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Abstract. A tension in language design has been between simple se-
mantics on the one hand, and rich possibilities for side-effects, exception
handling and so on on the other. The introduction of monads has made
a large step towards reconciling these alternatives. First proposed by
Moggi as a way of structuring semantic descriptions, they were adopted
by Wadler to structure Haskell programs. Monads have been used to
solve long-standing problems such as adding pointers and assignment,
inter-language working, and exception handling to Haskell, without com-
promising its purely functional semantics. The course introduces monads,
effects, and exemplifies their applications in programming (Haskell) and
in compilation (MLj). The course presents typed metalanguages for mon-
ads and related categorical notions, and then describes how they can be
further refined by introducing effects.
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1 Monads and Computational Types

Monads, sometimes called triples, have been considered in Category Theory (CT)
only in the late fifties (see the historical notes in [BW85]). Monads and comon-
ads (the dual of monads) are closely related to adjunctions, probably the most
pervasive notion in CT. The connection between monads and adjunctions was
established independently by Kleisli and Eilenberg-Moore in the sixties. Mon-
ads, like adjunctions, arise in many contexts (e.g. in algebraic theories). There
are several CT books covering monads, for instance [Man76,BW85,Bor94]. It is
not surprising that monads arise also in applications of CT to Computer Science
(CS). We intend to use monads for giving denotational semantics to program-
ming languages, and more specifically as a way of modeling computational types
[Mog91]:

. . . to interpret a programming language in a category C, we distinguish
the object A of values (of type A) from the object TA of computations
(of type A), and take as denotations of programs (of type A) the elements
of TA. In particular, we identify the type A with the object of values (of
type A) and obtain the object of computations (of type A) by applying an
unary type-constructor T to A. We call T a notion of computation, since
it abstracts away from the type of values computations may produce.

Example 1. We give few notions of computation in the category of sets.

– partiality TA = A⊥, i.e. A + {⊥}, where ⊥ is the diverging computation
– nondeterminism TA = Pfin(A), i.e. the set of finite subsets of A

– side-effects TA = (A×S)S , where S is a set of states, e.g. a set UL of stores
or a set of input/output sequences U∗
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– exceptions TA = A + E, where E is the set of exceptions
– continuations TA = R(RA), where R is the set of results
– interactive input TA = (µX.A + XU ), where U is the set of characters.

More explicitly TA is the set of U -branching trees with only finite paths and
A-labelled leaves

– interactive output TA = (µX.A + (U×X)), i.e. U∗×A up to iso.

Further examples (in the category of cpos) could be given based on the denota-
tional semantics for various programming languages

Remark 2. Many of the examples above are instances of the following one: given
a single sorted algebraic theory Th = (Σ, Ax), TA is the carrier of the free
Th-algebra over A, i.e. the set TΣ(A) of Σ-terms over A modulo the equivalence
induced by the equational axioms Ax. For instance, for nondeterminism Th is
the theory of commutative and idempotent monoids, and for exceptions is the
theory with one constant for each exception e ∈ E and no axioms.

More complex examples can be obtained by combination of those above, e.g.

– TA = ((A+E)×S)S and TA = ((A×S)+E)S capture imperative programs
with exceptions

– TA = µX.Pfin(A + (Act×X)) captures parallel programs interacting via a
set Act of actions (in fact TA is the set of finite synchronization trees up to
strong bisimulation)

– TA = µX.Pfin((A + X)×S)S captures parallel imperative programs with
shared memory.

Wadler [Wad92a] advocates a similar idea to mimic impure programs in a pure
functional language. Indeed the Haskell community has gone a long way in ex-
ploiting this approach to reconcile the advantages of pure functional program-
ming with the flexibility of imperative (or other styles of) programming. The
analogies of computational types with effect systems [GL86] have been observed
by [Wad92a], but formal relations between the two have been established only
recently (e.g. see [Wad98]).

In the denotational semantics of programming languages there are other in-
formal notions modeled using monads, for instance collection types in database
languages [BNTW95] or collection classes in object-oriented languages [Man98].
It is important to distinguish the mathematical notion of monad (or its refine-
ments) from informal notions, such as computational and collection types, which
are defined by examples. In fact, these informal notions can be modeled with a
better degree of approximation by considering monads with additional proper-
ties or additional structures. When considering these refinements, it is often the
case that what seems a natural requirement for modeling computational types
is not appropriate for modeling collection types, for instance:

– most programming languages can express divergent computations and sup-
port recursive definitions of programs; hence computational types should
have a constant ⊥ : TA for the divergent computation and a (least) fix-
point combinator Y : (TA → TA) → TA;
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– in database query languages the result of a query is a finite collection of
elements; hence it is natural to have an empty collection ∅ : TA and a way
of merging the result of two queries, using a binary operation + : TA →
TA → TA.

Therefore, programming languages suggest one refinement (of monads), while
query languages suggest a different and incompatible refinement.

There are at least three equivalent definitions of monad/triple called (see
[Man76]): in monoid form (the one usually adopted in CT books), in extension
form (the most intuitive one), and in clone form (which takes composition in
the Kleisli category as basic). Of these we consider only triples in monoid and
extension form.

Notation 1 We assume knowledge of basic notions from category theory, such
as category, functor and natural transformation. In some cases familiarity with
universal constructions (products, sums, exponentials) and adjunction is as-
sumed. We use the following notation:

– given a category C we write:
|C| for the set/class of its objects,
C(A, B) for the hom-set of morphisms from A to B,
g ◦ f and f ; g for the composition A f � B g � C,
idA for the identity on A

– F : C → D means that F is a functor from C to D, and
σ : F

.→ G means that σ is a natural transformation from F to G

– C
� G

�
F

� D means that G is right adjoint to F (F is left adjoint to G).

Definition 3 (Kleisli triple/triple in extension form). A Kleisli triple
over a category C is a triple (T, η, ∗), where T : |C| → |C|, ηA : A → TA for
A ∈ |C|, f∗ : TA → TB for f : A → TB and the following equations hold:

– η∗
A = idTA

– ηA; f∗ = f for f : A → TB
– f∗; g∗ = (f ; g∗)∗ for f : A → TB and g : B → TC.

Kleisli triples have an intuitive justification in terms of computational types

– ηA is the inclusion of values into computations

a : A
ηA�−→ [a] : TA

– f∗ is the extension of a function f from values to computations to a function
from computations to computations. The function f∗ applied to a compu-
tation c returns the computation let a⇐c in f(a), which first evaluates c and
then applies f to the resulting value a

a : A
f�−→ f(a) : TB

c : TA
f∗

�−→ let a⇐c in f(a) : TB
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In order to justify the axioms for a Kleisli triple we have first to introduce a
category CT whose morphisms correspond to programs. We proceed by analogy
with the categorical semantics for terms, where types are interpreted by objects
and terms of type B with a parameter (free variable) of type A are interpreted
by morphisms from A to B. Since the denotation of programs of type B are
supposed to be elements of TB, programs of type B with a parameter of type A
ought to be interpreted by morphisms with codomain TB, but for their domain
there are two alternatives, either A or TA, depending on whether parameters of
type A are identified with values or computations of type A. We choose the first
alternative, because it entails the second. Indeed computations of type A are the
same as values of type TA. So we take CT (A, B) to be C(A, TB). It remains to
define composition and identities in CT (and show that they satisfy the unit and
associativity axioms for categories).

Definition 4 (Kleisli category). Given a Kleisli triple (T, η, ∗) over C, the
Kleisli category CT is defined as follows:

– the objects of CT are those of C
– the set CT (A, B) of morphisms from A to B in CT is C(A, TB)
– the identity on A in CT is ηA : A → TA
– f ∈ CT (A, B) followed by g ∈ CT (B, C) in CT is f ; g∗ : A → TC.

It is natural to take ηA as the identity on A in the category CT , since it maps a
parameter x to [x], i.e. to x viewed as a computation. Similarly composition in
CT has a simple explanation in terms of the intuitive meaning of f∗, in fact

x : A
f�−→ f x : TB y : B

g�−→ g y : TC

x : A
f ;g∗
�−→ let y⇐f(x) in g(y) : TC

i.e. f followed by g in CT with parameter x is the program which first evaluates
the program f x and then feed the resulting value as parameter to g. At this
point we can give also a simple justification for the three axioms of Kleisli triples,
namely they are equivalent to the following unit and associativity axioms, which
say that CT is a category:

– f ; η∗
B = f for f : A → TB

– ηA; f∗ = f for f : A → TB
– (f ; g∗); h∗ = f ; (g; h∗)∗ for f : A → TB, g : B → TC and h : C → TD.

Example 5. We go through the examples of computational types given in Ex-
ample 1 and show that they are indeed part of suitable Kleisli triples.

– partiality TA = A⊥(= A + {⊥})
ηA is the inclusion of A into A⊥
if f : A → TB, then f∗ ⊥ = ⊥ and f∗ a = f a (when a ∈ A)

– nondeterminism TA = Pfin(A)
ηA is the singleton map a �→ {a}
if f : A → TB and c ∈ TA, then f∗ c = ∪{f x|x ∈ c}
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– side-effects TA = (A×S)S

ηA is the map a �→ λs : S.(a, s)
if f : A → TB and c ∈ TA, then f∗ c = λs : S.let (a, s′) = c s in f a s′

– exceptions TA = A + E
ηA is the injection map a �→ inl a
if f : A → TB, then f∗(inr e) = inr e (where e ∈ E) and f∗(inl a) = f a
(where a ∈ A)

– continuations TA = R(RA)

ηA is the map a �→ (λk : RA.k a)
if f : A → TB and c ∈ TA, then f∗ c = (λk : RB .c(λa : A.f a k))

– interactive input TA = (µX.A + XU )
ηA maps a to the tree consisting only of one leaf labelled with a
if f : A → TB and c ∈ TA, then f∗ c is the tree obtained by replacing leaves
of c labelled by a with the tree f a

– interactive output TA = (µX.A + (U×X))
ηA is the map a �→ (ε, a)
if f : A → TB, then f∗ (s, a) = (s ∗ s′, b), where f a = (s′, b) and s ∗ s′ is
the concatenation of s followed by s′.

Exercise 6. Define Kleisli triples in the category of cpos similar to those given
in Example 5, but ensure that each computational type TA has a least element
⊥. DIFFICULT: in cpos there are three Kleisli triple for nondeterminism, one
for each powerdomain construction.

Exercise 7. When modeling a programming language the first choice to make is
which category to use. For instance, it is impossible to find a monad over the
category of sets which supports recursive definitions of programs, the category
of cpos (or similar categories) should be used instead. Moreover, there are other
aspects of programming languages that are orthogonal to computational types,
e.g. recursive and polymorphic types, that cannot be modeled in the category of
sets (but could be modeled in the category of cpos or in realizability models). In
this exercise we consider modeling a two-level language, where there is a notion
of static and dynamic, then the following categories are particularly appropriate

– the category s(C), where C is a CCC, is defined as follows
an object is a pair (As, Ad) with As, Ad ∈ |C|, As is the static and Ad is the
dynamic part;
a morphism in s(C)((As, Ad), (Bs, Bd)) is a pair (fs, fd) with fs ∈ C(As, Bs)
and fd ∈ C(As×Ad, Bd), thus the static part of the result depends only on
the static part of the input.

– the category Fam(C), where C is a CCC with small limits, is defined as
follows
an object is a family (Ai|i ∈ I) with I a set and Ai ∈ |C| for every i ∈ I;
a morphism in Fam(C)((Ai|i ∈ I), (Bj |j ∈ J)) is a pair (f, g) with f : I → J
and g is an I-index family of morphisms s.t. gi ∈ C(Ai, Bfi) for every i ∈ I.

Define Kleisli triples in the categories s(C) and Fam(C) similar to those given
in Example 5 (assume that C is the category of sets). Notice that in a two-level
language static and dynamic computations don’t have to be the same.
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1.1 Monads and Related Notions

This section recalls some categorical notions, namely T -algebras and monad
morphisms, and facts that are not essential to the subsequent developments.
First we establish the equivalence of Kleisli triples and monads.

Definition 8 (Monad/triple in monoid form). A monad over C is a triple
(T, η, µ), where T : C → C is a functor, η : idC

.→ T and µ : T 2 .→ T are natural
transformations and the following diagrams commute:

T 3A
µTA� T 2A TA

ηTA� T 2A �TηA
TA

�
�

�
�

�
idTA

� ��
�

�
�

�

idTA

T 2A

TµA

�

µA

� TA

µA

�
TA

µA

�

Proposition 9. There is a bijection between Kleisli triples and monads.

Proof. Given a Kleisli triple (T, η, ∗), the corresponding monad is (T, η, µ),
where T is the extension of the function T to an endofunctor by taking T f =
(f ; ηB)∗ for f : A → B and µA = id∗

TA. Conversely, given a monad (T, η, µ), the
corresponding Kleisli triple is (T, η, ∗), where T is the restriction of the functor
T to objects and f∗ = (T f); µB for f : A → TB.

Monads are closely related to algebraic theories. In particular, T -algebras
correspond to models of an algebraic theory.

Definition 10 (Eilenberg-Moore category). Given a monad (T, η, µ) over
C, the Eilenberg-Moore category CT is defined as follows:

– the objects of CT are T -algebras, i.e. morphisms α : TA → A in C s.t.

T 2A
µA � TA A

ηA � TA

�
�

�
�

�
idA

�
TA

Tα

�

α
� A

α

�
A

α

�

A is called the carrier of the T -algebra α
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– a morphism f ∈ CT (α, β) from α : TA → A to β : TB → B is a morphism
f : A → B in C s.t.

TA
Tf � TB

A

α

�

f
� B

β

�

identity and composition in CT are like in C.

Any adjunction C
� G

�
F

� D induces a monad over C with T = F ; G. The

Kleisli and Eilenberg-Moore categories can be used to prove the converse, i.e. that
any monad over C is induced by an adjunction. Moreover, the Kleisli category
CT can be identified with the full sub-category of CT of the free T -algebras.

Proposition 11. Given a monad (T, η, µ) over C there are two adjunctions

C
� U

�
F

� CT C
� U ′

�
F ′

� CT

which induce T . Moreover, there is a full and faithful functor Φ : CT → CT s.t.

C F � CT

�
�

�
�

�
F ′

�
CT

Φ

�

Proof. The action of functors on objects is as follows: U(α : TA → A) ∆= A,
FA

∆= µA : T 2A → TA, U ′A ∆= TA, F ′A ∆= A, and ΦA
∆= µA : T 2A → TA.

Definition 12 (Monad morphism). Given (T, η, µ) and (T ′, η′, µ′) monads
over C, a monad-morphism from the first to the second is a natural transfor-
mation σ : T

.→ T ′ s.t.
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A
ηA � TA � µA

T 2A

�
�

�
�

�
η′

A
�

T ′A

σA

�
T ′(TA)

σTA

�

	�
�

�
�

�
µ′

A

T ′2A

T ′σA

�

(note that the morphism σTA; T ′σA is equal to TσA; σT ′A, since σ is natural).
An equivalent definition of monad morphism (in terms of Kleisli triples) is a
family of morphisms σA : TA → T ′A for A ∈ |C| s.t.

– ηA; σA = η′
A

– f∗; σB = σA; (f ; σB)∗′
for f : A → TB

We write Mon(C) for the category of monads over C and monad morphisms.

There is also a more general notion of monad morphism, which does not require
that the monads are over the same category.

Monad morphisms allow to view T ′-algebras as T -algebras with the same
underlying carrier, more precisely

Proposition 13. There is a bijective correspondence between monad morphisms

σ : T → T ′ and functors V : CT ′ → CT s.t.

CT ′ V � CT

�
�

�
�

�
U

�
C

U

�

Proof. The action of V on objects is V (α′ : T ′A → A) ∆= σA; α′ : TA → A, and

σA is defined in terms of V as σA
∆= TA

Tη′
A� T (T ′A)

V µ′
A� T ′A.

Remark 14. Filinski [Fil99] uses a layering ζA : T (T ′A) → T ′A of T ′ over T in
place of a monad morphism σA : TA → T ′A. The two notions are equivalent, in
particular ζA is given by V µ′

A, i.e. σT ′A; µ′
A.

2 Metalanguages with Computational Types

It is quite inconvenient to work directly in a specific category or with a specific
monad. Mathematical logic provides a simple solution to abstract away from
specific models: fix a language, define what is an interpretation of the language



Monads and Effects 51

in a model, and find a formal system (on the language) that capture the desired
properties of models. When the formal system is sound, one can forget about
the models and use the formal system instead. Moreover, if the formal system
is also complete, then nothing is lost (as far as one is concerned with properties
expressible in the language, and valid in all models). Several formal systems have
been proved sound and complete w.r.t. certain class of categories:

– many sorted equational logic corresponds to categories with finite products;
– simply typed λ-calculus corresponds to cartesian closed categories (CCC);
– intuitionistic higher-order logic corresponds to elementary toposes.

Remark 15. To ensure soundness w.r.t. the given classes of models, the formal
system should cope with the possibility of empty carriers. In contrast, in mathe-
matical logic it is often assumed that all carriers are inhabited. Categorical Logic
is the branch of CT devoted mainly at establishing links between formal systems
and classes of categorical structures.

Rather than giving a complete formal system, we say how to add computational
types to your favorite formal system (for instance higher-order λ-calculus, or a
λ-calculus with dependent types like a logical framework). The only assumption
we make is that the formal system includes many sorted equational logic (this
rules out systems like the linear λ-calculus). More specifically we assume that
the formal system has the following judgments

Γ � Γ is a well-formed context
Γ � τ type τ is a well-formed type in context Γ
Γ � e : τ e is a well-formed term of type τ in context Γ
Γ � φ prop φ is a well-formed proposition in context Γ
Γ � φ the well-formed proposition φ in context Γ is true

and that the following rules are derivable

– ∅ �
Γ � τ type

Γ, x : τ � x fresh in Γ
Γ �

Γ � x : τ
τ = Γ (x)

–
Γ � e1 : τ Γ � e2 : τ

Γ � (e1 = e2 : τ) prop
this says when an equation is well-formed

– weak
Γ � τ Γ � φ

Γ, x : τ � φ
x fresh in Γ sub

Γ � e : τ Γ, x : τ � φ

Γ � φ[x := e]

–
Γ � e : τ

Γ � e = e : τ

Γ � e1 = e2 : τ

Γ � e2 = e1 : τ

Γ � e1 = e2 : τ Γ � e2 = e3 : τ

Γ � e1 = e3 : τ

cong
Γ, x : τ � φ prop Γ � e1 = e2 : τ Γ � φ[x := e1]

Γ � φ[x := e2]

Remark 16. More complex formal systems may require other forms of judgment,
e.g. equality of types (and contexts), or other sorts besides type (along the line
of Pure Type Systems). The categorical interpretation of typed calculi, including
those with dependent types, is described in [Pit00b,Jac99].
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The rules for adding computational types are

– T
Γ � τ type

Γ � Tτ type
lift

Γ � e : τ

Γ � [e]T : Tτ

let
Γ � e1 : Tτ1 Γ, x : τ1 � e2 : Tτ2

Γ � letT x⇐e1 in e2 : Tτ2
x �∈ FV(τ2)

[e]T is the program/computation that simply returns the value e, while
letT x⇐e1 in e2 is the computation which first evaluates e1 and binds the
result to x, then evaluates e2.

– let.ξ
Γ � e : Tτ1 Γ, x : τ1 � e1 = e2 : Tτ2

Γ � letT x⇐e in e1 = letT x⇐e in e2 : Tτ2
x �∈ FV(τ2)

this rule expresses congruence for the let-binder.

