--- title: Delete author: nbloomf date: 2017-05-27 tags: arithmetic-made-difficult, literate-haskell slug: delete --- > {-# LANGUAGE NoImplicitPrelude #-} > module Delete > ( delete, _test_delete, main_delete > ) where > > import Testing > import Booleans > import Not > import NaturalNumbers > import Lists > import Snoc > import Reverse > import Cat > import PrefixAndSuffix > import AllAndAny > import Filter > import Elt > import Sublist > import Unique Today we'll establish a function $\delete$ that removes all copies of a given item from a list. $\delete$ is a special case of $\filter$. :::::: definition :: Let $A$ be a set, with $a \in A$. Define $\varphi : A \times \lists{A} \rightarrow \lists{A}$ by $$\varphi(b,x) = \bif{\beq(a,b)}{x}{\cons(b,x)},$$ and define $\delete : A \rightarrow \lists{A}^{\lists{A}}$ by $$\delete(a) = \foldr(\nil)(\varphi).$$ In Haskell: > delete :: (List t, Equal a) => a -> t a -> t a > delete a = foldr nil phi > where > phi b x = if eq a b then x else cons b x :::::::::::::::::::: Since $\delete(a)$ is defined as a fold, it can be characterized as the unique solution to a system of functional equations. :::::: corollary ::: Let $A$ be a set. Then $\delete(a)$ is the unique map $f : \lists{A} \rightarrow \lists{A}$ satisfying the following equations for all $b \in A$ and $x \in \lists{A}$. $$\left\{\begin{array}{l} f(\nil) = \nil \\ f(\cons(b,x)) = \bif{\beq(a,b)}{f(x)}{\cons(b,f(x))} \end{array}\right.$$ ::: test ::::::::::: > _test_delete_nil :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> Bool) > _test_delete_nil t = > testName "delete(a)(nil) == nil" $ > \a -> eq (delete a nil) (nil `withTypeOf` t) > > > _test_delete_cons :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> a -> t a -> Bool) > _test_delete_cons _ = > testName "delete(a)(cons(b,x)) == if(eq(a,b),delete(a)(x),cons(b,delete(a)(x)))" $ > \a b x -> eq > (delete a (cons b x)) > (if eq a b then delete a x else cons b (delete a x)) :::::::::::::::::::: :::::::::::::::::::: $\delete$ is a filter. :::::: theorem ::::: Let $A$ be a set. For all $a \in A$ and $x \in \lists{A}$, we have $$\delete(a)(x) = \filter(\bnot(\beq(a,-)))(x).$$ ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, we have $$\begin{eqnarray*} & & \filter(\bnot(\beq(a,-)))(\nil) \\ & = & \nil \\ & = & \delete(a)(\nil) \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for all $a$ for some $x$, and let $b \in A$. Now $$\begin{eqnarray*} & & \filter(\bnot(\beq(a,-)))(\cons(b,x)) \\ & = & \bif{\bnot(\beq(a,b))}{\cons(b,\filter(\bnot(\beq(a,-)))(x))}{\filter(\bnot(\beq(a,-)))(x)} \\ & = & \bif{\bnot(\beq(a,b))}{\cons(b,\delete(a)(x))}{\delete(a)(x)} \\ & \href{@not@#thm-ifnot} = & \bif{\beq(a,b)}{\delete(a)(x)}{\cons(b,\delete(a)(x))} \\ & = & \delete(a)(\cons(b,x)) \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_filter :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_filter _ = > testName "delete(a)(x) == filter(not(eq(a,-)))(x)" $ > \a x -> eq (delete a x) (filter (\b -> not (eq a b)) x) :::::::::::::::::::: :::::::::::::::::::: So $\delete$ commutes with $\filter$. :::::: corollary ::: Let $A$ be a set and $p : A \rightarrow \bool$ a predicate. For all $a \in A$ and $x \in \lists{A}$, we have $$\delete(a)(\filter(p)(x)) = \filter(p)(\delete(a)(x)).