{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Top 10 Cryptos Price Predictions and Forecasts\n",
"\n",
"# TABLE OF CONTENTS\n",
"\n",
"1. [DATA PREPARATION](#prepare)\n",
" 1. [Cryptocurrency Market Data](#cmd)\n",
" 1. [Missing Data](#missing)\n",
" 2. [Explore Daily Price Trends](#edpt)\n",
" 3. [Explore Top 10 Cryptos Popularity](#popularity)\n",
"2. [FIND CORRELATIONS](#find_corr)\n",
" 1. [Correlations Plot](#corr_plots)\n",
"3. [BUILDING MODEL](#building_models)\n",
" 1. [Feature Selection](#feature_select)\n",
" 2. [Handling Missing Values](#missing_data)\n",
" 3. [Train-Test Split](#train_test)\n",
" 4. [Model Selection](#model_select)\n",
" 5. [Model Evaluation](#model_eval)\n",
"4. [RESULT](#results)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import json\n",
"import time\n",
"import requests\n",
"import seaborn as sns\n",
"import plotly.graph_objects as go\n",
"import plotly.express as px\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# DATA PREPARATION "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cryptocurrency Market Data "
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" open \n",
" high \n",
" low \n",
" close \n",
" volume \n",
" weightedAverage \n",
" date \n",
" id \n",
" symbol \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 27210.36 \n",
" 27350.00 \n",
" 26605.05 \n",
" 26817.93 \n",
" 39705.76020 \n",
" 27014.145 \n",
" 2023-06-01 \n",
" 215 \n",
" BTC \n",
" \n",
" \n",
" 1 \n",
" 26817.93 \n",
" 27300.00 \n",
" 26505.00 \n",
" 27242.59 \n",
" 36765.30191 \n",
" 27030.260 \n",
" 2023-06-02 \n",
" 215 \n",
" BTC \n",
" \n",
" \n",
" 2 \n",
" 27242.59 \n",
" 27333.29 \n",
" 26914.93 \n",
" 27069.22 \n",
" 16326.78504 \n",
" 27155.905 \n",
" 2023-06-03 \n",
" 215 \n",
" BTC \n",
" \n",
" \n",
" 3 \n",
" 27069.22 \n",
" 27455.02 \n",
" 26951.00 \n",
" 27115.20 \n",
" 18888.19016 \n",
" 27092.210 \n",
" 2023-06-04 \n",
" 215 \n",
" BTC \n",
" \n",
" \n",
" 4 \n",
" 27115.14 \n",
" 27129.33 \n",
" 25388.00 \n",
" 25728.20 \n",
" 69948.65543 \n",
" 26421.670 \n",
" 2023-06-05 \n",
" 215 \n",
" BTC \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" open high low close volume weightedAverage \\\n",
"0 27210.36 27350.00 26605.05 26817.93 39705.76020 27014.145 \n",
"1 26817.93 27300.00 26505.00 27242.59 36765.30191 27030.260 \n",
"2 27242.59 27333.29 26914.93 27069.22 16326.78504 27155.905 \n",
"3 27069.22 27455.02 26951.00 27115.20 18888.19016 27092.210 \n",
"4 27115.14 27129.33 25388.00 25728.20 69948.65543 26421.670 \n",
"\n",
" date id symbol \n",
"0 2023-06-01 215 BTC \n",
"1 2023-06-02 215 BTC \n",
"2 2023-06-03 215 BTC \n",
"3 2023-06-04 215 BTC \n",
"4 2023-06-05 215 BTC "
]
},
"execution_count": 172,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ohlcv_data = pd.read_csv('data/cryptos-ohlcv-daily.csv')\n",
"ohlcv_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Missing Data "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"open 0\n",
"high 0\n",
"low 0\n",
"close 0\n",
"volume 0\n",
"weightedAverage 0\n",
"date 0\n",
"id 0\n",
"symbol 0\n",
"dtype: int64\n",
"open 0\n",
"high 0\n",
"low 0\n",
"close 0\n",
"volume 0\n",
"weightedAverage 0\n",
"date 0\n",
"id 0\n",
"symbol 0\n",
"dtype: int64\n"
]
}
],
"source": [
"ohlcv_data = ohlcv_data.dropna() \n",
"print(ohlcv_data.isnull().sum())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore Daily Price Trends "
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
26817.93,
27242.59,
27069.22,
27115.2,
25728.2,
27230.08,
26339.34,
26477.81,
25841.21,
25925.54,
25905.2,
25932.72,
25128.6,
25598.49,
26345.01,
26516.99,
26339.97,
26844.36,
28307.99,
29993.89,
29884.92,
30688.5,
30527.43,
30462.66,
30267.99,
30692.45,
30077.4,
30447.31,
30472,
30585.9,
30617.02,
31156.2,
30766.52,
30504.81,
29895.43,
30344.7,
30284.63,
30160.71,
30411.57,
30622.1,
30380.01,
31454.23,
30312.01,
30289.52,
30231.99,
30138.01,
29859.14,
29909.21,
29800,
29901.72,
29793.99,
30083.76,
29176.51,
29228.91,
29351.96,
29222.77,
29314.15,
29352.9,
29281.09,
29232.26,
29705.99,
29186.01,
29193.64,
29113.99,
29072.13,
29088.42,
29211.06,
29770.42,
29581.99,
29455.75,
29426.03,
29430.17,
29303.84,
29430.92,
29200,
28730.5,
26623.41,
26054,
26100.01,
26189.99,
26126.92,
26056,
26432.72,
26180.05,
26060.01,
26017.38,
26101.77,
26120,
27716.34,
27300,
25940.78,
25805.04,
25869.52,
25971.21,
25826.02,
25792.1,
25759.94,
26255,
25910.5,
25901.61,
25841.6,
25162.52,
25840.1,
26222.01,
26522.74,
26600,
26559.67,
26527.51,
26762.5,
27210.26,
27125.01,
26568.09,
26580.14,
26575.96,
26248.38,
26304.81,
26221.67,
26372.99,
27021.71,
26906.96,
26962.57,
27992.58,
27494.51,
27426.46,
27778.57,
27410.39,
27931.1,
27956.66,
27917.06,
27590.12,
27390.11,
26875.51,
26759.63,
26862,
26852.48,
27154.15,
28500.77,
28395.91,
28320,
28714.03,
29669.04,
29909.8,
29992.46,
33070,
33921.07,
34496.05,
34151.67,
33892.02,
34081,
34525.89,
34474.73,
34639.77,
35421.44,
34941.58,
34716.79,
35062.06,
35011.89,
35046.49,
35399.12,
35623.85,
36701.1,
37301.63,
37129.99,
37064.14,
36462.93,
35551.19,
37858.2,
36163.48,
36613.91,
36568.1,
37359.86,
37448.79,
35741.65,
37408.34,
37294.28,
37713.57,
37780.66,
37447.43,
37242.7,
37818.87,
37854.64,
37723.97,
38682.52,
39450.35,
39972.27,
41991.1,
43974.1,
43762.69,
43273.14,
44171.82,
43713.59,
43789.51,
41253.4,
41492.39,
42869.02,
43022.26,
41940.29,
42278.03,
41374.65,
42657.81,
42275.99,
43668.93,
43861.8,
43969.03,
43702.16,
42991.5,
43576.13,
42508.93,
43428.85,
42563.76,
42066.95,
42140.28,
42283.58,
44179.55,
44946.91,
42845.23,
44151.1,
44145.12,
43968.32,
43929.02,
46951.04,
46110,
46653.99,
46339.16,
42782.74,
42847.99,
41732.35,
42511.1,
43137.95,
42776.1,
41327.5,
41659.03,
41696.04,
41580.33,
39568.02,
39897.6,
40084.88,
39961.09,
41823.51,
42120.63,
42031.06,
43302.7,
42941.1,
42580,
43082.94,
43200,
43011.09,
42582.88,
42708.71,
43098.95,
44349.6,
45288.65,
47132.78,
47751.09,
48299.99,
49917.27,
49699.59,
51795.17,
51880,
52124.11,
51642.65,
52137.67,
51774.73,
52258.82,
51849.39,
51288.42,
50744.15,
51568.22,
51728.85,
54476.47,
57037.34,
62432.1,
61130.98,
62387.9,
61987.28,
63113.97,
68245.71,
63724.01,
66074.04,
66823.17,
68124.19,
68313.27,
68955.88,
72078.11,
71452.01,
73072.41,
71388.94,
69499.85,
65300.63,
68393.48,
67609.99,
61937.4,
67840.51,
65501.27,
63796.64,
63990.01,
67209.99,
69880,
69988,
69469.99,
70780.6,
69850.54,
69582.17,
71280.01,
69649.8,
65463.99,
65963.28,
68487.79,
67820.62,
68896,
69360.39,
71620,
69146,
70631.08,
70006.22,
67116.52,
63924.51,
65661.84,
63413,
63793.4,
61277.37,
63470.08,
63818.01,
64940.59,
64941.15,
66819.32,
66414,
64289.59,
64498.34,
63770,
63461.98,
63118.62,
63866,
60672,
58364.97,
59060.61,
62882,
63892.04,
64012,
63158,
62312.08,
61193.04,
63074.01,
60799.99,
60825.99,
61483.99,
62940.08,
61577.49,
66206.51,
65235.21,
67024.01,
66923.92,
66274.01,
71446.62,
70148.34,
69166.61,
67969.65,
68549.99,
69290.57,
68507.67,
69436.43,
68398.39,
67652.41,
68352.17,
67540.01,
67766.85,
67765.63,
68809.9,
70537.84,
71107.99,
70799.06,
69355.6,
69310.45,
69648.14,
69540,
67314.23,
68263.99,
66773.01,
66043.98,
66228.25,
66676.87,
66504.33,
65175.32,
64974.37,
64869.99,
64143.56,
64262.01,
63210.01,
60293.3,
61806.01,
60864.99,
61706.47,
60427.84,
60986.68,
62772.01,
62899.99,
62135.47,
60208.58,
57050.01,
56628.78,
58230.13,
55857.81,
56714.62,
58050,
57725.85,
57339.89,
57889.1,
59204.02,
60797.91,
64724.06,
65043.99,
64087.99,
63987.92,
66660,
67139.96,
68165.34,
67532,
65936.01,
65376,
65799.95,
67907.99,
67896.5,
68249.88,
66784.68,
66188,
64628,
65362,
61498.33,
60697.99,
58161,
54018.81,
56022.01,
55134.16,
61685.99,
60826.51,
60923.51,
58712.59,
59346.64,
60587.15,
58683.39,
57541.06,
58874.6,
59491.99,
58427.35,
59438.5,
59013.8,
61156.03,
60375.84,
64037.24,
64157.01,
64220,
62834.74,
59415,
59012.93,
59359.01,
59123.99,
58973.99,
57301.86,
59132.13,
57487.73,
57970.9,
56180,
53962.97,
54159.99,
54869.95,
57047.99,
57635.99,
57338,
58132.32,
60498,
59993.03,
59132,
58213.99,
60313.99,
61759.99,
62947.99,
63201.05,
63348.96,
63578.76,
63339.99,
64262.7,
63159.83,
65173.99,
65769.95,
65858,
65602.01,
63327.59,
60805.87,
60649.28,
60752.71,
62086,
62058,
62819.91,
62224,
62160.49,
60636.02,
60326.39,
62540,
63206.22,
62870.02,
66083.99,
67074.14,
67620.01,
67421.78,
68428,
68378,
69031.99,
67377.5,
67426,
66668.65,
68198.28,
66698.33,
67092.76,
68021.69,
69962.21,
72736.42,
72344.74,
70292.01,
69496.01,
69374.74,
68775.99,
67850.01,
69372.01,
75571.99,
75857.89,
76509.78,
76677.46,
80370.01,
88647.99,
87952.01,
90375.2,
87325.59,
91032.07,
90586.92,
89855.99,
90464.08,
92310.79,
94286.56,
98317.12,
98892,
97672.4,
97900.04,
93010.01,
91965.16,
95863.11,
95643.98,
97460,
96407.99,
97185.17,
95840.62,
95849.69,
98587.32,
96945.63
],
"high": [
27350,
27300,
27333.29,
27455.02,
27129.33,
27355.33,
27391.77,
26783.33,
26533.87,
26206.88,
26106.48,
26433.21,
26098,
25759.01,
26518,
26839.99,
26700,
27068.09,
28402.74,
30800,
30500,
31431.94,
30800,
31046.01,
30666,
30994.97,
30709.74,
30843.98,
31282,
30661.6,
30791,
31380,
31350.69,
30878.07,
31500,
30449,
30386.81,
30445.52,
31045.78,
30813.63,
30983.25,
31804.2,
31630,
30390.9,
30441.46,
30336.96,
30239.78,
30189.09,
30417.46,
30061.7,
29999,
30350,
30099.58,
29376,
29690,
29567.49,
29542.22,
29406.92,
29449,
29530,
29739.25,
30047.5,
29433.33,
29333.08,
29152.23,
29205.09,
29276.78,
30244,
30160,
29738,
29564.52,
29481.35,
29474.65,
29695.32,
29499.26,
29259.85,
28783.48,
26832.6,
26281,
26299,
26258.42,
26139.42,
26819.27,
26577.87,
26314.05,
26125.77,
26182.23,
26253.99,
28142.85,
27768.57,
27587.51,
26156,
25987.5,
26135,
26108.02,
25915.49,
26040,
26443.14,
26445.5,
25945.09,
26033.66,
25900.69,
26567,
26405.22,
26860.49,
26888,
26777,
26623.25,
27409,
27483.57,
27388.63,
27159.6,
26743.38,
26632.81,
26738.54,
26446.15,
26397.46,
26850,
27308.48,
27244.89,
27094.99,
28065.51,
28580,
27676.52,
27839.72,
28120.39,
28295,
28029.67,
28095.14,
27987.93,
27735,
27477.39,
26947.04,
27130,
26989.58,
27293.33,
30000,
28613.65,
28982.36,
28916.89,
30207.55,
30379.99,
30248,
34741.91,
35280,
35132.85,
34824.13,
34245,
34493.33,
34750.11,
34855.07,
34720.49,
35546.08,
35950,
34946.5,
35255,
35380,
35276.33,
35888,
36106,
37972.24,
37526,
37408.26,
37222.22,
37417.99,
36744,
37980,
37929.54,
36800,
36845.49,
37500,
37750,
37649.44,
37861.1,
37653.44,
38414,
37888,
37814.63,
37569.23,
38377,
38450,
38145.85,
38999,
39717.14,
40250,
42420,
44419.6,
44295.47,
44047.33,
44700,
44358.02,
44049,
43804.5,
42104.12,
43475.2,
43420,
43080.81,
42724.43,
42424.07,
42757.81,
43497,
44283,
44242.35,
44398.26,
43988.68,
43946,
43802.32,
43592.68,
43677,
43787.57,
43111,
42612.32,
42899,
44184.1,
45879.63,
45500,
44729.58,
44357.46,
44214.42,
44480.59,
47248.99,
47799,
47695.93,
48969.48,
46515.53,
43257,
43079,
43400.43,
43578.01,
43198,
42930,
42196.86,
41872.56,
41881.39,
41689.65,
40176.74,
40555,
40300.24,
42246.82,
42200,
42842.68,
43333,
43882.36,
43745.11,
43285.13,
43488,
43380.01,
43119.04,
43569.76,
43399.98,
44396.5,
45614.3,
48200,
48170,
48592.66,
50334.82,
50368.61,
52043.71,
52816.62,
52572.08,
52162.82,
52377,
52488.77,
52985,
52366.8,
52065.78,
51548.54,
51698,
51958.55,
54910,
57588.15,
64000,
63676.35,
63114.23,
62433.19,
63231.82,
68499,
68886,
67630.31,
67980,
69990,
68541.1,
69882.03,
72800,
72753.92,
73621.1,
73777,
72419.71,
70043,
68904.4,
68956,
68124.11,
68100,
68240.47,
66649.62,
65999,
67628.69,
71150,
71561.1,
71769.54,
71552.06,
70916.16,
70321.1,
71366,
71288.23,
69674.23,
66903.63,
69299.76,
68756.67,
69692,
70326.29,
72797.99,
71735.78,
71172.08,
71305.89,
71227.46,
67929,
65840,
66832.52,
64365,
64499,
64117.09,
65450,
65419,
65695.56,
67232.35,
67183.01,
67070.43,
65297.94,
64820.01,
63923.41,
64370,
64228.35,
64734,
60841.63,
59625,
63333,
64540,
64646,
65500,
64422.41,
63020.22,
63429.03,
63469.13,
61515,
61830.42,
63450,
63118.36,
66444.16,
66752.01,
67451.2,
67382,
67700,
71515.56,
71979,
70630.6,
70096.12,
69250,
69610,
69562.23,
70687.56,
69591.81,
68935.68,
69500,
69044.1,
67900,
68460,
70288,
71060,
71758,
71700,
71997.02,
69582.2,
69857.14,
70195.94,
69590.01,
69999,
68449.3,
67370.24,
66478.48,
66998.7,
67298.81,
66588.23,
65727.54,
66482.94,
65066.66,
64546.81,
64521,
63369.8,
62420,
62487.81,
62389.22,
62225.31,
61224,
63058.76,
63861.76,
63288.83,
62285.94,
60498.19,
57493.47,
58475,
58449.46,
58236.73,
58296,
59470,
59650,
58526.68,
59850,
61420.69,
64900,
65388.97,
66128.63,
65133.3,
67386,
67598,
68366.66,
68474.55,
67750.98,
67102.01,
66175.49,
68200,
69399.99,
68318.43,
70079.99,
67000,
66836.3,
65618.01,
65596.14,
62198.22,
61117.63,
58305.59,
57040.99,
57736.05,
62745.14,
61744.37,
61470.58,
61858,
60711.09,
61578.1,
61800,
59849.38,
59817.76,
59700,
60284.99,
59617.63,
61400,
61820.93,
61400,
64955,
64494.5,
65000,
64481,
63212,
60234.98,
61166.99,
59944.07,
59462.38,
59076.59,
59425.69,
59809.65,
58519,
58327.07,
57008,
54850,
55318,
58088,
58044.36,
57981.71,
58588,
60625,
60610.45,
60395.8,
59210.7,
61320,
61786.24,
63850,
64133.32,
63559.9,
64000,
64745.88,
64688,
64817.99,
65839,
66445.78,
66260,
66076.12,
65618.8,
64130.63,
62390.31,
61477.19,
62484.85,
62370.56,
62975,
64478.19,
63200,
62543.75,
61321.68,
63417.56,
63480,
63285.72,
66500,
67848.54,
68424,
67939.4,
69000,
68693.26,
69400,
69519.52,
67836.01,
67472.83,
68850,
68771.49,
67454.55,
68332.05,
70270,
73620.12,
72961,
72700,
71632.95,
69914.37,
69391,
69500,
70577.91,
76400,
76849.99,
77199.99,
76900,
81500,
89530.54,
89940,
93265.64,
91790,
91850,
91779.66,
91449.99,
92594,
93905.51,
94831.97,
98988,
99588.01,
98908.85,
98564,
98871.8,
94973.37,
97208.21,
96564,
98563.99,
97463.95,
97836,
98130,
96305.52,
99000,
103579.99
],
"low": [
26605.05,
26505,
26914.93,
26951,
25388,
25351.02,
26125.01,
26269.91,
25358,
25634.7,
25602.11,
25712.57,
24820.56,
24800,
25175.56,
26181,
26255.85,
26256.61,
26652,
28257.99,
29525.61,
29800,
30250,
30277.49,
29930,
30226.17,
29858.8,
30049.98,
29500,
30320.57,
30155,
30570.27,
30620,
30200,
29850.45,
29701.02,
30044.47,
30061.12,
29950,
30300,
30210,
30251,
29900,
30200,
30064.29,
29659.2,
29512,
29761.96,
29570.96,
29726.34,
29625.1,
29730,
28861.9,
29047.65,
29096.94,
29083.85,
29123.12,
29256.18,
29033.24,
29101.8,
28585.7,
28927.5,
28968,
28807.54,
28978.64,
28991.88,
28701.03,
29146.45,
29376.67,
29320.2,
29252.45,
29381.56,
29272.32,
29102.45,
29059.6,
28723.08,
25166,
25619,
25801.09,
25971.05,
25814.31,
25300,
25812.82,
25864,
25777.15,
25985.92,
25966.11,
25864.5,
25922,
27017.24,
25655.01,
25333.75,
25752.47,
25800,
25631.21,
25562.62,
25372.51,
25615.38,
25647.26,
25796.64,
25570.57,
24906.09,
25131.48,
25764.17,
26126.77,
26224,
26445,
26399,
26377.35,
26667.79,
26800,
26377.7,
26468.77,
26509,
26122.08,
25990.46,
26088.34,
26112.06,
26342.4,
26665.16,
26886.31,
26954.09,
27281.44,
27160.5,
27202,
27352,
27175.94,
27842.08,
27687.5,
27260,
27298,
26538.66,
26555,
26685,
26789,
26808.25,
27112.66,
28069.32,
28142.87,
28100.66,
28578.29,
29464.77,
29640,
29883.6,
32832.34,
33679.05,
33751.01,
33390.95,
33860,
33930,
34062.84,
34025,
34100,
34300,
34120,
34585.18,
34448,
34725.9,
34523.06,
35100,
35534.05,
36324.71,
36666.93,
36731.1,
36333,
34800,
35360,
35500,
35861.1,
36178.58,
36384.02,
36677,
35735,
35632.01,
36870,
37251.51,
37591.1,
37150,
36707,
36868.41,
37570,
37500,
37615.86,
38641.61,
39274.86,
39972.26,
41414,
43335.28,
42821.1,
43081.1,
43584.51,
43563,
40222,
40680,
40555,
41400,
41666,
41624.92,
41252,
40542.93,
41811.1,
42206,
43286.72,
43412.54,
43291.1,
42500,
42720.43,
41637.6,
42098.69,
42241.79,
41300,
41520.3,
41965.84,
42180.77,
44148.34,
40750,
42613.77,
42450,
43397.05,
43572.09,
43175,
44748.67,
44300.36,
45606.06,
41500,
42436.12,
41720,
41718.05,
42050,
42200.69,
40683.28,
40280,
41456.3,
41500.98,
39431.58,
38555,
39484.19,
39550,
39822.52,
41394.34,
41620.81,
41804.88,
42683.99,
42276.84,
41884.28,
42546.79,
42880,
42222,
42258.1,
42574,
42788,
44331.1,
45242.12,
46800,
47557.16,
47710.01,
48300.95,
49225.01,
51314,
51566,
50625,
51163.28,
51677,
50760.37,
50625,
50940.78,
50521,
50585,
51279.8,
50901.44,
54450.13,
56691.85,
60364.7,
60777,
61612,
61365,
62300,
60219.57,
62785.97,
65551,
66082.66,
67861.1,
68094.75,
67557.81,
69074.69,
71333.31,
68738.73,
65600,
65000,
64533,
66565.2,
61555,
60775,
64529.01,
62260,
63000,
63772.29,
66385.06,
69280,
68410,
68903.62,
69078.62,
69540,
69562.99,
68062.86,
64550,
64493.07,
65064.52,
65952.56,
67447.83,
68824,
69043.24,
68210,
67518,
69567.21,
65559.52,
60888,
62134,
62274.4,
61600,
59678.16,
60803.35,
59600.01,
63090.07,
64237.5,
64500,
65765.81,
63606.06,
62794,
63297.48,
62391.24,
62781,
61846.52,
59191.6,
56552.82,
56911.84,
58811.32,
62541.03,
62822.17,
62700,
62261,
60888,
60630.3,
60222,
60487.09,
60610,
60749.21,
61159.34,
61319.47,
64602.77,
65106.38,
66600,
65857.25,
66060.31,
69162.94,
68900,
66521.94,
66600.12,
68500,
68128.01,
68250,
67277.91,
67124.65,
67128,
66670,
67428.44,
67257.47,
67612.48,
68567.32,
70383.66,
70117.64,
68420,
69168.02,
69130.24,
69172.29,
66051,
66905,
66251.78,
65078,
65857.1,
66034.5,
65130,
64060,
64666,
64559.15,
63379.35,
63943.82,
63178.32,
58402,
60257.06,
60712,
60606.63,
60063,
60383.77,
60712.21,
62497.2,
61806.28,
59400,
56774,
53743.32,
56018,
55724.37,
54260.16,
56289.45,
57157.79,
57050,
56542.47,
57756.63,
59194.01,
60632.3,
62373.24,
63854,
63238.48,
63300.67,
66222.46,
65788.86,
66559.97,
65441.08,
65111,
63456.7,
65722.63,
66650,
67066.66,
66428,
65302.67,
64530,
62302,
61230.01,
59850,
57122.77,
49000,
53950,
54558.62,
54730,
59535,
60242,
58286.73,
57642.21,
58392.88,
58433.18,
56078.54,
57098.62,
58785.05,
58408.92,
57787.3,
58548.23,
58783.47,
59724.87,
60342.14,
63531,
63773.27,
62800,
58034.01,
57860,
58713.09,
57701.1,
58744,
57205,
57128.27,
57415,
55606,
55643.65,
52550,
53745.54,
53629.01,
54591.96,
56386.4,
55545.19,
57324,
57632.62,
59400,
58691.05,
57520,
57610.01,
59174.8,
61555,
62350,
62758,
62357.93,
62538.75,
62700,
62947.08,
62670,
64819.9,
65422.23,
65432,
62870,
60164,
60000,
59828.11,
60459.9,
61689.26,
61798.97,
62128,
61860.31,
60301,
58949,
60087.64,
62487.23,
62050,
62457.81,
64800.01,
66750.49,
66666,
67192.36,
68010,
68100,
66840.67,
66571.42,
65260,
66510,
65610.35,
66439.9,
66913.73,
67618,
69760,
71436,
69685.76,
68820.14,
69000.14,
67478.73,
66835,
67476.63,
69298,
74416,
75555,
75714.66,
76492,
80216.01,
85130.01,
86127.99,
86668.21,
87073.38,
90056.17,
88722,
89376.9,
90357,
91500,
94040,
97122.11,
97155.09,
95747.57,
92600.19,
90791.1,
91792.14,
94640,
95364.99,
96092.01,
95693.88,
94395,
93713.31,
94587.83,
94440
],
"open": [
27210.36,
26817.93,
27242.59,
27069.22,
27115.14,
25728.2,
27230.08,
26498.61,
26477.8,
25841.22,
25925.54,
25905.2,
25932.72,
25128.6,
25598.48,
26345.01,
26516.99,
26339.98,
26844.35,
28308,
29993.89,
29884.91,
30688.51,
30527.44,
30462.67,
30267.98,
30692.45,
30077.4,
30447.31,
30471.99,
30585.89,
30617.03,
31156.2,
30766.52,
30504.8,
29895.42,
30344.7,
30284.63,
30160.71,
30411.57,
30622.1,
30380,
31454.23,
30312.01,
30289.52,
30232,
30138.01,
29859.14,
29909.21,
29800,
29901.72,
29793.99,
30083.75,
29176.5,
29228.91,
29351.95,
29222.78,
29314.14,
29352.91,
29281.09,
29232.26,
29706.01,
29186,
29193.65,
29114,
29072.13,
29088.43,
29211.06,
29770.41,
29581.99,
29455.75,
29426.02,
29430.18,
29303.85,
29430.92,
29200.01,
28730.51,
26623.41,
26054,
26100,
26190,
26126.92,
26055.99,
26432.71,
26180.05,
26060.01,
26017.38,
26101.78,
26120,
27716.34,
27299.99,
25940.78,
25805.04,
25869.52,
25971.21,
25826.03,
25792.11,
25759.95,
26255,
25910.5,
25901.6,
25841.61,
25162.53,
25840.09,
26222,
26522.73,
26599.99,
26559.67,
26527.5,
26762.5,
27210.26,
27125.01,
26568.08,
26580.14,
26575.97,
26248.07,
26304.8,
26221.68,
26373,
27021.39,
26906.96,
26962.57,
27992.58,
27494.51,
27426.45,
27778.57,
27410.39,
27931.1,
27956.67,
27917.06,
27590.12,
27390.12,
26875.52,
26759.63,
26862,
26852.48,
27154.14,
28500.77,
28395.91,
28320,
28713.71,
29669.05,
29909.8,
29992.46,
33069.99,
33922.73,
34496.05,
34151.66,
33892.01,
34081.01,
34525.88,
34474.74,
34639.77,
35421.43,
34941.58,
34716.78,
35062.06,
35011.89,
35046.09,
35399.13,
35618.59,
36701.1,
37301.63,
37129.99,
37064.13,
36462.93,
35551.19,
37858.2,
36163.48,
36613.92,
36568.11,
37359.86,
37448.78,
35736.01,
37411.09,
37294.27,
37713.57,
37780.67,
37447.42,
37242.7,
37818.88,
37854.64,
37723.96,
38682.51,
39450.35,
39972.26,
41991.1,
44053.15,
43762.7,
43273.15,
44171.82,
43713.59,
43789.5,
41253.41,
41492.38,
42869.03,
43022.25,
41940.29,
42277.98,
41374.64,
42657.8,
42275.99,
43668.92,
43861.8,
43969.04,
43702.15,
42991.5,
43576.12,
42508.93,
43428.86,
42563.76,
42066.94,
42140.29,
42283.58,
44179.55,
44946.91,
42845.23,
44151.1,
44145.12,
43968.32,
43929.01,
46951.04,
46110,
46654,
46339.17,
42782.74,
42847.99,
41732.35,
42511.1,
43137.94,
42776.09,
41327.51,
41659.03,
41696.05,
41580.32,
39568.02,
39897.59,
40084.89,
39961.09,
41823.51,
42120.63,
42031.05,
43302.71,
42941.1,
42580,
43082.95,
43199.99,
43011.1,
42582.88,
42708.71,
43098.96,
44349.6,
45288.66,
47132.78,
47751.08,
48300,
49917.27,
49699.6,
51795.17,
51880.01,
52124.1,
51642.64,
52137.68,
51774.74,
52258.82,
51849.38,
51288.42,
50744.15,
51568.21,
51728.85,
54476.48,
57037.35,
62432.11,
61130.99,
62387.9,
61987.28,
63113.97,
68245.71,
63724.01,
66074.04,
66823.18,
68124.2,
68313.28,
68955.88,
72078.1,
71452,
73072.4,
71388.94,
69499.84,
65300.64,
68393.47,
67610,
61937.41,
67840.51,
65501.28,
63796.64,
63990.01,
67210,
69880,
69987.99,
69469.99,
70780.59,
69850.53,
69582.18,
71280,
69649.81,
65464,
65963.27,
68487.8,
67820.63,
68896,
69360.38,
71620,
69146,
70631.08,
70006.22,
67116.52,
63924.52,
65661.85,
63384,
63793.39,
61277.38,
63470.09,
63818.01,
64940.59,
64941.15,
66819.32,
66414,
64289.58,
64498.33,
63770,
63461.98,
63118.62,
63866,
60672.01,
58364.97,
59060.6,
62882.01,
63892.03,
64012,
63158.21,
62312.07,
61148.94,
63046.01,
60800,
60825.99,
61484,
62940.09,
61577.49,
66206.51,
65235.21,
67024,
66940,
66274,
71446.62,
70148.34,
69198.21,
67969.66,
68549.99,
69290.56,
68507.67,
69436.43,
68398.4,
67652.42,
68352.17,
67540.01,
67766.84,
67765.62,
68809.9,
70537.83,
71108,
70799.06,
69355.6,
69310.46,
69648.15,
69540,
67314.23,
68263.98,
66773.01,
66043.99,
66228.25,
66676.86,
66504.33,
65175.32,
64974.37,
64869.99,
64143.56,
64262.01,
63210.01,
60293.3,
61806.01,
60864.98,
61706.46,
60427.84,
60986.68,
62772.01,
62900,
62135.46,
60208.57,
57050.02,
56599.87,
58230.13,
55857.81,
56714.61,
58050,
57725.85,
57339.89,
57889.09,
59204.01,
60797.91,
64724.06,
65044,
64087.99,
63987.92,
66660.01,
67139.97,
68165.35,
67532,
65936,
65376.01,
65799.95,
67908,
67896.49,
68249.88,
66784.68,
66188,
64628.01,
65384.01,
61498.34,
60697.99,
58161,
54018.82,
56022,
55133.76,
61686,
60837.99,
60923.51,
58712.59,
59346.64,
60587.16,
58683.39,
57541.05,
58874.59,
59491.99,
58427.35,
59438.5,
59013.8,
61156.03,
60375.83,
64037.24,
64157.02,
64219.99,
62831.01,
59415,
59024.08,
59359,
59123.99,
58974,
57301.77,
59132.12,
57487.74,
57970.9,
56180,
53962.97,
54160.86,
54869.95,
57060,
57635.99,
57338,
58132.31,
60497.99,
59993.02,
59132,
58213.99,
60313.99,
61759.98,
62948,
63201.05,
63348.97,
63578.76,
63339.99,
64262.7,
63155.16,
65173.99,
65769.95,
65858,
65602.01,
63327.6,
60804.92,
60649.25,
60752.72,
62086,
62058.01,
62819.91,
62224.01,
62160.5,
60636.01,
60326.4,
62539.99,
63206.23,
62870.02,
66084,
67074.14,
67620,
67421.78,
68427.99,
68377.99,
69032,
67377.5,
67426.01,
66668.65,
68198.27,
66698.32,
67092.76,
68021.7,
69962.21,
72736.41,
72344.75,
70292.01,
69496,
69374.74,
68775.99,
67850.01,
69372.01,
75571.99,
75857.89,
76509.78,
76677.46,
80370.01,
88648,
87952,
90375.21,
87325.59,
91032.08,
90587.98,
89716.73,
90423.99,
92310.8,
94239.99,
98280,
98892,
97672.4,
97870.49,
93010.01,
91965.16,
95863.11,
95643.99,
97460,
96407.99,
97185.17,
95840.61,
95849.69,
98587.32
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "BTC Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
1861.78,
1906.68,
1892.05,
1890,
1810.5,
1884.64,
1832.13,
1840.37,
1751.52,
1752.76,
1742.57,
1740.11,
1650.95,
1666.96,
1717.92,
1727.76,
1720.95,
1737.1,
1791.99,
1889.11,
1872,
1892.62,
1874.95,
1898.79,
1858.97,
1889.59,
1828.03,
1851.99,
1933.79,
1924.51,
1937.48,
1955.54,
1936.19,
1910.35,
1846.17,
1870.91,
1865.24,
1862.81,
1880.4,
1878.3,
1871.82,
2004.49,
1937.82,
1931.42,
1922.11,
1911.2,
1897.22,
1888.63,
1891.59,
1891.73,
1866.53,
1888.73,
1850,
1857.66,
1871.99,
1861.28,
1874.19,
1880.46,
1861.79,
1856.14,
1873.47,
1839.89,
1835.81,
1830.23,
1836.48,
1830.29,
1829.1,
1856.3,
1855.36,
1852.47,
1848.85,
1849.93,
1840.72,
1845.5,
1828.98,
1807.81,
1681.49,
1661.6,
1669.67,
1685.23,
1667.55,
1634.99,
1679.61,
1661.17,
1653.8,
1647.04,
1658.32,
1653.08,
1729.42,
1705.23,
1645.99,
1629.12,
1637.03,
1635.85,
1630.51,
1634.45,
1633.15,
1648.11,
1636.44,
1635.54,
1617.42,
1551.84,
1592.96,
1607.61,
1626.48,
1641.29,
1634.39,
1622.48,
1636.67,
1643.13,
1622.27,
1583.94,
1593.07,
1593.85,
1580.71,
1588.34,
1594.02,
1598.64,
1653.03,
1667.46,
1670.89,
1733.8,
1662.4,
1656.89,
1646.58,
1611.86,
1645.04,
1633.56,
1632.85,
1580.13,
1567.63,
1566.86,
1539.61,
1552.16,
1554.94,
1557.77,
1599.41,
1565.01,
1563.44,
1566.57,
1603.89,
1628.93,
1663.6,
1765.46,
1784.95,
1787.15,
1803.39,
1779.4,
1776.21,
1795.13,
1809.03,
1814.63,
1846.99,
1800.84,
1832.71,
1855.55,
1891.72,
1900.95,
1885.27,
1888.27,
2121.32,
2077.72,
2053.17,
2044.68,
2053.66,
1979.4,
2058.48,
1961.77,
1960.81,
1962.6,
2011.47,
2021.4,
1933.01,
2063.21,
2062.2,
2080.96,
2083.1,
2062.34,
2027.51,
2048.1,
2028.8,
2052.11,
2087.24,
2164.74,
2192.96,
2243.37,
2293.33,
2232.8,
2355.74,
2358.74,
2340.49,
2352.39,
2225.12,
2203.47,
2260.26,
2315.31,
2220.51,
2228.96,
2196.52,
2219.44,
2177.9,
2202.17,
2239.61,
2324.54,
2308.2,
2264.05,
2271.35,
2230.88,
2378.35,
2344.15,
2299.2,
2291.68,
2281.87,
2352.04,
2355.34,
2209.72,
2267.11,
2268.78,
2240.78,
2221.42,
2330.44,
2344.29,
2584.38,
2618.01,
2522.54,
2578.19,
2472.87,
2511.78,
2587.4,
2530.19,
2470.81,
2492,
2472.01,
2457.06,
2314.2,
2242.6,
2235.02,
2218.64,
2267.68,
2267.94,
2256.9,
2317.6,
2343.01,
2283.15,
2304.29,
2309.06,
2296.49,
2289.79,
2301.83,
2372.64,
2425.1,
2419.55,
2486.56,
2500.24,
2507.21,
2660,
2639.99,
2774.81,
2822.59,
2801.8,
2785.93,
2881.2,
2944.8,
3014.81,
2967.9,
2971.39,
2922.24,
2992.62,
3112.59,
3175.94,
3242.36,
3383.1,
3340.09,
3433.43,
3421.39,
3487.81,
3627.76,
3553.65,
3818.59,
3868.76,
3883.36,
3905.21,
3878.47,
4064.87,
3979.96,
4004.79,
3881.7,
3742.19,
3523.09,
3644.71,
3520.46,
3158.64,
3516.53,
3492.85,
3336.35,
3329.53,
3454.98,
3590.42,
3587.33,
3501.19,
3560.49,
3509.74,
3505.64,
3645.29,
3503.8,
3278.96,
3310.83,
3327.4,
3317.86,
3351.59,
3454.19,
3694.61,
3506.39,
3545.64,
3502.52,
3237.43,
3007.01,
3155.11,
3101.59,
3084.22,
2985.41,
3064.4,
3056.46,
3155.79,
3147.67,
3200.2,
3219.46,
3140.8,
3155.8,
3131.3,
3255.56,
3263.45,
3216.73,
3014.05,
2972.46,
2986.19,
3102.61,
3117.23,
3136.41,
3061.75,
3005.69,
2974.25,
3036.23,
2909.99,
2912.45,
2929.29,
2950.99,
2881.93,
3032.55,
2944.7,
3092.01,
3122.86,
3071.19,
3661.78,
3789.59,
3739.09,
3783.61,
3728.28,
3749.26,
3826.47,
3894.22,
3844.69,
3767.43,
3747.9,
3762.29,
3815.82,
3780.91,
3767.06,
3810.23,
3866,
3813.46,
3678.32,
3681.57,
3706.4,
3667.85,
3497.33,
3560.12,
3469.4,
3481.8,
3568.74,
3624.41,
3511.46,
3483.42,
3560.51,
3513.08,
3518.5,
3495.75,
3420.91,
3352.73,
3394.91,
3371.43,
3450.44,
3380.15,
3378.8,
3438.16,
3442.2,
3421.35,
3295.48,
3059.7,
2981.67,
3066.83,
2931,
3019.01,
3066.65,
3101.05,
3099.57,
3133.88,
3175.93,
3245.01,
3483.39,
3444.13,
3387.33,
3426.5,
3503.53,
3517.5,
3535.92,
3439.6,
3482.51,
3335.81,
3175.48,
3274.61,
3249.01,
3270.16,
3317.66,
3279.21,
3232.74,
3204.03,
2989.61,
2903.64,
2688.92,
2419.58,
2461.33,
2342.8,
2682.5,
2598.79,
2609.92,
2555.38,
2722.3,
2702.44,
2661.45,
2569.89,
2592.73,
2614.51,
2612.15,
2636.36,
2572.82,
2630.71,
2622.88,
2762.48,
2768,
2746.13,
2680.49,
2457.33,
2527.53,
2527.61,
2526,
2513.13,
2425.72,
2538.01,
2425.29,
2450.71,
2368.81,
2225.28,
2273.58,
2297.3,
2359.87,
2388.52,
2340.56,
2361.76,
2439.19,
2417.79,
2316.1,
2295.68,
2341.8,
2374.75,
2465.2,
2561.4,
2612.4,
2581,
2646.97,
2653.2,
2580.32,
2632.2,
2694.43,
2675.21,
2657.62,
2602.23,
2447.79,
2364.1,
2349.8,
2414.41,
2414.66,
2440.03,
2422.71,
2440.89,
2370.47,
2386.49,
2439.5,
2476.4,
2468.91,
2629.79,
2607.41,
2611.1,
2605.8,
2642.17,
2648.2,
2746.91,
2666.7,
2622.81,
2524.61,
2535.82,
2440.62,
2482.51,
2507.8,
2567.48,
2638.8,
2659.19,
2518.61,
2511.49,
2494.23,
2457.73,
2398.21,
2422.55,
2721.87,
2895.47,
2961.75,
3126.21,
3183.21,
3371.59,
3243.8,
3187.16,
3058.82,
3090.01,
3132.87,
3076,
3207.8,
3107.44,
3069.97,
3355.81,
3327.78,
3393.91,
3361.2,
3414.49,
3324.73,
3653.28,
3578.79,
3592.21,
3703.6,
3707.61,
3643.42,
3614.51,
3837.8,
3785.2
],
"high": [
1889.2,
1910,
1907.92,
1914.63,
1890.63,
1898.29,
1897.8,
1855,
1844.99,
1778.25,
1759.33,
1770.13,
1750.03,
1680.91,
