= Storing Conversation History
torder: 6

ttype: lesson

:disable-cache: true

Langchain includes functionality to integrate directly with Neo4j,
including allowing you to run Cypher statements, query vector indexes and
use Neo4]j as a conversation memory store.

In this lesson, you will learn how to connect to and use a Neo4] database
as a conversation memory store.

Storing conversation history in a Neo4j database allows you to analyze the
conversation history to understand trends and improve outcomes.

== Connecting to a Neo4j instance

The following code will connect to a Neo4j database and run a simple
query.

[source, python]

include: :code/connect-to-neo4j.pyl[]

You can connect to the Neo4j sandbox created for you when you joined the
course.

Update the code above to use the “url®, “username and “password of your
Neo4j sandbox.

Connection URL:: [copy]#bolt://{sandbox-ip}:{sandbox-boltPort}#
Username:: [copy]#{sandbox-username}#
Password:: [copy]#{sandbox-password}#

Run the query - you should see data about the movie Toy Story.

The “Neo4jGraph™ class is a wrapper to the
link:https://neo4j.com/docs/python-manual/current/[Neo4j Python driver”].
It simplifies connecting to Neo4j and integrating with the Langchain
framework.

=== Schema

When you connect to the Neo4j database, the object loads the database
schema into memory - this enables Langchain to access the schema
information without having to query the database.

You can access the schema information using the “schema”™ property.

[source, python]

print(graph.schema)

[TIP]
.Refreshing the schema
You can refresh the schema by calling the “graph.refresh_schema() ™ method.

== Conversation History

In the previous lesson, you created a program that used the
“ChatMessageHistory ™ component to store conversation history in memory.

You will now update this program to store the conversation history in your
Neo4j sandbox using the “Neo4jChatMessageHistory component.

[%collapsible]
.Reveal the code

[source, python]

include::../3.5-memory/code/chat-model-memory.py[tag=**]

=== Session ID

You must create and assign a session ID to each conversation to identify
them.

The session ID can be any unique value, such as a
link:https://en.wikipedia.org/wiki/Universally unique_identifier[Universal
ly Unique Identifier (UUID)~].

You can generate a random UUID using the Python “uuid.uuid4® function.
Create a new “SESSION_ID constant in your chat model program.

[source, python]

include: :code/chat-model-memory-neo4j.py[tag=session-id]

This session ID will be used to identify the conversation in Neo4j.
=== Neo4j Chat Message History

Create a "Neo4jGraph™ object to connect to your Neo4j sandbox.
[source, python]

include: :code/chat-model-memory-neo4j.py[tag=import-neo4j]

include: :code/chat-model-memory-neo4j.py[tag=neo4j-graph]

Remember to update the connection details with your Neo4j sandbox details.

[%collapsible]
.Click to reveal your Sandbox connection details

Connection URL:: [copy]#bolt://{sandbox-ip}:{sandbox-boltPort}#
Username:: [copy]#{sandbox-username}#
Password:: [copy]#{sandbox-password}#

Previously, the “get_memory”~ function returned an instance of
“ChatMessageHistory .

The “get_memory function should now return an instance of
“Neo4jChatMessageHistory .

You should pass the “session_id”~ and the “graph® connection you created as
parameters.

[source, python]

include: :code/chat-model-memory-neo4j.py[tag=import-neo4j-chat]

include: :code/chat-model-memory-neo4j.py[tag=get-memory]

Finally, you must add the “SESSION_ID" to the “config® when you " invoke~
the chat model.

[source, python]

include: :code/chat-model-memory-neo4j.py[tag=invoke]

[%collapsible]
.Click to reveal the complete code.

[source, python]

include: :code/chat-model-memory-neo4j.py[tag=**]

Run the program and have a conversation with the chat model.
The conversation history will now be stored in your Neo4]j sandbox.

=== Conversation History Graph
The conversation history is stored using the following data model:

image: :images/Neo4jChatMessageHistory.png[A graph data model showing 2
nodes Session and Message connected by a LAST MESSAGE relationship. There

is a circular NEXT relationship on the Message node.]

The “Session” node represents a conversation session and has an “id"
property.

The “Message node represents a message in the conversation and has the
following properties:

* “content® - The message content
* “type - The message type: "human , "ai’, or “system’

The "LAST_MESSAGE™ relationship connects the “Session” node to the
conversation's last “Message node. The “NEXT relationship connects
“Message nodes in the conversation.

You can return the graph of the conversation history using the following
Cypher query:

[source, cypher]

MATCH (s:Session)-[:LAST MESSAGE]->(last:Message)<-[:NEXT*]-(msg:Message)
RETURN s, last, msg

image: :images/conversation-graph.svg[A graph showing a Session node
connected to a Message through with a LAST MESSAGE relationship. Message
nodes are connected to each other with NEXT relationships.]

You can return the conversation history for a single session by filtering
on the “Session.id” property.

[source, cypher]

MATCH (s:Session)-[:LAST MESSAGE]->(last:Message)
WHERE s.id = 'your session id'

MATCH p = (last)<-[:NEXT*]-(msg:Message)

UNWIND nodes(p) as msgs

RETURN DISTINCT msgs.type, msgs.content

== Check Your Understanding
include: :questions/1-neo4jgraph.adoc[leveloffset=+1]

[.summary]
== Summary

In this lesson, you learned how to use a Neo4j database as a conversation
memory store.

In the next lesson, you will learn how to create an agent to give an LLM
access to different tools and data sources.