$$ ::: test ::::::::::: > _test_delete_filter_commute :: (List t, Equal a, Equal (t a)) > => t a -> Test ((a -> Bool) -> a -> t a -> Bool) > _test_delete_filter_commute _ = > testName "delete(a)(filter(p)(x)) == filter(p)(delete(a)(x))" $ > \p a x -> eq (delete a (filter p x)) (filter p (delete a x)) :::::::::::::::::::: :::::::::::::::::::: And if $p(a) = \bfalse$, then $\filter(p)$ absorbs $\delete$. :::::: theorem ::::: Let $A$ be a set with $p : A \rightarrow \bool$ a predicate. For all $a \in A$ and $x \in \lists{A}$, if $p(a) = \bfalse$ we have $$\delete(a)(\filter(p)(x)) = \filter(p)(x).$$ ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, we have $$\begin{eqnarray*} & & \delete(a)(\filter(p)(\nil)) \\ & \href{@filter@#cor-filter-nil} = & \delete(a)(\nil) \\ & = & \nil \\ & \href{@filter@#cor-filter-nil} = & \filter(p)(\nil) \end{eqnarray*}$$ as needed. For the inductive step, suppose the equatily holds for some $x$, and let $b \in A$. Note that if $p(b) = \btrue$, then $\beq(a,b)$ must be $\bfalse. Now $$\begin{eqnarray*} & & \delete(a)(\filter(p)(\cons(b,x))) \\ & \href{@filter@#cor-filter-cons} = & \delete(a)(\bif{p(b)}{\cons(b,\filter(p)(x))}{\filter(p)(x)}) \\ & \href{@booleans@#thm-iffunc} = & \bif{p(b)}{\delete(a)(\cons(b,\filter(p)(x)))}{\delete(a)(\filter(p)(x))} \\ & = & \bif{p(b)}{\bif{\beq(a,b)}{\delete(a)(\filter(p)(x))}{\cons(b,\delete(a)(\filter(p)(x)))}}{\delete(a)(\filter(p)(x))} \\ & = & \bif{p(b)}{\bif{\beq(a,b)}{\filter(p)(x)}{\cons(b,\filter(p)(x))}}{\filter(p)(x)} \\ & = & \bif{p(b)}{\bif{\bfalse}{\filter(p)(x)}{\cons(b,\filter(p)(x))}}{\filter(p)(x)} \\ & \href{@booleans@#cor-if-false} = & \bif{p(b)}{\cons(b,\filter(p)(x))}{\filter(p)(x)} \\ & = & \filter(p)(\cons(b,x)) \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_filter_absorb :: (List t, Equal a, Equal (t a)) > => t a -> Test ((a -> Bool) -> a -> t a -> Bool) > _test_delete_filter_absorb _ = > testName "if p(a) == false then delete(a)(filter(p)(x)) == filter(p)(x)" $ > \p a x -> if isFalse (p a) > then eq (delete a (filter p x)) (filter p x) > else true :::::::::::::::::::: :::::::::::::::::::: $\delete$ is idempotent. :::::: theorem ::::: Let $A$ be a set. For all $a \in A$ and $x \in \lists{A}$ we have $$\delete(a)(\delete(a)(x)) = \delete(a)(x).$$ ::: proof :::::::::: Note that, since $\filter(p)$ is idempotent for any predicate $p$, we have $$\begin{eqnarray*} & & \delete(a,\delete(a,x)) \\ & = & \filter(\bnot(\beq(a,-)),\filter(\bnot(\beq(a,-)),x)) \\ & = & \filter(\bnot(\beq(a,-)),x) \\ & = & \delete(a,x) \end{eqnarray*}$$ as claimed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_idempotent :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_idempotent _ = > testName "delete(a)(delete(a)(x)) == delete(a)(x)" $ > \a x -> eq (delete a (delete a x)) (delete a x) :::::::::::::::::::: :::::::::::::::::::: $\delete$ can detect $\elt$. :::::: theorem ::::: Let $A$ be a set with $a \in A$ and $x \in \lists{A}$. Then we have $$\beq(x,\delete(a,x)) = \bnot(\elt(a,x)).