2bFeqIVPHOAledPXhDk1d4PA6TDSVw9PkQNCcYVf3YuO9/S/Iqet8OJruokVq0lDF3n9LP03EkPjK1BeO4Q/i5rrb6u66RTkZayw2QycY5PPVGzXDK8wML4M00f50Rh+bkpOs+2Xh2PryS591OPk4o1T6nwdLqILVj3r5Is0X5GH0vPzzR9nBMBTc0QXTyGv9v6+T2dCiNJNmS5eQaW3eEjnbLuhx3uAA5v4wa464lXe1+sZ7OgaTX9H+z9ffT/lz9saU5smFlaz2FsvT1IHg/JQ6fWnDg9NY2WTOEc3WBZTg1HWg6CJPYfIDVpnYVLsjuIPPo4meONGzCfSCQPHUZuC6B0WLfr8G8eIfr0s00fRygKkseNGqrxjLVplNTkVMH/5FRB8tBhww+kBmMoGw437c0CIPuN79ZmYI2SWIc2d8oHQTBofMtl79W0hRVCfFgI8Y7c/x+uo+zTQoinU6sJsjkjyfwKelYzDMXyRmJZk2FdVpdJaQopTSGp2Qwzu0pbrnx+hT7/nTz7w7zv/Kbpgrmnpvj5rV9DVYsrS5U24XBg3zhQXO0zG4NV/eGlW54JYn4vvyJTWKWRBb7eTYTnjxgrM3JxdT2/gqIrwthkUfqZbGyaIhVeF8qVb/l95VcaZVFggZQcK7eF5g/i7hgwnOfN52/aEJCNFR9aSxaz6lxJ1nWQAj6yK9HCylh+tUzPGeOpmoTkcePb0s38MzNkNamwUqthmOLm73EmvzqnGSu++XpivF/c8vWlvD5ldPNnUkm9zJct1GddYv6ZGYJnD6IjFcxQ8+dm/j2xZw+SnllaW4dKnGatoXh9ZOLhwrU3Myny98/dNYCs2AkvHi25n2Yjw0KdKrnvpXWq0qYpklHXFIEmG1vJPmVR4XgCXYbwwmF8PZvXtBG97O9sLILiDdTPRChUyFy1czkQNoXMSrRgyqzmGDq6Lgr3zX/GMKlFa23yCcYJ74dN5Z8WQjydSUZL7kt5f1Ryb3Iofd+6Ayxpu+Q2vbQd5Nuspgse/eMfcvj7L1UcG/LjQ1aT8Q4EcHR5Sek2Y8uNDfnxIc/6qDQ+ZHS5EPAOzacLY0R+nDCPTcEzB4mOL5NYSRRYXWqur1E1UWB3FVbw66mkokoTL+tHq/Wxmq4SmTuCv2+s6viALMhqKTQtg90VqNqW82zAymODwObyoWZTZPWsaWygYKCbP1d/32bC84fRhFZkGJT9npLhskK9qlyB8psoYUnk39fXbKLQ50bn48QmVwmeNWiqR9KaOcbKTJK9P51A2O25OrZ2fNBzrNH830nNVlLO2eEmupgkpSqF+Ud+fDCPDe1nD7Lw7HSRcZqrp/nX5eNd8aKVX8Dqdcuq7pS+b9zD6KLByPN2DpeMGyV1RoJUxmAVFepBhXkFmPr9/DwkP1eRwO70kU5HSsqsGR9kagZkXga8rHNiq3SVJwPxvfuZ/Kv/XTMtreRwWBqC1gO5DjmMEALnlk2nXBAkceAgjuFBpCpmpXkYQZDmH1ohd51qMGZkrwf7QD+Jg4daOtZ6I3HwEK4tm2uyU+K795JZWGjpWPWYozqGDQ+X5JHxlo613kgeOoxzS+2+Tw21Vp8ktwtkGTVkfZ1cm0bXJUPMKyEIUmnJehlACFFtOftp4EFd1+/KmUWdmzOGqghd1/9F1/XzdF0/L7UYazi16YnEwtNTBHf211x9XL771yzc/oOWjqV4azNBAHx9mwnPNW+idiIQmj2Iv7e6kU4e5iBIs1CCPtTV2ilL288eZPHZ6jm7TwY6zx9i8Kba/htqKIoSbG11QPEGatYnIcn4ejYROoXqk6ZmiCyM4++p3eG3ygQRQjD4f/8A55YBy3KOLi8Xf/P9TR9nHXDC+2Eo7Yt1vXnDyfVGOpQgfHCB9jOt75Oa0fi3a+9m6XCo6WMpDhmHz0Zs0Zru7R0J4mh3s/zcqdPHxJam0LJpfN3WTJD8irvd2XzbcTj8uX3V9rFSM0niy6cQy0HA5g9cjGfAmjYcX0zgCjqQlOanap4uJ/HlJHoNM6mucwdZ3TdPJnrqsPIis4fwdo3UZOSlk2HsjtbG9b7BC9i287aa5YZ23tDScdYBL+ucWA2FDfbFKYLkgYM4R0drPrSu3Pcgi9+507JMLch+f82HezDMKE+5h/sDh3CO1c6KY8hhWg2C+GsyZgCcWzaTPMWuk2vbGN6LLqhZTo2sQ7AoEKh5nYQs49w8SvLAKTQnTmdIHj2Ga7P1nFjXdaM+tcAEEUIw+GefwD5sHcBU2oMM/uWfN32cPF4JQZBVcu7XJliKt3Rdf7bM9OkBoK6r5er1cyplQJt/aoqO86w1WACZuZX62AwWUHx+MnUEQfy9W0iGF0jHm5/oryc0NUtk4Sj+vtpBkEyLD60AtoEuJE9t1+6uizZg87bmWr3e6L98M+1n165P2ZUIcstBEH9No10Af98WQrOnTocfWTiKQMJbw2RXy6TQ0smCCWyzsPV2IGy17Zlcfc3rLNcBL2s/DKA4mtdyrzdWnpvEHnTjG7WmzCaWk8SXkjh89paO5+lyEVuwDoIIIWg/Z4ilZ6xpyC8nwscP4ukcRrZZ93vpVARJtqMozfePis2Nx9ePplpLRRS7i46Rc04pyZ2z08vob11Qe/VxMYGns7UMEZ5OF1q2trzKv6ULm9fOyikUVAvNHCDQV/tBLp0K43C0Nl7Z7B4jxW4N2F3rZ3rfJF7WvljpaDeZA518JPYfsMwckUd2aanl85YDftRQ7Xmuc8tmMrNzhZTAJxt6NkvqyFFcY7VNs7OhMEqLchh7LqtJLbhP21ZXuZcT3rPPqvlwD+sTLFL8vrrqiGtsC4n9B1o61noiefgIQpapZUarp1Lo6XTL18nW3VWXUa+thoSpHpwUY9RcBPqdNYot67r+EYwId3l0uw1A1/WKXBghxNW6rj9oemsVqCunq+JxoKKgaaLUGFWTS0NGuUVKTWhI+VzzmAzwyqDlvqzm6LCZnBOkpotSA8uCaZlEZC5O5Ogy7eeNlJmhkntd9PzKrkSwbxhYw2OuyggvO01dgOILkI2FjV8hpFJjPAl0TaALHbu/A4e3g5W5/XRvumCtMWrRWrXwWhfCZMSnV6Rml8pTiuZklJhWlr2WIbJ0DF3T8PWMFinz+X2ZjdfIrdz7/JXpzlUo0PlrLHI78V91IbJNI79SrecowwCqpiNLxvv+M0foPmcATTfup5QzoUOi1Ewx91LW9eJrdLLkjBXL8thopoqY0SS0/LERBaO7jLkuaTJZTWLml4dYObTMyP93qfF+juKc/w3F1zq2nnaUrnz6qcYmEvlrr3j9pOePF9jSIi+Jyf3ufDn/wBgTT91DOhnBYfcVPjDorvlj64i88WPhH0DX0XPvl9f1Yh0QJfWhhBpdML0ThUOtzu7H17sJSVHQTAa9JZIYIJ0LGNr8gbLj1XuhjP8Wbv8Bss9J1/uuK2nTqiaQTYa7641TuR8GEJJipLMVRp0ub9cNy9ny0EXxIlNa981mlubXC09O0HnuELqQ0HS98H55uw4tJBGSwN7mJpNrtpIQyCZjY1U37C8zulzSllXTcd1dbsILqRKzbLPBcV6iEzx3hCN3PMaoZjJVLjewLBkv8p1hnRes2jU27SbfPHRJEJ49gH9grGRMKB8fdF0nnYngcPpz9zTXfrXStpzfd17eUjx27g8Jzn3DxwvHKDE8zr+Wjf1suvTdaErxZ5uNN8vNOesyR9XN4xwVr3FJvaJYl7KaYPenf8ym33kdyqa2gtFpJWNUYbfRc2YXKdWYqimSWqhLWWQkNHQMc+zCnAKppC452g15VXghRaDNVzDXzcuqjHOSUIVMx7nDLD0zie9iI6tAXl6V35e5i61ojmplslt++aBgpJ1/z/x+JhMntnCMkfPfUjQ6l/WCQXnxeIJUOoLd5S+W0ym2cdN5lhhjCwp1SRcQjy3w7MP/j4uu+zSSZF9bXi7Wq/XGqdwXS07nKRMEyS6vkJmbx7Vta82yajiMY0NrmaEUf4BsKIyu65YBS1t3F0p7kMT+/fguOL+lY64HkkfHAXBs3FCzrLFy39oCSy3z1TxcW8dwba0d1Hy5EH32eTKzczUz1+i6jtLZia2j+SxdYDBBMvPzNcu5to6x/IMftpxpZb2Q2Lcf19iW2n4guQBPK54gAAvf/A6yz0f7zTe1tJ96cFKCILk0XlVdrMvKPiuEKO/Y24EHK5UXQowCDwghgqYBoQ0jn3pNZKJJHvm9u7j0S7fUU/yEwu53csH/fRPugTZqKXTUlQjK2S1GKX0B0DTURAzFIu2nEIJA/1ZCx/fRvak2jexEIzR7AF/3RiSldg5yQ77QWoevxZMkD4/jP792lH151wyZcJKhN6xPmsZWMP3zQ9jaa7uXCyEY+PQHANBaYMEqvgCxI/trlnP6u7G7A4SOH6B75NzmD7hOWD1+gK4tF9Ysl42GEIoNyeFsKR2vcDrILr/8K0incj8MkAzNsTqxh8CmM+r9ygnD8DvPwy5qm1PGFxK42p05+ULzch5Pl5vYQrxmuY7zR9jzmfuJTyyjDPY0fbz1gJpJEZ0fZ+Cc2nKBVDJc16p7LURD00iyDZe/2/rcsilm9z5C9+mXIimtsXRaRfzoIgsPH2b7f7mqZtktN25i+xs3UNtwozpku4wz4CC2ECdQYwG947whjnzrWTY0fbT1Q2TmIIrDg7t9oGZTSifDeP3WUrVasDk8aFqWdCqM097Z0r4axancF2vxOMe/8M/0f/xj9RQ/oZC8Xnp+94PYOmuvAKuhMEqLD/dymx9UFS0eR/ZUnzsJIXBt20pi76kRBEnsO4Bz00Ykm/WcWNd11FBr8gUALZEgeXS8rpSsiUOH0RJJPGfUlmWfaMSefR4laJ0kAIz72/9Hv9/y8eSAvy45kK23BzngJ7H/IN7z6l43OmFI7NuP/9LX1SynhkIIh8MInLYAyekkWwcDaz1wCgk/LPG9Mv3iNcDt+T+EEKP5z3OUv4+URcTfCXymngNJdoXVPXMkl2LrcNqtQVIkui8cqSudlO/1O3Fsbs0ESvEak9JMpHblC/RvI3T8IHqz+XjXESvTewn01+581XQSLZNqWQ6TXQ5x/G++jpZM1yy7uneWg3c82dLx1gNaVmXh6Uk6L6wdjMmGosSerR28qAWb1082WrsuCSEI9G0jNLOv5WO2ilQ8RGL1OIH+bTXLZqIhFK+/5XRvSrsPdbm27vgUwMvWDwMIWSE803o9bBW6quEease7ofbE29vnYed7a/dFteDuchGbt5bDADg6PHg3d7H81NGWj9kqItP7kRQ7nk5ryizkPBxa8APJY+LgL5idfLpmOSEpzO76OeGZk69HX37yCP6tPdjbasu9Zp6ZJTzdujGlIa+qHVTrvGCExPQqiamVlo/ZKkLT+/APjCHq0CenkqGWg2qK4kKSFFKJU0PmWwMvW18sbDZSR8drGjq+HBCKjHt77bEZwHv+uTiGa0t/rVDIVLFau064tm8jse8Aunbyvaziu/fi2l57HNISSfRMBqVF+UJ2eYW527+Clq69UJA6NsHqfQ+0dLz1gJ7NkjhwENdpteuTGo4Q37235WMqfn9dcph8UC2+9+TPibMrq2Rm53Btr82+yoZaywyTh+z318yis154RQRBchTA0Zyz9Z8Ch3OR8zzeAXzE9PeDQog/zW2fAR7ImUHVhGRXcPX6mH9i0pCqmJ3bC9k2TBk5dFOmj1yGj/IsH4XMHVrR9b0k64w5i0fu/XRa58Fbvsri7nkju0guS4Fqem12aw++6RLsI/1FOq6ZW1rDub1AQZUVZLeXTCxUdM037yovNZHA178ZTU0TWZ4oywBQ9jrvzF7m3l+araPSRplDe6XMIJBMrBJfnSE4dJopc4QwanZZFolszBjIFH+gIgXX8uIYVwgAOWg08sxyuJDRw7yZszR0XDhK+OAC0fl4xaxD5oxAGb1Yf1Jqsc5k1mQFkAynfzVfz4yMAmlNKbw2110NweILs2gZleBZQyXZR/JZJMznn9g/xcKX7inNeJCvR9VgppHnXis+P9lYBE1X12QDKDr9G1T3tqHTWD2+DxVT2bIMQQUKe3kmiApbad2imF1ozXeLMgtdhtX5fTi8HTgCncX3zRkCzPUpEsLmC6yh0NcFU7YIJRgwmCCm9wqZSfJ1Kpeh4WTi5eyHAWSbk9DUPjT0tdkjYE2dqngfrO6NKbtH8TcWNzXXlqfufIbd/+PHZDWpuOXasmbKrpHRZNrGutjxnjNy7bDY15szQGkIdERJZqj82JAfH1ydHqLzidKMYbl2bbRtqfB3x4UbWXpyfE1mm/Kt5DeXv66EclmI+fpXGBNCE3sIDG0HRS5KDURpn51v16lUCJvLXxgbKMv8YpQVRpaQ8gxjpuxjdpefVDK0tq8oyUxjPDz5B7YSmtpblL6ZfkvFjDD1yGIoqi7y17Q8G0x+y/e7y48fof3C0cK4Xl6n8mNERpd49O+f4thjc6VZY0x1JqPLuYwzUkmWsJLsY7qEu9tNdD5VmhGm5LWx2ToDeDZ1sfz44bKsZ2t/U0k7qnZtKoyvetm1NieZyW+a0AlP7cc/uK0sQ8vafl8TuhFUcwcqZpHLjwXk6mSlTGHIAmwSdmeAVDpcNt/IlRGVf8/JwMvZFwubDbktQHzfyfUo0LNZJv/7/yJ1bKKu8oErL8c+YJ2CuhYkmw3J7a5rVdo1thktlar7/E4UMsvLZI4fx316HQuDud/VKhNEbjMYN2q49nVyn7ad9OQU2TqMVE8kkoePgK7hrMMPJHl0nMXvtmayCzmPmXC4rkCZe8dpJPbsQ1dP7kJzfO8+lK5ObJ212XHqaqjlugRGfarHi2c9cFLkMM1A1/W/rfHZ35r+PmL+u1F0X7yRuYcPM/rGk6ddW3rhOJlICt9oB7WaQHY1ysKdv6HtnTcg2WtLQqxg8wXI1LF6L9sc+Ho2sTq9h0DHxpaO2QpWp/fi9HXh9HfVJJ9noiEkuwPZ0SJVy+1EOOxklyLY+607BvdwEFd/gLnHjuF/S30rGCcCkiKx6V3nIDtt1DJ6zy6HkTta78gUXwB0nWwsguyyphz6e7egZTNEF47S1lFbZnSisDK9h7aB7XWxOzKxsPEbW4RjdIC2Gy9qeT8vB17Ofli2O0mszJJcPo6ro7XJbCtYefwg7efVJ2c78MODOAIONl3eGjXf0+0mvlh75R6g48INTHz3abKxFIrn5Bgx67pGaHIvQxe+ua7yqWQIX3ttxkgt2J0BYuHjdZUNDJ3G9LM/LfMaenmh6zqeLb10XlJfHxdfiOPpad0g2N1ZHxMEoOOiTSw/fpj+t588Wn9icZpMIkxgsA7vh0wCTc3gWAdm0dCWK3D7Tq6srF68nH2xe8dpxHe9hO/8kydXTR46gpZMYOvrq1k2Gw4TeuAXBG++qaYkpBbkQKCuVWnJ6cQ5upH47r04N25o6ZitILF7L7ae7roeWrOhEJLLheRobdyQ3G6ETSG7Gqp5XFtvj+GfsmcfvjqyspwwyDKBKy+vq35kQyGUttbnekogZzkQjdZk37i2jRlBtfFjODdZZ1s7kYi/uLsumROsj78MgHNkGP2yS1veTz14RTBBXm4MvWlHXWlETyRmHz5K53lDyM7aDTQzt0Lo/qcQitzycRVvoC45DEBwcAfLEy/WzNd+IrE6vYe2gdPqKmvIF1pvoEIIlHYf2aX6aG09l20mudA6pbkVtO/sZ+sHavtcAGSXwijBdQiCePwgpLokMbLNgb9vCytTe1o+brNQMylWZ/cTHKrPgyIbCa1LEMTW10nbDa+MIMjLCSHJjLz+VhSX96SdQ2Y1RmTPNJ0X114tAjh8/1FWDreeu97T5SaxlETL1l4xCmzvQ/E6CT1dt93KuiM+P0k2GcM/UF+gN50IY3euQwDRFahbvhAY3IaQZLKJk0frF0Iw+ntX4t3UVbNsNpUltZrC09V6EMTb4yY2X5/Et+PiUcIvTpKNnLxsOqvjL+LtGUVx1m77qaQxDq9HfeoduQBv4OQFXE9V+C+5GN9FJ9frIvbSS7i2ba1roS+7sET4kccQ8jrMidsCZFfr69PdZ+wgvuvFlo/ZCuIv7cG9o7