{
"cells": [
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
".. _index_neuronlists:\n",
"\n",
"Indexing CatmaidNeuronLists\n",
"****************************\n",
":class:`~pymaid.CatmaidNeuronList` are designed to behave similar to pandas DataFrames in that they allow some fancing indexing:"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"To illustrate, let's first get a bunch of neurons"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" neuron 4562948 | \n",
" 4562947 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 3.945403 | \n",
" NA | \n",
" False | \n",
"
\n",
" \n",
" | 1 | \n",
" neuron 7094282 MWP Hogeweg | \n",
" 7094281 | \n",
" 4267 | \n",
" 64 | \n",
" 56 | \n",
" 57 | \n",
" 42 | \n",
" 1537.999647 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" neuron 8216644 NS | \n",
" 8216643 | \n",
" 5934 | \n",
" 140 | \n",
" 163 | \n",
" 166 | \n",
" 141 | \n",
" 2330.199132 | \n",
" NA | \n",
" False | \n",
"
\n",
" \n",
" | 3 | \n",
" Multiglomerular PN mALT 57431 IJA ECM | \n",
" 57430 | \n",
" 5436 | \n",
" 205 | \n",
" 101 | \n",
" 106 | \n",
" 87 | \n",
" 1389.803214 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" aSP-g tract 6725720 KMS | \n",
" 6725719 | \n",
" 2251 | \n",
" 29 | \n",
" 79 | \n",
" 84 | \n",
" 38 | \n",
" 842.488107 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes n_connectors \\\n",
"0 neuron 4562948 4562947 2 0 \n",
"1 neuron 7094282 MWP Hogeweg 7094281 4267 64 \n",
"2 neuron 8216644 NS 8216643 5934 140 \n",
"3 Multiglomerular PN mALT 57431 IJA ECM 57430 5436 205 \n",
"4 aSP-g tract 6725720 KMS 6725719 2251 29 \n",
"\n",
" n_branch_nodes n_end_nodes open_ends cable_length review_status soma \n",
"0 0 1 1 3.945403 NA False \n",
"1 56 57 42 1537.999647 NA True \n",
"2 163 166 141 2330.199132 NA False \n",
"3 101 106 87 1389.803214 NA True \n",
"4 79 84 38 842.488107 NA True "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skids = pymaid.get_neurons_in_volume('AL_L')\n",
"nl = pymaid.get_neurons(skids)\n",
"nl.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index by attributes\n",
"+++++++++++++++++++\n",
"\n",
"You can index by all :class:`pymaid.CatmaidNeuronList` attributes that return a ``numpy.array``. For example ``n_nodes``, ``cable_length``, ``soma``, etc.\n",
"\n",
"Index using node count"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" Multiglomerular bilateral PN mALT 57435 LK | \n",
" 57434 | \n",
" 8582 | \n",
" 155 | \n",
" 161 | \n",
" 168 | \n",
" 82 | \n",
" 1415.474701 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" PBG5-EBw-gall (right) neuron 341414 EWN AW | \n",
" 4210786 | \n",
" 29397 | \n",
" 3107 | \n",
" 1886 | \n",
" 1955 | \n",
" 0 | \n",
" 4875.387524 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" Multiglomerular PN mALT bilateral 57476 IJA | \n",
" 57475 | \n",
" 6737 | \n",
" 174 | \n",
" 192 | \n",
" 196 | \n",
" 63 | \n",
" 1236.637869 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 3 | \n",
" putative OA mALT 57480 GA FML | \n",
" 57479 | \n",
" 8558 | \n",
" 226 | \n",
" 202 | \n",
" 207 | \n",
" 116 | \n",
" 1965.510890 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" PN glomerulus VL1 57500 ML | \n",
" 57499 | \n",
" 6551 | \n",
" 530 | \n",
" 303 | \n",
" 322 | \n",
" 111 | \n",
" 1854.932978 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes \\\n",
"0 Multiglomerular bilateral PN mALT 57435 LK 57434 8582 \n",
"1 PBG5-EBw-gall (right) neuron 341414 EWN AW 4210786 29397 \n",
"2 Multiglomerular PN mALT bilateral 57476 IJA 57475 6737 \n",
"3 putative OA mALT 57480 GA FML 57479 8558 \n",
"4 PN glomerulus VL1 57500 ML 57499 6551 \n",
"\n",
" n_connectors n_branch_nodes n_end_nodes open_ends cable_length \\\n",
"0 155 161 168 82 1415.474701 \n",
"1 3107 1886 1955 0 4875.387524 \n",
"2 174 192 196 63 1236.637869 \n",
"3 226 202 207 116 1965.510890 \n",
"4 530 303 322 111 1854.932978 \n",
"\n",
" review_status soma \n",
"0 NA True \n",
"1 NA True \n",
"2 NA True \n",
"3 NA True \n",