1729.5,
1770,
1747.84,
1752.19,
1796.99,
1901,
1933.17,
1936.42,
1906,
1930,
1909.1,
1912.53,
1890.19,
1880,
1948.6,
1944.56,
1959.2,
1976.16,
1967.08,
1942.5,
1958,
1878,
1876,
1879.36,
1905.5,
1891.99,
1902,
2012.63,
2029.11,
1946.37,
1943.55,
1936.18,
1917.19,
1922.04,
1929.05,
1905.74,
1897.35,
1905.25,
1890.86,
1868.71,
1888,
1886.11,
1883.39,
1886.58,
1885.3,
1877.4,
1875.62,
1879.74,
1859.12,
1851.31,
1839,
1838.58,
1847,
1876.51,
1871.99,
1865.94,
1857.26,
1854.01,
1862,
1856.5,
1847.36,
1831.52,
1809.99,
1699.4,
1696.72,
1694.75,
1688.59,
1669.38,
1702.11,
1683.37,
1677.22,
1655.59,
1660.24,
1664.34,
1745.84,
1730.93,
1729,
1654.53,
1645,
1647.5,
1644.82,
1648.02,
1670,
1660,
1658.93,
1637.52,
1635.7,
1619,
1622,
1619.3,
1644.29,
1654.08,
1653.17,
1635,
1669.5,
1661.04,
1649.34,
1625.3,
1602.68,
1598.24,
1601.12,
1597.5,
1599.78,
1634.1,
1668.21,
1688,
1694.32,
1751,
1744,
1670.65,
1657.66,
1655.47,
1662,
1647.71,
1641.4,
1636,
1594.9,
1578.43,
1568.56,
1575.36,
1561.72,
1567.62,
1639.43,
1600.53,
1585.42,
1574.45,
1630.25,
1644.53,
1667.78,
1800,
1854.38,
1817.69,
1865.54,
1803.91,
1803.23,
1811.3,
1829.84,
1819.41,
1857.66,
1875,
1834.58,
1869.51,
1912.67,
1914.23,
1906.99,
1904.69,
2132,
2136.99,
2089.6,
2066.5,
2118,
2064.96,
2062.4,
2090.4,
1991.5,
1971.22,
2015.75,
2066.4,
2034.6,
2092.46,
2088.94,
2133.02,
2090.54,
2094.99,
2071.24,
2075,
2075.7,
2054.75,
2110.87,
2186.6,
2217.27,
2274.28,
2309.69,
2312.23,
2382.8,
2392,
2403,
2377.47,
2355,
2244.11,
2284.02,
2332.11,
2317.81,
2263.4,
2248.68,
2224,
2255,
2266,
2279.31,
2343.15,
2330.65,
2326.19,
2304.8,
2274.99,
2392.44,
2445.8,
2385.41,
2322.84,
2321.2,
2352.37,
2431.3,
2385.45,
2294.69,
2277.21,
2270,
2258.01,
2358.2,
2371.72,
2643.1,
2689.39,
2717.32,
2590,
2578.69,
2553.82,
2614.43,
2592.97,
2550,
2504.2,
2492,
2482.18,
2466.1,
2352.23,
2264.6,
2242.89,
2282.36,
2282.94,
2308.24,
2322.34,
2391.98,
2351.6,
2311.72,
2324.74,
2329.98,
2311,
2338.41,
2392.4,
2444.44,
2463.15,
2525,
2516.45,
2539.63,
2665.58,
2686.12,
2786,
2867.65,
2857.4,
2804.21,
2895,
2984.52,
3033.09,
3017.15,
3036.02,
2993.8,
3007.48,
3122,
3196,
3288.14,
3488,
3522.81,
3450,
3460.04,
3491.8,
3640.94,
3818.82,
3900,
3933.81,
3993.75,
3942,
3964.67,
4082,
4093.92,
4083,
4010.98,
3934.02,
3781.12,
3678.68,
3645.02,
3548.09,
3535.24,
3587.32,
3542.52,
3435.48,
3471.22,
3666,
3678.86,
3665.84,
3611.78,
3584.37,
3565.81,
3655.32,
3645.95,
3505.6,
3367.4,
3443.93,
3350,
3398.42,
3459.94,
3730.71,
3727.34,
3562.95,
3618.3,
3552.4,
3301.9,
3174.23,
3277.85,
3128.01,
3123.75,
3094.4,
3128.89,
3171.88,
3197.18,
3235,
3263.61,
3293.56,
3191.64,
3167.58,
3285,
3357.4,
3286.95,
3250.95,
3023.24,
3016.72,
3126.99,
3168,
3171.93,
3221.4,
3129.85,
3038.15,
3059,
3053.4,
2945.52,
2953.33,
2996.4,
2960.6,
3041.36,
3041.24,
3120,
3146.98,
3136.64,
3694,
3840.76,
3810.53,
3949.29,
3829.61,
3779.43,
3884.2,
3977,
3931.09,
3888.55,
3825.35,
3849.94,
3833.3,
3838.59,
3849.99,
3831.65,
3887.47,
3878.6,
3841.39,
3709.5,
3721.52,
3713.67,
3673,
3659.01,
3561.65,
3532.61,
3594.39,
3653.79,
3638.37,
3517.2,
3590.01,
3625.96,
3547.54,
3521.19,
3521.45,
3435.76,
3430.88,
3426.75,
3477,
3487.7,
3408.32,
3460,
3524.94,
3464.12,
3432.1,
3313.45,
3110,
3081.78,
3073.08,
3097.06,
3115.2,
3151.51,
3217.24,
3157.89,
3201.8,
3268.72,
3493.63,
3498.59,
3517,
3489.98,
3540.27,
3539.65,
3547,
3562.82,
3541,
3487.82,
3342.5,
3286.36,
3327.59,
3284.3,
3396.77,
3366.4,
3348.28,
3242.57,
3218.6,
3018.02,
2935.46,
2697.44,
2552.94,
2551.32,
2724.1,
2707.98,
2644.7,
2720,
2750,
2738.4,
2780,
2675.6,
2630.97,
2629.69,
2689.16,
2648.08,
2695,
2662.07,
2644.69,
2799.13,
2820,
2792.28,
2762,
2699.98,
2554.6,
2595.4,
2552.17,
2533.95,
2516.28,
2564.83,
2553.6,
2490,
2466,
2408.83,
2311.27,
2333.58,
2379.96,
2400,
2389.32,
2391.93,
2464.82,
2440.6,
2430.32,
2335.7,
2393.63,
2376.14,
2494.95,
2571.93,
2623.34,
2632.57,
2702.82,
2670.96,
2673.5,
2666.22,
2728.6,
2704.35,
2683.7,
2663.5,
2659,
2499,
2403.38,
2441.64,
2428.23,
2457.8,
2521,
2466.66,
2473.61,
2421.36,
2471.45,
2490.51,
2484.92,
2654,
2687.91,
2647.79,
2648.37,
2675.58,
2663.49,
2759,
2769.48,
2671.92,
2628.2,
2562.65,
2566.33,
2508,
2527.99,
2589.67,
2681.86,
2722.3,
2669,
2586.8,
2523.45,
2496.39,
2491.39,
2480,
2744.7,
2916.11,
2981.69,
3157.4,
3248.52,
3387.61,
3442.5,
3331,
3240.4,
3131.06,
3219.97,
3162.11,
3224.94,
3221.2,
3159.2,
3386.73,
3425.92,
3497.51,
3450,
3546.66,
3462.49,
3684.92,
3661.92,
3642.88,
3738.98,
3746.8,
3760,
3670,
3887.24,
3956
],
"low": [
1840,
1847.51,
1881.6,
1884.22,
1778,
1797.18,
1821.18,
1827,
1715.03,
1738.72,
1720,
1724.22,
1630.43,
1626.01,
1649.86,
1714.26,
1712,
1698,
1714.72,
1787.38,
1865.98,
1861.01,
1864.77,
1868.83,
1837.18,
1855.19,
1816.56,
1827.84,
1825.01,
1909.44,
1885.75,
1933.55,
1931.58,
1894.51,
1846,
1826,
1842.8,
1856.15,
1846.63,
1862.38,
1864.37,
1862.59,
1898.39,
1926.23,
1914,
1873.26,
1875.73,
1882.17,
1878,
1884.64,
1851.18,
1857.82,
1833.19,
1845.45,
1848.35,
1854.84,
1856.52,
1869.54,
1848.17,
1851.02,
1813.8,
1821.21,
1826,
1815.74,
1827.5,
1825.86,
1802,
1826.33,
1846.28,
1845.38,
1838.05,
1846.08,
1834.51,
1835,
1814,
1798.17,
1550,
1641.02,
1654.31,
1662.03,
1649.4,
1580,
1629.05,
1635.28,
1635.51,
1644,
1646.32,
1621.75,
1640,
1694.34,
1630,
1602.33,
1628.03,
1625.14,
1616.32,
1609.69,
1609.2,
1623.4,
1616.21,
1629.74,
1600,
1531.01,
1549.67,
1581.88,
1607.05,
1611.42,
1631.31,
1612,
1603.88,
1626.32,
1604.51,
1567.77,
1576.58,
1587.45,
1570.01,
1563.01,
1580.05,
1583.5,
1598.14,
1648.37,
1666.19,
1668,
1636.79,
1643,
1625,
1606.73,
1611.68,
1630.03,
1616.17,
1546,
1550.55,
1544.26,
1521,
1537.76,
1544.55,
1547.44,
1555.06,
1551.08,
1555.88,
1541.61,
1561.19,
1592.36,
1621.1,
1657.07,
1756.21,
1760,
1762.21,
1744.66,
1770,
1762.66,
1777.77,
1780.99,
1783.19,
1785.01,
1777.11,
1824.03,
1846.11,
1868.48,
1850.32,
1872.51,
1882.07,
2064.61,
2030.39,
2012.1,
2028.49,
1936.6,
1967.01,
1939.1,
1904,
1916,
1942.89,
1990,
1931.43,
1928.41,
2040.35,
2059.37,
2065.3,
2036.42,
1985.78,
1995.15,
2019.31,
2020.85,
2045.04,
2086.25,
2149,
2191,
2188.33,
2220,
2222,
2336.34,
2328.01,
2320,
2156.62,
2166,
2144.32,
2228.2,
2200,
2210,
2191.5,
2116.6,
2135.55,
2156,
2182.98,
2230.59,
2265,
2245,
2253.1,
2182,
2211.88,
2335,
2255.34,
2268,
2260.4,
2265.24,
2341,
2100,
2201.91,
2206.17,
2216.4,
2203.46,
2166.38,
2226.78,
2339.59,
2566.01,
2458,
2497.5,
2470,
2470.92,
2500.05,
2506.75,
2428.56,
2415.36,
2454.2,
2452.13,
2303.59,
2168.07,
2196.12,
2172.81,
2195.84,
2251.4,
2239.89,
2233.8,
2297,
2263.57,
2240,
2281.94,
2292.75,
2266,
2269.11,
2299,
2354,
2411.01,
2419.16,
2471.57,
2493.45,
2472,
2590,
2618.4,
2759.25,
2740,
2719.01,
2764.25,
2856.93,
2874.56,
2868,
2906.51,
2906.05,
2906.4,
2983.61,
3036.59,
3160.02,
3204.57,
3300,
3338.54,
3390.01,
3365.99,
3423.78,
3252.04,
3499.4,
3735,
3826.32,
3872.09,
3792.97,
3751,
3839.13,
3942.43,
3725,
3570,
3468.8,
3412,
3454.09,
3150.88,
3056.56,
3412,
3250,
3270.08,
3298.76,
3420.12,
3542.62,
3460.02,
3465,
3445.91,
3485,
3505.09,
3413.71,
3217.4,
3202.79,
3250.92,
3210.01,
3306.68,
3344.08,
3406.36,
3457.93,
3411.82,
3474.52,
3125.48,
2860.39,
2907.88,
3023.7,
2995,
2914.47,
2950.98,
2865.18,
3018.75,
3116.49,
3129.15,
3152,
3104.9,
3072.2,
3102,
3066.74,
3250.45,
3117.06,
2921,
2817,
2893.26,
2958.32,
3092.85,
3072.99,
3046.35,
2998,
2936.48,
2951,
2880.2,
2886.92,
2901.17,
2864.76,
2862,
2863.75,
2923.29,
2933.06,
3083.61,
3053.38,
3047.67,
3625.55,
3653.15,
3600,
3626.1,
3709.03,
3731.17,
3823.37,
3773.9,
3742.59,
3702.58,
3723.75,
3752.67,
3752.62,
3758.43,
3730,
3777.33,
3760,
3600,
3660.08,
3666.36,
3642.74,
3432,
3462.07,
3428,
3362.26,
3473.1,
3541.05,
3463.39,
3370.92,
3465.65,
3486,
3446.82,
3475.09,
3406.38,
3240,
3336.76,
3325.01,
3361.74,
3365.22,
3371.86,
3352.66,
3423.78,
3402,
3251,
3050.34,
2820,
2955.06,
2922.24,
2822.8,
3004,
3024,
3054.76,
3045.58,
3113.37,
3163.67,
3233.22,
3346.55,
3376,
3367.2,
3377,
3480,
3415.19,
3422.34,
3393.81,
3300,
3087.53,
3171,
3191.01,
3198.11,
3258,
3233.18,
3214.3,
3080.02,
2967,
2859,
2630,
2160,
2414.19,
2309.04,
2320.4,
2552.61,
2576.49,
2540,
2510.05,
2611.37,
2632.2,
2515.71,
2550.04,
2587.5,
2594.53,
2563.58,
2555,
2536.22,
2584.2,
2621.4,
2731.26,
2733.21,
2666.66,
2392.96,
2418.8,
2505.88,
2431.14,
2491.92,
2400,
2423.52,
2411.12,
2310.19,
2348.04,
2150.55,
2220.98,
2243.34,
2272.8,
2320.41,
2277.68,
2315.39,
2337.35,
2376.72,
2283.75,
2252.39,
2263.29,
2277.34,
2372.6,
2437.31,
2528.97,
2524.58,
2539.49,
2591.56,
2554.05,
2559.79,
2615.21,
2650,
2629.73,
2575,
2414,
2352,
2310,
2339.15,
2390.05,
2407,
2403,
2401.18,
2351.42,
2330.66,
2381.86,
2434.35,
2436.4,
2443.39,
2537.8,
2588.67,
2575.4,
2596.49,
2631.02,
2635.54,
2655.01,
2606.56,
2450,
2507.31,
2382.59,
2430.12,
2464.13,
2471.67,
2561.2,
2599.66,
2503,
2467.67,
2470,
2411,
2357.59,
2380.74,
2420.3,
2699.49,
2886.4,
2953.71,
3069,
3105,
3209.5,
3116.69,
3028.56,
3014.5,
3072,
3034.99,
3050.01,
3065.4,
3029.41,
3032.59,
3260,
3312.72,
3281.4,
3300.01,
3252,
3302.4,
3529.76,
3534.28,
3568.4,
3659.2,
3554.32,
3518.4,
3614.51,
3763.85
],
"open": [
1873.62,
1861.78,
1906.68,
1892.05,
1889.71,
1810.73,
1884.64,
1845.65,
1840.38,
1751.53,
1752.76,
1742.57,
1740.02,
1650.95,
1666.95,
1717.92,
1727.75,
1720.95,
1737.11,
1791.99,
1889.1,
1872,
1892.62,
1874.95,
1898.79,
1858.97,
1889.59,
1828.03,
1851.99,
1933.79,
1924.51,
1937.49,
1955.54,
1936.2,
1910.35,
1846.17,
1870.92,
1865.24,
1862.81,
1880.41,
1878.31,
1871.82,
2004.5,
1937.83,
1931.41,
1922.12,
1911.21,
1897.21,
1888.64,
1891.59,
1891.73,
1866.52,
1888.74,
1849.99,
1857.66,
1871.99,
1861.29,
1874.2,
1880.45,
1861.79,
1856.13,
1873.48,
1839.9,
1835.81,
1830.24,
1836.48,
1830.28,
1829.1,
1856.31,
1855.36,
1852.47,
1848.84,
1849.94,
1840.72,
1845.5,
1828.98,
1807.81,
1681.49,
1661.6,
1669.68,
1685.23,
1667.56,
1635,
1679.61,
1661.16,
1653.79,
1647.03,
1658.33,
1653.08,
1729.41,
1705.23,
1645.77,
1629.13,
1637.02,
1635.84,
1630.52,
1634.46,
1633.14,
1648.11,
1636.43,
1635.53,
1617.42,
1551.85,
1592.97,
1607.61,
1626.48,
1641.3,
1634.4,
1622.48,
1636.66,
1643.13,
1622.27,
1583.94,
1593.07,
1593.85,
1580.71,
1588.34,
1594.02,
1598.63,
1653,
1667.45,
1670.89,
1733.82,
1662.41,
1656.89,
1646.58,
1611.79,
1645.03,
1633.56,
1632.85,
1580.13,
1567.62,
1566.86,
1539.61,
1552.16,
1554.94,
1557.78,
1599.41,
1565.01,
1563.45,
1566.57,
1603.88,
1628.94,
1663.69,
1765.47,
1784.98,
1787.15,
1803.39,
1779.41,
1776.21,
1795.14,
1809.04,
1814.63,
1847,
1800.84,
1832.7,
1855.54,
1891.71,
1900.95,
1885.26,
1888.11,
2121.33,
2077.72,
2053.16,
2044.69,
2053.65,
1979.4,
2058.49,
1961.77,
1960.82,
1962.59,
2011.47,
2021.41,
1933.01,
2063.5,
2062.21,
2080.84,
2083.1,
2062.34,
2027.5,
2048.14,
2028.8,
2051.95,
2087.24,
2164.75,
2192.96,
2243.36,
2293.56,
2232.8,
2355.74,
2358.73,
2340.48,
2352.39,
2225.11,
2203.47,
2260.16,
2315.32,
2220.5,
2228.93,
2196.53,
2219.44,
2177.9,
2202.17,
2239.61,
2324.54,
2308.2,
2264.04,
2271.36,
2230.88,
2378.35,
2344.15,
2299.2,
2291.68,
2281.87,
2352.05,
2355.35,
2209.72,
2267.11,
2268.78,
2240.77,
2221.42,
2330.43,
2344.3,
2584.37,
2618.01,
2522.55,
2578.18,
2472.87,
2511.79,
2587.41,
2530.2,
2470.81,
2491.99,
2472.02,
2457.06,
2314.19,
2242.6,
2235.02,
2218.64,
2267.67,
2267.94,
2256.9,
2317.61,
2343,
2283.14,
2304.28,
2309.07,
2296.5,
2289.79,
2301.83,
2372.63,
2425.09,
2419.56,
2486.56,
2500.24,
2507.22,
2659.99,
2639.99,
2774.8,
2822.58,
2801.81,
2785.92,
2881.2,
2944.8,
3014.81,
2967.91,
2971.39,
2922.25,
2992.62,
3112.6,
3175.95,
3242.35,
3383.11,
3340.1,
3433.42,
3421.39,
3487.8,
3627.75,
3553.66,
3818.58,
3868.76,
3883.37,
3905.2,
3878.47,
4064.81,
3979.97,
4004.79,
3881.69,
3742.19,
3523.09,
3644.7,
3520.47,
3158.64,
3516.53,
3492.84,
3336.35,
3329.53,
3454.99,
3590.43,
3587.33,
3501.2,
3560.49,
3509.74,
3505.65,
3645.29,
3503.8,
3278.96,
3310.83,
3327.39,
3317.86,
3351.59,
3454.2,
3694.61,
3506.4,
3545.64,
3502.52,
3237.42,
3007.01,
3155.11,
3101.01,
3084.21,
2985.41,
3064.4,
3056.45,
3155.79,
3147.66,
3200.19,
3219.46,
3140.79,
3155.81,
3131.3,
3255.55,
3263.44,
3216.74,
3014.04,
2972.46,
2986.19,
3102.61,
3117.24,
3136.4,
3062.53,
3005.69,
2973.88,
3035.8,
2909.98,
2912.45,
2929.3,
2950.99,
2881.93,
3032.55,
2944.7,
3092,
3124.36,
3071.2,
3661.79,
3789.59,
3739,
3783.6,
3728.28,
3749.25,
3826.47,
3894.21,
3844.69,
3767.44,
3747.9,
3762.29,
3815.82,
3780.92,
3767.07,
3810.23,
3866,
3813.47,
3678.31,
3681.58,
3706.4,
3667.85,
3497.33,
3560.13,
3469.4,
3481.8,
3568.75,
3624.41,
3511.47,
3483.42,
3560.51,
3513.08,
3518.5,
3495.76,
3420.91,
3352.74,
3394.91,
3371.77,
3450.44,
3380.15,
3378.8,
3438.16,
3442.2,
3421.35,
3295.49,
3059.7,
2980.41,
3066.83,
2930.99,
3019.01,
3066.65,
3101.06,
3099.57,
3133.89,
3175.93,
3245.2,
3483.2,
3444.14,
3387.05,
3426.49,
3503.53,
3517.5,
3535.93,
3439.61,
3482.51,
3335.82,
3175.47,
3274.6,
3249,
3270.16,
3317.66,
3279.2,
3232.74,
3204.19,
2989.61,
2903.65,
2688.91,
2419.76,
2461.33,
2342.79,
2682.5,
2598.79,
2609.92,
2555.38,
2722.3,
2702.44,
2661.45,
2569.9,
2592.72,
2614.51,
2612.15,
2636.36,
2572.81,
2630.71,
2622.89,
2762.49,
2768.01,
2746.12,
2680.49,
2457.33,
2527.52,
2527.6,
2525.99,
2513,
2425.71,
2538,
2425.28,
2450.71,
2368.81,
2225.24,
2273.58,
2297.3,
2359.99,
2388.52,
2340.54,
2361.75,
2439.19,
2417.8,
2316.09,
2295.67,
2341.79,
2374.74,
2465.21,
2561.4,
2612.4,
2580.99,
2646.98,
2653.2,
2582.52,
2632.25,
2694.43,
2675.21,
2657.62,
2602.24,
2447.78,
2364.09,
2349.8,
2414.41,
2414.66,
2440.01,
2422.7,
2440.88,
2370.47,
2386.49,
2439.49,
2476.4,
2468.92,
2629.79,
2607.41,
2611.1,
2605.79,
2642.17,
2648.2,
2746.91,
2666.71,
2622.81,
2524.6,
2536.55,
2440.63,
2482.51,
2507.8,
2567.49,
2638.8,
2659.19,
2518.61,
2511.49,
2494.23,
2457.73,
2398.21,
2422.6,
2721.88,
2895.47,
2961.75,
3126.2,
3183.2,
3371.59,
3243.79,
3183.7,
3069.58,
3081.14,
3132.88,
3075.99,
3207.81,
3107.45,
3069.97,
3355.88,
3324.6,
3398.29,
3361.21,
3414.49,
3322.64,
3653.27,
3578.8,
3592.22,
3703.59,
3707.61,
3642.7,
3614.51,
3837.8
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "ETH Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
304.9,
307.2,
306.6,
305,
276.9,
281.2,
259.3,
260.5,
238.7,
235.4,
231.3,
244.2,
237.9,
236.4,
239.3,
244.5,
244.1,
243.1,
247.7,
248.8,
240.8,
244.3,
236.4,
238.8,
236.1,
237.5,
230.6,
233.1,
240.3,
247.9,
246.5,
246.5,
242.5,
238.9,
232.2,
235.6,
236.3,
234.1,
246.2,
248.6,
243.9,
256.1,
248.1,
251.1,
242.3,
244.1,
240.2,
240.8,
242.8,
243.7,
241.1,
242.5,
238.9,
237.7,
239,
240.6,
241.9,
242.4,
242.5,
241,
247.7,
240.7,
241.1,
241.7,
243.2,
243.2,
242.1,
245.2,
243.8,
241.5,
239.7,
240.3,
240.2,
240.4,
236.7,
232,
218.1,
216.1,
216.8,
216.5,
210.4,
210.9,
216.6,
219,
218.4,
216.5,
218.4,
218.8,
226.9,
223.8,
216.7,
213.7,
214.4,
214.4,
215.2,
214.6,
215.2,
217.1,
214.7,
214.1,
212.4,
206.1,
210.7,
212.5,
212.2,
214.1,
214.9,
216.5,
216,
217.2,
214.4,
210.8,
211.1,
210.5,
208.3,
209.9,
212.6,
212,
215,
215.2,
214.6,
218.2,
214.6,
213.5,
213.4,
210.6,
213.4,
212.3,
211.4,
205.8,
208.6,
206.6,
205.1,
206.1,
206.5,
209.7,
214.6,
211.4,
210.2,
211.2,
212.1,
214.2,
217.8,
228.5,
225.2,
222.1,
223.2,
224.1,
225.7,
227.1,
228,
226.2,
227.9,
231.9,
230.2,
237.1,
244,
255.1,
246.2,
246.7,
251.6,
251,
251.5,
247.4,
241.1,
242.3,
253.7,
242.7,
244.9,
244.8,
246.4,
253.1,
225.5,
236.1,
233.8,
232.7,
234.4,
231.7,
227.2,
229.6,
227.3,
227.6,
228.5,
229,
228.1,
233.5,
231.2,
229.4,
232.6,
238.9,
237.7,
239.8,
246.4,
254.6,
252,
253.3,
244.9,
244.4,
238.8,
241.7,
252.9,
260.3,
272.1,
271.1,
271,
264.5,
266.9,
297.7,
324.1,
322.6,
313.7,
317.1,
311.8,
313.5,
312.2,
315.8,
323.7,
317.5,
307.5,
302.4,
303.7,
301.1,
305.8,
308.2,
296.6,
302.2,
299.5,
317.5,
315.2,
309.4,
313,
314.7,
317.2,
318.6,
305.9,
298.8,
293.1,
292.1,
302.2,
305.6,
305.3,
310.7,
307.6,
300.5,
300.2,
301.4,
299.7,
304.7,
301.3,
302.7,
307.3,
319.2,
324,
323,
320.7,
327.8,
324.7,
333.9,
354.2,
360.4,
352.9,
349.8,
351.6,
354.6,
379.2,
382.6,
375.5,
381.7,
388.5,
401.6,
394.6,
414.6,
399.4,
407.4,
410.9,
414.5,
418.4,
394.1,
429.4,
474.6,
485.8,
488.3,
528.9,
522.6,
537.5,
630.5,
603.2,
632.7,
576.4,
571.7,
555.4,
507.7,
556.8,
553.8,
553.8,
551.9,
567.7,
587,
580.4,
574.3,
583.4,
612.5,
600.7,
606.7,
575.8,
551.4,
561.5,
585.5,
577.8,
585.4,
583.9,
586.4,
580.5,
609.7,
604.6,
595.6,
553.1,
566.4,
552.6,
537.6,
534.1,
552.1,
554,
570.9,
579.6,
604.5,
606.2,
608.8,
613.2,
598,
596.2,
600.2,
592.8,
578.4,
561.8,
560.5,
587,
585.7,
592,
588.1,
576.5,
588.6,
596.8,
585.6,
592.2,
594.8,
591.7,
567.1,
581,
569.2,
580.9,
580.3,
574.5,
599.6,
618.5,
614.8,
599.3,
600.3,
602.4,
600.2,
603.9,
601.7,
595.7,
595.1,
593.7,
601.9,
602.9,
626.4,
685.7,
698.8,
711.2,
684,
682.7,
673,
625.1,
602.5,
619.4,
599.8,
603.3,
608.2,
610.8,
604.3,
588.6,
599.3,
587.7,
586.1,
591.1,
577.4,
568.1,
578.2,
573,
581.7,
567.4,
570,
582.2,
576.9,
580.1,
556.7,
513.6,
497.6,
526,
490.7,
510.6,
516.9,
524.7,
524.8,
533.8,
532.4,
544.8,
585.3,
576.2,
568.9,
571.9,
593.4,
593.1,
602.5,
587.2,
581.9,
574.9,
570.6,
580.9,
581.6,
583.9,
574.3,
588.2,
576.5,
575.5,
542.9,
529.6,
496.9,
464.2,
484.8,
475,
517.1,
508.7,
523.1,
503.4,
518.2,
524.2,
523.4,
519.2,
519.7,
541.6,
531.2,
558.4,
569.4,
570.1,
582.9,
591.7,
580.5,
573.9,
548.2,
533.3,
536.8,
536.4,
535.2,
532.9,
512.4,
526.3,
518.7,
507.6,
502.4,
487.2,
493.5,
503.1,
518.7,
517,
530.1,
544.5,
556.4,
553.3,
553.4,
533.7,
546.2,
559.5,
567,
569,
588.6,
588.7,
604.5,
605.9,
587.5,
596.3,
606.8,
601.1,
595.6,
567.4,
547.3,
542.5,
544.8,
555.3,
563,
570.3,
564.3,
580.8,
570.7,
563.9,
573.6,
576.6,
572.2,
589.1,
594.5,
600.9,
592.9,
599.2,
597.7,
605.9,
598.8,
593.8,
584.9,
594.5,
575.3,
583.4,
589.2,
601.1,
606.3,
595.6,
576.6,
573.1,
568.6,
557.7,
552.5,
563.21,
592.22,
598.26,
597.82,
624.66,
627.33,
659.63,
625.33,
620.68,
622.3,
619.37,
622.69,
618.9,
618.93,
615.5,
605.39,
621.86,
633,
650.42,
659.65,
636.2,
613.51,
644.14,
653.83,
654.67,
653.43,
655.99,
647.82,
734.64,
739.53,
717.1
],
"high": [
307.7,
308.4,
308.2,
307.6,
305.1,
285.8,
281.8,
264.4,
260.7,
239.3,
239.3,
247,
252.8,
240.8,
243.8,
249.8,
248.7,
245,
248.1,
254.7,
257,
249.8,
248.7,
244,
241.3,
240.8,
237.6,
236.7,
241.7,
249,
248.5,
254.7,
246.9,
243.9,
244.5,
236.2,
237.6,
237,
247,
249.5,
250.5,
257.8,
261.7,
252.5,
252.1,
244.9,
246.7,
244.1,
245,
245.4,
244.9,
244,
243.1,
239.8,
240.4,
244.5,
242.9,
242.9,
243.8,
244.5,
247.8,
248.8,
242.8,
243.4,
243.3,
245.5,
244.9,
248,
245.5,
244.1,
242.3,
241.4,
241.8,
241.5,
240.8,
237.4,
232.4,
220.3,
219.2,
218,
216.9,
213,
218.8,
221.2,
219.6,
219.3,
219.8,
219.5,
234.8,
227.3,
226,
218.4,
215.9,
215.2,
216.5,
216.1,
218.8,
217.9,
218.8,
215.4,
214.3,
212.7,
214.3,
213.3,
215,
215,
216,
216.8,
221.3,
219.9,
217.8,
215.1,
213,
211.7,
211.2,
210.6,
213.7,
216,
217,
217.6,
216.5,
219.4,
221.6,
215.8,
213.8,
213.9,
214.6,
213.8,
212.8,
212.2,
213.1,
208.8,
207.3,
208.3,
207.1,
213,
219,
215,
213.9,
211.5,
216.6,
215.8,
218.4,
231,
238.1,
229.1,
228.1,
231.6,
228.4,
228.1,
229.2,
229.3,
229.5,
233.7,
232.4,
238.7,
245.5,
256.1,
255.6,
248.3,
255.9,
258,
255.2,
252,
250.2,
249.4,
254.5,
256,
245.9,
245.2,
246.9,
268.4,
271.9,
238.5,
239.2,
236.7,
235.7,
234.5,
232.9,
231.7,
231.2,
229.2,
230,
230.1,
231.9,
237.4,
234.9,
234.8,
234.8,
240,
245.5,
241.4,
248.2,
257.3,
255.9,
254,
253.4,
248.4,
244.5,
241.7,
254.8,
261.9,
274.9,
276.5,
272,
272.9,
268.1,
303.2,
324.4,
338.3,
325.6,
320.8,
325.5,
316,
321.3,
334.3,
324.3,
327.3,
317.6,
310,
308.1,
306.8,
310,
316.8,
313,
303.1,
306.7,
320.6,
319.4,
316.3,
315.6,
316.2,
317.3,
321.7,
320.3,
311.7,
300.7,
296.7,
304.2,
307.7,
309.1,
311,
313.1,
308.2,
302.2,
305.2,
303.8,
307.7,
306.8,
304.1,
308.7,
320.6,
326.3,
325.4,
324.9,
332.2,
329.2,
334.6,
366.6,
366.8,
363.7,
358.1,
356.2,
361.6,
379.3,
387.3,
385.8,
383.3,
391,
404.9,
403.7,
427.1,
419.7,
408.6,
414.8,
416.8,
423.8,
427.2,
434.7,
476.8,
489.6,
493.8,
537.1,
533.4,
547.2,
633.5,
631.5,
635.2,
645.2,
590.5,
587.7,
560.6,
559,
571,
588.1,
567.7,
573,
598,
597,
585.6,
591.7,
620,
612.9,
608.8,
607.7,
578.2,
567.9,
597.6,
591.5,
591.3,
591.1,
601.1,
590.3,
610.3,
618.4,
634.5,
600.2,
570.4,
585.5,
554.2,
547.9,
555.9,
564.3,
574.3,
582.6,
608.7,
618.3,
618.5,
617.9,
615,
599.7,
609,
602.8,
604.3,
580.4,
565.9,
590,
593.6,
595,
602,
600.4,
590,
605.8,
597,
594.4,
600.1,
598.4,
593,
587.2,
586.6,
584.4,
581.9,
581.9,
601.9,
631.4,
626.3,
617.5,
605.5,
606.7,
605.4,
614.4,
606,
603.6,
602.2,
599,
608.4,
606,
638.8,
688.2,
716,
721.8,
712,
694.9,
684.8,
674.8,
629,
635.4,
619.9,
612.5,
609.7,
611.8,
612.6,
605.2,
605.9,
608,
589.3,
591.4,
593.2,
582,
580,
584.7,
584.7,
585.3,
573.9,
585.3,
588.3,
582,
581,
558.1,
516.1,
530.7,
526.6,
524.2,
520.8,
529.4,
543.6,
537.5,
539.4,
547.7,
586.8,
587.5,
584,
579.6,
598.7,
597.9,
603.4,
605.6,
593.5,
589.1,
576.6,
582.8,
592.8,
584.9,
598,
588.3,
592.9,
578,
577.6,
545.3,
532.2,
499.9,
494.4,
497.7,
521.7,
518.4,
525.4,
535.8,
524,
527,
531.9,
533.9,
524.5,
547.7,
542.6,
560.7,
574.9,
575.1,
590,
600.6,
592.4,
583.9,
575.6,
558.3,
546.8,
545.5,
543.4,
541.5,
533.2,
530.2,
538.4,
523.7,
512.9,
509.9,
499.5,
506.9,
525.7,
524.3,
535.4,
548.7,
559.7,
559.2,
561.8,
555.2,
552.7,
559.7,
572.2,
577.1,
590,
594.6,
616,
613.4,
608.3,
609,
614.7,
618.6,
602.8,
595.8,
583.1,
558.3,
550.8,
557.8,
565.2,
571.9,
581.8,
586.8,
586,
572.9,
577.5,
579.2,
578.5,
592.3,
599.9,
605.5,
606.3,
602.4,
601.4,
607.3,
611.8,
609,
595,
598,
597.6,
587.1,
591,
604.6,
612.2,
606.7,
596.5,
585.5,
577.2,
569.3,
564.8,
572.8,
595,
611.2,
605.9,
638,
644.2,
665.54,
667.4,
638.06,
660.4,
628.3,
633.7,
647.6,
630.91,
621.41,
620.78,
629.37,
639.64,
680,
687.75,
676.79,
645.57,
646.75,
664.68,
663.8,
677.2,
664.17,
667.2,
750.01,
793.86,
739.9
],
"low": [
303.1,
303.1,
303,
304.5,
272,
273.2,
253.4,
255.7,
228.4,
233.4,
220.4,
228.7,
232.9,
230.6,
232.2,
237.2,
242.3,
238.3,
238.7,
245,
239.4,
239.7,
230.4,
235,
233.6,
234.5,
224.6,
230.4,
230.7,
240,
242.9,
245.3,
240.4,
235.8,
231.5,
231.1,
234.2,
232.9,
231.3,
244.6,
242.6,
242.7,
243.4,
246.9,
242,
239.8,
237.5,
239.6,
240.3,
242,
240.1,
240.4,
235,
236.3,
236.3,
238.4,
239.7,
241.1,
240.3,
240.5,
237.3,
235.7,
238.3,
240.2,
240.1,
242.8,
239.7,
241.5,
242.8,
240.5,
238,
239.3,
239.8,
239.7,
234,
230.7,
212.5,
213.5,
213.6,
215.4,
206.2,
203.4,
210.8,
215.6,
213.7,
216.1,
215.9,
215.1,
217,
221.7,
214.4,
211.2,
213,
213.2,
213.1,
213.5,
211.8,
213.6,
213.4,
214.1,
211.1,
203.9,
204.9,
209.3,
211,
210.9,
213.3,
213.3,
214.9,
215.3,
213.3,
209.1,
209.6,
209.9,
206.5,
206.5,
209.7,
210.5,
211.5,
214.3,
214.1,
213.1,
213.1,
212.4,
210.8,
210.2,
210.1,
211.5,
208.8,
202,
205.5,
204.3,
202.8,
204.3,
205.7,
206.3,
209.6,
209,
209.9,
208.2,
210.5,
211.4,
213.6,
216.9,
221.2,
221.5,
219.2,
219.9,
224.1,
223.6,
224.6,
223.9,
222.3,
227.5,
225.6,
229.3,
236.1,
241.5,
242.1,
244,
240,
248.1,
246,
244.5,
240.3,
233.7,
242.1,
240,
238.3,
238.5,
241.8,
238.6,
224,
224.6,
230.2,
231.6,
232.1,
227.9,
222.5,
224.3,
226.1,
225.9,
227,
224.8,
225.9,
224.8,
227.9,
228.6,
228.3,
232.2,
236.3,
236.8,
228,
245.5,
244.1,
247.7,
242.6,
242.7,
238.8,
232,
241.3,
250.1,
256.2,
264.9,
265.6,
261.9,
261.5,
264,
285.1,
320,
307,
312.2,
307.4,
307,
305.8,
293.6,
310.9,
308.6,
300.2,
300,
290,
295.7,
288.8,
301.4,
289.1,
290.8,
298.7,
299.4,
313,
306.8,
305.7,
305.6,
312.2,
316.1,
303.6,
290.3,
290.3,
287.5,
290.7,
301.9,
303.1,
304.4,
306.3,
298.6,
296.4,
299.8,
299.5,
298,
299.5,
300.9,
300.7,
307.3,
317.9,
318.9,
320.1,
315.6,
318.6,
323.4,
333.3,
349.1,
348.2,
349.1,
349.3,
344.8,
350.9,
373.7,
369,
371.7,
377.6,
382,
389.6,
394.1,
391.1,
398.8,
405.8,
402.2,
410.6,
361.3,
385.6,
423.2,
462.5,
481.1,
484.8,
508.5,
519.2,
531.7,
567.4,
540.9,
567.2,
548.6,
540.1,
495.8,
500,
540.6,
535.5,
543.4,
548.7,
564.4,
572,
560.3,
574.1,
582.1,
596.9,
600.4,
568.7,
546.4,
539,
560.8,
564.4,
575.1,
578,
577.7,
571.2,
573.4,
592,
571,
513.4,
536.1,
544.9,
522.8,
512.6,
527,
524,
548.8,
566.3,
578.4,
598.7,
592.6,
600.7,
597,
585,
596.2,
581.3,
555.7,
536.7,
539.5,
558.9,
582.5,
579.3,
583.1,
576,
574.4,
586.3,
581.5,
580.8,
587.3,
585.2,
563.9,
560,
565.1,
568.6,
574.2,
571.3,
568.8,
593.3,
610.1,
580,
588.3,
599.5,
598,
599.6,
593.8,
593.1,
586.5,
590,
593.1,
596,
601.2,
624.8,
684.7,
692,
658.9,
677.9,
670.3,
613.3,
595.8,
591.3,
595.6,
590,
601.3,
601.1,
591.4,
575,
586.6,
584.6,
577.8,
581,
576,
551.2,
566.4,
567.4,
566.4,
565.6,
566.9,
568.3,
576.2,
573.9,
550.5,
511.6,
456.1,
496,
488.4,
471,
506.5,
511.3,
520.1,
517,
527.3,
531.2,
543.8,
554.4,
564.3,
561.6,
565,
586.7,
581.5,
580.3,
577.2,
570.4,
553.1,
570.2,
572.6,
574.5,
572.2,
566.6,
574.7,
553.7,
540.2,
521.3,
486.5,
404.4,
463.5,
468.1,
467.5,
498.7,
507.2,
502.3,
499.2,
513.5,
515.4,
510,
509.9,
518.3,
530.8,
529.1,
558.2,
546.1,
559.7,
574.3,
574.6,
569,
546.7,
520.5,
522.4,
530.9,
522,
531.1,
507.7,
501.5,
517.9,
495.9,
496.7,
471.3,
482.9,
490.7,
501.7,
509.2,
506.5,
530,
538.7,
547.5,
546,
527,
529,
536.8,
553,
559,
566.4,
576.4,
583.4,
599.3,
584.2,
580.9,
596,
594.5,
592.4,
563.6,
536.8,
535.4,
534.3,
541.8,
551.6,
561.1,
563.5,
559.5,
566.2,
551.5,
560.1,
573.6,
564.9,
558.9,
577.7,
589.7,
585.1,
591.8,
595.4,
593.1,
591.5,
587,
573,
583.3,
565.9,
571.6,
581.7,
585.5,
599.9,
594.1,
571.1,
567.7,
562.4,
547,
543.6,
551.22,
563,
587.01,
588.1,
597.51,
611.62,
613,
612.76,
598.6,
610.5,
603.4,
617.5,
605.2,
612.1,
605.21,
600,
593.05,
615.49,
631.1,
637.44,
626.43,
600.02,
607.79,
639.79,
648.42,
648,
645.16,
627.99,
625.58,
720,
690
],
"open": [
306.8,
304.9,
307.3,
306.6,
305.1,
277,
281.2,
262,
260.6,
238.8,
235.4,
231.3,
244.1,
237.9,
236.5,
239.4,
244.5,
244.1,
243,
247.8,
248.8,
240.9,
244.4,
236.4,
238.9,
236.1,
237.5,
230.6,
233.2,
240.4,
247.9,
246.5,
246.5,
242.5,
239,
232.3,
235.7,
236.3,
234.1,
246.2,
248.6,
243.9,
256.1,
248.1,
251.1,
242.3,
244.1,
240.3,
240.9,
242.8,
243.8,
241.1,
242.4,
238.9,
237.8,
239,
240.7,
241.9,
242.5,
242.6,
241,
247.8,
240.7,
241.1,
241.7,
243.3,
243.1,
242,
245.2,
243.9,
241.5,
239.8,
240.3,
240.2,
240.5,
236.8,
232.1,
218.1,
216,
216.9,
216.6,
210.4,
210.9,
216.7,
219,
218.5,
216.4,
218.4,
218.8,
226.9,
223.8,
216.6,
213.7,
214.4,
214.4,
215.3,
214.6,
215.2,
217.1,
214.7,
214.2,
212.4,
206.2,
210.8,
212.5,
212.2,
214.1,
214.9,
216.4,
216,
217.2,
214.3,
210.8,
211.1,
210.4,
208.3,
210,
212.6,
212.1,
215,
215.2,
214.6,
218.2,
214.6,
213.5,
213.4,
210.7,
213.4,
212.2,
211.3,
205.9,
208.6,
206.6,
205.1,
206.1,
206.5,
209.8,
214.7,
211.4,
210.3,
211.2,
212.1,
214.2,
217.8,
228.7,
225.2,
222.1,
223.2,
224.2,
225.7,
227.1,
228,
226.2,
228,
231.9,
230.3,
237.2,
244,
255.1,
246.2,
246.7,
251.7,
251.1,
251.6,
247.5,
241.1,
242.3,
253.7,
242.7,
244.9,
244.8,
246.5,
253.1,
225.4,
236.3,
233.8,
232.8,
234.5,
231.8,
227.3,
229.6,
227.3,
227.6,
228.5,
229.1,
228,
233.5,
231.2,
229.5,
232.6,
238.8,
237.8,
239.8,
246.4,
254.6,
252,
253.2,
244.9,
244.3,
238.9,
241.7,
252.9,
260.3,
272.1,
271.1,
271,
264.4,
266.8,
297.7,
324,
322.6,
313.7,
317,
311.9,
313.5,
312.3,
315.9,
323.6,
317.6,
307.6,
302.5,
303.6,
301.1,
305.7,
308.2,
296.7,
302.2,
299.4,
317.6,
315.1,
309.3,
313,
314.7,
317.3,
318.7,
305.9,
298.8,
293,
292.1,
302.2,
305.7,
305.3,
310.7,
307.7,
300.5,
300.2,
301.4,
299.6,
304.7,
301.2,
302.8,
307.4,
319.2,
324,
323,
320.6,
327.9,
324.6,
333.9,
354.3,
360.4,
352.9,
349.8,
351.7,
354.6,
379.2,
382.7,
375.5,
381.6,
388.5,
401.5,
394.6,
414.7,
399.3,
407.4,
410.9,
414.5,
418.5,
394.1,
429.4,
474.6,
485.8,
488.3,
528.9,
523,
537.4,
630.5,
603.2,
632.7,
576.4,
571.7,
555.4,
507.7,
556.7,
553.8,
553.8,
551.9,
567.8,
587.1,
580.4,
574.2,
583.4,
612.5,
600.7,
606.7,
575.8,
551.4,
561.6,
585.4,
577.8,
585.5,
583.8,
586.3,
580.4,
609.7,
604.6,
595.6,
553,
566.4,
551.9,
537.5,
534,
552,
554.1,
570.9,
579.6,
604.4,
606.2,
608.8,
613.3,
598,
596.2,
600.2,
592.8,
578.4,
561.8,
560.5,
587,
586.2,
592,
588.6,
576.5,
588.2,
596.7,
585.7,
592.2,
594.8,
591.7,
567.1,
581,
569.2,
580.9,
580.4,
574.6,
599.6,
618.5,
614.9,
599.4,
600.3,
602.3,
600.3,
603.9,
601.7,
595.7,
595.1,
593.8,
601.9,
602.8,
626.4,
685.7,
698.8,
711.1,
684,
682.7,
673.1,
625.1,
602.5,
619.4,
599.8,
603.3,
608.2,
610.9,
604.3,
588.6,
599.3,
587.7,
586.2,
591.1,
577.5,
568.1,
578.3,
573.1,
581.8,
567.4,
570,
582.3,
576.9,
580.1,
556.7,
513.5,
497.8,
526,
490.7,
510.5,
516.9,
524.7,
524.9,
533.9,
532.5,
544.9,
585.3,
576.3,
568.9,
572,
593.4,
593.2,
602.5,
587.3,
582,
574.9,
570.7,
580.9,
581.6,
583.9,
574.3,
588.1,
576.5,
575.4,
542.9,
529.7,
496.9,
464.3,
484.9,
475,
517.2,
508.7,
523.2,
503.5,
518.3,
524.2,
523.4,
519.2,
519.8,
541.7,
531.3,
558.5,
570.6,
570.2,
583,
591.7,
580.5,
573.9,
548.3,
533.3,
536.8,
536.4,
535.2,
532.9,
512.3,
526.4,
518.8,
507.6,
502.4,
487.3,
493.6,
503.2,
518.6,
517,
530.2,
544.6,
556.4,
553.4,
553.4,
533.7,
546.2,
559.5,
566.9,
569.1,
588.7,
588.7,
604.5,
605.8,
587.7,
596.3,
606.9,
601.1,
595.6,
567.4,
547.2,
542.5,
544.8,
555.3,
563,
570.4,
564.4,
580.8,
570.8,
563.8,
573.7,
576.6,
572.3,
589,
594.6,
601,
592.9,
599.3,
597.8,
605.9,
598.8,
593.8,
584.9,
594.5,
575.3,
583.4,
589.3,
601.1,
606.3,
595.5,
576.5,
573.1,
568.6,
557.7,
552.51,
563.21,
592.22,
598.27,
597.82,