458Xqt3AshjGBRHbIhIQTuM3fWfU1PFFybNxG8wdoQNQ/jOrXev8gBPwhRX1DN4cA1tpn4S7tbPm6z0JJJEvsP4N55el3ls6uhln14wDAartdst1W8FgQpg47APdpNx8WbSimq/z977x0tt3Vei+8DDKbP3Cl35jb2LnZSEilRnbK6ZBXbsWPZci/LjuPoJe/3XuIkXi8/J/aLk7w0+8UttmPZkuUiSy6yZHWKFClSFKtIip2XvHV6n8EA5/2BwQyAwdwLzGCuTJF7LSyCuIMD4OA7Befb+/sU1FFeZNX01Nq+UrJQFVldaUzTOYpyxXr5BGNbTiJy9UJdiYVSzkApAR/PwhbwgTBy2hSDD6snYfAHpI9W0kxRlSmhMi00OGcVytkYCpnxJvpxk9xAI41R0VZr9GZoqM765TT2hWoJ6bGjCMxe0ZAuaCnyiuN8NgXOH1A/vzGjqNepXOf9f/5heK5YrksZVkoYREqw6FPXYOFHrqxTjqWMQGraM08ZVKlaJqOUU8nHG/bUsL8qbciqlNR5eUseT2H/v2wBLxCVtEqUJRcgEMXGc/DxLGzhHvWzG6XQK82LZWDz+qVFNT3auYZOH5yzEslzByEytGZL0NCSZXpzC1uyaejNuhIY/TIpCyTHj4C12eHtn6/6rZY2L1cBn0uD80n2pKV4g1DopWbSOywKIsa+9hgqY8mWFHplppILCeGlG8F5/U3SNq0kQ4mWlHWNHevJRLT1n3jlOBzRHjgW9KllC6r9RpvLTxTh6PW2bMs8ZSFSqe/WGxtkWZs96gUVKbKxypTyBUFkIBIbQpsWI771zSZpnpwkg5pot9psKdo6ppq2CwKkTx2Ad2ABbE6Xqk03+v7G+CASEZVSGnZ3oGl8ULZl+V7ksUGvLQcHlmPVNZ/WkdyoZQwggM3txYo//AJsHn+zzFNvX1MXhitNYW6N8VvqX8/98GWk952t21dV0ba18tvshJTS1h7xNvp4qpbcSvIqSbqlZ0vy+OCKepEfLzTZa/3aCumdZ8kAuIAH8e0nmmS3KgmZqj2Z0Im0sCWVtOrkPgTmr2q8z/r7IfWMP/L4Xi6nYeNcYOwOXVtS2hMlaB4bFPKZ2PgbOHv8xSmlVfQCnDXbhwYNf1h3A5RSySO9yuDHWDoNW4+/MSfuALZAj+HUt541q8CPT6AyNt7xdduBWCyiePQY3CuNOXGrqZShwKBG0P+ZTxn+WA7fcxeCt95syXXbQWVkFPGfP27YgVtNpWELdF5PhGXB+nzGF9VWrkB+/8G3zNFceOMwGJfEcDICIZ2yhDFDBQGTP3wEfDzRcVnT4QLszo3hzM/3Yv8/vfDWXFykWPbpKxHZZIwCxcfSsFkgXwBqcpissQZqd/fAG5mHxPA+S65tFslzb8Bmd8EXMdZAqxYxQQCAiwZBTEiPkvtGkHzjrRkYzz13FJk3J0EMpveLfvwOBN8zfeYCIzBjT4HZK1DOJ1BInrPk2maRHN6P4NAKEMaY96iaTVnCBCEMg/yuw6iMxDou6+0GoVLCoR//PcqZ+Ftyfd/K2Zj3uVsMB78tjOfhjnbuuXcGnSAsQWHcGIMsdPUSpF89BrE8fWA6q0EpRerYHgQWrDH0e76UA6UiHC4L6MWcE3Znj/HJbLmI+OEdb8mkUihWMProK6AG2D0A4On34t7H3wtHT+cSJ0/UY5gJQhiC4KYlSLz81gQlLiUnUEqOIzDPGCOvUszAboEtAUCpkEDs3Fvryf99RfrFLYj99OdvzcVFEaF33mmC4ZACa9HHPRvogZA0NoexBQJwzJ3zmaPoogAAIABJREFUlrFB8gfeAOvxwDHfmHzTKoYDAHDhEIgJ6VHp+Im3LH5K7vU9qJw7Z3hc7/2D+xC49SZLrm3GntyrVqAai6MyYkzyaTUK+/bDvWql4cXEqkX2RFgWhf0HwE9OdlzWdLi4CKKDqsiAi/hx7ndvgi8JDc+90suuDGxZ89IoA14qvfeqTcEG0ZZV9/CBRd/mZWB8Hsnbp/DYaBkH8lTOPndA30uv+b+uw0bhabH5A+CzKV2vqyqYpeyJm7saieH9Gq8baQqI18QKkTdbi+Os9jzFfs0zExvei+Dc1YCNafqNHuOgUmOCtAzWNh0UrIjkYy9h9O8fafIeC7TB0KkHMBQZnHvmCI4+tHtqW2rBClGyipR2JNuSHFhXyzCRbWbk+eOIXrdIN4CrXgBFwtnAej3GPXvaelTYDKexJz2Gjnzc5vbB37cIseG9DQ9c/fcKLxxp7Issmu1J16b07LDh5RMoj9S5QwjMWd3MMtDxfFMqgs9lJGZRW7ak9KoCtpAf1XhzoN16kM6a1/9CA+N0AgyD5Im9U74X4x77ZiaONuCjXNeCCDiGwvBfulAdsFbluW8wrkoFEa6IG84+/5RtWfbAK49VRFu9TQuUQCQc3BE3suNFiFQRgFVmk2mYXL7Vc0FsLJK7TrYMZEkVFdfOGoCqvQJ1pmAhdhaVbAKBhaulQKaEaNo6UbWfUjkNQApqOu34oMcqUZwjQMArv/4r5LOjKtZJfQxSnk8IqFDBmZceRTE12rgnQNVnqfYNVYjSlrT9aeM9JF89DtZlh2flXDWjR3efRVVkYI/4IFBbvY8vK+xEth0KomNj6vHBHvGhkqmgUhTUtiuqWUXyFrpuOVI7T4DPllsE2m08q+6cQ3tMZ87R1LfWtvTxfXBFZoPzBVu/fwU7o1RKwe4KaGxD5zxAwTDUsynJsVOpB9ptZp1cqEwQQPrAz+96HXS6oGLdAMPAe+k6sB7jC8yOQWtkTbZAwJR0w71mFfJ73hrHYH73HnjWrTHx0ZqyhOEAAMmnnsHEd//L8O9zu3Yj9dwLllzbDCilKOzZB8+a1YbPIRw3ZYpkMzBjT7aeHjgXLkB+9x5Lrm0GYoVH4Y3D8Bhk91BBgJDJWsYsMiqv6hQXaHc+PcKXzwUIwfj20zN6XSpSvPThh5HYa9wbHrxrEyIfv8uS69c/Wg3OkoNzV6GYGkUhPWbJ9Y2iWikgPXIYoXlrDZ/DZ5NqOUwHYD1OVCeNpxHsv34JJnacBp+fPq2ulcicSCB3Oom+6xYb+j2lFMc/9GWUjlhj9zZfANWM8QlEaN5axE/tAaUzm2Yuee4NgDDoGTAWDLmazwBUtIQJAgC23gCq8fMiNeOMI7h4PZJHX5vx6yaeeh3HvmTc82lzcrjzx++Bf441NuGOelGYMMYEYTgWgSuXIPHizMfUSR19Hd5Zi8G5jKUorRRSsLv8hhlXU4FhWLAsh3LBWB/DeXrgHZiP1NGZn1SmthxCYNNSENbYtOvwj/bhpf/2W0uu7emTJvBGmUXe5bNgC7iRfmVm2SCUUiSPvIbg4nWGz6kU05awigDA4QqiUsyAim9tRobfR0ipROmMp+2koohzX/kHlE4YTwPes/l6hN99ryXXtwUCpjJVeNauRuXcCCrjE5Zc3yiEfAHFw0fgWWeMkQdI6U8t+2h1u1BNGJ8Te9auQfHgIYjlsiXXN4rKyCj4yRjcBhdBKKU4/T/+EqWTpyy5vi0YQDVpwp7Wr0X+9T0zzl4sHDgIYmPhWmpsTiykMwClljGLbMEgqgYZM53g4iJICzB2G/pvWIyzT89sWrDEvhHkz6bgWzB9ZGcZxSPDEDLGqK7TwebrAeUrEMvGgqI5vCH4ogsQOzmzHymJswfAOb3wRucZPqeqjQnSAWzhHvAGAqPKCK4eBOdzYOyl45Zc3yj4fBlz7lkFZ8RYcEkxVwQtV8AGrAlGKS+qGUVozmrwpQxykzO7+Bg7uRuhuWvAsMYSZvHZFECkmCdWwLFwCMTRWRT7tyuCi9ehFB9DMTYyo9dNvnAAjqGQ4d8XJ/OIH7KOvunu86AwbrxfD92wEuntb0LIzVxAS0pFSQqzyPhidLmYgmOabFFmYHcFUC4a72MCC9chdXT3jC60UkphC3oQutGYxAOQpFWOoMuS69u9dtjcnOFFEMIQhK69BMkXZzYoX3HyHMqpCQQXGV8EKReSUnpcC+BwB+EJDqHKv3VBYX9fwXAc3GtWI7dr94xet3TsOKrxOOyD02eFqZ9z8hSEvDVzYjbQA7FYglgyZhNcOAzH/HnI7ZzZOXFh336wPX445hmTwgDWxboAADYQMOW5dy5aAMbpRH7fAUuubxS0VIb/6k2wGQwIK+ZyoDwPdppsLkZhJtAuIC2qVZOpGZcO5Xa+Bs+6tYaDC1eTKYBlwfqs+XZwzJ0NxmG3pKypcHERRANlYMvZ96zGwOYl6iB4stSgRkOuyxhUAVKn2LSBKzXB7s4+/SYiV84H8bg0tPhmuYVMSR356o9RPDKsojzXg+GZhLxIwGeSLeULWmlDeOFliJ18DZRSDd20VUBKAxuZupzJE7sQnr9eov3pUOS11O1qpQyhVIStJ6hLfdaiRVzLOmy9AYjZAoQS35Iqr6LYExsGb70E6ROJlgF3W0ljWtlRky01yWwY9KwYwvIHb2hQnimjCKyrlV4QVCalhR022FO3L1UwPD1MQRvn/MGGLcm/leuekTbl+2VdbvQMLsPkqdekdyjTnpukWCZsqYUdyvfCV/JIjxxCeOGlOraqpubXz8kmwfl6JK+uUSnGFPYUevcNCN59bVOgXbmfUQXxvFBQq1e7L4hZ170LjMttXKqAaX6jkSPV6xzSv5WJNPIHziB4/QoINYlMKwmD3H7ObjmNHV/eOqXMjacMBEpAQXTbs7JNu6JeFMbzisDZRHVdQbN5Vs2DLeBB6uVDraUKZipKKw3R2c+dPYZqMYfAojUtpAtQyyhZaRHE7g5OOz5AltVM05Yd7gDKxXSL4NzqsQAECC5aC0op+GyyebyYCq3aOdVucoFQtFsGsz9zGzyXzG4aG+ryFI3cKT+ehzPqU/XvotJWarYjlzHd+ODu8yI7VtS1J1WQ7FofFLp+BbJ7T6Ecy6qkt+1Cb+6g3U8d2QXv7CUSw67+d7WcSmVnNXtyeEKa9948BgAAphofCMC5vFj9jj+Bze1pDs49xXzhQoH/mqvgXWd8wdMK5Ha9DveK5ZI00iDGv/09lE9axGatMSXMeKW9Gy5DbudroOLMLbRmd+yE97JLDce5EItF0FLJstgptmAAQjYLkTcWl4qwLLwbLgU/OrPxLpwL55tiCVVTaYAQSwJ+AjLDwThjhvV44Fq2dEYX1YRsFsXDR+A1kRK7mkzCFghYEowYAIK33YKezddbUtZUuLgIMgV8CyMYuGHxjNGQqoUKRp97E7NuNZZmEABEvgohqcjm0SEYzg7W7ZU+XA0iNG8NhEoJ6fGjltzDdChmJpGdPIHeRcZSvgLSRysgyTOsgC0aRPj+m02tNC35xCYs+8w1llzfCGK7z+LN7+80dU41lgYb8IJwxhgR04HzB1HNZkAF4/TiyKINiJ/aDYGfGZpk/PTrsHuC8EbmGT6nkk2C6wladg9CJo/87rcmEOH5gN4Vm2D3BmasL0499zpcC/vhmhc1fE5hPAd3n3XpfN19XsOee6Dmvd+8Csln91p2D9MhcXAHehauBuswzlgoF1JwWOS5B4Do/A0I9BmT+wGAzenBJQ/8Jew9YcvuYTqMfPO3KJ4yR4+33J76vSiMG08P7F7YB+fcKFLPzYx0iAoCUkd2I3jJZcbPoVSSV3ms64szsZMoZS8GqdaDY9YQPGtXz1g/LJZKyL++B94Nxm1CrPAQcznLZB6MwwHG7Tb14epdtwZiPofS0Zlh/lbGxlE+ecpUGmN5UceqeuJ6wwi+8w7AxMJP8K47EHrnnZZc3wiKR44i9fQzps6pJpJg/X5L0i0DABsMQEibmxP7rtiA/Gu7IVZmRk6fe20PuN4wHHPnGD6nmkzBFrKO4SnkcigcPGRZea1wcRFkGkzuOI1XPvvTGen0Cctg+eevQ2TjPMPnVGuSDFuvdcYnee+NpyZiOSdCc1Zj4uh2y+5hKkwe3wFfZAFc/ojhc/hsEqzTBdZh3JswFRinA8G7rwHjNB65nxCC7Ik4xracsOQepsOpx/ajMGIuzoR9KCIt7lgEiVlETUliAkOXgLU5ED/T/ck3pRTjx15BZNFGwx4UAOAzKXB+6ybelZEYxv7x4Rn1HJ1PoJTixGP/F5ljMxN137fxEgx+wlw7KFr80erp9yI/avyjFQDC71iNwpGzKJ/pvh69Wswjc2w/wsuNL0YDQKWQhMNtXdsJDSxHj4lFEACgooD4/m0QDMo+O0Hp1BgSv3kVrNtclpclf7gGkbXWBHcEaotqYyYW1QhB6JZ1SP3udVCx+/Of9LH9oKKAngXGJUPVch6iwMPhtm7+M3zwKcTPzNxC4vmGwsFDGP2Xr83MQgjDIvyee+G6xLhjUKhJDdigdX2MLRQ0Fe+CcbngXr0a2VdmZk6c3f4qnIsWgus1LqOvJpNgPB4wdmskB4zTicCNN4BxmJsTV0ZGkd8/M7K7zJatptOu2gf6EbzrdsvuwRYMAqIoxdAwCPfK5SA2DvnXu98vUUqR3fYKvFdsMDUnriaT0rNZhMrYOCa++/2u9zMXF0F0INNUqyID9+I+pI9MILZ3TENbnUKKMNWmoLVqI/4LYNF/ywqIrE3K3kGV8gUCQWyWWVQnUiAOOxgTUbMBAISqKcAKqqcsYWiSmDDKfWW2DiC6dBOSZw+gVGrQkpupzPp06VabOsuMtAm0iskTOxFZvLFZMqOV7ygkDFJQ1JB5KmsLejOlQOInzyG/56gqowelkOjzGgq9HI0/eXgC+/7xBfBlsdmWlDKr6eypld3VjmVH8xh/+QRmvXO1ijqvtB9RIZuSpQDcYBi+a9dBN8L/VNXUgt7MeLwgNk5FPddS0KnWxlgWvYs2YOLYDhXtWU11VlLtjWwKO5Rp82zD6xdZvFFX9qInraIEqGQS4HqMx4tQ25NMIJIKpZTAFg4AVQFCMtd4P6I605B4oclhAIV0isAR7kN83zaVrGoqqYYZqOQJFQGOuf1wL5+rqn9Vv6uQLcj7udEsXP2+KWVuUtYmRpLoqY6Rpt87+3tQTpVQKgiN69FGZo96hphavyNSAm4gDO/ahUg+ubMhn1L0X7qyDRPvQrmlDu0C5wvAPWuRTptp1d8TlGue+2bZgua38vvXHq/38dI5ucwIjr/2U93+Xz0GKY4zDCZ2PovE4Z1qW9Hpk8zakzYzT/I3O+FdvxhsbwCC2HhXTRIYpTRGZDD71qXwzA2qMn3p2RSFNOZMNz64+3zIj+VU8l5lprCGTLIx9whcuwrVVA65PcdVUj2tHdXloybnq8p6ju99GcHlG6SPslb9ev249E5LxQRACDhvQEcyqZlPQDM3aDE+ODxBlAvyeNVCWnUBwz57COXTZ1A+ZY3cpBUopSAMgW/D5aYo9tVEEsTpBOu2Jp4OUJMwmFgEAQD/NZuQ37sfVRNBVduByPPIvboLvivNLUZXE0nYQtZ9tAJA8smnUDhsjtFaPn0G8Ud/1vWsQ3wigcKBg/BvusLUeVw0Ap8JWch0YH1egGVNyasIy8K78XJkt3V/Ua109Biq8QR8GzeYOs9qe7IFg6B8FWLW+MJ9O7i4CDINHEE3+q5dhNO/6K4HMnlwDM//wfcglIzp6WQ4l8zG7C9/0tSK3XTgeoLg0+Y6fE/vHHhCQ5h48xXL7kMP8dOvAxQIzTUeARsAKpmkpZ57ACgdH0HpsLmJQN/mpYAg4tyz3ZUOnX78APxLoggs7zd1XvwnLyC33bpAVYQQaVHNpD1FFm9EPnEWuVh3J1rjb25FaM5acE5zHnw+Y60chg35AZYBP9n9aNjnK8KrNiF/5ijKye6yHM5++WEkfmm+H7vsizdhzq1LLbsPd7+UbaU4Zo4NErrjcqRf3Ash3z2WAxUFxHdvQXjNVabGHrHKgy9l4bBQvkBFARMndkA0kdGDMAzCa69BfM+WrrKvhGwBmZf2IXSnuQllbjiFHX/5FKhg3b25+30omLQl1uuE/5qVSPz6VcvuQw+lyVEUzp1EePUmU+eV80nYnX4wFmQakuHwBFHOmxuvLiTY/H54Vq9EZsu2rl6nfOo0hv/m7yBWzM2JHQvmYfDBz1l6L7aQuTgOAOCYNxf2wQFkt3b3wzW/azcIw8Cz1njKV8B6zz0AlE8Po3zilKlzPJeuBxWqXWc5ZF/eBsfcOTAj8QCA5JNPI7/Xuu8/wjCm44IAgG/TRmnx8cywZfeih8yWbfCsXwvWay4lsNX2ZAv0AISYriezuLgI0gRNsDBKMOu+tRh94Rgy53J1j81UXvgqZRpBxqDvvdEG1jv6w9cRWjcLxGGve2aUASsbARKhOg6Og31Wn3TrTR4a809PCWDvCaGiCGapCmip4y2XvPcE0UuuxsSx7RDEapPHvdnrpwyAqg2Gp/Hm1M4XCcXo4ZcQXbYJhOPUnhkCRaBNNHnxpI/WQP0Zmzx9pisKsEUC4CeSmmCWRNd7LNTsiXAcZt29Gice3QteUHv3RIU3T+v1a7IlhVdZHThPKtPZ78f8D25Qe43RbFfaLffqEVTTBdVzyhU2VaDYVrYEIi2qVbKaQLtNLCOlPQB2fwihuasxcvjFFp69Frak8hLreJnZxjVLhSSSw/vRt+wqlc1oy2pisICCzyRg6wnqM2DasCVCWNjCPahOploE2UVbgY7PZ9Rj8dY2R28/PHMXI/baC9Lfle/HbNkaJo5cWOnEKPJ7T8CzbonqHWi990qPfZUy4EUCe7QHXMCty/BStlGpT51ibKgxwliPA5zPgdxovhGMtebFp7UxQo/V5Vm3GDa/B+nndjf1TabqSMOQUO6nj+2HUCogsGKjPiOHUe/LVVwqSBMauy+oDnqs02br449mfFD9nZX6ClAqBUdVBLmkmvvQsjxCKzeims8ie+pQh2NBY6BU1jGlgFCsoOcd6+FevVA1FihZFyp2Uc0W0qdSmNwzCoHYdJhE6nGDgoBOYUvyMUe/H8WJHHhBzUDRsopkxqk8RoTeuQn53UdRPjOhul/T0LETufrir70I77ylsAcj+uMDIXV2kfJ4pZCC3RtswRZUjw31998qMGrNHmUmiHxcb5y60OG/9hrkX99jmh1hBulnnodz8SIwdnNZ0wjHwd7fZ+m9mJXDAJIDyH/NVchu2244WKhZUEqRfuEl+K65CsRmLo5bNWFdelwZUj2Zk5swdg6+TVci/eKWrkofbOEwAjffaPq8wv4DEHLWshHasScuHIZnzSqkn3vB0ntRgo/FJbbM1eYWoymlqCYSljJBCMuCDfSAN2lPZnFxEcQAAisGseaLt8ERMik5MYjc6STGtp7E/Pebp1xNfuNxxB/+naX3wwVC4NPmDS80by0YlsXE8e6sfKfH3kQpO4no0qtMn1tJJ8BZHAiPiwZRbcNzP/vu1WCdHKq57gT+pJRizl0rEd20wPS5/GQKXMRa74DELDJvT/0rrkdyeH/XgtSNvPE8vNH58EaMp5QDAKFUgFgpw96OHGYKDH7xk/BuXG5pmW83DFz7ToTXXt218pOPvwzvhmWwDxnXVgNAcTSDp27/FipZa9u05L03rh0GAMIyCNx1JRJPbDPtRTUCSiniu15AcPUVpmMslfMJsJwLNruFVHW7G4zNgUreXB/DOl0Ir7kKfM5c/RoFpRRcNIDox24HMfnhXBzNwjNgTUpGGe5+H2hVRDlmbkLvmB2FZ/1iJJ/Yaun9yOAzSaQO7kJkg/kPlHIuAYfH2n44NHs1lt/0WUvLfLvBuXA+oh+6H4xF6TC1qIyNoXDwDQRuvMH0ubEf/RjJ3/zW0vuxhUNtLfh4Ll0HMAS57d1hUhUPHUY1noD/6itNn1tNxGELW9t22q0n/zWbQGw2iMXusBcppfBfdSXcK8zPr6qJpPX11MZiEQD0bL4e+T37wMfilt6PjPSzz8O5aKFptoyYz4NWeMvrafDBz8GzaqWlZWpxcRHEIPqvWwQA4PPWR+c9+dO9iFw+G/5FxgN9yqiMxcG4rQn2KYPrCUEo5CBWzE3oGdaGgRWbMXLwOYiCtZNvSinO7XsakYUbTUsXAIDPxNuL4TAF7LP7YAuZn6g6wh5c+bV3g/NZ+94AQChXseVTP0XmuPmFA7FYhpgtwBa11jvABcKotLEI4gnPhr9vEUYOPGvp/QBApZDG5PEdGFz1DtPnSgs6BDaL5VXt2NKFBmdkEM7IIKp5c7R+I6jGU8htO4DQveYXWYpjGYhVAZzX2rz2rgE/iqPmP9J73rEeoED2+d2W3g8A5E4cRmliBOFLrzV9bjmXgMNrbT9MCEFgcGlbXsT+a+5EaI35DwgjSP92Oya+85u2zi2MZeCqyaGsgjPsAWNnUWjDnsL3Xo3slr3gx633ysV2PAfX4Fx4Zi00fW43FkFYzgGb3X0xSPU08KxdA1Apg4vVyLywBa5LlsE+OGD6XH4yZiqdrhHYQiEImYzpRWWG49Cz+QaknnnO8pgXlFIkn3wavis3gvWYky4AAB9PgLP4o9U+OAC2x3zmL1tPDwb/5I8sjeMiQ6xUMPKP/4LK6Jjpc4VCEWKxCC5kbT1x4ZDpAK0A4Jg7B86FC5B+5jlL7wcAqqkUsjt2tsWWqcal2Ey2gMXMojZsySwuLoJoQAEVbVVJGd3117/FoW9uVx1rNzCqMhjaok9swiWfv76JnqoXzFJFbwZQnUjCFgmqpBjqB5qep6+lp3IBqcHLkphWweL0ZAi9S6TgTBPHd9Qpy1PRo1XnK+UOSikNAZKjh1BIjUgfrdPcg1q6AAjVCqr5LOzBcGvasxFHnYL2DACu1YsR/fz76jRorYyBUqjeobwv282hb76C0R1npwx6V5e8aPZbUfNPPP4GSrECHEMhFXVeSW+WA7cq74lSAjFfhmv5vJo9taA8G5FZKeuXAPZgGHw60TLgaJOsSbHNWnsbYid2oZCd0LeNVhIZorElze/OHXoO7tAQfAOLdYMpytKqJgkPpKCoNl8PGJutpS1NK43RSNYoBZJPvIRzX/lh408UEEUCUWwEKrygoOkT5LoujJ3Gm9/8kpRxSEGpn1Ya00omWPs/G+rBrL/7FFyLZwGASoak7I+VgSPldpUfycA14IdAWbXEAGppjBwQm1K0HhsU44Or34/CaEYlVxBr8hdZuiAF21SPD4SzI3j3VUj+YgvEMt94ZkPtV45yqakmAoigmHzpSYTWXiVlftK0G9W+LGFQHC/n43D4wk2SlkYg7UZ/IL1vMu3YQAmw6NoPwT+0pFk2pwxsqTM2UAClyXMYefLHoHLFGJXFtLIlCohlHqlfvARuKNIkOVTZFW2W34qUwB50I7BqsFl+qzM2SOUogq0rxgeVzAUsXP0+FEazTZLIVtIq+TeuS+bBvXIBko8+q+jYpIqacu1JKYHR2BIlNRbIvh2IXHlTs+xQ0ab1bEyypwQcvhDqAUynGBuk+yGtbal2TCQUux79AnLJ4SZ7alsy9TbFxH9+D8lfW8u6AKTUqeF33dPWuZLn3mLWb22xoJ34BL5NGwFBRNZiNkhh/0HwY2MI3GT+o1UslyHm8pbXk/uSZYh+6P62z0888WsUj1gbLy+79RUIuRy4iDl2JwDQchnORQssDyBrC4fbYoIAQPCOW5HdsROVcWtjo6WefhaOObPhXGR+MZqPJ2ALBixLI1y/p989i/Fvf9fSMrW4wGbVnWH++9Zj+IkDyJ2xTgcZe20YNo8D7iHzK2iUr6Iaz4Drs3aVkrE7wLq94NPmKVcMy2Fo1c04t+8pVMuF6U8wACoKOLvnSfQtvRp2t3lvucxCsJoJQilF/tWDEDL5ts4XKwIO/8dWiFVrPE6VTAnH/msnFj1wOViHOX0oANjCfsz6Xx81rcGdDlwgJGUbMpEXXYY3MhfBWctxds+Tlt1PIT2G8aOvYM76u9oKKFxJxS2XwgCALehHdeJiQL7p4OqfA9fAHEy+aJ1NVEYmUY2l4Fw41Nb5xdEM3IPWey1cA/62PPcA0HPT5QBDkHnSOhlD9tBeVJKT6L3C/MQbAMpZ6z33AFDMTCIzdqytc1m3F+k3XkP2TeuC36V/tQWEs8G/eX1b5y+4/zLMu89c8G8jcA/0mE6bLiP8/ncgt20fyqdHLbufied/BfesBfDMNx9QmFKKci4Bp9faDzlCGHAuH8q57lDO307o2Xw9Mi9vAz8xaVmZxSNHwbic4HrNv1eR5yGk07C1ce5UYJxOMG43qvE25sR2OwK3vAPJJ5+CWCxacj9UEJD89ZPwX3sNWL95xli1xkKwWr5ARRH5Pfsg5NubE1OeR+KJX1nGwhLyeaSefhbBW24yHTMFAGzBAAY+95m2zp2y3JpsqJ05sXPBfLiXL7NU8lUZGUX2lR0IvfOOtubE1XjCclsCALbHX7fVbuHiIogJhNbOQuTKeXjjay9bEsBnYscZ7PizX6I42t6khAoiQu+9EVy/9cbHBUKopNqbBEQWbQTn6sG5/U9bci/jb24DX8xiYMXmts7n03GwLo9p/fp0IIRg8pu/QOn4ubbOX/DABpRjeZz6hTXZWI791y64Il7MvqO9uBKl4yMoHDxpyb0owQXCAKWoZNrrzGatux2pc28gNWou9ZoeKKU4s/uXCM5aCV+f+ZgpgBxktwuLINEg+Mm0pRkh3o4ghKDvhncifWAXiiNnOi6PiiIm/+PnSD32fNtlhNYOYeh26+O5uAd72pLDAADj4BC+/xakHn8R1WTncS+EcgkTv3scvVfeCJu7vVgA5VzccjkMAKRHDuHs7l+3dS7n7UHvle/A+LOPQ+Q7l7vVofbHAAAgAElEQVRWU1mkn3gR4Q/eDoYzP3mmlOLsb95AJWO9zMA96G97vuFcMAjvptWIf/eXlnykFIdPIXNoL/o2v7O9iXcpB1Hgu7Ko5vCGUMpeXASZDq4li+G6ZCkSj//Kkjlx4eAhjH3j2+1nhBBFBO+4ra0FlOlgC4fa/iDzbboCrM+H5G+tid+XeelliPkCetqImQIAfDwO1ueT0lFbCUIQe+RRlIfPtnV64NabUE0mkd1qTZbJ1FPPwBYKwrvx8rbOL58+g+Kx45bcixJcOASIIqqp9rIBBu+8HYV9ByxhzVBKkXj8l/CsWQXngvltlSEFRe3Cd2g4DD6e6Ko08eIiiBYaCYNW4rDkM9cidWQSubMZNT1ZliboRP1XZ/WQyi3lqtj7Dy9gwf2Xwj4Qqh/Xo6dqM8LIG3E4ELz3OikmCFU/gyG0koUQwC7HcTAgYdBm74CNwZwN92D8za3IJoeboq+33BjNPkNQLmUwvP+3mHPZXbA53a3pqYzOPdb+X0nHYQ9Ig+KUEoUWVFc1O1ymAEsX4KIh8GNJfaoz1DKUesag2jHW68LiT12Fw9/ZgXy81CSz0s0upN0U58y//zKs/KvbIDC2Juq8rk2LamlV5vnXkXl2N9SynxaZSVrZGGneZ11uMA4n+HRclW2o6R3q2BJlAGewD/3Lr8epnT9DVeSbsr3oUpsVm/Ja8dN7kB0/gdmX3tlMs1fS9xV2rm0DlVSsIa2Sq8PoHF5HJyPLjri+MCAI4GMZXQq9aPgibyNo5Qu16nMNzEZgzUak9+1sSbWfFjVjzD67A/xoDMH33lJvC7IcSd0fQ9UXy3KyqsigZ/18RK5apMn0xOjKGUQ0snmoJTPNm3OgB3ymhFKGR1Vk6jKcuoQNcvtW24v8EO6NK+FYMIT4954AFRWNtkUFtaxLAsReegqMw4nQxutbyCPRUsIgvT+KcjYOhz+sP3Zo2y6BfhvXkb85fGGUc83jVcvxS3kcQOiKGwCGQWzrM6rjrWypSS2k+CHj96Hvf3wE7ssvqb+HpkxDaPTLWvltMVnGgf/9DCq5imQbWrvQzCt0Mw3pjA8iJXAMBFA4l5ZsSVkWbS2tarQHguD9t6EyPI7cC6/ptiVDIFKq5LFf/RiBdVfAGR1sVKFcjOadqcaH2rFSLgbCsOC8gYY9EI3dKOYVgKa/Z7XXIHW5jMPfi3Iurh4LFFKai2ggfO/dKJ063Ta9X4ZYKiH26M8QuGkzuDZlGozDgcDNN4JxODq6Fz1wveG24jgAAGFZhO+7G5ktW9teIJBRTaWQfPJphO65q+0YGtVY3HK2DCA5KGzhMKptBu5kPR6E7roDyV//FkKuPTaJEoGbNiPywP0gTHuNNrtjJ3I7dnZ8H1owXi+Iw9F2PdkH+tFzw3WIPfrTjoOf53btRunEKQTvuqPtMvhYvDsLj73SnFhIdyd4OXBxEcQ03IM9uO6RD8Mzq7MAMIe/sQ2MncWCD7S3QgkAuZ2HkXx8S0f30QpcIIxKqv2sHP7+RYgsvgLHt/0IQrU97xoVRRx/5WF4w7MRnm8+c46MSioGe8C8HtAIbH2hjoLFDd6yHCv+5HrYe9oPCFUt8hh57ijsPU5457a/GsuPJ2CzWFoFSAOjPdDbNrMIAIZW3QQQBsO7f9V2GZVCGqd2/Ryz198Bp6/9DruSjMEetN6eGL8HvR+5A4zTYu/M2xR9N9+Lvlvu66gMfjyG5KNPIfTB28H6zQeXk3Hoq08jf9Z6KZN7wC/FQWlTwkAIQe8n7kVx/3HkX24/SGr+xFEkd25B/+3vBmHbowZXy3kIfAkOn/Vtx+ELo1rKQeDbY08wNg6Dd92PntWXdXQfxb2HIaSycC6b3xa7AQCKIykQloEzam1gVKDGLGrTlgDAFvAh+P5bkXjkSfAT7ffnsed/C8rziG6+s+0yShmJVdTuB85UCC+4FKH56ywv9+0ILtKL2V/8QtsLFzISj/8KjMPeVowLGfn9B7qWQlT6uG9/Tuxashi+jZdj8gc/avvDlYoiJh96GI55c6XMM22iWx+tgPTh2kn2Eu/GyxF+971gOgiSKpbLyL++F4zXC3tftO1y+C4uFnEd1lPg1psASpH8ZXsMSEBaUEv87DGE7r6zoyC51VgMtl7rx3XW70f4XfeAWCzRV+LiIkgbYB02pA6PY9cXfgORN6/poiIFRIo1f3FzW7EbZBQPnETl5Ejb508Fe6gXlWRnqUlnr78ToMCpnT9riyo58sZzKCRHsGDT+9ueUAK1GA6B7nT4XF8I/Fj7iyCEIRi6aSmEEo/xbealKJRSHPinF/Dmf74Kke+MMsaPJ8D1WRsASoY92NmiGmPjsPDqD2Dy2HbET+8xfb4oVHH05R/AE5qF6FJzOdCVoIIAPp0E14VFNUIIem69oqOP8QsJjE0aGMeeeAS5N99oqwwxW4D3qnXwXr227fvgsyWMPnnQuCfcBBi7Dc6oD4UOFli4vjBCH7gdiYeeQOWs+Qj51VwWoz9/COFNN8I913zQNBnlbBwgDOxe6/sYRy0uRLkDCYN71jzYw1HkTxxFNW8ujSwAVIZHMfnvP0LpYGf06dJoGs4+Hxib9dMz12APKskCqsX2ZT++Gy6Da/kCxP79R6BtfMzlDh9AcseL6H/n+zqSqJazMTg6WMyeCr7ofPQMmo9TcqGCsXMonz6D8e98v604BzLdPfLB93cUf6H05jGUz7YnT54OXG8Y/GRnc+LQPXeBCiLiP32srTlx6ulnUBkdR+T+93U0J67G4pYHRZXBdcAEAQDCMPBeth60UkHhoPlxnVKK2I9/huRvnwbasEUlqvF4x4t7rdAJYwaQYs1EP/QBZLa+gvyefabPp9UqJr77AzjmzoHvqvYzpNFqFdVkqiuLaoQQ+K+9uq3sR0ZxcRFEByqqc40uKmhopfa+AFJHJ7HnH14CXyUN2rMOpVm5pU8mwVcJlv/pZvgv6a+fp72einJN1VRsmarKj8Vh6+9tZPFQUlINc8LVP5dPsQcj4NNxiFSs01SnoxqraNGMFGB18fUfRnL4AEYOPa+fuaNpk34TO7Ub5/Y/jYVX3Q/O26ORLTTTU3VpznX5QhxcsFcb1N5YNSkZ5DqSo8Bd16LvwfdOS6GX5ShCjdKupcrH35jAri88iTNPH5vWhpR2dvi7r2Fs60ms+ZvbQTlOlSlGS52fSlolVin4yRS4vrDuc06LFlIiuX65YI0JokdxJtp3qy9L8fbOxpzL7saJV36M7OSpGnW5WT6jtQmRUJzc+TPwpQwWXvMBgGFaSl30pFVKOUY5mwCoCEewV53BYIo6aAlVe5W21JM7kHpyhy6F3gLJ9XmHqdo1iLSIyIWjGPvZQyhPGF8QpryAyrlxOBbNQehD94DILxiAVopUbzc6EgYRBPmzaYAh4KIBdaYnTZutt8uaDE2vXauyetSkEK4hScKgtAdZvqCflUphhLX/e6+/HO4NqzHxz9+DkKp94BuQMAilIkZ+8C3YI33ove5m6aC27crFTCVhYOR4IEEwLKvb52vlDPU+utVvFccZjsOaP/xfcIYHNb9Dc5na8UpZXaCIv/Q0zv3wWxCUKeJ1suUo/1RNpDDxz/8Jz6Z18Fy1VlX3lBLF2KC1r2b5bXEkDedQQC2NVLxfrd1QSFmk9MYHbQY7e7+0AFU4l6llgSEqW5blmq3aACBNTMMfezfEYgmxbz5q/KOXAOWxcxj96Q8RuekuuOcvarInPdkS1fTH8nstZWNw+CMq2VUj61CznTTZEmlhTwSolDJ487lvoyqUVX833cdfQLCFgiifGUb8Jz83peGvjI4BlKL3ve+GY/asju6Bn4y1lQXECGyRXlTj8Y7iEzAOB/o+9iHk9+w1zVjJvroLqaefRfSB98PWYz5BgBJ8LN61egrctBmRDjLEyCifOoPxb38PudfNOb1STz6N4huHEP3IAx0tqFFBkDINdYkxw0U6Y4IAUsrc0D13YfKHj6B08pTh86goIvbITyDkcog88IGOFtT4eAKgtCtMEABIv7AFmZe3daVs4OIiSNuwB1y49O/uwvjWE9j31ecNBTOM7x3By5/6CcZebC+KvRaVsURXgqICEhOECgL4TGcUb1egH4uufQDn9j2FcweeMbT6HTu5Gye2/xjzr/iDjr0xVBQlJkgX5AsApHgsothx4J7wpXOw4k9vwL6v/A4jz7xp6JyzTx/B8Yd2Yt3/fwd88zvrqAnLYP53vwBHm9kxpoM92ItKsvMI8tElm9C37Bocfv5bSBvIBkFFESe2P4rUuYNYfP1HwTnbC+goo5KMgXG6wLq6szItJDMo7LM+ENfbGaFNN8C3Yi2G//PrKI1Mr7emfBXxbz+M2Nd/ZE2Ax5EUnH1+MJy16eFkuIeCKJxrL4CaDEIIwh+6G1xfL8a+8h+oxqZnrwmFPEZ+8G0AwOD7PgLCdPZ8pUz3PPcAYHO4IbYpvZRBCMHQez8KsVrFyEPfglCYXpdOq1VM/ON3YJ89iNADd3c0oQSAOfdfgRV/fVdHZbQC6+Rg7/V2xCwCAMbjQvTPPory0dOIfeNHoHx12nNKw6dx9jtfh3/NpQhuvLaj6wNAORODw98de2LsTqTPHkI5czE4qlGwPh/6PvER5PfuN7wQUjx2HCP/9K8o7LMmODwfi4Hr0scYF4mA8lUIqfblZABgHxxA9CMfRPLXv0Xqd88amhNnd76G2CM/QeQP/wCupUs6ur70cZ/o2sc943JJc+IOvTauZUsQfs99mPzBw8jtNrYQkn11F1LPPIfoxz8Me39fR9cnLIu5//tLHS/MtYKtt7djZhEA+K+5Cv5rNmHs/37LUBBXKgiI/ejHKLxxGH2f+AhYj7uj61cnY2A8nrbj00wHIZ22PG2yEhcXQTSgILoeG2VAS9nD4pofxWX/512I7x1BbqLQ0lvP88DxH+/B9gd/gXnvWYvIDUtVv6t7gjSeGaG2iRpvDAUgUgpbqAf2ob66x6nxENNPwlQ/0f6cAKzHC8bhlCQMet6ZVt57pdem9jf/0FIs2fxxjL7xPI6+/F+o8AVdj01VrOD07l/ixPZHMG/juxBedFnDw6O6ro5nRnE/9SCKACrZJCAK0iKIxotjoJp0Kg4KjzFQTeVw4oEvgY9lp/Qea4Poyr9ReoAHb1+J5Q/egL1f/h0O/OsWlAuCrie5kKpAEIDIlfNx+T/dh+C6OU22qfUaT8cqEotlgFIQG1tnIVBtBZkd0xTvxh7sRSUdB4U4NZNIZT8apg8DgCUYWn8bBlZcjyPPfxOjR16CCFFlT7JNlQpJHHr+G0iPHsGyWz4LV2hA5QlU2kzTtRTebOV+JTXZsCXNM9arqZVdtWqjivq29YXBjyVaeo8vOEzlIa5thCGI3vVu+FevR3bPTvW5GvATkxj7+6+jfOocIn/8AAhhoGZ7NToPLbtCz3sviAwoGATWz53SA6/23NcCo2rHC53fi5TAMRRE4WxKCoIpjw218UJ9f2gEslTaS+15iI1D9PMfBjfYh7G//TcU9h5sWe2l06cx/PV/BijF4AOfBOt0qRk5Ou9oSu89IShn4nD4e5v+1uzlr7XlWtlapog+2wQ4s/0xnNnxmIpF1pKdAuj+BgAYtwuzPvRp0GoVw//+TygNn25ZT0IuD2KzIfj+u9H7mQ+AsKzCflqxPxpBSJXvUGaCllJlME57U9B1LUtU2ddTQNf2tPMWkRK4BgMojKSnYBWp2YLK9qAc/7hoGH1//knww6MY+8f/AD8Z1x0jKKVIb98qLYCs34Done+qLxRp23KrcUE3yG4mBkdPpHk+ou3HlfYEAl32h2ZjOTs4dw/K2ViTDV2I3bBROGYNYeCPPo3i0WNTBjOkgoD0cy9g7OvfRM/m6+Beu7rja1NKYQsEwHX48dsKrN8HYrdb8uHqvmQZ+j/5MaR+9xwmv/8QhHxB93diuYz4Y08g9vCj6H3fu+G9vP3YeDKqiSQgil1jglTTGZz+/74AId3ZYhEA+Dddgd733IfJhx5G/LEnWsZSEfIFUFGEe+UKDPzRp+Fa1L5sU4ZYLgMgUp/eBXCRXlTjsY4XiwghCN51B3puuBZjX/8m0i+93HIBko8nMPa1b6D45lEM/PFnYO/v7+jaQHfZV0CNgdVBLJ5py+9ayRcIfAt6cfX3PwDGxmB863FMbD+Nvk3z4Bn0AywLz6wAzv3uCI79YBfWffFWRK9dVKe3dwJCCIb+6sMQhe6sYxFCYA/2opychHd+59rYnoElWH7b53Fi64+w7/GvILJwAwJDy2B3BcBXcsiMHsXEse1gGBuW3vgp+PsXWiKxLycnwDhcYNtM6TgdGL8HjMuBykgMXKSzYLkAMOuOFfDOC2Hf3z6NsS0ncNnf3QH/oggKIxkUxjIYf+U0zj55CCsfvB4DmxcjuHoQogUVlXnudWS27MOsv/1U54XpgAtFQKtV8NkU7P7O2EuEEAytvhmunj6c3P5TTBzdjuiiK+CNzoeNtaOUiyN59iBiJ3fB378YK+54EJy7M/qojEpyEo5QxJKy9MAN9EqLIKIIdGfsfVuCMAwit98LylCIooiJRx6CY+ECOObPBeFsYEN+wG3H+L9/C445Q4j+6cfA+q3xXERuWIbIDcsAdCeNm2soiOI5a4KuEo5D5LMfQPo3L2Hy2z+AY8E8eDdeDufAIEAIKqMTKOzeg/wbB9Gz4Ur03nI3GJvNkkcrpScQXrC+84JawOELI3l6vyVl2bw+DH30M4g9+yTOfuPf0HPlVQjfdw/EUgmVVAyV0RFkd+yEmC9g4IsPwrm8Ju3ocNSilOK1j3wby//iDkSumNv5g+jANSuEokVBfLm+XvT9xWeR+O5PMfLXX4Vn46XwrFoFWzgElKsonzyN7PbtqCaTiN7zB/CtWQ8idr6KUC3lIVSKcPq71xc7/RGUMp2zFy802IcGMevP/zsIyyK/7wCKh4/AvWI5bOEQCMuCi/Qit/M1yWP/kQ/Cs2qlJdclhGDgjz5tSVmtyuciveAnJ+Faurjj8lzLlmDwv/0xJh96GGf/9ivwXbEBrmVLYQsEIORyKB45iuwr20E4OwY++2k4F8634CkAfmICjMfdtTgL9cWiiUnYAp3PiX1XbgTX34fJHzyMwr796PvER2EfHAAfi6OaSKBw8BByr+5E73vfA8/a1WDbTPOqRXbbDuT37MXgg5+zpDwtuEgvaIWHkE53XE+EEARvuwVcXxTxn/wc2a2vwHflRjgXzK9loYkhv/8g8rteg3PJYgz92YNg/dYE3uYnJ7u6CCK1uRioKHYlCPbFRRALIAcwswfcKMfy2POl36GaK8Pe48SNj38cA5uXoO/qBeC8Dsumyfx4EqWzCbhWdS94lz0UQSU5YVl5rp4olt/6OSRO7cXEsR2YeHMbRKECEAJv71wMrtiMyKIrwLSZfUAPleQk7KFeEEK6EbdQGhgHesGPxIE1i6Y/wQACKwZwzXffj+FfHYSrzw9KKV78yMMApQgs78fyP74W/dd1vtKtRGU01jVpFQDYPD4wdgfKicmOF0FkhOaugb9/CcYPv4zYiZ0489rjAADW7oIvMh9Lrvso/ANLQBjr3n05GYN71jyLSmuGfaAXrpXzIRbLYDnr0/y9nUEIARgCiFVwvRFktm0D/9jPAQChd98L3w2bMPDf/xhswAtqE9HpB6uM+CvH4V0chTvSnUmle1YQfKqIarYE1tv5wg1hGPTcdgM8a1Yj++I2pH79FISE9FHMeL3wXLIcsz7/IJzRIZDpVQ6GQClFOT0Jh797kyVHTwRlCz9aGc6OyB13w7f2UvBZST6U2bYNiV//GmwoCM/6VfBeu6k2tlhjS9V0EUKuDNes7gSoBgDXrCDiW62R5AIA6/Ug+pkPo3TkOLLPv4LJH/wItFgCCAEXjcK7Zi16NlwFzmWdI6KcmQRh2K4E2ZXhH1oK1tEZVfxChew9Z31eVFMpTP7ghxCLJTBeL+Z86YvwXrYenrWrwTjbD4yrBR+LoxqLw7WsM7nIVOCiEfAT1vUx9v4+DD74OeRf34vsKzuQ2bJVCjbMMHDMnYPATTfCd+XGjmJbaMFPxMBFurd4SAip15NrSeeLRQDgnD8PQ3/+Z8hu2w5bKAhKKc595asAIXDMm4fwu++De7U1i2kyuv1xz/r9IHYO/Lg1i0UA4F2/Dq5ly5B5aQtyr+5C4rEnAEjsRueCBej7+EfhXLq4Y8mmEvxkDE4LmDetwPVF4Vy8ELRSAbGwv5BxcRFEB2KNF0soQGTuo8goxEP6Sxm+5YNY/+W7QEUKocSD4VhQwoDYGRCOQ7U2T5KppgDqtGZ5XxCZ2n6DzizTr6V96Xhu55vIbNmHwZW1RZB6ZDoNzAS2rP0rP7I9FEHx3GmJcq6UK8jlyucoGeUiARjpf0REPSBZnUbLsggtXI/wgvWgVITASx97hNSejzQeherck0p6oDiupGkr98uJSThCDXpkSzrrFIHv9Cm+BKRG5+EGe1EZiako9FKRpP7eGEZQvE+Caq0ibRBRlX9DKJjafTB2O2bdJ6VAEyHi+p98FDavHYTU6Mu1+1LakjIoohzMF6jZlc5vlGykyrkYnMvm60tgTMzvlXWvLIkwBPZQFOXkRINZ1OKdyjZGxMZxyjTug4iNd8g6XRhacxOG1twEKgoQqzwYziF9mCjUAHq2IVGmSdPxpvtR7FcSE+hZs0HfjsyOK6oCpIdje7wY/PMHpCOUqmzmgoNCugBMQUPXHCc2G0I334bg7bdCEHgAFHA0JuWNwhqGTetttrFPQettRNWuCWl0FyJw5Cu/wdIv3AVHrw+txga5j2cIldqg4higbscA6n0CpQT2/gDAEBSGk3Av9dSOy2NB43ylrTTuW30f9eCWFOCivQi9550I3Xc3UCgDDAOGsYORFz4EqNuBEnrHtX0z0zjMF3IQKkU4Qn1S1WvHBUD5OqT61UpZNNfW9vmOYBTVUh7Vch6s21M/Xh+DphhHVGVqntM5axYc7BAoAP8118B3/dUgTg6U1blxhf2QFsdFSurzCknKQuv7heEkCMfC3tcDocaYEJXjgmZfhkBJ3Z6UdqQdHwTKwDk7jMLZV1XzDVk2AwBiLaC3/GQNWVWzxEoJ59KFcC5cBFQByvMgIgOWkTI4EYEAygW1acZz6QEV1UvUx0qZGBz+XhC2ca+y0lI+pT4OyX+XbUHvXWvnGwzQv3ZzQ4KlvdeLMATn/Hno/+THQEVR+oix2aQPMJvN0g97ACjsP4j8nr3dXQSJRFA+O33cKTMgLAvvZeuljCiiCLFUBuN0dMXrDUhMEC7avUUQwPrFIkAKft1z3TUApLnR7L/5IhiX09IPeiX4iQm4lnTPlgjDgItGpetYwCySwbpdCN56M4K33gwqCFJf7HB0tZ78m67oStkAYPP70f+pj3et/IsxQboAwhDY3PauBcoDgMrIJLjB7q1SAoA9FEUl0T06KCEMbHZXfQGkG6gkJmAPt58n3Aj8N2+E7+rONa2tQAgB5+teJwYA/Ei86/bkCEVQSVjHLNKCMCxYe/cGRZGvgM+kuiqHAYDC3mMoHR3u6jUuFDB2Dozd3r0JZTIPIV+Ga3b3WFQMx8I1EEDxbPupuKe9hsMBhuO6Vn45PQHC2mD3dM9z7/CFMffa93UcwHUqMBwHxt69eioOJ+AcDIKw3RsTXbNCqKaL4DPFrpRPCAFjt3fVnkrpCTh6utsP88UcJt/oXlaCCwmEYcA4nZYvfCjBT0yA6+vuXK8bH/dKEIYB63Z1bbwCZqae/NdeDc/69tPOTwdCiFRP3ZwTT0yel4tFShCWldpdt+bE5TKEVLrr9VQ4dATl02e6UvbFRZDzFJVzMdi7vQgSjoJPJyHynUXcfytRTkx0/aPVuWQOXEtmd/Ua3UbkY3fAecm8rl7DHu5DuYuLIN1GJRUDQGHvsj1lt+xB5kVzaeEu4q1BcTgBxm6DI2pNzJlWcM0OdnURpNsopaSP1m5O7gnDIrxkA1i79ZTZmULP2jmY/5kbu3oN50APiI1Bafj8zXxSSk3A2eVFEJEvYXjrT1Et5bp6nYuwBvz4zCyCVOMJ0KpFOsG3ANLHfXfryTl/HpzzuhPTaCZAKUX4PffBaVF8kVbgolFUxs/fOTE/GQMIga2LsiEAyO3chdzO17pS9sVFEB3UI/9TReYWqs6wIR9vlRFGu2kjuiszwuhl8WgZ+b+mF6mcnQQ3pN+RUSpLeaZ+TlVEdh1IiwcUlWSsLlPRRnPXi+qumymGQBXhvVVUdmVkd/0sAERVzlSbUCmhmkvD0dvXmspqhuJK1Vs9w0s8i+G/+g6EYkUno4e0L9mMnBWgkeVBmfFBlQ1Ax2b07EybcUbOCqDNZqG/T+qP47nsEin3vEx5biWD0Tveov609uEIR1FOjE/73tQ2I2d9UZTHqMttZUPazALNNqa2Jaq9hnyd2iOXEuPg/EEwDkfz/RrFNPVKKcANRlA5K3kHtLZxoYFq61jPVrQw+k5URoR6/etmB6MEoihtynZdHE7AOTsEEWxjbKD6Y4OyXcuZofTacVXRP4iQ+gvnrDCKZxJN44Neu8YU+3rQjhP1amlRr636fjrFb0qpcTgDfY0+XFn1ijanarPya9E73nSu1EeM7X0W4wde1M0Sotu/TDGOmRoXWhxXZumpDx2K4/V3WXufXF8IvjXzG3MD6I8N2mxDIp1+fBBqmWXAsHAOBVE4k9Adq7TZkKZ/fmUFdvAzg+MCavbkCPVLcsYW/bz2uHwNQ/MQQsD5wiCsDaX0hCT5ZTRlXcTvFSrj47B3exGkLwpQakmGmLcCQqEIIZPt+mJRNZXCyL98DWLl/HSgEkLgWbXSsuChrcD1R8Gfz4sgY+OwhUJg7PauXofr6+vaYtHF7vw8xbx//Txca6zTkemBsTvA+YMox8e7ep1uoZycAAgjpTTtIhivCyUsFmMAACAASURBVKUjZ1AZOT89a7lXD2PsX3/S9es4evtQzWUglLtDw+42yvFx2MPdSb+nhH1WBPy5i1kJzgdEb1uL5V95X9ev45rbi8KZ83PiDdQ894HuTrwBQOBLyI0e7/p1uoUjf/UTZPZ1h/arhGt2GMXzlAkiClWUM/Gu2xNhGDh6Iiglz8/5z4WG2X/9F3Au7V4MBwBgnE6wgR7wY+enTfATEwDDgOsNd/U6jNuN8omT5+1iUX7vfkw+9HDXr2Pv64OQStXS8Z5/qIyPd31BDQDsfVHw491pcxcXQc5DiOUKwDJd1SbLcPT2oRwb6/p1uoFyfBz2gOTN6SYYOwdbNAD+7Pm5ols6dg5iodT169iDvQBhUI6fn/VUjo9LrKIugxuKQsgVIeS7/04uojMI+TJYX/flF+45YZTOJSHyQtev1Q2Uk+NwBrvfdpw90fP2o1Us80jtOg7W1V2vGiDZU/E8XVQrpycBKkrMoi7DGehDJXt+LhZdSBArFSmwcxfj0Miw9/ehMnZ+zon5sXFwkd569p5ugbHbYQsFz9vFovKZYYjF7s+/uGgEIOS8ZYPwY+Ow98/AnLi/D0IuD7Fk/Tu5uAiiQTMdurGvksboUFW19FM9CqtMNVVSYOVytdfTo2VTAJkt+zH8P79Ru2HUabdmM3noQkM7dfT2oxwfMy5hUElgSGt6qh4duaWEgTQ20uo3inIg/VtOjMMR7muP7myyLu2zoiifnWyi0LeiPetJWJQyq1aUZq2dSbItaVPKYFQSLqivJ2rurXxmAvZZ0bq9NT23EbqzEf2VzQZ7sLcuianTw1vYA5THGQXtuRWNWceetFKXul0qaNRTUamVWzk+BkdvvzGDmMa+iKKf0UoWbH1hzP/+X4N1OzUUemOXflthqr6mlaShFQxQ9gH1u9CTmwhiQ/ay71PfRmLr0WZJG9RtX9X/166jlTYoxwG5r5DbsXNOLyBSlM4moBwfVGMHZFsxJk+Yro9T9ZdKtHgP2n15E6plVHJJOIJRhQxB7tNbyBNI41pNbVlnbJB/5wz1o5yJQRR4/fuUH9vIGKBTHy2rlDZvyvdANVvdTsTG+J8flmK+2Gf1quYF9bGBqqW5jfmEdMnpxge5zxdEBo7ZERTPxFVjUmtplbqvUqVvm3JMmL4ute9BZUs6l6IEKCbHwHmDYB3OhqyRkGZb1MqhNNfVynX15i1zN78fA1fcabyPuYi3BLmdr2H0//zbjFyL6+8/bz/u+fFxcH3d/2gFpA/X87WeKqOj4Gbg457YbLD1hs/buCD82Di4gRlYBIlGMO+rf2dpSm0ZFxdBzkNUhidgH+puUDAZjt5+lGPnZ0dWio3BPgOee0CKqcFFrMn1PdOoDEuLIDMByZ7OPy+KKFRRTk7OCBOEMAzEcgXV1MWAfL/PqOZK4BM5uGZ3l1oMAKzbAXvUj+Lp808mVUqMAYSZETmMM9iHwII1ECrnH4uqeDoGR38ArLP73mz33F5UxtMQiuefZr+UGINrBlhFAEAIIzFPLuL3GvzYzNDyAZkJcn7OiSujYzPiuQcA96qVsIW6lw2sm+DHxmEfMOjw6hD2/n7wo+ffnJhWq+BjcdhnYFFNmhOXIWSzlpfdXZ3AeQo5GJhIUU8tRGhjxUgQGdCa11skFEzNncaAQpjGTaD0ukjXaOwLouSV0R5X7lNKUDk7AdfSOXUPk/QHCx68BrlIQgBHZACVZAxilQfLcHVvNFF6RAjqlUNE1AOHERGgtechoI3fU0zvgat5ZBr7teNMs1enfg+a/XJsFD0r1pvy9jWh7jas/Uf5fmuVQSng33xp/VjjXbXYB4Ug1iqJEet2Jcr3Xns42a70bEpUPJSosA1RZTOoH9fdB0BFCveaRbAv0ma3UVSyGei8B7kYAmkRpDh6Wvo/0ZxX+5cqKkT+DQUApvEfIte9zi3r3RNVXEwZJE/vXpX2JnsiK6kYIIoSE0TH/ppssRNQgth3fgmb343ox2+XDl2g7kdl87PMC0sbTBxA3pf7+YZFSewKWt8X67+X9ounYyA2BtxASGp3IgMis6EYsd5GGVBVW5bYIKTRB9QwXd/vmhtB4XQcPQqvvrpdy/2A4lFl+kPtuVX7ZqFX9wbaUDExBkdPLwjH1bvQRo9KIHNjKFHcl8ajr3cPdTaXfC4j0bDn3fyA5MlHowzde231DAooba8dNN5PgygnvSvatG8LeNF769o6wweMCEiPJY0NtftjFO9OUNiJ0p5ajQ8yk8Q+FAYYguLpGDxLh+rsj/o9qZ6h0Rla3g9p+k3F8Nfo+5VjBQFKyTEpKCqjnm9AZetUZUu1228wQKD5m9aWavvlTAyHHvkKVn70S2Dd7s779ovoCiqjY3AuXjQj1+IG+sFPTIJWq11N+dsNVP4fe+8dJclx33l+I8vb9t6bMd3jBzMD7zgDEAQBQiRBUlxR5MkBK2rvrXRHUU9avdNbnU77yJVO2nuSVqCkFSHDFQlwSYIE4TEwgxkA4zCD8dNm2ntb3mXcH1VZnZmVWV3VXZWZ1RWf93KmOiszIjLyF7+Iivj9fjE5DffthzXJy3vXHZrkU2gopXD07YStXZsdHy1NDYiOT2iSVyGJzcwCPK+JxQwALPzghzB5vaj53BMFTbdkLEEIId2EkG8SQr6V4/XfJIQ8SQh5ihDyVLHLpyXRsVlY27QRPFtNMhp2qcVxSERCiK0uwVbXpEl+fDiCpf/1FvhQaQU4IoSg/tcfg7VZG8sie10TInNTmuRVSCLzU7B4kybYWmBtrUd0zHirTUwPrxEemYWttQacubj+1QKOjroStQSZgqNGGz0MAL7xG1gZuqRZfoXCe6ALTV+4U5O8OKsZ9pZqhG+VojxNw1GtjTzZvDUgnAnhJeOt1DJdvEZ0alrDlfsGgOcRmy2ttpMIBpFYWYG1SasxcRhLr7xecjvEEEJQ+4XPJeN1aIC1qQnRSePpl/WITk3DXFOT3C1RAyyNDYgWwWKmJCZBCCHHABwE0ANgXZ+DVKcwRCl9nlL6HQA9hJAni1xMTaCUou7XHoOjv1OT/DirDZbKakTmS+uHa2RuGoQzwVatjYkkMZuw+PxxRMZKa7IodPUWVt48p1l+tvomxP2riIcCmuVZCML5xAMpANa2RkRGZ9KrxEaA6WEp7n1daH3qmGb5OTpqER4pLf0CAOGFKdg1+tEKAP7JQSxcPqlZfoVi6nvvIDK9rFl+jq56hG6Vljzx8SgiK/OwV2ujiwlngr26EeEFY41/mC5eg/I8ar/4edi7uzTJj7PbYa6uQnTSWDKxHtHJKRCzGZa64u6WmMZkwvLLr5acq0doYBC+9z/ULD9rcxMSy8tIBEtr18TkxKM2i/GAMFlU+DZXEpMglNLXKaXPA8h1hPBU6nqB1wA8nXt+CsHwqHpwyXRAMsqtBRqTHULwy2z3C4HwkoHupOUQICBwHe4H53FlBkpUCM4mmH4rxqwUzI1lhyRJkvzhGp6fyghKitQhD0opvkYSwC4VwEwc5DIjeJ0oCKpy0DKV+4jI2psA4blJ2GoaQMSrtGKz542gZgpMAZgssLbUITIyIwlQqPSeE1R4v5AEupMH303LjIIsSQLfKRyUIiMgnjxYK6UE/g+vIXD+pqQCCxZkV0yq7q1VtSBmS3JSTXh3ou/lQUnXC26akyyJgqCqpa8kv2LZCs9NwlbfVJzgePJgigCsHY3gfUEkFn3p83q7xGithwFkvlehLCrnN4s0mCUkbUUetNraVA3Pvm4kRP2DODCxJDCqqC3TlAOIWpuW640EnzxsnQ2ITC0hFoqB52XBNgGJDKkGOd5M3SjpePkhFCPdtilC85Ow1zWvBTzNCGq81k4lul+AqF+TLo+oDdtrm5M/WuVlhLTc68rPRuRKUjmi06K2K/QNYn0c90Uw/a/vIh6Np4LqZl4jyJW8X6CpI5f+gRfJhr2zAcHh2aQbLs+l5UwexFV5YIB0OkQSMFWhDglSgxCotmfptch4/8IRWkxax9mrGxT19NrnzHGEPC3xmETev4j7B3ttM4LzExlBXPVEF11sUAjHwbVvD0xul2Z5WpubirIqXUxik8lgn8XeGUaAs1hgqa8rucmi4MVLCF27oVl+lrpaELMZsanSqqfo5CQszdotblhbmsH7/YivrhY03ZKYBMkHQshBhdOLAFSX7FLmgWcIIWfiq8HiFa4ArLx+BvPffVHTPO11zQjPTWqa52YJz03BVtesaZ7WtgZER4znwpCNyMgMbO3azeYSjoOtrrH05Gl2Avb6Fs3yM9dWoukPvgbO5dAsz0KyET2cum9NFxvYWojyFAPf+EdNV9Lt7TUAxyFcQi4x8aAPiXAAjhrtdLGjtgmxwEpJWZuFR2ZBzCbYW4ofZFfA0VWP8LCxrM3WIzw/AVtlPThL8bcRFqg/8AnUH3hAs/wKzWbHxAm/sdvR6nunsPC/fqJpnpbmJkQnS2sME52cglXDH61A8Vbvi0l0chLWZu2sfonJlHT1mCgxeZqYhK1Fu37dXFONht/8DXD2wo6Jt9wkCIBqJBW8mKyz5ZTS71BKD1FKD5m9zuKVrACEro2CRuOa5mlvbEF4ZqK0Bktzk7BrFA9EwNrZhITP2JNoYiiliI5Mw9qhncIHAHt9M8KzpRMIKh4KIOZbhr1eO4VPCIFzXy84W/F3iigSeethQKaLHdqt7OVLdGYJwesTMFdo119wFjPsbbUIDZbOCmR4bgKcxQaLR7tdAqzeWpidXkR9S5rluVlCwzOwd9SBmLQbkjm6G5DwhxGbL+zKWjEJzU/CUavt4oa9ugE2DXY2KiKbGhNraWGxEcKDw6BxbcfEtpaWkgtmmfxxr/HCYEszEoESGxNPTOlST5ESmgRJ+P1IrKxqWk+EEDh37gBnLeyYuLRCG+eGkn/kIgAQQioppesOxIVo6sIuAEBytighukayo0fqeo7ksDtM6ntx9P+E6Jw42r/4WmH6IXJrCt5jt0sitifJ0UYzF5NOIWmC5A4xDS1IBP2IB1ZgdVWmyrR2HRGlR0Wh7MVZUNEJQiHZrUMJKi6j2BpXcGlQuEb4zINHZG4KtnsekVyT8WpE6ebtaSDeUSK15UHFp+8FZ6Jrkf8BxV0AeJD0rkMcXdsphhKa3l1CPBTOJlOZO0kIdSDaKYaX7hyRvt4fBrFZYOtsTpcx4zHVXKlyRW7WDMBe34LlCx9IdiGS7CgkeqfCR8pBtLsC0nKfsyyJyyB651RBftKm86nz4bkJEIsV1qo6ZTPtjaBmPi7atWTlxVOIjU2h4eufLahnkkZsWg+LdQaEz+L3Bdl3SudzQfYu0rvGYO08JWKdDYSGZmGudsNU6RG1dyraEUa0owcl4Mja7jCCu1nG7jAifc+L2quQJqUEju4GhAan024ykh09xIIuEZiNKjlZW6SZ54koeSU3htDCFOx1zSDc2g1UdplsE49U+qnOR3B5UymT5NGELDgOfb/6R0kdm60fEVfXRqoovROJWGGsVRKlZG23IfH7EW1cIuwalgiE4exrk+walu5HCYGwGx0hdG2XOnF6vGx3GLH7jax/SKSUranaC5PHgdDwLFzV1WuyJHoMKtJHkp2GVOskTxlTkBkhmfTuMCKBCc1NwNu9ay2b1A4x6exF6aT7C3H/QCCRp4y+IX3N2vd8PIrr//Pb6PzMb2iyRXoR2LQuNjLRiQl4779X0zytrc1IrPoQX12F2evVNO+NQHke0clpVD2u7Y/7imMPpse6pQAfDIKz22Bt087qF0hOgvhPn9U0z80QGZ8AsdlgrtXOchEAVt58C9HZOdT94hcKluZWtARZRnLmW4z875KEj8URHZ+DtVNbCwdLRRU4u6NkVu+jS/PgYxFNV+6B5GA1MjSBhL80AhyZ3A50/NX/CXNthab52htaEJ6fBp/QdvVmo4RnJlI/5LRVl5zLjtC1UU3zLCBbVg8DQGhoGvYubS2oAMDe3YjQUOm43IXmxuGo1XZACQCJcAChuXHN890o9V+8Dy1Pf1LTPAkhSXkqEcsiSnmE5yfhqG3VNF/OYgWlFKG50hj/KLBldTEfjSE2O6epWT4AmKurQez2krEGic3OgcZimls4AEBkbLxkgn6aXC60/dF/grlC2zGxtaUZsalp0ERi/YsNQHR8AtYWHcbETiciQ8MFTVMXS5BUVOovrXPZIqV0I4GbFpE5810JAKU+403DUXgfOKjZ9rgChBDYG1oRmpmAt2uXpnlvhPDMOCzeKpidbs1X0Kf+7Huo++on4bl7j8Y550/k1jRgtcHSqO14yF7fDPA8IgszcGgYZ2OjaB0PRMDa2YTY1AL4UAQmV+F94Jke3jj2tlrYNIzfIODoacT0s2+CxhMAZ3xDztDMOOqPPKR5vitDlzB//m3s+OrvaZ53vvCxOAKXRuDZ2w6TVZughQKO7kaEh0pjEiS6nFzccNRpr4sdtS0Iz00AfUrhNTYP08Ubg0aj8Nx+GBaNtn0VIBwHW2szouOTcPb3aZr3RoiOjcNcUw2TS1t3f0IIZr7zP1Dz+Sfg2r9P07w3QmR8ApzdDovGFg621hbQeByxmVnN47ZshOj4JGytOoyJW5oRm50DH4kUbGteXUZRqSjVz6974cbSPkcIkSv2agCv53Q/ZC4pgqklt2Y2k4DIZJqsmTrzUEdsqix3W5Caq4rNmyH6TMC5Xah/+gnwCS5twk03bdObQsmcXPTZ0diK8My4xIVBfJ2SebTc7DldzFzKIU4niwuDxCtIMJmdGYO9sVXRCjxb1SgFwZcUTWQaLDGVT9rKAwDs3S2IDE7Cc9eeDBN6kk6crp0nSZcYICkLYlNnksUPRS5PyXNrpvPCDjHCtUquVQv/9josrY2o/vLD6WshPJeKq8Z6iM2Yhb8BpF1bKAGIzQZbTT3CM2NwNLRIkxbfL7K+JoCK2XwO5ZKZXKdlhoOijMnN7EMz46g58mCmK5lcVnNpdqplXZMN4RprSz2IxYzw8DScuzpySDw/jKyHAaTbt6LJuvyz5L5cBBUqLiNr9S/ZmUvmwlBx397UZz7d5gAOplQvwIuUE0eopG9ItkGi6LIAZO8f7F1NoLEEQmMLsLaLLFFEugnydCVtO48+Qn5JLnIvqsZEJIToyjyc9a0Z7gv5tOVs71+xLyCAs6ENkaVZxGOiwVIW1wtF/ZCtirKJmOjhxC6T6b6DivKgBOHhWYz88few6/u/J9XZqWs4KnWzEtxghP5BEOVs8pQ8J3WTpBRw9DRj5d3LEjdJsWuVqouVWh+RC7J6lbhFisYR8rFGaG4CFk8VzE5XerBFgbWBmdh1U1THElc3NX2iIkuCa4yjvgWByeGNuz+ug+F1sUExuV2oLaBpfD5YW1sRGSsNa7PI2DhsbdpaUAnY2lsRGZsoiUmQpZ+9BGtbC6o//SlN8+Xsdljq6xAZHSuJSZDI+DgqHz6qeb7WpkaA4xCdnIK9q7MgaW4JdxhCSLdsz/MfyP5+CMAzGher4Ky8cRaBj27qknfSEqQ0FH5oegz2xjZd8rZ1NSM8WBoBjsJDU7B2aW8eCQD2pjaEpozv6pGIRhBdnIOjQfsBBDGbUP2lozB5jB2sWaBc9HB8yY/pf3wNfEx7dy6T0wZrS3VJ6JjQ3DiI2QJbtfZBJe3VjSAmU3L13uCEBqdga63TJQiyvbcJsflVxJf9muedL6GZMd0sBz1d/fD2GN+6U6BcdPHqyfc13c5UjK2tFdHx0hgTR0bHYNVpEsTa2orI6JgueecDpTQ5WdSqUz21tZVEPfGhEOJz87rUEzGbUfXpR8A5CzcmLolJEELIQULItwA8CeAYIeRbsm2/noRoz/OUyWA3IeRJQsg3AQzK9kjPirASIlhmCCuCvOgcD5JapVs7n1x9J4oHLzrSKzKQfiesxoiD3qVX7imw/PMPEJteTAcrUw+Eh/XNGiQVrPC3bFXc3tSKuG8Z8YBPkiWFaCVNWLnllI90uuLPRPk85USPQKSf1Q5KAJ7yCM2Mw9HUlnXlL5/qUVz1kq+KpbB2tyAyNAk+QWUykLTOEGQkwa+9Y7EsCecFeVKSqQTPiWSOpOVBkCcqk6U12Vo7F1vwIbHkg627RfYyszynuPJyOC1fcRO/P0djG0LTY+nvFN+nWB6I8ue03CjJlOh8+p3L5DFdbpG8UVGZwrNjIGYTbHWNkhXirLKjYomQcVpBEMXvGZSg8vF7YGmp39zKa4HQWg8nM4Xkvau2XXlbh8Lf6YLJ/1ZeQYeo3QiWIBRA8No4lo5fBDWZwacsroR+IEG51EGk58VtWZSXcD6X/kEIcOzoaUbo5mQ6LXF68ravFPBVUg9KMpVLXZLM6yTvhgChmVE46lsBkynjHSr1Fzm3ZaENZ0vHYoK9thmh2TFF+VG1KMpFrpSqLGWFkGFRJ3ykgFyPC0d4YBL23uaM8UL6M9ZkSegbxOONZPrq/UOCCgeXthAUymNuqAbntiN0U2VSTZAhsalehinH+vWTTipLH5Gtf6cAgtOjcDS2Z8hRvuMExfGGSv8ifHY2tKFm/91GUMMAdNLFBmT1nROILSzokre1rRXxxSUYfQthmkggOj4BW7tOC4PtrYiOjcPou0smVlbA+/261lMpTIJExsZBrBZYGvTZMavy6IOwFjBv4zsVA6CUngNwDoCigy+l9NsAvq1wbsvAR6KIjs3C1qPPSoilqhac3YHQ9Cg8PcaNCxJZnAWNRZOTIDpg7+tE27