– assoc

Γ � e1 : Tτ1
Γ, x1 : τ1 � e2 : Tτ2 Γ, x2 : τ2 � e3 : Tτ3

Γ � letT x2⇐(letT x1⇐e1 in e2) in e3 =
letT x1⇐e1 in (letT x2⇐e2 in e3) : Tτ3

x1 �∈ FV(τ2)
∧ x2 �∈ FV(τ3)

this rule says that only the order of evaluation matters (not the parentheses).

– T.β
Γ � e1 : τ1 Γ, x : τ1 � e2 : Tτ2

Γ � letT x⇐[e1]T in e2 = e2[x := e1] : Tτ2
x �∈ FV(τ2)

T.η
Γ � e : Tτ

Γ � letT x⇐e in [x]T = e : Tτ

these rules say how to eliminate trivial computations (i.e. of the form [e]T ).

In calculi without dependent types side-conditions like x �∈ FV(τ2) are always
true, hence they can be ignored.

Remark 17. Moggi [Mog91] describes the interpretation of computational types
in a simply typed calculus, and establishes soundness and completeness results.
In [Mog95] Moggi extends such results to logical systems including the evaluation
modalities proposed by Pitts.

For interpreting computational types monads are not enough, parameterized
monads are needed instead. The parameterization is directly related to the form
of type-dependency allowed by the typed calculus under consideration. The need
to consider parametrized forms of categorical notions is by now a well-understood
fact in categorical logic (it is not a peculiarity of computational types).

We sketch the categorical interpretation in a category C with finite products of
a simply typed metalanguage with computational types (see [Mog91] for more
details). The general pattern for interpreting a simply typed calculus according
to Lawvere’s functorial semantics goes as follows

– a context Γ � and a type � τ type are interpreted by objects of C, by abuse
of notation we indicate these objects with Γ and τ respectively;

– a term Γ � e : τ is interpreted by a morphism f : Γ → τ in C;
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RULE SYNTAX SEMANTICS

T
� τ type = τ
� Tτ type = Tτ

lift
Γ � e : τ = f : Γ → τ
Γ � [e]T : Tτ = f ; ητ : Γ → Tτ

let
Γ � e1 : Tτ1 = f1 : Γ → Tτ1

Γ, x : τ1 � e2 : Tτ2 = f2 : Γ×τ1 → Tτ2

Γ � letT x⇐e1 in e2 : Tτ2 = (idΓ , f1); f∗
2 : Γ → Tτ2

Fig. 1. Simple interpretation of computational types

– a (well formed) equational Γ � e1 = e2 : τ is true iff f1 = f2 : Γ → τ as
morphisms in C.

Figure 1 gives the relevant clauses of the interpretation. Notice that the in-
terpretation of let needs a parameterized extension operation ∗, which maps
f : C×A → TB to f∗ : C×TA → TB.

2.1 Syntactic Sugar and Alternative Presentations

It is convenient to introduce some derived notation, for instance:

– an iterated-let (letT x⇐e in e), which is defined by induction on |e| = |x|

letT ∅⇐∅ in e
∆≡ e letT x0, x⇐e0, e in e

∆≡ letT x0⇐e0 in (letT x⇐e in e)

Haskell’s do-notation, inspired by monad comprehension (see [Wad92a]), ex-
tends the iterated-let by allowing pattern matching and local definitions

In higher-order λ-calculus, the type- and term-constructors can be replaced
by constants:

– T becomes a constant of kind • → •, where • is the kind of all types;
– [e]T and letT x⇐e1 in e2 are replaced by polymorphic constants

unitT : ∀X : •.X → TX letT : ∀X, Y : •.(X → TY ) → TX → TY

where unitT
∆= ΛX : •.λx : X.[x]T and

letT
∆= ΛX, Y : •.λf : X → TY.λc : TX.letT x⇐c in f x.
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In this way the rule (let.ξ) follows from the ξ-rule for λ-abstraction, and the other
three equational rules can be replaced with three equational axioms without
premises, e.g. T.β can be replaced by

X, Y : •, x : X, f : X → TY � letT x⇐[x]T in f x = f x : TY

The polymorphic constant unitT corresponds to the natural transformation
η. In higher-order λ-calculus it is possible to define also polymorphic constants

mapT : ∀X, Y : •.(X → Y ) → TX → TY flatT : ∀X : •.T 2X → TX

corresponding to the action of the functor T on morphisms and to the natural
transformation µ

– mapT
∆= ΛX, Y : •.λf : X → Y.λc : TX.letT x⇐c in [f x]T

– flatT
∆= ΛX : •.λc : T 2X.letT x⇐c inx

The axiomatization taking as primitive the polymorphic constants unitT and
letT amounts to the definition of triple in extension form. There is an alterna-
tive axiomatization, corresponding to the definition of triple in monoid form,
which takes as primitive the polymorphic constants mapT , unitT and flatT (see
[Wad92a]).

2.2 Categorical Definitions in the Metalanguage

The main point for introducing a metalanguage is to provide an alternative
to working directly with models/categories. In fact, several categorical notions
related to monads, such as algebra and monad morphisms, can be reformulated
axiomatically in a metalanguage with computational types.

Definition 18 (Eilenberg-Moore algebras). α : TA → A is a T -algebra iff

– x : A � α [x]T = x : A
– c : T 2A � α(letT x⇐c inx) = α(letT x⇐c in [α x]T ) : A

f : A → B is a T -algebra morphism from α : TA → A to β : TB → B iff

– c : TA � f(α c) = β(letT x⇐c in [fx]T ) : B

We can consider metalanguages with many computational types, correspond-
ing to different monads on the same category. In particular, to define monad
morphisms we use a metalanguage with two computational types T and T ′.

Definition 19 (Monad morphism). A constant σ : ∀X : •.TX → T ′X is a
monad morphism from T to T ′ iff

– X : •, x : X � σ X [x]T = [x]T ′ : T ′X
– X, Y : •, c : TX, f : X → TY � σ Y (letT x⇐c in f x) =

letT ′ x⇐σ X c inσ Y (f x) : T ′Y
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3 Metalanguages for Denotational Semantics

Translation of a language into another provides a simple and general way to give
semantics to the first language in terms of a semantics for the second. In deno-
tational semantics it is quite common to define the semantics of a programming
language PL by translating it into a typed metalanguage ML. The idea is as
old as denotational semantics (see [Sco93]), so the main issue is whether it can
be made into a viable technique capable of dealing with complex programming
languages. Before being more specific about what metalanguages to use, let us
discuss the main advantages of semantics via translation:

– to reuse the same ML for translating several programming languages.

PL1

. . .







transl

�
ML

interp� C

PLn

�����

transl




Here we are assuming that defining a translation from PL to ML is often
simpler than directly defining an interpretation of PL in C. In this case it is
worth putting some effort in the study of ML. In fact, once certain properties
of ML have been established (e.g. reasoning principles or computational
adequacy), it is usually easy to transfer them to PL via the translation.

– to choose ML according to certain criteria, usually not met by programming
languages, e.g.

• a metalanguage built around few orthogonal concepts is simpler to study,
while programming languages often bundle orthogonal concepts in one
construct for the benefit of programmers;

• ML may be equipped with a logic so that it can be used for formalizing
reasoning principles or for translating specification languages;

• ML may be chosen as the internal language for a class of categories (e.g.
CCC) or for a specific semantic category (e.g. that of sets or cpos).

– to use ML for hiding details of semantic categories (see [Gor79]). For in-
stance, if ML is the internal language for a class of categories, it has one
intended interpretation in each of them. A translation into ML will induce
a variety of interpretations

C1

PL
transl� ML

�����interp 


. . .





interp � Cn

Even if ML has only one intended interpretation, it may be difficult to work
with the semantic category directly. For instance, if the semantic category
is a functor category, like those proposed for modeling local variables or
dynamic generation of new names (see [Sta96]).
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A standard typed λ-calculus is a good starting point for a metalanguage. How-
ever, it is more controversial whether the metalanguage should be equipped with
some logic (ranging from equational logic to higher-order predicate logic) or have
an operational semantics.

After describing the advantages of giving semantics to a programming lan-
guage PL via translation into a metalanguage ML, we explain how metalan-
guages with computational types can help in structuring the translation from
PL to ML by the introduction of auxiliary notation (see [Mos92,Mog91])

PL
transl� ML(Σ)

transl� ML

and by incrementally defining auxiliary notation (as advocated in [Fil99],
[LHJ95,LH96] and [CM93,Mog97])

PL
transl� ML(Σn)

transl� . . .
transl� ML(Σ0)

transl� ML

Remark 20. The solutions proposed are closely related to general techniques
in algebraic specifications, such as abstract datatype, stepwise refinement and
hierarchical specifications.

3.1 Computational Types and Structuring

Language extension is a typical problem of denotational and operational seman-
tics. For instance, consider extending a pure functional language with side-effects
or exceptions, we have to redefine the whole operational/denotational semantics
every time we consider a new extension. The problem remains even when the
semantics is given via translation in a typed lambda-calculus: one would keep
redefining the translation. Mosses [Mos90] identifies this problem very clearly,
and he stresses how the use of auxiliary notation may help in making semantic
definitions more reusable. An approach, that does not make use of monads, has
been proposed by Cartwright and Felleisen [CF94].

Moggi [Mog91] identifies monads as an important structuring device for de-
notational semantics (but not for operational semantics!). The basic idea is that
there is a unary type constructor T , called a notion of computation, and
terms of type Tτ , should be thought of as programs which compute values of
type τ . The interpretation of T is not fixed, it varies according to the computa-
tional features of the programming language under consideration. Nevertheless,
there are operations (for specifying the order of evaluation) and basic properties
of them, which should be common to all notions of computation. This suggests
to translate a programming language PL into a metalanguage MLT (Σ) with
computational types, where the signature Σ gives additional operations (and
their properties). Hence, the monadic approach to define the denotational
semantics of a programming language PL consists of three steps:

– identify a suitable metalanguage MLT (Σ), this hides the interpretation of
T and Σ like an interface hides the implementation of an abstract datatype,
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– define a translation of PL into MLT (Σ),
– construct a model of MLT (Σ), e.g. via translation into a metalanguage ML

without computational types.

A suitable choice of Σ can yield a simple translation from PL to MLT (Σ), which
does not have to be redefined when PL is extended, and at the same time keep
the translation of MLT (Σ) into ML fairly manageable.

3.2 Examples of Translations

To exemplify the use of computational types, we consider several programming
languages (viewed as λ-calculi with constants), and for each of them we define
translations into a metalanguage MLT (Σ) with computational types, for a suit-
able choice of Σ, and indicate a possible interpretation for computational types
and Σ.

CBN Translation: Haskell. We consider a simple explicitly typed fragment
of Haskell corresponding to the following typed λ-calculus:

τ ∈ TypeHaskell ::= Int type of integers
| τ1 → τ2 functional type
| τ1×τ2 product type

e ∈ ExpHaskell ::= x variable
| n | e0 + e1 numerals and integer addition
| if0 e0 then e1 else e2 conditional
| let x : τ = e1 in e2 local definition
| µx : τ.e recursive definition
| λx : τ.e abstraction
| e1 e2 application
| (e1, e2) pairing
| πi e projection

The type system for Haskell derives judgments of the form Γ � e : τ saying
that a term e has type τ in the typing context Γ . Usually, in denotational
semantics only well-formed terms need to be interpreted (since programs rejected
by a type-checker are not allowed to run), thus we want to define a translation
mapping well-formed terms Γ �PL e : τ of the programming language into well-
formed terms Γ �ML e : τ of the metalanguage (with computational types).
More precisely, we define a translation n by induction on types τ and raw terms
e, called the CBN translation (see Figure 2). The signature Σn for defining
the CBN translation of Haskell consists of

– Y : ∀X : •.(TX → TX) → TX, a (least) fix-point combinator
– a signature for the datatype of integers.

Lemma 21 (Typing). If {xi : τi|i ∈ m} �PL e : τ is a well-formed term of
Haskell, then {xi : Tτn

i |i ∈ m} �ML en : Tτn is a well-formed term of the
metalanguage with computational types.
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τ ∈ TypeHaskell τn ∈ Type(MLT (Σn))
Int Int

τ1 → τ2 Tτn
1 → Tτn

2

τ1×τ2 Tτn
1 ×Tτn

2

e ∈ ExpHaskell en ∈ Exp(MLT (Σn))
x x

n [n]T
e0 + e1 letT x0, x1⇐en

0 , en
1 in [x0 + x1]T

if0 e0 then e1 else e2 letT x⇐en
0 in if x = 0 then en

1 else en
2

let x : τ = e1 in e2 (λx : Tτn.en
2 ) en

1

µx : τ.e Y τn (λx : Tτn.en)
λx : τ.e [λx : Tτn.en]T
e1 e2 letT f⇐en

1 in f en
2

(e1, e2) [(en
1 , en

2 )]T
πi e letT x⇐en in πi x

({xi : τi|i ∈ m} �PL e : τ)n ∆≡ {xi : Tτn
i |i ∈ m} �ML en : Tτn

Fig. 2. CBN translation of Haskell

Remark 22. The key feature of the CBN translation is that variables in the
programming languages are translated into variables ranging over computational
types. Another important feature is the translation of types, which basically
guides (in combination with operational considerations) the translation of terms.

Exercise 23. Extend Haskell with polymorphism, as in 2nd-order λ-calculus, i.e.

τ ∈ TypeHaskell ::= X | . . . | ∀X : •.τ e ∈ ExpHaskell ::= . . . | ΛX : •.e | e τ

where X ranges over type variables. There is a choice in extending the CBN
translation to polymorphic types. Either type abstraction delays evaluation, and
then (∀X : •.τ)n should be ∀X : •.T τn, or it does not, and then (∀X : •.τ)n

should be ∀X : •.τn. In the latter case there is a problem to extend the CBN
translation on terms. A way to overcome the problem is to assume that com-
putational types commute with polymorphic types, i.e. the following map is an
iso

c : T (∀X : •.τ) � ΛX : •.letT x⇐c in [x X]T : ∀X : •.T τ

In realizability models several monads (e.g. lifting) satisfy this property, indeed
the isomorphism is often an identity. In these models, a simpler related property
is commutativity of computational types with intersection types.

Algol Translation. Some CBN languages (including Algol and PCF) allow
computational effects only at base types. Computational types play a limited
role in structuring the denotational semantics of these languages. Nevertheless
it is worth to compare the translation of such languages with that of Haskell.
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τ ∈ TypeAlgol τa ∈ Type(MLT (Σa))
Loc TLoc
Int T Int

Cmd T1
τ1 → τ2 τa

1 → τa
2

τ1×τ2 τa
1 ×τa

2

e ∈ ExpAlgol ea ∈ Exp(MLT (Σa))
x x

n [n]T
e0 + e1 letT x0, x1⇐ea

0 , ea
1 in [x0 + x1]T

if0 e0 then e1 else e2 ∗letT x⇐ea
0 in if x = 0 then ea

1 else ea
2

let x : τ = e1 in e2 (λx : τa.ea
2) ea

1

µx : τ.e ∗Y τa (λx : τa.ea)
λx : τ.e λx : τa.ea

e1 e2 ea
1 ea

2

(e1, e2) (ea
1 , ea

2)
πi e πi ea

l [l]T
!e letT l⇐ea in get l

skip [()]T
e0 := e1 letT l, n⇐ea

0 , ea
1 in set l n

e0; e1 letT ⇐ea
0 in ea

1

for the definition of ∗let and ∗Y see Remark 26

({xi : τi|i ∈ m} �PL e : τ)a ∆≡ {xi : τa
i |i ∈ m} �ML ea : τa

Fig. 3. Algol translation

We consider an idealized-Algol with a fixed set of locations. Syntactically it is
an extension of (simple) Haskell with three base types: Loc for integer locations,
Int for integer expressions, and Cmd for commands.

τ ∈ TypeAlgol ::= Loc | Int | Cmd | τ1 → τ2 | τ1×τ2

e ∈ ExpAlgol ::= x | l location
| n | e0 + e1 | !e contents of a location
| if0 e0 then e1 else e2
| skip | e0 := e1 null and assignment commands
| e0; e1 sequential composition of commands
| let x : τ = e1 in e2 | µx : τ.e | λx : τ.e | e1 e2 | (e1, e2) | πi e

The Algol translation a is defined by induction on types τ and raw terms
e (see Figure 3). The signature Σa for defining the Algol translation consists of

– Y : ∀X : •.(TX → TX) → TX, like for the Haskell translation
– a signature for the datatype of integers, like for the Haskell translation
– a type Loc of locations, with a fixed set of constants l : Loc, and operations

get : Loc → T Int and set : Loc → Int → T1 to get/store an integer from/into
a location.
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Remark 24. In Algol expressions and commands have different computational
effects, namely: expressions can only read the state, while commands can also
modify the state. Hence, a precise model would have to consider two monads,
TsrA = AS

⊥ for state reading computations and TseA = (A×S)S
⊥ for computa-

tions with side-effects, and a monad morphism from Tsr to Tse.

Lemma 25 (Typing). If {xi : τi|i ∈ m} �PL e : τ is a well-formed term of Al-
gol, then {xi : τa

i |i ∈ m} �ML ea : τa is a well-formed term of the metalanguage
with computational types.

Remark 26. The Algol translation seems to violate a key principle, namely that
the translation of a program should have computational type. But a valid Algol
program is a term of base type, and the Algol translation indeed maps base
types to computational types. More generally, the Algol translation maps Algol
types in (carriers of) T -algebras. Indeed T -algebras for a (strong) monad are
closed under (arbitrary) products and exponentials, more precisely: A1×A2 is
the carrier of a T -algebra whenever A1 and A2 are, and BA is the carrier of a T -
algebra whenever B is [EXERCISE: prove these facts in the metalanguage]. The
T -algebra structure ατ : Tτ → τ on the translation τ of a type in TypeAlgol is
used for defining the translation of terms, namely to extend the let and fix-point
combinator from computational types to T -algebras:

– *let
Γ � e1 : Tτ1 Γ, x : τ1 � e2 : τ2

Γ � ∗letT x⇐e1 in e2
∆= ατ2(letT x⇐e1 in [e2]T ) : τ2

– *Y
Γ, x : τ � e : τ

Γ � ∗Y τ (λx : τ.e) ∆= ατ (Y τ (λc : Tτ.[e[x := ατ c]]T ) : τ

Intuitively, applying ατ to a computation pushes its effects inside an element of
type τ . For instance, if τ is of the form τ1 → Tτ2, then ατ maps a computation
c : Tτ of a function to the function λx : τ1.letT f⇐c in f(x).

The Algol translation suggests to put more emphasis on T -algebras. Indeed,
[Lev99] has proposed a metalanguage with two kinds of types: value types inter-
preted by objects in C, and computation types interpreted by objects in CT .

CBV Translation: SML. We consider a simple fragment of SML with integer
locations. Syntactically the language is a minor variation of idealized Algol. It
replaces Cmd by Unit and skip by (), sequential composition of commands has
been removed because definable e1; e2 is definable by (λ : Unit.e2)e1, recursive
definitions are restricted to functional types.