"4 NA True "
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl[nl.n_nodes > 6000]\n",
"subset.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Subset to neurons that have a soma"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" neuron 7094282 MWP Hogeweg | \n",
" 7094281 | \n",
" 4267 | \n",
" 64 | \n",
" 56 | \n",
" 57 | \n",
" 42 | \n",
" 1537.999647 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" Multiglomerular PN mALT 57431 IJA ECM | \n",
" 57430 | \n",
" 5436 | \n",
" 205 | \n",
" 101 | \n",
" 106 | \n",
" 87 | \n",
" 1389.803214 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" aSP-g tract 6725720 KMS | \n",
" 6725719 | \n",
" 2251 | \n",
" 29 | \n",
" 79 | \n",
" 84 | \n",
" 38 | \n",
" 842.488107 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 3 | \n",
" Multiglomerular bilateral PN mALT 57435 LK | \n",
" 57434 | \n",
" 8582 | \n",
" 155 | \n",
" 161 | \n",
" 168 | \n",
" 82 | \n",
" 1415.474701 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" PBG5-EBw-gall (right) neuron 341414 EWN AW | \n",
" 4210786 | \n",
" 29397 | \n",
" 3107 | \n",
" 1886 | \n",
" 1955 | \n",
" 0 | \n",
" 4875.387524 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes \\\n",
"0 neuron 7094282 MWP Hogeweg 7094281 4267 \n",
"1 Multiglomerular PN mALT 57431 IJA ECM 57430 5436 \n",
"2 aSP-g tract 6725720 KMS 6725719 2251 \n",
"3 Multiglomerular bilateral PN mALT 57435 LK 57434 8582 \n",
"4 PBG5-EBw-gall (right) neuron 341414 EWN AW 4210786 29397 \n",
"\n",
" n_connectors n_branch_nodes n_end_nodes open_ends cable_length \\\n",
"0 64 56 57 42 1537.999647 \n",
"1 205 101 106 87 1389.803214 \n",
"2 29 79 84 38 842.488107 \n",
"3 155 161 168 82 1415.474701 \n",
"4 3107 1886 1955 0 4875.387524 \n",
"\n",
" review_status soma \n",
"0 NA True \n",
"1 NA True \n",
"2 NA True \n",
"3 NA True \n",
"4 NA True "
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl[nl.soma != None]\n",
"subset.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index by skeleton ID\n",
"++++++++++++++++++++\n",
"\n",
"Indexing by skeleton ID(s) uses the ``.skid`` indexer:\n",
"\n",
"Index by single skeleton ID"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | type | \n",
" <class 'pymaid.core.CatmaidNeuron'> | \n",
"
\n",
" \n",
" | neuron_name | \n",
" PN glomerulus VL1 57500 ML | \n",
"
\n",
" \n",
" | skeleton_id | \n",
" 57499 | \n",
"
\n",
" \n",
" | n_nodes | \n",
" 6551 | \n",
"
\n",
" \n",
" | n_connectors | \n",
" 530 | \n",
"
\n",
" \n",
" | n_branch_nodes | \n",
" 303 | \n",
"
\n",
" \n",
" | n_end_nodes | \n",
" 322 | \n",
"
\n",
" \n",
" | n_open_ends | \n",
" 111 | \n",
"
\n",
" \n",
" | cable_length | \n",
" 1854.93 | \n",
"
\n",
" \n",
" | review_status | \n",
" NA | \n",
"
\n",
" \n",
" | soma | \n",
" 3247378 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"type \n",
"neuron_name PN glomerulus VL1 57500 ML\n",
"skeleton_id 57499\n",
"n_nodes 6551\n",
"n_connectors 530\n",
"n_branch_nodes 303\n",
"n_end_nodes 322\n",
"n_open_ends 111\n",
"cable_length 1854.93\n",
"review_status NA\n",
"soma 3247378\n",
"dtype: object"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.skid['57499']\n",
"subset"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index by list of skeleton IDs"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" putative OA mALT 57480 GA FML | \n",
" 57479 | \n",
" 8558 | \n",
" 226 | \n",
" 202 | \n",
" 207 | \n",
" 116 | \n",
" 1965.510890 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" PN glomerulus VL1 57500 ML | \n",
" 57499 | \n",
" 6551 | \n",
" 530 | \n",
" 303 | \n",
" 322 | \n",
" 111 | \n",
" 1854.932978 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" of 2 neurons \n",
" neuron_name skeleton_id n_nodes n_connectors \\\n",
"0 putative OA mALT 57480 GA FML 57479 8558 226 \n",
"1 PN glomerulus VL1 57500 ML 57499 6551 530 \n",
"\n",
" n_branch_nodes n_end_nodes open_ends cable_length review_status soma \n",
"0 202 207 116 1965.510890 NA True \n",
