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In this lesson, you will learn about chains and how to use them to create
reusable components.

Chains allows you to combine language models with different data sources
and third-party APIs.

== LCEL

The simplest chain combines a prompt template with an LLM and returns a
response.

You can create a chain using LangChain Expression Language (LCEL).
LCEL is a declarative way to chain Langchain components together.

Components are chained together using the `|` operator.

[source, python, role=nocopy noplay]
----
chain = prompt | llm
----

Previously, you created a program that used a prompt template and an LLM
to generate a response about fruit.

[%collapsible]
.Click to reveal the code for the program.
====
[source,python]
----
include::../2-initialising-the-llm/code/llm_prompt.py[tag=**]
----
====

You can combine this program into a chain and create a reusable component.

[source,python]
----
include::code/llm_chain.py[tag=**]
----

Note how the `llm_chain` is created by chaining the `template` and the
`llm`.

[source,python]
----
include::code/llm_chain.py[tag=llm_chain]
----

You `invoke` the `llm_chain` passing the template parameters as a



dictionary.

[source,python]
----
include::code/llm_chain.py[tag=invoke]
----

== Output Parsers

The output from the chain is typically a string, and you can specify an
link:https://python.langchain.com/docs/modules/model_io/output_parsers/[ou
tput parser^] to parse the output.

Adding a `StrOutputParser` to the chain would ensure a string.

[source,python]
----
include::code/llm_chain_output.py[tag=import]

include::code/llm_chain_output.py[tag=llm_chain]
----

You can change the prompt to instruct the LLM to return a specific output
type. 
For example, return JSON by specifying `Output JSON` and give a format in
the prompt:

[source,python]
----
template = PromptTemplate.from_template("""
You are a cockney fruit and vegetable seller.
Your role is to assist your customer with their fruit and vegetable needs.
Respond using cockney rhyming slang.

Output JSON as {{"description": "your response here"}}

Tell me about the following fruit: {fruit}
""")
----

You can ensure Langchain parses the response as JSON by specifying
`SimpleJsonOutputParser` as the `output_parser`:

[source,python]
----
include::code/llm_chain_output_json.py[tag=import]

include::code/llm_chain_output_json.py[tag=llm_chain]
----

The benefits of using chains are:

* **Modularity**: LangChain provides many modules that can be used to



build language model applications. These modules can be used as
stand-alones in simple applications and they can be combined for more
complex use cases.

* **Customizability**: Most LangChain applications allow you to configure
the LLM and/or the prompt used, so knowing how to take advantage of this
will be a big enabler.

* **Ease** of Use: The components are designed to be easy to use,
regardless of whether you are using the rest of the LangChain framework or
not.

* **Standard** Interface: LangChain provides a standard interface for
chains, enabling developers to create sequences of calls that go beyond a
single LLM call.

== Check Your Understanding

include::questions/1-chains.adoc[leveloffset=+1]

[.summary]
== Lesson Summary

In this lesson, you learned about LLM chains and how they can group a
prompt, LLM, and output parser.

In the next lesson, you will learn about chat models.