624.67,
627.34,
659.63,
625.42,
620.06,
623.56,
619.37,
623.09,
618.93,
618.93,
615.49,
605.39,
621.86,
633,
650.42,
659.65,
636.16,
612.12,
644.15,
653.84,
654.67,
653.44,
656,
647.83,
734.64,
739.54
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "BNB Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
20.49,
21.26,
21.19,
21.82,
20,
20.38,
18.64,
17.4,
15.61,
15.55,
15.19,
15.04,
14.48,
14.77,
15.31,
15.64,
15.45,
16.1,
16.64,
17.23,
16.62,
17.13,
16.64,
16.96,
16.27,
16.63,
15.97,
17.99,
18.86,
18.7,
19.45,
19.26,
19.13,
19,
19.61,
21.5,
21.81,
21.32,
21.3,
22.07,
21.94,
26.01,
26.67,
27.46,
27.42,
26.8,
25.54,
26.31,
25.38,
25.5,
24.52,
24.76,
23.37,
23.27,
25.17,
25.1,
24.82,
25.17,
24.25,
23.73,
24.05,
23.15,
22.65,
22.8,
22.65,
23.2,
23.12,
24.22,
24.38,
24.62,
24.62,
24.91,
24.23,
25.18,
23.9,
22.82,
21.66,
21.34,
21.9,
21.77,
21.2,
20.59,
21.74,
21.06,
20.42,
20.29,
20.79,
20.56,
21.79,
20.82,
19.74,
19.33,
19.5,
19.57,
19.52,
20.26,
19.64,
19.92,
19.61,
19.44,
18.24,
17.72,
17.92,
18.4,
18.85,
19.14,
19.12,
18.81,
19.64,
20.03,
20.29,
19.46,
19.43,
19.49,
19.36,
19.39,
19.03,
19.14,
19.96,
20.28,
21.37,
23.87,
23.37,
23.6,
23.13,
22.7,
23.41,
23.3,
23.22,
22.1,
22.11,
22.01,
21.28,
21.84,
22,
21.93,
23.95,
23.93,
23.42,
24.93,
27.03,
29.32,
29.05,
31.88,
30.17,
32.44,
32.77,
31.73,
31.63,
32.83,
34.94,
38.4,
41.15,
40.23,
39.45,
42.41,
41.15,
42.16,
42.93,
43.13,
45.29,
56.67,
56.34,
56.28,
51.6,
56.81,
65.43,
57.8,
58.51,
58.56,
61.1,
56.57,
51.65,
57.56,
56.51,
56.86,
58.82,
57.57,
55.06,
58.18,
59.31,
59.3,
59.75,
63.65,
62.98,
61.64,
61.03,
61.85,
67.74,
74.94,
72.3,
74.87,
70.25,
68.6,
70.62,
75.68,
72.51,
73.72,
70.87,
74.42,
73,
82.21,
93.84,
97.9,
107.88,
112.45,
120.91,
112.49,
106.91,
101.8,
106.17,
101.9,
101.72,
109.91,
106.73,
98.52,
104.91,
99.94,
93.77,
89.44,
97.88,
99.36,
102,
99.9,
92.12,
95.85,
93.81,
94.36,
97.61,
102.1,
94.4,
93.62,
92.88,
91.09,
83.84,
84.35,
88.77,
86.91,
92.28,
94.28,
95.98,
101.68,
101.4,
96.96,
97.81,
100.58,
97.96,
95.49,
95.65,
96.88,
101.14,
102.76,
106.94,
109.01,
107.46,
111.64,
112.48,
116.97,
113.5,
110.33,
108.92,
112.24,
111.53,
108.31,
105.03,
101.76,
99.9,
104.01,
103.47,
109.9,
108.36,
119.03,
125.68,
129.43,
130.02,
130.16,
133.27,
125.31,
130.79,
143.82,
144.79,
144.29,
144.39,
148.83,
151.05,
163.9,
176.65,
183.95,
182.05,
201.86,
195.92,
169.82,
191.77,
179.46,
175.21,
172.65,
183.88,
188.99,
190.46,
186.33,
189.63,
192.01,
194.2,
202.45,
192.24,
181.53,
185.05,
184,
174.37,
178.68,
179.52,
180.68,
172.42,
173.31,
172.37,
153.16,
138.47,
151.26,
138.54,
136.22,
131.84,
142.07,
142.5,
151.22,
148.8,
156.95,
154.75,
147.78,
144.84,
139.23,
141.31,
137.99,
137.77,
126.77,
134.64,
137.58,
143.69,
146.05,
145.73,
152.82,
148.03,
142.18,
152.66,
146.01,
145.42,
143.43,
147.54,
142.03,
158.52,
159.37,
169.44,
172.43,
169.93,
186.7,
178.15,
177,
176.16,
167.7,
168.35,
163.41,
170.15,
168.68,
168.32,
166.88,
165.65,
166.14,
163.15,
164.89,
171.78,
173.54,
170.15,
162.5,
157.83,
162.12,
159.05,
149.31,
155.22,
147.29,
143.05,
145.52,
151.3,
143.27,
137.41,
135.62,
133.55,
134.6,
133.69,
128.69,
132.33,
136.58,
136.81,
149.71,
140.03,
140.28,
146.62,
146.67,
154.03,
140.84,
127.87,
134.32,
143.05,
131.64,
139.81,
141.42,
141.98,
135.73,
139.46,
141.9,
147.67,
159.38,
160.62,
155.5,
159.22,
169.13,
173.6,
184.49,
178.9,
173.03,
178.06,
171.85,
183.06,
183.92,
184.9,
182.57,
179.16,
171.71,
167.37,
152.77,
142.52,
138.33,
129.78,
144.4,
144.78,
163.13,
156.26,
154.01,
141.57,
146.29,
146.65,
143.71,
142.58,
139.04,
141.93,
142.42,
144.29,
142.27,
142.79,
143.22,
153.26,
160.67,
158.92,
157.12,
146.79,
143.91,
140,
137.99,
135.35,
128.5,
134.94,
127.54,
133.64,
129.41,
125.05,
127.71,
130.15,
135.08,
135.63,
132.42,
136.05,
139.02,
137.14,
131.37,
131.47,
131.54,
134.34,
142.89,
146.66,
149.41,
144.63,
144.79,
152.73,
147.98,
155.55,
157.64,
156.75,
158.46,
152.52,
145.13,
140.18,
136.82,
143.24,
142.59,
146.48,
143.96,
143.49,
139.33,
139.03,
145.53,
146.4,
147.74,
157.59,
154.76,
154.28,
150.5,
154.94,
159.79,
167.4,
166.16,
167.59,
170.85,
177.19,
164.9,
170.88,
176.63,
178.29,
179.42,
174.87,
168.69,
166.1,
166.17,
162.53,
157.95,
166.62,
186.59,
196.35,
199.85,
199.89,
210.07,
222.13,
211.64,
215.13,
209.57,
218.45,
215.71,
237.47,
239.79,
237.63,
235.48,
256.37,
256.9,
254.89,
252.73,
234.18,
230.69,
241.96,
237.59,
243.33,
237.6,
236.8,
225.72,
233.92,
229.15,
235.84
],
"high": [
20.98,
21.37,
21.35,
22.3,
22.06,
20.7,
20.53,
19.37,
17.43,
16.18,
15.69,
16,
15.37,
15.08,
15.47,
16.12,
15.84,
16.14,
16.69,
17.4,
17.75,
17.53,
17.53,
17.38,
17.12,
16.93,
16.65,
18.28,
20.03,
19,
19.74,
19.66,
19.94,
19.53,
21,
21.9,
22.5,
22.38,
21.81,
22.37,
22.8,
26.82,
32.04,
29.12,
28.7,
28.49,
27.09,
26.99,
27.38,
26,
25.97,
25.26,
24.83,
23.6,
25.68,
25.65,
25.56,
25.39,
25.21,
24.79,
24.07,
24.29,
23.38,
23.57,
22.94,
23.48,
23.67,
24.79,
24.99,
24.89,
24.93,
25.24,
24.95,
25.3,
25.42,
24.03,
23.43,
22.2,
22.18,
22.04,
21.79,
21.26,
21.82,
22.02,
21.06,
20.44,
20.92,
20.8,
22.05,
21.99,
21.07,
19.93,
19.69,
19.67,
20.05,
20.6,
20.39,
20,
20.28,
19.61,
19.44,
18.46,
18.8,
18.56,
19.33,
19.5,
19.46,
19.14,
20.15,
20.42,
20.54,
20.29,
19.81,
19.57,
19.68,
19.74,
19.53,
19.48,
19.98,
20.46,
21.81,
24.5,
24.8,
24.77,
23.86,
23.76,
23.76,
24.21,
23.64,
23.37,
22.48,
22.43,
22.05,
22.23,
22.31,
22.17,
24.75,
24.56,
24.43,
25.77,
27.5,
30.31,
30.01,
32.81,
32.61,
33.9,
33.28,
33.35,
32.51,
33.19,
35.35,
38.62,
46.9,
44.57,
40.26,
42.72,
42.85,
42.2,
44.78,
43.88,
48.88,
57.54,
63.95,
61.86,
59.86,
57.99,
67.12,
68.2,
60.57,
59.37,
62.1,
61.33,
57.4,
58.94,
59.63,
58.79,
59.82,
59.04,
58.09,
58.65,
61.78,
61.7,
61.9,
63.9,
65.53,
65.25,
62.6,
64.73,
69.37,
75.3,
77.78,
74.89,
75,
72.42,
72.6,
76.24,
79.5,
77.22,
75.05,
75.46,
76.37,
84.14,
95.54,
99.5,
110,
118.1,
126.36,
121.36,
115.3,
109.66,
109.86,
107.47,
105.21,
109.93,
116.95,
109.9,
108.15,
105.48,
100.3,
96.8,
99.97,
103.95,
105.52,
107.32,
100.49,
97.05,
102.87,
96.96,
98.73,
102.8,
103.59,
95.47,
94.27,
93.93,
91.9,
86,
89.47,
89.64,
93.72,
94.5,
99.44,
101.98,
106.49,
102.73,
98.11,
102.57,
101.24,
98.59,
98.7,
97.88,
101.58,
104.98,
109.13,
110.86,
110.67,
112.22,
115.15,
118.69,
118.39,
114.25,
111.08,
114.04,
114.87,
112.11,
108.4,
107.1,
103.1,
104.85,
104.43,
110.89,
112.3,
119.06,
134.65,
137.8,
131.62,
132.11,
134.89,
142.39,
134.95,
149.3,
152.64,
149.15,
148.5,
150.1,
154.95,
166.73,
178.5,
188.98,
197.95,
205.2,
210.18,
198.68,
193.19,
195.68,
181.95,
179,
186.78,
194.6,
196.57,
192.74,
190.93,
193,
200,
203.17,
204.46,
192.24,
192,
190.13,
185.07,
179.89,
182.71,
184.68,
180.75,
175.5,
176.32,
175.98,
154.92,
152.84,
156.06,
140.57,
142.77,
144.25,
147.49,
152.39,
153.5,
158.5,
160,
159.8,
149.6,
146.19,
143.04,
144.82,
138.93,
139.77,
135.8,
140.9,
145,
149.14,
148,
156.89,
159.12,
149.99,
153.39,
155.75,
147.7,
147.71,
150.67,
149.05,
158.8,
164.64,
174,
176.06,
175.5,
188.32,
188.79,
185,
181.04,
176.15,
170.55,
168.4,
172.28,
173.24,
173.93,
173,
170.94,
167.95,
167.1,
167.21,
171.87,
175.6,
174.4,
172.85,
163.78,
163.04,
163.18,
159.75,
161.84,
155.21,
149,
145.78,
151.35,
151.79,
143.82,
141.9,
141.29,
135.38,
136.74,
135.09,
132.66,
139.9,
140.41,
151.21,
150.84,
143.26,
147.62,
149.36,
155,
154.5,
142.75,
136.58,
144.29,
143.33,
142,
144.33,
146.2,
146.1,
140.55,
143.6,
148.56,
159.95,
162.49,
163.8,
161.6,
172.42,
175.1,
185.17,
185,
180.54,
182.5,
179.59,
185.01,
188.33,
186.77,
193.98,
184.95,
185.1,
172.91,
169.43,
154.05,
146.08,
139.35,
149.59,
155,
163.7,
163.54,
158.75,
158,
150.79,
149.82,
152.18,
147.64,
144.88,
141.99,
147.31,
146.19,
148.83,
144.36,
144.88,
154.08,
162.3,
162,
162,
159.69,
149.3,
147.36,
141.11,
139.23,
136.15,
135.39,
138.13,
134.98,
135.58,
134.29,
129.5,
131.7,
137.09,
138,
135.91,
136.78,
139.8,
139.8,
137.95,
132.4,
135.55,
134.45,
144.04,
152.5,
150.25,
149.92,
149.07,
154,
153.93,
158.05,
161.43,
159.43,
161.78,
159.77,
157.34,
148.96,
142.96,
144.55,
144.93,
146.75,
152.4,
145.6,
145.34,
140.92,
146.62,
147.32,
148.86,
158.1,
159.1,
158.41,
155.73,
156.65,
159.85,
167.94,
171.76,
170.99,
174.3,
179.3,
177.6,
173.25,
178.27,
179.8,
183.38,
181.36,
176.56,
174,
168.61,
166.61,
165.04,
169.3,
190.01,
197.84,
205,
203.45,
215.27,
224,
225.21,
220.44,
222.8,
220.5,
221.99,
242.33,
248.44,
247.5,
242.54,
259.8,
264.39,
264,
259.78,
256.7,
239.66,
243.33,
245.28,
246.77,
245.4,
239.89,
238.13,
239.6,
240.9,
244.75
],
"low": [
20.41,
20.3,
20.95,
21.03,
19.03,
19.23,
18.5,
17.11,
12.8,
15.11,
14.74,
14.76,
14.06,
14.18,
14.38,
15.16,
15.28,
15.34,
15.73,
16.54,
16.57,
16.16,
16.37,
16.57,
15.89,
16.13,
15.6,
15.87,
17.01,
17.9,
18.53,
18.87,
19.06,
18.32,
18.82,
19.26,
21.32,
20.99,
20.47,
21.2,
21.74,
21.42,
25.23,
26.45,
26.46,
25.55,
24.76,
25.35,
25.03,
25.06,
24,
24.15,
22.89,
22.73,
23.17,
24.66,
24.54,
24.75,
23.47,
23.52,
22.84,
22.82,
22.44,
22.48,
22.23,
22.58,
22.27,
23.02,
24.1,
24.13,
24.34,
24.4,
24.21,
24.06,
23.74,
22.36,
20,
20.9,
21.29,
21.57,
20.3,
19.35,
20.33,
20.67,
20.09,
20.19,
20.24,
20.03,
20.12,
20.6,
19.43,
19.02,
19.13,
19.23,
19.15,
19.03,
19.14,
19.32,
19.37,
19.38,
17.78,
17.33,
17.57,
17.69,
18.38,
18.55,
18.86,
18.63,
18.58,
19.58,
19.8,
19.29,
19.15,
19.29,
19.2,
19.07,
18.84,
18.73,
19.1,
19.85,
20.07,
21.13,
22.9,
23.21,
22.58,
22.53,
22.66,
23.08,
23.06,
21.59,
21.69,
21.62,
20.93,
21.11,
21.8,
21.66,
21.89,
23.46,
23.36,
23.11,
24.73,
26.65,
28.09,
28.74,
29.5,
30,
30.73,
31.2,
31.35,
31.27,
32.28,
34.82,
37.81,
38.69,
37.98,
39,
40.1,
39.66,
40.08,
42.25,
41.36,
45.05,
53.55,
54.5,
51.28,
51.12,
56.15,
56.31,
54.1,
54.7,
56.61,
56,
51.23,
51.43,
56.14,
56.2,
55.7,
56.12,
53.47,
53.94,
57.72,
58.75,
58.6,
59.67,
62.22,
59.75,
59.11,
61.5,
61.64,
67.74,
71.5,
70.67,
64.18,
65.75,
63.67,
68.18,
72.13,
71.18,
70.36,
67,
71.78,
72.96,
81.03,
90.34,
92.8,
107.3,
107.92,
103.31,
104.58,
97.14,
99,
100.62,
99.54,
101.44,
106.02,
85,
96.6,
95.23,
91.53,
87.68,
85.16,
95.25,
91.68,
97.67,
87,
89.51,
93.62,
92.97,
94.16,
96.5,
91.41,
87.05,
90.2,
90.79,
82.06,
79,
83.3,
85.09,
85.96,
90.68,
93.31,
95.06,
100.95,
95.9,
93.11,
97.39,
96.53,
95.08,
94.11,
92.88,
94.62,
100.51,
102.76,
106.86,
107.24,
103.4,
108.25,
110.61,
111.51,
107.94,
105,
107.51,
110.75,
103,
100.23,
101.53,
98.64,
98.48,
102,
100.29,
105.29,
106.85,
117.15,
125.61,
127.2,
124.18,
127.45,
106.9,
120,
130.52,
142,
143.62,
140.48,
137.11,
141.66,
148.71,
160.3,
165,
176.78,
178.55,
193.8,
166,
162.45,
175.84,
168.1,
170.38,
171.25,
180.92,
186,
180.29,
180.92,
183.39,
190.71,
193.69,
186.87,
176.06,
176.94,
180.02,
168,
173.54,
176.85,
175.25,
169.11,
163.22,
170.07,
144.17,
120.55,
130.45,
133.8,
126.4,
126.87,
127.62,
128.5,
139.66,
146.68,
146.63,
153.04,
145.58,
142.09,
138.74,
132.88,
137.03,
133.38,
121.21,
118.47,
128.19,
135.88,
142.22,
143.1,
145.4,
147.91,
140,
140.61,
144.49,
143.15,
142.5,
137.78,
141.82,
141.21,
156.59,
159.32,
168.65,
165.96,
167.47,
174.37,
174.96,
166.88,
162.5,
165.9,
161,
163.26,
164.92,
167,
163.55,
163.67,
165.64,
161.32,
161.79,
164.31,
170,
167.51,
152.92,
157.37,
156.52,
157.46,
145.2,
145.44,
146.03,
139.67,
142.92,
143.08,
139.89,
128.18,
134.47,
131.9,
128.76,
133,
128.25,
122,
131.2,
134.85,
135.2,
139.01,
139.67,
137.09,
145.87,
146.14,
139.01,
127.2,
121.58,
132.33,
131.23,
127.77,
136.45,
138.6,
135.64,
133.92,
137.94,
141.87,
147,
152.57,
154.68,
155.07,
156.07,
167.27,
170.64,
176.71,
169.72,
170.9,
165.42,
171.69,
178.11,
181.16,
181.57,
175.39,
171.61,
157.91,
150,
140,
131.22,
110,
129.4,
142.21,
141.4,
150.72,
152.54,
141.2,
141.2,
142.92,
142.36,
137.78,
136.1,
137.61,
140.56,
140.33,
141,
138.7,
140.63,
142.68,
151.97,
155.25,
155.53,
145.03,
140.53,
138.05,
132.04,
134.49,
127.66,
126.8,
127.15,
122.6,
127.85,
120,
124.13,
126.61,
126.96,
132.5,
128.2,
132.38,
131.7,
135.6,
130.43,
128.91,
130.12,
127.07,
134.27,
141.18,
144.63,
141.12,
142.13,
143.09,
147.28,
146.85,
153.89,
155,
155.09,
151.76,
142.29,
138.61,
133.11,
135.95,
141.06,
142,
143.5,
141.17,
138.66,
135.52,
138.68,
144.71,
144.45,
146.8,
150.3,
153,
147.66,
149.56,
153.45,
157.58,
160.99,
162.99,
164.13,
170.5,
159.67,
162.43,
170.26,
172.45,
176.41,
173.01,
167.56,
163.58,
162.11,
157.82,
155.11,
156.86,
166.4,
185.84,
195.64,
194.86,
198.68,
204.16,
204.78,
200.67,
206.78,
204.48,
213.35,
212.1,
234.01,
233.4,
230.37,
229.6,
251.47,
252.75,
240.93,
231.21,
222.05,
227.51,
232.8,
236.55,
237.5,
234.1,
220,
216.05,
224.67,
222.95
],
"open": [
20.81,
20.49,
21.26,
21.19,
21.83,
20.01,
20.38,
18.88,
17.4,
15.61,
15.55,
15.19,
15.03,
14.49,
14.78,
15.32,
15.65,
15.45,
16.1,
16.65,
17.23,
16.62,
17.14,
16.64,
16.96,
16.27,
16.63,
15.98,
18,
18.85,
18.7,
19.46,
19.25,
19.14,
18.99,
19.61,
21.51,
21.82,
21.32,
21.3,
22.06,
21.93,
26.01,
26.67,
27.47,
27.41,
26.8,
25.54,
26.31,
25.38,
25.51,
24.52,
24.76,
23.36,
23.28,
25.18,
25.1,
24.82,
25.17,
24.25,
23.72,
24.06,
23.14,
22.65,
22.8,
22.66,
23.2,
23.11,
24.22,
24.39,
24.63,
24.63,
24.91,
24.22,
25.19,
23.91,
22.82,
21.67,
21.34,
21.89,
21.78,
21.2,
20.59,
21.74,
21.05,
20.42,
20.28,
20.79,
20.57,
21.79,
20.82,
19.74,
19.33,
19.5,
19.57,
19.52,
20.26,
19.63,
19.92,
19.6,
19.43,
18.23,
17.72,
17.91,
18.4,
18.85,
19.15,
19.12,
18.81,
19.65,
20.02,
20.29,
19.45,
19.42,
19.48,
19.36,
19.39,
19.03,
19.13,
19.97,
20.28,
21.37,
23.88,
23.38,
23.61,
23.13,
22.7,
23.41,
23.29,
23.21,
22.08,
22.11,
22.01,
21.29,
21.85,
22,
21.93,
23.95,
23.94,
23.41,
24.92,
27.02,
29.33,
29.06,
31.88,
30.18,
32.43,
32.78,
31.73,
31.62,
32.83,
34.94,
38.41,
41.16,
40.23,
39.45,
42.41,
41.16,
42.16,
42.93,
43.12,
45.3,
56.67,
56.36,
56.27,
51.59,
56.81,
65.43,
57.81,
58.52,
58.56,
61.1,
56.57,
51.65,
57.65,
56.54,
56.86,
58.81,
57.57,
55.05,
58.18,
59.31,
59.3,
59.74,
63.66,
62.99,
61.63,
64.59,
61.85,
67.74,
74.93,
72.31,
74.88,
70.24,
68.6,
70.62,
75.67,
72.51,
73.71,
70.85,
74.41,
73,
82.22,
93.86,
97.91,
107.88,
112.45,
120.91,
112.48,
106.92,
101.8,
106.17,
101.9,
101.72,
109.93,
106.72,
98.52,
104.91,
99.93,
93.77,
89.44,
97.88,
99.36,
101.99,
99.89,
92.14,
95.85,
93.81,
94.35,
97.6,
102.1,
94.39,
93.62,
92.88,
91.08,
83.84,
84.36,
88.77,
86.9,
92.29,
94.27,
95.99,
101.67,
101.4,
96.96,
97.81,
100.57,
97.95,
95.48,
95.65,
96.87,
101.14,
102.77,
106.94,
109.01,
107.46,
111.65,
112.49,
116.97,
113.5,
110.32,
108.92,
112.25,
111.53,
108.32,
105.04,
101.75,
99.91,
104.02,
103.47,
109.9,
108.35,
119.03,
125.68,
129.43,
130.03,
130.16,
133.26,
125.31,
130.8,
143.82,
144.79,
144.3,
144.39,
148.86,
151.06,
163.9,
176.65,
183.95,
182.05,
201.85,
195.92,
169.82,
191.76,
179.46,
175.22,
172.65,
183.87,
188.98,
190.46,
186.34,
189.64,
192.02,
194.19,
202.45,
192.24,
181.53,
185.05,
184,
174.37,
178.69,
179.51,
180.68,
172.41,
173.3,
172.37,
153.16,
138.47,
151.26,
138.4,
136.21,
131.84,
142.08,
142.5,
151.21,
148.81,
156.94,
154.75,
147.79,
144.83,
139.23,
141.31,
137.99,
137.79,
126.76,
134.64,
137.58,
143.7,
146.05,
145.74,
152.88,
148.03,
142.08,
152.58,
146.02,
145.42,
143.42,
147.53,
142.03,
158.52,
159.36,
169.43,
172.47,
169.93,
186.69,
178.15,
176.93,
176.15,
167.7,
168.35,
163.42,
170.15,
168.68,
168.32,
166.88,
165.65,
166.14,
163.14,
164.9,
171.78,
173.55,
170.15,
162.51,
157.83,
162.12,
158.98,
149.31,
155.21,
147.29,
143.04,
145.52,
151.3,
143.28,
137.41,
135.62,
133.55,
134.61,
133.7,
128.67,
132.34,
136.57,
136.81,
149.71,
140.03,
140.28,
146.61,
146.68,
154.03,
140.84,
127.85,
134.23,
143.05,
131.64,
139.81,
141.43,
141.99,
135.73,
139.47,
141.89,
147.66,
159.37,
160.62,
155.5,
159.22,
169.12,
173.6,
184.49,
178.9,
173.03,
178.07,
171.86,
183.07,
183.88,
184.91,
182.57,
179.16,
171.7,
167.37,
152.78,
142.53,
138.32,
129.79,
144.4,
144.78,
163.12,
156.29,
154.01,
141.56,
146.29,
146.65,
143.7,
142.58,
139.04,
141.92,
142.42,
144.28,
142.27,
142.78,
143.23,
153.27,
160.67,
158.92,
157.12,
146.78,
143.88,
140.01,
137.99,
135.35,
128.5,
134.95,
127.54,
133.64,
129.4,
125.05,
127.72,
130.15,
135.13,
135.64,
132.43,
136.06,
139.02,
137.15,
131.38,
131.47,
131.54,
134.34,
142.88,
146.67,
149.42,
144.64,
144.79,
152.74,
147.97,
155.54,
157.63,
156.75,
158.47,
152.51,
145.12,
140.18,
136.81,
143.24,
142.59,
146.47,
143.97,
143.5,
139.33,
139.04,
145.52,
146.39,
147.74,
157.59,
154.76,
154.28,
150.5,
154.93,
159.79,
167.4,
166.16,
167.6,
170.86,
177.19,
164.91,
170.87,
176.63,
178.28,
179.43,
174.87,
168.69,
166.11,
166.16,
162.52,
157.95,
166.63,
186.59,
196.36,
199.86,
199.89,
210.07,
222.12,
211.67,
215.1,
210.42,
217.89,
215.8,
237.47,
239.6,
237.51,
235.48,
256.5,
256.9,
254.95,
252.74,
234.18,
230.69,
241.96,
237.58,
243.33,
237.6,
236.79,
225.73,
233.92,
229.15
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "SOL Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
0.5065,
0.5244,
0.5188,
0.5359,
0.509,
0.53,
0.5183,
0.538,
0.5067,
0.5208,
0.5251,
0.5192,
0.4801,
0.4801,
0.4759,
0.4794,
0.4868,
0.4936,
0.4929,
0.4999,
0.4938,
0.4961,
0.4865,
0.4903,
0.479,
0.4838,
0.4647,
0.4747,
0.4729,
0.4732,
0.4845,
0.489,
0.4872,
0.4777,
0.4622,
0.4687,
0.4704,
0.468,
0.478,
0.4753,
0.471,
0.8153,
0.7179,
0.7145,
0.7468,
0.7374,
0.7779,
0.8199,
0.7942,
0.7713,
0.7331,
0.7384,
0.7021,
0.7089,
0.7161,
0.7139,
0.712,
0.7121,
0.7046,
0.6976,
0.7069,
0.685,
0.663,
0.6356,
0.6288,
0.624,
0.6236,
0.6418,
0.6433,
0.6331,
0.6318,
0.6276,
0.6256,
0.6343,
0.6104,
0.5889,
0.5064,
0.5062,
0.5199,
0.5384,
0.5245,
0.521,
0.5301,
0.5187,
0.5258,
0.5231,
0.5236,
0.5232,
0.5398,
0.5284,
0.511,
0.498,
0.4988,
0.5047,
0.5087,
0.5056,
0.5033,
0.505,
0.505,
0.5038,
0.4969,
0.4744,
0.4804,
0.4832,
0.4892,
0.5005,
0.4998,
0.4925,
0.503,
0.514,
0.5213,
0.5071,
0.5122,
0.5076,
0.5021,
0.5056,
0.5019,
0.4993,
0.5098,
0.5215,
0.5149,
0.5241,
0.5123,
0.539,
0.5326,
0.5227,
0.5255,
0.5216,
0.5174,
0.5027,
0.4965,
0.4888,
0.483,
0.4851,
0.4865,
0.4874,
0.4978,
0.4912,
0.4878,
0.5197,
0.5149,
0.5208,
0.5226,
0.5475,
0.5588,
0.5552,
0.5533,
0.543,
0.5446,
0.5561,
0.578,
0.5996,
0.6085,
0.6054,
0.6121,
0.6149,
0.6607,
0.7148,
0.685,
0.6869,
0.6665,
0.6595,
0.6626,
0.6613,
0.6702,
0.6296,
0.6481,
0.6119,
0.6133,
0.6106,
0.6258,
0.6122,
0.5788,
0.6109,
0.6209,
0.6212,
0.6228,
0.6157,
0.6039,
0.6107,
0.6091,
0.6063,
0.6125,
0.6208,
0.6229,
0.6245,
0.621,
0.64,
0.6432,
0.672,
0.6584,
0.6617,
0.6187,
0.6192,
0.6275,
0.6316,
0.6156,
0.6203,
0.6103,
0.6125,
0.6047,
0.6171,
0.6241,
0.6244,
0.6195,
0.6121,
0.6462,
0.6219,
0.634,
0.6346,
0.623,
0.6207,
0.6156,
0.6294,
0.6246,
0.5823,
0.5868,
0.5757,
0.5679,
0.5515,
0.5776,
0.5669,
0.6008,
0.6019,
0.5699,
0.5747,
0.5763,
0.5757,
0.5757,
0.5685,
0.552,
0.5443,
0.5534,
0.5464,
0.5275,
0.5183,
0.5181,
0.5138,
0.5323,
0.5303,
0.5241,
0.5352,
0.5107,
0.5033,
0.5058,
0.5105,
0.5186,
0.5032,
0.5069,
0.505,
0.5138,
0.5147,
0.5262,
0.5239,
0.5261,
0.5315,
0.5247,
0.5378,
0.5622,
0.5643,
0.5496,
0.5571,
0.5626,
0.5622,
0.5491,
0.541,
0.5342,
0.545,
0.5425,
0.5506,
0.5861,
0.575,
0.5867,
0.6013,
0.6442,
0.6271,
0.6477,
0.5912,
0.6121,
0.627,
0.62,
0.6197,
0.608,
0.7234,
0.688,
0.6891,
0.669,
0.6342,
0.6031,
0.6191,
0.6453,
0.5845,
0.6107,
0.6404,
0.6115,
0.6167,
0.6325,
0.6406,
0.6317,
0.6118,
0.6244,
0.6301,
0.6212,
0.6292,
0.611,
0.5854,
0.5742,
0.5935,
0.5871,
0.593,
0.5944,
0.6147,
0.6141,
0.6172,
0.6086,
0.5468,
0.4788,
0.5033,
0.4977,
0.4965,
0.4951,
0.5025,
0.503,
0.5288,
0.5246,
0.556,
0.5445,
0.5275,
0.5254,
0.5261,
0.5179,
0.5103,
0.5151,
0.5006,
0.5175,
0.518,
0.5317,
0.5302,
0.5296,
0.5401,
0.5245,
0.5171,
0.5209,
0.5022,
0.5059,
0.4993,
0.5053,
0.5002,
0.5188,
0.5157,
0.5234,
0.5212,
0.5096,
0.5377,
0.537,
0.5269,
0.5289,
0.536,
0.5416,
0.5283,
0.534,
0.5287,
0.5238,
0.5186,
0.5176,
0.5187,
0.5135,
0.5199,
0.5257,
0.5258,
0.5215,
0.4991,
0.4926,
0.4986,
0.4969,
0.4802,
0.4916,
0.4769,
0.4746,
0.4908,
0.4891,
0.5047,
0.491,
0.4933,
0.4888,
0.4889,
0.4866,
0.4797,
0.474,
0.4757,
0.4698,
0.4753,
0.4716,
0.4727,
0.4761,
0.477,
0.4853,
0.4672,
0.4329,
0.4251,
0.4488,
0.4195,
0.4316,
0.4356,
0.4388,
0.4491,
0.4745,
0.5257,
0.5205,
0.5372,
0.5793,
0.626,
0.5697,
0.5733,
0.5937,
0.5984,
0.608,
0.5975,
0.6179,
0.5996,
0.6034,
0.5956,
0.6012,
0.6019,
0.6277,
0.623,
0.5962,
0.5607,
0.5558,
0.5228,
0.4889,
0.5062,
0.6002,
0.6166,
0.5806,
0.584,
0.5528,
0.5684,
0.577,
0.5687,
0.5607,
0.5638,
0.5665,
0.5631,
0.5985,
0.5937,
0.5999,
0.5976,
0.6109,
0.6127,
0.6,
0.5874,
0.5666,
0.5693,
0.5619,
0.5667,
0.5662,
0.5472,
0.5677,
0.5572,
0.5579,
0.5444,
0.5211,
0.5248,
0.5295,
0.5394,
0.5408,
0.5348,
0.5626,
0.5728,
0.5956,
0.5706,
0.5866,
0.5839,
0.5852,
0.5868,
0.5851,
0.5976,
0.5871,
0.5847,
0.5911,
0.5831,
0.5905,
0.5888,
0.6138,
0.6412,
0.6114,
0.5967,
0.5383,
0.5217,
0.534,
0.5294,
0.5336,
0.5286,
0.5311,
0.5245,
0.5305,
0.5388,
0.5393,
0.5321,
0.5483,
0.5417,
0.5482,
0.5441,
0.5465,
0.544,
0.5482,
0.5449,
0.5339,
0.5258,
0.532,
0.5022,
0.5134,
0.5168,
0.5195,
0.5284,
0.5229,
0.5095,
0.5131,
0.5103,
0.503,
0.5035,
0.514,
0.5418,
0.5556,
0.5537,
0.5593,
0.5884,
0.6207,
0.704,
0.6898,
0.7736,
0.8922,
1.1209,
1.0543,
1.1137,
1.1003,
1.1041,
1.247,
1.4726,
1.4685,
1.4331,
1.4142,
1.3984,
1.4696,
1.5421,
1.8006,
1.9513,
2.2937,
2.7245,
2.5102,
2.3574,
2.2446
],
"high": [
0.5167,
0.5271,
0.534,
0.547,
0.5431,
0.5328,
0.5384,
0.5418,
0.5388,
0.5293,
0.528,
0.5658,
0.5205,
0.4858,
0.4833,
0.4869,
0.4979,
0.4991,
0.4967,
0.5034,
0.5272,
0.5023,
0.4961,
0.4977,
0.4919,
0.4851,
0.4844,
0.4773,
0.4827,
0.476,
0.4961,
0.4914,
0.4935,
0.4919,
0.4842,
0.4708,
0.4748,
0.4717,
0.48,
0.4784,
0.4772,
0.938,
0.8253,
0.7362,
0.79,
0.7662,
0.785,
0.8547,
0.8489,
0.7987,
0.7799,
0.7525,
0.743,
0.7163,
0.7313,
0.7328,
0.7189,
0.7158,
0.7358,
0.7205,
0.7082,
0.7081,
0.6875,
0.6677,
0.6358,
0.6388,
0.6299,
0.6482,
0.6662,
0.6445,
0.6413,
0.6335,
0.6385,
0.6369,
0.6348,
0.617,
0.5948,
0.523,
0.5249,
0.5582,
0.5398,
0.5256,
0.5368,
0.5319,
0.5319,
0.5283,
0.5303,
0.525,
0.5496,
0.5404,
0.5288,
0.512,
0.5029,
0.5107,
0.513,
0.5088,
0.5058,
0.5069,
0.5076,
0.5049,
0.5039,
0.4982,
0.4867,
0.4897,
0.4941,
0.5086,
0.5035,
0.5004,
0.5077,
0.5166,
0.5254,
0.5214,
0.517,
0.5138,
0.5118,
0.5072,
0.5075,
0.5071,
0.5102,
0.5494,
0.5218,
0.526,
0.5266,
0.5479,
0.5426,
0.5326,
0.5298,
0.5258,
0.5234,
0.5201,
0.5027,
0.4977,
0.4889,
0.4907,
0.4883,
0.4902,
0.5109,
0.498,
0.4924,
0.5245,
0.5309,
0.5325,
0.5242,
0.5536,
0.5866,
0.5639,
0.5695,
0.5588,
0.5506,
0.5614,
0.5843,
0.6213,
0.616,
0.6262,
0.615,
0.6181,
0.663,
0.7324,
0.7155,
0.699,
0.7069,
0.6711,
0.69,
0.6709,
0.75,
0.6724,
0.6504,
0.653,
0.6244,
0.6144,
0.6286,
0.6282,
0.6178,
0.6162,
0.6238,
0.6258,
0.6238,
0.6375,
0.6168,
0.6139,
0.617,
0.6099,
0.6143,
0.6229,
0.6342,
0.6439,
0.6307,
0.6437,
0.6544,
0.6756,
0.7,
0.6715,
0.6628,
0.6263,
0.6348,
0.6379,
0.6441,
0.6258,
0.6234,
0.6145,
0.6167,
0.6264,
0.6249,
0.6317,
0.6249,
0.6295,
0.6488,
0.6469,
0.6421,
0.6584,
0.6363,
0.6297,
0.6285,
0.6309,
0.6405,
0.6394,
0.5938,
0.5885,
0.5758,
0.573,
0.5821,
0.5789,
0.615,
0.624,
0.6035,
0.5775,
0.5932,
0.5895,
0.5797,
0.5763,
0.569,
0.5537,
0.5551,
0.5552,
0.5497,
0.5318,
0.5194,
0.5182,
0.5368,
0.5349,
0.5355,
0.54,
0.5393,
0.5144,
0.5107,
0.5142,
0.527,
0.5192,
0.5143,
0.5112,
0.5155,
0.52,
0.5282,
0.5282,
0.536,
0.538,
0.5338,
0.5418,
0.5769,
0.5791,
0.5655,
0.5625,
0.5679,
0.5751,
0.5629,
0.5517,
0.5437,
0.5481,
0.5489,
0.5528,
0.5976,
0.6059,
0.6237,
0.6034,
0.6501,
0.6446,
0.666,
0.6685,
0.624,
0.6389,
0.6338,
0.6323,
0.6278,
0.744,
0.7303,
0.7026,
0.7077,
0.6759,
0.6479,
0.6249,
0.6686,
0.6489,
0.6187,
0.6546,
0.6454,
0.6329,
0.6358,
0.6629,
0.653,
0.6349,
0.6378,
0.6455,
0.6372,
0.6301,
0.6336,
0.6185,
0.593,
0.6176,
0.5939,
0.5988,
0.6028,
0.6265,
0.6431,
0.6203,
0.6214,
0.6159,
0.5491,
0.5073,
0.5189,
0.5021,
0.5081,
0.5057,
0.5108,
0.53,
0.5367,
0.5715,
0.5576,
0.5519,
0.5327,
0.5361,
0.5265,
0.5253,
0.5175,
0.5198,
0.5207,
0.5245,
0.5367,
0.541,
0.5334,
0.5703,
0.5443,
0.53,
0.5238,
0.5208,
0.5079,
0.5088,
0.5121,
0.5132,
0.5196,
0.5227,
0.5292,
0.5256,
0.5236,
0.538,
0.5571,
0.5383,
0.5488,
0.5375,
0.5426,
0.542,
0.5409,
0.5355,
0.5334,
0.5278,
0.5259,
0.5219,
0.5209,
0.5232,
0.5303,
0.5326,
0.5281,
0.528,
0.5008,
0.4992,
0.506,
0.497,
0.4982,
0.4917,
0.4814,
0.5053,
0.4997,
0.5213,
0.5096,
0.4996,
0.5023,
0.4959,
0.4897,
0.4892,
0.4825,
0.4802,
0.4783,
0.4771,
0.4811,
0.4768,
0.4784,
0.4849,
0.4889,
0.4875,
0.4697,
0.4335,
0.4497,
0.4495,
0.4438,
0.4398,
0.4426,
0.4573,
0.478,
0.5661,
0.54,
0.5404,
0.5945,
0.6378,
0.6369,
0.5867,
0.6047,
0.608,
0.6229,
0.617,
0.6327,
0.629,
0.6093,
0.6091,
0.6161,
0.6124,
0.6379,
0.6586,
0.6303,
0.597,
0.5777,
0.559,
0.5257,
0.5188,
0.6434,
0.6424,
0.6245,
0.6022,
0.5935,
0.5795,
0.5834,
0.5828,
0.5742,
0.5723,
0.571,
0.5845,
0.6091,
0.615,
0.6056,
0.6049,
0.616,
0.631,
0.614,
0.6021,
0.6003,
0.5845,
0.577,
0.5678,
0.5721,
0.5667,
0.5688,
0.5724,
0.5648,
0.5598,
0.5473,
0.5329,
0.5316,
0.5431,
0.5428,
0.5413,
0.5884,
0.5745,
0.5992,
0.5955,
0.5916,
0.5934,
0.5858,
0.5945,
0.5928,
0.6116,
0.6053,
0.596,
0.5927,
0.5957,
0.5964,
0.5972,
0.6259,
0.6649,
0.6548,
0.6342,
0.6069,
0.5445,
0.539,
0.5352,
0.5372,
0.5459,
0.5358,
0.5346,
0.545,
0.5419,
0.5432,
0.5395,
0.5524,
0.5556,
0.5538,
0.5666,
0.5532,
0.55,
0.549,
0.5608,
0.5498,
0.5341,
0.5338,
0.5322,
0.5154,
0.518,
0.5217,
0.5305,
0.5285,
0.5238,
0.5244,
0.516,
0.5111,
0.5147,
0.5191,
0.5469,
0.5785,
0.56,
0.562,
0.6187,
0.633,
0.7398,
0.748,
0.8473,
0.9279,
1.2698,
1.1603,
1.1865,
1.148,
1.151,
1.2643,
1.5,
1.63,
1.513,
1.5393,
1.4588,
1.5217,
1.5465,
1.8149,
1.9575,
2.35,
2.8723,
2.9092,
2.68,
2.4942
],
"low": [
0.5014,
0.5033,
0.5144,
0.5151,
0.4867,
0.4952,
0.507,
0.5205,
0.472,
0.5027,
0.5086,
0.5054,
0.461,
0.4663,
0.4558,
0.4694,
0.4741,
0.4811,
0.4716,
0.4892,
0.4821,
0.484,
0.478,
0.4829,
0.4701,
0.4759,
0.4493,
0.4612,
0.4498,
0.464,
0.4697,
0.4784,
0.4816,
0.4696,
0.4612,
0.4575,
0.4649,
0.4664,
0.4622,
0.4709,
0.4649,
0.4695,
0.6686,
0.6921,
0.702,
0.7122,
0.7304,
0.7685,
0.771,
0.7601,
0.7215,
0.7149,
0.6808,
0.6743,
0.6927,
0.7061,
0.7021,
0.7041,
0.6825,
0.685,
0.6732,
0.6762,
0.6545,
0.625,
0.6106,
0.6214,
0.5967,
0.6141,
0.6314,
0.6241,
0.6257,
0.6224,
0.6235,
0.6241,
0.58,
0.572,
0.4226,
0.4829,
0.5006,
0.516,
0.503,
0.5032,
0.5157,
0.5111,
0.5078,
0.5178,
0.5163,
0.5102,
0.5131,
0.5216,
0.495,
0.4864,
0.4943,
0.4971,
0.4966,
0.499,
0.4909,
0.4965,
0.4941,
0.5015,
0.4923,
0.4595,
0.47,
0.4723,
0.4799,
0.4874,
0.4968,
0.4894,
0.4864,
0.5005,
0.5065,
0.5001,
0.5036,
0.5055,
0.4984,
0.4912,
0.496,
0.4968,
0.4952,
0.5061,
0.5134,
0.5137,
0.5075,
0.5055,
0.5194,
0.5155,
0.5169,
0.5197,
0.5153,
0.4875,
0.4917,
0.4788,
0.4729,
0.4786,
0.4835,
0.485,
0.485,
0.4845,
0.4855,
0.4769,
0.5084,
0.5109,
0.5118,
0.5199,
0.5346,
0.5404,
0.5426,
0.5325,
0.5405,
0.5405,
0.5494,
0.5627,
0.5804,
0.5865,
0.5914,
0.6083,
0.6137,
0.6584,
0.65,
0.6725,
0.63,
0.6359,
0.6401,
0.6458,
0.6397,
0.5967,
0.6251,
0.6033,
0.5859,
0.589,
0.6012,
0.6061,
0.5725,
0.5774,
0.6059,
0.6155,
0.6157,
0.6064,
0.5937,
0.5957,
0.604,
0.5982,
0.6031,
0.611,
0.6168,
0.582,
0.6076,
0.6104,
0.6204,
0.6373,
0.651,
0.6468,
0.6,
0.6067,
0.5925,
0.6053,
0.6116,
0.61,
0.6084,
0.5778,
0.5972,
0.601,
0.6103,
0.6154,
0.6106,
0.6035,
0.6082,
0.6,
0.6127,
0.6249,
0.6121,
0.6158,
0.6055,
0.6083,
0.6213,
0.5,
0.5692,
0.553,
0.5568,
0.5454,
0.5442,
0.5531,
0.5489,
0.5856,
0.5515,
0.563,
0.5717,
0.5687,
0.5659,
0.5611,
0.543,
0.5224,
0.539,
0.5451,
0.5169,
0.4962,
0.511,
0.5037,
0.5084,
0.5262,
0.5211,
0.5193,
0.5071,
0.4853,
0.49,
0.4987,
0.506,
0.5003,
0.4969,
0.4988,
0.4993,
0.5101,
0.514,
0.5186,
0.5216,
0.5143,
0.514,
0.5203,
0.537,
0.5523,
0.5392,
0.5471,
0.5538,
0.543,
0.5326,
0.5366,
0.5251,
0.5313,
0.542,
0.5288,
0.5476,
0.53,
0.5669,
0.5829,
0.5993,
0.59,
0.615,
0.543,
0.5755,
0.6064,
0.6011,
0.6158,
0.5965,
0.583,
0.6633,
0.6703,
0.6412,
0.596,
0.5915,
0.5869,
0.5946,
0.5712,
0.5685,
0.5972,
0.5996,
0.6032,
0.6133,
0.6263,
0.625,
0.6055,
0.6033,
0.6087,
0.6178,
0.6204,
0.5947,
0.579,
0.5663,
0.5623,
0.569,
0.5852,
0.5894,
0.5881,
0.6012,
0.5928,
0.6029,
0.509,
0.4274,
0.4637,
0.4813,
0.4754,
0.4715,
0.4856,
0.4665,
0.4981,
0.5183,
0.5221,
0.5415,
0.5212,
0.5137,
0.5143,
0.508,
0.5085,
0.4986,
0.4875,
0.4782,
0.5067,
0.5145,
0.5272,
0.524,
0.5247,
0.5217,
0.5153,
0.5088,
0.4973,
0.5005,
0.4957,
0.4866,
0.4972,
0.4967,
0.5123,
0.5136,
0.5186,
0.5063,
0.5064,
0.5319,
0.5224,
0.5027,
0.5168,
0.5318,
0.5255,
0.5236,
0.5211,
0.52,
0.5127,
0.5119,
0.5174,
0.508,
0.5118,
0.5182,
0.524,
0.5164,
0.4508,
0.4897,
0.4909,
0.4933,
0.4707,
0.4742,
0.4756,
0.4601,
0.474,
0.4878,
0.4838,
0.4763,
0.4868,
0.4883,
0.4797,
0.4841,
0.4742,
0.462,
0.4731,
0.4653,
0.4657,
0.4692,
0.4716,
0.4701,
0.4754,
0.476,
0.4611,
0.4322,
0.3872,
0.4235,
0.4182,
0.4032,
0.427,
0.431,
0.4363,
0.4445,
0.4737,
0.5136,
0.5203,
0.5309,
0.5783,
0.5575,
0.54,
0.5707,
0.5721,
0.5855,
0.5824,
0.5915,
0.5844,
0.586,
0.5833,
0.591,
0.5921,
0.5953,
0.6217,
0.5681,
0.5464,
0.5408,
0.5136,
0.4319,
0.4877,
0.4922,
0.5785,
0.5656,
0.5779,
0.5452,
0.5501,
0.5626,
0.5641,
0.5504,
0.5535,
0.5611,
0.5625,
0.5608,
0.5875,
0.584,
0.5923,
0.5909,
0.6043,
0.595,
0.5782,
0.5528,
0.5559,
0.5573,
0.5462,
0.5624,
0.5434,
0.5443,
0.5565,
0.5347,
0.5399,
0.5026,
0.5197,
0.5208,
0.5269,
0.5337,
0.5231,
0.5334,
0.5556,
0.5704,
0.5686,
0.5598,
0.5789,
0.562,
0.581,
0.5763,
0.58,
0.578,
0.5787,
0.5814,
0.5824,
0.5759,
0.5824,
0.5856,
0.6076,
0.6089,
0.5778,
0.5267,
0.5068,
0.51,
0.526,
0.5279,
0.5286,
0.5209,
0.5212,
0.5228,
0.5296,
0.5353,
0.5252,
0.5282,
0.5316,
0.5375,
0.5419,
0.5397,
0.5406,
0.5366,
0.5409,
0.5291,
0.5119,
0.5241,
0.486,
0.4989,
0.5108,
0.5113,
0.5185,
0.5194,
0.5031,
0.5025,
0.5063,
0.4917,
0.4957,
0.5019,
0.514,
0.5377,
0.5413,
0.5436,
0.5555,
0.5703,
0.597,
0.64,
0.6822,
0.7719,
0.8778,
1.0026,
1.062,
1.0688,
1.0556,
1.0774,
1.247,
1.4232,
1.2775,
1.355,
1.2833,
1.3524,
1.4292,
1.5233,
1.7635,
1.8475,
2.2239,
2.2983,
2.28,
2.1777
],
"open": [
0.5167,
0.5065,
0.5245,
0.5188,
0.5359,
0.5089,
0.53,
0.5237,
0.538,
0.5067,
0.5209,
0.525,
0.5193,
0.4802,
0.4801,
0.4758,
0.4794,
0.4868,
0.4935,
0.4928,
0.4999,
0.4937,
0.496,
0.4865,
0.4903,
0.479,
0.4839,
0.4648,
0.4747,
0.473,
0.4732,
0.4844,
0.489,
0.4872,
0.4777,
0.4622,
0.4686,
0.4705,
0.4681,
0.478,
0.4753,
0.471,
0.8151,
0.7178,
0.7144,
0.7468,
0.7373,
0.778,
0.8198,
0.7942,
0.7713,
0.733,
0.7384,
0.702,
0.709,
0.7161,
0.7138,
0.7119,
0.7122,
0.7047,
0.6976,
0.7069,
0.6849,
0.6629,
0.6356,
0.6288,
0.624,
0.6235,
0.6418,
0.6434,
0.6331,
0.6317,
0.6276,
0.6256,
0.6342,
0.6104,
0.589,
0.5063,
0.5062,
0.52,
0.5385,
0.5245,
0.5211,
0.5302,
0.5187,
0.5258,
0.5231,
0.5235,
0.5232,
0.5398,
0.5284,
0.511,
0.4981,
0.4989,
0.5047,
0.5087,
0.5056,
0.5033,
0.5051,
0.5049,
0.5038,
0.4969,
0.4744,
0.4804,
0.4833,
0.4892,
0.5004,
0.4997,
0.4925,
0.503,
0.5139,
0.5213,
0.5072,
0.5122,
0.5076,
0.502,
0.5056,
0.5019,
0.4993,
0.5097,
0.5214,
0.5148,
0.524,
0.5122,
0.5391,
0.5326,
0.5227,
0.5255,
0.5216,
0.5174,
0.5027,
0.4964,
0.4889,
0.4831,
0.4852,
0.4866,
0.4874,
0.4977,
0.4911,
0.4878,
0.5197,
0.515,
0.5208,
0.5226,
0.5475,
0.5587,
0.5552,
0.5534,
0.543,
0.5446,
0.556,
0.578,
0.5996,
0.6084,
0.6053,
0.612,
0.6149,
0.6606,
0.7147,
0.6851,
0.6869,
0.6667,
0.6594,
0.6626,
0.6612,
0.6701,
0.6296,
0.6482,
0.6118,
0.6132,
0.6106,
0.6258,
0.6121,
0.5787,
0.6115,
0.6208,
0.6212,
0.6228,
0.6157,
0.6039,
0.6106,
0.609,
0.6063,
0.6126,
0.6208,
0.6229,
0.6245,
0.6208,
0.64,
0.6431,
0.6721,
0.6584,
0.6617,
0.6187,
0.6191,
0.6276,
0.6316,
0.6156,
0.6202,
0.6103,
0.6125,
0.6047,
0.6171,
0.624,
0.6243,
0.6195,
0.6122,
0.6461,
0.6219,
0.6341,
0.6346,
0.6229,
0.6207,
0.6155,
0.6295,
0.6245,
0.5823,
0.5868,
0.5758,
0.568,
0.5515,
0.5776,
0.567,
0.6008,
0.6019,
0.5699,
0.5746,
0.5763,
0.5757,
0.5758,
0.5685,
0.552,
0.5443,
0.5534,
0.5464,
0.5275,
0.5183,
0.5182,
0.5139,
0.5322,
0.5304,
0.5242,
0.5351,
0.5106,
0.5033,
0.5057,
0.5106,
0.5187,
0.5031,
0.5069,
0.505,
0.5138,
0.5146,
0.5262,
0.5239,
0.5262,
0.5315,
0.5246,
0.5378,
0.5622,
0.5643,
0.5496,
0.557,
0.5626,
0.5622,
0.549,
0.541,
0.5342,
0.5449,
0.5424,
0.5506,
0.5862,
0.5749,
0.5868,
0.6013,
0.6442,
0.6271,
0.6476,
0.5913,
0.6121,
0.6271,
0.62,
0.6198,
0.608,
0.723,
0.688,
0.6891,
0.669,
0.6341,
0.603,
0.6191,
0.6453,
0.5845,
0.6108,
0.6403,
0.6115,
0.6168,
0.6326,
0.6405,
0.6317,
0.6119,
0.6243,
0.63,
0.6211,
0.6292,
0.611,
0.5854,
0.5741,
0.5934,
0.587,
0.593,
0.5945,
0.6146,
0.614,
0.6171,
0.6085,
0.5468,
0.4788,
0.5034,
0.4975,
0.4965,
0.4951,
0.5026,
0.503,
0.5288,
0.5246,
0.556,
0.5445,
0.5276,
0.5254,
0.5261,
0.5178,
0.5104,
0.515,
0.5006,
0.5175,
0.518,
0.5317,
0.5305,
0.5295,
0.5398,
0.5244,
0.5171,
0.5208,
0.5022,
0.5059,
0.4993,
0.5052,
0.5002,
0.5188,
0.5158,
0.5235,
0.5214,
0.5096,
0.5377,
0.537,
0.5269,
0.5288,
0.5359,
0.5416,
0.5283,
0.5339,
0.5286,
0.5238,
0.5185,
0.5176,
0.5187,
0.5135,
0.5199,
0.5257,
0.5259,
0.5214,
0.4991,
0.4927,
0.4987,
0.4969,
0.4803,
0.4917,
0.4768,
0.4746,
0.4908,
0.4891,
0.5048,
0.4909,
0.4933,
0.4888,
0.489,
0.4867,
0.4798,
0.4741,
0.4758,
0.4697,
0.4753,
0.4716,
0.4727,
0.4761,
0.4771,
0.4853,
0.4672,
0.433,
0.4252,
0.4489,
0.4196,
0.4316,
0.4357,
0.4388,
0.4491,
0.4745,
0.5257,
0.5205,
0.5372,
0.5792,
0.626,
0.5697,
0.5733,
0.5938,
0.5985,
0.608,
0.5976,
0.6179,
0.5996,
0.6033,
0.5956,
0.6012,
0.6019,
0.6278,
0.623,
0.5965,
0.5606,
0.5558,
0.5229,
0.4889,
0.5062,
0.6003,
0.6166,
0.5806,
0.5841,
0.5528,
0.5683,
0.577,
0.5687,
0.5608,
0.5637,
0.5664,
0.5631,
0.5984,
0.5937,
0.6,
0.5977,
0.6109,
0.6126,
0.6,
0.5873,
0.5667,
0.5695,
0.5618,
0.5667,
0.5662,
0.5471,
0.5677,
0.5572,
0.5579,
0.5445,
0.5211,
0.5249,
0.5295,
0.5395,
0.5407,
0.5347,
0.5625,
0.5727,
0.5955,
0.5706,
0.5865,
0.5838,
0.5852,
0.5868,
0.5851,
0.5977,
0.5871,
0.5848,
0.5912,
0.5831,
0.5905,
0.5889,
0.6139,
0.6412,
0.6114,
0.5968,
0.5383,
0.5218,
0.534,
0.5294,
0.5336,
0.5287,
0.531,
0.5245,
0.5305,
0.5387,
0.5393,
0.5321,
0.5484,
0.5417,
0.5484,
0.5441,
0.5465,
0.544,
0.5482,
0.5449,
0.5338,
0.5259,
0.532,
0.5022,
0.5135,
0.5168,
0.5195,
0.5285,
0.5229,
0.5096,
0.513,
0.5103,
0.503,
0.5035,
0.514,
0.5418,
0.5556,
0.5537,
0.5592,
0.5885,
0.6208,
0.7042,
0.6897,
0.7736,
0.8921,
1.1208,
1.0623,
1.1138,
1.1004,
1.1042,
1.2471,
1.4726,
1.4686,
1.4334,
1.4142,
1.396,
1.4696,
1.542,
1.8005,
1.9514,
2.2938,
2.7244,
2.5103,
2.3574
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "XRP Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
0.07477,
0.08266,
0.08177,
0.08138,
0.07832,
0.07821,
0.07675,
0.072,
0.06961,
0.07025,
0.07115,
0.07192,
0.071,
0.07098,
0.07053,
0.07164,
0.07016,
0.06999,
0.07057,
0.07233,
0.07226,
0.07315,
0.0722,
0.07313,
0.07383,
0.07432,
0.07375,
0.07445,
0.0762,
0.07726,
0.07603,
0.07731,
0.07703,
0.07707,
0.07711,
0.07882,
0.08007,
0.07748,
0.07754,
0.07734,
0.07784,
0.08171,
0.07988,
0.08082,
0.0798,
0.07997,
0.07978,
0.08031,
0.08073,
0.08043,
0.0839,
0.08337,
0.08148,
0.0819,
0.08242,
0.08265,
0.08506,
0.08322,
0.07999,
0.07792,
0.07866,
0.07632,
0.07714,
0.07679,
0.07754,
0.07699,
0.07685,
0.07677,
0.07674,
0.07734,
0.07723,
0.07751,
0.07711,
0.07748,
0.07634,
0.07465,
0.07265,
0.07297,
0.07408,
0.07591,
0.0751,
0.07548,
0.0776,
0.07664,
0.07724,
0.07745,
0.07755,
0.07634,
0.07732,
0.07562,
0.07673,
0.07608,
0.07702,
0.07703,
0.07751,
0.07746,
0.07893,
0.07917,
0.07915,
0.07917,
0.0783,
0.07755,
0.08075,
0.08123,
0.08377,
0.08405,
0.08352,
0.08334,
0.08388,
0.08455,
0.08444,
0.08301,
0.08334,
0.08362,
0.0836,
0.08466,
0.08471,
0.0855,
0.08675,
0.08912,
0.0886,
0.09011,
0.08744,
0.09071,
0.08891,
0.08824,
0.08719,
0.08808,
0.08802,
0.08613,
0.08622,
0.08603,
0.08481,
0.08549,
0.08501,
0.08667,
0.08885,
0.08854,
0.08915,
0.08999,
0.09074,
0.0916,
0.09031,
0.09219,
0.09236,
0.09351,
0.09285,
0.09353,
0.09433,
0.09489,
0.09558,
0.09715,
0.10014,
0.09922,
0.09722,
0.09765,
0.09808,
0.09765,
0.09658,
0.09833,
0.09889,
0.10622,
0.108,
0.10851,
0.10688,
0.10222,
0.10406,
0.10233,
0.10371,
0.1029,
0.10349,
0.10096,
0.09612,
0.10115,
0.10208,
0.10455,
0.10895,
0.10778,
0.10193,
0.10295,
0.10343,
0.10347,
0.10306,
0.10317,
0.10308,
0.10384,
0.10356,
0.10476,
0.10416,
0.10663,
0.10664,
0.10784,
0.10383,
0.10359,
0.1043,
0.106,
0.10156,
0.10282,
0.10203,
0.1009,
0.1006,
0.10273,
0.10463,
0.10508,
0.10676,
0.1062,
0.10586,
0.10305,
0.10534,
0.10545,
0.1056,
0.10595,
0.10764,
0.10772,
0.10834,
0.10675,
0.10696,
0.10438,
0.10387,
0.1028,
0.1042,
0.10277,
0.10524,
0.10619,
0.10684,
0.11424,
0.11121,
0.10865,
0.10807,
0.10838,
0.10813,
0.1105,
0.11006,
0.10895,
0.10931,
0.10722,
0.10882,
0.11212,
0.11448,
0.11244,
0.11224,
0.11304,
0.11206,
0.11226,
0.11564,
0.11629,
0.11724,
0.11843,
0.11898,
0.12101,
0.1236,
0.12189,
0.1237,
0.12436,
0.12422,
0.125,
0.12687,
0.12956,
0.13104,
0.13282,
0.1359,
0.13518,
0.13636,
0.13921,
0.13971,
0.13901,
0.13817,
0.13742,
0.13765,
0.13983,
0.14288,
0.14214,
0.14049,
0.14148,
0.1412,
0.14065,
0.14026,
0.13585,
0.13775,
0.13709,
0.13662,
0.13579,
0.13377,
0.13372,
0.13142,
0.13194,
0.12913,
0.12633,
0.12527,
0.12624,
0.12408,
0.11244,
0.12071,
0.12115,
0.11737,
0.11823,
0.12014,
0.12043,
0.12079,
0.11933,
0.12044,
0.11989,
0.12256,
0.12296,
0.12051,
0.11662,
0.11712,
0.11915,
0.1179,
0.11959,
0.12056,
0.12303,
0.12109,
0.1191,
0.1203,
0.1148,
0.11006,
0.11243,
0.11146,
0.1118,
0.10971,
0.10925,
0.10989,
0.11105,
0.11132,
0.11223,
0.11322,
0.11329,
0.11722,
0.12014,
0.11975,
0.12124,
0.11901,
0.11956,
0.12045,
0.12226,
0.1227,
0.12226,
0.12107,
0.11864,
0.12051,
0.12293,
0.12621,
0.12741,
0.12638,
0.12738,
0.12561,
0.12547,
0.12633,
0.125,
0.12434,
0.12302,
0.12117,
0.12442,
0.12361,
0.12009,
0.11532,
0.11547,
0.11378,
0.11311,
0.1125,
0.11118,
0.1121,
0.11198,
0.11213,
0.11262,
0.11477,
0.11338,
0.11446,
0.11459,
0.11479,
0.11268,
0.11479,
0.11688,
0.11763,
0.11658,
0.11649,
0.11696,
0.1165,
0.1153,
0.1173,
0.11678,
0.11544,
0.11582,
0.11679,
0.11835,
0.11966,
0.11924,
0.11909,
0.12189,
0.12268,
0.12201,
0.12321,
0.12553,
0.1247,
0.12781,
0.12923,
0.1287,
0.1272,
0.12684,
0.12991,
0.12466,
0.12612,
0.12996,
0.13147,
0.13435,
0.13727,
0.13946,
0.13761,
0.1373,
0.134,
0.13358,
0.13449,
0.13466,
0.13468,
0.13431,
0.1324,
0.134,
0.1343,
0.1356,
0.1375,
0.1372,
0.1386,
0.1375,
0.133,
0.1287,
0.1283,
0.1236,
0.1255,
0.1264,
0.1215,
0.1234,
0.1247,
0.127,
0.1283,
0.1291,
0.1277,
0.1267,
0.1287,
0.1304,
0.1302,
0.1341,
0.1349,
0.1351,
0.1432,
0.1613,
0.1539,
0.1554,
0.1583,
0.1589,
0.1664,
0.1616,
0.1579,
0.1583,
0.1599,
0.16,
0.1577,
0.1556,
0.1542,
0.1503,
0.15,
0.1498,
0.1478,
0.1515,
0.1532,
0.1546,
0.1531,
0.1534,
0.152,
0.149,
0.1475,
0.149,
0.1489,
0.15,
0.1496,
0.1515,
0.152,
0.152,
0.1517,
0.1523,
0.1513,
0.15,
0.1532,
0.1552,
0.1551,
0.1565,
0.156,
0.1536,
0.1544,
0.1577,
0.1565,
0.1535,
0.1543,
0.1559,
0.16,
0.1605,
0.1588,
0.1598,
0.1625,
0.1626,
0.1606,
0.1588,
0.1601,
0.1594,
0.1585,
0.1567,
0.1567,
0.1584,
0.1603,
0.1603,
0.1646,
0.1626,
0.1652,
0.164,
0.1642,
0.1663,
0.1692,
0.1684,
0.1674,
0.1661,
0.1651,
0.1629,
0.1602,
0.1625,
0.1601,
0.1609,
0.1621,
0.1639,
0.1677,
0.1873,
0.177,
0.1765,
0.1912,
0.2002,
0.1993,
0.2022,
0.1995,
0.1947,
0.1985,
0.2048,
0.212,
0.2085,
0.1959,
0.1944,
0.2011,
0.2032,
0.2044,
0.2049,
0.2072,
0.221,
0.4334,
0.3306,
0.3223
],
"high": [
0.07547,
0.08408,
0.0858,
0.08295,
0.08187,
0.07919,
0.07894,
0.07844,
0.07204,
0.07059,
0.07127,
0.07275,
0.07286,
0.07217,
0.07126,
0.07175,
0.07209,
0.07041,
0.07064,
0.07267,
0.07417,
0.07374,
0.0735,
0.07379,
0.07477,
0.07536,
0.07451,
0.07483,
0.07684,
0.0777,
0.07739,
0.07784,
0.07889,
0.07792,
0.07858,
0.07965,
0.08009,
0.08045,
0.07805,
0.07757,
0.07816,
0.08238,
0.08266,
0.08157,
0.08094,
0.08055,
0.08094,
0.08049,
0.08118,
0.08154,
0.09439,
0.08524,
0.0834,
0.0823,
0.08253,
0.08302,
0.08545,
0.08531,
0.08375,
0.08035,
0.07866,
0.07873,
0.07753,
0.07787,
0.07774,
0.07756,
0.07728,
0.07736,
0.07709,
0.07755,
0.07751,
0.07753,
0.07762,
0.07762,
0.07753,
0.07677,
0.07571,
0.07348,
0.07419,
0.07648,
0.07625,
0.0756,
0.07794,
0.07794,
0.07743,
0.07764,
0.07761,
0.07759,
0.07796,
0.07732,
0.07699,
0.07753,
0.07715,
0.07715,
0.07755,
0.0778,
0.07896,
0.07943,
0.0795,
0.07923,
0.07921,
0.07885,
0.08286,
0.08203,
0.08396,
0.08422,
0.08453,
0.08388,
0.0848,
0.08489,
0.08503,
0.08476,
0.08438,
0.08391,
0.08448,
0.08499,
0.08497,
0.086,
0.08677,
0.08988,
0.0894,
0.09042,
0.09042,
0.09109,
0.0908,
0.08952,
0.08892,
0.08839,
0.08837,
0.08831,
0.08665,
0.08667,
0.08653,
0.08581,
0.08576,
0.0868,
0.09072,
0.08891,
0.08948,
0.08999,
0.09209,
0.09185,
0.0919,
0.09417,
0.09393,
0.09411,
0.09377,
0.09408,
0.09469,
0.09515,
0.09563,
0.09716,
0.10065,
0.10092,
0.09921,
0.09821,
0.09892,
0.09897,
0.09783,
0.09874,
0.10089,
0.11313,
0.10892,
0.1089,
0.11057,
0.10708,
0.10462,
0.10467,
0.10386,
0.10373,
0.10379,
0.10499,
0.10194,
0.1022,
0.10218,
0.10523,
0.10903,
0.10995,
0.108,
0.10369,
0.10404,
0.10428,
0.10415,
0.10365,
0.10402,
0.10584,
0.10417,
0.10619,
0.10554,
0.1072,
0.10866,
0.10846,
0.10794,
0.1051,
0.10452,
0.10606,
0.10628,
0.10318,
0.10345,
0.10207,
0.10166,
0.10329,
0.10492,
0.10508,
0.10693,
0.1075,
0.10838,
0.1065,
0.1054,
0.10641,
0.10672,
0.10719,
0.109,
0.10832,
0.11052,
0.10997,
0.10866,
0.10711,
0.10439,
0.1041,
0.10424,
0.10453,
0.10577,
0.10765,
0.10799,
0.11632,
0.11768,
0.1144,
0.11052,
0.10932,
0.10989,
0.1105,
0.1109,
0.11161,
0.10989,
0.10998,
0.10883,
0.11245,
0.11522,
0.11661,
0.1135,
0.11432,
0.11311,
0.11358,
0.11579,
0.11796,
0.11742,
0.119,
0.12,
0.12658,
0.12634,
0.12684,
0.12383,
0.12453,
0.12491,
0.12575,
0.12699,
0.12996,
0.13182,
0.1329,
0.13941,
0.13607,
0.13677,
0.13998,
0.14048,
0.14017,
0.1393,
0.13832,
0.13801,
0.13996,
0.14422,
0.14404,
0.14373,
0.1415,
0.14176,
0.14128,
0.14122,
0.14035,
0.13829,
0.138,
0.13885,
0.13711,
0.13609,
0.13427,
0.13406,
0.133,
0.13202,
0.12936,
0.12735,
0.12651,
0.12671,
0.12436,
0.12116,
0.12195,
0.12153,
0.11975,
0.12051,
0.12102,
0.12238,
0.12148,
0.12063,
0.12201,
0.1229,
0.12334,
0.1232,
0.12053,
0.11879,
0.11945,
0.1194,
0.1199,
0.12096,
0.12401,
0.12307,
0.12395,
0.12046,
0.12232,
0.11536,
0.1126,
0.11535,
0.11206,
0.113,
0.11016,
0.11059,
0.11116,
0.1115,
0.11248,
0.11365,
0.11414,
0.11744,
0.12057,
0.12096,
0.12282,
0.12144,
0.12086,
0.12106,
0.12336,
0.12385,
0.12356,
0.12232,
0.12202,
0.12137,
0.12375,
0.12712,
0.1275,
0.12767,
0.1274,
0.12756,
0.12588,
0.12677,
0.12665,
0.12511,
0.12454,
0.12316,
0.12443,
0.12459,
0.12384,
0.12002,
0.11571,
0.11605,
0.11411,
0.11325,
0.11258,
0.11245,
0.11225,
0.11277,
0.11296,
0.11526,
0.11519,
0.11458,
0.1148,
0.11521,
0.11516,
0.11516,
0.11696,
0.11779,
0.11797,
0.11786,
0.11714,
0.11712,
0.11665,
0.11775,
0.11812,
0.11682,
0.11719,
0.11707,
0.11874,
0.12,
0.1205,
0.11992,
0.12218,
0.125,
0.12372,
0.12382,
0.12623,
0.12585,
0.12984,
0.12933,
0.12997,
0.129,
0.12777,
0.13028,
0.13091,
0.1264,
0.12996,
0.13183,
0.13534,
0.13727,
0.14154,
0.14018,
0.13889,
0.13742,
0.1351,
0.13466,
0.1358,
0.13478,
0.13496,
0.13724,
0.136,
0.1348,
0.1364,
0.1377,
0.1377,
0.1392,
0.1394,
0.1384,
0.1331,
0.1298,
0.1284,
0.1255,
0.1287,
0.1266,
0.1238,
0.1254,
0.1271,
0.1283,
0.1297,
0.1294,
0.1282,
0.129,
0.1309,
0.1321,
0.1342,
0.1362,
0.1356,
0.1436,
0.1618,
0.1666,
0.1641,
0.1592,
0.1641,
0.17,
0.1687,
0.1636,
0.1598,
0.1615,
0.1617,
0.1603,
0.1578,
0.1569,
0.1547,
0.1521,
0.1513,
0.1503,
0.1521,
0.1534,
0.155,
0.1546,
0.1534,
0.1543,
0.152,
0.149,
0.1495,
0.1496,
0.1513,
0.1503,
0.1517,
0.1528,
0.1525,
0.1522,
0.1529,
0.1526,
0.1513,
0.1535,
0.1555,
0.1554,
0.1575,
0.1568,
0.157,
0.1553,
0.1577,
0.1578,
0.1566,
0.1548,
0.1567,
0.1604,
0.162,
0.1607,
0.1615,
0.164,
0.1635,
0.1632,
0.1606,
0.1604,
0.1605,
0.1595,
0.1587,
0.157,
0.1587,
0.1607,
0.1607,
0.165,
0.1668,
0.1654,
0.1663,
0.1645,
0.1671,
0.1698,
0.1705,
0.1688,
0.1677,
0.1663,
0.1657,
0.1632,
0.1641,
0.1629,
0.1619,
0.1622,
0.1668,
0.1678,
0.1903,
0.1922,
0.185,
0.1914,
0.2047,
0.2013,
0.2069,
0.2067,
0.1997,
0.2014,
0.2048,
0.2248,
0.2171,
0.2123,
0.2009,
0.2022,
0.2036,
0.2072,
0.2072,
0.2096,
0.221,
0.4495,
0.45,
0.3453
],
"low": [
0.07406,
0.07457,
0.08093,
0.08016,
0.07681,
0.07739,
0.07625,
0.07103,
0.06445,
0.06817,
0.06928,
0.07107,
0.07009,
0.06942,
0.0689,
0.07029,
0.06951,
0.06944,
0.06799,
0.07027,
0.0714,
0.07152,
0.07141,
0.07204,
0.07235,
0.07375,
0.07248,
0.07339,
0.0741,
0.07597,
0.07516,
0.07578,
0.07694,
0.0766,
0.07692,
0.07677,
0.07867,
0.07734,
0.07619,
0.07678,
0.07713,
0.07767,
0.07873,
0.07987,
0.0789,
0.07897,
0.07887,
0.07931,
0.07992,
0.08043,
0.08025,
0.0827,
0.08034,
0.08014,
0.08042,
0.08205,
0.08264,
0.08309,
0.07913,
0.07736,
0.07633,
0.07627,
0.07617,
0.07619,
0.07576,
0.07667,
0.07595,
0.07625,
0.07612,
0.07664,
0.07678,
0.07716,
0.07696,
0.077,
0.0762,
0.07399,
0.07188,
0.07199,
0.07294,
0.07402,
0.07402,
0.07409,
0.07542,
0.07615,
0.07607,
0.07715,
0.07712,
0.07624,
0.0759,
0.07543,
0.07518,
0.07577,
0.07598,
0.07664,
0.0767,
0.07699,
0.07722,
0.07869,
0.07823,
0.07869,
0.07772,
0.07699,
0.07744,
0.08023,
0.08092,
0.08289,
0.08327,
0.08306,
0.08295,
0.08372,
0.08407,
0.08274,
0.08279,
0.08317,
0.08343,
0.08323,
0.08413,
0.08465,
0.08443,
0.08672,
0.08838,
0.08793,
0.0873,
0.08733,
0.08816,
0.08816,
0.08532,
0.08711,
0.08744,
0.0854,
0.08601,
0.08547,
0.0847,
0.08476,
0.085,
0.0848,
0.08661,
0.08733,
0.08844,
0.08835,
0.08985,
0.0905,
0.0897,
0.08998,
0.09182,
0.09225,
0.092,
0.09259,
0.09326,
0.09411,
0.09401,
0.09549,
0.09686,
0.09861,
0.09706,
0.09688,
0.09733,
0.09642,
0.09592,
0.0963,
0.09737,
0.0989,
0.10486,
0.10619,
0.10686,
0.1019,
0.10213,
0.10152,
0.1018,
0.10118,
0.10172,
0.10085,
0.0957,
0.09598,
0.10081,
0.10199,
0.10445,
0.10709,
0.10182,
0.09991,
0.10277,
0.10293,
0.10267,
0.10226,
0.10256,
0.10206,
0.10249,
0.10454,
0.10302,
0.10406,
0.10629,
0.10645,
0.101,
0.103,
0.10186,
0.10336,
0.10141,
0.10112,
0.10194,
0.09769,
0.10004,
0.10058,
0.10245,
0.1038,
0.10398,
0.10538,
0.10551,
0.102,
0.10246,
0.10439,
0.10461,
0.10514,
0.10563,
0.10607,
0.10756,
0.1035,
0.10628,
0.10329,
0.10177,
0.10255,
0.10115,
0.10162,
0.10274,
0.10476,
0.10581,
0.10624,
0.11105,
0.10782,
0.10742,
0.10746,
0.1066,
0.10684,
0.10971,
0.1089,
0.108,
0.10615,
0.10692,
0.10855,
0.11208,
0.11196,
0.11158,
0.11205,
0.11152,
0.11144,
0.11178,
0.11552,
0.11603,
0.117,
0.1179,
0.11889,
0.12087,
0.12108,
0.12176,
0.123,
0.12406,
0.12353,
0.12448,
0.12642,
0.12368,
0.13081,
0.13257,
0.13462,
0.13505,
0.13579,
0.13834,
0.13864,
0.13762,
0.137,
0.13725,
0.13732,
0.13971,
0.139,
0.14032,
0.13399,
0.14012,
0.13978,
0.13959,
0.13518,
0.13546,
0.13599,
0.13606,
0.13557,
0.13347,
0.13193,
0.13066,
0.13109,
0.12783,
0.12533,
0.12479,
0.12431,
0.12304,
0.11042,
0.11031,
0.1204,
0.11496,
0.11601,
0.11643,
0.11701,
0.12034,
0.11897,
0.11907,
0.11942,
0.11988,
0.1221,
0.11984,
0.11589,
0.11572,
0.11689,
0.11729,
0.11773,
0.11958,
0.12051,
0.12035,
0.11788,
0.11889,
0.11343,
0.10776,
0.1089,
0.11004,
0.10896,
0.108,
0.10749,
0.10496,
0.1084,
0.11024,
0.11041,
0.11127,
0.11235,
0.11314,
0.11653,
0.11857,
0.11975,
0.11773,
0.1176,
0.11718,
0.12007,
0.12185,
0.12226,
0.12073,
0.11837,
0.11816,
0.1203,
0.12294,
0.12407,
0.12588,
0.12636,
0.1256,
0.12474,
0.1253,
0.12418,
0.12395,
0.12296,
0.12053,
0.12092,
0.12278,
0.12001,
0.11379,
0.11329,
0.11316,
0.11272,
0.11085,
0.11032,
0.11096,
0.11041,
0.11096,
0.1109,
0.11252,
0.11288,
0.11311,
0.11363,
0.11397,
0.1111,
0.1122,
0.11371,
0.116,
0.11595,
0.11575,
0.1159,
0.1154,
0.11489,
0.11501,
0.11645,
0.11323,
0.11517,
0.11569,
0.1162,
0.11581,
0.11909,
0.11772,
0.11908,
0.12182,
0.12197,
0.12179,
0.12299,
0.12466,
0.12465,
0.12762,
0.12824,
0.12567,
0.12117,
0.12636,
0.12452,
0.1229,
0.12611,
0.12904,
0.13143,
0.13395,
0.13725,
0.13733,
0.13658,
0.13284,
0.13354,
0.13326,
0.13409,
0.13369,
0.13371,
0.1317,
0.1311,
0.1335,
0.1334,
0.1355,
0.1364,
0.1368,
0.135,
0.1324,
0.1285,
0.127,
0.1229,
0.1229,
0.125,
0.1171,
0.1213,
0.1233,
0.1242,
0.1263,
0.1282,
0.1273,
0.1261,
0.1256,
0.1285,
0.1297,
0.1293,
0.1332,
0.1332,
0.134,
0.1421,
0.1532,
0.1481,
0.1535,
0.1576,
0.1566,
0.1615,
0.1564,
0.1572,
0.158,
0.1591,
0.1566,
0.1549,
0.1538,
0.1503,
0.1489,
0.1491,
0.1466,
0.1478,
0.1511,
0.1531,
0.1521,
0.1518,
0.1519,
0.1485,
0.147,
0.147,
0.1478,
0.1488,
0.149,
0.1494,
0.1513,
0.1514,
0.1509,
0.1512,
0.1508,
0.1499,
0.1494,
0.1531,
0.1538,
0.1546,
0.1548,
0.1532,
0.153,
0.1535,
0.1563,
0.1535,
0.1531,
0.1538,
0.1556,
0.1594,
0.1587,
0.158,
0.159,
0.1619,
0.1596,
0.1577,
0.1584,
0.159,
0.1582,
0.1565,
0.1561,
0.1556,
0.1575,
0.1593,
0.1603,
0.1622,
0.1624,
0.164,
0.1631,
0.164,
0.1659,
0.1677,
0.1664,
0.1659,
0.1632,
0.1627,
0.1598,
0.16,
0.1596,
0.16,
0.1598,
0.1612,
0.1637,
0.1645,
0.1735,
0.1759,
0.1761,
0.1885,
0.1924,
0.1993,
0.1984,
0.1933,
0.1931,
0.1968,
0.2047,
0.201,
0.1941,
0.1863,
0.1934,
0.1977,
0.2009,
0.2026,
0.2023,
0.2033,
0.221,
0.3219,
0.3133
],
"open": [
0.07521,
0.07477,
0.08266,
0.08176,
0.08137,
0.07833,
0.0782,
0.07741,
0.07201,
0.0696,
0.07024,
0.07115,
0.07192,
0.07101,
0.07097,
0.07053,
0.07163,
0.07016,
0.06999,
0.07058,
0.07232,
0.07227,
0.07315,
0.07221,
0.07314,
0.07384,
0.07433,
0.07376,
0.07445,
0.0762,
0.07725,
0.07603,
0.07732,
0.07703,
0.07706,
0.07709,
0.07881,
0.08007,
0.07747,
0.07755,
0.07734,
0.07784,
0.08172,
0.07988,
0.08082,
0.07979,
0.07997,
0.07978,
0.0803,
0.08073,
0.08043,
0.0839,
0.08337,
0.08149,
0.0819,
0.08241,
0.08265,
0.08507,
0.08321,
0.08,
0.07792,
0.07866,
0.07632,
0.07713,
0.07678,
0.07754,
0.077,
0.07685,
0.07676,
0.07674,
0.07735,
0.07723,
0.07751,
0.07711,
0.07748,
0.07633,
0.07466,
0.07264,
0.07297,
0.07408,
0.07591,
0.0751,
0.07548,
0.0776,
0.07664,
0.07724,
0.07746,
0.07754,
0.07635,
0.07731,
0.07561,
0.07672,
0.07607,
0.07701,
0.07704,
0.07752,
0.07746,
0.07894,
0.07917,
0.07916,
0.07918,
0.07831,
0.07755,
0.08075,
0.08122,
0.08376,
0.08405,
0.08352,
0.08334,
0.08388,
0.08455,
0.08443,
0.08301,
0.08333,
0.08361,
0.08359,
0.08466,
0.08471,
0.08549,
0.08674,
0.08912,
0.0886,
0.09011,
0.08744,
0.0907,
0.08891,
0.08824,
0.0872,
0.08807,
0.08803,
0.08613,
0.08622,
0.08603,
0.08481,
0.08549,
0.085,
0.08667,
0.08886,
0.08855,
0.08914,
0.08999,
0.09075,
0.0916,
0.09032,
0.09219,
0.09235,
0.09351,
0.09285,
0.09352,
0.09434,
0.09489,
0.09558,
0.09715,
0.10014,
0.09921,
0.09722,
0.09766,
0.09808,
0.09765,
0.09657,
0.09833,
0.0989,
0.10621,
0.10801,
0.1085,
0.10688,
0.10222,
0.10406,
0.10234,
0.10371,
0.10291,
0.10349,
0.10097,
0.09611,
0.10125,
0.10208,
0.10456,
0.10894,
0.10779,
0.10193,
0.10295,
0.10342,
0.10347,
0.10307,
0.10317,
0.10309,
0.10385,
0.10486,
0.10476,
0.10416,
0.10664,
0.10665,
0.10784,
0.10382,
0.10359,
0.1043,
0.10601,
0.10157,
0.10282,
0.10204,
0.1009,
0.1006,
0.10273,
0.10463,
0.10508,
0.10676,
0.10621,
0.10587,
0.10305,
0.10535,
0.10544,
0.10561,
0.10596,
0.10764,
0.10771,
0.10834,
0.10675,
0.10697,
0.10438,
0.10386,
0.1028,
0.1042,
0.10276,
0.10528,
0.1062,
0.10684,
0.11424,
0.11122,
0.10865,
0.10806,
0.10839,
0.10813,
0.1105,
0.11005,
0.10895,
0.10931,
0.10721,
0.10882,
0.11212,
0.11448,
0.11244,
0.11224,
0.11304,
0.11205,
0.11225,
0.11564,
0.11629,
0.11724,
0.11842,
0.11897,
0.12102,
0.1236,
0.12189,
0.12369,
0.12436,
0.12421,
0.12499,
0.12687,
0.12956,
0.13104,
0.13282,
0.1359,
0.13518,
0.13636,
0.13921,
0.13972,
0.139,
0.13816,
0.13742,
0.13764,
0.13984,
0.14288,
0.14213,
0.14049,
0.14147,
0.14119,
0.14064,
0.14026,
0.13585,
0.13774,
0.13709,
0.13663,
0.13579,
0.13377,
0.13372,
0.13142,
0.13195,
0.12912,
0.12632,
0.12527,
0.12624,
0.12407,
0.11244,
0.12072,
0.12115,
0.11736,
0.11824,
0.12014,
0.12042,
0.1208,
0.11933,
0.12044,
0.11989,
0.12256,
0.12296,
0.12051,
0.11662,
0.11711,
0.11915,
0.1179,
0.1196,
0.12056,
0.12304,
0.12109,
0.11909,
0.12029,
0.1148,
0.11005,
0.11243,
0.11147,
0.1118,
0.10971,
0.10924,
0.1099,
0.11105,
0.11132,
0.11222,
0.11322,
0.1133,
0.11722,
0.12015,
0.11975,
0.12124,
0.11902,
0.11956,
0.12044,
0.12226,
0.1227,
0.12227,
0.12107,
0.11865,
0.12052,
0.12294,
0.12622,
0.12741,
0.12638,
0.12738,
0.12561,
0.12547,
0.12633,
0.125,
0.12434,
0.12301,
0.12116,
0.12442,
0.12361,
0.12002,
0.11532,
0.11547,
0.11378,
0.11311,
0.1125,
0.11118,
0.1121,
0.11199,
0.11211,
0.11261,
0.11477,
0.11337,
0.11446,
0.1146,
0.11479,
0.11269,
0.1148,
0.11688,
0.11763,
0.1166,
0.11649,
0.11696,
0.11651,
0.1153,
0.1173,
0.11678,
0.11544,
0.11583,
0.1168,
0.11835,
0.11967,
0.11924,
0.11909,
0.1219,
0.12267,
0.12199,
0.12321,
0.12552,
0.1247,
0.12782,
0.12923,
0.12871,
0.1272,
0.12684,
0.12991,
0.12464,
0.12612,
0.12996,
0.13149,
0.13435,
0.13727,
0.13945,
0.13763,
0.1373,
0.13402,
0.13358,
0.13449,
0.13466,
0.1347,
0.13431,
0.1324,
0.1341,
0.1343,
0.1355,
0.1375,
0.1373,
0.1386,
0.1375,
0.133,
0.1287,
0.1282,
0.1236,
0.1255,
0.1264,
0.1214,
0.1234,
0.1247,
0.1271,
0.1283,
0.1291,
0.1277,
0.1267,
0.1287,
0.1303,
0.1301,
0.1341,
0.1349,
0.1351,
0.1432,
0.1613,
0.1538,
0.1554,
0.1582,
0.1588,
0.1663,
0.1617,
0.158,
0.1582,
0.1599,
0.1599,
0.1576,
0.1556,
0.1542,
0.1504,
0.15,
0.1499,
0.1478,
0.1516,
0.1532,
0.1546,
0.1531,
0.1533,
0.1519,
0.149,
0.1475,
0.1489,
0.1489,
0.15,
0.1496,
0.1515,
0.152,
0.1519,
0.1518,
0.1524,
0.1513,
0.15,
0.1532,
0.1552,
0.155,
0.1565,
0.1559,
0.1536,
0.1545,
0.1576,
0.1565,
0.1535,
0.1543,
0.1558,
0.16,
0.1605,
0.1589,
0.1597,
0.1626,
0.1626,
0.1605,
0.1587,
0.16,
0.1593,
0.1585,
0.1567,
0.1568,
0.1583,
0.1603,
0.1603,
0.1646,
0.1625,
0.1651,
0.1641,
0.1642,
0.1662,
0.1693,
0.1684,
0.1673,
0.1662,
0.1651,
0.1629,
0.1601,
0.1625,
0.1601,
0.161,
0.1621,
0.164,
0.1677,
0.1874,
0.177,
0.1764,
0.1912,
0.2001,
0.1993,
0.2017,
0.1994,
0.1948,
0.1985,
0.2048,
0.2121,
0.2086,
0.1959,
0.1944,
0.2011,
0.2032,
0.2045,
0.2049,
0.2071,
0.2214,
0.4332,
0.3305
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "TRX Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
14.09,
14.49,
14.58,
14.79,
13.87,
14.62,
14.02,
13.75,
11.65,
11.58,
11.52,
11.8,
11.38,
11.41,
11.55,
11.62,
11.34,
11.47,
12.12,
12.9,
12.65,
13.29,
13.01,
13.44,
13.15,
13.2,
12.34,
12.67,
13.03,
12.99,
13.13,
13.25,
13.04,
12.67,
12.37,
12.74,
13.64,
13.58,
13.39,
13.27,
13.01,
14.11,
14.64,
14.84,
14.29,
14.4,
13.8,
13.99,
13.88,
13.98,
13.53,
13.54,
13.11,
13.33,
13.27,
13.15,
13.22,
13.23,
13.12,
12.82,
12.89,
12.55,
12.44,
12.41,
12.45,
12.59,
12.47,
12.68,
12.62,
12.48,
12.44,
12.39,
12.27,
12.37,
11.83,
11.38,
10.57,
10.81,
10.81,
10.86,
10.36,
10.15,
10.33,
10.12,
10.04,
10.09,
10.2,
10.37,
10.81,
10.41,
9.98,
9.92,
9.92,
9.88,
9.81,
9.91,
9.95,
10.1,
9.93,
9.84,
9.47,
9.23,
9.22,
9.29,
9.4,
9.43,
9.38,
9.1,
9.11,
9.21,
9.05,
8.83,
8.87,
8.9,
8.78,
8.95,
9.04,
8.92,
9.27,
9.17,
9.24,
9.75,
9.31,
9.42,
10.1,
10.14,
10.66,
10.35,
10.09,
9.54,
9.53,
9.3,
9.12,
9.15,
9.15,
9.17,
9.4,
9.1,
8.91,
9.06,
9.22,
9.63,
10.09,
10.58,
10.32,
10.52,
11.05,
10.59,
10.97,
11.37,
11.46,
11.33,
12.23,
11.88,
12.11,
12.22,
12.35,
13.08,
12.81,
12.99,
12.96,
14.74,
16.79,
18.98,
16.12,
17.05,
20.7,
21.71,
21.94,
21.99,
22.85,
20.85,
19.02,
20.78,
20.64,
20.89,
21.36,
21.06,
20.35,
20.68,
21.12,
21.39,
21.87,
22.24,
21.94,
22.68,
24.54,
26.2,
26.28,
30.44,
31.91,
37.14,
38.04,
37.49,
38.99,
39.3,
39.71,
42.22,
40.62,
41.16,
39.74,
43.46,
45.97,
45.35,
48.05,
47.68,
48.18,
44.41,
42.39,
39.8,
40.18,
39.33,
38.55,
41.94,
40.61,
36.8,
38.72,
36.46,
34.61,
33.64,
36.08,
34.65,
38.53,
39.29,
35.93,
36.49,
35.29,
35.61,
35.57,
36.06,
33.59,
32.73,
32.89,
32.54,
29.53,
30.63,
31.2,
30.51,
32.26,
33.28,
34.82,
36.06,
35.22,
33.17,
33.85,
36.76,
35.95,
34.87,
34.54,
34.16,
35.28,
35.42,
38,
40.2,
39.72,
40.97,
39.74,
42.22,
41.55,
40.26,
39.76,
40.29,
39.51,
38.49,
37.61,
36.78,
35.92,
36.76,
37.46,
39.29,
39.26,
40.33,
40.97,
42.67,
44.35,
42.58,
43.08,
39.43,
41.56,
43.2,
42.61,
42.92,
42.05,
49,
55.48,
54.79,
53.95,
58.36,
53.44,
58.45,
60.65,
53.63,
57.06,
53.82,
53.44,
53.45,
55.68,
57.76,
55.78,
54.1,
54.63,
53.33,
52.93,
54.06,
51.38,
46.86,
45.89,
46.5,
45.3,
48.19,
49.32,
49.86,
46.47,
47.3,
46.01,
39.34,
33.89,
37.27,
35.16,
34.76,
33.58,
34.85,
34.67,
38.31,
37.15,
39.19,
38.3,
36.37,
35.59,
34.42,
34.47,
33.95,
35.28,
32.71,
33.33,
33.58,
35.54,
37.36,
37.35,
37.13,
35.31,
34.02,
35.06,
33.71,
33.49,
33.14,
32.46,
31.57,
34.67,
34.46,
36.42,
37.25,
35.6,
40.13,
41.2,
40.02,
38.52,
38.01,
38.28,
36.76,
38.26,
37.02,
36.2,
35.98,
36.02,
35.76,
34.91,
35.03,
36.06,
36.57,
35.89,
33.51,
32.27,
32.98,
32.28,
31.55,
33.27,
30.99,
30.29,
30.01,
30.08,
28.47,
26.6,
26.94,
27.58,
27.48,
25.61,
25.07,
24.8,
25.4,
25.82,
27.91,
27.96,
27.76,
29.36,
28.83,
28.71,
26.51,
24.44,
25.12,
27.41,
25.75,
25.21,
26.43,
25.75,
25.21,
25.96,
25.86,
26.35,
27.82,
28.01,
27.24,
27.14,
28.16,
29.1,
32.64,
31.87,
29.82,
28.38,
27.24,
28.72,
28.04,
27.4,
27.01,
26.33,
25.7,
25.72,
23.6,
22.67,
21.25,
19.54,
20.89,
19.85,
22.73,
21.74,
21.59,
20.4,
21.26,
21.38,
20.95,
20.14,
20.36,
20.7,
20.82,
21.21,
22.26,
23.53,
25.22,
26.49,
27.12,
26.92,
25.94,
24.09,
23.45,
22.89,
23.29,
22.81,
21.42,
22.37,
21.38,
21.9,
21.38,
21.17,
21.8,
23.25,
23.85,
24.36,
23.28,
24.02,
24.91,
25.32,
23.8,
23.52,
23.77,
24.68,
26.66,
27.67,
27.79,
27.29,
27.39,
28.46,
27.28,
29.16,
30.43,
29.28,
29.04,
27.71,
25.82,
25.33,
24.66,
26.27,
25.67,
26.94,
26.57,
26.35,
25.76,
25.86,
27.45,
28.64,
29.06,
29.07,
28.21,
28.02,
27.31,
28.1,
28.1,
28.96,
27.75,
27.64,
26.75,
26.83,
24.93,
25.41,
25.77,
26.25,
26.88,
26.18,
25.03,
24.78,
24.12,
23.54,
22.72,
23.99,
27.01,
27.38,
28.78,
30.36,
31.89,
35.71,
33.96,
33.12,
31.21,
33.13,
35.14,
34.71,
35.48,
34.2,
33.59,
35.84,
43.17,
41.44,
42.06,
41.31,
42.72,
43.78,
42.77,
44.86,
44.81,
45.09,
52.27,
50.9,
52.76,
50.3
],
"high": [
14.3,
14.57,
14.6,
14.93,
14.9,
14.67,
14.7,
14.25,
13.76,
11.81,
11.61,
12.08,
11.96,
11.57,
11.73,
11.85,
11.63,
11.52,
12.13,
13.04,
13.24,
13.51,
13.4,
13.68,
13.69,
13.47,
13.21,
12.96,
13.34,
13.16,
13.22,
13.49,
13.4,
13.16,
13.12,
12.75,
13.89,
14.21,
13.85,
13.69,
13.38,
14.2,
15.97,
15.35,
14.93,
14.62,
14.59,
14.27,
14.42,
14.07,
14.05,
13.75,
13.6,
13.55,
13.47,
13.43,
13.3,
13.3,
13.41,
13.42,
12.9,
12.96,
12.64,
12.61,
12.45,
12.67,
12.77,
12.81,
12.81,
12.67,
12.55,
12.49,
12.43,
12.46,
12.38,
11.87,
11.51,
11,
10.89,
10.93,
10.87,
10.38,
10.47,
10.36,
10.13,
10.13,
10.28,
10.45,
11.21,
10.83,
10.55,
10.07,
9.97,
9.99,
10.05,
9.97,
10.05,
10.14,
10.15,
9.93,
9.84,
9.51,
9.56,
9.46,
9.48,
9.52,
9.61,
9.38,
9.31,
9.31,
9.24,
9.11,
8.92,
8.99,
9.05,
8.96,
9.07,
9.19,
9.36,
9.37,
9.3,
9.83,
9.84,
9.48,
10.3,
10.35,
10.83,
11.88,
10.54,
10.09,
9.86,
9.57,
9.32,
9.35,
9.25,
9.27,
9.83,
9.42,
9.21,
9.12,
9.39,
9.81,
10.09,
10.68,
10.8,
10.64,
11.47,
11.07,
11.09,
11.44,
11.69,
11.76,
12.33,
12.54,
12.19,
12.33,
12.67,
13.17,
13.1,
13.15,
13.96,
14.85,
17,
19.73,
19.75,
18.1,
20.95,
24.07,
24.69,
22.69,
23.04,
23.25,
22.29,
21.25,
21.49,
21.88,
21.48,
21.52,
21.3,
20.86,
21.56,
21.5,
22.64,
22.45,
22.74,
23.2,
24.83,
27.68,
27.9,
30.8,
34.26,
37.99,
39.39,
42.89,
41.47,
40.34,
42.27,
45.33,
44.04,
41.44,
42.17,
44.49,
47.38,
48.88,
48.27,
49.96,
48.9,
48.35,
44.95,
43.39,
42.15,
40.36,
40.55,
42,
43.44,
41.43,
39.45,
38.91,
36.51,
35.78,
36.46,
37.6,
39.55,
41.85,
39.59,
36.63,
37.86,
36.81,
36.54,
36.51,
36.19,
33.75,
32.99,
33.5,
32.74,
30.88,
31.91,
31.36,
33.11,
33.32,
36.72,
36.55,
37.15,
35.5,
33.97,
36.94,
37.6,
36.53,
35.92,
34.75,
35.5,
36.15,
38.61,
41.24,
41.2,
41.18,
41.7,
42.42,
43.6,
41.81,
40.47,
40.75,
40.64,
39.72,
38.55,
38.22,
36.96,
36.95,
37.49,
39.35,
39.94,
41.26,
44.65,
43.37,
44.58,
44.89,
43.99,
44.98,
42.14,
44.48,
43.96,
43.53,
43.93,
49.55,
57.36,
55.52,
59.28,
58.74,
61.46,
58.5,
65.39,
61.95,
58.15,
57.87,
57.8,
55.98,
55.82,
59.16,
60,
56.72,
55.05,
54.65,
54.63,
54.28,
54.14,
51.38,
48.32,
48.16,
46.59,
48.98,
49.51,
50.81,
49.95,
48.01,
47.5,
46.88,
39.35,
37.91,
38.61,
35.91,
35.36,
35.61,
36.14,
38.49,
38.77,
39.72,
39.92,
39.84,
36.75,
35.88,
35.13,
35.39,
35.88,
35.73,
33.95,
34.1,
35.98,
37.68,
38.01,
39.87,
37.6,
35.5,
35.38,
36.09,
34.04,
33.97,
33.82,
33.22,
34.79,
35.01,
37.59,
37.66,
37.75,
40.33,
41.4,
41.8,
40.47,
39,
38.72,
38.31,
38.95,
38.4,
37.5,
37.09,
36.79,
36.22,
36.18,
36.27,
36.22,
36.91,
37.2,
36.89,
33.73,
33.02,
33.47,
32.38,
33.99,
33.44,
32.21,
30.65,
30.48,
30.35,
28.54,
27.67,
28.89,
28.03,
27.5,
26.15,
25.25,
25.79,
26.66,
28.38,
29.09,
28.68,
29.57,
30.12,
28.91,
28.97,
26.7,
25.43,
27.61,
27.49,
27.21,
26.5,
27.42,
26.38,
26.1,
26.34,
26.67,
27.89,
29.25,
29.03,
27.94,
28.41,
29.18,
33,
32.95,
32.63,
30.55,
28.59,
28.93,
29.52,
28.17,
28.86,
27.32,
26.86,
25.91,
25.91,
24.15,
22.96,
21.38,
21.46,
21.7,
22.8,
22.8,
22.05,
22.37,
21.71,
21.62,
21.87,
21.15,
20.72,
20.71,
21.51,
21.25,
22.79,
23.8,
25.35,
27.01,
28,
27.68,
27.2,
26.81,
24.83,
24.68,
23.64,
23.4,
22.84,
22.57,
22.73,
22.32,
22.19,
22.19,
22,
23.52,
24.44,
24.59,
24.52,
24.1,
25.1,
25.66,
25.38,
24.24,
24.49,
24.73,
26.79,
28.8,
28.13,
27.8,
28.18,
28.53,
28.5,
29.42,
30.85,
30.76,
29.47,
29.12,
28.89,
26.78,
25.67,
26.5,
26.45,
27.08,
27.74,
27.19,
26.7,
26.37,
27.6,
29.37,
29.36,
29.87,
29.62,
28.22,
28.27,
28.17,
28.46,
29,
29.32,
28.23,
27.71,
27.24,
26.89,
25.68,
25.94,
26.54,
27.16,
26.91,
26.23,
25.71,
25.02,
24.2,
23.94,
24.51,
27.3,
28,
28.79,
30.48,
33.29,
35.79,
37.67,
35.05,
34.72,
33.3,
35.74,
37.27,
36.16,
35.63,
35.75,
36.2,
43.52,
45.27,
43.14,
47.93,
43.35,
44.47,
44.24,
45.07,
46.26,
45.78,
52.49,
53.95,
55.79,
53.62
],
"low": [
13.83,
13.96,
14.39,
14.52,
13.48,
13.81,
13.95,
13.7,
10,
11.44,
11.16,
11.43,
11.16,
11.02,
11.22,
11.47,
11.25,
11.17,
11.17,
12.06,
12.58,
12.62,
12.73,
12.97,
12.96,
13.09,
12.08,
12.27,
12.12,
12.83,
12.71,
13.07,
13,
12.5,
12.24,
12.25,
12.72,
13.57,
13.16,
13.15,
12.85,
12.89,
14.02,
14.41,
14.16,
13.8,
13.61,
13.76,
13.68,
13.72,
13.29,
13.39,
12.77,
13.04,
13.08,
13.02,
13.01,
13.15,
12.92,
12.69,
12.4,
12.42,
12.36,
12.25,
12.29,
12.42,
12.2,
12.38,
12.5,
12.47,
12.35,
12.35,
12.2,
12.15,
11.29,
11.07,
9.99,
10.53,
10.56,
10.74,
10.15,
9.71,
10.06,
9.98,
9.89,
10.01,
10.07,
9.91,
10.33,
10.33,
9.82,
9.75,
9.76,
9.83,
9.68,
9.66,
9.76,
9.83,
9.84,
9.83,
9.22,
9.05,
9.19,
9.1,
9.25,
9.18,
9.36,
9,
8.81,
9.04,
8.86,
8.77,
8.72,
8.83,
8.73,
8.61,
8.85,
8.81,
8.91,
9.07,
9.11,
9.21,
9.15,
9.23,
9.11,
9.81,
10.12,
10.24,
9.95,
9.28,
9.42,
9.2,
8.88,
9,
9.11,
9.07,
9.17,
9.01,
8.84,
8.65,
9.02,
9.17,
9.53,
9.86,
10.08,
10.17,
10.37,
10.38,
10.55,
10.77,
11.06,
11,
10.88,
11.43,
11.43,
11.92,
12.1,
12.24,
12.29,
12.66,
11.9,
12.88,
13.99,
15.87,
16.1,
15.56,
17.01,
20.24,
20,
20.17,
20.75,
20.71,
18.9,
18.96,
20.42,
20.45,
20.63,
20.1,
19.82,
19.47,
20.55,
20.81,
21.1,
21.75,
21.59,
20.56,
21.81,
24.45,
25.71,
26.03,
30.44,
31.52,
31.6,
36,
34.02,
36.51,
38.52,
38.5,
40.28,
36.5,
38.73,
39.08,
43.06,
43.66,
43.34,
46.32,
45.94,
41.5,
41.87,
39.23,
38.5,
38.15,
37.51,
38,
40.31,
33.06,
36.07,
35,
33.42,
33.08,
31.12,
33.78,
33.32,
37.54,
34.34,
34.7,
35.28,
35.16,
34.74,
35.25,
32.72,
31.18,
32.03,
32.45,
29.32,
27.24,
29.49,
29.61,
30.12,
31.85,
33.19,
34.34,
35,
33.13,
32.3,
33.76,
35.4,
34.68,
34.11,
33.72,
33.65,
35.08,
35.41,
38,
39.33,
38.38,
38.88,
39.1,
40.84,
39.41,
38.38,
38.97,
39.11,
36.84,
35.9,
36.52,
35.14,
35.2,
36.42,
36.28,
38.31,
37.01,
39.59,
40.98,
41.95,
40.97,
41.42,
35.14,
37.9,
41.55,
41.2,
42.33,
40.92,
40.18,
46.46,
52.35,
50.74,
48.3,
52,
50.05,
55.26,
53.16,
50.42,
52.76,
51.63,
52.6,
52.43,
54.94,
55.33,
52.5,
53.18,
52.52,
52.76,
52.87,
50.26,
46.29,
44.97,
45.42,
43.77,
45.05,
47.89,
48.25,
46.35,
45.07,
45.59,
36.04,
29.29,
32.64,
34.09,
32.7,
32.23,
32.8,
31.92,
34.12,
36.35,
36.75,
37.98,
36.02,
34.7,
34.27,
33.08,
33.8,
32.84,
31.92,
30.26,
32.3,
33.3,
35.18,
36.6,
36.78,
35.27,
33.62,
33.73,
33.23,
33.06,
32.78,
31.93,
31.48,
31.35,
33.75,
34.26,
36.34,
35.37,
35.15,
39.67,
39.2,
36.53,
36.91,
37.71,
36.46,
36.65,
36.53,
36.14,
35.3,
35.2,
35.7,
34.77,
34.56,
34.41,
35.93,
35.72,
30.9,
31.92,
32.04,
32.02,
30.59,
30.79,
30.92,
29.29,
29.91,
29.66,
27.33,
25.22,
26.38,
26.67,
26.93,
24.52,
24.12,
23.51,
24.58,
25.28,
25.36,
27.66,
27.57,
27.4,
28.81,
28.09,
26.43,
24.36,
21.98,
24.84,
25.46,
24.53,
24.71,
25.63,
25.01,
24.82,
25.53,
25.6,
26.27,
26.47,
27.21,
26.59,
26.65,
27.78,
28.54,
31.32,
29.43,
28.26,
26.26,
27.17,
27.59,
27.1,
26.96,
26.03,
25.44,
24.03,
23.35,
22.2,
20.58,
17.29,
19.51,
19.71,
19.52,
21.29,
21.4,
20.39,
20.3,
20.6,
20.77,
19.83,
19.78,
20.23,
20.55,
20.38,
21.16,
22.25,
23.05,
25.22,
26.19,
26.13,
25.89,
23.66,
23.19,
22.78,
22.18,
22.47,
21.09,
21.37,
21.33,
20.55,
21.23,
20.48,
21.05,
21.71,
23.16,
23.57,
22.87,
23.27,
23.66,
24.61,
23.64,
23.22,
23.16,
22.79,
24.69,
26.48,
26.99,
26.45,
26.56,
26.84,
27.16,
26.97,
28.93,
29.03,
28.26,
27.56,
25,
25.04,
23.9,
24.44,
25.1,
25.49,
26.51,
26.03,
25.68,
25.06,
25.75,
27.39,
28.3,
28.65,
27.45,
27.25,
26.82,
27.1,
27.71,
27.76,
27.38,
27.24,
25.89,
26.38,
24.06,
24.56,
25.25,
25.05,
26.17,
26.01,
24.68,
24.4,
23.96,
22.6,
22.35,
22.59,
24,
26.51,
27.1,
28.49,
29.69,
30.7,
32.66,
31.2,
30.68,
30.59,
32.79,
33.08,
34.06,
33.52,
32.77,
32.31,
35.18,
40.75,
38.31,
40.02,
38.51,
41.95,
41.51,
42.56,
43.65,
43.65,
45,
48.26,
50.83,
49.73
],
"open": [
14.1,
14.09,
14.49,
14.57,
14.79,
13.87,
14.63,
13.93,
13.76,
11.65,
11.58,
11.52,
11.8,
11.39,
11.4,
11.54,
11.63,
11.34,
11.48,
12.12,
12.9,
12.66,
13.28,
13.01,
13.44,
13.15,
13.2,
12.34,
12.68,
13.03,
13,
13.13,
13.25,
13.04,
12.67,
12.37,
12.74,
13.64,
13.58,
13.38,
13.26,
13.01,
14.11,
14.63,
14.84,
14.29,
14.4,
13.8,
13.99,
13.87,
13.98,
13.52,
13.54,
13.11,
13.34,
13.27,
13.15,
13.23,
13.24,
13.12,
12.81,
12.89,
12.54,
12.45,
12.41,
12.45,
12.6,
12.46,
12.69,
12.63,
12.49,
12.44,
12.4,
12.27,
12.37,
11.83,
11.39,
10.58,
10.8,
10.81,
10.87,
10.36,
10.15,
10.34,
10.12,
10.05,
10.1,
10.21,
10.37,
10.81,
10.4,
9.98,
9.92,
9.92,
9.88,
9.81,
9.91,
9.94,
10.09,
9.92,
9.83,
9.46,
9.24,
9.22,
9.29,
9.4,
9.42,
9.38,
9.09,
9.11,
9.21,
9.05,
8.82,
8.86,
8.9,
8.78,
8.95,
9.05,
8.93,
9.28,
9.17,
9.23,
9.75,
9.32,
9.42,
10.1,
10.14,
10.66,
10.34,
10.08,
9.54,
9.52,
9.31,
9.11,
9.15,
9.15,
9.18,
9.4,
9.11,
8.9,
9.06,
9.22,
9.64,
10.09,
10.59,
10.33,
10.52,
11.05,
10.6,
10.97,
11.38,
11.46,
11.32,
12.23,
11.88,
12.12,
12.21,
12.34,
13.07,
12.8,
12.98,
12.97,
14.75,
16.79,
18.96,
16.12,
17.05,
20.69,
21.71,
21.94,
21.99,
22.84,
20.86,
19.02,
20.82,
20.64,
20.89,
21.36,
21.07,
20.36,
20.69,
21.12,
21.4,
21.86,
22.24,
21.94,
22.67,
24.62,
26.2,
26.28,
30.44,
31.91,
37.14,
38.03,
37.49,
38.98,
39.29,
39.72,
42.23,
40.62,
41.15,
39.73,
43.46,
45.96,
45.35,
48.04,
47.68,
48.18,
44.41,
42.4,
39.8,
40.18,
39.33,
38.57,
41.95,
40.61,
36.79,
38.72,
36.46,
34.62,
33.65,
36.08,
34.64,
38.54,
39.29,
35.93,
36.48,
35.28,
35.6,
35.58,
36.07,
33.59,
32.74,
32.87,
32.54,
29.53,
30.64,
31.19,
30.51,
32.26,
33.29,
34.83,
36.07,
35.23,
33.18,
33.87,
36.76,
35.96,
34.86,
34.54,
34.16,
35.28,
35.43,
38,
40.2,
39.73,
40.96,
39.73,
42.23,
41.54,
40.25,
39.75,
40.29,
39.51,
38.5,
37.6,
36.77,
35.91,
36.76,
37.46,
39.29,
39.25,
40.33,
40.98,
42.68,
44.35,
42.59,
43.09,
39.42,
41.56,
43.2,
42.62,
42.92,
42.04,
49.1,
55.48,
54.79,
53.95,
58.36,
53.44,
58.44,
60.64,
53.62,
57.05,
53.83,
53.44,
53.45,
55.69,
57.75,
55.79,
54.1,
54.62,
53.32,
52.92,
54.06,
51.38,
46.87,
45.89,
46.5,
45.3,
48.19,
49.33,
49.87,
46.47,
47.3,
46.02,
39.34,
33.9,
37.27,
35.13,
34.75,
33.58,
34.84,
34.66,
38.31,
37.14,
39.18,
38.3,
36.37,
35.59,
34.43,
34.47,
33.95,
35.29,
32.71,
33.33,
33.57,
35.55,
37.36,
37.35,
37.12,
35.31,
33.98,
35.06,
33.71,
33.49,
33.14,
32.46,
31.58,
34.66,
34.45,
36.43,
37.24,
35.6,
40.13,
41.19,
40.07,
38.52,
38.01,
38.28,
36.76,
38.27,
37.02,
36.2,
35.98,
36.04,
35.76,
34.91,
35.03,
36.07,
36.58,
35.89,
33.51,
32.27,
32.99,
32.28,
31.56,
33.27,
31,
30.29,
30.01,
30.05,
28.47,
26.6,
26.95,
27.58,
27.48,
25.62,
25.08,
24.79,
25.4,
25.82,
27.91,
28.04,
27.77,
29.36,
28.83,
28.72,
26.51,
24.43,
25.08,
27.41,
25.75,
25.21,
26.43,
25.75,
25.19,
25.97,
25.85,
26.35,
27.83,
28.01,
27.24,
27.13,
28.17,
29.1,
32.64,
31.87,
29.82,
28.35,
27.23,
28.73,
28.04,
27.39,
27.01,
26.32,
25.7,
25.75,
23.6,
22.68,
21.26,
19.54,
20.88,
19.86,
22.73,
21.74,
21.59,
20.4,
21.27,
21.38,
20.95,
20.14,
20.36,
20.7,
20.83,
21.22,
22.26,
23.53,
25.22,
26.5,
27.12,
26.93,
25.94,
24.08,
23.43,
22.9,
23.29,
22.8,
21.42,
22.37,
21.38,
21.91,
21.38,
21.16,
21.8,
23.25,
23.86,
24.36,
23.28,
24.02,
24.91,
25.33,
23.8,
23.52,
23.78,
24.7,
26.67,
27.67,
27.79,
27.3,
27.39,
28.46,
27.29,
29.15,
30.44,
29.29,
29.04,
27.71,
25.82,
25.33,
24.66,
26.27,
25.67,
26.93,
26.57,
26.34,
25.76,
25.85,
27.46,
28.63,
29.05,
29.07,
28.21,
28.03,
27.31,
28.1,
28.1,
28.97,
27.75,
27.65,
26.75,
26.85,
24.94,
25.41,
25.77,
26.26,
26.88,
26.18,
25.03,
24.79,
24.13,
23.53,
22.72,
24,
27.01,
27.39,
28.78,
30.37,
31.89,
35.72,
33.83,
33.05,
31.21,
33.01,
35.11,
34.61,
35.36,
34.18,
33.52,
35.84,
43.18,
41.58,
42.05,
41.31,
42.81,
43.78,
42.78,
44.86,
44.81,
45.08,
52.09,
50.9,
52.76
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "AVAX Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
0.07142,
0.07256,
0.0727,
0.07249,
0.0664,
0.07025,
0.06728,
0.06947,
0.06175,
0.06151,
0.06143,
0.06175,
0.06038,
0.06153,
0.06219,
0.0622,
0.06212,
0.06245,
0.06313,
0.06561,
0.06555,
0.06823,
0.06669,
0.06672,
0.06474,
0.06556,
0.06257,
0.06342,
0.06646,
0.06851,
0.06801,
0.06845,
0.0689,
0.06701,
0.06485,
0.0654,
0.06573,
0.06536,
0.06523,
0.06528,
0.06503,
0.07042,
0.06849,
0.07197,
0.06952,
0.06982,
0.06866,
0.07003,
0.07062,
0.07322,
0.07047,
0.0718,
0.0742,
0.08185,
0.07793,
0.07761,
0.07717,
0.08023,
0.07802,
0.07786,
0.07815,
0.07422,
0.07358,
0.07347,
0.07571,
0.07427,
0.07354,
0.07496,
0.07541,
0.07588,
0.07574,
0.0767,
0.07479,
0.07469,
0.07093,
0.06717,
0.06102,
0.06326,
0.06379,
0.06384,
0.06252,
0.06259,
0.06379,
0.06308,
0.06312,
0.06289,
0.06318,
0.06345,
0.0664,
0.06588,
0.06376,
0.06388,
0.06348,
0.06317,
0.06326,
0.06402,
0.06365,
0.06365,
0.06371,
0.06339,
0.0613,
0.06049,
0.0609,
0.06126,
0.06208,
0.0625,
0.06214,
0.06147,
0.06198,
0.06268,
0.06262,
0.06131,
0.06152,
0.06152,
0.06069,
0.06094,
0.06062,
0.06053,
0.0615,
0.06213,
0.06207,
0.06319,
0.062,
0.06137,
0.06147,
0.06086,
0.06137,
0.06143,
0.06096,
0.05873,
0.05913,
0.05851,
0.05788,
0.05839,
0.05984,
0.05931,
0.06,
0.05904,
0.05858,
0.05887,
0.0599,
0.06119,
0.0617,
0.06742,
0.0666,
0.06832,
0.07185,
0.06776,
0.069,
0.06935,
0.06959,
0.06827,
0.06894,
0.0679,
0.06807,
0.06908,
0.07108,
0.07637,
0.07338,
0.07534,
0.07357,
0.07539,
0.07849,
0.07795,
0.07456,
0.07244,
0.07623,
0.07947,
0.08641,
0.08028,
0.08046,
0.07768,
0.07176,
0.07575,
0.0762,
0.07818,
0.07894,
0.07868,
0.07884,
0.08083,
0.08047,
0.08343,
0.08385,
0.08617,
0.08571,
0.09188,
0.09435,
0.09493,
0.09593,
0.10165,
0.09846,
0.10186,
0.09413,
0.09381,
0.09642,
0.0983,
0.09303,
0.09713,
0.09295,
0.09213,
0.09023,
0.0915,
0.09499,
0.09499,
0.09346,
0.09171,
0.09435,
0.09136,
0.09365,
0.09174,
0.09097,
0.09,
0.08955,
0.09199,
0.0911,
0.08201,
0.08401,
0.08267,
0.08058,
0.07824,
0.0813,
0.07923,
0.08307,
0.08456,
0.08007,
0.08092,
0.08003,
0.08108,
0.08134,
0.08059,
0.07808,
0.07857,
0.08777,
0.08546,
0.08057,
0.07821,
0.07904,
0.07795,
0.07985,
0.08014,
0.07882,
0.08135,
0.07972,
0.07875,
0.07937,
0.07928,
0.07874,
0.07831,
0.07835,
0.07849,
0.08013,
0.07987,
0.08155,
0.08142,
0.08123,
0.08223,
0.08105,
0.0855,
0.08528,
0.08591,
0.08356,
0.08517,
0.08942,
0.08615,
0.08457,
0.0841,
0.08451,
0.08615,
0.08612,
0.08923,
0.09758,
0.11585,
0.11732,
0.13934,
0.14196,
0.15347,
0.18196,
0.15304,
0.15784,
0.15764,
0.16457,
0.17875,
0.16997,
0.18194,
0.16816,
0.16897,
0.17719,
0.16357,
0.14253,
0.15428,
0.14353,
0.12881,
0.15209,
0.15537,
0.15292,
0.1619,
0.17651,
0.17526,
0.1823,
0.19047,
0.22001,
0.21298,
0.19912,
0.22,
0.20503,
0.18248,
0.17522,
0.17998,
0.1772,
0.18577,
0.19887,
0.2026,
0.18912,
0.19971,
0.1938,
0.17403,
0.15254,
0.16212,
0.16121,
0.156,
0.14756,
0.15221,
0.15633,
0.1626,
0.15825,
0.1612,
0.15979,
0.15139,
0.15127,
0.148,
0.14776,
0.14669,
0.14342,
0.13339,
0.13021,
0.13189,
0.14604,
0.16012,
0.16098,
0.15647,
0.14999,
0.14324,
0.15216,
0.14389,
0.14306,
0.14123,
0.14864,
0.14552,
0.15534,
0.14972,
0.15553,
0.15304,
0.14908,
0.16573,
0.17025,
0.16632,
0.15973,
0.16386,
0.17402,
0.16621,
0.16908,
0.16497,
0.16386,
0.15946,
0.15898,
0.16031,
0.1571,
0.15835,
0.16136,
0.16326,
0.16016,
0.1482,
0.14588,
0.14679,
0.14478,
0.13806,
0.14621,
0.1411,
0.13499,
0.13677,
0.13713,
0.12879,
0.12225,
0.12247,
0.12455,
0.12418,
0.12375,
0.12222,
0.11902,
0.12615,
0.12276,
0.12711,
0.12306,
0.1219,
0.12448,
0.12352,
0.1253,
0.11849,
0.10502,
0.10547,
0.11343,
0.10415,
0.10758,
0.10756,
0.108,
0.10664,
0.10769,
0.11231,
0.11535,
0.1249,
0.12478,
0.12178,
0.11956,
0.12543,
0.13423,
0.14026,
0.13776,
0.13031,
0.12795,
0.12526,
0.13419,
0.13144,
0.13004,
0.12843,
0.12551,
0.12192,
0.11907,
0.11154,
0.10811,
0.10375,
0.09436,
0.09645,
0.09558,
0.10748,
0.10386,
0.10518,
0.10059,
0.10791,
0.10636,
0.1024,
0.10021,
0.10035,
0.10275,
0.10004,
0.10133,
0.10289,
0.10615,
0.10525,
0.11293,
0.11258,
0.10959,
0.1052,
0.09891,
0.0996,
0.10038,
0.10177,
0.10128,
0.09509,
0.09912,
0.09678,
0.098,
0.09842,
0.09254,
0.09539,
0.09616,
0.10379,
0.1028,
0.10132,
0.10269,
0.10696,
0.1054,
0.10281,
0.09964,
0.10112,
0.10385,
0.10499,
0.10555,
0.10993,
0.10633,
0.10807,
0.10979,
0.10849,
0.11816,
0.12351,
0.12806,
0.12438,
0.11421,
0.10685,
0.10462,
0.10507,
0.10924,
0.1094,
0.11159,
0.10841,
0.10709,
0.10795,
0.10603,
0.11077,
0.11138,
0.1114,
0.11669,
0.11748,
0.12573,
0.12967,
0.13716,
0.14407,
0.14214,
0.14367,
0.1397,
0.13997,
0.14188,
0.13161,
0.13747,
0.14426,
0.16146,
0.17586,
0.16828,
0.16164,
0.15916,
0.15955,
0.15139,
0.15822,
0.16999,
0.19646,
0.19324,
0.20197,
0.2189,
0.27778,
0.35136,
0.37985,
0.39903,
0.36254,
0.3815,
0.36421,
0.36704,
0.37113,
0.39067,
0.37778,
0.38664,
0.41277,
0.43015,
0.43023,
0.39264,
0.38705,
0.40093,
0.4016,
0.42636,
0.4216,
0.44045,
0.42457,
0.40632,
0.43274,
0.42682
],
"high": [
0.07219,
0.07331,
0.07298,
0.07334,
0.07269,
0.07199,
0.07032,
0.07119,
0.07196,
0.06289,
0.0617,
0.06284,
0.06219,
0.062,
0.06282,
0.06297,
0.06399,
0.06285,
0.06314,
0.06677,
0.06938,
0.07013,
0.06843,
0.068,
0.06681,
0.06579,
0.06596,
0.0641,
0.06698,
0.0728,
0.0692,
0.06878,
0.07186,
0.06936,
0.06858,
0.06587,
0.06608,
0.06636,
0.06656,
0.06551,
0.0657,
0.07168,
0.07311,
0.07522,
0.07221,
0.07325,
0.07032,
0.07235,
0.0739,
0.07688,
0.0733,
0.07295,
0.0779,
0.0838,
0.08229,
0.07996,
0.07791,
0.08243,
0.08057,
0.0798,
0.07828,
0.07833,
0.07501,
0.07492,
0.07708,
0.07649,
0.07573,
0.07548,
0.07622,
0.07695,
0.07611,
0.07745,
0.07689,
0.07711,
0.07499,
0.07125,
0.06843,
0.06385,
0.0645,
0.06473,
0.06411,
0.06327,
0.06546,
0.06404,
0.06315,
0.06338,
0.06379,
0.0637,
0.06858,
0.06647,
0.06701,
0.06426,
0.06497,
0.06377,
0.06385,
0.06443,
0.06464,
0.06384,
0.06402,
0.06391,
0.0634,
0.06199,
0.06247,
0.06181,
0.06255,
0.06296,
0.06297,
0.06254,
0.06281,
0.06323,
0.06303,
0.06348,
0.06187,
0.06199,
0.06175,
0.06124,
0.06114,
0.06142,
0.06168,
0.06249,
0.06276,
0.06358,
0.0642,
0.06232,
0.06159,
0.06165,
0.06162,
0.06166,
0.0616,
0.061,
0.05923,
0.05948,
0.05852,
0.05899,
0.05998,
0.05986,
0.06176,
0.06016,
0.05936,
0.05899,
0.06049,
0.06147,
0.06173,
0.0679,
0.07012,
0.06978,
0.07516,
0.07243,
0.06982,
0.0702,
0.0704,
0.07085,
0.06967,
0.07089,
0.06823,
0.06927,
0.07175,
0.07653,
0.07648,
0.0772,
0.07791,
0.07559,
0.08189,
0.08038,
0.07954,
0.07555,
0.07654,
0.084,
0.0876,
0.08663,
0.08066,
0.08219,
0.07875,
0.0766,
0.07638,
0.07866,
0.07916,
0.07899,
0.0817,
0.08121,
0.08317,
0.08443,
0.0851,
0.08663,
0.08738,
0.0926,
0.0958,
0.10456,
0.09828,
0.10385,
0.1051,
0.10275,
0.1073,
0.09802,
0.09759,
0.09878,
0.09879,
0.09728,
0.09784,
0.09378,
0.0935,
0.09334,
0.098,
0.09559,
0.095,
0.09492,
0.09544,
0.09445,
0.09386,
0.09493,
0.093,
0.09139,
0.09089,
0.09207,
0.09438,
0.09213,
0.08467,
0.08483,
0.08268,
0.08148,
0.08177,
0.0826,
0.08501,
0.088,
0.08544,
0.08138,
0.08396,
0.08178,
0.08258,
0.0816,
0.08081,
0.07884,
0.09058,
0.09046,
0.08559,
0.08189,
0.08066,
0.07925,
0.08035,
0.0807,
0.08149,
0.08306,
0.08219,
0.08028,
0.07986,
0.07996,
0.07951,
0.07998,
0.0803,
0.07923,
0.08032,
0.08087,
0.08222,
0.08214,
0.08358,
0.08287,
0.08297,
0.087,
0.08824,
0.08799,
0.08606,
0.08572,
0.09084,
0.09155,
0.08627,
0.08551,
0.08553,
0.08637,
0.08681,
0.09,
0.10066,
0.12333,
0.135,
0.14561,
0.151,
0.15629,
0.185,
0.20637,
0.17976,
0.1623,
0.176,
0.18485,
0.17965,
0.18315,
0.1835,
0.17434,
0.19289,
0.18142,
0.16524,
0.15936,
0.15432,
0.14517,
0.15327,
0.15998,
0.165,
0.175,
0.18,
0.18726,
0.18707,
0.19185,
0.22888,
0.22494,
0.21692,
0.2243,
0.22003,
0.20517,
0.1875,
0.18835,
0.18076,
0.18785,
0.2052,
0.21,
0.20346,
0.2028,
0.20358,
0.2013,
0.17586,
0.16505,
0.169,
0.16247,
0.15873,
0.15381,
0.15722,
0.165,
0.16586,
0.16343,
0.163,
0.1645,
0.15446,
0.15178,
0.14972,
0.15109,
0.14809,
0.14601,
0.13395,
0.13439,
0.14799,
0.17,
0.16349,
0.16915,
0.15991,
0.152,
0.15423,
0.15387,
0.14626,
0.14445,
0.15739,
0.15516,
0.157,
0.15931,
0.15658,
0.15688,
0.15604,
0.16623,
0.1733,
0.1746,
0.16941,
0.17328,
0.17438,
0.175,
0.1735,
0.16982,
0.17087,
0.16546,
0.16261,
0.16199,
0.16137,
0.16346,
0.16194,
0.16486,
0.16579,
0.16213,
0.14879,
0.14916,
0.14795,
0.14519,
0.15096,
0.1465,
0.14343,
0.13785,
0.13768,
0.13822,
0.12929,
0.12679,
0.129,
0.12574,
0.12556,
0.1264,
0.12395,
0.12862,
0.12865,
0.12846,
0.12851,
0.1244,
0.12564,
0.1275,
0.12544,
0.12555,
0.11914,
0.10652,
0.11416,
0.1135,
0.1114,
0.10954,
0.11053,
0.11247,
0.10831,
0.113,
0.11698,
0.12555,
0.12784,
0.12769,
0.12397,
0.12604,
0.13582,
0.14373,
0.1427,
0.13923,
0.13482,
0.12873,
0.13496,
0.13878,
0.13186,
0.13509,
0.1307,
0.12732,
0.12312,
0.11975,
0.11475,
0.10944,
0.1043,
0.10151,
0.10208,
0.108,
0.10782,
0.10592,
0.11099,
0.10872,
0.10904,
0.10694,
0.10495,
0.10207,
0.10372,
0.10446,
0.10193,
0.10581,
0.10797,
0.10689,
0.11546,
0.115,
0.11287,
0.11032,
0.10653,
0.1019,
0.10259,
0.10315,
0.10239,
0.10153,
0.09992,
0.10081,
0.09951,
0.09917,
0.09944,
0.0957,
0.09699,
0.10495,
0.1046,
0.10305,
0.10334,
0.10857,
0.1077,
0.10642,
0.10324,
0.10266,
0.10388,
0.10713,
0.10749,
0.11049,
0.10998,
0.10919,
0.11066,
0.11115,
0.1207,
0.12873,
0.1321,
0.13044,
0.12466,
0.11935,
0.10951,
0.1068,
0.11059,
0.11025,
0.11291,
0.11547,
0.10986,
0.11153,
0.10865,
0.11144,
0.11219,
0.11211,
0.11771,
0.11932,
0.12999,
0.131,
0.14083,
0.147,
0.14573,
0.14975,
0.14849,
0.14101,
0.14384,
0.14277,
0.13822,
0.14631,
0.16261,
0.1798,
0.17789,
0.17364,
0.169,
0.16372,
0.15993,
0.16034,
0.17956,
0.21811,
0.20435,
0.20699,
0.22,
0.29784,
0.3515,
0.43858,
0.4341,
0.41672,
0.385,
0.39148,
0.3758,
0.3808,
0.42,
0.39668,
0.39564,
0.42043,
0.48,
0.4536,
0.4377,
0.4088,
0.40777,
0.42877,
0.43744,
0.43569,
0.44977,
0.46357,
0.42966,
0.43568,
0.4655
],
"low": [
0.07071,
0.0709,
0.07217,
0.07232,
0.06311,
0.06585,
0.06668,
0.06729,
0.053,
0.06092,
0.05975,
0.06006,
0.05811,
0.05975,
0.06069,
0.06168,
0.06107,
0.06151,
0.06074,
0.06284,
0.06502,
0.06525,
0.06505,
0.06635,
0.06319,
0.06433,
0.06013,
0.06241,
0.06101,
0.06641,
0.066,
0.06721,
0.06764,
0.06558,
0.06466,
0.0641,
0.06474,
0.0651,
0.06326,
0.06437,
0.06365,
0.06455,
0.06612,
0.06769,
0.06891,
0.06752,
0.06703,
0.06823,
0.06926,
0.07026,
0.06963,
0.06997,
0.07018,
0.07361,
0.07647,
0.07666,
0.07586,
0.07683,
0.07622,
0.07672,
0.07517,
0.07369,
0.07253,
0.0725,
0.07292,
0.07407,
0.0717,
0.07321,
0.07419,
0.07514,
0.07484,
0.07561,
0.0743,
0.07365,
0.06832,
0.06602,
0.0556,
0.05988,
0.0631,
0.06338,
0.06035,
0.06023,
0.06246,
0.06183,
0.06169,
0.06262,
0.06269,
0.06186,
0.0624,
0.06434,
0.0628,
0.0623,
0.0626,
0.06276,
0.06209,
0.06288,
0.06248,
0.06279,
0.06237,
0.06319,
0.05938,
0.05919,
0.06043,
0.0605,
0.06108,
0.06138,
0.06176,
0.06097,
0.06096,
0.06189,
0.06144,
0.06103,
0.06058,
0.06127,
0.06028,
0.06009,
0.05933,
0.06016,
0.06038,
0.06131,
0.06173,
0.06169,
0.06093,
0.06107,
0.06001,
0.06059,
0.06071,
0.06105,
0.06065,
0.05678,
0.05846,
0.05764,
0.05722,
0.05777,
0.05833,
0.05901,
0.05909,
0.05812,
0.05827,
0.05738,
0.05862,
0.05942,
0.05979,
0.06131,
0.06418,
0.0646,
0.06782,
0.06716,
0.0675,
0.06722,
0.06771,
0.06578,
0.06548,
0.0666,
0.06621,
0.0679,
0.0688,
0.07025,
0.0715,
0.07277,
0.06779,
0.07241,
0.07445,
0.07503,
0.07341,
0.0688,
0.07227,
0.07593,
0.07907,
0.079,
0.07734,
0.07666,
0.07063,
0.07153,
0.07494,
0.07605,
0.07753,
0.0755,
0.0768,
0.07671,
0.07959,
0.08039,
0.0823,
0.08327,
0.0836,
0.085,
0.08746,
0.0943,
0.09269,
0.09556,
0.0975,
0.09665,
0.09106,
0.09122,
0.0898,
0.09327,
0.09232,
0.09152,
0.09238,
0.08638,
0.08926,
0.08942,
0.09063,
0.09195,
0.09204,
0.09026,
0.09124,
0.087,
0.08956,
0.09107,
0.08843,
0.0892,
0.08808,
0.08847,
0.09035,
0.075,
0.08093,
0.08046,
0.07833,
0.07701,
0.07412,
0.07642,
0.07579,
0.08197,
0.0778,
0.07861,
0.07964,
0.07987,
0.07986,
0.07935,
0.0769,
0.07484,
0.07821,
0.08468,
0.08012,
0.076,
0.07754,
0.07711,
0.07753,
0.07902,
0.07818,
0.07816,
0.07939,
0.078,
0.07728,
0.07858,
0.07853,
0.07775,
0.07735,
0.07773,
0.07816,
0.07935,
0.07986,
0.0803,
0.08075,
0.07946,
0.07968,
0.08047,
0.08392,
0.08392,
0.08192,
0.08282,
0.08502,
0.0826,
0.08196,
0.08302,
0.08285,
0.08386,
0.08521,
0.08415,
0.08844,
0.09417,
0.11132,
0.11704,
0.13579,
0.12356,
0.14424,
0.12766,
0.14649,
0.14637,
0.155,
0.16308,
0.16526,
0.16163,
0.155,
0.165,
0.16522,
0.151,
0.138,
0.1366,
0.14,
0.1252,
0.12253,
0.14649,
0.14528,
0.15164,
0.16097,
0.17,
0.1745,
0.1787,
0.1892,
0.2079,
0.19611,
0.19908,
0.19709,
0.18,
0.17002,
0.17189,
0.16753,
0.1764,
0.18544,
0.19551,
0.18496,
0.18006,
0.18974,
0.1606,
0.13085,
0.14369,
0.15027,
0.14628,
0.14431,
0.14083,
0.139,
0.1502,
0.15505,
0.15647,
0.15682,
0.14934,
0.14743,
0.14683,
0.14233,
0.146,
0.13959,
0.12916,
0.1201,
0.12407,
0.13113,
0.14572,
0.15454,
0.15399,
0.14924,
0.14206,
0.14318,
0.14224,
0.14247,
0.13899,
0.13579,
0.14429,
0.14525,
0.14825,
0.14922,
0.15123,
0.1474,
0.14767,
0.16071,
0.16174,
0.15171,
0.155,
0.1627,
0.16551,
0.16416,
0.16157,
0.16208,
0.15642,
0.15431,
0.1584,
0.15469,
0.15579,
0.15706,
0.16117,
0.15863,
0.14,
0.1435,
0.14492,
0.14325,
0.13364,
0.13458,
0.14009,
0.13189,
0.13361,
0.13467,
0.12601,
0.11439,
0.12141,
0.12134,
0.12138,
0.1229,
0.1209,
0.11375,
0.11882,
0.1218,
0.12061,
0.12217,
0.12138,
0.1205,
0.12322,
0.12247,
0.11683,
0.1042,
0.09303,
0.10468,
0.1036,
0.09874,
0.10579,
0.10572,
0.10615,
0.10477,
0.10728,
0.1111,
0.11457,
0.11891,
0.12032,
0.11736,
0.11742,
0.1243,
0.12576,
0.13581,
0.12807,
0.12688,
0.1201,
0.12504,
0.13011,
0.12809,
0.12755,
0.1232,
0.12133,
0.11233,
0.11017,
0.10518,
0.099,
0.0805,
0.09405,
0.09428,
0.09354,
0.1016,
0.10288,
0.10004,
0.1001,
0.10336,
0.10136,
0.09789,
0.09745,
0.10001,
0.1,
0.09857,
0.10107,
0.10212,
0.104,
0.10522,
0.11074,
0.10778,
0.10442,
0.09633,
0.09682,
0.09827,
0.09697,
0.10035,
0.09388,
0.09409,
0.09639,
0.09215,
0.096,
0.08893,
0.09175,
0.09383,
0.09571,
0.10153,
0.09785,
0.10044,
0.10179,
0.1043,
0.10212,
0.09834,
0.0987,
0.09932,
0.10343,
0.1036,
0.10404,
0.10378,
0.1041,
0.10676,
0.10801,
0.10702,
0.11698,
0.1201,
0.12435,
0.11336,
0.10265,
0.10223,
0.10108,
0.10475,
0.10747,
0.10839,
0.10823,
0.10523,
0.10608,
0.10314,
0.10566,
0.10933,
0.10864,
0.10931,
0.11016,
0.1158,
0.12048,
0.12952,
0.13702,
0.13721,
0.13816,
0.1365,
0.13312,
0.1363,
0.12779,
0.13071,
0.13607,
0.14115,
0.16054,
0.16447,
0.15646,
0.15415,
0.15546,
0.14219,
0.14817,
0.15796,
0.16901,
0.18535,
0.19052,
0.19737,
0.21659,
0.27244,
0.32924,
0.35121,
0.35229,
0.35261,
0.35982,
0.34,
0.3574,
0.36601,
0.36464,
0.36883,
0.3808,
0.40404,
0.39811,
0.38085,
0.3654,
0.38025,
0.39111,
0.39945,
0.41378,
0.41622,
0.40185,
0.39003,
0.4,
0.40675
],
"open": [
0.07165,
0.07143,
0.07257,
0.07271,
0.07249,
0.0664,
0.07025,
0.06796,
0.06947,
0.06175,
0.06152,
0.06144,
0.06174,
0.06038,
0.06154,
0.06219,
0.0622,
0.06212,
0.06244,
0.06314,
0.06562,
0.06556,
0.06823,
0.06669,
0.06672,
0.06474,
0.06557,
0.06257,
0.06342,
0.06646,
0.06851,
0.06801,
0.06845,
0.06891,
0.06697,
0.06484,
0.0654,
0.06573,
0.06537,
0.06523,
0.06529,
0.06504,
0.07042,
0.06848,
0.07196,
0.06951,
0.06982,
0.06867,
0.07004,
0.07061,
0.07322,
0.07047,
0.07179,
0.0742,
0.08185,
0.07794,
0.07761,
0.07717,
0.08024,
0.07802,
0.07786,
0.07815,
0.07422,
0.07358,
0.07346,
0.07572,
0.07427,
0.07354,
0.07497,
0.07542,
0.07587,
0.07574,
0.0767,
0.07479,
0.0747,
0.07092,
0.06718,
0.06102,
0.06326,
0.06379,
0.06384,
0.06253,
0.06258,
0.06379,
0.06308,
0.06312,
0.06289,
0.06317,
0.06345,
0.0664,
0.06588,
0.06379,
0.06386,
0.06348,
0.06317,
0.06326,
0.06403,
0.06364,
0.06366,
0.0637,
0.06338,
0.0613,
0.06046,
0.0609,
0.06125,
0.06207,
0.0625,
0.06213,
0.06146,
0.06196,
0.06269,
0.06263,
0.0613,
0.06153,
0.06152,
0.06068,
0.06095,
0.06062,
0.06052,
0.06151,
0.06213,
0.06207,
0.0632,
0.06201,
0.06138,
0.06146,
0.06087,
0.06136,
0.06143,
0.06095,
0.05872,
0.05914,
0.05851,
0.05789,
0.05839,
0.05984,
0.0593,
0.06,
0.05903,
0.05859,
0.05887,
0.0599,
0.06119,
0.06169,
0.06742,
0.0666,
0.06832,
0.07184,
0.06776,
0.069,
0.06936,
0.06958,
0.06827,
0.06893,
0.0679,
0.06808,
0.06908,
0.07108,
0.07637,
0.07338,
0.07535,
0.07357,
0.07539,
0.0785,
0.07795,
0.07456,
0.07244,
0.07623,
0.07946,
0.08642,
0.08027,
0.08045,
0.07768,
0.07174,
0.07579,
0.07621,
0.07818,
0.07894,
0.07867,
0.07883,
0.08083,
0.08045,
0.08344,
0.08384,
0.08617,
0.08571,
0.09188,
0.10371,
0.09493,
0.09594,
0.10165,
0.09846,
0.10186,
0.09412,
0.09381,
0.09643,
0.09829,
0.09302,
0.09713,
0.09295,
0.09212,
0.09023,
0.09151,
0.095,
0.09498,
0.09346,
0.09172,
0.09436,
0.09135,
0.09365,
0.09174,
0.09096,
0.09,
0.08956,
0.092,
0.09109,
0.082,
0.08401,
0.08267,
0.08058,
0.07822,
0.0813,
0.07922,
0.08307,
0.08456,
0.08007,
0.08094,
0.08002,
0.08108,
0.08134,
0.0806,
0.07808,
0.07856,
0.08777,
0.08547,
0.08057,
0.07821,
0.07905,
0.07795,
0.07985,
0.08014,
0.07883,
0.08137,
0.07971,
0.07874,
0.07937,
0.07928,
0.07874,
0.07831,
0.07835,
0.07848,
0.08013,
0.07986,
0.08154,
0.08141,
0.08123,
0.08223,
0.08105,
0.08549,
0.08527,
0.08591,
0.08355,
0.08516,
0.08942,
0.08615,
0.08457,
0.08409,
0.08451,
0.08616,
0.08613,
0.08923,
0.09759,
0.11585,
0.11732,
0.13934,
0.14195,
0.15346,
0.18197,
0.15304,
0.15784,
0.15762,
0.16456,
0.17875,
0.16998,
0.18203,
0.16817,
0.16895,
0.1772,
0.16358,
0.14253,
0.15428,
0.14352,
0.12879,
0.15209,
0.15536,
0.15294,
0.16191,
0.17651,
0.17526,
0.18231,
0.19048,
0.22002,
0.213,
0.19913,
0.22,
0.20502,
0.18249,
0.17521,
0.17997,
0.17719,
0.18576,
0.19887,
0.20261,
0.18915,
0.19971,
0.19382,
0.17403,
0.15254,
0.1621,
0.16115,
0.156,
0.14755,
0.15222,
0.15632,
0.16259,
0.15823,
0.16121,
0.15979,
0.15139,
0.15126,
0.14802,
0.14776,
0.14671,
0.14343,
0.13337,
0.13021,
0.13189,
0.14604,
0.16013,
0.161,
0.15655,
0.14999,
0.14322,
0.15209,
0.14389,
0.14305,
0.14122,
0.14863,
0.14552,
0.15533,
0.14971,
0.15555,
0.15307,
0.14909,
0.16573,
0.17023,
0.16651,
0.15973,
0.16386,
0.17402,
0.16621,
0.16908,
0.16496,
0.16386,
0.15945,
0.15898,
0.16031,
0.1571,
0.15834,
0.16137,
0.16327,
0.16015,
0.1482,
0.1459,
0.14679,
0.14478,
0.13806,
0.14621,
0.1411,
0.13499,
0.13678,
0.13712,
0.12879,
0.12224,
0.12247,
0.12455,
0.12418,
0.12376,
0.12222,
0.11901,
0.12616,
0.12277,
0.12711,
0.12306,
0.1219,
0.12449,
0.12352,
0.1253,
0.11849,
0.10503,
0.10514,
0.11343,
0.10415,
0.10757,
0.10756,
0.108,
0.10664,
0.10769,
0.11231,
0.11535,
0.1249,
0.12479,
0.12179,
0.11955,
0.12543,
0.13423,
0.14027,
0.13777,
0.1303,
0.12793,
0.12525,
0.13419,
0.13143,
0.13005,
0.12844,
0.12551,
0.12192,
0.11902,
0.11154,
0.10812,
0.10375,
0.09437,
