{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Coefficients: [ 72.88279832 -0.08844242]\n", "Intercept: 0.000210747768548\n", "P-Values: [ 0.00000000e+000 0.00000000e+000 5.96972978e-203]\n", "R-Squared: 0.656632624649\n" ] } ], "source": [ "%pylab inline\n", "import pylab as pl\n", "import numpy as np\n", "#from sklearn import datasets, linear_model\n", "import pandas as pd\n", "import statsmodels.api as sm\n", "\n", "# import the cleaned up dataset\n", "df = pd.read_csv('../datasets/loanf.csv')\n", "\n", "intrate = df['Interest.Rate']\n", "loanamt = df['Loan.Amount']\n", "fico = df['FICO.Score']\n", "\n", "# reshape the data from a pandas Series to columns \n", "# the dependent variable\n", "y = np.matrix(intrate).transpose()\n", "# the independent variables shaped as columns\n", "x1 = np.matrix(fico).transpose()\n", "x2 = np.matrix(loanamt).transpose()\n", "\n", "# put the two columns together to create an input matrix \n", "# if we had n independent variables we would have n columns here\n", "x = np.column_stack([x1,x2])\n", "\n", "# create a linear model and fit it to the data\n", "X = sm.add_constant(x)\n", "model = sm.OLS(y,X)\n", "f = model.fit()\n", "\n", "print 'Coefficients: ', f.params[0:2]\n", "print 'Intercept: ', f.params[2]\n", "print 'P-Values: ', f.pvalues\n", "print 'R-Squared: ', f.rsquared\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", "" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import HTML\n", "def css_styling():\n", " styles = open(\"../styles/custom.css\", \"r\").read()\n", " return HTML(styles)\n", "css_styling()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }