{ "cells": [ { "cell_type": "markdown", "id": "acfa7d16-ab79-4ff5-9b94-7b7122d6a179", "metadata": { "tags": [] }, "source": [ "# Tutorials" ] }, { "cell_type": "markdown", "id": "3b0a593c-c8ab-430b-b21e-b64581de2fe5", "metadata": {}, "source": [ "Jupyter Notebooks for tutorials of `scores`.\n", "\n", "Firstly run [Data Fetching](./First_Data_Fetching.ipynb) to fetch the data needed for some later notebooks" ] }, { "cell_type": "markdown", "id": "a48b39d6", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Data Fetching](./First_Data_Fetching.ipynb)" ] }, { "cell_type": "markdown", "id": "6164e315-0297-45a1-b013-9b9c3010368a", "metadata": {}, "source": [ "## Continuous" ] }, { "cell_type": "markdown", "id": "344d823b", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Additive Bias, Multiplicative Bias and Percent Bias](./Additive_and_multiplicative_bias.ipynb)\n", "- [MAE](./Mean_Absolute_Error.ipynb)\n", "- [RMSE](./Root_Mean_Squared_Error.ipynb)\n", "- [MSE](./Mean_Squared_Error.ipynb)\n", "- [Pearson's Correlation](./Pearsons_Correlation.ipynb)\n", "- [Kling-Gupta Efficiency](./Kling_Gupta_Efficiency.ipynb)\n", "- [Quantile Loss](./Quantile_Loss.ipynb)\n", "- [Murphy Diagrams](./Murphy_Diagrams.ipynb)\n", "- [Flip-Flop Index](./Flip_Flop_Index.ipynb)\n", "- [Consistent Scores](./Consistent_Scores.ipynb)\n", "- [Threshold Weighted Scores](./Threshold_Weighted_Scores.ipynb)\n", "- [Quantile Interval Score and Interval Score](./Quantile_Interval_And_Interval_Score.ipynb)" ] }, { "cell_type": "markdown", "id": "0af5aac9-a2b4-43a3-a9ca-1ddb43594174", "metadata": {}, "source": [ "## Probability" ] }, { "cell_type": "markdown", "id": "066a42ff", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Brier Score](./Brier_Score.ipynb)\n", "- [CRPS for forecasts expressed as CDFs](./CRPS_for_CDFs.ipynb)\n", "- [CRPS for ensemble forecasts](./CRPS_for_Ensembles.ipynb)\n", "- [twCRPS for ensemble forecasts](./Threshold_Weighted_CRPS_for_Ensembles.ipynb)\n", "- [Receiver Operating Characteristic (ROC)](./ROC.ipynb)" ] }, { "cell_type": "markdown", "id": "cbc9ee2e-7236-411b-b59a-fbd35408e65e", "metadata": {}, "source": [ "## Categorical" ] }, { "cell_type": "markdown", "id": "7def466e-1cde-4e6e-8245-41b5aa7a04c7", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [FIRM](./FIRM.ipynb)\n", "- [Binary (Categorical/Contingency/Confusion Matrix) Scores](./Binary_Contingency_Scores.ipynb)" ] }, { "cell_type": "markdown", "id": "5c177aac-25d1-4c65-8e26-d6caea1417ca", "metadata": {}, "source": [ "## Spatial" ] }, { "cell_type": "markdown", "id": "5f7af137", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Fractions Skill Score](./Fractions_Skill_Score.ipynb)" ] }, { "cell_type": "markdown", "id": "46d1fa0f-6c84-4493-b9ae-46fc584f5020", "metadata": {}, "source": [ "## Statistical Tests" ] }, { "cell_type": "markdown", "id": "c8765192", "metadata": { "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Diebold Mariano](./Diebold_Mariano_Test_Statistic.ipynb)" ] }, { "cell_type": "markdown", "id": "b5052d34-9359-486a-982b-a3c11d147dd1", "metadata": {}, "source": [ "## Processing" ] }, { "cell_type": "markdown", "id": "002323e9-0e61-449d-a0c5-950948bec4be", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Isotonic Regression and Reliability Diagrams](./Isotonic_Regression_And_Reliability_Diagrams.ipynb)" ] }, { "cell_type": "markdown", "id": "4ae976a7", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Emerging" ] }, { "cell_type": "markdown", "id": "ef3d627a", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Risk Matrix Score](./Risk_Matrix_Score.ipynb)" ] }, { "cell_type": "markdown", "id": "3af91021-80ab-4d0c-bc81-b13f5e039ec0", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Other" ] }, { "cell_type": "markdown", "id": "6e1ed380", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "nbsphinx-gallery" ] }, "source": [ "- [Dimension Handling](./Dimension_Handling.ipynb)\n", "- [Weighting Results](./Weighting_Results.ipynb)\n", "- [Angular Data](./Angular_data.ipynb)\n", "- [Introduction to Pandas API](./Pandas_API.ipynb)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.0" } }, "nbformat": 4, "nbformat_minor": 5 }