τ ∈ TypeSML ::= Loc | Int | Unit | τ1 → τ2 | τ1×τ2

e ∈ ExpSML ::= x | l | n | e0 + e1 | !e | if0 e0 then e1 else e2 | () | e0 := e1
| let x : τ = e1 in e2 | µf : τ1 → τ2.λx : τ1.e
| λx : τ.e | e1 e2 | (e1, e2) | πi e

The CBV translation v (see Figure 4) is defined by induction on types
τ and raw terms e. When {xi : τi|i ∈ m} �PL e : τ is a well-formed term of
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τ ∈ TypeSML τv ∈ Type(MLT (Σv))
Loc Loc
Int Int
Unit 1

τ1 → τ2 τv
1 → Tτv

2

τ1×τ2 τv
1 ×τv

2

e ∈ ExpSML ev ∈ Exp(MLT (Σv))
x [x]T
n [n]T

e0 + e1 letT x0, x1⇐ev
0 , ev

1 in [x0 + x1]T
if0 e0 then e1 else e2 letT x⇐ev

0 in if x = 0 then ev
1 else ev

2

let x : τ = e1 in e2 letT x⇐ev
1 in ev

1

µf : τ1 → τ2.λx : τ1.e ∗Y (τ1 → τ2)v (λf : (τ1 → τ2)v.λx : τv
1 .ev)

λx : τ.e [λx : τv.ev]T
e1 e2 letT f, x⇐ev

1 , ev
2 in f x

(e1, e2) letT x1, x2⇐ev
1 , ev

2 in [(x1, x2)]T
πi e letT x⇐ev in [πi x]T

l [l]T
!e letT l⇐ev in get l

() [()]T
e0 := e1 letT l, n⇐ev

0 , ev
1 in set l n

({xi : τi|i ∈ m} �PL e : τ)v ∆≡ {xi : τv
i |i ∈ m} �ML ev : Tτv

Fig. 4. CBV translation of SML

SML, one can show that {xi : τv
i |i ∈ m} �ML ev : Tτv is a well-formed term of

the metalanguage with computational types. The signature Σv for defining the
CBV translation is Σa, i.e. that for defining the Algol translation.

Exercise 27. So far we have not said how to interpret the metalanguages used as
target for the various translations. Propose interpretations of the metalanguages
in the category of cpos: first choose a monad for interpreting computational
types, then explain how the other symbols in the signature Σ should be inter-
preted.

Exercise 28. The translations considered so far allow to validate equational laws
for the programming languages, by deriving the translation of the equational
laws in the metalanguage. Determine whether β and η for functional types, i.e.
(λx : τ1.e2) e1 = e2[x := e1] : τ2 and (λx : τ1.e x) = e : τ1 → τ2 with x �∈ FV(e),
are valid in Haskell, Algol or SML. If they are not valid suggest weaker equational
laws that can be validated. This exercise indicates that some care is needed in
transferring reasoning principles for the λ-calculus to functional languages.

Exercise 29. Consider Haskell with integer locations, and extend the CBN trans-
lation accordingly. Which signature Σ should be used?
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Exercise 30. SML has a construct, ref e, to create new locations. Consider this
extension of SML, and extend the CBV translation accordingly. Which signature
Σ and monad T in the category of cpos should be used?

Exercise 31. Consider SML with locations of any type, and extend the CBV
translation accordingly. Which signature Σ should be used (you may find con-
venient to assume that the metalanguage includes higher-order λ-calculus)? It
is very difficult to find monads able to interpret such a metalanguage.

3.3 Incremental Approach and Monad Transformers

The monadic approach to denotational semantics has a caveat. If the program-
ming language PL is complex, the signature Σ identified by the monadic ap-
proach can get fairly large, and the translation of MLT (Σ) into ML may become
quite complicated. An incremental approach can alleviate the problem of in
defining the translation of MLT (Σ) into ML. The basic idea is to adapt to this
setting the techniques and modularization facilities advocated for formal soft-
ware development, in particular the desired translation of MLT (Σ) into ML
corresponds to the implementation of an abstract datatype (in some given lan-
guage). In an incremental approach, the desired implementation is obtained by
a sequence of steps, where each step constructs an implementation for a more
complex datatype from an implementation for a simpler datatype.

Haskell constructor classes (and to a less extend SML modules) provide
a very convenient setting for the incremental approach (see [LHJ95]): the
type inference mechanism allows concise and readable definitions, while
type-checking detects most errors. What is missing is only the ability to
express and validate (equational) properties, which would require extra
features typical of Logical Frameworks (see [Mog97]).

This approach requires a collection of modules with the following features:

– they should be parametric in Σ, i.e. for any signature Σ (or at least for a
wide range of signatures) the module should take an implementation of Σ
and construct an implementation of Σ + Σnew, where Σnew is fixed

– the construction of the signature Σnew may depend on some additional pa-
rameters of a fixed signature Σpar.

The first requirement can be easily satisfied, when one can implement Σnew

without changing the implementation of Σ (this is often the case in software
development). However, the constructions we are interested in are not persistent,
since they involve a re-implementation of computational types, and consequently
of Σ. The translations we need to consider are of the form

I : MLT (Σpar + Σ + Σnew) → MLT (Σpar + Σ)

where Σnew are the new symbols defined by I, Σ the old symbols redefined by
I, and Σpar some fixed parameters of the construction (which are unaffected by
I). In general I can be decomposed in
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– a translation Inew : MLT (Σpar + Σnew) → MLT (Σpar) defining the new
symbols (in Σnew) and redefining computational types,

– translations Iop : MLT (Σop) → MLT (Σpar + Σop) redefining an old symbol
op in isolation (consistently with the redefinition of computational types),
for each possible type of symbol one may have in Σ.

Filinski [Fil99] has proposed a more flexible approach, which uses metalan-
guages with several monads Ti (rather than only one), and at each step it intro-
duces a new monad T ′ and new operations (defined in term of the pre-existing
ones), without changing the meaning of the old symbols. Therefore, one is con-
sidering definitional extensions, i.e. translations of the form

I : MLT ′,Ti∈n(Σold + Σ′
new) → MLTi∈n(Σold)

which are the identity on MLTi∈n
(Σold). In Filinski’s approach one can use

the translations Inew and Iop, whenever possible, and more ad hoc definitions
otherwise. In fact, when Filinski introduces a new monad T ′, he introduces also
two operations called monadic reflection and reification

reflect : ∀X : •.τ → T ′X reify : ∀X : •.T ′X → τ

that establish a bijection between T ′X and its implementation τ (i.e. a type in
the pre-existing language). Therefore, we can define operations related to T ′ by
moving back and forth between T ′ and its implementation (as done in the case
of operations defined on an abstract datatype).

Semantically a monad transformer is a function F : |Mon(C)| → |Mon(C)|
mapping monads (over a category C) to monads. We are interested in monad
transformers for adding computational effects, therefore we require that for any
monad T there should be a monad morphism inT : T → FT . It is often the case
that F is a functor on Mon(C), and in becomes a natural transformation from
idMon(C) to F . Syntactically a monad transformer is a translation

IF : MLT ′,T (Σpar) → MLT (Σpar)

which is the identity on MLT (Σpar). In other words we express the new monad
T ′ in terms of the old monad T (and the parameters specified in Σpar).

3.4 Examples of Monad Transformers

In the sequel we describe (in a higher-order λ-calculus) several monad transform-
ers corresponding to the addition of a new computational effect, more precisely
we define

– the new monad T ′, and the monad morphism in : T → T ′
– operations on T ′-computations associated to the new computational effect
– an operation op′ : ∀X : •.A → (B → T ′X) → T ′X extending to T ′-

computations a pre-existing operation op : ∀X : •.A → (B → TX) → TX
on T -computations.

Intuitively op X : A → (B → TX) → TX amounts to having an A-indexed
family of algebraic operations of arity B on TX.
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Monad Transformer Ise for Adding Side-Effects

– signature Σpar for parameters
states S : •

– signature Σnew for new operations
lookup lkp′ : T ′S
update upd′ : S → T ′1

– definition of new monad T ′ and monad morphism in : T → T ′

T ′X ∆= S → T (X×S)
[x]T ′

∆= λs : S.[(x, s)]T
letT ′ x⇐c in f x

∆= λs : S.letT (x, s′)⇐c s in f x s′

in X c
∆= λs : S.letT x⇐c in [(x, s)]T

definition of new operations
lkp′ ∆= λs : S.[(s, s)]T

upd′ s
∆= λs′ : S.[(∗, s)]T

extension of old operation
op′ X a f

∆= λs : S.op (X×S) a (λb : B.f b s)

Remark 32. The operations lkp′ and upd′ do not fit the format for op. However,
any ∗op : A → TB induces an op : ∀X : •.A → (B → TX) → TX in the right
format, namely op X a f

∆= letT b⇐ ∗ op a in f b.

Monad Transformer Iex for Adding Exceptions

– signature Σpar for parameters
exceptions E : •

– signature Σnew for new operations
raise raise′ : ∀X : •.E → T ′X
handle handle′ : ∀X : •.(E → T ′X) → T ′X → T ′X

– definition of new monad T ′ and monad morphism in : T → T ′

T ′X ∆= T (X + E)
[x]T ′

∆= [inl x]T
letT ′ x⇐c in f x

∆= letT u⇐c in (case u of x ⇒ f x |n ⇒ [inr n]T )
in X c

∆= letT x⇐c in [inl x]T
definition of new operations

raise′ X n
∆= [inr n]T

handle′ X f c
∆= letT u⇐c in (case u of x ⇒ [inl x]T |n ⇒ f n)

extension of old operation
op′ X a f

∆= op (X + E) a f

Remark 33. In this case the definition of op′ is particularly simple. In fact, the
same definition works for extending any operation of type ∀X : •.τ [Y := TX],
where τ is a type whose only free type variable is Y . The case of an A-indexed
family of algebraic operations of arity B corresponds to τ ≡ A → (B → Y ) → Y .
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Monad Transformer Ico for Adding Complexity

– signature Σpar for parameters
monoid M : •

1 : M
∗ : M → M → M (we use infix notation for ∗)

to prove that T ′ is a monad, we should add axioms saying that (M, 1, ∗) is
a monoid

– signature Σnew for new operations
cost tick′ : M → T ′1

– definition of new monad T ′ and monad morphism in : T → T ′

T ′X ∆= T (X×M)
[x]T ′

∆= [(x, 1)]T
letT ′ x⇐c in f x

∆= letT (x, m)⇐c in (letT (y, n)⇐f x in [(y, m ∗ n)]T )
in X c

∆= letT x⇐c in [(x, 1)]T
definition of new operations

tick′ m
∆= [(∗, m)]T

extension of old operation
op′ X a f

∆= op (X×M) a f

Monad Transformer Icon for Adding Continuations

– signature Σpar for parameters
results R : •

– signature Σnew for new operations
abort abort′ : ∀X : •.R → T ′X
call-cc callcc′ : ∀X, Y : •.((X → T ′Y ) → T ′X) → T ′X

– definition of new monad T ′ and monad morphism in : T → T ′

T ′X ∆= (X → TR) → TR

[x]T ′
∆= λk : X → TR.k x

letT ′ x⇐c in f x
∆= λk : Y → TR.c (λx.f x k)

in X c
∆= λk : X → TR.letT x⇐c in k x

definition of new operations
abort′ X r

∆= λk : X → TR.[r]T
callcc′ X Y f

∆= λk : X → TR.f (λx.λk′ : Y → TR.[k x]T ) k
extension of old operation

op′ X a f
∆= λk : X → TR.op R a (λb : B.f b k)

Remark 34. The operation callcc′ and other control operators do not fit the
algebraic format, and there is no way to massage them into such format. Unlike
the others monad transformers, Icon does not extend to a functor on Mon(C).

Exercise 35. For each of the monad transformer, prove that T ′ is a monad.
Assume that T is a monad, and use the equational axioms for higher-order λ-
calculus with sums and products, including η-axioms.
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Exercise 36. For each of the monad transformer, define a fix-point combinator
for the new computational types Y ′ : ∀X : •.(T ′X → T ′X) → T ′X given a
fix-point combinator for the old computational types Y : ∀X : •.(TX → TX) →
TX. In some cases one needs the derived fix-point combinator ∗Y for carriers of
T -algebras (see Remark 26).

Exercise 37. Define a monad transformer Isr for state-readers, i.e. T ′X ∆= S →
TX. What could be Σnew? Define a monad morphism from Tsr to Tse.

Exercise 38. Check which monad transformers commute (up to isomorphism).
For instance, Ise and Iex do not commute, more precisely one gets

– Tse+exX = S → T ((X + E)×S) when adding first side-effects and then
exceptions

– Tex+seX = S → T ((X×S) + E) when adding first exceptions and then
side-effects

Exercise 39. For each of the monad transformers, identify equational laws for
the new operations specified in Σnew, and show that such laws are validated by
the translation. For instance, Ise validates the following equations:

s : S � letT ′ ∗ ⇐upd′ s in lkp′ = letT ′ ∗ ⇐upd′ s in [s]T ′ : T ′S
s, s′ : S � letT ′ ∗ ⇐upd′ s inupd′ s′ = upd′ s′ : T ′1
s : S � letT ′ s⇐lkp′ inupd′ s = [∗]T ′ : T ′1
X : •, c : T ′X � letT ′ s⇐lkp′ in c = c : T ′X

Exercise 40 (Semantics of Effects). Given a monad T over the category of sets:

– Define predicates for c ∈ T ′X ∆= S → T (X×S) corresponding to the prop-
erties “c does not read from S” and “c does not write in S”.
Such predicates are extensional, therefore a computation that reads the state
and then rewrites it unchanged, is equivalent to a computation that ignores
the state.

– Define a predicate for c ∈ T ′X ∆= T (X + E) corresponding to the property
“c does not raise exceptions in E”.

4 Monads in Haskell

So far we have focussed on applications of monads in denotational semantics,
but since Wadler’s influential papers in the early 90s [Wad92a,Wad92b,Wad95]
they have also become part of the toolkit that Haskell programmers use on a day
to day basis. Indeed, monads have proven to be so useful in practice that the
language now includes extensions specifically to make programming with them
easy. In the next few sections we will see how monads are represented in Haskell,
look at some of their applications, and try to explain why they have had such
an impact.
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4.1 Implementing Monads in Haskell

The representation of monads in Haskell is based on the Kleisli triple formulation:
recall Definition 1.4:

A Kleisli triple over a category C is a triple (T, η, ∗), where T : |C| →
|C|, ηA : A → TA for A ∈ |C|, f∗ : TA → TB for f : A → TB and the
following equations hold: . . .

In Haskell, C is the category with Haskell types as objects and Haskell functions
as arrows, T corresponds to a parameterised type, η is called return, and ∗ is
called >>=. This would suggest the following types:

return :: a -> T a
(>>=) :: (a -> T b) -> (T a -> T b)

where a and b are Haskell type variables, so that these types are polymorphic.
But notice that we can consider >>= to be a curried function of two arguments,
with types (a -> T b) and T a. In practice it is convenient to reverse these
arguments, and instead give >>= the type

(>>=) :: T a -> (a -> T b) -> T b

Now the metalanguage notation let x⇐e1 in e2 can be conveniently expressed as

e1 >>= \x -> e2

(where \x -> e is Haskell’s notation for λx.e). Intuitively this binds x to the
result of e1 in e2; with this in mind we usually pronounce “>>=” as “bind”.

Example 41. The monad of partiality can be represented using the built-in
Haskell type

data Maybe a = Just a | Nothing

This defines a parameterised type Maybe, whose elements are Just x for any
element x of type a (representing a successful computation), or Nothing (repre-
senting failure).

The monad operators can be implemented as

return a = Just a

m >>= f = case m of
Just a -> f a
Nothing -> Nothing

and failure can be represented by

failure = Nothing

As an example of an application, a division function which operates on pos-
sibly failing integers can now be defined as
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divide :: Maybe Int -> Maybe Int -> Maybe Int
divide a b = a >>= \m ->

b >>= \n ->
if n==0 then failure

else return (a ‘div‘ b)

Try unfolding the calls of >>= in this definition to understand the gain in clarity
that using monadic operators brings.

Example 42. As a second example, we show how to implement the monad of
side-effects in Haskell. This time we will need to define a new type, State s a,
to represent computations producing an a, with a side-effect on a state of type
s. Haskell provides three ways to define types:

type State s a = s -> (s,a)
newtype State s a = State (s -> (s,a))
data State s a = State (s -> (s,a))

The first alternative declares a type synonym: State s a would be in every
respect equivalent to the type s -> (s,a). This would cause problems later:
since many monads are represented by functions, it would be difficult to tell just
from the type which monad we were talking about.

The second alternative declares State s a to be a new type, different from
all others, but isomorphic to s -> (s,a). The elements of the new type are
written State f to distinguish them from functions. (There is no need for the
tag used on elements to have the same name as the type, but it is often convenient
to use the same name for both).

The third alternative also declares State s a to be a new type, with elements
of the form State f, but in contrast to newtype the State constructor is lazy:
that is, State ⊥ and ⊥ are different values. This is because data declarations
create lifted sum-of-product types, and even when the sum is trivial it is still
lifted. Thus State s a is not isomorphic to s -> (s,a) — it has an extra
element — and values of this type are more costly to manipulate as a result.

We therefore choose the second alternative. The monad operations are now
easy to define:

return a = State (\s -> (s,a))

State m >>= f = State (\s -> let (s’,a) = m s
State m’ = f a

in m’ s’)

The state can be manipulated using

readState :: State s s
readState = State (\s -> (s,s))

writeState :: s -> State s ()
writeState s = State (\_ -> (s,()))
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For example, a function to increment the state could be expressed using these
functions as

increment :: State Int ()
increment = readState >>= \s ->

writeState (s+1)

4.2 The Monad Class: Overloading Return and Bind

Haskell programmers make use of many different monads; it would be awkward
if return and >>= had to be given different names for each one. To avoid this,
we use overloading so that the same names can be used for every monad.

Overloading in Haskell is supported via the class system: overloaded names
are introduced by defining a class containing them. A class is essentially a signa-
ture, with a different implementation for each type. The monad operations are
a part of a class Monad, whose definition is found in Haskell’s standard prelude:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Here the class parameter m ranges over parameterised types; read the declaration
as “A parameterised type m is a Monad if it supports implementations of return
and >>= with the given types”.

Implementations of these operations are provided by making a corresponding
instance declaration, for example:

instance Monad Maybe where
return a = Just a
m >>= f = case m of

Just a -> f a
Nothing -> Nothing

which corresponds to the definition of the Maybe monad given earlier. For the
monad of side-effects, we write

instance Monad (State s) where
return a = State (\s -> (s,a))
State m >>= f = State (\s -> let (s’,a) = m s

State m’ = f a
in m’ s’)

Notice that although we defined the type State with two parameters, and the
Monad class requires a type with one parameter, Haskell allows us to create the
type we need by partially applying the State type to one parameter: types with
many parameters are ‘curried’. Indeed, we chose the order of the parameters in
the definition of State with this in mind.

Now when the monadic operators are applied, the type at which they are
used determines which implementation is invoked. This is why we were careful
to make State a new type above.
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A great advantage of overloading the monad operators is that it enables us
to write code which works with any monad. For example, we could define a
function which combines two monadic computations producing integers into a
computation of their sum:

addM a b = a >>= \m ->
b >>= \n ->
return (m+n)

Since nothing in this definition is specific to a particular monad, we can use this
function with any: addM (Just 2) (Just 3) is Just 5, but we could also use
addM with the State monad. The type assigned to addM reflects this, it is1

addM :: (Monad m) => m Int -> m Int -> m Int

The “(Monad m) =>” is called a context, and restricts the types which may be
substituted for m to instances of the class Monad.

Although addM is perhaps too specialised to be really useful, we can derive a
very useful higher-order function by generalising over +. Indeed, Haskell’s stan-
dard Monad library provides a number of such functions, such as

liftM :: Monad m => (a -> b) -> m a -> m b
liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
sequence :: Monad m => [m a] -> m [a]

With these definitions,

addM = liftM2 (+)

Programming with monads is greatly eased by such a library.

Exercise 43. Give a definition of sequence. The intention is that each compu-
tation in the list is executed in turn, and a list made of the results.

Finally, Haskell provides syntactic sugar for >>= to make monadic programs
more readable: the do-notation. For example, the definition of addM above could
equivalently be written as

addM a b = do m <- a
n <- b
return (m+n)

The do-notation is defined by

do e = e

do x <- e = e >>= (\x -> do c)
c

do e = e >>= (\_ -> do c)
c

1 Actually type inference produces an even more general type, since the arithmetic is
also overloaded, but we will gloss over this.
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Applying these rules to the definition of addM above rewrites it into the form
first presented. The do-notation is simply a shorthand for bind, but does make
programs more recognisable, especially for beginners.

Example 44. As an example of monadic programming, consider the problem of
decorating the leaves of a tree with unique numbers. We shall use a parameterised
tree type

data Tree a = Leaf a | Bin (Tree a) (Tree a)

and define a function

unique :: Tree a -> Tree (a,Int)

which numbers the leaves from 1 upwards in left-to-right order. For example,

unique (Bin (Bin (Leaf ’a’) (Leaf ’b’)) (Leaf ’c’))
= Bin (Bin (Leaf (’a’,1)) (Leaf (’b’,2))) (Leaf (’c’,3))

Intuitively we think of an integer state which is incremented every time a leaf is
encountered: we shall therefore make use of the State monad to define a function

unique’ :: Tree a -> State Int (Tree (a,Int))

First we define a function to increment the state,

tick :: State Int Int
tick = do n <- readState

writeState (n+1)
return n

and then the definition of unique’ is straightforward:

unique’ (Leaf a) = do n <- tick
return (Leaf (a,n))

unique’ (Bin t1 t2) = liftM2 Bin (unique’ t1) (unique’ t2)

Notice that we use liftM2 to apply the two-argument function Bin to the results
of labelling the two subtrees; as a result the notational overhead of using a monad
is very small.

Finally we define unique to invoke the monadic function and supply an initial
state:

unique t = runState 1 (unique’ t)

runState s (State f) = snd (f s)

It is instructive to rewrite the unique function directly, without using a
monad — explicit state passing in the recursive definition clutters it significantly,
and creates opportunities for errors that the monadic code completely avoids.
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5 Applying Monads

So far we have shown how monads are represented in Haskell, and how the
language supports their use. But what are monads used for? Why have they
become so prevalent in Haskell programs? In this section we try to answer these
questions.

5.1 Input/Output: The Killer Application

Historically, input/output has been awkward to handle in purely functional lan-
guages. The same applies to foreign function calls: there is no way to guarantee
that a function written in C, for example, does not have side effects, so calling
it directly from a Haskell program would risk compromising Haskell’s purely
functional semantics.

Yet it is clear enough that input/output can be modelled in a purely func-
tional way: we must just consider a program to be a function from the state of
the universe before it is run, to the state of the universe afterwards. One possibil-
ity is to write the program in this way: every function depending on the external
state would take the universe as a parameter, and every function modifying it
would return a new universe as a part of its result. For example a program to
copy one file to another might be written as

copy :: String -> String -> Universe -> Universe
copy from to universe =
let contents = readFile from universe

universe’ = writeFile to contents universe
in universe’

Such a program has a purely functional semantics, but is not easy to im-
plement. Of course, we cannot really maintain several copies of the universe
at the same time, and so ‘functions’ such as writeFile must be implemented
by actually writing the new contents to the filestore. If the programmer then
accidentally or deliberately returns universe instead of universe’ as the fi-
nal result of his program, then the purely functional semantics is not correctly
implemented. This approach has been followed in Clean though, using a linear
type system to guarantee that the programmer manipulates universes correctly
[BS96].

However, having seen monads we would probably wish to simplify the pro-
gram above by using a State monad to manage the universe. By defining

type IO a = State Universe a

and altering the types of the primitives slightly to

readFile :: String -> IO String
writeFile :: String -> String -> IO ()

then we can rewrite the file copying program as
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copy :: String -> String -> IO ()
copy from to = do contents <- readFile from

writeFile to contents

which looks almost like an imperative program for the same task2.
This program is both purely functional and efficiently implementable: it is

quite safe to write the output file destructively. However, there is still a risk that
the programmer will define inappropriate operations on the IO type, such as

snapshot :: IO Universe
snapshot = State (\univ -> (univ, univ))

The solution is just to make the IO type abstract [JW93]! This does not change the
semantics of programs, which remains purely functional, but it does guarantee
that as long as all the primitive operations on the IO type treat the universe in
a proper single-threaded way (which all operations implemented in imperative
languages do), then so does any Haskell program which uses them.

Since the IO monad was introduced into Haskell, it has been possible to write
Haskell programs which do input/output, call foreign functions directly, and yet
still have a purely functional semantics. Moreover, these programs look very
like ordinary programs in any imperative language. The contortions previously
needed to achieve similar effects are not worthy of description here.

The reader may be wondering what all the excitement is about here: after all,
it has been possible to write ordinary imperative programs in other languages
for a very long time, including functional languages such as ML or Scheme; what
is so special about writing them in Haskell? Two things:

– Input/output can be combined cleanly with the other features of Haskell,
in particular higher-order functions, polymorphism, and lazy evaluation. Al-
though ML, for example, combines input/output with the first two, the abil-
ity to mix lazy evaluation cleanly with I/O is unique to Haskell with monads
— and as the copy example shows, can lead to simpler programs than would
otherwise be possible.

– Input/output is combined with a purely functional semantics. In ML, for
example, any expression may potentially have side-effects, and transforma-
tions which re-order computations are invalid without an effect analysis to
establish that the computations are side-effect free. In Haskell, no expres-
sion has side-effects, but some denote commands with effects; moreover, the
potential to cause side-effects is evident in an expression’s type. Evaluation
order can be changed freely, but monadic computations cannot be reordered
because the monad laws do not permit it.

2 The main difference is that we read and write the entire contents of a file in one
operation, rather than byte-by-byte as an imperative program probably would. This
may seem wasteful of space, but thanks to lazy evaluation the characters of the
input file are only actually read into memory when they are needed for writing to
the output. That is, the space requirements are small and constant, just as for a
byte-by-byte imperative program.
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Peyton-Jones’ excellent tutorial [Pey01] covers this kind of monadic program-
ming in much more detail, and also discusses a useful refinement to the semantics
presented here.

5.2 Imperative Algorithms

Many algorithms can be expressed in a purely functional style with the same
complexity as their imperative forms. But some efficient algorithms depend crit-
ically on destructive updates. Examples include the UNION-FIND algorithm,
many graph algorithms, and the implementation of arrays with constant time
access and modification. Without monads, Haskell cannot express these algo-
rithms with the same complexity as an imperative language.

With monads, however, it is easy to do so. Just as the abstract IO monad en-
ables us to write programs with a purely functional semantics, and give them an
imperative implementation, so an abstract state transformer monad ST allows us
to write purely functional programs which update the state destructively [LJ94]3.
Semantically the type ST a is isomorphic to State -> (State,a), where State
is a function from typed references (locations) to their contents. In the imple-
mentation, only one State ever exists, which is updated destructively in place.

Operations are provided to create, read, and write typed references:

newSTRef :: a -> ST (STRef a)
readSTRef :: STRef a -> ST a
writeSTRef :: STRef a -> a -> ST ()

Here STRef a is the type of a reference containing a value of type a. Other
operations are provided to create and manipulate arrays.

The reason for introducing a different monad ST, rather than just providing
these operations over the IO monad, is that destructive updates to variables in
a program are not externally visible side-effects. We can therefore encapsulate
these imperative effects using a new primitive

runST :: ST a -> a

which semantically creates a new State, runs its argument in it, and discards
the final State before returning an a as its result. (A corresponding function
runIO would not be implementable, because we have no way to ‘discard the final
Universe’). In the implementation of runST, States are represented just by a
collection of references stored on the heap; there is no cost involved in creating
a ‘new’ one therefore. Using runST we can write pure (non-monadic) functions
whose implementation uses imperative features internally.

Example 45. The depth-first search algorithm for graphs uses destructively up-
dated marks to identify previously visited nodes and avoid traversing them again.
3 While the IO monad is a part of Haskell 98, the current standard [JHe+99], the

ST monad is not. However, every implementation provides it in some form; the
description here is based on the Hugs modules ST and LazyST [JRtYHG+99].
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For simplicity, let us represent graph nodes by integers, and graphs using the
type

type Graph = Array Int [Int]

A graph is an array indexed by integers (nodes), whose elements are the list
of successors of the corresponding node. We can record which nodes have been
visited using an updateable array of boolean marks, and program the depth-first
search algorithm as follows:

dfs g ns = runST (do marks <- newSTArray (bounds g) False
dfs’ g ns marks)

dfs’ g [] marks = return []
dfs’ g (n:ns) marks =
do visited <- readSTArray marks n

if visited then dfs’ g ns marks
else do writeSTArray marks n True

ns’ <- dfs’ g ((g!n)++ns) marks
return (n:ns’)

The function dfs returns a list of all nodes reachable from the given list of roots
in depth-first order, for example:

dfs (array (1,4) [(1,[2,3]), (2,[4]), (3,[4]), (4,[1])]) =
[1,2,4,3]

The type of the depth-first search function is

dfs :: Graph -> [Int] -> [Int]

It is a pure, non-monadic function which can be freely mixed with other non-
monadic code.

Imperative features combine interestingly with lazy evaluation. In this ex-
ample, the output list is produced lazily: the traversal runs only far enough to
produce the elements which are demanded. This is possible because, in the code
above, return (n:ns’) can produce a result before ns’ is known. The recursive
call of dfs’ need not be performed until the value of ns’ is actually needed4.
Thus we can efficiently use dfs even for incomplete traversals: to search for the
first node satisfying p, for example, we can use

head (filter p (dfs g roots))

safe in the knowledge that the traversal will stop when the first node is found.
King and Launchbury have shown how the lazy depth-first search function

can be used to express a wide variety of graph algorithms both elegantly and
efficiently [KL95].
4 Hugs actually provides two variations on the ST monad, with and without lazy be-

haviour. The programmer chooses between them by importing either ST or LazyST.
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The ST monad raises some interesting typing issues. Note first of all that
its operations cannot be implemented in Haskell with the types given, even
inefficiently! The problem is that we cannot represent an indexed collection of
values with arbitrary types — if we tried to represent States as functions from
references to contents, for example, then all the contents would have to have the
same type. A purely functional implementation would need at least dependent
types, to allow the type of a reference’s contents to depend on the reference itself
— although even given dependent types, it is far from clear how to construct a
well-typed implementation.

Secondly, we must somehow prevent references created in one State being
used in another — it would be hard to assign a sensible meaning to the result.
This is done by giving the ST type an additional parameter, which we may think
of as a ‘state identifier’, or a region [TT97] within which the computation oper-
ates: ST s a is the type of computations on state s producing an a. Reference
types are also parameterised on the state identifier, so the types of the operations
on them become:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

These types guarantee that ST computations only manipulate references lying
in ‘their’ State.

But what should the type of runST be? It is supposed to create a new State
to run its argument in, but if we give it the type

runST :: ST s a -> a

then it will be applicable to any ST computation, including those which ma-
nipulate references in other States. To prevent this, runST is given a rank-2
polymorphic type:

runST :: (forall s. ST s a) -> a

(“Rank-2 polymorphic” refers to the fact that forall appears to the left of a
function arrow in this type, so runST requires a polymorphic argument. Rank-2
polymorphism was added to both Hugs and GHC, just to make this application
possible [Jon].) This type ensures that the argument of runST can safely be run
in any State, in particular the new one which runST creates.

Example 46. The expression

runST (newSTRef 0)

is not well-typed. Since newSTRef 0 has the type ST s (STRef s Int), then
runST would have to produce a result of type STRef s Int — but the scope of
s does not extend over the type of the result.
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Example 47. The expression

runST (do r<-newSTRef 0
return (runST (readSTRef r)))

is not well-typed either, because the argument of the inner runST is not poly-
morphic — it depends on the state identifier of the outer one.

The inclusion of the ST monad and assignments in Haskell raises an interest-
ing question: just what is a purely functional language? Perhaps the answer is:
one in which assignment has a funny type!

5.3 Domain Specific Embedded Languages

Since the early days of functional programming, combinator libraries have been
used to define succinct notations for programs in particular domains [Bur75].
There are combinator libraries for many different applications, but in this section
we shall focus on one very well-studied area: parsing. A library for writing parsers
typically defines a type Parser a, of parsers for values of type a, and combinators
for constructing and invoking parsers. These might include

satisfy :: (Char -> Bool) -> Parser Char

to construct a parser which accepts a single character satisfying the given pred-
icate,

(|||) :: Parser a -> Parser a -> Parser a

to construct a parser which accepts an input if either of its operands can parse
it, and

runParser :: Parser a -> String -> a

to invoke a parser on a given input.
A parsing library must also include combinators to run parsers in sequence,

and to build parsers which invoke functions to compute their results. Wadler
realised that these could be provided by declaring the Parser type to be a
monad [Wad92a]. Further combinators can then be defined in terms of these
basic ones, such as a combinator accepting a particular character,

literal :: Char -> Parser Char
literal c = satisfy (==c)

and a combinator for repetition,

many :: Parser a -> Parser [a]
many p = liftM2 (:) p (many p) ||| return []

which parses a list of any number of ps.
Given such a library, parsing programs can be written very succinctly. As

an example, we present a function to evaluate arithmetic expressions involving
addition and multiplication:
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eval :: String -> Int
eval = runParser expr

expr = do t <- term
literal ’+’
e <- expr
return (t+e)

||| term

term = do c <- closed
literal ’*’
t <- term
return (c*t)

||| closed

closed = do literal ’(’
e <- expr
literal ’)’
return e

||| numeral

numeral = do ds <- many (satisfy isDigit)
return (read ds)

With a good choice of combinators, the code of a parser closely resembles the
grammar it parses5,6!

In recent years, a different view of such combinator libraries has become
popular: we think of them as defining a domain specific language (DSL), whose
constructions are the combinators of the library [Hud98]. With this view, this
little parsing library defines a programming language with special constructions
to accept a symbol and to express alternatives.

Every time a functional programmer designs a combinator library, then, we
might as well say that he or she designs a domain specific programming lan-
guage, integrated with Haskell. This is a useful perspective, since it encourages
programmers to produce a modular design, with a clean separation between the
semantics of the DSL and the program that uses it, rather than mixing com-
binators and ‘raw’ semantics willy-nilly. And since monads appear so often in
programming language semantics, it is hardly surprising that they appear often
in combinator libraries also!

5 In practice the resemblance would be a little less close: real parsers for arithmetic ex-
pressions are left-recursive, use a lexical analyser, and are written to avoid expensive
backtracking. On the other hand, real parsing libraries provide more combinators
to handle these features and make parsers even more succinct! See Hutton’s article
[HM98] for a good description.

6 Notice how important Haskell’s lazy evaluation is here: without it, these recursive
definitions would not make sense!
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We will return to the implementation of the parsing library in the next sec-
tion, after a discussion of monad transformers.

6 Monad Transformers in Haskell

The Haskell programmer who makes heavy use of combinators will need to im-
plement a large number of monads. Although it is perfectly possible to define
a new type for each one, and implement return and >>= from scratch, it saves
labour to construct monads systematically where possible. The monad trans-
formers of section 3.2 offer an attractive way of doing so, as Liang, Hudak and
Jones point out [LHJ95].

Recall the definition:

A monad transformer is a function F : |Mon(C)| → |Mon(C)|, i.e. a
function mapping monads (over a category C) to monads. We are inter-
ested in monad transformers for adding computational effects, therefore
we require that for any monad T there should be a monad morphism
inT : T → FT .

We represent monad transformers in Haskell by types parameterised on a monad
(itself a parameterised type), and the result type — that is, types of kind
(* -> *) -> * -> *. For example, the partiality monad transformer is rep-
resented by the type

newtype MaybeT m a = MaybeT (m (Maybe a))

According to the definition, MaybeT m should be a monad whenever m is, which
we can demonstrate by implementing return and >>=:

instance Monad m => Monad (MaybeT m) where
return x = MaybeT (return (Just x))
MaybeT m >>= f =
MaybeT (do x <- m

case x of
Nothing -> return Nothing
Just a -> let MaybeT m’ = f a in m’)

Moreover, according to the definition of a monad transformer above, there should
also be a monad morphism from m to MaybeT m — that is, it should be possible
to transform computations of one type into the other. Since we need to de-
fine monad morphisms for many different monad transformers, we use Haskell’s
overloading again and introduce a class of monad transformers

class (Monad m, Monad (t m)) => MonadTransformer t m where
lift :: m a -> t m a
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Here t is the monad transformer, m is the monad it is applied to, and lift is
the monad morphism7. Now we can make MaybeT into an instance of this class:

instance Monad m => MonadTransformer MaybeT m where
lift m = MaybeT (do x <- m

return (Just x))

The purpose of the MaybeT transformer is to enable computations to fail: we
shall introduce operations to cause and handle failures. One might expect their
types to be

failure :: MaybeT m a
handle :: MaybeT m a -> MaybeT m a -> MaybeT m a

However, this is not good enough: since we expect to combine MaybeT with other
monad transformers, the monad we actually want to apply these operations
at may well be of some other form — but as long as it involves the MaybeT
transformer somewhere, we ought to be able to do so.

We will therefore overload these operations also, and define a class of ‘Maybe-
like’ monads8:

class Monad m => MaybeMonad m where
failure :: m a
handle :: m a -> m a -> m a

Of course, monads of the form MaybeT m will be instances of this class, but later
we will also see others. In this case, the instance declaration is

instance Monad m => MaybeMonad (MaybeT m) where
failure = MaybeT (return Nothing)
MaybeT m ‘handle‘ MaybeT m’ =
MaybeT (do x <- m

case x of
Nothing -> m’
Just a -> return (Just a))

Finally, we need a way to ‘run’ elements of this type. We define

runMaybe :: Monad m => MaybeT m a -> m a
runMaybe (MaybeT m) = do x <- m

case x of
Just a -> return a

7 Here we step outside Haskell 98 by using a multiple parameter class – an extension
which is, however, supported by Hugs and many other implementations. We make
m a parameter of the class to permit the definition of monad transformers which
place additional requirements on their argument monad.

8 Usually the standard Haskell class MonadPlus with operations mzero and mplus is
used in this case, but in the present context the names MaybeMonad, failure and
handle are more natural.
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for this purpose. (We leave undefined how we ‘run’ an erroneous computation,
thus converting an explicitly represented error into a real Haskell one).

We have now seen all the elements of a monad transformer in Haskell. To
summarise:

– We define a type to represent the transformer, say TransT, with two param-
eters, the first of which should be a monad.

– We declare TransT m to be a Monad, under the assumption that m already
is.

– We declare TransT to be an instance of class MonadTransformer, thus defin-
ing how computations are lifted from m to TransT m.

– We define a class TransMonad of ‘Trans-like monads’, containing the opera-
tions that TransT provides.

– We declare TransT m to be an instance of TransMonad, thus implementing
these operations..

– We define a function to ‘run’ (TransT m)-computations, which produces
m-computations as a result. In general runTrans may need additional pa-
rameters — for example, for a state transformer we probably want to supply
an initial state.

We can carry out this program to define monad transformers for, among others,

– state transformers, represented by

newtype StateT s m a = StateT (s -> m (s, a))

supporting operations in the class9

class Monad m => StateMonad s m | m -> s where
readState :: m s
writeState :: s -> m ()

– environment readers, represented by

newtype EnvT s m a = EnvT (s -> m a)

supporting operations in the class

class Monad m => EnvMonad env m | m -> env where
inEnv :: env -> m a -> m a
rdEnv :: m env

where rdEnv reads the current value of the environment, and inEnv runs its
argument in the given environment.

9 This class declaration uses Mark Jones’ functional dependencies, supported by Hugs,
to declare that the type of the monad’s state is determined by the type of the monad
itself. In other words, the same monad cannot have two different states of different
types. While not strictly necessary, making the dependency explicit enables the
type-checker to infer the type of the state much more often, and helps to avoid
hard-to-understand error messages about ambiguous typings.
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– continuations, represented by

newtype ContT ans m a = ContT ((a -> m ans) -> m ans)

supporting operations in the class

class Monad m => ContMonad m where
callcc :: ((a -> m b) -> m a) -> m a

where callcc f calls f, passing it a function k, which if it is ever called
terminates the call of callcc immediately, with its argument as the final
result.

Two steps remain before we can use monad transformers in practice. Firstly,
since monad transformers only transform one monad into another, we must define
a monad to start with. Although one could start with any monad, it is natural
to use a ‘vanilla’ monad with no computational features – the identity monad

newtype Id a = Id a

The implementations of return and >>= on this monad just add and remove the
Id tag.

Secondly, so far the only instances in class MaybeMonad are of the form
MaybeT m, the only instances in class StateMonad of the form StateT s m, and
so on. Yet when we combine two or more monads, of course we expect to use the
features of both in the resulting monad. For example, if we construct the monad
StateT s (MaybeT Id), then we expect to be able to use failure and handle
at this type, as well as readState and writeState.

The only way to do so is to give further instance declarations, which define
how to ‘lift’ the operations of one monad over another. For example, we can lift
failure handling to state monads as follows:

instance MaybeMonad m => MaybeMonad (StateT s m) where
failure = lift failure
StateT m ‘handle‘ StateT m’ = StateT (\s -> m s ‘handle‘ m’ s)

Certainly this requires O(n2) instance declarations, one for each pair of monad
transformers, but there is unfortunately no other solution.

The payoff for all this work is that, when we need to define a monad, we can
often construct it quickly by composing monad transformers, and automatically
inherit a collection of useful operations.

Example 48. We can implement the parsing library from section 5.3 by combin-
ing state transformation with failure. We shall let a parser’s state be the input
to be parsed; running a parser will consume a part of it, so running two parsers
in sequence will parse successive parts of the input. Attempting to run a parser
may succeed or fail, and we will often wish to handle failures by trying a different
parser instead. We can therefore define a suitable monad by

type Parser a = StateT String (MaybeT Id) a
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whose computations we can run using

runParser p s = runId (runMaybe (runState s p))

It turns out that the operator we called ||| earlier is just handle, and satisfy
is simply defined by

satisfy :: (s -> Bool) -> Parser s s
satisfy p = do s<-readState

case s of
[] -> failure
x:xs -> if p x then do writeState xs

return x
else failure

There is no more to do.

7 Monads and DSLs: A Discussion

It is clear why monads have been so successful for programming I/O and im-
perative algorithms in Haskell — they offer the only really satisfactory solution.
But they have also been widely adopted by the designers of combinator libraries.
Why? We have made the analogy between a combinator library and a domain
specific language, and since monads can be used to structure denotational se-
mantics, it is not so surprising that they can also be used in combinator libraries.
But that something can be used, does not mean that it will be used. The de-
signer of a combinator library has a choice: he need not slavishly follow the One
Monadic Path — why, then, have so many chosen to do so? What are the over-
whelming practical benefits that flow from using monads in combinator library
design in particular?

Monads offer significant advantages in three key areas. Firstly, they offer a
design principle to follow. A designer who wants to capture a particular func-
tionality in a library, but is unsure exactly what interface to provide to it, can be
reasonably confident that a monadic interface will be a good choice. The monad
interface has been tried and tested: we know it allows the library user great
flexibility. In contrast, early parsing libraries, for example, used non-monadic
interfaces which made some parsers awkward to write.

Secondly, monads can guide the implementation of a library. A library de-
signer must choose an appropriate type for his combinators to work over, and
his task is eased if the type is a monad. Many monad types can be constructed
systematically, as we have seen in the previous section, and so can some parts
of the library which operate on them. Given a collection of monad transformers,
substantial parts of the library come ‘for free’, just as when we found there was
little left to implement after composing the representation of Parsers from two
monad transformers.

Thirdly, there are benefits when many libraries share a part of their inter-
faces. Users can learn to use each new library more quickly, because the monadic
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part of its interface is already familiar. Because of the common interface, it is
reasonable to define generic monadic functions, such as liftM2, which work with
any monadic library. This both helps users, who need only learn to use liftM2
once, and greatly eases the task of implementors, who find much of the func-
tionality they want to provide comes for free. And of course, it is thanks to the
widespread use of monads that Haskell has been extended with syntactic sugar
to support them — if each library had its own completely separate interface,
then it would be impractical to support them all with special syntax.

Taken together, these are compelling reasons for a library designer to choose
monads whenever possible.

8 Exercises on Monads

This section contains practical exercises, intended to be solved using Hugs on
a computer. Since some readers will already be familiar with Haskell and will
have used monads already, while others will be seeing them for the first time,
the exercises are divided into different levels of difficulty. Choose those which
are right for you.

The Hugs interpreter is started with the command

hugs -98

The flag informs hugs that extensions to Haskell 98 should be allowed — and
they are needed for some of these exercises. When Hugs is started it prompts for
a command or an expression to evaluate; the command “:?” lists the commands
available. Hugs is used by placing definitions in a file, loading the file into the
interpreter (with the “:l” or “:r” command), and typing expressions to evaluate.
You can obtain information on any defined name with the command “:i”, and
discover which names are in scope using “:n” followed by a regular expression
matching the names you are interested in. Do not try to type definitions in
response to the interpreter’s prompt: they will not be understood.

8.1 Easy Exercises

Choose these exercises if you were previously unfamiliar with monads or Haskell.

Exercise 49. Write a function

dir :: IO [String]

which returns a list of the file names in the current directory. You can obtain
them by running ls and placing the output in a file, which you then read. You
will need to import module System, which defines a function system to execute
shell commands — place “import System” on the first line of your file. A string
can be split into its constituent words using the standard function words, and
you can print values (for testing) using the standard function print.
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Exercise 50. Write a function

nodups :: [String] -> [String]

which removes duplicate elements from a list of strings — the intention is to
return a list of strings in the argument, in order of first occurrence. It is easy
to write an inefficient version of nodups, which keeps a list of the strings seen
so far, but you should use a hash table internally so that each string in the
input is compared against only a few others. (The choice of hash function is not
particularly important for this exercise, though). Moreover, you should produce
the result list lazily. Test this by running

interact (unlines . nodups . lines)

which should echo each line you then type on its first occurrence.
You will need to use Haskell lists, which are written by enclosing their ele-

ments in square brackets separated by commas, and the cons operator, which
is “:”. Import module LazyST, and use newSTArray to create your hash table,
readSTArray to read it, and writeSTArray to write it. Beware of Haskell’s lay-
out rule, which insists that every expression in a do begin in the same column
— and interprets everything appearing in that column as the start of a new
expression.

Exercise 51. The implementation of the MaybeT transformer is given above, but
the implementations of the StateT, EnvT and ContT transformers were only
sketched. Complete them. (ContT is quite difficult, and you might want to leave
it for later).

Exercise 52. We define the MaybeT type by

newtype MaybeT m a = MaybeT (m (Maybe a))

What if we had defined it by

newtype MaybeT m a = MaybeT (Maybe (m a))

instead? Could we still have defined a monad transformer based on it?

Exercise 53. We defined the type of Parsers above by

type Parser a = StateT String (MaybeT Id) a

What if we had combined state transformation and failure the other way round?

type Parser a = MaybeT (StateT String Id) a

Define an instance of StateMonad for MaybeT, and investigate the behaviour of
several examples combining failure handling and side-effects using each of these
two monads. Is there a difference in their behaviour?
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8.2 Moderate Exercises

Choose these exercises if you are comfortable with Haskell, and have seen monads
before.

Exercise 54. Implement a monad MaybeST based on the built-in ST monad,
which provides updateable typed references, but also supports failure and failure
handling. If m fails in m ‘handle‘ h, then all references should contain the same
values on entering the handler h that they had when m was entered.

Can you add an operator

commit :: MaybeST ()

with the property that updates before a commit survive a subsequent failure?

Exercise 55. A different way to handle failures is using the type

newtype CPSMaybe ans a =
CPSMaybe ((a -> ans -> ans) -> ans -> ans)

This is similar to the monad of continuations, but both computations and con-
tinuations take an extra argument — the value to return in case of failure. When
a failure occurs, this argument is returned directly and the normal continuation
is not invoked.

Make CPSMaybe an instance of class Monad and MaybeMonad, and define
runCPSMaybe.

Failure handling programs often use a great deal of space, because failure
handlers retain data that is no longer needed in the successful execution. Yet
once one branch has progressed sufficiently far, we often know that its failure
handler is no longer relevant. For example, in parsers we usually combine parsers
for quite different constructions, and if the first parser succeeds in parsing more
than a few tokens, then we know that the second cannot possibly succeed. Can
you define an operator

cut :: CPSMaybe ans ()

which discards the failure handler, so that the memory it occupies can be re-
claimed? How would you use cut in a parsing library?

8.3 Difficult Exercises

These should give you something to get your teeth into!

Exercise 56. Implement a domain specific language for concurrent programming,
using a monad Process s a and typed channels Chan s a, with the operations

chan :: Process s (Chan s a)
send :: Chan s a -> a -> Process s ()
recv :: Chan s a -> Process s a

to create channels and send and receive messages (synchronously),
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fork :: Process s a -> Process s ()

to start a new concurrent task, and

runProcess :: (forall s. Process s a) -> a

to run a process. By analogy with the ST monad, s is a state-thread identi-
fier which is used to guarantee that channels are not created in one call of
runProcess and used in another. You will need to write the type of runProcess
explicitly — Hugs cannot infer rank 2 types.

Exercise 57. Prolog provides so-called logical variables, whose values can be re-
ferred to before they are set. Define a type LVar and a monad Logic in terms
of ST, supporting operations

newLVar :: Logic s (LVar s a)
readLVar :: LVar s a -> a
writeLVar :: LVar s a -> a -> Logic s ()

where s is again a state-thread identifier. The intention is that an LVar should be
written exactly once, but its value may be read beforehand, between its creation
and the write — lazy evaluation is at work here. Note that readLVar does not
have a monadic type, and so can be used anywhere. Of course, this can only
work if the value written to the LVar does not depend on itself. Hint: You will
need to use

fixST :: (a -> ST s a) -> ST s a

to solve this exercise — fixST (\x -> m) binds x to the result produced by m
during its own computation.

Exercise 58. In some applications it is useful to dump the state of a program
to a file, or send it over a network, so that the program can be restarted in the
same state later or on another machine. Define a monad Interruptable, with
an operation

dump :: Interruptable ()

which stops execution and converts a representation of the state of the program
to a form that can be saved in a file. The result of running an Interruptable
computation should indicate whether or not dumping occurred, and if so, provide
the dumped state. If s is a state dumped by a computation m, then resume m s
should restart m in the state that s represents. Note that m might dump several
times during its execution, and you should be able restart it at each point.

You will need to choose a representation for states that can include every
type of value used in a computation. To avoid typing problems, convert values
to strings for storage using show.

You will not be able to make Interruptable an instance of class Monad,
because your implementations of return and >>= will not be sufficiently poly-
morphic — they will only work over values that can be converted to strings.
This is unfortunate, but you can just choose other names for the purposes of
this exercise. One solution to the problem is described by Hughes [Hug99].
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9 Intermediate Languages for Compilation

We have seen how monads may be used to structure the denotational semantics
of languages with computational effects and how they may be used to express
effectful computation in languages like Haskell. We now turn to the use of monads
in the practical compilation of languages with implicit side effects. Much of
this material refers to the MLj compiler for Standard ML [BKR98], and its
intermediate language MIL (Monadic Intermediate Language) [BK99].

9.1 Compilation by Transformation

It should not be a surprise that ideas which are useful in structuring semantics
also turn out to be useful in structuring the internals of compilers since there
is a sense in which compilers actually do semantics. Compilers for functional
languages typically translate source programs into an intermediate form and
then perform a sequence of rewrites on that intermediate representation before
translating that into lower-level code in the backend. These rewrites should be
observational equivalences, since they are intended to preserve the observable be-
haviour of the user’s program whilst improving its efficiency according to some
metric. If the transformations are applied locally (i.e. to subterms of the whole
program) then they should be instances of an observational congruence relation.
Of course, deciding whether applying a particular semantic equation is likely to
be part of a sequence which eventually yields an improvement is still a very dif-
ficult problem. There has been some work on identifying transformations which
never lead to (asymptotically) worse behaviour, such as the work of Gustavsson
and Sands on space usage of lazy programs [GS99], but most compilers simply
implement a collection of rewrites which seem to be “usually” worthwhile.

9.2 Intermediate Languages

The reasons for having an intermediate language at all, rather than just doing
rewriting on the abstract syntax tree of the source program, include:
1. Complexity. Source languages tend to have many syntactic forms (e.g. nested

patterns or list comprehensions) which are convenient for the programmer
but which can be translated into a simpler core language, leaving fewer cases
for the optimizer and code generator to deal with.

2. Level. Many optimizing transformations involve choices which cannot be
expressed in the source language because they are at a lower level of ab-
straction. In other words, they involve distinctions between implementation
details which the source language cannot make. For example
– All functions in ML take a single argument – if you want to pass more

than one then you package them up as a single tuple. This is simple
and elegant for the programmer, but we don’t want the compiled code
to pass a pointer to a fresh heap-allocated tuple if it could just pass
a couple of arguments on the stack or in registers. Hence MIL (like
other intermediate languages for ML) includes both tuples and multiple
arguments and transforms some instances of the former into the latter.
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– MIL also includes datastructures with ‘holes’ (i.e. uninitialized values).
These are used to express a transformation which turns some non-tail
calls into tail calls and have linear typing rules which prevent holes being
dereferenced or filled more than once [Min98].

There are often many levels of abstraction between the source and target lan-
guages, so it is common for compilers to use different intermediate languages
in different phases or to have one all-encompassing intermediate datatype,
but then to ensure that the input and output of each phase satisfy particular
additional constraints.

3. Equational theory. Many important transformations do not involve concepts
which are essentially at a lower-level level of abstraction than the source lan-
guage, but can nevertheless be anywhere between bothersome and impossible
to express or implement directly on the source language syntax.

This last point is perhaps slightly subtle: the equational theory of even a sim-
plified core of the source language may be messy and ill-suited to optimization
by rewriting. Rather than have a complex rewriting system with conditional
rewrites depending on various kinds of contextual information, one can often
achieve the same end result by translating into an intermediate language with a
better-behaved equational theory. It is typically the case that a ‘cleaner’ inter-
mediate language makes explicit some aspects of behaviour which are implicit
in the source language. For example:

– Some intermediate languages introduce explicit names for every intermediate
value. Not only are the names useful in building various auxiliary datastruc-
tures, but they make it easy to, for example, share subexpressions. A very
trivial case would be

let val x = ((3,4),5)
in (#1 x, #1 x)
end

which we don’t want to simplify to the equivalent

((3,4),(3,4))

because that allocates two identical pairs. One particularly straighforward
way to get a better result is to only allow introductions and eliminations to
be applied to variables or atomic constants, so the translation of the original
program into the intermediate form is

let val y = (3,4)
in let val x = (y,5)

in (#1 x, #1 x)
end

end

which rewrites to
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let val y = (3,4)
in let val x = (y,5)

in (y, y)
end

end

and then to

let val y = (3,4)
in (y, y)
end

which is probably what we wanted.
– MIL contains an unusual exception-handling construct because SML’s

handle construct is unable to express some commuting conversion-style
rewrites which we wished to perform [BK01].

– Some compilers for higher-order languages use a continuation passing style
(CPS) lambda-calculus as their intermediate language (see, for example,
[App92,KKR+86]). There are translations of call by value (CBV) and call
by name (CBN) source languages into CPS. Once a program is in CPS, it
is sound to apply the full unrestricted β, η rules, rather than, say, the more
restricted βv, ηv rules which are valid for λv (the CBV lambda calculus).
Moreover, Plotkin has shown [Plo75] that β and η on CPS terms prove
strictly more equivalences between translated terms than do βv and ηv on
the corresponding λv terms. Hence, a compiler for a CBV language which
translates into CPS and uses βη can perform more transformations than one
which just uses βv and ηv on the source syntax.
CPS transformed terms make evaluation order explict (which makes them
easier to compile to low-level imperative code in the backend), allow tail-call
elimination be be expressed naturally, and are particularly natural if the
language contains call/cc or other control operators.
However, Flanagan et al. [FSDF93] argue that compiling CBV lambda-
calculus via CPS is an unnecessarily complicated and indirect technique. The
translation introduces many new λ-abstractions and, if performed naively,
new and essentially trivial ‘administrative redexes’ (though there are op-
timized translations which avoid creating these redexes [DF92,SF93]). To
generate good code, and to identify administrative redexes, real CPS compil-
ers treat abstractions introduced by the translation process differently from
those originating in the original program and effectively undo the CPS trans-
lation in the backend, after having performed transformations. Flanagan et
al. show that the same effect can be obtained by using a λ-calculus with
let and peforming A-reductions to reach an A-normal form. A-reductions
were introduced in [SF93] and are defined in terms of evaluation contexts.
Amongst other things, A-normal forms name all intermediate values and only
apply eliminations to variables or values. An example of an A-reduction is
the following:

E [if V then N1 else N2] −→ if V then E [N1] else E [N2]
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where E [·] is an evaluation context. Flanagan et al. observe that most non-
CPS (‘direct style’) compilers perform some A-reductions in a more-or-less
ad hoc manner, and suggest that doing all of them, and so working with
A-normal forms, is both more uniform and leads to faster code.

Typed Intermediate Languages. One big decision when designing an inter-
mediate language is whether or not it should be typed. Even when the source
language has strong static types, many compilers discard all types after they have
been checked, and work with an untyped intermediate language. More recently,
typed intermediate languages have become much more popular in compilers and
in areas such as mobile code security. Examples of typed compiler intermediate
languages include FLINT [Sha97], the GHC intermediate language [Pey96] and
MIL [BKR98,BK99]. The advantages of keeping type information around in an
intermediate language include:

– Types are increasingly the basis for static analyses, optimizing transforma-
tions and representation choices. Type-based optimization can range from
the use of sophisticated type systems for static analyses to exploitation of
the fact that static types in the source language provide valuable information
which it would be foolish to ignore or recompute. For example, the fact that
in many languages pointers to objects of different types can never alias can
be used to allow more transformations. The MLj compiler uses simple type
information to share representations, using a single Java class to implement
several different ML closures.

– Type information can be used in generating backend code, for example in
interfacing to a garbage collector or allocating registers.

– Type-checking the intermediate representation can help catch many compiler
bugs.

– It is particularly natural if the language allows types to be reflected as values.
– It is clearly the right thing to do if the target language is itself typed. This is

the case for MLj (since Java bytecode is typed) and for compilers targetting
typed assembly language [MWCG99].

But there are disadvantages too:

– Keeping type information around and maintaining it during transformations
can be very expensive in both space and time.

– Unless the type system is complex and/or rather non-standard, restricting
the compiler to work with typable terms can prohibit transformations. Even
something like closure-conversion (packaging functions with the values of
their free variables) is not trivial from the point of view of typing [MMH96].

λMLT as a Compiler Intermediate Language. Several researchers have
suggested that Moggi’s computational metalanguage λMLT [Mog89,Mog91]
might be useful as the basis of a typed intermediate language. λMLT certainly
has two of properties we have said are desirable in an intermediate language: a
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good equational theory and explicitness, both at the term level (making order of
evaluation explicit) and at the type level (distinguishing between computations
and values).

One example of situation in which the computational metalanguage seems
applicable is in expressing and reasoning about the optimizations which may be
performed as a result of strictness analysis in compilers for CBN languages such
as Haskell. Some early work on expressing the use of strictness analysis used a
somewhat informal notion of changes in ‘evaluation strategy’ for fixed syntax.
It is much more elegant to reason about changes in translation of the source
language into some other language which itself has a fixed operational semantics.
In the case of a pure CBN source language (such as PCF [Plo77]), however, one
cannot (directly) use a source-to-source translation to express strictness-based
transformations. Adding a strict let construct with typing rule

Γ � M : A Γ, x : A � N : B

Γ � let x = M in N : B

where let x = M in N first evaluates M to Weak Head Normal Form (WHNF)
before substituting for x in N , allows one to express basic strictness optimiza-
tions, such as replacing the application M N with let x = N in (M x) when M
is known to be strict. But this is only half the story – we would also like to be
able to perform optimizations based on the fact that certain expressions (such
as x in our example) are known to be bound to values in WHNF and so need not
be represented by thunks or re-evaluated. To capture this kind of information,
Benton [Ben92] proposed a variant of the computational metalanguage in which
an expression of a value type A is always in WHNF and the computation type
TA is used for potentially unevaluated expressions which, if they terminate, will
yield values of type A. The default translation of a call-by-name expression of
type A → B is then to an intermediate language expression of type of type
T ((A → B)n) = T (TAn → TBn), i.e. a computation producing a function from
computations to computations. An expression denoting a strict function which is
only called in strict contexts, by contrast, can be translated into an intermediate
language term of type T (An → TBn) : a computation producing a function from
values to computations.

The problem of expressing strictness-based transformations has also been ad-
dressed by defining translations from strictness-annotated source terms into con-
tinuation passing style. This approach has been taken by Burn and Le Métayer
[BM92] and by Danvy and Hatcliff [DH93]. Danvy and Hatcliff, for example, de-
rive such a translation by simplifying the result of symbolically composing two
translations: first a translation of strictness-annotated CBN terms into a CBV
language with explicit suspension operations, and secondly a modified variant of
the CBV translation into continuation passing style.

We have already mentioned the work of Flanagan et al. [FSDF93] relating
CPS translations with A-normal forms. The reader may now suspect that the
computational metalanguage is also closely related, and indeed it is. The connec-
tions were expained by Hatcliff and Danvy [HD94], who showed how various CPS
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transforms could be factored through translations into the computational met-
alanguage and how the administrative reductions of CPS, and Flanagan et al.’s
A-reductions, corresponded to applying the β-reduction and commuting conver-
sions (see Section 12) associated with the computation type constructor in the
computational metalanguage. Hatcliff and Danvy also suggested that the compu-
tational metalanguage could make an attractive compiler intermediate language.
The links between A-normal forms, CPS transforms and Moggi’s computational
lambda calculus have been investigated further by Sabry and Wadler [SW97].

Another promising application for intermediate languages based on λMLT is
in common infrastructure for compiling multiple source languages, and perhaps
even supporting their interoperability. Peyton Jones et al. [PLST98a] proposed
the use of an intermediate language based on the computational metalanguage
as a common framework for compiling both call-by-value and call-by-name lan-
guages10.

Barthe et al. [BHT98] add computational types to the pure type systems
(PTS) to obtain monadic versions of a whole family of higher-order typed lambda
calculi (such as Fω and the Calculus of Constructions) and advocate the use of
such calculi as compiler intermediate languages for languages which combine
polymorphic type and/or module systems with side-effects.

Exercise 59. The ‘standard’ denotational semantics of PCF is in the CCC of
pointed ω-cpos and continuous maps, with [[int]] = Z⊥ and function space inter-
preted by [[A → B]] = [[B]][[A]]. This semantics is adequate for a CBN operational
semantics in which the notion of observation is termination of closed terms of
ground type. It seems natural that one could give a semantics to PCF with a
strict let construct just by defining

[[let x = M in N ]]ρ =
{⊥ if [[M ]]ρ = ⊥

[[N ]]ρ[x �→ [[M ]]ρ] otherwise

but in fact, the semantics is then no longer adequate. Why? How might one
modify the semantics to fix the problem? How good is the modified semantics
as a semantics of the original language (i.e. without let)?

10 Type and Effect Systems

10.1 Introduction

The work referred to in the previous section concerns using a well-behaved inter-
mediate language (A-normal forms, CPS or λMLT ) to perform sound rewriting
on a programs written in languages with ‘impure’ features. All those interme-
diate languages make some kind of separation (in the type system and/or the
language syntax) between ‘pure’ values and ‘impure’ (potentially side-effecting)
computations. The separation is, however, fairly crude and there are often good
10 The published version of the paper contains an error. A corrigendum can, at the

time of writing, be found on the web [PLST98b].
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reasons for wanting to infer at compile-time a safe approximation to just which
side-effects may happen as a result of evaluating a particular expression. This
kind of effect analysis is really only applicable to CBV languages, since CBN
languages do not usually allow any side-effects other than non-termination.

Historically, the first effect analyses for higher order languages were developed
to avoid a type soundness problem which occurs when polymorphism is combined
naively with updateable references. To see the problem, consider the following
(illegal) SML program:

let val r = ref (fn x=> x)
in (r := (fn n=>n+1);

!r true
)

end

Using the ‘obvious’ extension of the Hindley-Milner type inference rules to cover
reference creation, dereferencing and assignment, the program above would type-
check:

1. (fn x=>x) has type α → α, so
2. ref (fn x=>x) has type (α → α)ref
3. generalization then gives r the type scheme ∀α.(α → α)ref
4. so by specialization r has type (int → int)ref, meaning the assignment

typechecks
5. and by another specialization, r has type (bool → bool)ref, so
6. !r has type bool → bool, so the application type checks.

However, it is clear that the program really has a type error, as it will try to
increment a boolean.

To avoid this problem, Gifford, Lucassen, Jouvelot, Talpin and others [GL86],
[GJLS87], [TJ94] developed type and effect systems. The idea is to have a re-
fined type system which infers both the type and the possible effects which an
expression may have, and to restrict polymorphic generalization to type vari-
ables which do not appear in side-effecting expressions. In the example above,
one would then infer that the expression ref (fn x=>x) creates a new reference
cell of type α → α. This prevents the type of r being generalized in the let rule,
so the assignment causes α to be unified with int and the application of !r to
true then fails to typecheck.

It should be noted in passing that there are a number of different ways
of avoiding the type loophole. For example, Tofte’s imperative type discipline
[Tof87] using ‘imperative type variables’ was used in the old (1990) version of
the Standard ML Definition, whilst Leroy and Weis proposed a different scheme
for tracking ‘dangerous’ type variables (those appearing free in the types of ex-
pressions stored in references) [LW91]. A key motivation for most of that work
was to allow as much polymorphic generalization as possible to happen in the
let rule, whilst still keeping the type system sound. However, expensive and
unpredictable inference systems which have a direct impact on which user pro-
grams actually typecheck are rarely a good idea. In 1995, Wright published a
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study [Wri95] indicating that nearly all existing SML code would still typecheck
and run identically (sometimes modulo a little η-expansion) if polymorphic gen-
eralization were simply restricted to source expressions which were syntactic
values (and thus trivially side-effect free). This simple restriction was adopted
in the revised (1997) SML Definition and research into fancy type systems for
polymorphism in impure languages seems to have now essentially ceased.

However, there are still very good reasons for wanting to do automatic ef-
fect inference. The most obvious is that more detailed effect information allows
compilers to perform more aggressive optimizations. Other applications include
various kinds of verification tool, either to assist the programmer or to check
security policies, for example. In SML, even a seemingly trivial rewrite, such as
the dead-code elimination

let val x = M1 in M2 end −→ M2 (x �∈ FV (M2))

is generally only valid if the evaluation of M1 doesn’t diverge, perform I/O,
update the state or throw an exception (though it is still valid if M1 reads from
reference cells or allocates new ones). Code like this is frequently created by
other rewrites and it is important to be able to clean it up.

10.2 The Basic Idea

There are now many different type and effect systems in the literature, but they
all share a common core. (The book [NNH99] contains, amongst other things,
a fair amount on effect systems and many more references than these notes.) A
traditional type system infers judgements of the form

x1 : A1, . . . , xn : An � M : B

where the Ai and B are types. A type and effect system infers judgements of
the form

x1 : A1, . . . , xn : An � M : B, ε

which says that in the given typing context, the expression M has type B and
effect ε. The effect ε is drawn from some set E whose elements denote sets of
actual effects which may occur at runtime (in other words, they are abstractions
of runtime effects, just as types are abstractions of runtime values). Exactly what
is in E depends not only on what runtime effects are possible in the language,
but also on how precise one wishes to make the analysis. The simplest non-trivial
effect system would simply take E to have two elements, one (usually written ∅)
denoting no effect at all (‘pure’), and the other just meaning ‘possibly has some
effect’. Most effect systems are, as we shall see, a little more refined than this.

The first thing to remark about the form of a type and effect judgement is
that an effect appears on the right of the turnstile, but not on the left. This
is because we are only considering CBV languages, and that means that at
runtime free variables will always be bound to values, which have no effect. An
effect system for an impure CBN language, were there any such thing, would
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have pairs of types and effects in the context too11. Because variables are always
bound to values, the associated type and effect rule will be:

Γ, x : A � x : A, ∅
The second point is that E actually needs to be an algebra, rather than

just a set; i.e. it has some operations for combining effects defined on it. Con-
sider the effectful version of the rule for a simple (strict, non-polymorphic, non-
computational) let expression:

Γ � M : A, ε1 Γ, x : A � N : B, ε2

Γ � let x = M in N : B, ?

What should the effect of the compound expression be? Dynamically, M will be
evaluated, possibly performing some side-effect from the set denoted by ε1 and,
assuming the evaluation of M terminated with a value V , then N [V/x] will be
evaluated and possibly perform some side-effect from the set denoted by ε2. How
we combine ε1 and ε2 depends on how much accuracy we are willing to pay for
in our static analysis. If we care about the relative ordering of side-effects then
we might take elements of E to denote sets of sequences (e.g. regular languages)
over some basic set of effects and then use language concatenation ε1 · ε2 to
combine the effects in the let rule (see the Nielsons work on analysing concurrent
processes [NN94,NNA97], for example). Commonly, however, we abstract away
from the relative sequencing and multiplicity of effects and just consider sets of
basic effects. In this case the natural combining operation for the let rule is
some abstract union operation12.

For the conditional expression, the following is a natural rule:

Γ � M : bool, ε′ Γ � N1 : A, ε1 Γ � N2 : A, ε2

Γ � (if M then N1 else N2) : A, ε′ · (ε1 ∪ ε2)

If we were not tracking sequencing or multiplicity, then the effect in the conclu-
sion of the if rule would just be ε′ ∪ ε1 ∪ ε2, of course.

The other main interesting feature of almost all type and effect systems is the
form of the rules for abstraction and application, which make types dependent
on effects, in that the function space constructor is now annotated with a ‘latent
effect’ A

ε→ B. The rule for abstraction looks like:

Γ, x : A � M : B, ε

Γ � (λx : A. M) : A
ε→ B, ∅

11 Although the mixture of call by need and side-effects is an unpredictable one, Haskell
does actually allow it, via the ‘experts-only’ unsafePerformIO operation. But I’m
still not aware of any type and effect system for a lazy language.

12 Effect systems in the literature often include a binary ∪ operation in the formal
syntax of effect annotations, which are then considered modulo unit, associativity,
commutativity and idempotence. For very simple effect systems, this is unnecessarily
syntactic, but it is not so easy to avoid when one also has effect variables and
substitution.
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because the λ-abstraction itself is a value, and so has no immediate effect (∅) but
will have effect ε when it is applied, as can be seen in the rule for application:

Γ � M : A
ε1→ B, ε2 Γ � N : A, ε3

Γ � M N : B, ε2 · ε3 · ε1

The overall effect of evaluating the application is made up of three separate
effects – that which occurs when the function is evaluated, that which occurs
when the argument is evaluated and finally that which occurs when the body
of the function is evaluated. (Again, most effect systems work with sets rather
than sequences, so the combining operation in the conclusion of the application
rule is just ∪.)

The final thing we need to add to our minimal skeleton effect system is some
way to weaken effects. The collection E of effects for a given analysis always has
a natural partial order relation ⊆ defined on it such that ε ⊆ ε′ means ε′ denotes
a larger set of possible runtime side-effects than ε. Typically ⊆ is just the subset
relation on sets of primitive effects. The simplest rule we can add to make a
usable system is the subeffecting rule:

Γ � M : A, ε ε ⊆ ε′

Γ � M : A, ε′

Exercise 60. Define a toy simply-typed CBV functional language (integers, bool-
eans, pairs, functions, recursion) with a fixed collection of global, mutable integer
variables. Give it an operational and/or denotational semantics. Give a type and
effect system (with subeffecting) for your language which tracks which global
variables may be read and written during the evaluation of each expression (so
an effect will be a pair of sets of global variable names). Formulate and prove a
soundness result for your analysis. Are there any closed terms in your language
which require the use of the subeffect rule to be typable at all?

10.3 More Precise Effect Systems

There are a number of natural and popular ways to improve the precision of
the hopelessly weak ‘simple-types’ approach to effect analysis sketched in the
previous section.

Subtyping. The bidirectional flow of information in type systems or analyses
which simply constrain types to be equal frequently leads to an undesirable loss
of precision. For example, consider an effect analysis of the following very silly
ML program (and forget polymorphism for the moment):

let fun f x = ()
fun pure () = ()
fun impure () = print "I’m a side-effect"
val m = (f pure, f impure)

in pure
end
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If they were typed in isolation, the best type for pure would be unit
∅→ unit

and impure would get unit
{print}→ unit (assuming that the constant print

has type string
{print}→ unit). However, the fact that both of them get passed

to the function f means that we end up having to make their types, including
the latent effects, identical. This we can do by applying the subeffecting rule to

the body of pure and hence deriving the same type unit
{print}→ unit for both

pure and impure. But then that ends up being the type inferred for the whole
expression, when it is clear that we should have been able to deduce the more
accurate type unit

∅→ unit.
The problem is that both pure and impure flow to x, which therefore has to be

given an effectful type. This then propagates back from the use to the definition
of pure. Peyton Jones has given this phenomenon the rather apt name of the
poisoning problem. One solution is to extend the notion of subeffecting to allow
more general subtyping. We replace the subeffecting rule with

Γ � M : A, ε ε ⊆ ε′ A ≤ A′

Γ � M : A′, ε′

where ≤ is a partial order on types defined by rules like

A′ ≤ A B ≤ B′ ε ⊆ ε′

A
ε→ B ≤ A′ ε′

→ B′
and

A ≤ A′ B ≤ B′

A × B ≤ A′ × B′

Note the contravariance of the function space constructor in the argument type.
Using the subtyping rule we can now get the type and effect we wouldd expect

for our silly example. The definitions of pure and impure are given different
types, but we can apply the subtyping rule (writing 1 for unit)

Γ, pure : (1 ∅→ 1) � pure : (1 ∅→ 1), ∅

1 ≤ 1 1 ≤ 1 ∅ ⊆ {print}

(1 ∅→ 1) ≤ (1
{print}→ 1) ∅ ⊆ ∅

Γ, pure : (1 ∅→ 1) � pure : (1
{print}→ 1), ∅

to coerce the use of pure when it is passed to f to match the required argument
type whilst still using the more accurate type inferred at the point of definition
as the type of the whole expression.

Effect Polymorphism. Another approach to the poisoning problem is to in-
troduce ML-style polymorphism at the level of effects (this is largely orthogonal
to whether we also have polymorphism at the level of types). We allow effects
to contain effect variables and then allow the context to bind identifiers to type
schemes, which quantify over effect variables.
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Consider the following program

let fun run f = f ()
fun pure () = ()
fun impure () = print "Poison"
fun h () = run impure

in run pure
end

In this case, even with subtyping, we end up deriving a type and effect of
unit, {print} for the whole program, though it actually has no side effect. With
effect polymorphism, we can express the fact that there is a dependency between
the effect of a particular call to run and the latent effect of the function which
is passed at that point. The definition of run gets the type scheme

∀a.(unit a→ unit) a→ unit

which is instantiated with a = ∅ in the application to pure and a = {print}
in the application to impure (which is actually never executed). That lets us
deduce a type and effect of unit, ∅ for the whole program.

Regions. One of the most influential ideas to have come out of work on type
and effect systems is that of regions: static abstractions for sets of dynamically
allocated run-time locations. If (as in the earlier exercise) one is designing an
effect system to track the use of mutable storage in a language with a fixed set
of global locations, there are two obvious choices for how precisely one tracks
the effects – either one records simply whether or not an expression might read
or write some unspecified locations, or one records a set of just which locations
might be read or written. Clearly the second is more precise and can be used
to enable more transformations. For example, the evaluation of an expression
whose only effect is to read some locations might be moved from after to before
the evaluation of an expression whose effect is to write some locations if the set
of locations possibly read is disjoint from the set of locations possibly written.

But no real programming language (with the possible exception of ones de-
signed to be compiled to silicon) allows only a statically fixed set of mutable
locations. When an unbounded number of new references may be allocated dy-
namically at runtime, a static effect system clearly cannot name them all in
advance. The simple approach of just having one big abstraction for all loca-
tions (‘the store’) and tracking only whether some reading or some writing takes
place is still sound, but we would like to be more precise.

In many languages, the existing type system gives a natural way to partition
the runtime set of mutable locations into disjoint sets. In an ML-like language, an
int ref and a bool ref are never aliased, so one may obtain a useful increase
in precision by indexing read, write and allocation effects by types. Ignoring
polymorphism again, we might take

E = P{rd(A), wr(A), al(A) | A a type}
(Note that types and effects are now mutually recursive.)
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But we can do even better. Imagine that our language had two quite distinct
types of references, say red ones and blue ones, and one always had to say
which sort one was creating or accessing. Then clearly a red reference and a blue
reference can never alias, we could refine our effect types system to track the
colours of references involved in store effects, and we could perform some more
transformations (for example commuting an expression which can only write
blue integer references with one which only reads red integer references).

In its simplest form, the idea of region inference is to take a typing derivation
for a monochrome program and to find a way of colouring each reference type
appearing in the derivation subject to preserving the validity of the derivation
(so, for example, a function expecting a red reference as an argument can never be
applied to a blue one). It should be clear that the aim is to use as many different
colours as possible. The colours are conventionally called regions, because one
can imagine that dynamically all the locations of a given colour are allocated in
a particular region of the heap13.

So now we have three static concepts: type, effect and region. Each of these
can be treated monomorphically, with a subwidget relation or polymorphically.
The type and effect discipline described by Talpin and Jouvelot in [TJ94] is
polymorphic in all three components and indexes reference effects by both regions
and types.

Perhaps the most interesting thing about regions is that we can use them to
extend our inference system with a rule in which the effect of the conclusion is
smaller than the effect of the assumption. Consider the following example

fun f x = let val r = ref (x+1)
in !r
end

A simple effect system would assign f a type and effect like int
{al,rd}→ int, ∅,

which seems reasonable, since it is indeed a functional value which takes integers
to integers with a latent effect of allocating and reading. But the fact that f
has this latent effect is actually completely unobservable, since the only uses of
storage it makes are completely private. In this case it is easy to see that f is
observationally equivalent to the completely pure successor function

fun f’ x = x+1

which means that, provided the use to which we are going to make of effect
information respects observational equivalence14 we could soundly just forget all
13 Alternatively, one might think that any runtime location will have a unique allocation

site in the code and all locations with the same allocation site will share a colour,
so one could think of a region as a set of static program points. But this is a less
satisfactory view, since more sophisticated systems allow references allocated at the
same program point to be in different regions, depending on more dynamic contextual
information, such as which functions appear in the call chain.

14 This should be the case for justifying optimising transformations or inferring more
generous polymorphic types, but might not be in the case of a static analysis tool
which helps the programmer reason about, say, memory usage.
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about the latent effect of f and infer the type int
∅→ int for it instead. How do

regions help? A simple type, region and effect derivation looks like this
···

Γ, x:int � x+1:int, ∅
Γ, x:int � (ref x+1):int refρ, {alρ}

···
Γ, x:int, r:int refρ � (!r):int, {rdρ}

Γ, x:int � (let r=ref x+1 in !r):int, {alρ, rdρ}

Γ � (fn x=>let r=ref x+1 in !r) : int
{alρ,rdρ}→ int, ∅

where ρ is a region. Now this is a valid derivation for any choice of ρ; in particular,
we can pick ρ to be distinct from any region appearing in Γ . That means that the
body of the function does not have any effect involving references imported from
its surrounding context. Furthermore, the type of the function body is simply
int, so whatever the rest of the program does with the result of a call to the
function, it cannot have any dependency on the references used to produce it.
Such considerations motivate the effect masking rule

Γ � M : A, ε

Γ � M : A, ε \ {rdρ, alρ, wrρ | ρ �∈ Γ ∧ ρ �∈ A}
Using this rule before just before typing the abstraction in the derivation above
does indeed allow us to type f as having no observable latent effect.

One of the most remarkable uses of region analysis is Tofte and Talpin’s
work on static memory management [TT97]: they assign region-annotated types
to every value (rather than just mutable references) in an intermediate language
where new lexically-scoped regions are introduced explicitly by a letregion ρ
in ...end construct. For a well-typed and annotated program in this language,
no value allocated in region ρ will be referenced again after the end of the
letregion block introducing ρ. Hence that region of the heap may be safely
reclaimed on exiting the block. This technique has been successfully applied in
a version of the ML Kit compiler in which there is no runtime garbage collector
at all. For some programs, this scheme leads to dramatic reductions in runtime
space usage compared with traditional garbage collection, whereas for others the
results are much worse. Combining the two techniques is possible, but requires
some care, since the region-based memory management reclaims memory which
will not be referenced again, but to which there may still be pointers accessible
from the GC root. The GC therefore needs to avoid following these ‘dangling
pointers’.

The soundness of effect masking in the presence of higher-type references
and of region-based memory management is not at all trivial to prove. Both
[TJ94] and [TT97] formulate correctness in terms of a coinductively defined con-
sistency relation between stores and typing judgements. A number of researchers
have recently published more elementary proofs of the correctness of region cal-
culi, either by translation into other systems [BHR99,dZG00] or by more direct
methods [CHT0x].
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11 Monads and Effect Systems

11.1 Introduction

This section describes how type and effect analyses can be presented in terms of
monads and the computational metalanguage. Although this is actually rather
obvious, it was only recently that anybody got around to writing anything serious
about it. In ICFP 1998, Wadler published a paper [Wad98] (later extended and
corrected as [WT99]) showing the equivalence of a mild variant of the effect
system of Talpin and Jouvelot [TJ94] and a version of the computational meta-
language in which the computation type constructor is indexed by effects. In
the same conference, Benton, Kennedy and Russell described the MLj compiler
[BKR98] and its intermediate language MIL, which is a similar effect-refined
version of the computational metalanguage. Also in 1998, Tolmach proposed
an intermediate representation with a hierarchy of monadic types for use in
compiling ML by transformation [Tol98].

The basic observation is that the places where the computation type construc-
tor appears in the call-by-value translation of the lambda calculus into λMLT

correspond precisely to the places where effect annotations appear in type and
effect systems. Effect systems put an ε over each function arrow and on the
right-hand side of turnstiles, whilst the CBV translation adds a T to the end
of each function arrow and on the right hand side of turnstiles. Wadler started
with a CBV lambda calculus with a polymorphic types and monomorphic re-
gions and effects, tracking store effects (without masking). He then showed that
Moggi’s CBV translation of this language into a version of the metalanguage in
which the computation type constructor is annotated with a set of effects (and
the monadic let rule unions these sets) preserves typing, in that

Γ �eff M : A, ε ⇒ Γ v �mon Mv : Tε(Av)

where
intv = int

(A ε→ B)v = Av → Tε(Bv)

Wadler also defined an instrumented operational semantics for each of the two
languages and used these to prove subject reduction type soundness results in the
style of Wright and Felleisen [WF94]. The instrumented operational semantics
records not only the evaluation of an expression and a state to a value and a
new state, but also a trace of the side effects which occur during the evaluation;
part of the definition of type soundness is then that when an expression has a
static effect ε, any effect occuring in the dynamic trace of its evaluation must be
contained in ε.

Where Wadler’s system uses implicit subeffecting, Tolmach’s intermediate
language has four distinct monads in a linear order and uses explicit monad
morphisms used to coerce computations from one monad type to a larger one.
The monads are:
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1. The identity monad, used for pure, terminating computations;
2. The lifting monad, used to model computations which may fail to terminate

but are otherwise pure;
3. The monad of exceptions and non-termination;
4. The ST monad, which combines lifting, exceptions and the possibility of

performing output.

Tolmach gives a denotational semantics for his intermediate language (using
cpos) and presents a number of useful transformation laws which can be validated
using this semantics.

11.2 MIL-Lite: Monads in MLj

MIL-lite is a simplified fragment of MIL, the intermediate language used in the
MLj compiler. It was introduced by Benton and Kennedy [BK99] as a basis
for proving the soundness of some of the effect-based optimizing transforma-
tions performed by MLj. Compared with many effect systems in the literature,
MIL only performs a fairly crude effect analysis – it doesn’t have regions, ef-
fect polymorphism or masking. MIL-lite further simplifies the full language by
omitting type polymorphism, higher-type references and recursive types as well
as various lower level features. Nevertheless, MIL-lite is far from trivial, com-
bining higher-order functions, recursion, exceptions and dynamically allocated
state with effect-indexed computation types and subtyping.

Types and Terms. MIL-lite is a compiler intermediate language for which
we first give an operational semantics and then derive an equational theory,
so there are a couple of design differences between it and Moggi’s equational
metalanguage. The first is that types are stratified into value types (ranged over
by τ) and computation types (ranged over by γ); computations of computations
do not arise. The second difference is that the distinction between computations
and values is alarmingly syntactic: the only expressions of value types are normal
forms. It is perhaps more elegant to assign value types to a wider collection of
pure expressions than just those in normal form. That is the way Wadler’s effect-
annotated monadic language is presented, and it leads naturally to a stratified
operational semantics in which there is one relation defining the pure reduction
of expressions of value type to normal form and another defining the possibly
side-effecting evaluation of computations. However, the presentation given here
more closely matches the language used in the real compiler.

Given a countable set E of exception names, MIL-lite types are defined by

τ ::= unit | int | intref | τ × τ | τ + τ | τ → γ
γ ::= Tε(τ) ε ⊆ E = {⊥, r, w, a} � E

We write bool for unit + unit. Function types are restricted to be from values
to computations as this is all we shall need to interpret a CBV source language.
The effects which we detect are possible failure to terminate (⊥), reading from
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Γ, x : τ � x : τ Γ � n : int Γ � () : unit Γ � � : intref
� ∈ L

Γ � V : τi

Γ � iniV : τ1 + τ2

i = 1, 2
Γ � V1 : τ1 Γ � V2 : τ2

Γ � (V1, V2) : τ1 × τ2

Γ, x : τ, f : τ → Tε∪{⊥}(τ
′) � M : Tε(τ ′)

Γ � (rec f x = M) : τ → Tε(τ ′)

Γ � V : τ1

Γ � V : τ2

τ1 � τ2

Γ � V1 : τ → γ Γ � V2 : τ

Γ � V1 V2 : γ

Γ � V : τ

Γ � val V : T∅(τ)

Γ � M : Tε(τ) Γ � H : Tε′(τ ′) Γ, x : τ � N : Tε′(τ ′)

Γ � try x⇐M catch H in N : Tε\dom(H)∪ε′(τ ′) Γ � raise E : T{E}(τ)

Γ � V : τ1 × τ2

Γ � πiV : T∅(τi)
i = 1, 2

Γ � V : τ1 + τ2 {Γ, xi : τi � Mi : γ}i=1,2

Γ � (case V of in1x1.M1 ; in2x2.M2) : γ

Γ � V : int

Γ � ref V : T{a}(intref)

Γ � V : intref

Γ � !V : T{r}(int)

Γ � V1 : intref Γ � V2 : int

Γ � V1 := V2 : T{w}(unit)

Γ � V1 : int Γ � V2 : int

Γ � V1 + V2 : T∅(int)

Γ � V1 : int Γ � V2 : int

Γ � V1 = V2 : T∅(bool)

Γ � M : γ1

Γ � M : γ2

γ1 � γ2

Fig. 5. Typing rules for MIL-lite

a reference, writing to a reference, allocating a new reference cell and raising
a particular exception E ∈ E. Inclusion on sets of effects induces a subtyping
relation:

τ � τ
τ ∈ {unit, int, intref} ε ⊆ ε′ τ � τ ′

Tε(τ) � Tε′(τ ′)

τ1 � τ ′
1 τ2 � τ ′

2

τ1 × τ2 � τ ′
1 × τ ′

2

τ1 � τ ′
1 τ2 � τ ′

2

τ1 + τ2 � τ ′
1 + τ ′

2

τ ′ � τ γ � γ′

τ → γ � τ ′ → γ′

Reflexivity and transitivity are consequences of these rules.
There are two forms of typing judgment: Γ � V : τ for values and Γ � M : γ

for computations, where in both cases Γ is a finite map from term variables to
value types (because the source language is CBV). We assume a countable set
L of locations. The typing rules are shown in Figure 5 and satisfy the usual
weakening, strengthening and substitution lemmas. We will sometimes use G to
range over both value and computation terms and σ to range over both value
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λx. M
def= rec f x = M (f /∈ FV (M))

Ω
def= (rec f x = f x) ()

false def= in1()
true def= in2()
if V then M2 else M1

def= case V of in1x1.M1; in2x2.M2 (xi /∈ FV (Mi))
let x⇐M in N

def= try x⇐M catch {} in N

let x1 ⇐M1; x2 ⇐M2 in N
def= let x1 ⇐M1 in let x2 ⇐M2 in N

M ; N def= let x⇐M in N (x /∈ FV (N))
M handle H

def= try x⇐M catch H in val x

set {�1 	→ n1, . . . , �k 	→ nk} def= �1 := n1 ; . . . ; �k := nk ; val ()
assert (�, n) def= let v⇐ !�; b⇐(v = n) in if b then val () else Ω

assert {�1 	→ n1, . . . , �k 	→ nk} def= assert (�1, n1) ; . . . ; assert (�k, nk) ; val ()

Fig. 6. Syntactic sugar

and computation types. Most of the terms are unsurprising, but we do use a
novel construct

try x⇐M catch {E1.M1, . . . , En.Mn} in N

which should be read “Evaluate the expression M . If successful, bind the result
to x and evaluate N . Otherwise, if exception Ei is raised, evaluate the exception
handler Mi instead, or if no handler is applicable, pass the exception on.” A full
discussion of the reasons for adopting the try-handle construct may be found in
[BK01], but for now observe that it nicely generalises both handle and Moggi’s
monadic let, as illustrated by some of the syntactic sugar defined in Figure 6.

For ease of presentation the handlers are treated as a set in which no ex-
ception E appears more than once. We let H range over such sets, and write
H \ E to denote H with the handler for E removed (if it exists). We sometimes
use map-like notation, for example writing H(E) for the term M in a handler
E.M ∈ H, and writing dom(H) for {E | E.M ∈ H}. We write Γ � H : γ to
mean that for all E.M ∈ H, Γ � M : γ.

The Analysis. The way in which the MIL-lite typing rules express a simple
effects analysis should be fairly clear, though some features may deserve fur-
ther comment. The → introduction rule incorporates an extremely feeble, but
nonetheless very useful, termination test: the more obvious rule would insist that
⊥ ∈ ε, but that would prevent λx.M from getting the natural derived typing rule
and would cause undesirable non-termination effects to appear in, particularly,
curried recursive functions.

Just as with traditional effect systems, the use of subtyping increases the
accuracy of the analysis compared with one which just uses simple types or
subeffecting.



106 Nick Benton, John Hughes, and Eugenio Moggi

There are many possible variants of the rules. For example, there is a stronger
(try) rule in which the effects of the handlers are not all required to be the same,
and only the effects of handlers corresponding to exceptions occurrring in ε are
unioned into the effect of the whole expression.

Exercise 61. Give examples which validate the claim that the → introduction
rule gives better results than the obvious version with ⊥ ∈ ε.

MIL-lite does not include recursive types or higher-type references, because
they would make proving correctness significantly more difficult. But can you de-
vise candidate rules for an extended language which does include these features?
They’re not entirely obvious (especially if one tries to make the rules reasonably
precise too). It may help to consider

datatype U = L of U->U

and

let val r = ref (fn () => ())
val _ = r := (fn () => !r ())

in !r
end

Operational Semantics. We present the operational semantics of MIL-lite
using a big-step evaluation relation Σ, M ⇓ Σ′, R where R ranges over value
terms and exception identifiers and Σ ∈ States def= L ⇀fin Z.

Write Σ, M ⇓ if Σ, M ⇓ Σ′, R for some Σ′, R and �G� for the set of location
names occuring in G. If Σ, ∆ ∈ States then (Σ � ∆) ∈ States is defined by
(Σ � ∆)(�) = ∆(�) if that’s defined and Σ(�) otherwise.

In [BK99], we next prove a number of technical results about the operational
semantics, using essentially the techniques described by Pitts in his lectures
[Pit00a]. Since most of that material is not directly related to monads or effects,
we will omit it from this account, but the important points are the following:
– We are interested in reasoning about contextual equivalence, which is a type-

indexed relation between terms in context :

Γ � G =ctx G′ : σ

– Rather than work with contextual equivalence directly, we show that con-
textual equivalence coincides with ciu equivalence [MT91], which shows that
only certain special contexts need be considered to establish equivalence.
For MIL-lite, ciu equivalence is the extension to open terms of the relation
defined by the following clauses:

• If M1 : Tε(τ) and M2 : Tε(τ) we write M1 ≈ M2 : Tε(τ) and say M1 is
ciu equivalent to M2 at type Tε(τ) when ∀N, H such that x : τ � N : γ
and � H : γ, and ∀Σ ∈ States such that domΣ ⊇ �M1, M2, H, N� we
have

Σ, try x⇐M1 catch H in N ⇓ ⇔ Σ, try x⇐M2 catch H in N ⇓
• If V1 : τ and V2 : τ then we write V1 ≈ V2 : τ for val V1 ≈ val V2 : T∅(τ).



Monads and Effects 107

Σ, val V ⇓ Σ, V Σ, raise E ⇓ Σ, E Σ, πi(V1, V2) ⇓ Σ, Vi

Σ, n + m ⇓ Σ, n + m Σ, n = n ⇓ Σ, true Σ, n = m ⇓ Σ, false (n �= m)

Σ, !� ⇓ Σ, Σ(�) Σ, � := n ⇓ Σ[� 	→ n], () Σ, ref n ⇓ Σ � [� 	→ n], �

Σ, Mi[V/xi] ⇓ Σ′, R

Σ, case iniV of in1x1.M1 ; in2x2.M2 ⇓ Σ′, R
i = 1, 2

Σ, M [V/x, (rec f x = M)/f ] ⇓ Σ′, R

Σ, (rec f x = M) V ⇓ Σ′, R

Σ, M ⇓ Σ′, V Σ′, N [V/x] ⇓ Σ′′, R

Σ, try x⇐M catch H in N ⇓ Σ′′, R

Σ, M ⇓ Σ′, E Σ′, M ′ ⇓ Σ′′, R

Σ, try x⇐M catch H in N ⇓ Σ′′, R
H(E) = M ′

Σ, M ⇓ Σ′, E

Σ, try x⇐M catch H in N ⇓ Σ′, E
E /∈ dom(H)

Fig. 7. Evaluation relation for MIL-lite

Showing that ciu equivalence conincides with contextual equivalence is non-
trivial but uses standard techniques [How96].

11.3 Transforming MIL-Lite

Semantics of Effects. We want to use the effect information expressed in MIL-
lite types to justify some optimizing transformations. Our initial inclination was
to prove the correctness of these transformations by using a denotational seman-
tics. However, giving a good denotational semantics of MIL-lite is surprisingly
tricky, not really because of the multiple computational types, but because of
the presence of dynamically allocated references. Stark’s thesis [Sta94] examines
equivalence in a very minimal language with dynamically generated names in
considerable detail and does give a functor category semantics for a language
with higher order functions and integer references. But MIL-lite is rather more
complex than Stark’s language, requiring a functor category into cpos (rather
than sets) and then indexed monads over that. Worst of all, the resulting se-
mantics turns out to be very far from fully abstract – it actually fails to validate
some of the most elementary transformations which we wished to perform. So we
decided to prove correctness of our transformations using operational techniques
instead.

Most work on using operational semantics to prove soundness of effect anal-
yses involves instrumenting the semantics to trace computational effects in some
way and then proving that ‘well-typed programs don’t go wrong’ in this modi-
fied semantics. This approach is perfectly correct, but the notion of correctness
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and the meaning of effect annotations is quite intensional and closely tied to
the formal system used to infer them. Since we wanted to prove the soundness
of using the analysis to justify observational equivalences in an uninstrumented
semantics, we instead tried to characterise the meaning of effect-annotated types
as properties of terms which are closed under observational equivalence in the
uninstrumented semantics. To give a simple example of the difference between
the two approaches, a weak effect system (such as that in MIL-lite) will only
assign a term an effect which does not contain w if the evaluation of that term
really does never perform a write operation. A region-based analysis may infer
such an effect if it can detect that the term only writes to private locations. But
the property we really want to use to justify equations is much more extensional:
it’s that after evaluating the term, the contents of all the locations which were
allocated before the evaluation are indistinguishable from what they were to
start with.

The decision not to use an instrumented semantics is largely one of taste,
but there is another (post hoc) justification. There are a few places in the MLj
libraries where we manually annotate bindings with smaller effect types than
could be inferred by our analysis, typically so that the rewrites can dead-code
them if they are not used (for example, the initialisation of lookup tables used
in the floating point libraries). Since those bindings do have the extensional
properties associated with the type we force them to have, the correctness result
for our optimizations extends easily to these manually annotated expressions.

We capture the intended meaning [[σ]] of each type σ in MIL-lite as the set
of closed terms of that type which pass all of a collection of cotermination tests
Testsσ ⊆ States × Ctxtσ × Ctxtσ where Ctxtσ is the set of closed contexts with
a finite number of holes of type σ. Formally:

[[σ]] def= { G : σ | ∀(Σ, M [·], M ′[·]) ∈ Testsσ.

�M [G], M ′[G]� ⊆ dom Σ ⇒ (Σ, M [G] ⇓↔ Σ, M ′[G] ⇓) }
We define Testsσ inductively as shown in Figure 8.

Although these definitions appear rather complex, at value types they actu-
ally amount to a familiar-looking logical predicate:

Lemma 111

– [[int]] = {n | n ∈ Z}, [[intref]] = {� | � ∈ L} and [[unit]] = {()}.
– [[τ1 × τ2]] = {(V1, V2) | V1 ∈ [[τ1]], V2 ∈ [[τ2]]}
– [[τ → γ]] = {F : τ → γ | ∀V ∈ [[τ ]].(F V ) ∈ [[γ]]}
– [[τ1 + τ2]] =

⋃
i=1,2{iniV | V ∈ [[τi]]} ��

Lemma 112 If σ � σ′ then [[σ]] ⊆ [[σ′]]. ��

We also have to prove an operational version of admissibility for the predicate
associated with each type. This follows from a standard ‘compactness of evalua-
tion’ or ‘unwinding’ result which is proved using termination induction, but we
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Testsint
def= {} Testsintref

def= {} Testsunit
def= {}

Testsτ1×τ2
def=

⋃
i=1,2{(Σ, M [πi[·]], M ′[πi[·]]) | (Σ, M [·], M ′[·]) ∈ Testsτi}

Testsτ1+τ2
def=

⋃
i=1,2{(Σ, case [·] of inix.M [x] ; in3−iy.Ω,

case [·] of inix.M ′[x] ; in3−iy.Ω) | (Σ, M [·], M ′[·]) ∈ Testsτi}

Testsτ→γ
def= {(Σ, M [[·] V ], M ′[[·] V ]) | V ∈ [[τ ]], (Σ, M [·], M ′[·]) ∈ Testsγ}

TestsTετ
def= {(Σ, let x⇐ [·] in set Σ′; M [x], let x⇐ [·] in set Σ′; M ′[x])

| (Σ′, M [·], M ′[·]) ∈ Testsτ , Σ ∈ States} ∪ ⋃
e �∈ε Testse,τ

where
Tests⊥,τ

def= {(Σ, [·], val ()) | Σ ∈ States}

Testsw,τ
def= {(Σ,

let y⇐ !� in try x⇐ [·] catch E.M in N,
try x⇐ [·] catch E.let y⇐ !� in M in let y⇐ !� in N)
| y : int, x : τ � N : γ, y : int � M : γ, Σ ∈ States, � ∈ dom Σ, E ∈ E}

Testsr,τ
def= {(Σ,

d(Σ, ∆, E); try x⇐ [·] catch E.assert Σ � ∆; raise E in N,
d(Σ, ∆, E); � := n; try x⇐ [·] catch E.assert Σ[� 	→ n] � ∆; raise E
in assert (�, (Σ[� 	→ n] � ∆)(�)); � := (Σ � ∆)(�); N)
| E ∈ E, Σ, ∆ ∈ States, dom ∆ ⊆ dom Σ � �, n ∈ Z, x : τ � N : γ}

∪{(Σ, [·] handle E.Ω, set Σ′; [·] handle E.Ω) | Σ, Σ′ ∈ States, E ∈ E}

TestsE,τ

def= {(Σ, [·], [·] handle E.N) | Σ ∈ States, � N : γ}

Testsa,τ
def= {(Σ, let x⇐ [·]; y⇐(set Σ; [·]) in N, let x⇐ [·]; y⇐val x in N)

| Σ ∈ States, x : τ, y : τ � N : γ}
and

KΣn
def= {� 	→ n | � ∈ dom(Σ)}

d(Σ, ∆, E) def= set KΣ0; (([·]; val ()) handle E.val ()); assert KΣ0 � ∆;
set KΣ1; (([·]; val ()) handle E.val ()); assert KΣ1 � ∆; set Σ

Fig. 8. Definition of Testsσ

omit the details. Finally, we can prove the ‘Fundamental Theorem’ for our logical
predicate, which says that the analysis is correct in the sense that whenever a
term is given a particular type it actually satisfies the property associated with
that type:

Theorem 62. If xi : τi � G : σ and Vi ∈ [[τi]] then G[Vi/xi] ∈ [[σ]]. ��

The intention is that the extent of Testse,τ is the set of computations of type
TE(τ) which definitely do not have effect e. So, passing all the tests in Tests⊥,τ
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is easily seen to be equivalent to not diverging in any state and passing all the
tests in TestsE,τ means not throwing exception E in any state.

The tests concerning store effects are a little more subtle. It is not too hard to
see that Testsw,τ expresses not observably writing the store. Similarly, Testsr,τ

tests (contortedly!) for not observably reading the store, by running the compu-
tation in different initial states and seeing if the results can be distinguished by
a subsequent continuation.

The most surprising definition is probably that of Testsa,τ , the extent of
which is intended to be those computations which do not observably allocate
any new storage locations. This should include, for example, a computation
which allocates a reference and then returns a function which uses that reference
to keep count of how many times it has been called, but which never reveals
the counter, nor returns different results according to its value. However, the
definition of Testsa,τ does not seem to say anything about store extension; what
it actually captures is those computations for which two evaluations in equivalent
initial states yield indistinguishable results. Our choice of this as the meaning of
‘doesn’t allocate’ was guided by the optimising transformations which we wished
to perform rather than a deep understanding of exactly what it means to not
allocate observably, but in retrospect it seems quite reasonable.

Effect-Independent Equivalences. Figure 9 presents some typed observa-
tional congruences that correspond to identities from the equational theory of
the computational metalanguage, and Figure 10 presents equivalences that in-
volve local side-effecting behaviour15. Directed variants of many of these are use-
ful transformations that are in fact performed by MLj (although the duplication
of terms in cc2 is avoided by introducing a special kind of abstraction). These
equations can be derived without recourse to our logical predicate, by making
use of a rather strong notion of equivalence called Kleene equivalence that can
easily be shown to be contained in ciu equivalence. Two terms are Kleene equiv-
alent if they coterminate in any initial state with syntactically identical results
and the same values in all accessible locations of the store (Mason and Talcott
call this ‘strong isomorphism’ [MT91]).

The beta-equivalences and commuting conversions of Figure 9 together with
the equivalences of Figure 10 are derived directly as Kleene equivalences. Deriva-
tion of the eta-equivalences involves first deriving a number of extensionality
properties using ciu equivalence; similar techniques are used by Pitts [Pit97].

Effect-Dependent Equivalences. We now come to a set of equivalences that
are dependent on effect information, which are shown in Figure 11. Notice how
the first three of these equations respectively subsume the first three local equiv-
alences of Figure 10. Each of these equivalences is proved by considering evalua-
tion of each side in an arbitrary ciu-context and then using the logical predicate

15 Some side conditions on variables are implicit in our use of contexts. For example,
the first equation in Figure 10 has the side condition that x �∈ fv(M).
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β-×
Γ � V1 : τ1 Γ � V2 : τ2

Γ � πi(V1, V2) ∼= val Vi : T∅(τi)
β-T

Γ � V : τ Γ, x : τ � M : γ

Γ � let x⇐val V in M ∼= M [V/x] : γ

β-→
Γ, x : τ, f : τ → Tε∪{⊥}(τ ′) � M : Tε(τ ′) Γ � V : τ

Γ � (rec f x = M) V ∼= M [V/x, rec f x = M/f ] : Tε(τ ′)

β-+
Γ � V : τi Γ, x1 : τ1 � M1 : γ Γ, x2 : τ2 � M2 : γ

Γ � case iniV of in1x1.M1; in2x2.M2 ∼= Mi[V/xi] : γ

η-×
Γ � V : τ1 × τ2

Γ � let x1 ⇐π1V ; x2 ⇐π2V in val (x1, x2) ∼= val V : T∅(τ1 × τ2)

η-+
Γ � V : τ1 + τ2

Γ � case V of in1x1.val (in1x1); in2x2.val (in2x2) ∼= val V : T∅(τ1 + τ2)

η-→
Γ � V : τ → γ

Γ � rec f x = V x ∼= V : τ → γ
η-T

Γ � M : γ

Γ � let x⇐M in val x ∼= M : γ

cc1

Γ � M1 : Tε1 (τ1) Γ, y : τ1 � M2 : Tε2 (τ2) Γ, y : τ1, x : τ2 � M3 : Tε3 (τ3)

Γ � let x⇐(let y ⇐M1 in M2) in M3 ∼= let y ⇐M1; x⇐M2 in M3 : Tε1∪ε2∪ε3 (τ3)

cc2

Γ � V : τ1 + τ2 {Γ, xi : τi � Mi : Tε(τ)} Γ, x : τ � N : Tε′ (τ ′)

Γ � let x⇐case V of {inixi.Mi} in N ∼= case V of {inixi.let x⇐Mi in N} : Tε∪ε′ (τ ′)

β-E
Γ � M : γ Γ � H : γ Γ, x : τ � N : γ

Γ � try x⇐raise E catch (E.M); H in N ∼= M : γ

η-E
Γ � M : Tε(τ) Γ � H : Tε′ (τ ′) Γ, x : τ � N : Tε′ (τ ′)

Γ � try x⇐M catch (E.raise E); H in N ∼= try x⇐M catch H in N : Tε∪ε′ (τ ′)

Fig. 9. Effect-independent equivalences (1)

to show that if the evaluation terminates then so does the evaluation of the other
side in the same context.

11.4 Effect-Dependent Rewriting in MLj

In practice, much of the benefit MLj gets from effect-based rewriting is simply
from dead-code elimination (discard and dead-try). A lot of dead code (particu-
larly straight after linking) is just unused top-level function bindings, and these
could clearly be removed by a simple syntactic check instead of a type-based
effect analysis. Nevertheless, both unused non-values which detectably at most
read or allocate and unreachable exception handlers do occur fairly often too,
and it is convenient to be able to use a single framework to eliminate them
all. Here is an example (from [BK01]) of how tracking exception effects works
together with MIL’s unusual handler construct to improve an ML program for
summing the elements of an array:
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deadref
Γ � V : int Γ � M : Tε(τ)

Γ � let x⇐ref V in M ∼= M : Tε∪{a}(τ)

deref
Γ � V : intref Γ, x : int, y : int � M : Tε(τ)

Γ � let x⇐ !V ; y⇐ !V in M ∼= let x⇐ !V ; y⇐val x in M : Tε∪{r}(τ)

[swapref ] Γ � V1 : int Γ � V2 : int Γ, x1 : intref, x2 : intref � M : Tε(τ)

Γ � let x1 ⇐ref V1; x2 ⇐ref V2 in M ∼= let x2 ⇐ref V2; x1 ⇐ref V1 in M : Tε∪{a}(τ)

assign
Γ � V1 : intref Γ � V2 : int Γ, x : int � M : Tε(τ)

Γ � V1 := V2; let x⇐ !V1 in M ∼= V1 := V2; M [V2/x] : Tε∪{r,w}(τ)

Fig. 10. Effect-independent equivalences (2)

discard
Γ � M : Tε1(τ1) Γ � N : Tε2(τ2)

Γ � let x⇐M in N ∼= N : Tε1∪ε2τ2
where ε1 ⊆ {r, a}

copy
Γ � M : Tε(τ) Γ, x : τ, y : τ � N : Tε′(τ ′)

Γ � let x⇐M ; y⇐M in N ∼= let x⇐M ; y⇐val x in N : Tε∪ε′(τ ′)
where {r, a} ∩ ε = ∅ or {w, a} ∩ ε = ∅

swap
Γ � M1 : Tε1(τ1) Γ � M2 : Tε2(τ2) Γ, x1 : τ1, x2 : τ2 � N : Tε3(τ3)

Γ � let x1 ⇐M1; x2 ⇐M2 in N ∼= let x2 ⇐M2; x1 ⇐M1 in N : Tε1∪ε2∪ε3(τ3)
where ε1, ε2 ⊆ {r, a, ⊥} or ε1 ⊆ {a, ⊥}, ε2 ⊆ {r, w, a, ⊥}

dead-try
Γ � M : Tε(τ) Γ � H : Tε′(τ ′) Γ, x : τ � N : Tε′(τ ′)

Γ � try x⇐M catch H in N ∼= try x⇐M catch H \ E in N : Tε∪ε′(τ ′)
where E /∈ ε

Fig. 11. Effect-dependent equivalences

fun sumarray a =
let fun s(n,sofar) = let val v = Array.sub(a,n)

in s(n+1, sofar+v)
end handle Subscript => sofar

in s(0,0)
end

Because the SML source language doesn’t have try, the programmer has made
the handler cover both the array access and the recursive call to the inner func-
tion s. But this would prevent a näıve compiler from recognising that call as
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tail-recursive. In MLj, the intermediate code for s looks like (in MLish, rather
than MIL, syntax):

fun s(n,sofar) =
try val x = try val v = Array.sub(a,n)

catch {}
in s(n+1, sofar+v)
end

catch Subscript => sofar
in x
end

A commuting conversion turns this into

fun s(n,sofar) = try val v = Array.sub(a,n)
catch Subscript => sofar
in try val x = s(n+1, sofar+v)

catch Subscript => sofar
in x
end

end

The effect analysis detects that the recursive call to s cannot, in fact, ever throw
the Subscript exception, so the function is rewritten again to

fun s(n,sofar) = try val v = Array.sub(a,n)
catch Subscript => sofar
in s(n+1, sofar+v)
end

which is tail recursive, and so gets compiled as a loop in the final code for
sumarray.

Making practical use of the swap and copy equations is more difficult – al-
though it is easy to come up with real programs which could be usefully improved
by sequences of rewrites including those equations, it is hard for the compiler to
spot when commuting two computations makes useful progress towards a more
significant rewrite. The most significant effect-based code motion transformation
which we do perform is pulling constant, pure computations out of functions (in
particular, loops), a special case of which is

Γ � M : T∅(τ3) Γ, f : τ1 → Tε∪⊥(τ2), x : τ1, y : τ3 � N : Tε(τ2)

Γ � val (rec f x = let y⇐M in N) ∼= let y⇐M in val (rec f x = N) : T∅(τ1 → Tε(τ2))

where there’s an implied side condition that neither f nor x is free in M . This is
not always an improvement (if the function is never applied), but in the absence
of more information it’s worth doing anyway. Slightly embarassingly, this is not
an equivalence which we have proved correct using the techniques described here,
however.
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One other place where information about which expressions commute could
usefully be applied is in a compiler backend, for example in register allocation.
We haven’t tried this in MLj since a JIT compiler will do its own job of al-
locating real machine registers and scheduling real machine instructions later,
which makes doing a very ‘good’ job of compiling virtual machine code unlikely
to produce great improvements in the performance of the final machine code.

An early version of the compiler also implemented a type-directed uncurrying
transformation, exploiting the isomorphism

τ1 → T∅(τ2 → Tε(τ3)) ∼= τ1 × τ2 → Tε(τ3)

but this can lead to extra work being done if the function is actually partially
applied, so this transformation also seems to call for auxiliary information to be
gathered.

11.5 Effect Masking and Monadic Encapsulation

We have seen that it is not too hard to recast simple effect systems in a monadic
framework. But what is the monadic equivalent of effect masking? The answer
is something like the encapsulation of side-effects provided by runST in Haskell,
but the full connection has not yet been established.

Haskell allows monadic computations which make purely local use of state
to be encapsulated as values with ‘pure’ types by making use of a cunning trick
with type variables which is very similar to the use of regions in effect systems.
Briefly (see Section 5 for more information), the state monad is parameterized
not only by the type of the state s, but also by another ‘dummy’ type variable
r16.

The idea is that the r parameters of types inferred for computations whose
states might interfere will be unified, so if a computation can be assigned a
type which is parametrically polymorphic in r, then its use of state can be
encapsulated. This is expressed using the runST combinator which is given the
rank-2 polymorphic type

runST : ∀s, a.(∀r.(r, s, a)ST) → a

Just as the soundness of effect masking and of the region calculus is hard to
establish, proving the correctness of monadic encapsulation is difficult. Early
attempts to prove soundness of encapsulation for lazy languages via subject
reduction [LS97] are now known to be incorrect.

Semmelroth and Sabry have defined a CBV language with monadic encapsu-
lation, relating this to a language with effect masking and proving type soundness
[SS99]. Moggi and Palumbo have also addressed this problem [MP99], by defin-
ing a slightly different form of monadic encapsulation (explicitly parameterizing
over the monad and its operations) and proving a type soundness result for a
16 Actually, Haskell’s built-in state monad is not parameterized on the type of the state

itself.
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language in which the stateful operations are strict. More recently, a type sound-
ness result for a language with lazy state operations has been proved by Moggi
and Sabry [MS01].

12 Curry-Howard Correspondence and Monads

This section provides a little optional background on a logical reading of the
computational metalanguage and explains the term ‘commuting conversion’.

Most readers will have some familiarity with the so-called Curry-Howard
Correspondence (or Isomorphism, aka the Propositions-as-Types Analogy). This
relates types in certain typed lambda calculi to propositions in intuitionistic
logics, typed terms in context to (natural deduction) proofs of propositions from
assumptions, and reduction to proof normalization. The basic example of the
correspondence relates the simply typed lambda calculus with function, pair
and disjoint union types to intuitionisitic propositional logic with implication,
conjunction and disjunction [GLT89].

It turns out that logic and proof theory can provide helpful insights into
the design of programming languages and intermediate languages. Partly this
seems to be because proof theorists have developed a number of taxonomies and
criteria for ‘well-behavedness’ of proof rules which turn out to be transferable to
the design of ‘good’ language syntax.

The computational metalanguage provides a nice example of the applicability
of proof theoretic ideas [BBdP98,PD01]. If one reads the type rules for the
introduction and elimination of the computation type constructor logically, then
one ends up with an intuitionistic modal logic (which we dubbed ‘CL-logic’)
with a slightly unusual kind of possibility modality, �. In sequent-style natural
deduction form:

Γ � A

Γ � �A
(�I)

Γ � �A Γ, A � �B

Γ � �B
(�E)

Interestingly, not only was (the Hilbert-style presentation of) this logic discov-
ered by Fairtlough and Mendler (who call it ‘lax logic’) in the context of hard-
ware verification [FM95], but it had even been considered by Curry in 1957
[Cur57]! Moreover, from a logical perspective, the three basic equations of the
computational metalanguage arise as inevitable consequences of the form of the
introduction and elimination rules, rather than being imposed separately.

The way in which the β-rule for the computation type constructor arises
from the natural deduction presentation of the logic is fairly straightforward – the
basic step in normalization is the removal of ‘detours’ caused by the introduction
and immediate elimination of a logical connective:

···
A

(�I)�A

[A] · · · [A]···�B
(�E)�B

−→

···
[A] · · ·

···
[A]···�B
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Γ � M : A

Γ � val M : TA Γ, x : A � N : TB

Γ � let x ⇐ val M in N : TB

−→ Γ � N [M/x] : TB

Natural deduction systems can also give rise to a secondary form of normal-
isation step which are necessary to ensure that normal deductions satisfy the
subformula property, for example. These occur when the system contains elimi-
nation rules which have a minor premiss – the minor premiss of (�E) is �B, for
example. (Girard calls this a ‘parasitic formula’ and refers to the necessity for
the extra reductions as ‘the shame of natural deduction’ [GLT89].) In general,
when we have such a rule, we want to be able to commute the last rule in the
derivation of the minor premiss down past the rule, or to move the application
of a rule to the conclusion of the elimination up past the elimination rule into to
the derivation of the minor premiss. The only important cases are moving elim-
inations up or introductions down. Such transformations are called commuting
conversions. The elimination rule for disjunction (coproducts) in intuitionisitic
logic gives rise to commuting conversions and so does the elimination for the �
modality of CL-logic. The restriction on the form of the conclusion of our (�E)
rule (it must be modal) means that the rule gives rise to only one commuting
conversion:

– A deduction of the form

···�A

[A]···�B
(�E)�B

[B]···�C
(�E)�C

commutes to

···�A

[A]···�B

[B]···�C
(�E)�C

(�E)�C

On terms of the computational metalanguage, this commuting conversion in-
duces the ‘let of a let’ associativity rule (with the free variable condition implicit
in the use of Γ ):

Γ � M : TA Γ, y : A � P : TB

Γ � let y ⇐ M in P : TB Γ, x : B � N : TC

Γ � let x ⇐ (let y ⇐ M in P ) in N : TC

−→

Γ � M : TA

Γ, y : A � P : TB Γ, y : A, x : B � N : TC

Γ, y : A � let x ⇐ P in N : TC

Γ � let y ⇐ M in (let x ⇐ P in N) : TC
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Commuting conversions are not generally optimizing tranformations in their
own right, but they reorganise code so as to expose more computationally sig-
nificant β reductions. They are therefore important in compilation, and most
compilers for functional languages perform at least some of them. MLj is some-
what dogmatic in performing all of them, to reach what we call cc-normal form,
from which it also turns out to be particularly straighforward to generate code.
As Danvy and Hatcliff observe [HD94], this is closely related to working with
A-normal forms, though the logical/proof theoretic notion is an older and more
precisely defined pattern.
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