"1 303 322 111 1854.932978 NA True "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.skid [[57499, 57479]]\n",
"subset"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index by neuron name\n",
"++++++++++++++++++++\n",
"\n",
"If you index a :class:`pymaid.CatmaidNeuronList` by a name (i.e. something that can't be converted into an integer), it will assumed to be a neuron name:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" PN glomerulus VL1 57500 ML | \n",
" 57499 | \n",
" 6551 | \n",
" 530 | \n",
" 303 | \n",
" 322 | \n",
" 111 | \n",
" 1854.932978 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" of 1 neurons \n",
" neuron_name skeleton_id n_nodes n_connectors \\\n",
"0 PN glomerulus VL1 57500 ML 57499 6551 530 \n",
"\n",
" n_branch_nodes n_end_nodes open_ends cable_length review_status soma \n",
"0 303 322 111 1854.932978 NA True "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl['PN glomerulus VL1 57500 ML']\n",
"subset"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index by annotation\n",
"+++++++++++++++++++\n",
"\n",
"Indexing by annotation(s) uses the :func:`~pymaid.CatmaidNeuronList.has_annotation` function. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" PN glomerulus VL1 57500 ML | \n",
" 57499 | \n",
" 6551 | \n",
" 530 | \n",
" 303 | \n",
" 322 | \n",
" 111 | \n",
" 1854.932978 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" Multiglomerular PN mALT 57537 LK-NM | \n",
" 57536 | \n",
" 14654 | \n",
" 1233 | \n",
" 850 | \n",
" 906 | \n",
" 278 | \n",
" 3193.380472 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" PN glomerulus VL1 73938 LK | \n",
" 73937 | \n",
" 5273 | \n",
" 452 | \n",
" 259 | \n",
" 274 | \n",
" 119 | \n",
" 1610.767540 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 3 | \n",
" AL.L(DA1) -{mALT}-> CAL.L-LH.L 2319458 PN036 D... | \n",
" 2319457 | \n",
" 10209 | \n",
" 964 | \n",
" 431 | \n",
" 458 | \n",
" 90 | \n",
" 1747.511710 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" PN glomerulus DA2 2467660 RJVR | \n",
" 2467659 | \n",
" 2855 | \n",
" 266 | \n",
" 54 | \n",
" 56 | \n",
" 8 | \n",
" 726.656270 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes \\\n",
"0 PN glomerulus VL1 57500 ML 57499 6551 \n",
"1 Multiglomerular PN mALT 57537 LK-NM 57536 14654 \n",
"2 PN glomerulus VL1 73938 LK 73937 5273 \n",
"3 AL.L(DA1) -{mALT}-> CAL.L-LH.L 2319458 PN036 D... 2319457 10209 \n",
"4 PN glomerulus DA2 2467660 RJVR 2467659 2855 \n",
"\n",
" n_connectors n_branch_nodes n_end_nodes open_ends cable_length \\\n",
"0 530 303 322 111 1854.932978 \n",
"1 1233 850 906 278 3193.380472 \n",
"2 452 259 274 119 1610.767540 \n",
"3 964 431 458 90 1747.511710 \n",
"4 266 54 56 8 726.656270 \n",
"\n",
" review_status soma \n",
"0 NA True \n",
"1 NA True \n",
"2 NA True \n",
"3 NA True \n",
"4 NA True "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.has_annotation('LH_DONE', intersect=False)\n",
"subset.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
":func:`pymaid.CatmaidNeuronList.has_annotation` allows for some more sophisticated intersections and criteria. For example, leading a string with \"~\" (tilde), works as a *negative* indicator:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" neuron 4562948 | \n",
" 4562947 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 3.945403 | \n",
" NA | \n",
" False | \n",
"
\n",
" \n",
" | 1 | \n",
" neuron 7094282 MWP Hogeweg | \n",
" 7094281 | \n",
" 4267 | \n",
" 64 | \n",
" 56 | \n",
" 57 | \n",
" 42 | \n",
" 1537.999647 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" neuron 8216644 NS | \n",
" 8216643 | \n",
" 5934 | \n",
" 140 | \n",
" 163 | \n",
" 166 | \n",
" 141 | \n",
" 2330.199132 | \n",
" NA | \n",
" False | \n",
"
\n",
" \n",
" | 3 | \n",
" Multiglomerular PN mALT 57431 IJA ECM | \n",
" 57430 | \n",
" 5436 | \n",
" 205 | \n",
" 101 | \n",
" 106 | \n",
" 87 | \n",
" 1389.803214 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" aSP-g tract 6725720 KMS | \n",
" 6725719 | \n",
" 2251 | \n",
" 29 | \n",
" 79 | \n",
" 84 | \n",
" 38 | \n",
" 842.488107 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes n_connectors \\\n",
"0 neuron 4562948 4562947 2 0 \n",
"1 neuron 7094282 MWP Hogeweg 7094281 4267 64 \n",
"2 neuron 8216644 NS 8216643 5934 140 \n",
"3 Multiglomerular PN mALT 57431 IJA ECM 57430 5436 205 \n",
"4 aSP-g tract 6725720 KMS 6725719 2251 29 \n",
"\n",
" n_branch_nodes n_end_nodes open_ends cable_length review_status soma \n",
"0 0 1 1 3.945403 NA False \n",
"1 56 57 42 1537.999647 NA True \n",
"2 163 166 141 2330.199132 NA False \n",
"3 101 106 87 1389.803214 NA True \n",
"4 79 84 38 842.488107 NA True "
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.has_annotation('~LH_DONE', intersect=False)\n",
"subset.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index XOR (either or) by multiple annotations"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" PN glomerulus VL1 57500 ML | \n",
" 57499 | \n",
" 6551 | \n",
" 530 | \n",
" 303 | \n",
" 322 | \n",
" 111 | \n",
" 1854.932978 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" Multiglomerular PN mALT 57537 LK-NM | \n",
" 57536 | \n",
" 14654 | \n",
" 1233 | \n",
" 850 | \n",
" 906 | \n",
" 278 | \n",
" 3193.380472 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 2 | \n",
" PN glomerulus VL1 73938 LK | \n",
" 73937 | \n",
" 5273 | \n",
" 452 | \n",
" 259 | \n",
" 274 | \n",
" 119 | \n",
" 1610.767540 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 3 | \n",
" AL.L(DA1) -{mALT}-> CAL.L-LH.L 2319458 PN036 D... | \n",
" 2319457 | \n",
" 10209 | \n",
" 964 | \n",
" 431 | \n",
" 458 | \n",
" 90 | \n",
" 1747.511710 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" PN glomerulus DA2 2467660 RJVR | \n",
" 2467659 | \n",
" 2855 | \n",
" 266 | \n",
" 54 | \n",
" 56 | \n",
" 8 | \n",
" 726.656270 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes \\\n",
"0 PN glomerulus VL1 57500 ML 57499 6551 \n",
"1 Multiglomerular PN mALT 57537 LK-NM 57536 14654 \n",
"2 PN glomerulus VL1 73938 LK 73937 5273 \n",
"3 AL.L(DA1) -{mALT}-> CAL.L-LH.L 2319458 PN036 D... 2319457 10209 \n",
"4 PN glomerulus DA2 2467660 RJVR 2467659 2855 \n",
"\n",
" n_connectors n_branch_nodes n_end_nodes open_ends cable_length \\\n",
"0 530 303 322 111 1854.932978 \n",
"1 1233 850 906 278 3193.380472 \n",
"2 452 259 274 119 1610.767540 \n",
"3 964 431 458 90 1747.511710 \n",
"4 266 54 56 8 726.656270 \n",
"\n",
" review_status soma \n",
"0 NA True \n",
"1 NA True \n",
"2 NA True \n",
"3 NA True \n",
"4 NA True "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.has_annotation(['LH_DONE', 'glomerulus DL1'], intersect=False)\n",
"subset.head()"
]
},
{
"cell_type": "raw",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"Index XAND (all required) by multiple annotations"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" neuron_name | \n",
" skeleton_id | \n",
" n_nodes | \n",
" n_connectors | \n",
" n_branch_nodes | \n",
" n_end_nodes | \n",
" open_ends | \n",
" cable_length | \n",
" review_status | \n",
" soma | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" PN glomerulus DL1 5269365 GSXEJ | \n",
" 5269364 | \n",
" 3477 | \n",
" 893 | \n",
" 167 | \n",
" 181 | \n",
" 58 | \n",
" 1228.339971 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" PN glomerulus DL1 5305038 ARJ | \n",
" 5305037 | \n",
" 2818 | \n",
" 898 | \n",
" 128 | \n",
" 138 | \n",
" 15 | \n",
" 1050.094319 | \n",
" NA | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neuron_name skeleton_id n_nodes n_connectors \\\n",
"0 PN glomerulus DL1 5269365 GSXEJ 5269364 3477 893 \n",
"1 PN glomerulus DL1 5305038 ARJ 5305037 2818 898 \n",
"\n",
" n_branch_nodes n_end_nodes open_ends cable_length review_status soma \n",
"0 167 181 58 1228.339971 NA True \n",
"1 128 138 15 1050.094319 NA True "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subset = nl.has_annotation(['LH_DONE', 'glomerulus DL1'], intersect=True)\n",
"subset.head()"
]
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}