$$ ::: proof :::::::::: Note that $$\begin{eqnarray*} & & \beq(x,\delete(a,x)) \\ & = & \beq(x,\filter(\bnot(\beq(a,-)),x)) \\ & = & \all(\bnot(\beq(a,-)),x) \\ & = & \bnot(\any(\beq(a,-),x)) \\ & = & \bnot(\elt(a,x)) \end{eqnarray*}$$ as claimed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_eq_not_elt :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_eq_not_elt _ = > testName "eq(x,delete(a,x)) == not(elt(a,x))" $ > \a x -> eq (eq x (delete a x)) (not (elt a x)) :::::::::::::::::::: :::::::::::::::::::: $\delete$ commutes with itself. :::::: theorem ::::: Let $A$ be a set with $a,b \in A$ and $x \in \lists{A}$. Then $$\delete(a,\delete(b,x)) = \delete(b,\delete(a,x)).$$ ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, we have $$\begin{eqnarray*} & & \delete(a,\delete(b,\nil)) \\ & = & \delete(a,\nil) \\ & = & \nil \\ & = & \delete(b,\nil) \\ & = & \delete(b,\delete(a,\nil)) \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for some $x$ and let $c \in A$. We consider four possibilities. If $c = a$ and $c = b$, using the inductive hypothesis we have $$\begin{eqnarray*} & & \delete(a,\delete(b,\cons(c,x))) \\ & = & \delete(a,\delete(b,x)) \\ & = & \delete(b,\delete(a,x)) \\ & = & \delete(b,\delete(a,\cons(c,x))) \end{eqnarray*}$$ as needed. If $c = a$ and $c \neq b$, using the inductive hypothesis we have $$\begin{eqnarray*} & & \delete(a,\delete(b,\cons(c,x))) \\ & = & \delete(a,\cons(c,\delete(b,x))) \\ & = & \delete(a,\delete(b,x)) \\ & = & \delete(b,\delete(a,x)) \\ & = & \delete(b,\delete(a,\cons(c,x))) \end{eqnarray*}$$ as needed. If $c \neq a$ and $c = b$, using the inductive hypothesis we have $$\begin{eqnarray*} & & \delete(a,\delete(b,\cons(c,x))) \\ & = & \delete(a,\delete(b,x)) \\ & = & \delete(b,\delete(a,x)) \\ & = & \delete(b,\cons(c,\delete(a,x))) \\ & = & \delete(b,\delete(a,\cons(c,x))) \end{eqnarray*}$$ as needed. Finally, if $c \neq a$ and $c \neq b$, using the inductive hypothesis we have $$\begin{eqnarray*} & & \delete(a,\delete(b,\cons(c,x))) \\ & = & \delete(a,\cons(c,\delete(b,x))) \\ & = & \cons(c,\delete(a,\delete(b,x))) \\ & = & \cons(c,\delete(b,\delete(a,x))) \\ & = & \delete(b,\cons(c,\delete(a,x))) \\ & = & \delete(b,\delete(a,\cons(c,x))) \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_commutative :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> a -> t a -> Bool) > _test_delete_commutative _ = > testName "delete(a)(delete(b)(x)) == delete(b)(delete(a)(x))" $ > \a b x -> eq > (delete a (delete b x)) > (delete b (delete a x)) :::::::::::::::::::: :::::::::::::::::::: $\delete$ removes elements. :::::: theorem ::::: Let $A$ be a set. For all $x \in \lists{A}$ and $a \in A$, we have $$\all(\bnot(\beq(a,-)))(\delete(a,x)) = \btrue.