e/Dhg8InZ4aBKc2wFznVLg+OJjb25H+M2fgI/HYOKMuw1saHIU9oZWEJNJl8FvZHQGKy+/j8Z//xkdcpfC9HCS0MAEHNuaU1HvtZcKx7ZmLL99SfN88yU4PZb80aoT7Y/+Mswut27550poaAqVRw/okjchBI7eFoQGJuG6bacuZcgFyicQmhlHwx0P61aGmfdfgaOpHZ5O/WNAMF0M8JEIYtMzuv1otdTVgnPYERkZhXOX/jKhRmx6BjQW080dxt7bg+bf/W1d8s6HyOg4OLcLpkptg6IK2DrasfjCi6DxOIjZuD/NIyOjsLYlx8R6EJ2YxOqJk6j90pPrX5wDJWEJwgAiw1MgHIGtQ/sdCYDkYMnZ3IHg5Igu+edKaHoU1spamOz6uBBwNivM9VWgOpjK54Pr4Ha0ffu3dNu+TNi5JzxjbHP10PQoHE36/ZAjZg6+N84gsWrs1aZyInxzAo5efdzIAMC5oxXh4WnwkZhuZciF0MwYnA36/EABAGtFDUCMP8Tp+OOvoeL+vbrl79jWjPANY5v1RxZmQOMxOHSUp8jCDHzDV3XLnyElMjYOYjLpFkOBcBys7e2IjBh7TBwZHYOlvg6cw6FL/pzNBnN1NWjc2GNi5+5+tHzjd3QbE1tbWgBKEZ0wtqtrZGQMtnb9xsQwcfCdfB+JQLAgyRl/hKA1ErNVqQuM2LxZbKoqmJuK3RnkR9qclRKJ24LYVYEXmbHKTWbjqyE4D2wHzJaM8q4F8lMwed5MVchMzx3NHQhNjaxrZrqeqarcLUFs3qxkzioxT5WZsKYfXzDBnhqFvbld2SwWov83XCmAommwyDdo7u9+ivlnX5aY0IvlR2q6LPpMOYlrjNgEWkmWBLP5tAk+z0ncbJTM4wXXKj4YgbmmQvKC1wLiba6SJGbP8rpPHZzZAntdM4LTo1KTaCAnU2clmclFnnL5LPzNgyI4eQuOlk7pdaLnTFMouZKZ0JsbapNb5d6ckLpqlAmKbRiQysNmEhcSkOhRhXYjOkAIHH3tGX1BNpdJiTsDv9ZXSL5L9SNq/YPwt7WrCYQQhIenpOVKP5f0ecSfBbeNTSGreyVdGwuuIuZbSsZmkrctFTfJjLYsFF2tLXPS6+X5RH2LuPLXf4B4yKfYRynqJvnnjaBU9yLFRkXnEqEIiNUKzumQjit4oihLSvIkyIVa/5ApS1KZtacsQXhK0/2DeCyhLGNF6iOwdk78zoPTI7DVNICzOdLui1BwiVKTDcqJ8hX3D0qukSqfneLxD0N3+EAQjv4+3VakAcDe2Y7wLWPHNouMjMLWoeOPVgDz338eSz/5ma5lWA8+HIG5Sh/LaADgrBZYmxoRGTGuPFFKEbk1Antnh25lsNTXg9jtiIwWpp7YJEiJ4D7ch6bf/Xe6lsHR3InQ1Cgon20fHH0JTg7D2dKlaxmsbfUI3zSwIkskMPz0nyN0ZVjXcjiaOxCavKVrGbIR9y0j7l+Fs1k/hU84DrbeNoRvGN9XtFxo+6OvwbW3W7f8OYsZtu4mQ8tEcPIWTE43rBW1upXB4qkCZ7UZ2npx+aUPMPYn/6JrGRzbW8H7Q4hN6hNbIReCUyNwNumnhwHA0diB8Nwk+LixLbDKBde+PWj4ta/pWgZbZwciI8YeE4eHb8HW1alrGayNjQjfMq4epokExv6vP0Z4UN8xsa2j3dD1FF9cQsLng03HSRDCcbC1tyFSoHpikyAlAKUUvvcugg+GdS2Ho6kdfCyKyPyUruVQIxEJITI3DUeLvoMl+/Z2REdmwIciupZDjcjIDGg0BlunvltxOVu6EBwfNmzArODkCMwuL8xe/VYHAMB5cAc4u1XXMjCShIcmER7Q34XLsb0VoWsGngSZGIazqVM302Ig5cLZ1ImggSdaQ9fGYO/Wz7UKAMyVLliaahC6ZtyJ+9DULV3jywDJbXKdLd2Ih4y/k85Wh1IK/7nz4MP6joltHR2g4TBi0zO6lkONRDCI2PSMriv3AGDv6kB0YhJ8xJhj4uj4BGgiAWurvrrY3t2F8JC+EzHZiNwagamyAmad4qYIOPfsArEWZkzMJkEUWM+FIdNNJtNkVe2Q7xaTdRePVDniM8uY+W/PIRGMQOIDohKJnqicz0BsGy0ySZWYHaevBUwOB2y1DQhMjkhNT+X3qLgbZOwSk+VQdG9QMFsVXx+aHAFntcJeJ1VkGc+Tj+mzmtmv6LxcNiztr7C0jwAAIABJREFUjSBWC0I3JhTN6eVyI94RJldZElxg1GRJel56hK6PwdreAOJwSORt7YHElSb8naWOckFWjZQAzrYuxP0riPmWVGVgPVPnnGQpx52GJK5VSFoVOVo6pD/kxPdsBon8yL8THwQVD9+JyifuK6irW8mg9r5EFNBKX1m3ilj+2Sksv3Y2i8sMMtxkxG5uPNZ2h1HrGxISt0jl/sGxox2h62OgPE27Lyj7B22yQnKpb7neJsm242rpVu0flNpjXn2DuG1zCt8jeThbOhGcHFbtMxSrTK0e1FDtbxXcSMSXUorQ9TE4drYru1OlXKeS/cPa7kJyuRGy3Uj/IHx29LUjdG1Mob+SPZvE1Sf3PkK1jco/K+j7eDiAyOIsnDK3RCV9TmV/Z+iMbDKgkLf4IGYLur74m7B6q9QflKEJ8fkFzD37r+AjUV3LYXI5YWmoN+zqfWR4BJzDDkuTPrEEBaytLSAmk2F3PwkPj8Da3ATOZtO1HLbuLiSWlhFfWta1HGpEhm/pPqEGABX33YPKow8WJC02CVIChK6NwFxXmYzhoDOOlk6EJob0LoYigYlhOJo7QTh9xZqYTKj7+udhbdHPFDwb4WujcOzQd1UNACzeKli8VQhOGHPmOzgxDGerfm4PYlaPn0Ns2rjm6uVC6NoIHH36tx37jjYklv2Izy7pXZQM+FgUoZlxOJs79S4KvNv2ofbIUb2LoUhsch68PwT7Dv2CfQo4drYjdNWYP+SCE8Mw2Z2w1TToXRREFmawdPm03sUoe8KDQzDX1sBc4dW7KLB1dSJi0NX78NAwbJ0GGRN/5RdhqavTtRxqRIaHYe/u0rsYMFdXwVRRgfCwgeWpxxhjYt/7HyI2P7/pdIy7D4+OCCs34oUNnspnjJLfJihJ74aaTc3wKiu/4pUi+Yq88Dl0ZQT2nZ2Slce17ze79CmFEpkliWgFhRLA1d6DmbdeBAUFEb4Ur/LISkSRcUl2owKlFSPRY4ofmcquD44PwdXem3l9oVBasVfBffsucNxadDlK1gpDKU2v4MllihcVnMsSwVBJnsSyJKz8pc+Lylz5+N2A2by2ZCo8i1J2cgsRlUvSV8lX9qj0urTIpD47WrsQHB9CZd9ta7fQtWuEgHaEFxWFrmVDZXkoIpcpmUynH00kM4loCOHZCTQ98kWpHMrSzWmFU61YwvtJ/4NUxWQ+0OprH4L3h9ZPtFyQqb5c2rm0vtfqmYoM4jIUlajNxudWEJ9dTutiAT51r2pbzviOgILI0pC2Z/F3CZ7LOG+u8cLSWI3g5RF462skq/aq1gdqFgtq7YeItLmC7Kf/F7UbQpI7KhGOg72xNdOKBJlVvF7foNau1NqyuEy26jpYa9cZeBMV+dlo3yFWVMInSkSKOvmuuEovmr75ZZi8rrTlqXAPD6I43uBFhRX6B5oqbDZ5EsogWIAI54V7HH3tiP3NAuKLPnAV3nUtPApqlabQtxPR58DYYHIymuMAPiUzCjpZrMMJVXwNme9aaZwgk2kqOh9ZmcfU8R/l/YiMwhIeMsaPViC5Bezyz1/WuxiKhIeH4dy5Q+9iAABc+/fpXQRVKj7xQMHcKzYDISTpEjM4DPdBfbZNVyMRDCI6OQW7QSZBVt99ryDucMwSpASIDE/C3tepdzEAAM62HsR9y4itLOpdFAl8Io7Q1KhhVu6jk/MY+72/MeRWubbuFtja9V9VAwBXWzeC48azLAqOD4Oz2tJb+eqNvb8ToWu39C5GWRMZmoS5tgLmen1jxAg4dnUidNl4K0bBsSE4mjrAmYyxxjL91k+xcPYdvYuRgclph/tIn97FAABYmmpgqnAbMi5IcGwQztYevYsBAHC2dBs2rkE5ER0bh73XGDLh6OlGfHEJsQWDjYljMURHxmAzyGRRdGYWE3/2l6CJhN5FycDW0Q6rzi5DAvaeLt0DtCoRHhwG57Abp556exAe3PxvBzYJUgK0/unTcN9jjFlUi6cS1qpaBEZv6l0UCaGpUYBSOHTcyUOMubYCkbFZhAfG9S6KhJXj5zD9F/+mdzHSONt6EFmYQTzg07soEoTVR73NSAUcfZ0IG9RcvVxwH+lDx//7H3QN9inGsatL9x2elAiM3oSrrVfvYqQhZjN8g1f0LoYESilGf/evEbpmjDZNCIGjvwOhK7f0LoqERDhpkedqM8YPXpPdYZiJ8XKm+Ru/DdfB/XoXA0DShcFcU43wwKDeRZEQuTUCEBgihgMAmCsrEJ2cMlxcEN+pDzD7rL47dImx93QjNjWFhD+gd1EkhAcGYe8xzpjY3tPNJkGKAeX5tAmoYKKaLRiqOBieENxS6VgLQIlU0DMOPC8PXCY6kCxDbH4FiWAUnNWyTsGJ1HQ1j2CWGabAZO0Qxz4TzjnbexEYG5QGJMOaOapSYDJxcMpsAfDUAputl1dg5AYcLZ3grFbVwGaKz6n0eb3KUjM1FwWz5CxW2Le3IXjpVoZ5uloARWkgXqjKUoLPlKdsAXfFchy8MAiTx7nOM66lXSgyPLdS1WiprYfZ7UVgbCAjKF3avFlBZtTkJEPmBLlTCaCodm9gbCD5Q05FBjPM/HOWH2S2S9nfSvJg29EJcMb48a0dVP2di1F4F7m6x2R6nKm1R4LwyCxgta71DcjeloXAlkLfsBb8OHlztv5BHCRVOTg3gaO/E/H5FURnltT1v+DSk6uAZrlMIv8q8LEoQhO34OrcllVnq73X9YJnZ+sfJHpDVGZXey+CE8PgE3FlnaFUB7lUl7he1dq14kEQnZhHdGQaloaajPeafbyR2T8A0r/F/UNS/uTBUEXyJBSJEjh2dSP48ZAkH2BN7qQvUlYPuSCu1xzrOGmRZ09OPMjecdpbTThEcqMoJ7JyZAuwna1vcbUbZ4JPEwy2/Wt8aRl8JALOss6YWEPsvb2GmwQJ3bgJW1cXiNkYFnmczQZbRzvCNwf0LoqE0PUb4FzrjIk1xNLUCM7tNlw9hQcGDWN9BSQtZgoBmwSRYZRZLoHF7x/H/Hdf1LsYElwdvQiM3oSRtjYNjN6Eq3O73sWQ4NidHFQaBUopQpeG4dhlDJchILkC6erYBv/oDb2LkiYRCSE8Mw5nu3EUvsnlQMd3fl/vYmiMcSZ9YnNLGPvGXyE+v6J3UdJYaiqSW5teMo6OCY4PA5wJjib9g8cKOFo6AVCEJm/pXJI1QpeGYGmth7nSrXdR0jj29CA2MYf44qreRUkTGLkJZ5txVh8BoOGBz+hdBG0xUN0DwNLPX8bij17QuxgSHNt6ELoxYKgxcfjGABw7tuldDAmO7b0I3TCOFTnleYRuDsCxzTj1RAiBY/s2Q9VTIhBEdGLSUJMgJpcL7f/Pf950OsbSbgaAxhOIzRljeyJKKYIXB+Hca6yVB1d7L+L+VUQWjLE3eiIaRnBqBK4O4ygyAHAd6oPrgHHKFB2fQ2LFD8euwsygFgpXx3YEbt0wzAAiMHITJrsT9oYWvYsiwShuGFrBx/Td/lBM6ONBWBqrYak31vaYjl3dCF00zopRYOQmXG3dIAaJBwIAnNmCursfgcnu0LsoaUKXh+DcbZzJaACwNFbDXFuB0CXjrGgHhq/DbbDFjXLTwzSeQGzRGPEukttK34Bjh7Fkwr69F4nlZcRm5/QuCgCAD4UQGR2DY7txxp8A4NyzG46+nXoXI01sahp8IAh7r7F0sWPHNoSuG2cSJHzjJjiXE9bmJr2LIqEQuphNgsiIL6xg8UfvSl0JsJ4Lg7K5qpqJs9htIZt5anRiAfGFFTj29ojsO6F85EueJuTi78xuL+z1LfCPXM/uwpDF3YAqHSpm0GrpC0dwfBCcxQpHU+u6ZrZq7gxZUahjKql7ZRmwtjeh6hfuS6chlaX13azE5vSq7i8plypFU2fRAQpwNitqvvIIOI9bVE7RNWoVk485PSB9P2rfiXB1bUNsdQmR5fmM+9dzs8pwe1nHlFmejlL6/uFrcHVuB+G49R9b4XnyqSrJTdnad77vYAsQXZxFLOhT1wkbRdFtIXuioQsDcOztzXARkLbnbC6TIt0gZJtyV5C7LKi6tYn6B6EMjr3bEPx4MOnGqfZ86fNigc+xqtSqRcXtIHDrBlydO9bV35I2ykHiypD+HqJXo+Imo9aW5Tqo9vZPJCc1VcqtKlfKPlNZK2w9V0JKAeehfrju2Z/WzZnut+uPN4S+AUI9qej+zP4h8zuh4hx7eiWTajSjQrJXTT5VJaoyRX0d9S0jMj8Nd/fOrHp9PZ0vluFc+we18UwZqmEklpex8uZbehcDABCbnkFiZdVwFg7migpYmpoQunZd76IAAEIDg+DsNlhbjbWQY2ttQeXRB/UuRhpit6H6icdgcrn0LooEx47tiC8sFGQL2EIQvHYdjp07DGWRVyi23hNtEs5pR/CCMczaghcGYO1ohLnSo3dRMnB170Bg+JrexQAA+G9dh6t9Gwhn0rsoGfhOXMDST9/TuxgAAEtdZXJ7XINh8VTCVtOAwC395YlSCv+t63B3G2e1omzhTAgM6T+opDyP0CXjWeQBSZc7PhRBZGhC76IgHvAhPDMBV5exVmmBpIvb+I+fRTzo17soAADPvfth723VuxgZOPf1ICSfVNOJwPA1WCprYK1aZ4tjRlEhdjtCV43hrhq6dgPW1haYPMYbEzv7dhhnEuTaDdi3bzPkj1b/6bNYOW6M3bosNTWoePB+vYuRgbmqEpb6OoSu6d/uKKUIXb0Op4EseAqJ8VqIznAOG+KzS4hN62/+5z16Gxp/50t6F0MRd3cfAmODupusU0rhG7wCd48xthqUw0diWHn1A90n1fhQBON//F3El4y1C4uAq2sn/ENX9S5G0vpgdQnuzh16F6XsMdns8BthopUQtPzJbyYt8gwG57TDvr0dwfP6D779g1dh9lbAVmuMLfTEcFY7guPDhphUW3nxBFZeOqV3MRRx7OlBwhdE9Nak3kWBf+g6XF1MD+sNZ7chPj+P2PyC3kWB5+47UP+1r+hdDEUc/TsRvjkAPhrTtRyUUgQvX4Gz36Bj4mgUq++d1LsY4MNhTP31M0isGnNM7OjbieAV/cfEsalpJFZWDGd9VSjYJIgcswnWjgYEP7qZNFFVMWmWRvuXuieIXRTkLguZbgvKptV8NA7KA5amWolpbDbzVIlJveQ8cjeBFiWfzfTU2dIJYjbDn9rVYz0Xhoy0FEyg8zV1pgQIL84gtrIIT09/bmavGc+bh7lzrnawIjtu5/7tiM8sITqxoGJCLzV7TvBcakcINRPoTFnKxXQ+cHEIkaEpmLxOZdcLlWfI2bxZpX7l70DxvQDwbNuFwMgA+FhE2Uwd0jSyyU1avtbJVyJPqc++4auw17fA7PFKzquZV+dKRj3m6cpW6N16SgHOZkdg+AYozWFVWq2Nq7V7NRRckfhAGOaGahCrTeo+IHeNkbVlJdcYnk/6bWXqgCw7eCjoDYjkwXlgB4If3ZC6N4iEXFV28hBkeXuVkDrvH7gCT++u9C5GkuRzcTGQt1/Zfel7RO5vim1ZIV3CEbh7++EfvJKzPOTcxlXdj9YKJX43vnfOATzFmutMps7O1WVy3bHHOv1D2hUndY5zuZKTamevKbYF1TFGljrMqMdsspSC5xPJeCC9fTm7q8jHDBl9AUR/K/UPIpcrpTFMXnpkC0HMZlgaGxC6qu+ENI3HAUphqTemZZC9qxPgTAgP6htTJzY5hcTyCpz9xly5d/b3IT43r3v8lNC1G4hOTIJzG8sVRsC5qx/hGzfBR/VdaA5evQZrW6shra8KAZsEUaDp934ZFZ88omsZguduYPR3/pvuFgRqEJMJ7s4d8A9c1rUc/oHLsDe2wez26loONczVXli7mhE4q+8KZPDcDTj394KYjOcyBADOli4QiwX+EX3N/3wDl+Du6de1DIwkJpsd3b/+DRCibzc19cd/B99bZ3UtQzacB7YjOjSB+JJ+u3rw8TgCQ9fh7jVu23H39MM/eA2UT+hWhvjCMmJjM3AeMK6Fg/O2PgTP6/uDNzg6BJpIwNW5NVcfS43Gf/8b8Nx9p65lCF66jPE//a/GHRObzXDs2IbgpSu6liN4+QpsHe2G/dFqrqqEtaUZwcv6WjkEr1yFo8+4cS7svd0gZjPCOu8SE/z4Mpy7jNuvbxZjvn09oYC5pgIJXwiJUHRtpQRqK3fSVT/hEFb0EzyX8Z1qcLJU/qCA/8NrcOzqSka/VVl5FC9ZbKRfyHdFO2P1fvturA5cAuX5dVfv5atz4usVA1ty66cDAvgGLydXH8XPIV8JyvY8eZI2HJGviims7Avv2Xv0MDiXQ7rqJlyusIosl6mELPipclBd9VVjGucROHsdztt2SvKRVob4UK+YdQ1ncjUdkb1PYjbB09MH3+BlVYsPNQsjRZnJssqsZlUUC/oQnBiGZ8ceqXyK08nhefJG/E5UVo/LEkJgcrkRXV1SDWK54RXaHCxxKCWITi0iNj4De393OsNcV++V2jIvrMADin1DNosusQXKmkUIgaWlAeaGGgTPXs15hT7rdTnUqbzuQyODoJTC2dmrbL2hsIK/Xv8gpC3vG3Jpy0plcHVtg6trBxKhUOb1omfPt1+UVoja98kjePYqLE21sDTVJk+L7xG/dyjLk2B9Ku4bBNRlSdY/CMUR5S3uD5wHdyJ6awqxfLaDzsOqTXKbipz4rn8MV/cOcFarpFoz2rus+1Uda3Br96uOQxTSUZWrMsNcVQk+GAIfiehWhsDFy3Bs7zX07jzOvXsQ/PiSrjF1gpeuGP5Hq+euO8A57LrlTxOJpMvQbuPWEzGZ4OjbiYCOk2rx1VVEbo3AtXe3bmUoNmwSRAFKKcb/8Bn4T+lj5UATCQTOXofriHEbKAC4e3aBDwcRmhzRJf+YfxWhiZHkJIiB8R47DO8nbtMtfz4chetIP1wHjBewUIy7dzd8g1d0G0D4Bi7D4q2Cvd5YEdXLmZWPz2Lkn/5Kt9W/4LkrsLQ3wVJfrUv+uUAIgetwP4Jn9LPK813/GO7uHeDMFt3KsB6c1YbWz30VZpdbtzKYqipQ8di9uuWfC5amWlia65KTajpAKQ//9Y/h3blXl/wZmVBKMfnnf4nAhY/1yT+RQOjKFTj37tEl/1xx7upHwudHZHRMl/zjKyuIjI4Z+sc9AHjvuQueO/SztucjUbj27TVs3BQB5+5dCF3Sb0wc/PgyzDXVsBhsa9xCwiZBFCCEwHVwB/wf6DMDF7p8CzQaM+RuBGJMNjtcHduxcuOCLvmv3rgAa1UtbHXNuuSfD6vHz+kmTyaXHXW//jg4p34z77ng6ekDH40gMDaw/sVFwHfzIjzb9hh6panccPfsRHx1GZEZfXY/CZ6+DOdtxh4oAYDryC6Erwwh4QtqnjflE/BdvQhP337N886X2Ooypl/+oW6DStehfngeOKRL3vngPLwLgQ/0+cEbnhhDPOAztGtVuUEIgWNXH4IX9ZGJ0I0B0ETC8MEZTU4HHNu3IfDRRV3yD5y/CEt9HSxNxgtOLcd36gMELl7SJW+T04HaL34enM2mS/654tzVBz4UQnhwSJf8gxc/hmvv7i09JmaTIApQSuA8shvBiwNI+EPpc8pmz3KT01wO2f2ydG3b2tH0h/8biM2WTn+tcKIjp4fJQXjXMV2WmAzLTEM9O/Zi9cZFUNCsLgyqJqYqwVHV7hOnv3L9I3j79oNwJCP4prwKxOXfkLlzjmS6NyUzi80sYOnn76dN2tXNnpVlSgjEm48sgQI0wWPqL55DbHphrTyKZS1chSiariPz7zSpvzmrDZ6efqxcO69o9qzmHiWXJyWZyiZPlACJSBD+Wzfh3b43M195WbU0j1ZxtSoXzG4PnB09WL3yUfEyEbU3ebTcml/9BXg+cURS97m7MKj1D+v1G7LglUp5UaEsycPa3QpTlQfB81dlMrMm/CT9dwEFlgCBkeQuYe7taz9aFV0YNtA/5Ns3UPln2SMTux3LH32A4Phw4epABFGpewDwn7qAlRfflbx7SORg7fq8xhsAeMW+QaV/EHS+7Huxe6frjr2I3BhBbGFVUvHicuell3IVOQL4rl6As7MXJodz7V6F9yyXJTX3KImOziJTqi4wULi3DHHt24vQ1evgQyHN87Z3d6LxN58CZ7Vqnne+OPftQfDCRV2sFwPnP4LrwP6S+NEam5vH6jsnNM+X8jxmv/svhtjtaD04ux2O/j4EzhVx/KNCIhBA6MYAnPu2tkUemwRRwb6jHeZKt+ar9zSeADgCx84OTfPdKN7tuxEPJGMpaElsdQmh8WFU9B3QNN+N4r5jN8JXRzTfojZ8bRT+D6+A8xozArYcb9+B5KRaIq5pvivXL8Di9sLRUhrtrpzw7j6I1cvnNR9U8uEIrG2NMFcZM+iyGEIIXEf2IHBSe6s83+XzcG/rB2c19qoakLJe7NkJ32XtB5X+4x+C92tvqbMRrG2NsLTUIfiBtivalOfhu3QO3t0HNc2XsT72nm5wbpfmq/c0kQA4DvbuLk3z3SiuvXsQX15B5NaIpvnGFhaT8RsOGt8iDwBcB/YhPDCo+Ra14cEhBD++BJNBd4WR4z64H4ELF5PtQEMC5y/AXFUFW0e7pvlqDZsEUYFwHJr+09fgvW+fpvkGzl3H6O/8f7oGVsoHk8MFT08/li+f1jTflWsfwVbbCFut8c3+AMDa0QhrSy18J7QdVK6+9RFct+2AyeCuMALunj6A5+Ef1nY3nZXLZ1DRf5vuO5EwMvH070f7V39L89Wt6f/7b+F7x7i7wshx330A4SuDiC8sa5YnH4slXWF2lcbAGwC8uw7Ad/kjTSda43NLCF8dhuvu0qkn1537EHhf20m14PBNJEIheFg8EMNBOA6NX38a7kPaTlAFP76Mif/yZ7rFhcoXk9sFZ38f/B+e0TTfwPmPYG1phrWhXtN8N4q1tQWWulr4z53XNF//h2fg3LMLnL00xsSOXf2g8QRC17TdOdF/+izchw6UhFXRZmAjfiVStpbW5jokognE/eEMs+f0pYrmzzkcQIa5Kyjge+cCnHt6AGKS2PEq7hQhNm9OmTsTualqoVByT0hRuecwVq9dQCIeVXWnkZsxr3dI8pSZN/OgWLr0ISp2H1Y2dYWsDEVCzYRe2UyYQ8Wjd4GYTHmYPW9ApkSylAjF4Dt1CZ77D0rN6NXMmNNlgkSuiuGOITdpFj5zFgu8O/Zh+dJpyXUQV3GespTV1JkA0ZUFBCeGUbH7UIbJfob5/mbkKZf6UzEzz2j7ZQIlydV7S0UVYuJdYnK8d2OZAtGRScTGZ+DY1SvS/WttI38XBqk7A9a7BmuvX/zupflK87a0N8PS1ojAycJYOSjpcHmb8F+7BEI4uLb1Z3dhkbX19dxcJH2s/Pw6ZcpIXyD1t3vnbjg6uhEP+BX7F1U20Z/43zsHa3crLC2N0ocCJHIhfdcKel1yvVQn5No/SORVkGlA8jnpErMP0eEJRMdnNvbQclIDFLnuT5efAKsXz8Ldtwec3a7s0iTrC3KVJdFjqfcPWEtbqW+SlKNMsTbUg49ENXWJ8Z85C8eObSX1Y8x95BAC5y+Aj8U0yY9SCv8Hp+E+bPx4QwKEEHgfvB/EZNIsTz4SQeCji3AfKZ164qwWuPbuhv+0dpNqsbl5RG6NwH1Ivw0dtIJNgqzD1H/5Zyy/eEqTvOJLPgTOXoPnE6VlCuru7gMxm+G7qU3QrNDkCKJLc6jcXTqKDAC8Rw+h4lN3aJYfH4rAc+8+OPcbO8CunMq9t8M3cAnxgDZmksuXT8Pe2AZbTWmsoJQjwaEbuPU339Zsi0b/26dh390Lc3WFJvkVCvc9B+F/75xmq6Yr5z+Ad+9t4MxmTfIrBJzZgpYv/gosFZWa5WmurYL30fs0y68QWOqrYe/vgf/tDzXJLxEOw3f1Iir2bv2Bdykz88zfY0WjWA7xlRUEL1/VdSeRjeDc1QdwBMGPtdmxKzJ0C7GFRbgPl1bb8d51B7z33q1ZfnwoDPfh2+DYuUOzPAuB587bEbh4CQm/X5P8/B+ega2zA5b6Ok3y0xM2CbIOngcOYPWNM8lYHUVm9a3zsLbUwb6treh5FRJiMqFi1yEsXXhfk/yWL74PT+8umF0eTfIrJMGPbmLpBW0GEOYqD+p/4zOazrQXAkdLJ2xVdWlrkGJCEwksXXgfVfvuLHpejI3j7OoFZ3dg9WLx3VP4SBT+k+fgeeD2oudVaFx37Ud8bhGR68WP0RRbWkBw6CYqDpRePfHxGKZf+AFiq9q4DrnvuQ2uI8be3lMJ9wNHEHjvPGi0+CvaqxdOw+R0wdldWj9Qyg33kUPwnXxfkxgFvvdPw9rUCGt7iY2JzWa4D90G30ltxsS+9z+Aa8+ukolzISZ4+SpW3nxLk7zMlRWo/eLnQbjS+ulr6+6CpbZGExcrGo/Dd+oDeO4svX59I5SWJGiE2OTYfdde0EgM/jPXlc2ekYMZqoJZ6lpea7ab3odvR/3//gUItpkSdwtFPxEN6kLBFDTDTJQA1QfuQnBsCKH5yXVNVfM9xOaniUgQK9c+QuXeO6TlUzB7VjWdzQOiZj+rZhOb4cIgNqEnoAmKxefeTO86JHezylumZPcIf4SHpzH57X8FH0+ITOel5tTp8hbY1UUVlfci/kxJ0kyycv+dWLx4ChS8RNYKIVPidFYHPgYfj6Fi10HVsqmaQG+kCUrcGJKfieo7UHCBK0MoAWAyoeK2O7By5uSalYPsfSbfKd2YehS1a2K1oOEbvwbH/p3KbQUqLgy5tuW0fl/frU3uviCulIxdwwCYvG64juyF7/VTRW/TK2feh721HbaGJsW2otRelfoO1UMgx7YsQaEPElcfMZsRnhrHyplTivetm342UjcJfffCsz9C8CPZrj3CpSI9IE1DfE12NysonMvWPyjLrlTOhMN5sB/gCAKnL6n3eQWAUorR0MJ8AAAciklEQVSV0ydRefguEFNqWKomE7L3Iqm+AvUP645hyhj3oYPgQ2EEr1wtel4V992Nuq98uaRcYQS899yF8MAgotPTRc0nEQggcP4C3CX6o5XyPJZefq3oLlaRsXHM/MN3SybeohhCCDx33g7fqQ+KXv7AxY9BEwm4DpbGphObhU2CrANnt8Jz/3743i1ugLDY/Ao4qwW29oai5lMsrFW1cPf0YfFcca0cFi+cgsVdAXdXaa4WOfZvg7nai9U3iruivfzS+wBPS84KRKBy9yHEAz74Bou7O9Pi+fdQuecIOIvxt94rdyoP3oHI3Ayis8UbVFJKEZ9fgq2nHcRcmm3Hc+wuBM9dLmqAVD4awfKZk6i8o7RcPAQIIai64z4snzkJPhYtWj6xuUX43/oQpkrj7zCkBLGY4b7/MHyvnCiqi1VoeACxpYWStCoqNzibDe4jt8F/5lxR84kvLYNYrbA2NxU1n2Jhqa+DY+d2rL7zXlHz8b33PszVVXBs31bUfIqFc1cfTB43fO8X1+1u9Z0TAKUlZwUi4D5yGPHlZYSuXitqPqsnTsJzx2FwVktR8zEKpSkNRUW+2kZQ+dkHUf8fnlRe8ZOvtiBzAS7je9kqH88D03/xAyz+8C3pyoxwv2QFUJqwJJhZAaBqqx0KK+Ty1ZLq2+7GyuWziIX8Gas0WVdUclnlIwDPx7F47l1UH74/qchkq4Uyg4e155GjlMdmEK2iAcqWFunFa45DxafuxPJLH4CP87JrRO9cdmQ7L5fL+EoQ/hMXUfGpO9PlkwZxXbsv8zlI4VaQVVZh09+JspXLg8nhRNXe2zF/+rhiAL11V+dUZEl8b3B6FMHxIVQfvEt91Vf+Wa3KCJCOTLxpeYK6EiknZPVt9njR9R//ALbGTQ6K0+01+eKIqF7Dl25g6g//EnwwIs1cZfVebO2VGXRSuX+QFEXpkOl7tcCZUPgbFLD1tMHa0QzfG6eklgYFbNcr5z8EZ7XB07+2iwdVaisKbV/NOiNnSxCFdIS/Fduv0jUAPLv3AyYTfBc3+WMuywv2vXEStt4O2Dpa1i6X9f/S85mypGphJMtOTZYyxy3iPAQ5liWUhsBz7C5EJ6YRvjaYTpgUSpaQLMLie8fh2XMAZpdbyFbyveSzXH6y6Phc+gale5XSKaIhTMlR9cgnUfdLv1i09CmlmP3HZ7H82htFy0MLvPfeDf/ps0gEAkVJn8bjWH33BLwP3FeyP+4Jx8F73z1YfedE0VysEqs++M+eh/f+e4uSvhaYXE54bj9SVNeh8K0RRIZH4Ln7rqLlYTRKs9VojMnrAuE4BC8MFCX98LURhAcn4T1aWoE+5bi6dsJaXYeFM28XJf3Vq+dBE4mSC4gqx3P/AbgO94FGiuNnvfSz92BproVjT3dR0teK6sP3IzQxguDkraKkP//+6/Du3A9r1dYP/rRVsFRWITIzhejiQlHSX3npLbjuPgjOYStK+lpR8egD8B0/hYS/8INvmkhg+eQ7qLzjvpK1NAMAYjaj9uijMHuKE/w24fPD/9aH8D5SugNvADBXeuG+6wBWXypOvx6eHEdw4Dqq7z1alPQZhcfkdgGEIHitOFvZhwcGERmfLPm4BI6+nTDX1GD1rXeLkr7/zDlQnpZcQFQ5ntsPw7l7F2iRdtNZOf42rE2NsPf2FCV9rfA+eB/Cg8OIjIwWJf2V196A68B+WGpripK+EWGTIDkSnZjD5J/+E6LjswVPe/GHb8Fz716Ya0prJwI5hBDU3fUwls6eQCJU2ME3n4hj9uSrqD50f8m7LnB2K+p+9dMgDltR/Puce3tR9yufLkk/WjHWimpU9B3A3IlXCp52eG4KvpuXUXsnG3iXGvNvvoSFN35e8HQjN28hcuMWvJ8s7R+tAOA42A9zTRV8rxbePXH1/GnwkTAqD2m301WxqDhwBK7tfUXRw8RkQuXnHobjQH/B09Ya76fuR/jKACKDIwVPe+nt1+Hu3wtrLdudq5SITc9g5m//HtGZwo6JKaVYfuV1uA/fBnNFiY+JOQ5VnzyGlXdOIBEMFjRtGo9j+ZXXUPHgfeAspe26wNntqPn8L4DYijMmdvTtQM3nnij5MbGlpgauA/ux9NKrBU87OjGJ4OWrqHzoEwVP28iwSRAlxC4MKbtIa0czXId2Yv57r6mbqqqZQMu+E38ZnVpC+OY4qj7/YKZ56jouFtIyE+XzuUBo9uCPIjcFcXZKpqae7bthqajC/IfHVc2VM0ygkfm9/N6ljz8EH4ug5tC9ykHLlMqqZAarWgdZvlNDsb6VTdmTf0tN6Kf//N+wevwjxesl8iLLSk2eKCVIBMNw7u6Gva9TmrfoXqkttVCZsqfYjMmzUt0L+Yvev5r5uvh83b2PIDB6E/7Rm6rmy4om0FD/jhJg5sTP4dm+G/a65sxyy+VUVkbVtqLynDmhZpYu0zHlhpLrRM39D8N36SOEJ8fza7fr6Ef/e2fgvvcQLPWiVRAlHazihigPkqrUP8iTVQ50Kb93Le0MORFdJ06cEBMqHj8K3xvvIeHzIyPjDUBJcjJ68firqL73KDibXdktTUn2VdqmalsW3weVa9T6I1k6anpGIHhrCGN/+xegfH6m2Nl0JB+OgNhs8D50L0h6mCWuAIjkCumxRjbXJ6X+QYmM75VkJOMm5fyEz5bGOrjuOojlH76MdGyQ9MvIUklqpKoiPDEG/7VLqH7gIUmS8s9qLjDZXFeyyUq2viOX9BmAra0Vzl19WPpZYSek43PziIyNo/KTxwqarl449+2BubICK8ffLmi6vlMfgMbjmm4xW2xm/+G78J8pbLw8PhSCY/s22HtK2zJaoOrRTyJ0/QZCA4MFTXfxZy/BuW8PrE2NBU3X6LBJkDyo/ncPI3j+BoKXhwuWpqWxGp1/8w1Y6qsKlqaeEMKh/v7HsHjmHUSXC2OynoiGMX/yVdTecQyctbTN1MXYd7Rj4ftvgA9FCpJebHoRt37zzxCdnC9IekbAWlmDqv13YuadF0FpYVYIAiM34R+6hvr7P12Q9BjaYm9uhWfvQcy//AIKGayx+qufQ+UXHytYenrjPLQHlqY6rPy4cJZUy6dOgPI8Ko5sHZ9he1ML4r5VLH9QOKuZpe+/gMV/+mHB0jMClU8cQ2RoFOFLhXGBoJRi7qWfwLv/EGyNzevfwDAcVY9/GsFLVxAeHCpYmpb6OrT/5z+Epbq6YGnqCeE4VD/+KFaPv43YwmJB0uTDYSy/+joqHzoKzrZ1xsS2rk4svfgy+EiBxsSzcxj9oz9BbG7rjIktdbXw3Hk7ln7684JZzYSu3UDo+g1UP/ZoQdIrJUpmEoQQ0k0I+SYh5Fs5XPskIeQZQsix1PEMIWTT04DW5lpUPHIHYlOFaVC+k5cQujIMzmkvSHpGwdPTD1dHL2beeqEg6c2deAWc3YHqA1tn4A0AFY/cDs5pw8JzbxUkvblnfw5HXweszbUFSc8o1N31MKKLc1i6+MGm06KJBKbf/DGqD9wNWzUzv84XI+hhAKg59ihoLAo+Et50WnwkiuWfvAYai4Ozb50BJeE4VH35M/CfOI3o6OSm04stL2HxjZdR+8jjJe+SKIaz2VD7ycex+MbLiK+ubjq9yPAYAifPwv3AnQUonXEw11TB+/C9WPreC+Cjm/fd93/8ESKT46g5+qkClK78MIIutjY2wHvv3YjNzm02KQCA/9x5hAeHwNm31pjYsasf9p5uLL3ws4Kkt/Tiy+BcLnju3lo6puL+e8FZrVh+5fWCpLfwo5/Asa0XlrqtNSaufOQhxGZm4P/g9KbTookEFn78Arz33bPl6ikXSmIShBByDMBBAD0AKnO4pRrAMQCvAfgWgGcopTlPVWczNa355UfgPXoYPI9M09GMSO8K5qWpa2ILPsz+7U8QnVpUzk9uWp1GbgOs9AA5Paa6aaeCSXM+LgwgQMMnfgH+watYuXFBMVq7qgm07Jrg7DgWzr2Lpoc/D2I25xa5Xe0z1Kssa33IE6Ak0wxaZj6sZKIuN3uGyYLaX3kMyy+9j9hSINNVRc0EWuF736nLCF0cRO3XHlU2nc/BtUpxpyFxfjmgWr/y8zLT4mxmyWa3Bw0PPIaZt3+KWGBV1TQ5m4mzwNyHbyARCqDunocl5VAz31dqA6rPtFEU61zeIPRHaz28ljEyqsBSWYXWp/8jTHYH6Ca3PVl+4RUEP/wIhMi6Q5k+V3NDlLitiV1XxOnI3FuU9INyexf3A9JdnjJ3DcusKFt3B1y3H8DCs8+BxuOKz5aVlM8HD4r5n/0I9rYOePYeVHVbyKbLJW1yrfpU3WnSVb7eNSp6I2tesury7L8N1sZmLJ54M39XNhE0FsfiP/8Q7rsOwdbZKvoCip+l7owQ6WypG5Si7k/dL3etUus/kteryBOk1yuXFfA+ehSUUqy8KNu1I59KI0Dc78P8Cz9CzScehtmrEPdB1ocrjjuE69TGALL+RSld1T5Ihc3IRiHRTRcrJfzZz8Bz5+2btsqLLy1j/t+eR2y+OEGv9YQQgurPPoHAx5cRuHhpU2lFxsaxeuIkar/w+ZIOTK0EMZtR/flfwOrb7yLh969/Qxb85z5C+OYAqj/7mQKVzjiYvV5UPfYoFl/4GRKrvk2ltfzq6+CDIVRtEfezfCmJSRBK6euU0ucBLOdxTw+llFBKb6OUFmxDc0II+FAE47//t4jcmtpQGjTBY+a//wi2nhZ4HjxYqKIZCltNPerv+zSmXn0eMf/GVtf4aAQTP/0XVO45DFd7b4FLaAyce3rQ/u2vw1zp3nAalFIsv/wBan7pYVgat2ZU58p9t8Ne14yJl/7nht1iQjPjmDv5Gpoe+RJMdmeBS7j1MZIeBpK6eOXDU5j9wfc2PAAPXx+E7433UP3VJ0FKPLicGlVfehy8z4/ln218dc13+n0EB26g7oknSz64nBKEEDR+4SuoObY5q4TwzSHQcARVT25NVzvOZkX1L38Oq6+8hfDNjf2GppRi7sfPw1Jbi8q7HyhsAcsEI+ni5Jg4hMk/+0tEJzZmcUZ5HnPf+z5sHe1wHynt3f/UsDY2oPqxT2H+357bsMUZHw5j9tl/geeOI7D3dBW4hMbAuXMHmn/3t2Fyb25MvPrue6j+zGNbdqcTz113wNLYiLnvfX/DbjGR0TEsv/oGar/8RXAOR4FLWBqUxCSI0eAcNth6WjD1X7+HxGr+u6As/fgdRIen0PBbn9uSA0qB6kP3wl7fjPGfPAs+np/5LKUUU68+lxycHv1skUpoDKyt9YhOLWDx+eN5/5ijlIIQguY/+CoqHint7eSyQQiHlse/gvD0OOZPvpb3/fGgH2M//kdU7b0dnp6+IpSQoQeOrm74r17Cyol38r434fNj7u//BRWfehD27VsjaJoSnMuJml/5IlZfeQvBi1fyvj8yOYH5F36EuieehLV2624nbamsArFasfzOcUSm8/8xRymFo387mv7o/wDn3LoDSkf/dngfvh/zf/+vG1qFXH77OEIDN1H/5JdBODYE3QpwDgdsba2Y+YfvIhHIfxeU5VdeR2xqGnVf+cUtPSb2PnAfrE2NmP3uP0st83KAUor57/8waS3x2SeKVEJjYG1sRGx2DkuvvL7hMXHj15+CZwsFjZVDOA71X/0lREZHsfL6m3nfn1j1YeYfnoXn7jvg7NtRhBKWBqSQgeWKTcr3sZJS+vQ61z2V+riIpBkgKKXfWed64Z7dADZnr1Ye1ALYOtGGigerp9xg9ZQbOyilHj0LUCw9LLqH6eL8YG1nfVgd5Qarp9zQXQ8DbExsMFjbyQ1WT7nB6ik3NqWLzYUsiYE4A2BZ8HlMBYF6MmU+mEGqM/hO6tozlNKtaY9XQFg95Qarp9xg9ZQbhJAzepchD/LSwwDTxRuB1dP6sDrKDVZPuVFiehhgY+Kiw+opN1g95Qarp9zYrC7ekraIlNJzsqBPrwH4fb3Kw2AwGOUG08MMBoOhP0wXMxgMRia6WIIQQp4E8KV1Lltcz8QvS/rHKKXiKHDLSEbSZjAYDAaYHmYwGAwjwHQxg8FgaI8ukyApEzxVk+jNkNr7/DVCSBWlVIicXQkg11DmWX3WGWlYPeUGq6fcYPWUGwWrJ4PrYYDJRK6welofVke5weopNwpaTwbXxUwmcoPVU26wesoNVk+5sal62hKBUVNK/qDg30gIeUoc9IkQ8hyA19YLysdgMBiM7DA9zGAwGPrDdDGDwWBsnJKYBCGEHETSVPDJ1KnnAXxf2OucEPJNAA9RSh9K/d0turYGwCBT9gwGg7FxmB5mMBgM/WG6mMFgMDZPSUyCFJJU5zCE3LdszOv6rUI+z53yZ30IwHOpU18A8C1ZIK4th2hgUUMp/b0cri9XWcq5nspVlgCAEFKJtW0JDyOHlbpSlimmi3OD6eLsMD2cG0wP5wbTw1v3WTcD08Prw3RxbjBdnBta6OKtukWuIinTwdMiE8FvZdsmLN/rtwobeO5qAMeQFNZzAH5jqzdQQsgxJP1qe3K8vlxlKa96QhnKkojfF3eIhJBBQoiqEi9lmWK6ODeYLs4O08O5wfRwXjA9zPSwBKaH14fp4txgujgviq+LKaVlcwBYkv19DMmZpYJcv1WODdTTU3qXWce6+haAZwpdp1vtyKOeylKWkOwUn5Od+yaSZstq95SsTDFdXLR6Ktf2w/RwYeupXOWI6WGmhwtRT2XZflLPznRxYeupLGVJK13MoUxI+VDKWUSykjZ9/VahXJ+7mLA6ZeRANYBjKTNJgWUA3UoXl7JMMV2cG+X63MWC1ScjB5geZnpYQrk+dzFhdcrIAU10cTm5w1QjWSFilpUu3OD1W4UNPTch5KnUfWXl25cj5SpLG6IcZYkmzRurZKcfAvC6yi2lLFNMF+cG08WFpVzlaEOUoxwxPcz0sAJMDxeecpWlDVGOsqSVLi6nSZBKhXOLQDL4Cl3bP32j128VNvLcZwAsp4QWhJBnysG3Lw/KVZY2ApMlpANCHQNwVOWSUpYppotzg+niwlKucrQRmByB6eFNXr9VYHq48JSrLG0EJksoni4uG3cYJGeEqmXn5H9v5vqtQt7PTSk9R6WBel4D8PuFLlgJU66ylDdMltL8HYCjNLXloQKlLFNMF+cG08WFpVzlKG+YHKVhenjj128VmB4uPOUqS3nDZClNUXRxOU2CLCJzpqgSAFRmiPK9fquQ93Onoh2LWQag5J9VrpSrLOUNk6X0Fl/PZFH2QGnLFNPFucF0cWEpVznKGyZHTA8X4PqtAtPDhadcZSlvmCwVVxeXzSRIqvLkFVENFf+ifK/fKuT73KmgNa+lTJUEKpHcp5mB8pWlfGGylN4T/hyl9PXU34pBnUpZppguzg2miwtLucpRvjA5Ynq4ENdvFZgeLjzlKkv5wmSp+Lq4bCZBUvwgVaECDwF4RviDENIt+z7r9VuYnOspZab1tGym7UtIbv9UtjBZyg0mS2uklHs1gDOpeulGUk6E77eSTDFdnBtMF28CJke5weRoDaaHmR5WgOnhTcJkKTeYLK2hhS4mqb10y4aUWc0QktvsLIuj7Ka+e4hS+lAu129l8qmnlGAKgleD5D7OW7qeUtsxfQlrz/08gO8L5lpMlpLkW0/lKEtAOujTksJXz1NKv5C6ZkvJFNPFucF0sTpMD+cG08O5wfQw08NqMD2cHaaLc4Pp4tzQSheX3SQIg8FgMBgMBoPBYDAYjPKk3NxhGAwGg8FgMBgMBoPBYJQpbBKEwWAwGAwGg8FgMBgMRlnAJkEYDAaDwWAwGAwGg8FglAVsEoTBYDAYDAaDwWAwGAxGWcAmQRgMBoPBYDAYDAaDwWCUBWwShMFgMBgMBoPBYDAYDEZZwCZBGAwRhJBuQsi3snz/pNp3xWS9cmW576lilIfBYDCKBdPDDAaDoT9MFzO2MmwShMGQ8jSA15S+SCnc17UtTpqMchFCKgkhzxFClrJ0Bj/YSEfBYDAYOsL0MIPBYOgP08WMLQuhlOpdBgbDMBBCzlJKb1M4fwxAJaX0edn5JwFUA7gNQDeAZ+TXFLNcqe8ogC+o5Zua+R6ilOrVWTEYDEbOMD3MYDAY+sN0MWMrY9a7AAyGUSCEHARwRuXrpymlX5Bd/ySAc5TSodTflQDOEkK6KaXf1qJcqe+ALLPxlNLvEEJey3YNg8FgGAGmhxkMBkN/mC5mbHWYOwyDscbTwP/f3v0ep5EEYRx+OwOEM8AZICsDlIF9ZIAyMHURXEkZoAxkhSA5grMJgQxORQZ9H7YXRsv+Q0Ksa/f3VLmEFjQ7+MO7VV3TM1oVL0aobko+P87DXpLcfStpKenUS+1K5xVmyira24Yx1snDAQD+VOQwAHSPLEavUQQB9r64+7rk+lzSQ3rBzCaSViUhuo73TxmuVfOSpGu1q2Y/KHtwAMCfjBwGgO6Rxeg12mHQKxHEM0kjSXL3u2Q36Et3Lw296G+sCs6Zuy/TC+6+MbM7HVbDR/Fzd93MVpLqdqTeuvvFG+YlSV8kPSaf393H3e+T1+sYCwA+FDlMDgPoHllMFqMaK0HQNzfufh/9h/PYBfqHsv7BRTwQSv9O1cvrRmUX3X1ZsuRurqwncivtwv5J0oWyZYGf4/Vd/LyoCvumeUVlfaR4IJjZIgn5ZcmfjGvuAwCnQg5nyGEAXSKLM2QxDrASBL0RFd9/Cpcn7r41s62kZdqvWDAqey82dmrqLUw/u1C2K3YeyKt82Z6ZfUo2jFLJw6L1vMJMWcV8E9/9R1x/UXngv5jZqOV9AeBo5DA5DKB7ZDFZjHoUQdAnz4UwmyoeABGapbtTx47Wj2XvKasUVwVu0aOyY7k2cc9dz2I8DNLX/zUN1jAvKet9/FWodqvmOLKNsu9D4AP4KOSwyGEAnSOLRRajGu0w6I20Opz3+rU8n/xG+4rxm8QSw9uac8cXypYASlnPYhtN88rHuTSz7+lDBQC6QA6TwwC6RxaTxahHEQR9dbBDdFkg5tdqlsO9SKrqmczHWEh6qgl7KQvv/FzzxmBumlfS+3gTG1t9kvSzYdiJsu8DAOdADh8ihwGcG1l8iCweOIog6A0z+578+lVxNFe8N1V5cP+l6s2f8sCtDPxYnrdJw97MpulmU1GB3ybhPZF0Vf9t6uel/VnoeaX/33SeMa+iMb2PAD4SOUwOA+geWUwWox5FEPRCBNzfZjaKgC2eIT6vOFf8W4vlgaWV4rjPWNLGzCbxb6qsEp32TN7odQV+qyyw6zTNq1jV3/Vpxv9FWQW+bR8nAByNHCaHAXSPLCaL0YyNUdEXz5LulVWLN+7+zcxWsSxPxTPNpd356W2qwM9mNin0V46072csKgbrVK93pn5WzRK8lvMap2O6+72ZXcf3fSlWt+NB9NAwJgC8BzlMDgPoHllMFqOBuXvXcwA6EUsF1w19i3l1+7rsodHlvI4c81bSQ0XlHwA6QQ4DQPfIYgwNRRAMlpn9dvfLlp99cvfrj55T3Kv1vI4Y82zzB4C2yGEA6B5ZjKFhTxAMUiyF+9X4wb3bio2VTuoN82oz5ldJt6ccEwDeixwGgO6RxRgiiiAYqrnqd5p+JZbhXZ3h3PGj5tUk5nt1ymWEAHAi5DAAdI8sxuBQBMFQTY7tBYz+x6YdrN/r6Hk1mJ2rbxMAjkQOA0D3yGIMDnuCAAAAAACAQWAlCAAAAAAAGASKIAAAAAAAYBAoggAAAAAAgEGgCAIAAAAAAAaBIggAAAAAABgEiiAAAAAAAGAQ/gdHUU0/+9l/gAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, axs = plt.subplots(1, 3, figsize=(18, 5))\n", "\n", "gs = gridspec.GridSpec(1, 3) \n", "axs[0], axs[1], axs[2] = plt.subplot(gs[0, 0]), plt.subplot(gs[0, 1]), plt.subplot(gs[0, 2])\n", "axs[0].pcolormesh(x/(2*np.pi/k), k*z, u)\n", "axs[0].set_title(\"shading: $u$, contours: $\\psi$\", fontsize=22)\n", "axs[0].set_ylabel(\"$k z$\")\n", "axs[1].pcolormesh(x/(2*np.pi/k), k*z, w)\n", "axs[1].set_title(\"shading: $w$, contours: $\\psi$\", fontsize=22);\n", "axs[2].pcolormesh(x/(2*np.pi/k), k*z, 0*w, vmin=-1, vmax=1)\n", "axs[2].set_title(\"shading: vorticity, contours: $\\psi$\", fontsize=22);\n", "for i in range(3):\n", " axs[i].contour(x/(2*np.pi/k), k*z, psi, 11, colors=\"k\", linewidths=1.2)\n", " axs[i].plot(x/(2*np.pi/k), k*eta/s, 'r', linewidth=3, label=\"$\\eta$\")\n", " axs[i].set_xlabel(\"$x/(2\\pi/k)$\")\n", " axs[i].set_ylim(-Lz*k/4, Lz*k/4)\n", "axs[1].legend();" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### References\n", "\n", "- Batchelor, G. K. An introduction to fluid dynamics. Cambridge University Press, 1967.\n", "- Bedrossian, J. \"Hydrodynamic stability and mixing at high Reynolds number: MSRI Graduate Summer school 2015.\" Lecture notes available online at https://www.msri.org/ckeditor_assets/attachments/306/jacobcourseiii.pdf.\n" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }