= The Cypher QA Chain
:order: 1

ttype: lesson
:disable-cache: true

Language models and vector indexes are good at querying unstructured data.
Although, as you have seen, responses are not always correct, and when
data is structured, it is often easier to query it directly.

LLMs are good at writing Cypher queries when given good information, such
as:

* The schema of the graph
* Context about the question to be answered
* Examples of questions and appropriate Cypher queries

In this lesson, you will learn how to use a language model to generate
Cypher queries to query a Neo4]j graph database.

== Generating Cypher

Langchain includes the
link:https://api.python.langchain.com/en/latest/_modules/langchain/chains/
graph_ga/cypher.html#GraphCypherQAChain[“GraphCypherQAChain™A]chain that
can interact with a Neo4j graph database. It uses a language model to
generate Cypher queries and then uses the graph to answer the question.

“GraphCypherQAChain” chain requires the following:

* An LLM (" 1lm") for generating Cypher queries

* A graph database connection (graph”) for answering the queries

* A prompt template (cypher_ prompt”) to give the LLM the schema and
question

* An appropriate question which relates to the schema and data in the
graph

The program below will generate a Cypher query based on the schema in the
graph database and the question.

Review the code and predict what will happen when you run it.

[source, python]

include: :code/cypher-gen.py[tag=**]

[NOTE]
Before running the program, you must update the “openai_api_key” and the
“graph” connection details.

[%collapsible]
.Click to reveal your Sandbox connection details

Connection URL:: [copy]#bolt://{sandbox-ip}:{sandbox-boltPort}#
Username:: [copy]#{sandbox-username }#
Password:: [copy]#{sandbox-password}#

When you run the program, you should see the Cypher generated from the
question and the data it returned. Something similar to:

Generated Cypher:

MATCH (m:Movie {title: "Toy Story"})

RETURN m.plot

Full Context:

[{'m.plot': "A cowboy doll is profoundly threatened and jealous when a
new spaceman

figure supplants him as top toy in a boy's room."}]

The LLM used the database schema to generate an _appropriate_ Cypher
query.

Langchain then executed the query against the graph database, and the
result returned.

== Breaking Down the Program
Reviewing the program, you should identify the following key points:

The program instantiates the required “1lm~ and “graph objects using
the appropriate API and connection details.
+
[source, python]

include: :code/cypher-gen.py[tag=openai-neo4j]
The “CYPHER_GENERATION TEMPLATE ™ gives the LLM context. The schema and
question are passed to the LLM as input variables.
+
[source, python]

include: :code/cypher-gen.py[tag=template]

include: :code/cypher-gen.py[tag=prompt]

+
The “schema™ will be automatically generated from the graph database and
passed to the LLM. The "question™ will be the user's question.

The program instantiates the ~GraphCypherQAChain”~ chain with the “11lm",
“graph”, and prompt template (cypher_prompt’).
+
[source, python]

include: :code/cypher-gen.py[tag=cypher-chain]

+

The program sets the “verbose™ flag to "True so you can see the generated
Cypher query and response.

The chain runs, passing an appropriate question.
+

[source, python]

include: :code/cypher-gen.py[tag=invoke]

Experiment with different questions and observe the results.
For example, try:

A different context - "What movies did Meg Ryan act in?"
An aggregate query - "How many movies has Tom Hanks directed?"

== Inconsistent Results

Investigate what happens when you ask the same question multiple times.
Observe the generated Cypher query and the response.

"What role did Tom Hanks play in Toy Story?"
You will likely see different results each time you run the program.

MATCH (actor:Actor {name: 'Tom Hanks'})-[:ACTED_IN]->(movie:Movie
{title: 'Toy Story'})
RETURN actor.name, movie.title, movie.year, movie.runtime, movie.plot

MATCH (a:Actor {name: 'Tom Hanks'})-[:ACTED IN]->(m:Movie {title: 'Toy
Story'})-[:ACTED_IN]->(p:Person)
RETURN p.name AS role

The LLM doesn't return consistent results - its objective is to produce an
answer, not the same response.

The response may not be correct or even generate an error due to invalid
Cypher.

In the following two lessons, you will learn how to provide additional
context and instructions to the LLM to generate better and more consistent
results.

== Check Your Understanding

include: :questions/1-cypher-chain.adoc[leveloffset=+1]

[.summary]

== Summary

In this lesson, you learned how to use a language model to generate Cypher
queries.

In the next lesson, you will experiment with different prompts to improve
the results.