$$ ::: proof :::::::::: Note that $$\begin{eqnarray*} & & \btrue \\ & = & \all(\bnot(\beq(a,-)),\filter(\bnot(\beq(a,-)),x)) \\ & = & \all(\bnot(\beq(a,-)),\delete(a,x)) \end{eqnarray*}$$ as claimed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_all_not_eq :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_all_not_eq _ = > testName "all(not(eq(a,-)))(delete(a)(x))" $ > \a x -> all (\b -> not (eq a b)) (delete a x) :::::::::::::::::::: :::::::::::::::::::: $\delete$ yields a sublist. :::::: theorem ::::: Let $A$ be a set with $x \in \lists{A}$ and $a \in A$. Then $$\sublist(\delete(a,x),x) = \btrue.$$ ::: proof :::::::::: Note that $$\begin{eqnarray*} & & \btrue \\ & = & \sublist(\filter(\bnot(\beq(a,-)),x),x) \\ & = & \sublist(\delete(a,x),x) \end{eqnarray*}$$ as claimed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_sublist :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_sublist _ = > testName "sublist(delete(a)(x),x)" $ > \a x -> sublist (delete a x) x :::::::::::::::::::: :::::::::::::::::::: $\delete$ and $\unique$. :::::: theorem ::::: Let $A$ be a set with $x \in \lists{A}$ and $a \in A$. If $\unique(x) = \btrue$, then $\unique(\delete(a,x)) = \btrue$. ::: proof :::::::::: Note that $\sublist(\delete(a)(x),x) = \btrue$, so that $\unique(\delete(a)(x)) = \btrue$ as claimed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_unique :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_unique _ = > testName "if unique(x) then unique(delete(a)(x))" $ > \a x -> if unique x then unique (delete a x) else true :::::::::::::::::::: :::::::::::::::::::: $\delete$ interacts with $\elt$. :::::: theorem ::::: Let $A$ be a set with $x \in \lists{A}$ and $a,b \in A$. Then $$\elt(a,\delete(b,x)) = \bif{\beq(a,b)}{\bfalse}{\elt(a,x)}$. ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, we have $$\begin{eqnarray*} & & \elt(a,\delete(b,\nil)) \\ & = & \elt(a,\nil) \\ & \href{@elt@#cor-elt-nil} = & \bfalse \\ & \href{@booleans@#thm-if-same} = & \bif{\beq(a,b)}{\bfalse}{\bfalse} \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,\nil)} \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for all $a$ and $b$ for some $x$ and let $c \in A$. If $b = c$ and $a \neq c$, we have $$\begin{eqnarray*} & & \elt(a,\delete(b,\cons(c,x))) \\ & = & \elt(a,\delete(b,x)) \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,x)} \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,\cons(c,x))}. \end{eqnarray*}$$ If $b = c$ and $a = c$, then $$\begin{eqnarray*} & & \elt(a,\delete(b,\cons(c,x))) \\ & = & \elt(a,\delete(b,x)) \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,x)} \\ & = & \bfalse \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,\cons(c,x))}. \end{eqnarray*}$$ Suppose then that $b \neq c$. If $a = c$, then $a \neq b$, and we have $$\begin{eqnarray*} & & \elt(a,\delete(b,\cons(c,x))) \\ & = & \elt(a,\cons(c,\delete(b,x))) \\ & \href{@elt@#cor-elt-cons} = & \bif{\beq(a,c)}{\btrue}{\elt(a,\delete(b,x))} \\ & = & \btrue \\ & = & \bif{\beq(a,c)}{\btrue}{\elt(a,x)} \\ & \href{@elt@#cor-elt-cons} = & \elt(a,\cons(c,x)) \\ & \href{@booleans@#cor-if-false} = & \bif{\bfalse}{\bfalse}{\elt(a,\cons(c,x))} \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,\cons(c,x))}. \end{eqnarray*}$$ If $b \neq c$ and $a \neq c$, we have $$\begin{eqnarray*} & & \elt(a,\delete(b,\cons(c,x))) \\ & = & \elt(a,\cons(c,\delete(b,x))) \\ & = & \elt(a,\delete(b,x)) \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,x)} \\ & = & \bif{\beq(a,b)}{\bfalse}{\elt(a,\cons(c,x))} \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_elt :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> a -> t a -> Bool) > _test_delete_elt _ = > testName "elt(a,delete(b)(x)) == if(eq(a,b),false,elt(a,x))" $ > \a b x -> eq > (elt a (delete b x)) > (if eq a b then false else elt a x) :::::::::::::::::::: :::::::::::::::::::: $\delete$ preserves $\prefix$. :::::: theorem ::::: Let $A$ be a set with $x,y \in \lists{A}$ and $a \in A$. If $\prefix(x,y) = \btrue$, then $\prefix(\delete(a)(x),\delete(a)(y)) = \btrue$. ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, note that $$\prefix(x,y) = \prefix(\nil,y) = \btrue$$ and $$\begin{eqnarray*} & & \prefix(\delete(a,x),\delete(a,y)) \\ & = & \prefix(\delete(a,\nil),\delete(a,y)) \\ & = & \prefix(\nil,\delete(a,y)) \\ & \href{@prefix-suffix@#cor-prefix-nil-left} = & \btrue \end{eqnarray*}$$ as needed. For the inductive step, suppose the implication holds for all $a$ and $y$ for some $x$ and let $b \in A$. Suppose further that $\prefix(\cons(b,x),y) = \btrue$. Now we must have $y = \cons(b,u)$ for some $u$ with $\prefix(x,u) = \btrue$. We consider two possibilities. If $a = b$, we have $$\begin{eqnarray*} & & \prefix(\delete(a,\cons(b,x)),\delete(a,y)) \\ & = & \prefix(\delete(a,\cons(b,x)),\delete(a,\cons(b,u))) \\ & = & \prefix(\delete(a,x),\delete(a,u)) \\ & = & \btrue \end{eqnarray*}$$ as needed. Suppose instead that $a \neq b$; again by the inductive hypothesis we have $$\begin{eqnarray*} & & \prefix(\delete(a,\cons(b,x)),\delete(a,y)) \\ & = & \prefix(\delete(a,\cons(b,x)),\delete(a,\cons(b,u))) \\ & = & \prefix(\cons(b,\delete(a,x)),\cons(b,\delete(a,u))) \\ & = & \prefix(\delete(a,x),\delete(a,u)) \\ & = & \btrue \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_prefix :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> t a -> Bool) > _test_delete_prefix _ = > testName "if prefix(x,y) then prefix(delete(a)(x),delete(a)(y))" $ > \a x y -> if prefix x y then prefix (delete a x) (delete a y) else true :::::::::::::::::::: :::::::::::::::::::: $\delete$ interacts with $\snoc$. :::::: theorem ::::: Let $A$ be a set with $a,b \in A$ and $x \in \lists{A}$. Then we have $$\delete(a,\snoc(b,x)) = \bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))}.$$ ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, note that $$\begin{eqnarray*} & & \delete(a,\snoc(b,x)) \\ & = & \delete(a,\snoc(b,\nil)) \\ & \href{@snoc@#cor-snoc-nil} = & \delete(a,\cons(b,\nil)) \\ & = & \bif{\beq(a,b)}{\delete(a,\nil)}{\cons(b,\delete(a,\nil))} \\ & = & \bif{\beq(a,b)}{\delete(a,\nil)}{\cons(b,\nil)} \\ & \href{@snoc@#cor-snoc-nil} = & \bif{\beq(a,b)}{\delete(a,\nil)}{\snoc(b,\nil)} \\ & = & \bif{\beq(a,b)}{\delete(a,\nil)}{\snoc(b,\delete(a,\nil))} \\ & = & \bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))} \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for all $a$ and $b$ for some $x$ and let $c \in A$. Using the inductive hypothesis, we have $$\begin{eqnarray*} & & \delete(a,\snoc(b,\cons(c,x))) \\ & \href{@snoc@#cor-snoc-cons} = & \delete(a,\cons(c,\snoc(b,x))) \\ & = & \bif{\beq(a,c)}{\delete(a,\snoc(b,x))}{\cons(c,\delete(a,\snoc(b,x)))} \\ & = & \bif{\beq(a,c)}{\bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))}}{\cons(c,\bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))})} \\ & \href{@booleans@#thm-iffunc} = & \bif{\beq(a,c)}{\bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))}}{\bif{\beq(a,b)}{\cons(c,\delete(a,x))}{\cons(c,\snoc(b,\delete(a,x)))}} \\ & = & \bif{\beq(a,c)}{\bif{\beq(a,b)}{\delete(a,x)}{\snoc(b,\delete(a,x))}}{\bif{\beq(a,b)}{\cons(c,\delete(a,x))}{\snoc(b,\cons(c,\delete(a,x)))}} \\ & \href{@booleans@#thm-ifnest} = & \bif{\beq(a,b)}{\bif{\beq(a,c)}{\delete(a,x)}{\cons(c,\delete(a,x))}}{\bif{\beq(a,c)}{\snoc(b,\delete(a,x))}{\snoc(b,\cons(c,\delete(a,x)))}} \\ & = & \bif{\beq(a,b)}{\delete(a,\cons(c,x))}{\bif{\beq(a,c)}{\snoc(b,\delete(a,x))}{\snoc(b,\cons(c,\delete(a,x)))}} \\ & \href{@booleans@#thm-iffunc} = & \bif{\beq(a,b)}{\delete(a,\cons(c,x))}{\snoc(b,\bif{\beq(a,c)}{\delete(a,x)}{\cons(c,\delete(a,x))})} \\ & = & \bif{\beq(a,b)}{\delete(a,\cons(c,x))}{\snoc(b,\delete(a,\cons(c,x)))} \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_snoc :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> a -> t a -> Bool) > _test_delete_snoc _ = > testName "delete(a)(snoc(b,x)) == if(eq(a,b),delete(a)(x),snoc(b,delete(a)(x)))" $ > \a b x -> eq > (delete a (snoc b x)) > (if eq a b then delete a x else snoc b (delete a x)) :::::::::::::::::::: :::::::::::::::::::: $\delete$ commutes with $\rev$. :::::: theorem ::::: Let $A$ be a set with $a \in A$ and $x \in \lists{A}$. Then we have $$\delete(a,\rev(x)) = \rev(\delete(a,x)).$$ ::: proof :::::::::: We proceed by list induction on $x$. For the base case $x = \nil$, note that $$\begin{eqnarray*} & & \delete(a,\rev(\nil)) \\ & \href{@rev@#cor-rev-nil} = & \delete(a,\nil) \\ & = & \nil \\ & \href{@rev@#cor-rev-nil} = & \rev(\nil) \\ & = & \rev(\delete(a,\nil)) \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for all $a$ for some $x$ and let $b \in A$. Using the inductive hypothesis, we have $$\begin{eqnarray*} & & \delete(a,\rev(\cons(b,x))) \\ & \href{@rev@#cor-rev-cons} = & \delete(a,\snoc(b,\rev(x))) \\ & = & \bif{\beq(a,b)}{\delete(a,\rev(x))}{\snoc(b,\delete(a,\rev(x)))} \\ & = & \bif{\beq(a,b)}{\rev(\delete(a,x))}{\snoc(b,\rev(\delete(a,x)))} \\ & \href{@rev@#cor-rev-cons} = & \bif{\beq(a,b)}{\rev(\delete(a,x))}{\rev(\cons(b,\delete(a,x)))} \\ & \href{@booleans@#thm-iffunc} = & \rev(\bif{\beq(a,b)}{\delete(a,x)}{\cons(b,\delete(a,x))}) \\ & = & \rev(\delete(a,\cons(b,x))) \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_rev :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> Bool) > _test_delete_rev _ = > testName "delete(a)(rev(x)) == rev(delete(a)(x))" $ > \a x -> eq (delete a (rev x)) (rev (delete a x)) :::::::::::::::::::: :::::::::::::::::::: $\delete$ distributes over $\cat$. :::::: theorem ::::: Let $A$ be a set. For all $a \in A$ and $x,y \in \lists{A}$, we have $$\delete(a)(\cat(x,y)) = \cat(\delete(a)(x),\delete(a)(y)).$$ ::: proof :::::::::: We proceed by list induction on $y$. For the base case $y = \nil$, we have $$\begin{eqnarray*} & & \delete(a)(\cat(x,\nil)) \\ & \href{@cat@#thm-cat-nil-right} = & \delete(a)(x) \\ & \href{@cat@#thm-cat-nil-right} = & \cat(\delete(a)(x),\nil) \\ & = & \cat(\delete(a)(x),\delete(a)(\nil)) \end{eqnarray*}$$ as needed. For the inductive step, suppose the equality holds for all $a$ and $x$ for some $y$, and let $b \in A$. Now $$\begin{eqnarray*} & & \delete(a)(\cat(x,\cons(b,y))) \\ & \href{@cat@#thm-cat-snoc-left} = & \delete(a)(\cat(\snoc(b,x),y)) \\ & = & \cat(\delete(a)(\snoc(b,x)),\delete(a)(y)) \\ & = & \cat(\bif{\beq(a,b)}{\delete(a)(x)}{\snoc(b,\delete(a)(x))},\delete(a)(y)) \\ & = & \bif{\beq(a,b)}{\cat(\delete(a)(x),\delete(a)(y))}{\cat(\snoc(b,\delete(a)(x)),\delete(a)(y))} \\ & \href{@cat@#thm-cat-snoc-left} = & \bif{\beq(a,b)}{\cat(\delete(a)(x),\delete(a)(y))}{\cat(\delete(a)(x),\cons(b,\delete(a)(y)))} \\ & \href{@booleans@#thm-iffunc} = & \cat(\delete(a)(x),\bif{\beq(a,b)}{\delete(a)(y)}{\cons(b,\delete(a)(y))}) \\ & = & \cat(\delete(a)(x),\delete(a)(\cons(b,y))) \end{eqnarray*}$$ as needed. :::::::::::::::::::: ::: test ::::::::::: > _test_delete_cat :: (List t, Equal a, Equal (t a)) > => t a -> Test (a -> t a -> t a -> Bool) > _test_delete_cat _ = > testName "delete(a)(cat(x,y)) == cat(delete(a)(x),delete(a)(y))" $ > \a x y -> eq > (delete a (cat x y)) > (cat (delete a x) (delete a y)) :::::::::::::::::::: :::::::::::::::::::: Testing ------- Suite: > _test_delete :: > ( TypeName a, Equal a, Show a, Arbitrary a, CoArbitrary a > , TypeName (t a), List t > , Equal (t a), Show (t a), Arbitrary (t a), Equal (t (t a)) > ) => Int -> Int -> t a -> IO () > _test_delete size cases t = do > testLabel1 "delete" t > > let args = testArgs size cases > > runTest args (_test_delete_nil t) > runTest args (_test_delete_cons t) > runTest args (_test_delete_filter t) > runTest args (_test_delete_filter_commute t) > runTest args (_test_delete_filter_absorb t) > runTest args (_test_delete_idempotent t) > runTest args (_test_delete_eq_not_elt t) > runTest args (_test_delete_commutative t) > runTest args (_test_delete_all_not_eq t) > runTest args (_test_delete_sublist t) > runTest args (_test_delete_unique t) > runTest args (_test_delete_elt t) > runTest args (_test_delete_prefix t) > runTest args (_test_delete_snoc t) > runTest args (_test_delete_rev t) > runTest args (_test_delete_cat t) Main: > main_delete :: IO () > main_delete = do > _test_delete 20 100 (nil :: ConsList Bool) > _test_delete 20 100 (nil :: ConsList Unary)