0.09646,
0.09561,
0.10747,
0.10386,
0.10519,
0.10059,
0.10791,
0.10637,
0.1024,
0.10021,
0.10035,
0.10275,
0.10005,
0.10132,
0.10289,
0.10615,
0.10526,
0.11292,
0.11258,
0.1096,
0.10519,
0.0989,
0.09955,
0.10037,
0.10177,
0.10128,
0.09508,
0.09912,
0.09678,
0.09799,
0.09842,
0.09241,
0.0954,
0.09616,
0.10383,
0.10279,
0.10132,
0.10269,
0.10695,
0.1054,
0.1028,
0.09965,
0.10111,
0.10384,
0.10498,
0.10555,
0.10994,
0.10632,
0.10807,
0.10977,
0.10853,
0.11817,
0.12352,
0.12807,
0.12438,
0.11421,
0.10686,
0.10462,
0.10506,
0.10924,
0.10941,
0.11159,
0.10841,
0.10709,
0.10795,
0.10603,
0.11077,
0.11138,
0.1114,
0.11669,
0.11748,
0.12574,
0.12967,
0.13718,
0.14408,
0.14214,
0.14364,
0.1397,
0.13998,
0.14189,
0.13161,
0.13747,
0.14427,
0.16145,
0.17586,
0.16828,
0.16164,
0.15917,
0.15955,
0.15139,
0.15822,
0.16999,
0.19646,
0.19325,
0.20197,
0.21891,
0.27781,
0.35135,
0.37995,
0.40014,
0.36258,
0.3815,
0.36421,
0.36704,
0.37113,
0.39067,
0.37924,
0.38663,
0.41277,
0.43016,
0.42753,
0.39263,
0.38705,
0.40093,
0.4016,
0.42635,
0.4216,
0.43967,
0.42536,
0.40632,
0.43274
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "DOGE Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
5.206,
5.278,
5.341,
5.314,
5.065,
5.202,
5.024,
4.982,
4.517,
4.523,
4.535,
4.627,
4.569,
4.374,
4.422,
4.53,
4.536,
4.53,
4.662,
4.821,
4.825,
5.098,
5.008,
5.194,
5.024,
5.096,
4.879,
4.985,
5.18,
5.351,
5.496,
5.431,
5.348,
5.208,
5.014,
5.119,
5.128,
5.081,
5.131,
5.214,
5.147,
5.545,
5.451,
5.432,
5.311,
5.304,
5.181,
5.193,
5.355,
5.485,
5.314,
5.391,
5.209,
5.175,
5.235,
5.239,
5.219,
5.248,
5.184,
5.109,
5.208,
5.061,
4.979,
4.993,
4.974,
5.005,
4.971,
5.059,
5.059,
5.006,
5.007,
5.04,
4.987,
4.989,
4.818,
4.672,
4.429,
4.51,
4.517,
4.519,
4.427,
4.423,
4.489,
4.424,
4.49,
4.507,
4.489,
4.61,
4.678,
4.534,
4.271,
4.218,
4.261,
4.259,
4.26,
4.257,
4.272,
4.294,
4.253,
4.236,
4.149,
3.989,
3.986,
3.998,
4.058,
4.139,
4.185,
4.07,
4.106,
4.152,
4.138,
4.012,
4.019,
4.033,
3.993,
4.068,
4.013,
3.993,
4.073,
4.074,
4.103,
4.263,
4.12,
4.077,
4.042,
4.024,
4.068,
4.051,
4.012,
3.881,
3.811,
3.74,
3.676,
3.721,
3.735,
3.753,
3.776,
3.67,
3.654,
3.649,
3.718,
3.909,
3.967,
4.357,
4.19,
4.291,
4.234,
4.135,
4.181,
4.315,
4.525,
4.449,
4.727,
4.629,
4.61,
4.681,
4.762,
4.967,
4.927,
5.033,
5.09,
5.3,
5.557,
5.709,
5.348,
5.197,
5.564,
5.352,
5.244,
5.289,
5.434,
5.302,
4.858,
5.174,
5.139,
5.242,
5.328,
5.329,
5.156,
5.275,
5.161,
5.473,
5.471,
5.562,
5.541,
5.632,
5.807,
6.046,
6.242,
6.837,
7.101,
7.348,
6.709,
7.131,
7.603,
7.507,
6.951,
7.092,
6.784,
6.885,
6.706,
6.951,
8.42,
7.954,
8.326,
8.611,
9.191,
8.819,
8.694,
8.426,
8.291,
8.346,
8.202,
8.595,
8.411,
7.626,
7.879,
7.45,
7.133,
6.899,
7.483,
7.128,
7.991,
8.148,
7.567,
7.617,
7.319,
7.509,
7.493,
7.35,
7.017,
6.894,
6.913,
6.817,
6.341,
6.361,
6.462,
6.438,
6.672,
6.669,
6.872,
7.032,
6.836,
6.654,
6.791,
6.947,
6.825,
6.666,
6.735,
6.807,
6.941,
7.013,
7.196,
7.2,
7.099,
7.34,
7.353,
7.649,
7.781,
7.647,
7.704,
7.86,
8.029,
7.731,
7.466,
7.48,
7.563,
7.819,
7.923,
8.109,
8.371,
8.342,
8.261,
8.661,
9.463,
9.781,
9.862,
9.32,
10.544,
10.402,
10.637,
10.494,
10.261,
11.036,
10.736,
11.374,
11.558,
10.81,
9.682,
10.083,
9.902,
8.766,
9.483,
9.179,
8.936,
8.968,
9.371,
9.736,
9.689,
9.445,
9.522,
9.601,
9.429,
9.647,
9.143,
8.582,
8.416,
8.486,
8.379,
8.494,
8.704,
9.043,
8.659,
8.409,
8.384,
7.24,
6.388,
6.855,
6.708,
6.702,
6.583,
6.784,
6.682,
7.241,
7.14,
7.466,
7.242,
6.931,
6.862,
6.764,
6.807,
6.728,
6.587,
6.425,
6.898,
7.273,
7.245,
7.122,
7.302,
7.118,
6.995,
6.987,
7.049,
6.746,
6.663,
6.617,
6.669,
6.484,
6.963,
7.025,
7.199,
7.158,
6.931,
7.575,
7.61,
7.464,
7.2,
7.244,
7.425,
7.557,
7.64,
7.37,
7.178,
6.998,
6.984,
7.062,
6.988,
7.009,
7.177,
7.251,
7.144,
6.659,
6.384,
6.527,
6.506,
6.378,
6.738,
6.359,
6.163,
6.223,
6.396,
6.069,
5.771,
5.799,
5.642,
5.611,
5.752,
5.65,
5.729,
5.842,
5.799,
6.287,
6.19,
6.08,
6.215,
6.329,
6.531,
6.081,
5.556,
5.683,
6.24,
5.911,
5.944,
6.117,
6.097,
5.903,
6.103,
6.232,
6.32,
6.484,
6.337,
6.256,
6.093,
6.338,
6.333,
6.43,
6.096,
5.917,
5.748,
5.755,
5.867,
5.825,
5.718,
5.649,
5.519,
5.389,
5.341,
5.122,
5.045,
4.688,
4.2,
4.509,
4.579,
4.879,
4.784,
4.754,
4.495,
4.588,
4.547,
4.383,
4.277,
4.292,
4.369,
4.39,
4.481,
4.524,
4.663,
4.689,
4.891,
4.981,
4.819,
4.558,
4.378,
4.254,
4.252,
4.277,
4.258,
4.068,
4.208,
4.062,
4.111,
4.021,
3.959,
4.079,
4.161,
4.287,
4.251,
4.191,
4.294,
4.42,
4.437,
4.393,
4.196,
4.157,
4.176,
4.255,
4.34,
4.462,
4.311,
4.458,
4.635,
4.637,
4.814,
4.882,
4.794,
4.767,
4.432,
4.154,
4.102,
4.129,
4.194,
4.139,
4.191,
4.131,
4.104,
4.024,
4.073,
4.171,
4.205,
4.162,
4.378,
4.406,
4.314,
4.193,
4.31,
4.432,
4.579,
4.377,
4.322,
4.21,
4.206,
3.996,
4.035,
4.128,
4.132,
4.193,
4.191,
3.959,
3.908,
3.908,
3.784,
3.752,
3.855,
4.111,
4.163,
4.325,
4.63,
5.241,
5.71,
5.308,
5.073,
4.775,
5.161,
5.786,
5.424,
6.008,
5.805,
5.724,
5.93,
6.63,
8.515,
8.825,
8.232,
8.065,
8.456,
8.615,
9.026,
8.945,
9.289,
10.011,
9.78,
10.512,
10.369
],
"high": [
5.335,
5.435,
5.341,
5.384,
5.322,
5.27,
5.212,
5.07,
4.986,
4.553,
4.556,
4.721,
4.802,
4.62,
4.468,
4.567,
4.667,
4.588,
4.678,
4.92,
4.976,
5.138,
5.139,
5.246,
5.238,
5.154,
5.099,
5.236,
5.2,
5.392,
5.53,
5.635,
5.513,
5.38,
5.368,
5.179,
5.196,
5.16,
5.23,
5.217,
5.31,
5.55,
5.76,
5.564,
5.448,
5.416,
5.391,
5.257,
5.488,
5.71,
5.518,
5.493,
5.416,
5.256,
5.295,
5.336,
5.273,
5.259,
5.276,
5.261,
5.209,
5.22,
5.075,
5.046,
4.996,
5.046,
5.049,
5.098,
5.106,
5.067,
5.02,
5.044,
5.045,
5.058,
4.998,
4.842,
4.982,
4.56,
4.553,
4.533,
4.537,
4.45,
4.537,
4.517,
4.496,
4.514,
4.544,
4.622,
4.806,
4.68,
4.535,
4.295,
4.274,
4.3,
4.321,
4.303,
4.289,
4.31,
4.332,
4.278,
4.238,
4.155,
4.097,
4.1,
4.088,
4.172,
4.225,
4.189,
4.22,
4.17,
4.168,
4.166,
4.038,
4.038,
4.058,
4.09,
4.092,
4.075,
4.101,
4.12,
4.119,
4.289,
4.31,
4.162,
4.076,
4.088,
4.094,
4.114,
4.072,
4.03,
3.895,
3.823,
3.741,
3.776,
3.762,
3.782,
3.9,
3.779,
3.723,
3.66,
3.805,
3.98,
3.973,
4.368,
4.425,
4.355,
4.451,
4.236,
4.225,
4.355,
4.532,
4.603,
4.804,
4.795,
4.646,
4.78,
4.91,
4.994,
5.05,
5.094,
5.265,
5.317,
5.682,
5.859,
5.89,
5.522,
5.64,
5.809,
5.486,
5.29,
5.481,
5.569,
5.326,
5.287,
5.219,
5.294,
5.389,
5.415,
5.377,
5.313,
5.4,
5.591,
5.525,
5.604,
5.624,
5.721,
5.832,
6.205,
6.3,
6.914,
7.689,
7.362,
7.361,
7.353,
7.648,
7.769,
7.564,
7.352,
7.163,
6.886,
7.049,
7.136,
8.435,
8.58,
8.446,
9.2,
9.4,
9.593,
9.063,
8.912,
8.686,
8.489,
8.648,
8.63,
8.806,
8.575,
7.999,
7.954,
7.448,
7.327,
7.506,
7.527,
8.091,
8.58,
8.212,
7.753,
7.699,
7.692,
7.688,
7.597,
7.39,
7.052,
6.951,
6.977,
6.848,
6.455,
6.542,
6.579,
6.73,
6.753,
6.875,
7.298,
7.087,
6.888,
6.816,
7.028,
7.01,
6.826,
6.976,
6.832,
6.966,
7.11,
7.329,
7.29,
7.342,
7.377,
7.45,
7.71,
7.95,
7.868,
7.709,
7.92,
8.148,
8.117,
7.732,
7.687,
7.646,
7.891,
7.95,
8.117,
8.449,
8.7,
8.899,
8.673,
9.467,
9.9,
10.31,
10.762,
10.56,
11,
10.7,
10.95,
10.574,
11.245,
11.15,
11.46,
11.882,
11.706,
10.899,
10.252,
10.456,
9.994,
9.567,
9.583,
9.367,
9.224,
9.43,
9.832,
10.057,
9.814,
9.659,
9.81,
9.699,
9.649,
9.747,
9.143,
8.78,
8.711,
8.511,
8.555,
8.741,
9.096,
9.137,
8.701,
8.528,
8.49,
7.33,
6.929,
7.206,
6.821,
6.779,
6.829,
6.917,
7.283,
7.288,
7.583,
7.543,
7.5,
7.001,
6.951,
6.866,
6.951,
6.826,
6.669,
6.935,
7.409,
7.386,
7.28,
7.4,
7.473,
7.295,
7.189,
7.089,
7.149,
6.809,
6.793,
6.826,
6.698,
7.029,
7.066,
7.299,
7.229,
7.18,
7.584,
7.671,
7.699,
7.604,
7.386,
7.438,
7.64,
7.775,
7.667,
7.562,
7.243,
7.054,
7.135,
7.125,
7.191,
7.236,
7.298,
7.288,
7.291,
6.683,
6.54,
6.582,
6.527,
6.931,
6.743,
6.488,
6.258,
6.428,
6.418,
6.089,
5.993,
5.972,
5.737,
5.805,
5.818,
5.74,
5.976,
5.949,
6.38,
6.442,
6.305,
6.26,
6.45,
6.611,
6.545,
6.134,
5.918,
6.312,
6.313,
6.293,
6.2,
6.26,
6.248,
6.104,
6.306,
6.357,
6.543,
6.513,
6.535,
6.407,
6.48,
6.397,
6.445,
6.476,
6.165,
5.997,
5.779,
5.891,
5.942,
5.844,
5.88,
5.726,
5.556,
5.422,
5.369,
5.209,
5.097,
4.72,
4.604,
4.641,
4.904,
4.924,
4.832,
4.829,
4.68,
4.65,
4.554,
4.481,
4.387,
4.384,
4.529,
4.504,
4.604,
4.749,
4.72,
4.953,
5.1,
4.995,
4.866,
4.658,
4.453,
4.403,
4.335,
4.318,
4.259,
4.234,
4.285,
4.197,
4.127,
4.096,
4.133,
4.208,
4.341,
4.289,
4.257,
4.3,
4.472,
4.445,
4.558,
4.393,
4.288,
4.178,
4.352,
4.404,
4.477,
4.483,
4.462,
4.684,
4.773,
4.878,
4.964,
4.929,
4.857,
4.771,
4.563,
4.27,
4.173,
4.212,
4.234,
4.195,
4.272,
4.184,
4.15,
4.077,
4.196,
4.262,
4.216,
4.4,
4.535,
4.411,
4.35,
4.312,
4.483,
4.594,
4.615,
4.437,
4.332,
4.26,
4.22,
4.061,
4.136,
4.226,
4.251,
4.218,
4.215,
3.996,
3.949,
3.931,
3.839,
3.919,
4.13,
4.199,
4.392,
4.641,
5.478,
5.786,
5.838,
5.425,
5.216,
5.174,
5.803,
6.147,
6.1,
6.044,
6.08,
5.968,
6.687,
9.432,
10.5,
9.359,
8.468,
8.568,
8.752,
9.076,
9.224,
9.388,
10.198,
10.39,
11.649,
11.233
],
"low": [
5.187,
5.16,
5.24,
5.306,
4.9,
4.985,
4.976,
4.93,
4.2,
4.424,
4.411,
4.495,
4.505,
4.272,
4.276,
4.396,
4.478,
4.433,
4.374,
4.635,
4.745,
4.82,
4.905,
5.002,
5,
4.997,
4.746,
4.87,
4.789,
5.112,
5.224,
5.377,
5.256,
5.117,
5.01,
4.975,
5.055,
5.062,
4.98,
5.089,
5.1,
5.096,
5.3,
5.383,
5.256,
5.173,
5.1,
5.129,
5.184,
5.337,
5.266,
5.275,
5.1,
5.129,
5.117,
5.182,
5.16,
5.204,
5.1,
5.046,
4.95,
5.012,
4.929,
4.939,
4.929,
4.959,
4.835,
4.933,
4.997,
4.977,
4.956,
4.997,
4.968,
4.951,
4.622,
4.531,
4.312,
4.365,
4.454,
4.466,
4.362,
4.25,
4.378,
4.368,
4.357,
4.476,
4.461,
4.416,
4.54,
4.5,
4.234,
4.136,
4.201,
4.226,
4.193,
4.198,
4.171,
4.235,
4.204,
4.236,
4.103,
3.908,
3.953,
3.95,
3.973,
4.046,
4.134,
4.046,
4.014,
4.079,
4.065,
4.001,
3.976,
3.998,
3.971,
3.947,
3.974,
3.967,
3.981,
4.055,
4.071,
4.102,
4.058,
4.05,
3.958,
4,
3.998,
4.044,
4,
3.756,
3.77,
3.7,
3.621,
3.667,
3.717,
3.707,
3.737,
3.636,
3.629,
3.562,
3.638,
3.706,
3.795,
3.918,
4.096,
4.137,
4.15,
4.01,
4.13,
4.126,
4.233,
4.272,
4.322,
4.51,
4.456,
4.585,
4.653,
4.677,
4.719,
4.86,
4.457,
4.964,
5.086,
5.344,
5.331,
5,
5.185,
5.271,
5.05,
4.991,
5.176,
5.255,
4.819,
4.843,
5.082,
5.118,
5.213,
5.145,
5.037,
5.102,
5.15,
5.118,
5.369,
5.45,
5.43,
5.421,
5.511,
5.77,
5.901,
6.166,
6.83,
6.959,
6.285,
6.696,
6.613,
6.955,
6.926,
6.859,
6.749,
6.368,
6.612,
6.618,
6.915,
7.841,
7.578,
8.315,
8.499,
8.4,
8.402,
8.263,
8.049,
8.095,
8.025,
8.061,
8.317,
6.5,
7.469,
7.178,
6.943,
6.817,
6.51,
6.908,
6.8,
7.85,
7.31,
7.37,
7.316,
7.308,
7.339,
7.255,
6.82,
6.571,
6.778,
6.801,
6.293,
5.979,
6.26,
6.357,
6.361,
6.53,
6.567,
6.705,
6.822,
6.584,
6.53,
6.763,
6.813,
6.647,
6.592,
6.639,
6.671,
6.87,
6.96,
7.059,
7.077,
6.978,
7.111,
7.273,
7.526,
7.537,
7.34,
7.676,
7.651,
7.399,
7.225,
7.274,
7.269,
7.431,
7.677,
7.583,
7.987,
7.713,
8.029,
8.263,
8.576,
8.576,
9.578,
8.458,
8.924,
10.209,
9.989,
10.409,
9.963,
9.791,
10.135,
10.638,
10.748,
9.975,
9.502,
9.19,
9.602,
8.6,
8.488,
9.067,
8.694,
8.852,
8.952,
9.287,
9.525,
9.304,
9.3,
9.344,
9.387,
9.414,
8.923,
8.37,
8.284,
8.263,
8.076,
8.33,
8.458,
8.57,
8.632,
8.14,
8.183,
6.503,
5.7,
6.196,
6.436,
6.371,
6.326,
6.445,
6.274,
6.608,
6.962,
7.089,
7.205,
6.857,
6.703,
6.714,
6.511,
6.69,
6.47,
6.04,
6.129,
6.694,
7.002,
7.105,
7.014,
7.06,
6.979,
6.893,
6.782,
6.69,
6.635,
6.586,
6.431,
6.469,
6.461,
6.812,
6.999,
7.063,
6.889,
6.851,
7.428,
7.38,
6.895,
7.017,
7.22,
7.367,
7.38,
7.277,
7.145,
6.923,
6.803,
6.959,
6.935,
6.932,
6.941,
7.148,
7.056,
6.053,
6.338,
6.375,
6.357,
6.217,
6.276,
6.336,
6,
6.109,
6.149,
5.987,
5.5,
5.73,
5.6,
5.549,
5.541,
5.587,
5.389,
5.705,
5.757,
5.706,
6.159,
6.063,
6.023,
6.195,
6.314,
5.998,
5.539,
4.927,
5.631,
5.882,
5.695,
5.84,
6.05,
5.895,
5.801,
6.074,
6.159,
6.295,
6.126,
6.246,
6.02,
5.978,
6.224,
6.1,
6.08,
5.799,
5.654,
5.54,
5.726,
5.715,
5.67,
5.622,
5.481,
5.335,
5.029,
5,
4.854,
4.534,
3.59,
4.194,
4.403,
4.48,
4.73,
4.723,
4.466,
4.45,
4.398,
4.343,
4.227,
4.211,
4.275,
4.346,
4.344,
4.455,
4.492,
4.591,
4.684,
4.845,
4.744,
4.53,
4.25,
4.165,
4.179,
4.101,
4.218,
4.032,
4.051,
4.056,
3.868,
3.973,
3.818,
3.935,
4.059,
4.111,
4.197,
4.058,
4.189,
4.27,
4.344,
4.355,
4.148,
4.127,
3.973,
4.177,
4.19,
4.282,
4.234,
4.233,
4.401,
4.59,
4.565,
4.809,
4.746,
4.685,
4.402,
4.051,
4.004,
3.989,
4.106,
4.075,
4.097,
4.126,
4.07,
3.951,
3.962,
4.053,
4.152,
4.086,
4.134,
4.291,
4.287,
4.146,
4.173,
4.31,
4.357,
4.334,
4.271,
4.104,
4.143,
3.848,
3.943,
4.007,
4.004,
4.119,
4.119,
3.901,
3.845,
3.823,
3.665,
3.679,
3.746,
3.855,
4.045,
4.116,
4.262,
4.582,
4.972,
5.116,
4.908,
4.686,
4.704,
5.132,
5.304,
5.392,
5.659,
5.532,
5.473,
5.878,
6.585,
8.044,
8.11,
7.551,
7.842,
8.002,
8.44,
8.604,
8.696,
8.455,
9.19,
9.668,
9.897
],
"open": [
5.315,
5.206,
5.277,
5.341,
5.314,
5.065,
5.202,
5.023,
4.982,
4.516,
4.523,
4.535,
4.627,
4.568,
4.375,
4.423,
4.53,
4.537,
4.53,
4.662,
4.821,
4.824,
5.098,
5.008,
5.194,
5.024,
5.095,
4.881,
4.986,
5.18,
5.351,
5.495,
5.429,
5.348,
5.207,
5.015,
5.119,
5.126,
5.081,
5.13,
5.213,
5.146,
5.544,
5.451,
5.432,
5.311,
5.303,
5.179,
5.191,
5.355,
5.486,
5.315,
5.391,
5.21,
5.176,
5.235,
5.239,
5.218,
5.248,
5.183,
5.109,
5.207,
5.06,
4.978,
4.993,
4.975,
5.006,
4.971,
5.06,
5.06,
5.005,
5.008,
5.039,
4.987,
4.989,
4.817,
4.672,
4.429,
4.511,
4.517,
4.521,
4.427,
4.425,
4.489,
4.422,
4.49,
4.505,
4.489,
4.61,
4.678,
4.535,
4.271,
4.218,
4.262,
4.26,
4.26,
4.257,
4.273,
4.294,
4.253,
4.236,
4.149,
3.988,
3.987,
3.999,
4.059,
4.138,
4.187,
4.07,
4.106,
4.154,
4.139,
4.012,
4.019,
4.033,
3.99,
4.067,
4.013,
3.993,
4.074,
4.074,
4.104,
4.264,
4.121,
4.076,
4.042,
4.024,
4.069,
4.052,
4.012,
3.88,
3.812,
3.739,
3.676,
3.721,
3.734,
3.753,
3.776,
3.669,
3.653,
3.649,
3.72,
3.909,
3.967,
4.358,
4.189,
4.292,
4.234,
4.134,
4.181,
4.315,
4.525,
4.448,
4.728,
4.63,
4.611,
4.682,
4.763,
4.968,
4.927,
5.032,
5.093,
5.3,
5.557,
5.709,
5.349,
5.198,
5.563,
5.352,
5.243,
5.29,
5.433,
5.302,
4.857,
5.175,
5.139,
5.242,
5.328,
5.329,
5.156,
5.275,
5.161,
5.473,
5.47,
5.562,
5.54,
5.634,
5.907,
6.045,
6.242,
6.838,
7.102,
7.348,
6.706,
7.133,
7.602,
7.508,
6.951,
7.092,
6.785,
6.884,
6.706,
6.952,
8.422,
7.954,
8.326,
8.612,
9.192,
8.819,
8.695,
8.427,
8.291,
8.346,
8.203,
8.594,
8.408,
7.626,
7.879,
7.448,
7.132,
6.899,
7.483,
7.128,
7.99,
8.147,
7.566,
7.618,
7.319,
7.509,
7.492,
7.349,
7.018,
6.894,
6.913,
6.815,
6.342,
6.362,
6.461,
6.438,
6.671,
6.669,
6.871,
7.031,
6.838,
6.653,
6.791,
6.947,
6.826,
6.666,
6.737,
6.806,
6.941,
7.014,
7.197,
7.2,
7.099,
7.34,
7.354,
7.648,
7.781,
7.647,
7.704,
7.86,
8.029,
7.731,
7.466,
7.481,
7.564,
7.819,
7.924,
8.109,
8.371,
8.342,
8.263,
8.661,
9.463,
9.781,
9.862,
9.32,
10.544,
10.404,
10.637,
10.494,
10.262,
11.045,
10.736,
11.374,
11.557,
10.811,
9.684,
10.083,
9.9,
8.766,
9.483,
9.179,
8.939,
8.967,
9.372,
9.737,
9.689,
9.448,
9.524,
9.601,
9.429,
9.647,
9.143,
8.582,
8.416,
8.486,
8.379,
8.495,
8.704,
9.042,
8.657,
8.408,
8.382,
7.24,
6.39,
6.855,
6.694,
6.7,
6.58,
6.783,
6.681,
7.241,
7.139,
7.467,
7.243,
6.933,
6.863,
6.765,
6.808,
6.726,
6.588,
6.423,
6.9,
7.272,
7.244,
7.122,
7.303,
7.123,
6.992,
6.984,
7.05,
6.745,
6.659,
6.616,
6.671,
6.485,
6.961,
7.025,
7.198,
7.16,
6.93,
7.574,
7.609,
7.467,
7.199,
7.244,
7.426,
7.556,
7.64,
7.371,
7.178,
6.997,
6.984,
7.061,
6.989,
7.009,
7.178,
7.25,
7.145,
6.659,
6.384,
6.527,
6.506,
6.378,
6.737,
6.36,
6.162,
6.223,
6.397,
6.069,
5.771,
5.798,
5.643,
5.612,
5.752,
5.651,
5.727,
5.841,
5.799,
6.286,
6.189,
6.08,
6.216,
6.33,
6.531,
6.082,
5.556,
5.686,
6.24,
5.909,
5.943,
6.117,
6.095,
5.902,
6.102,
6.233,
6.32,
6.486,
6.335,
6.254,
6.092,
6.337,
6.332,
6.43,
6.095,
5.917,
5.747,
5.755,
5.867,
5.825,
5.72,
5.65,
5.519,
5.389,
5.34,
5.123,
5.044,
4.688,
4.198,
4.509,
4.579,
4.877,
4.783,
4.753,
4.495,
4.587,
4.546,
4.383,
4.278,
4.293,
4.37,
4.391,
4.481,
4.524,
4.664,
4.689,
4.892,
4.982,
4.823,
4.557,
4.378,
4.255,
4.252,
4.277,
4.259,
4.068,
4.209,
4.063,
4.111,
4.022,
3.96,
4.08,
4.162,
4.286,
4.25,
4.192,
4.294,
4.42,
4.437,
4.393,
4.195,
4.158,
4.177,
4.255,
4.339,
4.46,
4.31,
4.458,
4.636,
4.637,
4.814,
4.883,
4.794,
4.767,
4.432,
4.154,
4.102,
4.129,
4.194,
4.139,
4.19,
4.13,
4.104,
4.024,
4.073,
4.172,
4.205,
4.163,
4.379,
4.407,
4.313,
4.193,
4.311,
4.433,
4.578,
4.378,
4.324,
4.21,
4.206,
3.996,
4.036,
4.129,
4.133,
4.193,
4.192,
3.959,
3.908,
3.908,
3.786,
3.751,
3.856,
4.111,
4.164,
4.324,
4.632,
5.242,
5.71,
5.309,
5.068,
4.784,
5.148,
5.787,
5.425,
6.008,
5.817,
5.705,
5.93,
6.631,
8.515,
8.824,
8.231,
8.037,
8.457,
8.615,
9.027,
8.945,
9.291,
10.009,
9.781,
10.513
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "DOT Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"close": [
94.19,
95.45,
96.03,
94.19,
87.71,
90.92,
88.85,
89.3,
77.13,
77.68,
77.5,
77.5,
73.15,
74.6,
76.13,
76.86,
77.19,
77.48,
80.33,
85.05,
85.93,
91.26,
89.71,
88.2,
87.21,
88.07,
83.02,
84.73,
108.7,
107.1,
113.58,
107.27,
104.27,
102.6,
95.25,
98.23,
97.79,
95.08,
96.72,
96.77,
96.21,
101.85,
95.13,
94.78,
92.89,
92.2,
91.56,
91.99,
92.37,
94.09,
92.09,
93.16,
89.14,
89.45,
90.64,
90.6,
91.44,
94.32,
94.03,
92.28,
93.94,
87.54,
82.55,
82.2,
83.12,
82.57,
82.49,
83.86,
84.08,
83.14,
83.58,
83.47,
81.92,
82.11,
79.26,
74.56,
64.77,
63.98,
64.18,
65.25,
67,
64.83,
65.64,
64.88,
65.13,
65.01,
65.39,
65.52,
68.86,
67.65,
63.89,
62.98,
64.59,
63.93,
63.75,
63.15,
62.87,
63.71,
62.61,
63.06,
61.11,
58.85,
59.96,
61.98,
62.83,
65.89,
65.38,
63.55,
65.89,
67.28,
64.55,
64.69,
64.37,
65.07,
63.58,
64.33,
63.8,
63.53,
65.21,
65.55,
65.97,
68.19,
65.97,
65.5,
64.4,
64.8,
65.5,
65.45,
65.34,
63.07,
63.61,
61.55,
61.12,
61.58,
61.62,
61.63,
63.19,
62.07,
60.23,
61.78,
63.38,
64.75,
65.26,
69.02,
69.15,
68.71,
68.76,
66.99,
67.73,
68.79,
69.21,
68.89,
69.97,
69.43,
69.45,
70.41,
71.6,
74.46,
73.41,
73.07,
73.83,
73.28,
75.26,
74.88,
71.1,
70.61,
74.03,
70.97,
70.29,
69.86,
70.54,
69.51,
66.15,
68.7,
69.51,
70.73,
71.87,
70.03,
69.22,
69.77,
70,
69.42,
71.57,
72.2,
72.31,
72.93,
74.34,
72.41,
74.02,
78.5,
76.32,
77.18,
72.67,
72.37,
73.12,
72.93,
70.93,
72.19,
71.18,
70.85,
70.73,
69.83,
70.93,
73.58,
72.45,
71.12,
72.22,
73.24,
75.98,
76.51,
73.25,
73.22,
72.83,
74.72,
72.97,
65.24,
66.41,
66,
65.64,
64.27,
67.73,
66.99,
70.1,
71.88,
72.97,
71.98,
69.78,
69.13,
69.44,
69.46,
68.11,
71.29,
71.36,
71.75,
67.36,
65.5,
66.13,
65.5,
67.05,
68.06,
68.35,
68.43,
67.47,
66.76,
67.54,
68.05,
68.81,
66.94,
67.7,
68.29,
68.62,
70.53,
70.64,
70.8,
71.55,
72.82,
68.97,
69.81,
69.76,
70.59,
69.97,
70.8,
71.3,
69.65,
68.9,
68.8,
68.8,
70.41,
70.16,
71.93,
73.97,
74.48,
79.92,
84.87,
94.49,
90.7,
88.95,
81.93,
85.87,
88,
88.32,
90.67,
87.43,
103.86,
97.52,
97.24,
94.08,
89.75,
84.12,
85.93,
86.77,
78.45,
84.65,
85.75,
83.4,
85.26,
89.65,
90.58,
95.77,
93.55,
94.11,
109.06,
102.84,
105.01,
99.2,
106.75,
98.33,
98.38,
97.82,
101.6,
101.21,
103.27,
97.53,
96.71,
98.78,
86.1,
77.33,
79.72,
78.08,
79.94,
80.19,
80.75,
80.87,
85.04,
84.16,
85.39,
85.02,
83.25,
83.78,
88.1,
83.88,
83.99,
83.51,
79.49,
80.17,
80.02,
81.85,
81.66,
81.32,
80.78,
80.83,
81.7,
83.07,
80.22,
81.39,
81.41,
80.62,
78.79,
82.45,
82.43,
84.15,
83.84,
82.4,
88.64,
88.26,
85.77,
85.45,
85,
84.98,
83.9,
85.24,
83.44,
83.59,
84.42,
83.21,
83.48,
83.11,
82.82,
83.65,
85.44,
84.19,
80.13,
79.97,
80.49,
79.66,
77.32,
78.5,
79.15,
77.61,
79.23,
78.98,
76.59,
72.66,
73.77,
74.69,
74.17,
74.61,
73.37,
69.68,
71.35,
71.02,
73.28,
72.9,
74.95,
75.31,
74.38,
76.04,
72.08,
65.42,
61.84,
65.39,
62.05,
64.92,
65.3,
66.96,
67.36,
69.25,
69.82,
69.92,
72.29,
73.21,
71.38,
71.63,
73.4,
73.03,
73.98,
71.26,
72.92,
71.29,
68.79,
71.31,
71.32,
71.07,
73.69,
71.69,
70.14,
69.61,
65.06,
64.66,
62.46,
56.08,
58.25,
55.99,
61.16,
60.71,
61.16,
59.73,
61.5,
63.44,
64.06,
65.33,
66.49,
67.59,
66.33,
66.32,
64.41,
64.28,
63.77,
66.1,
66.57,
64.82,
63.01,
60.38,
61.79,
62.47,
64.94,
64.97,
63.59,
65.33,
64.36,
65.42,
66.08,
63.05,
62.07,
60.95,
61.42,
61.51,
62.19,
62.84,
64.91,
65.91,
63.24,
62.62,
63.77,
64.83,
65.4,
65.33,
66.84,
68.68,
66.96,
66.7,
66.55,
68.54,
71.13,
69.95,
69.27,
66.82,
63.41,
62.95,
63.44,
64.95,
66.29,
67.02,
64.77,
65.69,
64.59,
64.31,
65.58,
66.19,
64.8,
66.83,
70.87,
70.08,
72.8,
73.11,
74.9,
74.3,
70.77,
70.04,
70.04,
71.18,
68.84,
68.47,
71.06,
70.8,
73.98,
71.76,
69.33,
70.27,
69.2,
66.86,
65.56,
65.39,
71.01,
71.45,
72.78,
73.98,
76.58,
80.03,
76.69,
75.39,
82.38,
83.7,
95.42,
87.2,
89.22,
86.68,
83.38,
89.51,
92.2,
99.5,
96.92,
92.26,
92.82,
97.23,
95.54,
104.77,
102.74,
119.57,
132.93,
130.89,
133.69,
135.78
],
"high": [
95.98,
95.7,
97.56,
96.5,
94.58,
91.47,
91.31,
89.98,
89.34,
78.98,
77.91,
79.79,
78.14,
75.14,
76.91,
77.87,
78.47,
77.83,
80.95,
87.4,
88.85,
93.12,
93.8,
90.46,
90.35,
89.44,
88.1,
85.75,
112,
113,
114,
115,
109.59,
106.63,
105.95,
98.61,
98.49,
98.41,
97.81,
98.35,
97.85,
104.41,
103.63,
95.79,
95.36,
93.58,
92.95,
94.23,
95.02,
94.79,
96.46,
93.62,
93.43,
90.19,
91.17,
91.99,
92,
94.9,
96.18,
95.06,
94.12,
94.68,
88.38,
83.92,
83.42,
83.49,
83.44,
85.47,
84.61,
84.39,
83.72,
84,
83.81,
83.13,
82.25,
79.61,
75.84,
65.97,
65.01,
65.89,
67.31,
67.38,
66.86,
65.9,
65.47,
65.59,
65.95,
65.76,
70.69,
69.03,
68.36,
64.25,
64.75,
64.91,
65.01,
63.79,
63.91,
64.49,
64.24,
63.3,
63.06,
61.66,
61.53,
62.85,
63.44,
66.27,
67.05,
65.42,
67.9,
68.41,
67.87,
65.01,
65.88,
65.26,
65.1,
65.06,
65.08,
65.56,
65.54,
66.5,
66.6,
68.85,
68.42,
66.93,
65.52,
65.28,
65.98,
66.27,
65.98,
65.36,
63.82,
63.75,
61.55,
62.15,
61.97,
62.18,
66.33,
63.33,
62.85,
61.92,
64.27,
65.39,
66.32,
69.9,
72.89,
70.42,
70.63,
68.81,
68.42,
69.31,
69.79,
70.53,
70.46,
70.77,
69.58,
70.81,
72.32,
74.95,
74.57,
74.31,
76.23,
75.48,
75.95,
76.79,
76.05,
72.56,
74.3,
74.35,
71.66,
70.33,
70.67,
71.02,
71.87,
69.15,
70.76,
71.77,
72.5,
71.87,
70.5,
70.27,
70.46,
70.15,
72.23,
72.72,
72.75,
75.07,
74.37,
74.94,
74.51,
78.88,
79.53,
79,
77.5,
73.72,
75.55,
74.05,
72.96,
72.52,
73.63,
71.55,
71.66,
71.89,
71.09,
73.78,
74.09,
72.95,
72.77,
74.45,
77.3,
77.64,
77.8,
74.01,
74.24,
74.78,
75.9,
73.61,
67.11,
66.73,
66.08,
66.38,
68.37,
67.82,
71.2,
74.62,
77.19,
73.6,
72.3,
71.62,
70.53,
70,
70.34,
71.57,
72.76,
72.3,
72.71,
68.43,
66.35,
66.16,
67.55,
68.33,
68.49,
68.79,
68.74,
70.07,
68.13,
68.43,
69.2,
68.9,
68.26,
68.8,
68.83,
70.66,
71.95,
71.3,
73.1,
73.46,
73.16,
70.76,
70.95,
70.99,
70.7,
71.35,
71.74,
71.48,
69.69,
69.76,
69.1,
70.67,
70.61,
72.99,
76.38,
77.89,
84.96,
86.18,
94.5,
94.68,
92.69,
91.82,
87.39,
89.64,
89.48,
90.97,
90.82,
105.67,
104.25,
98.95,
98.07,
95.39,
90.75,
86.79,
88.06,
87.79,
85.29,
87.02,
86.22,
87.5,
90.8,
92.06,
97.06,
99,
96.59,
110.44,
109.25,
106.87,
112.8,
108.99,
109.78,
104.3,
100.24,
102.47,
105.99,
106.06,
103.46,
98.3,
99.96,
99.58,
86.67,
80.44,
82.83,
80.44,
80.82,
82.53,
82.2,
85.98,
85.69,
86.49,
86.39,
87.72,
85.07,
88.54,
88.46,
85.43,
85.64,
84.56,
80.88,
81.28,
82.62,
83.01,
81.78,
84.17,
82.61,
82.33,
83.16,
83.48,
82.29,
82.16,
82.61,
81.67,
82.84,
83.24,
84.21,
84.81,
84.38,
89.11,
89.63,
88.48,
87.95,
86.48,
85.98,
85.26,
86.43,
85.54,
84.21,
85.54,
84.7,
83.74,
83.53,
84.29,
83.7,
85.47,
85.84,
84.83,
80.46,
80.71,
80.52,
79.85,
79.28,
79.79,
80.27,
79.47,
80.15,
79.24,
76.77,
74.97,
75.35,
74.73,
74.88,
75.06,
73.45,
72.03,
71.95,
73.35,
74.76,
76.9,
75.98,
75.96,
76.21,
76.21,
72.42,
65.58,
65.67,
65.57,
67.03,
66.3,
67.3,
69.14,
69.42,
70.68,
70.51,
72.53,
74.09,
74.25,
72.95,
74.13,
73.92,
74.13,
74.61,
73.11,
73.67,
71.66,
71.7,
72.37,
71.77,
76.78,
74.56,
72.93,
71.45,
69.97,
66.38,
65.25,
62.57,
59.32,
59.5,
62,
61.24,
61.55,
62.42,
62.06,
63.52,
64.69,
66.89,
66.79,
67.87,
68.16,
67.42,
67.3,
64.77,
64.37,
66.88,
67.99,
66.87,
65.1,
63.97,
62.38,
63.96,
65.42,
66.45,
65.13,
65.74,
66.38,
66.22,
68.55,
66.81,
64.16,
62.32,
61.82,
61.77,
62.42,
63.12,
65.01,
66.76,
66.31,
63.75,
64.03,
64.86,
66.06,
66.45,
67.15,
68.82,
69.35,
67.17,
67.85,
68.58,
71.2,
71.52,
70.32,
69.38,
68.59,
64.77,
63.97,
65.2,
66.36,
67.65,
67.98,
66.16,
65.97,
65.09,
65.92,
66.65,
66.3,
67.37,
71.9,
73.07,
74,
74.87,
76.19,
75.88,
74.62,
71.62,
70.43,
71.33,
72.28,
69.72,
71.22,
71.57,
74.38,
74.27,
72.11,
71.09,
71.25,
69.29,
67.74,
67.28,
71.64,
72.39,
73.05,
74.19,
78.2,
80.37,
82.78,
77.93,
85,
87.37,
98.49,
97.43,
95,
90.18,
87.83,
93,
92.78,
106.36,
103.18,
99.23,
95.31,
99,
98.26,
104.8,
104.92,
122.25,
139.42,
135.16,
135.62,
146.79
],
"low": [
89.17,
92.58,
94.15,
93.8,
83.56,
85.64,
87.34,
86.66,
73.56,
76.15,
75.07,
76.26,
70.75,
72.08,
74.12,
75.73,
76.22,
76.05,
75.68,
80.01,
84,
85.02,
86.35,
86.61,
85.74,
86.9,
81.36,
82.91,
84.28,
102.86,
105.09,
105.55,
103.5,
98.6,
95.14,
94.21,
96.55,
94.41,
91.62,
95.51,
94.12,
95.61,
91.96,
93.74,
91.84,
89.15,
89.37,
91.39,
91.39,
91.68,
91.2,
91.52,
87.27,
88.55,
88.5,
89.66,
90.53,
90.84,
90.82,
91.07,
88.1,
85.7,
80.5,
80.74,
81.35,
81.68,
79.29,
81.75,
83.13,
82.66,
82.68,
83.27,
81.01,
81.5,
77,
72.75,
56,
63.04,
63.51,
63.98,
64.34,
62.02,
64.06,
63.9,
63.5,
64.9,
64.83,
63.97,
64.6,
66.5,
63.13,
61.83,
62.95,
63.57,
63,
62.58,
61.36,
62.48,
61.51,
62.52,
60.02,
57.68,
58.65,
59.63,
61.95,
62.55,
64.41,
62.75,
62.9,
65.59,
63.24,
62.92,
63.89,
64.37,
63.25,
62.56,
63.02,
63.04,
63.14,
64.91,
65.34,
65.83,
65.11,
65.26,
63.01,
63.72,
64.37,
64.95,
64.97,
61.51,
62.57,
61.08,
60.33,
61.06,
61.39,
61.38,
61.57,
61.37,
60.04,
59.7,
61.57,
63.35,
63.12,
64.86,
67.07,
67.69,
66.13,
65.58,
66.93,
67,
67.62,
67.6,
66.51,
67.4,
67.5,
68.69,
69.9,
70.79,
71.06,
72.45,
67.85,
70.67,
70.84,
72.12,
70.5,
68.09,
70.5,
69.78,
68,
67.5,
68.5,
68.62,
65.12,
65.96,
68.38,
69.43,
70.48,
68.91,
67.91,
67.81,
69.15,
69.11,
69.2,
71.16,
71.3,
71.89,
71,
72.17,
71.82,
73.32,
75.52,
76.33,
70.46,
71.03,
70.15,
71.25,
70.52,
70.43,
70.86,
68,
69.69,
69.38,
68.92,
70.31,
70.7,
70,
70.55,
71.04,
72.07,
74.51,
72.71,
72.38,
71.45,
72.06,
72.48,
57.71,
64.5,
63.4,
63.22,
63.68,
61,
64.16,
65,
69.54,
70.4,
70.98,
69.43,
68.79,
68.38,
68.35,
66.22,
66.97,
70.45,
70.5,
66.67,
63.19,
64.86,
64.57,
65.19,
66.34,
67.29,
66.84,
67.17,
66.14,
65.7,
67.32,
67.9,
66.46,
66.58,
67.55,
67.75,
68.36,
70.07,
69.93,
70.6,
70.32,
68.1,
68.41,
69,
68.61,
68,
69.82,
70.42,
67.41,
67.32,
67.91,
67.48,
68.62,
69.75,
69.1,
71.93,
70.38,
73.87,
79.93,
84.45,
86.64,
87.53,
72.01,
79.76,
83.38,
84.1,
86.77,
85.35,
84.31,
92.72,
94.21,
89.62,
83.33,
82.25,
80.7,
80.76,
77.13,
76.97,
83.57,
80.58,
82.85,
85.25,
88.54,
87.53,
92.3,
93.33,
92.75,
101.06,
101.41,
97.23,
93.1,
96.5,
96.23,
95,
97.17,
100.11,
99.52,
96.47,
93.5,
94.87,
80,
70.5,
73.61,
75.62,
75.31,
76.25,
78.64,
75.77,
80.27,
82.73,
83.95,
83.98,
82.34,
81.83,
83.09,
83.14,
83.57,
81.73,
77.19,
74.6,
78.66,
79.33,
81.42,
80.37,
80.01,
79.79,
79.33,
80.7,
79.57,
80.13,
80.84,
78.95,
78.57,
78.23,
81.37,
81.92,
83.43,
81.77,
82.39,
87,
84.9,
80.53,
84.01,
84.43,
83.54,
83.82,
82.06,
82.63,
81.9,
82.02,
82.92,
82.2,
82.65,
81.11,
83.49,
84.16,
75,
78.84,
79.49,
79.07,
75.55,
76.33,
77.31,
75.9,
77.45,
78.63,
75.1,
70.65,
72.5,
73.24,
72.17,
73.56,
73.23,
67.55,
69.4,
70.39,
70.55,
72.54,
72.87,
74.11,
74.17,
74.28,
71.78,
65.05,
57.02,
61.4,
61.63,
59.25,
64.26,
64.5,
66.42,
66.78,
69.13,
69.23,
69.67,
70.34,
71.12,
70.5,
69.67,
72.31,
71.21,
70.7,
70.43,
70.74,
67.29,
68.76,
70.27,
70.34,
71.04,
71.08,
70.01,
65.94,
63.97,
62.59,
60.31,
49.8,
55.98,
55.4,
55.16,
59.33,
60.14,
58.81,
59.17,
61.12,
62.57,
63.59,
64.28,
65.88,
66.09,
65.59,
63.15,
62.06,
62.48,
63.47,
65.43,
64.42,
62.97,
59,
59.4,
61.09,
61.55,
64.86,
62.84,
62.6,
64.3,
62.02,
64.43,
61.18,
61.64,
59.89,
59.65,
60.35,
60.13,
61.52,
62.4,
64.87,
62.89,
62.1,
61.93,
62.39,
64.69,
64.33,
64.82,
66.46,
66.63,
65.7,
65.91,
65.64,
68.28,
69.01,
68.49,
66.31,
62,
62.24,
61.92,
63.29,
64.67,
66.11,
64.48,
64.52,
64.11,
63.29,
64.3,
65.07,
64.43,
64.12,
65.27,
69.32,
69.87,
71.89,
73.04,
73.6,
70.32,
69.39,
67.89,
69.29,
66.79,
68.07,
68,
69.6,
70.71,
71.49,
68.42,
67.7,
68.86,
65.28,
64.45,
64.85,
65.35,
69.88,
70.64,
71.58,
73.45,
74.57,
68,
71.86,
74.17,
78.84,
82.84,
84.68,
86.38,
85.07,
82.33,
81.54,
87.63,
92.08,
91.53,
90.92,
87.95,
91.47,
93.66,
94.72,
100.33,
99.35,
114.92,
122.7,
121.97,
124.94
],
"open": [
90.42,
94.17,
95.45,
96.03,
94.19,
87.71,
90.93,
88.49,
89.3,
77.14,
77.68,
77.5,
77.5,
73.15,
74.61,
76.13,
76.87,
77.2,
77.48,
80.34,
85.05,
85.94,
91.28,
89.72,
88.2,
87.22,
88.06,
83.01,
84.73,
108.7,
107.1,
113.57,
107.27,
104.27,
102.6,
95.25,
98.22,
97.78,
95.08,
96.73,
96.76,
96.21,
101.85,
95.12,
94.77,
92.89,
92.19,
91.55,
92,
92.37,
94.1,
92.09,
93.15,
89.14,
89.45,
90.63,
90.59,
91.44,
94.33,
94.03,
92.28,
93.95,
87.53,
82.55,
82.2,
83.11,
82.57,
82.48,
83.85,
84.08,
83.13,
83.58,
83.48,
81.92,
82.11,
79.27,
74.57,
64.77,
63.98,
64.17,
65.25,
67,
64.83,
65.63,
64.88,
65.13,
65,
65.39,
65.51,
68.85,
67.65,
63.88,
62.98,
64.58,
63.93,
63.75,
63.15,
62.88,
63.71,
62.6,
63.06,
61.12,
58.85,
59.96,
61.98,
62.83,
65.89,
65.38,
63.57,
65.87,
67.28,
64.55,
64.69,
64.37,
65.06,
63.58,
64.34,
63.8,
63.53,
65.22,
65.55,
65.98,
68.19,
65.98,
65.5,
64.39,
64.81,
65.5,
65.45,
65.34,
63.07,
63.6,
61.55,
61.12,
61.58,
61.62,
61.63,
63.2,
62.06,
60.22,
61.77,
63.37,
64.75,
65.26,
69.02,
69.14,
68.7,
68.75,
66.99,
67.73,
68.79,
69.21,
68.89,
69.97,
69.42,
69.45,
70.41,
71.6,
74.46,
73.41,
73.06,
73.85,
73.27,
75.27,
74.88,
71.1,
70.61,
74.02,
70.96,
70.28,
69.85,
70.56,
69.52,
66.15,
68.73,
69.51,
70.72,
71.87,
70.03,
69.22,
69.76,
69.99,
69.44,
71.57,
72.2,
72.31,
72.92,
74.44,
72.4,
74.02,
78.49,
76.33,
77.17,
72.66,
72.38,
73.14,
72.93,
70.92,
72.18,
71.18,
70.86,
70.72,
69.83,
70.93,
73.58,
72.44,
71.11,
72.23,
73.24,
75.98,
76.51,
73.25,
73.23,
72.83,
74.72,
72.96,
65.23,
66.41,
65.99,
65.65,
64.27,
67.72,
66.99,
70.1,
71.88,
72.97,
71.98,
69.8,
69.15,
69.44,
69.46,
68.11,
71.3,
71.35,
71.75,
67.36,
65.5,
66.12,
65.5,
67.05,
68.05,
68.34,
68.43,
67.48,
66.76,
67.55,
68.05,
68.82,
66.95,
67.7,
68.29,
68.63,
70.54,
70.64,
70.79,
71.55,
72.81,
68.97,
69.81,
69.76,
70.59,
69.97,
70.8,
71.29,
69.65,
68.91,
68.79,
68.79,
70.41,
70.16,
71.93,
73.97,
74.48,
79.93,
84.89,
94.48,
90.7,
88.94,
81.93,
85.87,
88,
88.33,
90.66,
87.43,
103.87,
97.52,
97.24,
94.08,
89.77,
84.12,
85.93,
86.76,
78.45,
84.65,
85.74,
83.4,
85.26,
89.66,
90.59,
95.76,
93.55,
94.11,
109.06,
102.84,
105.01,
99.21,
106.77,
98.33,
98.41,
97.83,
101.6,
101.21,
103.27,
97.54,
96.71,
98.77,
86.1,
77.33,
79.72,
78.03,
79.94,
80.19,
80.76,
80.86,
85.03,
84.16,
85.39,
85,
83.25,
83.77,
88.1,
83.88,
83.98,
83.52,
79.48,
80.17,
80.03,
81.86,
81.66,
81.32,
80.73,
80.82,
81.62,
83.04,
80.22,
81.39,
81.42,
80.62,
78.76,
82.55,
82.43,
84.15,
83.89,
82.4,
88.64,
88.26,
85.79,
85.45,
85,
84.99,
83.87,
85.24,
83.44,
83.58,
84.43,
83.21,
83.48,
83.11,
82.83,
83.66,
85.44,
84.19,
80.13,
79.96,
80.5,
79.67,
77.31,
78.5,
79.15,
77.61,
79.23,
78.99,
76.6,
72.66,
73.77,
74.7,
74.17,
74.6,
73.37,
69.68,
71.35,
71.02,
73.28,
72.9,
74.94,
75.32,
74.38,
76.04,
72.08,
65.42,
61.81,
65.4,
62.04,
64.92,
65.31,
66.95,
67.36,
69.26,
69.82,
69.94,
72.29,
73.2,
71.37,
71.64,
73.41,
73.04,
73.99,
71.25,
72.92,
71.28,
68.8,
71.31,
71.3,
71.08,
73.69,
71.69,
70.15,
69.6,
65.05,
64.66,
62.47,
56.09,
58.24,
56,
61.15,
60.72,
61.17,
59.73,
61.51,
63.43,
64.05,
65.33,
66.49,
67.59,
66.34,
66.32,
64.41,
64.27,
63.77,
66.1,
66.57,
64.82,
63,
60.37,
61.77,
62.46,
64.92,
64.96,
63.57,
65.33,
64.36,
65.41,
66.07,
63.05,
62.06,
60.88,
61.41,
61.52,
62.17,
62.83,
64.92,
65.91,
63.24,
62.63,
63.76,
64.84,
65.39,
65.34,
66.85,
68.69,
66.95,
66.71,
66.57,
68.54,
71.13,
69.95,
69.27,
66.83,
63.4,
62.95,
63.45,
64.95,
66.3,
67.03,
64.77,
65.69,
64.59,
64.32,
65.59,
66.19,
64.8,
66.84,
70.87,
70.08,
72.79,
73.04,
74.9,
74.31,
70.77,
70.03,
70.05,
71.18,
68.83,
68.47,
71.1,
70.81,
73.99,
71.76,
69.33,
70.27,
69.2,
66.85,
65.56,
65.4,
71,
71.46,
72.79,
73.98,
76.58,
80.04,
76.68,
75.4,
82.37,
83.71,
95.44,
87.2,
89.06,
86.64,
83.42,
89.58,
92.2,
99.5,
96.92,
92.23,
92.69,
97.25,
95.54,
104.76,
102.75,
119.57,
132.75,
130.9,
133.69
],
"type": "candlestick",
"x": [
"2023-06-01",
"2023-06-02",
"2023-06-03",
"2023-06-04",
"2023-06-05",
"2023-06-06",
"2023-06-07",
"2023-06-09",
"2023-06-10",
"2023-06-11",
"2023-06-12",
"2023-06-13",
"2023-06-14",
"2023-06-15",
"2023-06-16",
"2023-06-17",
"2023-06-18",
"2023-06-19",
"2023-06-20",
"2023-06-21",
"2023-06-22",
"2023-06-23",
"2023-06-24",
"2023-06-25",
"2023-06-26",
"2023-06-27",
"2023-06-28",
"2023-06-29",
"2023-06-30",
"2023-07-01",
"2023-07-02",
"2023-07-03",
"2023-07-04",
"2023-07-05",
"2023-07-06",
"2023-07-07",
"2023-07-08",
"2023-07-09",
"2023-07-10",
"2023-07-11",
"2023-07-12",
"2023-07-13",
"2023-07-14",
"2023-07-15",
"2023-07-16",
"2023-07-17",
"2023-07-18",
"2023-07-19",
"2023-07-20",
"2023-07-21",
"2023-07-22",
"2023-07-23",
"2023-07-24",
"2023-07-25",
"2023-07-26",
"2023-07-27",
"2023-07-28",
"2023-07-29",
"2023-07-30",
"2023-07-31",
"2023-08-01",
"2023-08-02",
"2023-08-03",
"2023-08-04",
"2023-08-05",
"2023-08-06",
"2023-08-07",
"2023-08-08",
"2023-08-09",
"2023-08-10",
"2023-08-11",
"2023-08-12",
"2023-08-13",
"2023-08-14",
"2023-08-15",
"2023-08-16",
"2023-08-17",
"2023-08-18",
"2023-08-19",
"2023-08-20",
"2023-08-21",
"2023-08-22",
"2023-08-23",
"2023-08-24",
"2023-08-25",
"2023-08-26",
"2023-08-27",
"2023-08-28",
"2023-08-29",
"2023-08-30",
"2023-08-31",
"2023-09-01",
"2023-09-02",
"2023-09-03",
"2023-09-04",
"2023-09-05",
"2023-09-06",
"2023-09-07",
"2023-09-08",
"2023-09-09",
"2023-09-10",
"2023-09-11",
"2023-09-12",
"2023-09-13",
"2023-09-14",
"2023-09-15",
"2023-09-16",
"2023-09-17",
"2023-09-18",
"2023-09-19",
"2023-09-20",
"2023-09-21",
"2023-09-22",
"2023-09-23",
"2023-09-24",
"2023-09-25",
"2023-09-26",
"2023-09-27",
"2023-09-28",
"2023-09-29",
"2023-09-30",
"2023-10-01",
"2023-10-02",
"2023-10-03",
"2023-10-04",
"2023-10-05",
"2023-10-06",
"2023-10-07",
"2023-10-08",
"2023-10-09",
"2023-10-10",
"2023-10-11",
"2023-10-12",
"2023-10-13",
"2023-10-14",
"2023-10-15",
"2023-10-16",
"2023-10-17",
"2023-10-18",
"2023-10-19",
"2023-10-20",
"2023-10-21",
"2023-10-22",
"2023-10-23",
"2023-10-24",
"2023-10-25",
"2023-10-26",
"2023-10-27",
"2023-10-28",
"2023-10-29",
"2023-10-30",
"2023-10-31",
"2023-11-01",
"2023-11-02",
"2023-11-03",
"2023-11-04",
"2023-11-05",
"2023-11-06",
"2023-11-07",
"2023-11-08",
"2023-11-09",
"2023-11-10",
"2023-11-11",
"2023-11-12",
"2023-11-13",
"2023-11-14",
"2023-11-15",
"2023-11-16",
"2023-11-17",
"2023-11-18",
"2023-11-19",
"2023-11-20",
"2023-11-21",
"2023-11-22",
"2023-11-23",
"2023-11-24",
"2023-11-25",
"2023-11-26",
"2023-11-27",
"2023-11-28",
"2023-11-29",
"2023-11-30",
"2023-12-01",
"2023-12-02",
"2023-12-03",
"2023-12-04",
"2023-12-05",
"2023-12-06",
"2023-12-07",
"2023-12-08",
"2023-12-09",
"2023-12-10",
"2023-12-11",
"2023-12-12",
"2023-12-13",
"2023-12-14",
"2023-12-15",
"2023-12-16",
"2023-12-17",
"2023-12-18",
"2023-12-19",
"2023-12-20",
"2023-12-21",
"2023-12-22",
"2023-12-23",
"2023-12-24",
"2023-12-25",
"2023-12-26",
"2023-12-27",
"2023-12-28",
"2023-12-29",
"2023-12-30",
"2023-12-31",
"2024-01-01",
"2024-01-02",
"2024-01-03",
"2024-01-04",
"2024-01-05",
"2024-01-06",
"2024-01-07",
"2024-01-08",
"2024-01-09",
"2024-01-10",
"2024-01-11",
"2024-01-12",
"2024-01-13",
"2024-01-14",
"2024-01-15",
"2024-01-16",
"2024-01-17",
"2024-01-18",
"2024-01-19",
"2024-01-20",
"2024-01-21",
"2024-01-22",
"2024-01-23",
"2024-01-24",
"2024-01-25",
"2024-01-26",
"2024-01-27",
"2024-01-28",
"2024-01-29",
"2024-01-30",
"2024-01-31",
"2024-02-01",
"2024-02-02",
"2024-02-03",
"2024-02-04",
"2024-02-05",
"2024-02-06",
"2024-02-07",
"2024-02-08",
"2024-02-09",
"2024-02-10",
"2024-02-11",
"2024-02-12",
"2024-02-13",
"2024-02-14",
"2024-02-15",
"2024-02-16",
"2024-02-17",
"2024-02-18",
"2024-02-19",
"2024-02-20",
"2024-02-21",
"2024-02-22",
"2024-02-23",
"2024-02-24",
"2024-02-25",
"2024-02-26",
"2024-02-27",
"2024-02-28",
"2024-02-29",
"2024-03-01",
"2024-03-02",
"2024-03-03",
"2024-03-04",
"2024-03-05",
"2024-03-06",
"2024-03-07",
"2024-03-08",
"2024-03-09",
"2024-03-10",
"2024-03-11",
"2024-03-12",
"2024-03-13",
"2024-03-14",
"2024-03-15",
"2024-03-16",
"2024-03-17",
"2024-03-18",
"2024-03-19",
"2024-03-20",
"2024-03-21",
"2024-03-22",
"2024-03-23",
"2024-03-24",
"2024-03-25",
"2024-03-26",
"2024-03-27",
"2024-03-28",
"2024-03-29",
"2024-03-30",
"2024-03-31",
"2024-04-01",
"2024-04-02",
"2024-04-03",
"2024-04-04",
"2024-04-05",
"2024-04-06",
"2024-04-07",
"2024-04-08",
"2024-04-09",
"2024-04-10",
"2024-04-11",
"2024-04-12",
"2024-04-13",
"2024-04-14",
"2024-04-15",
"2024-04-16",
"2024-04-17",
"2024-04-18",
"2024-04-19",
"2024-04-20",
"2024-04-21",
"2024-04-22",
"2024-04-23",
"2024-04-24",
"2024-04-25",
"2024-04-26",
"2024-04-27",
"2024-04-28",
"2024-04-29",
"2024-04-30",
"2024-05-01",
"2024-05-02",
"2024-05-03",
"2024-05-04",
"2024-05-05",
"2024-05-06",
"2024-05-07",
"2024-05-08",
"2024-05-09",
"2024-05-10",
"2024-05-11",
"2024-05-12",
"2024-05-13",
"2024-05-14",
"2024-05-15",
"2024-05-16",
"2024-05-17",
"2024-05-18",
"2024-05-19",
"2024-05-20",
"2024-05-21",
"2024-05-22",
"2024-05-23",
"2024-05-24",
"2024-05-25",
"2024-05-26",
"2024-05-27",
"2024-05-28",
"2024-05-29",
"2024-05-30",
"2024-05-31",
"2024-06-01",
"2024-06-02",
"2024-06-03",
"2024-06-04",
"2024-06-05",
"2024-06-06",
"2024-06-07",
"2024-06-08",
"2024-06-09",
"2024-06-10",
"2024-06-11",
"2024-06-12",
"2024-06-13",
"2024-06-14",
"2024-06-15",
"2024-06-16",
"2024-06-17",
"2024-06-18",
"2024-06-19",
"2024-06-20",
"2024-06-21",
"2024-06-22",
"2024-06-23",
"2024-06-24",
"2024-06-25",
"2024-06-26",
"2024-06-27",
"2024-06-28",
"2024-06-29",
"2024-06-30",
"2024-07-01",
"2024-07-02",
"2024-07-03",
"2024-07-04",
"2024-07-05",
"2024-07-06",
"2024-07-07",
"2024-07-08",
"2024-07-09",
"2024-07-10",
"2024-07-11",
"2024-07-12",
"2024-07-13",
"2024-07-14",
"2024-07-15",
"2024-07-16",
"2024-07-17",
"2024-07-18",
"2024-07-19",
"2024-07-20",
"2024-07-21",
"2024-07-22",
"2024-07-23",
"2024-07-24",
"2024-07-25",
"2024-07-26",
"2024-07-27",
"2024-07-28",
"2024-07-29",
"2024-07-30",
"2024-07-31",
"2024-08-01",
"2024-08-02",
"2024-08-03",
"2024-08-04",
"2024-08-05",
"2024-08-06",
"2024-08-07",
"2024-08-08",
"2024-08-09",
"2024-08-10",
"2024-08-11",
"2024-08-12",
"2024-08-13",
"2024-08-14",
"2024-08-15",
"2024-08-16",
"2024-08-17",
"2024-08-18",
"2024-08-19",
"2024-08-20",
"2024-08-21",
"2024-08-22",
"2024-08-23",
"2024-08-24",
"2024-08-25",
"2024-08-26",
"2024-08-27",
"2024-08-28",
"2024-08-29",
"2024-08-30",
"2024-08-31",
"2024-09-01",
"2024-09-02",
"2024-09-03",
"2024-09-04",
"2024-09-05",
"2024-09-06",
"2024-09-07",
"2024-09-08",
"2024-09-09",
"2024-09-10",
"2024-09-11",
"2024-09-12",
"2024-09-13",
"2024-09-14",
"2024-09-15",
"2024-09-16",
"2024-09-17",
"2024-09-18",
"2024-09-19",
"2024-09-20",
"2024-09-21",
"2024-09-22",
"2024-09-23",
"2024-09-24",
"2024-09-25",
"2024-09-26",
"2024-09-27",
"2024-09-28",
"2024-09-29",
"2024-09-30",
"2024-10-01",
"2024-10-02",
"2024-10-03",
"2024-10-04",
"2024-10-05",
"2024-10-06",
"2024-10-07",
"2024-10-08",
"2024-10-09",
"2024-10-10",
"2024-10-11",
"2024-10-12",
"2024-10-13",
"2024-10-14",
"2024-10-15",
"2024-10-16",
"2024-10-17",
"2024-10-18",
"2024-10-19",
"2024-10-20",
"2024-10-21",
"2024-10-22",
"2024-10-23",
"2024-10-24",
"2024-10-25",
"2024-10-26",
"2024-10-27",
"2024-10-28",
"2024-10-29",
"2024-10-30",
"2024-10-31",
"2024-11-01",
"2024-11-02",
"2024-11-03",
"2024-11-04",
"2024-11-05",
"2024-11-06",
"2024-11-07",
"2024-11-08",
"2024-11-09",
"2024-11-10",
"2024-11-11",
"2024-11-12",
"2024-11-13",
"2024-11-14",
"2024-11-15",
"2024-11-16",
"2024-11-17",
"2024-11-18",
"2024-11-19",
"2024-11-20",
"2024-11-21",
"2024-11-22",
"2024-11-23",
"2024-11-24",
"2024-11-25",
"2024-11-26",
"2024-11-27",
"2024-11-28",
"2024-11-29",
"2024-11-30",
"2024-12-01",
"2024-12-02",
"2024-12-03",
"2024-12-04",
"2024-12-05"
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "LTC Daily Candlestick Chart"
},
"xaxis": {
"rangeslider": {
"visible": false
},
"tickangle": -45,
"tickformat": "%b %Y",
"tickvals": [
"2023-06-01T00:00:00",
"2023-07-01T00:00:00",
"2023-08-01T00:00:00",
"2023-09-01T00:00:00",
"2023-10-01T00:00:00",
"2023-11-01T00:00:00",
"2023-12-01T00:00:00",
"2024-01-01T00:00:00",
"2024-02-01T00:00:00",
"2024-03-01T00:00:00",
"2024-04-01T00:00:00",
"2024-05-01T00:00:00",
"2024-06-01T00:00:00",
"2024-07-01T00:00:00",
"2024-08-01T00:00:00",
"2024-09-01T00:00:00",
"2024-10-01T00:00:00",
"2024-11-01T00:00:00",
"2024-12-01T00:00:00"
],
"title": {
"text": "Date"
}
},
"yaxis": {
"title": {
"text": "Price (USD)"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Convert 'date' column to datetime for better plotting\n",
"symbols = ohlcv_data['symbol'].unique()\n",
"\n",
"# Loop through each symbol and create a candlestick plot\n",
"for symbol in symbols:\n",
" # Filter data for the current symbol\n",
" symbol_data = ohlcv_data[ohlcv_data['symbol'] == symbol]\n",
" \n",
" # Create the candlestick plot\n",
" fig = go.Figure(data=[go.Candlestick(\n",
" x=symbol_data['date'],\n",
" open=symbol_data['open'],\n",
" high=symbol_data['high'],\n",
" low=symbol_data['low'],\n",
" close=symbol_data['close']\n",
" )])\n",
" \n",
" # Update the layout for better visualization\n",
" fig.update_layout(\n",
" title=f'{symbol} Daily Candlestick Chart',\n",
" xaxis_title='Date',\n",
" yaxis_title='Price (USD)',\n",
" xaxis_rangeslider_visible=False, # Optional: Hide range slider\n",
" template=\"plotly_white\",\n",
" xaxis=dict(\n",
" tickformat='%b %Y', # Show month and year\n",
" tickvals=pd.date_range(start=symbol_data['date'].min(), end=symbol_data['date'].max(), freq='MS'), # Monthly ticks\n",
" tickangle=-45\n",
" ),\n",
" )\n",
" \n",
" # Show the plot for the current symbol\n",
" fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore Top 10 Cryptos Popularity "
]
},
{
"cell_type": "code",
"execution_count": 175,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" symbol \n",
" weighted_score \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" BTC \n",
" 3.466140 \n",
" \n",
" \n",
" 553 \n",
" ETH \n",
" 1.170499 \n",
" \n",
" \n",
" 1106 \n",
" BNB \n",
" 1.027916 \n",
" \n",
" \n",
" 1659 \n",
" SOL \n",
" 1.001880 \n",
" \n",
" \n",
" 2212 \n",
" XRP \n",
" 1.000041 \n",
" \n",
" \n",
" 2765 \n",
" TRX \n",
" 1.000002 \n",
" \n",
" \n",
" 3318 \n",
" AVAX \n",
" 1.001281 \n",
" \n",
" \n",
" 3871 \n",
" DOGE \n",
" 1.000001 \n",
" \n",
" \n",
" 4424 \n",
" DOT \n",
" 1.000475 \n",
" \n",
" \n",
" 4977 \n",
" LTC \n",
" 1.008421 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" symbol weighted_score\n",
"0 BTC 3.466140\n",
"553 ETH 1.170499\n",
"1106 BNB 1.027916\n",
"1659 SOL 1.001880\n",
"2212 XRP 1.000041\n",
"2765 TRX 1.000002\n",
"3318 AVAX 1.001281\n",
"3871 DOGE 1.000001\n",
"4424 DOT 1.000475\n",
"4977 LTC 1.008421"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"hovertemplate": "Cryptocurrency=%{x} Weight=%{marker.color} ",
"legendgroup": "",
"marker": {
"color": [
3.466140477566869,
1.1704987184062188,
1.0279160160979974,
1.001879849565805,
1.000041396774459,
1.0000015382517744,
1.0012814376737345,
1.0000012228416926,
1.00047492816031,
1.0084212994706587
],
"coloraxis": "coloraxis",
"pattern": {
"shape": ""
}
},
"name": "",
"offsetgroup": "",
"orientation": "v",
"showlegend": false,
"text": [
3.466140477566869,
1.1704987184062188,
1.0279160160979974,
1.001879849565805,
1.000041396774459,
1.0000015382517744,
1.0012814376737345,
1.0000012228416926,
1.00047492816031,
1.0084212994706587
],
"textposition": "inside",
"texttemplate": "%{text:.2f}",
"type": "bar",
"x": [
"BTC",
"ETH",
"BNB",
"SOL",
"XRP",
"TRX",
"AVAX",
"DOGE",
"DOT",
"LTC"
],
"xaxis": "x",
"y": [
3.466140477566869,
1.1704987184062188,
1.0279160160979974,
1.001879849565805,
1.000041396774459,
1.0000015382517744,
1.0012814376737345,
1.0000012228416926,
1.00047492816031,
1.0084212994706587
],
"yaxis": "y"
}
],
"layout": {
"barmode": "relative",
"coloraxis": {
"colorbar": {
"title": {
"text": "Weight"
}
},
"colorscale": [
[
0,
"rgb(255,255,229)"
],
[
0.125,
"rgb(255,247,188)"
],
[
0.25,
"rgb(254,227,145)"
],
[
0.375,
"rgb(254,196,79)"
],
[
0.5,
"rgb(254,153,41)"
],
[
0.625,
"rgb(236,112,20)"
],
[
0.75,
"rgb(204,76,2)"
],
[
0.875,
"rgb(153,52,4)"
],
[
1,
"rgb(102,37,6)"
]
]
},
"height": 600,
"legend": {
"tracegroupgap": 0
},
"plot_bgcolor": "rgba(240,240,240,0.5)",
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"font": {
"size": 18
},
"text": "Popular Cryptocurrency Weight Distribution",
"x": 0.5
},
"width": 800,
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"tickangle": -45,
"title": {
"text": "Cryptocurrency"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"title": {
"text": "Weight"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"global_min = ohlcv_data['weightedAverage'].min()\n",
"global_max = ohlcv_data['weightedAverage'].max()\n",
"\n",
"ohlcv_data['weighted_score'] = ohlcv_data['weightedAverage'].apply(\n",
" lambda x: 1 + (x - global_min) / (global_max - global_min) * 9\n",
")\n",
"\n",
"# Create a new DataFrame with unique symbols and their normalized weighted scores\n",
"unique_crypto_weights = ohlcv_data[['symbol', 'weighted_score']].drop_duplicates(subset='symbol')\n",
"\n",
"display(unique_crypto_weights)\n",
"\n",
"fig = px.bar(\n",
" unique_crypto_weights,\n",
" x='symbol',\n",
" y='weighted_score',\n",
" text='weighted_score',\n",
" color='weighted_score',\n",
" color_continuous_scale=px.colors.sequential.YlOrBr,\n",
" title='Popular Cryptocurrency Weight Distribution',\n",
" labels={'symbol': 'Cryptocurrency', 'weighted_score': 'Weight'}\n",
")\n",
"\n",
"fig.update_traces(\n",
" texttemplate='%{text:.2f}', # Show text inside the bars\n",
" textposition='inside'\n",
")\n",
"fig.update_layout(\n",
" width=800, \n",
" height=600,\n",
" xaxis=dict(title='Cryptocurrency', tickangle=-45), \n",
" yaxis=dict(title='Weight'),\n",
" coloraxis_colorbar=dict(title=\"Weight\"), \n",
" title=dict(font=dict(size=18), x=0.5), \n",
" plot_bgcolor='rgba(240,240,240,0.5)' \n",
")\n",
"\n",
"# Show the plot\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# FIND CORRELATIONS "
]
},
{
"cell_type": "code",
"execution_count": 176,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" open high low close volume\n",
"open 1.000000 0.999775 0.999777 0.999597 -0.104230\n",
"high 0.999775 1.000000 0.999699 0.999862 -0.104174\n",
"low 0.999777 0.999699 1.000000 0.999797 -0.104254\n",
"close 0.999597 0.999862 0.999797 1.000000 -0.104201\n",
"volume -0.104230 -0.104174 -0.104254 -0.104201 1.000000\n"
]
}
],
"source": [
"numerical_columns = ['open', 'high', 'low', 'close', 'volume']\n",
"numerical_data = ohlcv_data[numerical_columns]\n",
"correlation_matrix = numerical_data.corr()\n",
"print(correlation_matrix)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Correlations Plot "
]
},
{
"cell_type": "code",
"execution_count": 177,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAKsCAYAAACQ1ml4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1uElEQVR4nO3dd3RU1drH8d+kTRIgtEDoBEGaVAkdLlUQpakgCEoRUFEEjQpGESxgUAFRL4pwRdBrwQKWCxaMFJEmHSmhhSoJCVVaEjL7/cM3I2OSIRkmhJn5ftaatZg9+5zzzNmZ4cmTffaxGGOMAAAAAHglv4IOAAAAAED+IeEHAAAAvBgJPwAAAODFSPgBAAAAL0bCDwAAAHgxEn4AAADAi5HwAwAAAF6MhB8AAADwYiT8AAAAgBcj4fdQixcv1uDBg1W9enWFhYXJarWqbNmyuuWWW/T6668rOTm5oEO8as8//7wsFouef/75a3bMyMhIWSwW7d+//5odM6/atm0ri8Uii8WiHj16OO37+eef2/taLBYdPnz4GkWZO5lxXQtHjhzRfffdp3LlyikgIEAWi0WDBg26JsfOjR07dig6OloNGzZUyZIlFRgYqJIlS6p58+aKiYnRjh07CjpEIEeXf89YLBb5+fmpaNGiqly5sjp37qyxY8dq+/btBR0m4LNI+D1MSkqKbrnlFnXq1Elz5sxRenq62rVrp7vuuku1atXSypUrFR0drRtuuEFr1qwp6HCvK4MGDZLFYtGcOXMKOhS3WbRokZKSknJ8/b333suX417LRN0djDG688479d///lfFixdXnz59NHDgQLVq1aqgQ9OlS5f0+OOPq06dOnr99dd18OBBNW7cWHfffbeaNWumhIQETZo0SXXq1NG///3vgg7XKW/8jCFvOnfurIEDB2rAgAHq1KmTIiMjtXLlSk2cOFE33XST7rrrLh07dsxtx1u6dKksFovatm3rtn0C3iigoANA7p0+fVqtWrVSfHy8atasqZkzZ6p169YOfVJTUzV37lyNHz9eR48eLaBIPVdcXJzS09NVvnz5gg7liqKiorRu3Tp98MEHeuqpp7K8fujQIS1evFiNGzfWb7/9VgARXtm1qlofOHBAa9euVaVKlbR582YFBFw/X3333nuv5s2bp7CwML3xxhu677775O/vb3/dGKPFixcrJiZGe/bsKcBIgSt7+umnsyTfly5d0meffabo6GjNnz9f27dv18qVK1W8ePGCCRLwQVT4Pcijjz6q+Ph4RUZG6tdff82S7EuS1WrVAw88oE2bNqlWrVoFEKVnq1q1qmrWrKnAwMCCDuWK7r33XgUFBen999/P9vU5c+bIZrPp/vvvv8aR5V7NmjVVs2bNfD/OwYMHJUlVqlS5rpL92bNna968eQoMDNSPP/6oQYMGOST70l9/TenUqZNWr16tPn36FFCkgOsCAgLUr18/rV27VuHh4dq5c6eefPLJgg4L8C0GHmHv3r3G39/fSDLz5893eT+ffPKJad++vSlevLgJCgoylSpVMoMHDzbx8fHZ9q9cubKRZBISEsxXX31l2rVrZ4oXL24kmSVLlhhjjJFkMn+UZs+ebZo1a2bCwsLs22U6cuSIefzxx03NmjVNSEiIKVy4sImKijJvvfWWSU9Pz3Ls8ePHG0lm/PjxDu1paWnmww8/NP369TM1atQwRYoUMcHBwaZ69erm0UcfNUeOHHHon5CQYI8xu8fl+7/8/f7TuXPnTGxsrGnYsKEpXLiwCQkJMbVr1zbPPvusOXHiRJb+mcetXLmysdls5t133zU333yzCQ0NNWFhYeaWW24xK1euzPa8O9OmTRsjyXz44YemV69eRlKW/dhsNnPDDTeYkJAQc+rUKft7PXTokEO//fv3m0mTJpl27dqZihUrmqCgIFO0aFHTsmVLM2PGDJORkeHQP3NMcnpknrf333/fSDIDBw40x48fN6NGjTI33HCDCQoKMm3atLHv7/KfnUyTJ082ksyNN95ozpw5k+X9z5w500gyFSpUMMnJyU7P1ZXG/vJxvprxvXTpkpkyZYpp0KCBKVSoUJb3lJ3MMZJkRo4cecX+/7RkyRIjybRp08acO3fOPPfcc/bPVuXKlc2ePXuMn5+fKVasmDl37lyO+6ldu7aRZBYuXGhvu/xzMH/+fNOyZUtTpEgRU7hwYdOmTRuHvpefi9x8xowx5tChQ2bEiBGmWrVqxmq1mrCwMNOiRQszY8YMc+nSpRxjjY+PN8OHDzfVq1c3ISEhpkiRIqZWrVpm+PDhZuvWrdmem5xk97P3z/bsvs/yMu7x8fHmgQceMDfccIP9fbZu3dp8+OGH2caU+dlesmSJ2bhxo7njjjtMyZIlTVBQkKlVq5aZPHmysdlsOb6nuLg406tXL1O+fHkTFBRkwsPDTVRUlBk3bpxJSUkxxhgzbtw4I8k88MADOe5nzZo1RpIpV65ctt/N2ck8b5n/L+Rk+vTpRpIJCAgwiYmJWY771FNPmcaNG5uIiAgTGBhoSpcubbp27WoWL16cZV+Z5yu7R+XKle39jh07Zt544w3TpUsXExkZaYKDg02RIkVMo0aNzKRJk8yFCxdy9R4BT0bC7yHeeOMNI8kUK1bM6X+IObHZbGbAgAH2L9r27dubvn37murVqxtJJjQ01Hz33XdZtsv8j3/EiBFGkomKijL33HOPadOmjVm+fLkx5u8v+hEjRhg/Pz/TqlUrc88995imTZua/fv3G2OMWbZsmf0XhcjISNO9e3fTuXNne1unTp1MWlqaw7FzSvgPHTpkJJmiRYuaZs2amd69e5vbbrvNlCtXzkgypUqVMrt377b3T05ONgMHDjRVq1Y1kkzLli3NwIED7Y8FCxZkeb//TPiPHz9uGjRoYCSZsLAw0717d3PXXXeZ8PBwI8lUqVIlyzaXJwYDBw40gYGBpn379ubuu++2n3er1WpWr16dp7G8POFftGiRkWSGDh3q0CcuLs5IMv3793cYo38m/C+99JI9/g4dOpi+ffuaNm3amKCgICPJ3HnnnQ4JxoIFC8zAgQPt+7v8PA4cONCegGcm/LfffrupUqWKKV68uOnevbvp3bu3PabL4/qn7t27G0mmb9++Du2bNm0ywcHBJiAgwPz6669XPFeZY9+5c2cjyURERGQb79WMb6VKlUz37t1NUFCQ6dChg7nnnntMvXr1rhjb5s2b7e9//fr1V+z/T5lJbdOmTU3jxo1NoUKFTJcuXUyfPn1Mx44djTHGdOvWzUgyM2fOzHYfP//8s5Fkqlat6jDOmZ+Dxx9/3OFz36RJE3vMb775pr1/Xj5ja9euNSVKlLCfuz59+phbb73VBAcHG0mmc+fOJjU1NUusH330kbFarfbt7rrrLnPHHXeY+vXrG4vF4vA94Y6EP6fvs9yO+2effWZ/TzVr1jR33HGHad++vf0Xg8GDB2c5duZn++mnn7Yn+ZmfycyCz6hRo7J9P48++qg99gYNGpi+ffuaLl262H+pzEzEjx49aoKCgkyhQoXMyZMns91X5v8VL7zwQo7nL6fzdqWE/+TJk8ZisRhJ5pNPPnF4rUOHDsbPz8/UrVvX3HbbbaZ3797m5ptvtu972rRpDv1jY2Nz/Gw/8cQT9n4ffvihkWTKly9v2rRpY/r27Ws6dOhgChcubCSZ5s2bm4sXL+b6vQKeiITfQ9x3331Gkmnfvr1L27/zzjtGkgkPDzcbN260t9tsNntiXaxYMXPs2DGH7TL/4/f39zdff/11tvvO/DIOCwszq1atyvL60aNHTcmSJY3FYjFvv/22Q9U4JSXFtG/fPtv/XHJK+M+cOWO+/vrrLElBWlqaiYmJMZLMbbfdliWOzET1/fffz/Z9XP5+/5nc9enTx55cZVbKjDHmzz//NF26dDGSTIsWLRy2ubzqWblyZYe/oly6dMncf//99l928uLyhD8jI8NUqFDBFClSxKGK279/fyPJ/Pzzz8aYnBP+tWvXOlRGMx05csTUr1/fSDKfffZZltdzSpYyZSb8kkyHDh3M6dOns+2X035OnjxpIiMjjSTzzjvvGGP+Gvcbb7zRSDKvvfZajsfOzpUSwKsd3woVKuT4V7KcvPfee0aSCQoKynUVNbv3JMnUq1fPHD16NEufxYsXG0mmfv362e7jrrvuMpLMlClTHNozPwcWi8X897//dXjt008/NRaLxQQEBGT52bnSZ+zixYv2fT/00EMOv+Tv3bvXPubPPPOMw3br1q0zgYGBxmKxmDfffDPLX572799v1q1bl+XcXE3Cn9P3WW7GfcuWLcZqtZrg4GDz5ZdfZom1bt26RpKZO3euw2uXV6xnzJjh8FpcXJyxWCzG398/y+f4zTffNJJMyZIl7Z/5y61Zs8YcPHjQ/jzz+2Hq1KlZ+iYnJxur1WoCAwOz/ZnKSW4TfmOMqVatmpFkxo4d69C+aNEi88cff2Tpv3LlShMWFmYCAwPN4cOHHV7LzVhv374927E8ceKE6dSpk5FkXn311SvGDXgyEn4Pceutt2Zb8cytzMrb5VW5TDabzdSrV89IMhMnTnR4LfM/5/vvvz/HfWd+0b/44ovZvj5mzBh7xSw7hw8fNoGBgaZUqVIOVcacEv4rKVeunPHz88syHcTVhP/AgQPGz8/PWCwWs3nz5mzjz6zkXV51vjwx+Oabb7Jsd/ToUXuV/59/3XDm8oTfGGOeffZZI8nMmTPHGGPMqVOnTEhIiLnhhhvs5zOnhN+ZH374wUgyvXv3zvJabhP+wMBAs3fv3hz7OdvP2rVrTVBQkLFarWbjxo3m7rvvNpJMt27dnE5ryI6zpMAd4/vBBx/kKR5jjJk0aZKRZMqUKZPnbY1xTPgz/9qWnZtuuslIMr/88otD+6FDh0xAQIAJDQ3NUunN/Bz07Nkz231m/qIwbNgwh/YrfcYyK63lypXLtqL6xRdfGEmmSJEiDtMsevbsaSSZRx99NMf3eTl3JPw5fZ/lZtwzf4GcPHlytq+vXbvWSDKNGjVyaM/8bN95553Zbpf5/8Dlx01PTzelSpUykrL8cpGTzOPfeOONWT5LsbGxRpK55557crWvTHlJ+Js1a2YkmeHDh+d6/5nFnOnTpzu052asnYmPjzeSTOPGjV3aHvAU18/Va8g3hw8f1t69eyVJAwcOzPK6xWLR4MGD9fjjj2vJkiV65plnsvTp1avXFY+TU5+FCxdKUo4XHJYvX1433nijtm/frt27d6t69epXPJYkbd68WXFxcUpISNC5c+dks9kk/bUihM1m0549e9SwYcNc7cuZ5cuXy2az6eabb1a9evWyjb9z5876+uuvtWTJErVo0cLh9YCAAN16661ZtitTpoyKFy+ukydP6vjx4ypTpoxL8Q0ePFgvv/yyZs+erYEDB+rjjz/WhQsX7EskXklqaqp+/PFH/fbbbzp27JhSU1NljNGff/4pSYqPj3cpLklq2LChbrjhBpe2bdy4sSZPnqyRI0eqbdu2On36tCpXrqy5c+e6dUnQqx1fSbrrrrvcFk9elS5dOtsL+DONHDlSDz74oP797387LEP67rvv6tKlSxo8eLCKFSuW7bbZfV9ktn/55ZdaunRpnmLN7N+3b19ZrdYsr9955532z8T69evVsmVLZWRkaPHixZKkBx54IE/Huxq5+c7LbtxtNpu+++47STl/50VFRalw4cLauHGjLl68qODgYIfXu3Xrlu12tWrV0vfff68jR47Y29avX6/k5GSFh4frjjvuuGLM0l+frebNm2vVqlX64Ycf7N9PNptNM2bMkCSNGDEiV/tyReZ3dXaf4+PHj2vhwoX6/fffdfLkSaWnp0uSdu/eLcn176OMjAwtXbpUK1eu1NGjR3XhwgWZv4qeV7VfwFOQ8HuIUqVKSZJL6xdn/udQsmRJhYWFZdunatWqDn3/KTIy8orHyanPvn37JMlpUpIpOTn5ign/uXPndN9992nBggVO+505c+aKx8uNzHNSpUqVHPs4O39ly5bNcdWfsLAwnTx5UhcvXnQ5vqpVq+pf//qXli9frr1792r27Nny8/PL1U2lMld+yVzFJjtXcx5z83PjzKOPPqr//e9/+vHHH2WxWPTpp5+6fSm/qx3f0qVLKzQ0NM/HzfxMnzhxQhkZGVlW58mtK53je++9V08//bTmz5+vo0ePqmzZskpLS9OsWbMkOU/scjonme15vZHblc61xWJRlSpVdPLkSXvf48eP69y5c5KkGjVq5Ol4V+NK5zWncT9+/Lj9M1OxYsUrHuf48eNZlgGuVKlStn0zv78v/744cOCApL/OTV5+ER45cqRWrVqlf//73/aE/3//+58OHDighg0bZvuLrbukpKRIkkqUKOHQPmvWLD3++OP28c6OK99Hu3fv1h133KFt27a5db+AJyHh9xCNGjXShx9+qA0bNlxVcuCqkJAQl/tkVnN69eqlQoUKOd1HyZIlr3icmJgYLViwQDVr1tSkSZPUuHFjhYeHKygoSJLUokULrVq1yl65KWh+fvm/+u3999+vZcuW6fHHH9e6devUqVOnKyYb58+fV8+ePZWUlKTBgwdr+PDhqlatmsLCwuTv769du3apRo0aV3Uec/Nz48zu3bu1atUqSZIxRmvXrlWzZs2uap/u5up7bNSokSQpLS1Nmzdv1s0335wvxw8NDdWwYcP06quvaubMmRo/fry+/PJLJSUlqXXr1tn+VSO3rpfPWF5lfic5c6XzeqXvOynnv5BcLru/dFyL74xevXrpySef1HfffaeEhARVqVJF06dPl5S/1f2TJ08qISFBklS3bl17+/r16/Xggw/K399fr7zyirp166ZKlSopNDRUFotFM2fO1IMPPujSz1yvXr20bds2de3aVaNHj1bt2rUVFhamwMBApaWlZTsGgLch4fcQXbt2VXR0tE6dOqVvvvkm13+6lWSvHmVWnrKr8mdW4fPjhlMVK1bU7t27NWbMGEVFRV31/j777DNJ0rx587JNVjL/9Osumeck8xxlJz/PX2706tVLjz76qL799ltJytXa+8uXL1dSUpJuvvlmzZ49O8vr7j6PeXXx4kXdfffd+vPPP9W/f3998cUXeuqpp9SiRQu3/BxlKqjxrVevnqpUqaKEhATNnTvX5YQ/Nx555BFNmTJFM2fO1DPPPGO/Y++VEruEhATVr18/S/v+/fslSRUqVMhTHLk515nJYGbfkiVLKjQ0VOfPn1d8fLzq1KlzxeNk/vKfOS3tnzKr4vkhPDxcISEhunDhgiZPnqzw8PB8O5b0918Ddu3aJWNMrqv8AQEBGj58uMaOHau3335bw4YN0+LFi1WiRAndc889+Rbvxx9/LGOMAgMD1a5dO3v7559/LmOMHn30UY0ePTrLdq5+H+3cuVNbtmxR6dKltWDBgiz34Sjo7zngWuHGWx6iatWq9i/hJ554QidOnHDa/9ixY/Y5iRUqVLBPScjulvfGGHv75V/A7tKlSxdJfyfqVyvzvVeuXDnLaz/88IP9z8X/lJkEXLp0KU/H+9e//iU/Pz9t2rRJmzdvzvL60aNH9f3330vKn/OXG6GhoRo0aJBKliypKlWqqGfPnlfcJvM85jR94L///W+O22ZOUcrrucyLUaNGadOmTWrXrp0++OADTZkyRWlpabr77rt16tQptx2noMbXYrHYr5d55513tHbtWqf9L126pNWrV7t0rEqVKqlnz576448/NG7cOK1cuVLlypXTnXfe6XS7Dz/8MNv2Dz74QJKy3FH1Sp+xzP7z5s3LdhrbggULdPLkSRUpUsT+FxB/f3/dcsstkmSfhnQll/9ikZaWluX1zOuK8sPl8brrO8+ZqKgohYeHKzk5WV999VWetn3wwQcVHBys2bNna8qUKTLGaMiQIVf9l7mcHDx4UM8//7wkadCgQfZpbZLz7/WLFy/qyy+/zHafV/qZy9xvuXLlsr3pnrPvOcCrFMilwnDJiRMn7MuZ1apVK8uqG8YYk5qaat577z1Trlw5h7WvL1+Wc9OmTfZ2m81mXnzxRaMrLMuZ3Y2oMukKK7YcOnTIFCtWzPj7+5vJkydnu8b2vn37styMJqdVejJXFHrppZcc2nfu3Glf1k/ZrBbxwgsvGEnmscceyzHWvC7LefbsWdO1a1enyzZefgOY3B7PmX+u0pMbmefk8lV6NmzYYF8RZdu2bQ793333Xfta2dnFX6VKFSPJ4WfpcpffeCs3cf3TRx99ZKS/1ta+fGnAzBuN3XHHHU73+0+uLst5teObG5nvKSwszMyZMyfLfTZsNpuJi4szjRs3dliDPa+rkyxfvtx+viXna6xfviznP9dK//zzz42fn58JCAjIsqrRlT5jFy9eNJUqVbKv0HL5cqT79u2z/1z9c1nOtWvXmoCAAOPn52emT5+eZWWZfy7LaYyxL+H6z9V2lixZYr//R3Y/e1f6PsvNuK9fv94EBQWZ0NBQM2fOnCzLiBpjzNatW7OsqnP5jbeyk9N34uuvv27/fl+2bFmW7dauXZvjCl2ZywNLMn5+fnn6LrpcTt+7xvy1ktDHH39sypQpYySZ2rVrZ1kZaurUqUaSadiwocMKaxcuXDCDBw+27/+f3ykHDhwwkkzp0qWzXe0sOTnZ+Pv7G39//yyxffPNN/Z7O5AOwdvxE+5hkpKSTNu2be1fUFWqVDE9evQw99xzj2nfvr39RiJhYWFmzZo19u1sNpt9Lf+AgAD7jWJq1KhhJJmQkBCzaNGiLMdzR8JvzF833sq8iVHp0qVN+/btTf/+/U3Xrl3tS4Y2bdrUYZuc/nP78ssv7clo3bp1Td++fU379u3tN7Zq0aJFtv/xbN682fj5+Rk/Pz/TsWNHM3jwYDNkyBCH+wvk9H5TUlLs69IXLVrU9OzZ0/Tq1cu+HN6VbryVk4JM+I0xpkePHkb6ay34Tp06mb59+5qaNWsai8ViX+4zu/iffPJJe4Jx9913myFDhpghQ4bYk+WrSfh37txpChcubPz8/ExcXJzDa6dOnbLfSOifN+Fx5krJcX6Nb26kpaWZESNG2H+mS5YsaW699VbTr18/c/vtt5uyZcsa6a97YVy+JKEryxE2bNjQSLriGuuZP5ePPfaYfcnCfv36maZNm9rHLLs13HPzGbv8xluVK1c2ffr0MbfddtsVb7w1d+5cExgYaN+uV69e5s477zQNGjTIcuMtYxy/Jxo0aGB69+5tGjVqZCwWi/1us/mV8Bvz1423QkNDjfTXev2dOnUy/fv3N126dDEVKlQwkkyfPn0ctnE14bfZbOahhx6yx96wYUPTt29fc9ttt2W58dY/bdq0yb5dt27dnL4nZzL30blzZ/vNr+6++27Tpk0bU6RIEfvrvXr1ylJYMuave29k/tyVLFnS9OzZ09x1112mdOnSpkiRImbUqFE5fqdERUUZSaZGjRqmf//+ZsiQIWbMmDH21zO39fPzM23atDH33HOP/YZeY8eOJeGHT+An3EN99913ZsCAAaZatWqmcOHCJjAw0JQpU8bccsstZtq0aeb48ePZbvfxxx+btm3bmmLFipnAwEBTsWJFM2jQILNz585s+7sr4Tfmr19WnnvuOXPzzTebIkWKmKCgIFOhQgXTokULM378eLNlyxaH/s7W4V++fLnp0KGDCQ8PN6GhoaZOnTpm4sSJJjU11el/mgsWLDAtW7Y0RYoUsScDl+/f2fs9d+6ciY2NNQ0aNDChoaEmODjY1KpVyzzzzDPmxIkTWfp7QsKflpZmXnvtNVO3bl0TGhpqSpQoYTp16mR+/PFHp/FfuHDBjB492lSrVs1+V97L34erCf/58+ftNyXK6f4L69atM1ar1QQFBZm1a9fm6v3nJjnOj/HNi23btplRo0aZ+vXrm2LFipmAgABTvHhx07RpU/PMM8+YXbt25fk9/VPmPTGutMb65T+Xn332mWnevLkpXLiwKVSokGndurX59ttvc9z2Sp8xY4w5ePCgeeSRR8wNN9xggoKCTJEiRUzz5s3NO++84/QmZNu2bTNDhgwxVapUMVar1RQtWtTUrl3bjBgxIstfqYwxZuHChaZly5YmNDTUFCpUyDRr1szMmzfPGHPldfhzkpdxT0hIMI8//ripU6eOKVSokAkODjaVK1c2bdu2NZMmTTJ79uxx6O9qwp/pu+++Mz169DARERH2e5s0adLEvPDCCzn+n2CMsVfef/jhhyu+p5xknrfMh8ViMUWKFDEVK1Y0nTp1MmPHjjXbt293uo/k5GTz8MMPm6pVqxqr1WrKlStn7r33XrN7926n3ykHDhww/fr1M2XLljUBAQFZxsdms5n33nvPNGrUyBQuXNgULVrUtGrVynz66acOsQPezGKMhy6zAADItYyMDFWtWlUHDhzQypUr1bx58xz7RkZG6sCBA0pISLjqpVVxffvpp590yy23qEaNGtqxY4db73EB4PrBRbsA4ANmzpypAwcOqHnz5k6TffiOjIwMjR8/XpIUHR1Nsg94MZblBAAvFR8fr9dee02JiYn6/vvv5efnp8mTJxd0WChg77//vpYvX65169bp999/V926dXO1lC8Az0WFHwC81NGjR/Xee+9p8eLFuummm/TFF1/k6x1U4RmWLVumOXPm6PDhw7rjjjv0v//9L9slKwF4D+bwAwAAANfI8uXL9dprr2n9+vU6evSoFixYcMX75yxdulTR0dHatm2bKlasqLFjx2rQoEG5PiYVfgAAAOAaOXfunOrXr6/p06fnqn9CQoJuv/12tWvXTps2bdJjjz2moUOH6ocffsj1ManwAwAAAAXAYrFcscI/ZswYLVy4UL///ru9rW/fvjp16pT9TvBXQoUfAAAAcFFqaqrOnDnj8EhNTXXb/letWqWOHTs6tHXu3FmrVq3K9T64SgcAAAAebWFgjQI79m/P3qMXXnjBoW38+PF6/vnn3bL/xMRERUREOLRFRETozJkzunDhgkJCQq64j+sq4S/IwcK1dXt6POPtQxhv38J4+5bb0+PVqtuygg4D18iKb9sUdAjXnZiYGEVHRzu0Wa3WAoome9dVwg8AAAB4EqvVmq8JfpkyZZSUlOTQlpSUpLCwsFxV9yUSfgAAAHg4S6D33im6efPmWrRokUPb4sWL83TXdC7aBQAAAK6Rs2fPatOmTdq0aZOkv5bd3LRpkw4ePCjprylCAwYMsPd/6KGHtG/fPo0ePVo7d+7U22+/rc8++0yPP/54ro9JhR8AAAAezS/Acyr869atU7t27ezPM+f/Dxw4UHPmzNHRo0ftyb8kValSRQsXLtTjjz+uN954QxUqVNB//vMfde7cOdfHJOEHAAAArpG2bdvK2W2w5syZk+02GzdudPmYJPwAAADwaJZAZqk7w9kBAAAAvBgJPwAAAODFmNIDAAAAj+ZJF+0WBCr8AAAAgBejwg8AAACP5s033nIHKvwAAACAFyPhBwAAALwYU3oAAADg0bho1zkq/AAAAIAXo8IPAAAAj8ZFu85R4QcAAAC8GAk/AAAA4MWY0gMAAACPxkW7zlHhBwAAALwYFX4AAAB4NIs/FX5nqPADAAAAXowKPwAAADyaHxV+p6jwAwAAAF6MhB8AAADwYkzpAQAAgEez+DGlxxkq/AAAAIAXo8IPAAAAj2bxp4btDGcHAAAA8GIk/AAAAIAXY0oPAAAAPBrr8DtHhR8AAADwYlT4AQAA4NFYltM5KvwAAACAF6PCDwAAAI/GHH7nqPADAAAAXoyEHwAAAPBiTOkBAACAR7MwpccpKvwAAACAF6PCDwAAAI9m8aOG7QxnBwAAAPBiJPwAAACAF2NKDwAAADwad9p1jgo/AAAA4MWo8AMAAMCjcadd51xO+Hfv3q0lS5bo2LFjstlsDq+NGzfuqgMDAAAAcPVcSvhnzZql4cOHKzw8XGXKlJHF8vdvVRaLhYQfAAAA1wxz+J1zKeGfMGGCJk6cqDFjxrg7HgAAAABu5NJFuydPnlTv3r3dHQsAAAAAN3Mp4e/du7d+/PFHd8cCAAAA5JnFz6/AHp7ApSk91apV03PPPafVq1erbt26CgwMdHh95MiRbgkOAAAAwNVxKeGfOXOmChcurGXLlmnZsmUOr1ksFhJ+AAAAXDNctOucSwl/QkKCu+MAAAAAkA+uauJRWlqa4uPjdenSJXfFAwAAAMCNXEr4z58/ryFDhig0NFQ33XSTDh48KEl69NFHNWnSJLcG6ClKtIpS1IJ31OHAL7o9PV4R3TtceZt/NVGrtfN169mtarvjR1UYcEeWPpWH91O73XG69c8tavHrZyrauG5+hI88Yrx9C+PtWxhv3zWkf6S+mttMcV+00rSX6qlC2RCn/evfVFSvPFdHX81pphXftlHrZiXdsl/knZ+/pcAensClhD8mJkabN2/W0qVLFRwcbG/v2LGj5s2b57bgPIl/oVCd2RKv30e+kKv+IZEV1Pibd3V86RqtiOqhhLfmqu67ExR+Syt7n7K9u6jWazHaPWG6VjS5Q39u2ammC99TUKkS+fU2kEuMt29hvH0L4+2b+t9VUb26ltfkt3frgSc36sLFDE19sa6CAnNO6EKC/bUn4aymztjt1v0C7ubSHP6vvvpK8+bNU7NmzRzusnvTTTdp7969bgvOkyT/sFzJPyzPdf/KD/TVhYTD2jH6FUnS2Z37VKJFI1UZNUgpi1dIkqo8NliH3vtMh+fOlyRtfXi8Sndpq4qD7tLe12a5/00g1xhv38J4+xbG2zf17l5eH3x2QCvWHJckTXh9p775sIVaNwtX3C/J2W6zev0JrV5/wu37Rd5x0a5zLlX4k5OTVbp06Szt586dc/gFADkr1qyBUn5e5dCWvHiFijdrIEmyBAaq6M03KSVu5d8djFHKzytVrFnDaxgp3IHx9i2Mt29hvD1fuYhghZew6rdNJ+1t585naPuuM6pTM+y62y+QVy4l/FFRUVq4cKH9eWaS/5///EfNmzd3T2RezhoRrtSkFIe21KQUBRYtIr9gq4LCi8svIECpx47/o89xWcuEX8tQ4QaMt29hvH0L4+35ShQPkiSdPJXu0H7yVJr9tetpv8iKG28559KUnpdfflldunTR9u3bdenSJb3xxhvavn27Vq5cmWVd/uykpqYqNTXVoc1qtboSCgAAQJ7c0qa0nnqkuv356Be3FmA0QP5z6deSVq1aadOmTbp06ZLq1q2rH3/8UaVLl9aqVavUqFGjK24fGxurokWLOjxiY2NdCcVjpSalyBrhWNmxRoQr/fSfsl1MVVrKSdkuXZK1dMl/9Cmp1ETHShKuf4y3b2G8fQvj7XlWrD2uwaPW2R+nz/xVgS9eLNChX/FiQTpxMs3l42Ru6+79Annl8t8hqlatqlmzZmnt2rXavn27/vvf/6pu3dwtMRYTE6PTp087PGJiYlwNxSOdWr1JJds3c2gL79BCJ1dvkiSZ9HSd3rBN4e0vmyJlsahku+Y6tXrjNYwU7sB4+xbG27cw3p7nwoUMHTl60f5IOHheKSdSFVW/uL1PaIi/alcP0+87z7h8nD+SLubLfpGVxc9SYA9P4NKUHknKyMjQggULtGPHDklS7dq11aNHDwUEXHmXVqvV66bw+BcKVaFqlezPQ6tUUFj9mko7cVoXDx1VjQnRCi4foc2Dx0iSDsz8VJUf7q+asU/p0JwvFd6umcr27qLfuj9o30fCtPdVf/YrOrX+d53+bYsiRw5UQKEQHfr/VR5QcBhv38J4+xbG2zd9/s0RDexTSYf+uKCjSRc19N5IHT+Rql9W//1XmGkT6mn5qhTNX/iHJCkk2E/lL1tTv2xEsKpVKaQ/z15SUnJqrvcL5DeXEv5t27ape/fuSkxMVI0aNSRJr7zyikqVKqVvv/1WderUcWuQnqBoozpqHveh/Xntyc9Ikg59MF9bhsTIWraUQiqWtb9+Yf9h/db9QdWeEqPIRwfo4uFEbX1wrH0JN0k6+vl3CipVQtXHj5S1TCmd2bxDa7sOVdo/LvzCtcd4+xbG27cw3r7poy8PKTjYX6NHVFfhQgHauv20nhi/VWnpxt6nfJkQFQv7e3pOzWpF9FZsA/vzkUOrSZIWxSXq5Wnxud4vrp6nVNoLisUYk+efuObNm6tUqVKaO3euihf/689UJ0+e1KBBg5ScnKyVK1deYQ/ZWxhYw6Xt4HluT49nvH0I4+1bGG/fcnt6vFp1u/KCHfAOK75tU9AhZCu+T+cCO3aNeT8U2LFzy6UK/6ZNm7Ru3Tp7si9JxYsX18SJE9W4cWO3BQcAAADg6rh00W716tWVlJSUpf3YsWOqVq3aVQcFAAAA5BYX7TrnUsIfGxurkSNH6osvvtDhw4d1+PBhffHFF3rsscf0yiuv6MyZM/YHAAAAgILj0pSerl27SpLuvvtu+112My8F6Natm/25xWJRRkaGO+IEAAAAsuUpd7wtKC4l/EuWLHF3HAAAAADygUsJf5s2bXTq1Cm99957DuvwDxkyREWLFnVrgAAAAIAzfv6eMZe+oLj0949169apWrVqev3113XixAmdOHFCr7/+uqpWraoNGza4O0YAAAAALnKpwv/444+rW7dumjVrlv3OupcuXdLQoUP12GOPafny5W4NEgAAAIBrXEr4161b55DsS1JAQIBGjx6tqKgotwUHAAAAXImnLI9ZUFya0hMWFqaDBw9maT906JCKFCly1UEBAAAAcA+XKvx9+vTRkCFDNHnyZLVo0UKS9Ouvv+qpp57SPffc49YAAQAAAGdYltM5lxL+yZMny2KxaMCAAbp06ZIkKTAwUMOHD9ekSZPcGiAAAAAA17mU8AcFBemNN95QbGys9u7dK0mqWrWqQkND3RocAAAAgKvjUsKfKTQ0VHXr1nVXLAAAAECecdGuc0x4AgAAALzYVVX4AQAAgIJGhd85KvwAAACAF6PCDwAAAI/GspzOcXYAAAAAL0bCDwAAAHgxpvQAAADAo3HRrnNU+AEAAAAvRoUfAAAAHo2Ldp3j7AAAAABejIQfAAAA8GJM6QEAAIBns3DRrjNU+AEAAAAvRoUfAAAAHo1lOZ2jwg8AAAB4MRJ+AAAAwIsxpQcAAAAejXX4nePsAAAAAF6MCj8AAAA8GhftOkeFHwAAAPBiVPgBAADg0ZjD7xxnBwAAAPBiJPwAAACAF2NKDwAAADwaF+06R4UfAAAA8GJU+AEAAODRqPA7R4UfAAAAuIamT5+uyMhIBQcHq2nTplq7dq3T/tOmTVONGjUUEhKiihUr6vHHH9fFixdzfTwSfgAAAOAamTdvnqKjozV+/Hht2LBB9evXV+fOnXXs2LFs+3/88cd6+umnNX78eO3YsUPvvfee5s2bp2eeeSbXxyThBwAAgGfz8yu4Rx5NnTpVw4YN0+DBg1W7dm3NmDFDoaGhmj17drb9V65cqZYtW6pfv36KjIxUp06ddM8991zxrwIOpyfPUQIAAADIs7S0NK1fv14dO3a0t/n5+aljx45atWpVttu0aNFC69evtyf4+/bt06JFi3Tbbbfl+rhctAsAAACPZrEU3EW7qampSk1NdWizWq2yWq1Z+qakpCgjI0MREREO7REREdq5c2e2++/Xr59SUlLUqlUrGWN06dIlPfTQQ0zpAQAAAK6F2NhYFS1a1OERGxvrtv0vXbpUL7/8st5++21t2LBB8+fP18KFC/XSSy/leh9U+AEAAODRLC7MpXeXmJgYRUdHO7RlV92XpPDwcPn7+yspKcmhPSkpSWXKlMl2m+eee0733Xefhg4dKkmqW7euzp07pwceeEDPPvus/HLx3qnwAwAAAC6yWq0KCwtzeOSU8AcFBalRo0aKi4uzt9lsNsXFxal58+bZbnP+/PksSb2/v78kyRiTqxip8AMAAADXSHR0tAYOHKioqCg1adJE06ZN07lz5zR48GBJ0oABA1S+fHn7tKBu3bpp6tSpatiwoZo2bao9e/boueeeU7du3eyJ/5WQ8AMAAMCjedKddvv06aPk5GSNGzdOiYmJatCggb7//nv7hbwHDx50qOiPHTtWFotFY8eO1ZEjR1SqVCl169ZNEydOzPUxSfgBAACAa2jEiBEaMWJEtq8tXbrU4XlAQIDGjx+v8ePHu3w8En4AAAB4tgK8aNcTcHYAAAAAL0bCDwAAAHgxpvQAAADAo3nSRbsFgQo/AAAA4MUsJrcr9gMAAADXoZMThxfYsYs/+06BHTu3rqspPQsDaxR0CLhGbk+PZ7x9COPtWxhv33J7erxadVtW0GHgGlnxbZuCDgEuuK4SfgAAACDPmMPvFHP4AQAAAC9Gwg8AAAB4Mab0AAAAwKNZuNOuU5wdAAAAwItR4QcAAIBH48ZbzlHhBwAAALwYCT8AAADgxZjSAwAAAM9moYbtDGcHAAAA8GJU+AEAAODRuGjXOSr8AAAAgBejwg8AAADPxo23nOLsAAAAAF6MhB8AAADwYkzpAQAAgEezWLho1xkq/AAAAIAXo8IPAAAAz8ZFu05xdgAAAAAvRsIPAAAAeDGm9AAAAMCjcadd56jwAwAAAF6MCj8AAAA8m4UatjOcHQAAAMCLUeEHAACAZ2MOv1NU+AEAAAAvRsIPAAAAeDGm9AAAAMCjWbho1ynODgAAAODFqPADAADAs3HRrlNU+AEAAAAvRsIPAAAAeDGm9AAAAMCjWfyoYTvD2QEAAAC8GBV+AAAAeDYLF+06Q4UfAAAA8GJU+AEAAODZmMPvFGcHAAAA8GIk/AAAAIAXY0oPAAAAPBsX7TpFhR8AAADwYlT4AQAA4NG48ZZznB0AAADAi5HwAwAAAF6MKT0AAADwbBZq2M5wdgAAAAAvRoUfAAAAns2PZTmdocIPAAAAeLGrqvCnpaXp2LFjstlsDu2VKlW6qqAAAAAAuIdLCf/u3bt1//33a+XKlQ7txhhZLBZlZGS4JTgAAADgSixctOuUSwn/oEGDFBAQoP/9738qW7asLNzOGAAAALguuZTwb9q0SevXr1fNmjXdHQ8AAACQN1y065RLf/+oXbu2UlJS3B0LAAAAADfLdYX/zJkz9n+/8sorGj16tF5++WXVrVtXgYGBDn3DwsLcFyEAAADgDHP4ncr12SlWrJiKFy+u4sWL65ZbbtHq1avVoUMHlS5d2t6e2ccXlWgVpagF76jDgV90e3q8Irp3uPI2/2qiVmvn69azW9V2x4+qMOCOLH0qD++ndrvjdOufW9Ti189UtHHd/AgfecR4+xbG27cw3r5rSP9IfTW3meK+aKVpL9VThbIhTvvXv6moXnmujr6a00wrvm2j1s1KumW/gLvlOuFfsmSJfv75Z/vjn88vb/NF/oVCdWZLvH4f+UKu+odEVlDjb97V8aVrtCKqhxLemqu6705Q+C2t7H3K9u6iWq/FaPeE6VrR5A79uWWnmi58T0GlSuTX20AuMd6+hfH2LYy3b+p/V0X16lpek9/erQee3KgLFzM09cW6CgrMeW54SLC/9iSc1dQZu926X8Ddcj2lp02bNvkZh8dL/mG5kn9Ynuv+lR/oqwsJh7Vj9CuSpLM796lEi0aqMmqQUhavkCRVeWywDr33mQ7PnS9J2vrweJXu0lYVB92lva/Ncv+bQK4x3r6F8fYtjLdv6t29vD747IBWrDkuSZrw+k5982ELtW4WrrhfkrPdZvX6E1q9/oTb9wsXsGKkUy5NeNqyZUu2j61bt2r37t1KTU11d5xep1izBkr5eZVDW/LiFSrerIEkyRIYqKI336SUuMvudWCMUn5eqWLNGl7DSOEOjLdvYbx9C+Pt+cpFBCu8hFW/bTppbzt3PkPbd51RnZquX5eYX/sF8sqlZTkbNGjgdO39wMBA9enTR++++66Cg4NdDs6bWSPClZrkuNJRalKKAosWkV+wVYHFi8ovIECpx47/o89xFapxw7UMFW7AePsWxtu3MN6er0TxIEnSyVPpDu0nT6XZX7ue9ots+HHRrjMunZ0FCxboxhtv1MyZM7Vp0yZt2rRJM2fOVI0aNfTxxx/rvffe088//6yxY8dmu31qaqrOnDnj8OCvAgAA4Fq4pU1p/fhZK/sjIIDpIPBuLlX4J06cqDfeeEOdO3e2t9WtW1cVKlTQc889p7Vr16pQoUJ64oknNHny5Czbx8bG6oUXHC+GGj9+vBq7EoyHSk1KkTUi3KHNGhGu9NN/ynYxVWkpJ2W7dEnW0iX/0aekUhO5B4KnYbx9C+PtWxhvz7Ni7XFt37XO/jwo8K/6Z/FigTp+Ms3eXrxYkPbsO+vycU78/77cvV8gr1yq8G/dulWVK1fO0l65cmVt3bpV0l/Tfo4ePZrt9jExMTp9+rTDIyYmxpVQPNap1ZtUsn0zh7bwDi10cvUmSZJJT9fpDdsU3r753x0sFpVs11ynVm+8hpHCHRhv38J4+xbG2/NcuJChI0cv2h8JB88r5USqour/vbR4aIi/alcP0+87zzjZk3N/JF3Ml/0iGxa/gnt4AJeirFmzpiZNmqS0tL9/W01PT9ekSZNUs2ZNSdKRI0cUERGR7fZWq1VhYWEOD6vV6koo1w3/QqEKq19TYfX/ev+hVSoorH5NBVcsK0mqMSFa9d9/xd7/wMxPFVqlomrGPqVCNW5Q5Yf6qWzvLkp4Y469T8K091VxyN0qf19PFa55g+pMf14BhUJ06P9XeUDBYbx9C+PtWxhv3/T5N0c0sE8ltWxSUjdULqSx0TV1/ESqfln9919hpk2opztvL2d/HhLsp2pVCqlalUKSpLIRwapWpZAiSlnztF8gv7k0pWf69Onq3r27KlSooHr16kn6q+qfkZGh//3vf5Kkffv26eGHH3ZfpNe5oo3qqHnch/bntSc/I0k69MF8bRkSI2vZUgr5//8sJOnC/sP6rfuDqj0lRpGPDtDFw4na+uBY+xJuknT08+8UVKqEqo8fKWuZUjqzeYfWdh2qtH9c+IVrj/H2LYy3b2G8fdNHXx5ScLC/Ro+orsKFArR1+2k9MX6r0tKNvU/5MiEqFhZof16zWhG9FdvA/nzk0GqSpEVxiXp5Wnyu9ws38OM6DGcsxhiXfuL+/PNPffTRR9q1a5ckqUaNGurXr5+KFCnicjALA2u4vC08y+3p8Yy3D2G8fQvj7VtuT49Xq27LCjoMXCMrvr0+78t08as3C+zYwT1HFtixc8ulCr8kFSlSRA899JA7YwEAAADyzkPm0heUXCf833zzjbp06aLAwEB98803Tvt27979qgMDAAAAcPVynfD37NlTiYmJKl26tHr27JljP4vFooyMDHfEBgAAAOAq5Trht9ls2f4bAAAAKFAWLtp1xuU5/HFxcYqLi9OxY8ccfgGwWCx677333BIcAAAAgKvjUsL/wgsv6MUXX1RUVJTKli0rC79VAQAAoKD4cdGuMy4l/DNmzNCcOXN03333uTseAAAAAG7k0q9DaWlpatGihbtjAQAAAOBmLiX8Q4cO1ccff+zuWAAAAIC8s1gK7uEBcj2lJzo62v5vm82mmTNn6qefflK9evUUGBjo0Hfq1KnuixAAAACAy3Kd8G/cuNHheYMGDSRJv//+u0M7F/ACAADgmuJOu07lOuFfsmRJfsYBAAAAIB+4vA4/AAAAcF1gWU6nODsAAACAFyPhBwAAALwYU3oAAADg2Vg0xikq/AAAAIAXo8IPAAAAz8aynE5xdgAAAAAvRsIPAAAAeDGm9AAAAMCzcdGuU1T4AQAAAC9GhR8AAACejTvtOsXZAQAAALwYFX4AAAB4NMMcfqeo8AMAAABejIQfAAAA8GJM6QEAAIBn4067TnF2AAAAAC9Gwg8AAADPZvEruIcLpk+frsjISAUHB6tp06Zau3at0/6nTp3SI488orJly8pqtap69epatGhRro/HlB4AAADgGpk3b56io6M1Y8YMNW3aVNOmTVPnzp0VHx+v0qVLZ+mflpamW265RaVLl9YXX3yh8uXL68CBAypWrFiuj0nCDwAAAFwjU6dO1bBhwzR48GBJ0owZM7Rw4ULNnj1bTz/9dJb+s2fP1okTJ7Ry5UoFBgZKkiIjI/N0TKb0AAAAwKMZi6XAHqmpqTpz5ozDIzU1Nds409LStH79enXs2NHe5ufnp44dO2rVqlXZbvPNN9+oefPmeuSRRxQREaE6dero5ZdfVkZGRq7PDwk/AAAA4KLY2FgVLVrU4REbG5tt35SUFGVkZCgiIsKhPSIiQomJidlus2/fPn3xxRfKyMjQokWL9Nxzz2nKlCmaMGFCrmNkSg8AAAA8WwEuyxkTE6Po6GiHNqvV6rb922w2lS5dWjNnzpS/v78aNWqkI0eO6LXXXtP48eNztQ8SfgAAAMBFVqs11wl+eHi4/P39lZSU5NCelJSkMmXKZLtN2bJlFRgYKH9/f3tbrVq1lJiYqLS0NAUFBV3xuEzpAQAAgGezWArukQdBQUFq1KiR4uLi7G02m01xcXFq3rx5ttu0bNlSe/bskc1ms7ft2rVLZcuWzVWyL5HwAwAAANdMdHS0Zs2apblz52rHjh0aPny4zp07Z1+1Z8CAAYqJibH3Hz58uE6cOKFRo0Zp165dWrhwoV5++WU98sgjuT4mU3oAAACAa6RPnz5KTk7WuHHjlJiYqAYNGuj777+3X8h78OBB+fn9XZOvWLGifvjhBz3++OOqV6+eypcvr1GjRmnMmDG5PiYJPwAAADybn2dNWhkxYoRGjBiR7WtLly7N0ta8eXOtXr3a5eN51tkBAAAAkCdU+AEAAODRTB4vnvU1VPgBAAAAL0bCDwAAAHgxpvQAAADAsxXgnXY9AWcHAAAA8GJU+AEAAODRDBV+pzg7AAAAgBejwg8AAADPxrKcTlHhBwAAALwYCT8AAADgxZjSAwAAAI/GRbvOcXYAAAAAL0aFHwAAAJ6Ni3adosIPAAAAeDESfgAAAMCLMaUHAAAAno2Ldp2yGGNMQQcBAAAAuOrPdd8X2LGLRN1aYMfOreuqwr8wsEZBh4Br5Pb0eMbbhzDevoXx9i23p8erVbdlBR0GrpEV37Yp6BCyZbho1yn+/gEAAAB4MRJ+AAAAwItdV1N6AAAAgDzjol2nODsAAACAF6PCDwAAAI9mxEW7zlDhBwAAALwYFX4AAAB4NMMcfqc4OwAAAIAXI+EHAAAAvBhTegAAAODZmNLjFGcHAAAA8GJU+AEAAODRjIVlOZ2hwg8AAAB4MRJ+AAAAwIsxpQcAAAAejXX4nePsAAAAAF6MCj8AAAA8GxftOkWFHwAAAPBiVPgBAADg0ZjD7xxnBwAAAPBiJPwAAACAF2NKDwAAADyaERftOkOFHwAAAPBiVPgBAADg0bho1znODgAAAODFSPgBAAAAL8aUHgAAAHg27rTrFBV+AAAAwItR4QcAAIBHM9SwneLsAAAAAF6MCj8AAAA8mmEOv1NU+AEAAAAvRsIPAAAAeDGm9AAAAMCjcadd5zg7AAAAgBejwg8AAACPZsRFu85Q4QcAAAC8GAk/AAAA4MWY0gMAAACPxkW7znF2AAAAAC9GhR8AAAAejTvtOkeFHwAAAPBiVPgBAADg0ViW0zkq/AAAAIAXI+EHAAAAvBhTegAAAODRWJbTOc4OAAAA4MWo8AMAAMCjcdGuc1T4AQAAAC9Gwg8AAAB4MZem9Fy8eFHBwcHujgUAAADIMy7adc6lhL9YsWJq0qSJ2rRpo7Zt26pFixYKCQlxd2wAAAAArpJLCf9PP/2k5cuXa+nSpXr99dd16dIlRUVF2X8BuOWWW9wdJwAAAJAtLtp1zqW/f7Rq1UrPPPOMfvzxR506dUpLlixRtWrV9Oqrr+rWW291d4weoUSrKEUteEcdDvyi29PjFdG9w5W3+VcTtVo7X7ee3aq2O35UhQF3ZOlTeXg/tdsdp1v/3KIWv36moo3r5kf4yCPG27cw3r6F8fZdQ/pH6qu5zRT3RStNe6meKpR1Pnuh/k1F9cpzdfTVnGZa8W0btW5W0i37BdzN5QlPu3bt0syZMzVgwADddddd+vbbb9W1a1dNnTrVnfF5DP9CoTqzJV6/j3whV/1DIiuo8Tfv6vjSNVoR1UMJb81V3XcnKPyWVvY+ZXt3Ua3XYrR7wnStaHKH/tyyU00XvqegUiXy620glxhv38J4+xbG2zf1v6uienUtr8lv79YDT27UhYsZmvpiXQUF5lw5Dgn2156Es5o6Y7db94u8Mxa/Ant4Apem9JQvX14XLlxQ27Zt1bZtW40ZM0b16tWTxeK7P7zJPyxX8g/Lc92/8gN9dSHhsHaMfkWSdHbnPpVo0UhVRg1SyuIVkqQqjw3Wofc+0+G58yVJWx8er9Jd2qrioLu097VZ7n8TyDXG27cw3r6F8fZNvbuX1wefHdCKNcclSRNe36lvPmyh1s3CFfdLcrbbrF5/QqvXn3D7fgF3c+nXklKlSun8+fNKTExUYmKikpKSdOHCBXfH5tWKNWuglJ9XObQlL16h4s0aSJIsgYEqevNNSolb+XcHY5Ty80oVa9bwGkYKd2C8fQvj7VsYb89XLiJY4SWs+m3TSXvbufMZ2r7rjOrUDLvu9gvklUsJ/6ZNm5SYmKinn35aqampeuaZZxQeHq4WLVro2WefdXeMXskaEa7UpBSHttSkFAUWLSK/YKuCwovLLyBAqceO/6PPcVnLhF/LUOEGjLdvYbx9C+Pt+UoUD5IknTyV7tB+8lSa/bXrab/IyshSYA9P4NKUHumvpTm7d++uli1bqkWLFvr666/1ySefaM2aNZo4caLTbVNTU5WamurQZrVaXQ0FAAAg125pU1pPPVLd/nz0i1sLMBog/7mU8M+fP19Lly7V0qVLtX37dpUoUUKtWrXSlClT1KZNmytuHxsbqxdecLwYavz48WrsSjAeKjUpRdYIx8qONSJc6af/lO1iqtJSTsp26ZKspUv+o09JpSY6VpJw/WO8fQvj7VsYb8+zYu1xbd+1zv48KPCvCQ/FiwXq+Mk0e3vxYkHas++sy8c58f/7cvd+kZXx4etIc8OlKT0PPfSQ/vjjDz3wwAPauHGjjh07pvnz52vkyJGqX7/+FbePiYnR6dOnHR4xMTGuhOKxTq3epJLtmzm0hXdooZOrN0mSTHq6Tm/YpvD2zf/uYLGoZLvmOrV64zWMFO7AePsWxtu3MN6e58KFDB05etH+SDh4XiknUhVVv7i9T2iIv2pXD9PvO8+4fJw/ki7my36BvHKpwn/s2LGrOqjVavW6KTz+hUJVqFol+/PQKhUUVr+m0k6c1sVDR1VjQrSCy0do8+AxkqQDMz9V5Yf7q2bsUzo050uFt2umsr276LfuD9r3kTDtfdWf/YpOrf9dp3/bosiRAxVQKESH/n+VBxQcxtu3MN6+hfH2TZ9/c0QD+1TSoT8u6GjSRQ29N1LHT6Tql9V//xVm2oR6Wr4qRfMX/iFJCgn2U/nL1tQvGxGsalUK6c+zl5SUnJrr/QL5zeU5/BkZGfrqq6+0Y8cOSVLt2rXVo0cP+fv7uy04T1K0UR01j/vQ/rz25GckSYc+mK8tQ2JkLVtKIRXL2l+/sP+wfuv+oGpPiVHkowN08XCitj441r6EmyQd/fw7BZUqoerjR8pappTObN6htV2HKu0fF37h2mO8fQvj7VsYb9/00ZeHFBzsr9EjqqtwoQBt3X5aT4zfqrR0Y+9TvkyIioUF2p/XrFZEb8U2sD8fObSaJGlRXKJenhaf6/3i6hnDlB5nLMaYPP/E7dmzR7fddpuOHDmiGjVqSJLi4+NVsWJFLVy4UFWrVnUpmIWBNVzaDp7n9vR4xtuHMN6+hfH2Lbenx6tVt2UFHQaukRXfXvlazYKwZ29CgR27WtUqBXbs3HJpDv/IkSNVtWpVHTp0SBs2bNCGDRt08OBBValSRSNHjnR3jAAAAECOjPwK7OEJXJrSs2zZMq1evVolSvx9S/CSJUtq0qRJatmypduCAwAAAHB1XEr4rVar/vzzzyztZ8+eVVAQN5IAAADAteMpN8AqKC79HaJr16564IEHtGbNGhljZIzR6tWr9dBDD6l79+7ujhEAAACAi1xK+N98801VrVpVzZs3V3BwsIKDg9WiRQtVq1ZN06ZNc3OIAAAAAFzl0pSeYsWK6euvv9aePXvsy3LWqlVL1apVc2twAAAAwJUwpce5XCf80dHRTl9fsmSJ/d9Tp051PSIAAAAAbpPrhH/jxtzd/tti4TcsAAAAXDtU+J3LdcJ/eQUfAAAAgGfwjLsFAAAAAHCJSxftAgAAANcLpvQ4R4UfAAAA8GJU+AEAAODRjKHC7wwVfgAAAMCLkfADAAAAXowpPQAAAPBoXLTrHBV+AAAAwItR4QcAAIBHo8LvHBV+AAAA4BqaPn26IiMjFRwcrKZNm2rt2rW52u7TTz+VxWJRz54983Q8En4AAAB4NCNLgT3yat68eYqOjtb48eO1YcMG1a9fX507d9axY8ecbrd//349+eSTat26dZ6PScIPAAAAXCNTp07VsGHDNHjwYNWuXVszZsxQaGioZs+eneM2GRkZ6t+/v1544QXdcMMNeT4mCT8AAADgotTUVJ05c8bhkZqamm3ftLQ0rV+/Xh07drS3+fn5qWPHjlq1alWOx3jxxRdVunRpDRkyxKUYSfgBAADg0YyxFNgjNjZWRYsWdXjExsZmG2dKSooyMjIUERHh0B4REaHExMRst1mxYoXee+89zZo1y+Xzwyo9AAAAgItiYmIUHR3t0Ga1Wt2y7z///FP33XefZs2apfDwcJf3Q8IPAAAAj2YrwGU5rVZrrhP88PBw+fv7KykpyaE9KSlJZcqUydJ/79692r9/v7p162Zvs9lskqSAgADFx8eratWqVzwuU3oAAACAayAoKEiNGjVSXFycvc1msykuLk7NmzfP0r9mzZraunWrNm3aZH90795d7dq106ZNm1SxYsVcHZcKPwAAAHCNREdHa+DAgYqKilKTJk00bdo0nTt3ToMHD5YkDRgwQOXLl1dsbKyCg4NVp04dh+2LFSsmSVnanSHhBwAAgEfzpDvt9unTR8nJyRo3bpwSExPVoEEDff/99/YLeQ8ePCg/P/dOwiHhBwAAAK6hESNGaMSIEdm+tnTpUqfbzpkzJ8/HI+EHAACARzPGcyr8BYGLdgEAAAAvRoUfAAAAHs2T5vAXBCr8AAAAgBcj4QcAAAC8GFN6AAAA4NG4aNc5KvwAAACAF6PCDwAAAI/GRbvOUeEHAAAAvBgJPwAAAODFmNIDAAAAj8ZFu85R4QcAAAC8GBV+AAAAeDRbQQdwnaPCDwAAAHgxKvwAAADwaMzhd44KPwAAAODFSPgBAAAAL8aUHgAAAHg07rTrHBV+AAAAwItR4QcAAIBH46Jd56jwAwAAAF6MhB8AAADwYkzpAQAAgEfjol3nqPADAAAAXowKPwAAADyazRR0BNc3KvwAAACAF6PCDwAAAI/GHH7nqPADAAAAXsxijGHWEwAAADzWsm3nC+zYbW4KLbBj59Z1NaVnYWCNgg4B18jt6fGMtw9hvH0L4+1bbk+PV6tuywo6DFwjK75tU9AhZIs77TrHlB4AAADAi11XFX4AAAAgr5ig7hwVfgAAAMCLkfADAAAAXowpPQAAAPBoNtbhd4oKPwAAAODFqPADAADAo7Esp3NU+AEAAAAvRoUfAAAAHo1lOZ2jwg8AAAB4MRJ+AAAAwIsxpQcAAAAezbAsp1NU+AEAAAAvRoUfAAAAHs3GRbtOUeEHAAAAvBgJPwAAAODFmNIDAAAAj8addp2jwg8AAAB4MSr8AAAA8Gjcadc5KvwAAACAF6PCDwAAAI9m48ZbTlHhBwAAALwYCT8AAADgxZjSAwAAAI/GRbvOUeEHAAAAvBgVfgAAAHg0brzlHBV+AAAAwIuR8AMAAABejCk9AAAA8Gg2Ltp1igo/AAAA4MWo8AMAAMCjsSync1T4AQAAAC9Gwg8AAAB4Mab0AAAAwKMZsQ6/M1T4AQAAAC9GhR8AAAAejWU5naPCDwAAAHgxKvwAAADwaCzL6RwVfgAAAMCLkfADAAAAXowpPQAAAPBoTOlxjgo/AAAA4MWo8AMAAMCj2Qw33nKGCj8AAADgxVxO+D/88EO1bNlS5cqV04EDByRJ06ZN09dff+224AAAAABcHZcS/nfeeUfR0dG67bbbdOrUKWVkZEiSihUrpmnTprkzPgAAAMApYwru4QlcSvjfeustzZo1S88++6z8/f3t7VFRUdq6davbggMAAABwdVy6aDchIUENGzbM0m61WnXu3LmrDgoAAADILU+ptBcUlyr8VapU0aZNm7K0f//996pVq9bVxgQAAADATVyq8EdHR+uRRx7RxYsXZYzR2rVr9cknnyg2Nlb/+c9/3B0jAAAAkCMbFX6nXEr4hw4dqpCQEI0dO1bnz59Xv379VK5cOb3xxhvq27evu2MEAAAA4CKXb7zVv39/9e/fX+fPn9fZs2dVunRpd8YFAAAAwA1cmsN/4cIFnT9/XpIUGhqqCxcuaNq0afrxxx/dGhwAAABwJcZYCuzhCVxK+Hv06KEPPvhAknTq1Ck1adJEU6ZMUY8ePfTOO++4NUAAAAAArnMp4d+wYYNat24tSfriiy9UpkwZHThwQB988IHefPNNtwboKUq0ilLUgnfU4cAvuj09XhHdO1x5m381Uau183Xr2a1qu+NHVRhwR5Y+lYf3U7vdcbr1zy1q8etnKtq4bn6EjzxivH0L4+1bGG/fNaR/pL6a20xxX7TStJfqqULZEKf9699UVK88V0dfzWmmFd+2UetmJd2yX+QdN95yzqWE//z58ypSpIgk6ccff9Sdd94pPz8/NWvWTAcOHHBrgJ7Cv1CozmyJ1+8jX8hV/5DICmr8zbs6vnSNVkT1UMJbc1X33QkKv6WVvU/Z3l1U67UY7Z4wXSua3KE/t+xU04XvKahUifx6G8glxtu3MN6+hfH2Tf3vqqheXctr8tu79cCTG3XhYoamvlhXQYE5T9kICfbXnoSzmjpjt1v3C7ibSwl/tWrV9NVXX+nQoUP64Ycf1KlTJ0nSsWPHFBYW5tYAPUXyD8u1a/w0JX39U676V36gry4kHNaO0a/o7M59OvD2R0r88gdVGTXI3qfKY4N16L3PdHjufJ3dsVdbHx6vjPMXVXHQXfn0LpBbjLdvYbx9C+Ptm3p3L68PPjugFWuOa+/+c5rw+k6VLGFV62bhOW6zev0Jzfrvfi1ffdyt+wXczaWEf9y4cXryyScVGRmpJk2aqHnz5pL+qvZndwdeZFWsWQOl/LzKoS158QoVb9ZAkmQJDFTRm29SStzKvzsYo5SfV6pYM86xp2G8fQvj7VsYb89XLiJY4SWs+m3TSXvbufMZ2r7rjOrUdL2QmV/7RVY2U3APT+DSspy9evVSq1atdPToUdWvX9/e3qFDB91xR9Z5i/+Umpqq1NRUhzar1epKKB7LGhGu1KQUh7bUpBQFFi0iv2CrAosXlV9AgFKPHf9Hn+MqVOOGaxkq3IDx9i2Mt29hvD1fieJBkqSTp9Id2k+eSrO/dj3tF8grl9fhL1OmjMqUKaPDhw9LkipUqKAmTZrkatvY2Fi98ILj3Mjx48ersavBAAAA5NItbUrrqUeq25+PfnFrAUYDd/CUi2cLiktTemw2m1588UUVLVpUlStXVuXKlVWsWDG99NJLstlsV9w+JiZGp0+fdnjExMS4EorHSk1KkTXCcf6eNSJc6af/lO1iqtJSTsp26ZKspUv+o09JpSY6VpJw/WO8fQvj7VsYb8+zYu1xDR61zv44feavCnzxYoEO/YoXC9KJk2kuHydzW3fvF8grlxL+Z599Vv/+9781adIkbdy4URs3btTLL7+st956S88999wVt7darQoLC3N4+NqUnlOrN6lk+2YObeEdWujk6k2SJJOertMbtim8ffO/O1gsKtmuuU6t3ngNI4U7MN6+hfH2LYy357lwIUNHjl60PxIOnlfKiVRF1S9u7xMa4q/a1cP0+84zLh/nj6SL+bJfZMWynM65NKVn7ty5+s9//qPu3bvb2+rVq6fy5cvr4Ycf1sSJE90WoKfwLxSqQtUq2Z+HVqmgsPo1lXbitC4eOqoaE6IVXD5CmwePkSQdmPmpKj/cXzVjn9KhOV8qvF0zle3dRb91f9C+j4Rp76v+7Fd0av3vOv3bFkWOHKiAQiE6NHf+NX9/cMR4+xbG27cw3r7p82+OaGCfSjr0xwUdTbqoofdG6viJVP2y+u+/wkybUE/LV6Vo/sI/JEkhwX4qf9ma+mUjglWtSiH9efaSkpJTc71fIL+5lPCfOHFCNWvWzNJes2ZNnThx4qqD8kRFG9VR87gP7c9rT35GknTog/naMiRG1rKlFFKxrP31C/sP67fuD6r2lBhFPjpAFw8nauuDY5WyeIW9z9HPv1NQqRKqPn6krGVK6czmHVrbdajSjuW8/BeuDcbbtzDevoXx9k0ffXlIwcH+Gj2iugoXCtDW7af1xPitSkv/u4RbvkyIioX9PT2nZrUieiu2gf35yKHVJEmL4hL18rT4XO8XyG8WY/L+x4imTZuqadOmWe6q++ijj+q3337T6tWrXQpmYWANl7aD57k9PZ7x9iGMt29hvH3L7enxatVtWUGHgWtkxbdtCjqEbP0nruCOPfTKN+MucC5V+F999VXdfvvt+umnn+xr8K9atUqHDh3SokWL3BogAAAAANe5dNFumzZttGvXLt1xxx06deqUTp06pTvvvFPx8fFq3bq1u2MEAAAAcsRFu865vA5/uXLlfPLiXAAAAMCT5Drh37JlS653Wq9ePZeCAQAAAOBeuU74GzRoIIvFoitd42uxWJSRkXHVgQEAAAC5kYv7vvq0XM/hT0hI0L59+5SQkOD0sW/fvvyMFwAAAPBo06dPV2RkpIKDg9W0aVOtXbs2x76zZs1S69atVbx4cRUvXlwdO3Z02j87uU74K1eubH98/PHHiouLc2irXLmy4uLi9Omnn+YpAAAAAOBqeNJFu/PmzVN0dLTGjx+vDRs2qH79+urcubOOHTuWbf+lS5fqnnvu0ZIlS7Rq1SpVrFhRnTp10pEjR3J9TJdW6Xn33XezvfHWTTfdpBkzZriySwAAAMDrTZ06VcOGDdPgwYNVu3ZtzZgxQ6GhoZo9e3a2/T/66CM9/PDDatCggWrWrKn//Oc/stlsiovL/c0HXEr4ExMTVbZs2SztpUqV0tGjR13ZJQAAAOAST6nwp6Wlaf369erYsaO9zc/PTx07dtSqVatytY/z588rPT1dJUqUyPVxXUr4K1asqF9//TVL+6+//qpy5cq5sksAAADA46SmpurMmTMOj9TU1Gz7pqSkKCMjQxEREQ7tERERSkxMzNXxxowZo3Llyjn80nAlLiX8w4YN02OPPab3339fBw4c0IEDBzR79mw9/vjjGjZsmCu7BAAAADxObGysihYt6vCIjY3Nl2NNmjRJn376qRYsWKDg4OBcb+fSjbeeeuopHT9+XA8//LDS0tIkScHBwRozZoxiYmJc2SUAAADgElsB3vE2JiZG0dHRDm1WqzXbvuHh4fL391dSUpJDe1JSksqUKeP0OJMnT9akSZP0008/5fmeVy5V+C0Wi1555RUlJydr9erV2rx5s06cOKFx48a5sjsAAADAI1mtVoWFhTk8ckr4g4KC1KhRI4cLbjMvwG3evHmOx3j11Vf10ksv6fvvv1dUVFSeY3Spwp+pcOHCaty48dXsAgAAALgqV7oxbP6y5Kl3dHS0Bg4cqKioKDVp0kTTpk3TuXPnNHjwYEnSgAEDVL58efu0oFdeeUXjxo3Txx9/rMjISPtc/8KFC6tw4cK5OuZVJfwAAAAAcq9Pnz5KTk7WuHHjlJiYqAYNGuj777+3X8h78OBB+fn9PQnnnXfeUVpamnr16uWwn/Hjx+v555/P1TFJ+AEAAIBraMSIERoxYkS2ry1dutTh+f79+6/6eCT8AAAA8GgFOqPHA7h00S4AAAAAz0CFHwAAAB7NZivoCK5vVPgBAAAAL0aFHwAAAB6NOfzOUeEHAAAAvBgJPwAAAODFmNIDAAAAj2ZjSo9TVPgBAAAAL0aFHwAAAB6Ni3ado8IPAAAAeDESfgAAAMCLMaUHAAAAHs0U6FW7lgI8du5Q4QcAAAC8GBV+AAAAeDSW5XSOCj8AAADgxajwAwAAwKOxLKdzVPgBAAAAL0bCDwAAAHgxpvQAAADAo9m4atcpKvwAAACAF6PCDwAAAI/GRbvOUeEHAAAAvBgJPwAAAODFmNIDAAAAj8aUHueo8AMAAABejAo/AAAAPJqNEr9TVPgBAAAAL0bCDwAAAHgxpvQAAADAoxlbQUdwfaPCDwAAAHgxKvwAAADwaIaLdp2iwg8AAAB4MSr8AAAA8Gg25vA7RYUfAAAA8GIk/AAAAIAXY0oPAAAAPBoX7TpHhR8AAADwYlT4AQAA4NFsFPidosIPAAAAeDGLYdITAAAAPNjYOWkFduwJg4IK7Ni5dV1N6WnVbVlBh4BrZMW3bRhvH8J4+xbG27es+LaNFgbWKOgwcI3cnh5f0CFkyzCnxymm9AAAAABe7Lqq8AMAAAB5xQR156jwAwAAAF6MCj8AAAA8mo05/E5R4QcAAAC8GAk/AAAA4MWY0gMAAACPxm2lnKPCDwAAAHgxKvwAAADwaMZW0BFc36jwAwAAAF6MhB8AAADwYkzpAQAAgEezcdGuU1T4AQAAAC9GhR8AAAAejWU5naPCDwAAAHgxKvwAAADwaDYbFX5nqPADAAAAXoyEHwAAAPBiTOkBAACAR+OaXeeo8AMAAABejAo/AAAAPJrhol2nqPADAAAAXoyEHwAAAPBiTOkBAACAR7Nx1a5TVPgBAAAAL0aFHwAAAB6Ni3ado8IPAAAAeDEq/AAAAPBoVPido8IPAAAAeDESfgAAAMCLMaUHAAAAHo0ZPc5R4QcAAAC8GBV+AAAAeDQu2nWOCj8AAADgxUj4AQAAAC/GlB4AAAB4NGOY0uOMSxX+vXv3auzYsbrnnnt07NgxSdJ3332nbdu2uTU4AAAAAFcnzwn/smXLVLduXa1Zs0bz58/X2bNnJUmbN2/W+PHj3R4gAAAA4IzNZgrs4QnynPA//fTTmjBhghYvXqygoCB7e/v27bV69Wq3BgcAAADg6uR5Dv/WrVv18ccfZ2kvXbq0UlJS3BIUAAAAkFvM4XcuzxX+YsWK6ejRo1naN27cqPLly7slKAAAAADukeeEv2/fvhozZowSExNlsVhks9n066+/6sknn9SAAQPyI0YAAAAALsrzlJ6XX35ZjzzyiCpWrKiMjAzVrl1bGRkZ6tevn8aOHZsfMQIAAAA54k67zuU54Q8KCtKsWbP03HPP6ffff9fZs2fVsGFD3XjjjfkRHwAAAICr4PKNtypVqqRKlSq5MxYAAAAgz6jwO5fnhN8Yoy+++EJLlizRsWPHZLPZHF6fP3++24IDAAAAcHXynPA/9thjevfdd9WuXTtFRETIYrHkR1wAAAAA3CDPCf+HH36o+fPn67bbbsuPeAAAAIA8sbEOv1N5XpazaNGiuuGGG/IjFgAAAABulueE//nnn9cLL7ygCxcu5Ec8AAAAQJ4YmymwhyfI85Seu+++W5988olKly6tyMhIBQYGOry+YcMGtwUHAAAA4OrkOeEfOHCg1q9fr3vvvZeLdgEAAFDgDHP4ncpzwr9w4UL98MMPatWqVX7EAwAAAMCN8jyHv2LFigoLC8uPWAAAAAC4WZ4r/FOmTNHo0aM1Y8YMRUZG5kNInm9I/0h161RGRQoFaOuOM5r89m4dPprzRc71byqqfndWVI2qhRVe0qqYib/rl9XHr3q/uDYYb9/CePsWxtv7lWgVpRueGKKiN9dRcLnSWnfXw0r6Js75Nv9qotqTn1bh2jfq4qGj2hP7jg5/sMChT+Xh/XRD9BBZy5TSmS07te2xl3T6t635+VZ8ms1DLp4tKHmu8N97771asmSJqlatqiJFiqhEiRIOD1/X/66K6tW1vCa/vVsPPLlRFy5maOqLdRUUmPO1DiHB/tqTcFZTZ+x2636R/xhv38J4+xbG2zf4FwrVmS3x+n3kC7nqHxJZQY2/eVfHl67RiqgeSnhrruq+O0Hht/w91bls7y6q9VqMdk+YrhVN7tCfW3aq6cL3FFSKPAkFI88V/mnTpuVDGN6jd/fy+uCzA1qx5q+KzoTXd+qbD1uodbNwxf2SnO02q9ef0Or1J9y+X+Q/xtu3MN6+hfH2Dck/LFfyD8tz3b/yA311IeGwdox+RZJ0duc+lWjRSFVGDVLK4hWSpCqPDdah9z7T4bnzJUlbHx6v0l3aquKgu7T3tVnufxPwmOUxC4pLq/Qge+UighVewqrfNp20t507n6Htu86oTs0wl7/I82u/uDqMt29hvH0L442cFGvWQCk/r3JoS168QrWnPCNJsgQGqujNN2nvK+/+3cEYpfy8UsWaNbyWoQJ2eU74Dx486PT1SpUquRyMpytRPEiSdPJUukP7yVNp9teup/3i6jDevoXx9i2MN3JijQhXalKKQ1tqUooCixaRX7BVgcWLyi8gQKnHjv+jz3EVqnHDtQwVsMtzwh8ZGel07f2MjIwr7iM1NVWpqakObVarNa+hFLhb2pTWU49Utz8f/SIX43gzxtu3MN6+hfEGPJunrcM/ffp0vfbaa0pMTFT9+vX11ltvqUmTJjn2//zzz/Xcc89p//79uvHGG/XKK6/otttuy/Xx8pzwb9y40eF5enq6Nm7cqKlTp2rixIm52kdsbKxeeMHx4pjx48dLapfXcArUirXHtX3XOvvzoMC/roEuXixQx0+m2duLFwvSnn1nXT7Oif/fl7v3i7xhvH0L4+1bGG/kVmpSiqwR4Q5t1ohwpZ/+U7aLqUpLOSnbpUuyli75jz4llZro+JcB+KZ58+YpOjpaM2bMUNOmTTVt2jR17txZ8fHxKl26dJb+K1eu1D333KPY2Fh17dpVH3/8sXr27KkNGzaoTp06uTpmnlfpqV+/vsMjKipKw4YN0+TJk/Xmm2/mah8xMTE6ffq0wyMmJiavoRS4CxcydOToRfsj4eB5pZxIVVT94vY+oSH+ql09TL/vPOPycf5Iupgv+0XeMN6+hfH2LYw3cuvU6k0q2b6ZQ1t4hxY6uXqTJMmkp+v0hm0Kb9/87w4Wi0q2a65Tqx2LpnAfY7MV2COvpk6dqmHDhmnw4MGqXbu2ZsyYodDQUM2ePTvb/m+88YZuvfVWPfXUU6pVq5Zeeukl3Xzzzfr3v/+d62PmucKfkxo1aui3337LVV+r1eqRU3hy4/Nvjmhgn0o69McFHU26qKH3Rur4iVT9svrv3+qnTain5atSNH/hH5KkkGA/lS8bYn+9bESwqlUppD/PXlJScmqu94trj/H2LYy3b2G8fYN/oVAVqvb39YehVSoorH5NpZ04rYuHjqrGhGgFl4/Q5sFjJEkHZn6qyg/3V83Yp3RozpcKb9dMZXt30W/dH7TvI2Ha+6o/+xWdWv+7Tv+2RZEjByqgUIgO/f+qPfAuOU1Vzy7XTUtL0/r16x0K3X5+furYsaNWrVqVpb8krVq1StHR0Q5tnTt31ldffZXrGPOc8J8541iBMMbo6NGjev7553XjjTfmdXde56MvDyk42F+jR1RX4UIB2rr9tJ4Yv1Vp6X/PLStfJkTFwgLtz2tWK6K3YhvYn48cWk2StCguUS9Pi8/1fnHtMd6+hfH2LYy3byjaqI6ax31of1578l+r7Rz6YL62DImRtWwphVQsa3/9wv7D+q37g6o9JUaRjw7QxcOJ2vrgWPuSnJJ09PPvFFSqhKqPH/nXjbc279DarkOVdizrTdjg+XKaqv78889n6ZuSkqKMjAxFREQ4tEdERGjnzp3Z7j8xMTHb/omJibmO0WLyeJWDn59flot2jTGqWLGiPv30UzVv3jyHLa+sVbdlLm8Lz7Li2zaMtw9hvH0L4+1bVnzbRgsDaxR0GLhGbk+PL+gQstXnyQMFduwPJpbJdYX/jz/+UPny5bVy5UqHnHn06NFatmyZ1qxZk2WboKAgzZ07V/fcc4+97e2339YLL7ygpKSkXMWY5wr/kiVLHJ77+fmpVKlSqlatmgIC3DZDCAAAALju5WWqenh4uPz9/bMk6klJSSpTpky225QpUyZP/bOT5wy9TZs2ed0EAAAAyDeesixnUFCQGjVqpLi4OPXs2VOSZLPZFBcXpxEjRmS7TfPmzRUXF6fHHnvM3rZ48eI8zarJVcL/zTff5HqH3bt3z3VfAAAAwJdER0dr4MCBioqKUpMmTTRt2jSdO3dOgwcPliQNGDBA5cuXV2xsrCRp1KhRatOmjaZMmaLbb79dn376qdatW6eZM2fm+pi5SvgzfwO5EovFkqsbbwEAAADuYmyeUeGXpD59+ig5OVnjxo1TYmKiGjRooO+//95+Ye7Bgwfl5/f3yvktWrTQxx9/rLFjx+qZZ57RjTfeqK+++irXa/BLuUz4bS6sMQoAAAAgqxEjRuQ4hWfp0qVZ2nr37q3evXu7fLw833gLAAAAgOdwKeFftmyZunXrpmrVqqlatWrq3r27fvnlF3fHBgAAAFyRsZkCe3iCPCf8//3vf9WxY0eFhoZq5MiRGjlypEJCQtShQwd9/PHH+REjAAAAABfleVnOiRMn6tVXX9Xjjz9ubxs5cqSmTp2ql156Sf369XNrgAAAAIAzNsP1ps7kucK/b98+devWLUt79+7dlZCQ4JagAAAAALhHnhP+ihUrKi4uLkv7Tz/9pIoVK7olKAAAAADukecpPU888YRGjhypTZs2qUWLFpKkX3/9VXPmzNEbb7zh9gABAAAAZzzl4tmCkueEf/jw4SpTpoymTJmizz77TJJUq1YtzZs3Tz169HB7gAAAAABcl+eEf+jQobr33nu1YsWK/IgHAAAAyBMq/M7leQ5/cnKybr31VlWsWFGjR4/W5s2b8yMuAAAAAG6Q54T/66+/1tGjR/Xcc89p7dq1uvnmm3XTTTfp5Zdf1v79+/MhRAAAACBnxpgCe3gCl+60W7x4cT3wwANaunSpDhw4oEGDBunDDz9UtWrV3B0fAAAAgKvgUsKfKT09XevWrdOaNWu0f/9+RUREuCsuAAAAAG7gUsK/ZMkSDRs2TBERERo0aJDCwsL0v//9T4cPH3Z3fAAAAIBTNputwB6eIM+r9JQvX14nTpzQrbfeqpkzZ6pbt26yWq35ERsAAACAq5TnhP/5559X7969VaxYsXwIBwAAAMgbluV0Ls8J/7Bhw/IjDgAAAAD54Kou2gUAAABwfctzhR8AAAC4nhjjGRfPFhQq/AAAAIAXo8IPAAAAj8ZFu85R4QcAAAC8GBV+AAAAeDQq/M5R4QcAAAC8GAk/AAAA4MWY0gMAAACPZmNZTqeo8AMAAABejAo/AAAAPBoX7TpHhR8AAADwYiT8AAAAgBdjSg8AAAA8mrFx0a4zVPgBAAAAL0aFHwAAAB6Ni3ado8IPAAAAeDEq/AAAAPBohhtvOUWFHwAAAPBiJPwAAACAF2NKDwAAADyajYt2naLCDwAAAHgxKvwAAADwaNx4yzkq/AAAAIAXI+EHAAAAvBhTegAAAODRuNOuc1T4AQAAAC9GhR8AAAAejTvtOkeFHwAAAPBiVPgBAADg0ZjD7xwVfgAAAMCLkfADAAAAXowpPQAAAPBo3GnXOSr8AAAAgBezGGO4yqGApKamKjY2VjExMbJarQUdDvIZ4+1bGG/fwnj7FsYbnoaEvwCdOXNGRYsW1enTpxUWFlbQ4SCfMd6+hfH2LYy3b2G84WmY0gMAAAB4MRJ+AAAAwIuR8AMAAABejIS/AFmtVo0fP54LfnwE4+1bGG/fwnj7FsYbnoaLdgEAAAAvRoUfAAAA8GIk/AAAAIAXI+EHAAAAvBgJP+CCtm3b6rHHHsvxdYvFoq+++irX+1u6dKksFotOnTp11bEhf11p7OF99u/fL4vFok2bNhV0KLhG8vodDlzvAgo6AMAbHT16VMWLFy/oMAAAAEj4gfxQpkyZgg4BAABAElN6rlpqaqpGjhyp0qVLKzg4WK1atdJvv/0m6e9pGgsXLlS9evUUHBysZs2a6ffff3fYx4oVK9S6dWuFhISoYsWKGjlypM6dO2d/PTIyUi+//LLuv/9+FSlSRJUqVdLMmTOv6ftEVjabTaNHj1aJEiVUpkwZPf/88/bX/vnn4JUrV6pBgwYKDg5WVFSUvvrqq2ynCKxfv15RUVEKDQ1VixYtFB8ff23eDFxy8uRJDRgwQMWLF1doaKi6dOmi3bt3S5KMMSpVqpS++OILe/8GDRqobNmy9ucrVqyQ1WrV+fPnr3nsyMpms+nVV19VtWrVZLVaValSJU2cODHbvsuWLVOTJk1ktVpVtmxZPf3007p06ZL99S+++EJ169ZVSEiISpYsqY4dOzp8r//nP/9RrVq1FBwcrJo1a+rtt9/O9/fnK2bOnKly5crJZrM5tPfo0UP333+/JOmdd95R1apVFRQUpBo1aujDDz/McX/ZTbnctGmTLBaL9u/fL0maM2eOihUrpv/973+qUaOGQkND1atXL50/f15z585VZGSkihcvrpEjRyojI8O+n9TUVD355JMqX768ChUqpKZNm2rp0qVuOxeAncFVGTlypClXrpxZtGiR2bZtmxk4cKApXry4OX78uFmyZImRZGrVqmV+/PFHs2XLFtO1a1cTGRlp0tLSjDHG7NmzxxQqVMi8/vrrZteuXebXX381DRs2NIMGDbIfo3LlyqZEiRJm+vTpZvfu3SY2Ntb4+fmZnTt3FtTb9nlt2rQxYWFh5vnnnze7du0yc+fONRaLxfz444/GGGMkmQULFhhjjDl9+rQpUaKEuffee822bdvMokWLTPXq1Y0ks3HjRmOMsf+sNG3a1CxdutRs27bNtG7d2rRo0aKA3iFy0qZNGzNq1ChjjDHdu3c3tWrVMsuXLzebNm0ynTt3NtWqVbN/vu+8807zyCOPGGOMOXHihAkKCjJFixY1O3bsMMYYM2HCBNOyZcsCeR/IavTo0aZ48eJmzpw5Zs+ePeaXX34xs2bNMgkJCQ6f18OHD5vQ0FDz8MMPmx07dpgFCxaY8PBwM378eGOMMX/88YcJCAgwU6dONQkJCWbLli1m+vTp5s8//zTGGPPf//7XlC1b1nz55Zdm37595ssvvzQlSpQwc+bMKaB37l0yP2s//fSTve348eP2tvnz55vAwEAzffp0Ex8fb6ZMmWL8/f3Nzz//bO9/+Xd45vfzyZMn7a9v3LjRSDIJCQnGGGPef/99ExgYaG655RazYcMGs2zZMlOyZEnTqVMnc/fdd5tt27aZb7/91gQFBZlPP/3Uvp+hQ4eaFi1amOXLl5s9e/aY1157zVitVrNr1658PUfwPST8V+Hs2bMmMDDQfPTRR/a2tLQ0U65cOfPqq6/avyQu/3AfP37chISEmHnz5hljjBkyZIh54IEHHPb7yy+/GD8/P3PhwgVjzF8J/7333mt/3WazmdKlS5t33nknP98enGjTpo1p1aqVQ1vjxo3NmDFjjDGO/1m88847pmTJkvbxNMaYWbNmZZvwX/4f1MKFC40kh+1Q8DIT/l27dhlJ5tdff7W/lpKSYkJCQsxnn31mjDHmzTffNDfddJMxxpivvvrKNG3a1PTo0cP+2e3YsaN55plnrv2bQBZnzpwxVqvVzJo1K8tr/0z4n3nmGVOjRg1js9nsfaZPn24KFy5sMjIyzPr1640ks3///myPVbVqVfPxxx87tL300kumefPm7ntDPq5Hjx7m/vvvtz9/9913Tbly5UxGRoZp0aKFGTZsmEP/3r17m9tuu83+3JWEX5LZs2ePvc+DDz5oQkND7b/oGWNM586dzYMPPmiMMebAgQPG39/fHDlyxCGWDh06mJiYmKt6/8A/MaXnKuzdu1fp6elq2bKlvS0wMFBNmjTRjh077G3Nmze3/7tEiRKqUaOG/fXNmzdrzpw5Kly4sP3RuXNn2Ww2JSQk2LerV6+e/d8Wi0VlypTRsWPH8vPt4QouHxNJKlu2bLZjEh8fb5/SlalJkyZX3Gfm1A/G+fq0Y8cOBQQEqGnTpva2kiVLOny+27Rpo+3btys5OVnLli1T27Zt1bZtWy1dulTp6elauXKl2rZtW0DvAJfbsWOHUlNT1aFDh1z1bd68uSwWi72tZcuWOnv2rA4fPqz69eurQ4cOqlu3rnr37q1Zs2bp5MmTkqRz585p7969GjJkiMP3/oQJE7R37958e3++pn///vryyy+VmpoqSfroo4/Ut29f+fn5aceOHQ7/b0t/jd/l/2+7IjQ0VFWrVrU/j4iIUGRkpAoXLuzQlvmdvnXrVmVkZKh69eoOPwvLli3jZwFux0W7Bezs2bN68MEHNXLkyCyvVapUyf7vwMBAh9csFkuW+Ym4tvJjTC7fZ2YywTh7rrp166pEiRJatmyZli1bpokTJ6pMmTJ65ZVX9Ntvvyk9PV0tWrQo6DAhKSQkxG378vf31+LFi7Vy5Ur9+OOPeuutt/Tss89qzZo1Cg0NlSTNmjXL4ZfFzO3gHt26dZMxRgsXLlTjxo31yy+/6PXXX3dpX35+f9VGjTH2tvT09Cz9svs/wdn/E2fPnpW/v7/Wr1+fZewv/yUBcAcq/Fch84KfX3/91d6Wnp6u3377TbVr17a3rV692v7vkydPateuXapVq5Yk6eabb9b27dtVrVq1LI+goKBr92aQb2rUqKGtW7faK02S7Bd2w3PVqlVLly5d0po1a+xtx48fV3x8vP3zb7FY1Lp1a3399dfatm2bWrVqpXr16ik1NVXvvvuuoqKiVKhQoYJ6C7jMjTfeqJCQEMXFxV2xb61atbRq1SqHBPDXX39VkSJFVKFCBUl/jX3Lli31wgsvaOPGjQoKCtKCBQsUERGhcuXKad++fVm+86tUqZJv78/XBAcH684779RHH32kTz75RDVq1NDNN98s6a/xu/z/bemv8bv8/+3LlSpVStJfyy1ncsc9GRo2bKiMjAwdO3Ysy88CK73B3ajwX4VChQpp+PDheuqpp1SiRAlVqlRJr776qs6fP68hQ4Zo8+bNkqQXX3xRJUuWVEREhJ599lmFh4erZ8+ekqQxY8aoWbNmGjFihIYOHapChQpp+/btWrx4sf79738X4LuDu/Tr10/PPvusHnjgAT399NM6ePCgJk+eLEkOUwLgWW688Ub16NFDw4YN07vvvqsiRYro6aefVvny5dWjRw97v7Zt2+qJJ55QVFSUvWr3r3/9Sx999JGeeuqpggof/xAcHKwxY8Zo9OjRCgoKUsuWLZWcnKxt27Zlmebz8MMPa9q0aXr00Uc1YsQIxcfHa/z48YqOjpafn5/WrFmjuLg4derUSaVLl9aaNWuUnJxsL/S88MILGjlypIoWLapbb71VqampWrdunU6ePKno6OiCePteqX///uratau2bdume++9197+1FNP6e6771bDhg3VsWNHffvtt5o/f75++umnbPdTrVo1VaxYUc8//7wmTpyoXbt2acqUKVcdX/Xq1dW/f38NGDBAU6ZMUcOGDZWcnKy4uDjVq1dPt99++1UfA8hEwn+VJk2aJJvNpvvuu09//vmnoqKi9MMPPzjcdGnSpEkaNWqUdu/erQYNGujbb7+1V+/r1aunZcuW6dlnn1Xr1q1ljFHVqlXVp0+fgnpLcLOwsDB9++23Gj58uBo0aKC6detq3Lhx6tevn8O8fnie999/X6NGjVLXrl2Vlpamf/3rX1q0aJHDn/HbtGmjjIwMh7n6bdu21ddff838/evMc889p4CAAI0bN05//PGHypYtq4ceeihLv/Lly2vRokV66qmnVL9+fZUoUUJDhgzR2LFjJf31mV++fLmmTZumM2fOqHLlypoyZYq6dOkiSRo6dKhCQ0P12muv6amnnlKhQoVUt25d7uDsZu3bt1eJEiUUHx+vfv362dt79uypN954Q5MnT9aoUaNUpUoVvf/++zl+HgMDA/XJJ59o+PDhqlevnho3bqwJEyaod+/eVx3j+++/rwkTJuiJJ57QkSNHFB4ermbNmqlr165XvW/gchZz+d8k4VZLly5Vu3btdPLkSRUrVqygw8F15KOPPtLgwYN1+vRpt84dBgAA+Ccq/MA18MEHH+iGG25Q+fLltXnzZo0ZM0Z33303yT4AAMh3JPzANZCYmKhx48YpMTFRZcuWVe/evXO8gycAAIA7MaUHAAAA8GIsywkAAAB4MRJ+AAAAwIuR8AMAAABejIQfAAAA8GIk/AAAAIAXI+EHAAAAvBgJPwAAAODFSPgBAAAAL0bCDwAAAHix/wNNS/Mnlb7PDAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the heatmap\n",
"plt.figure(figsize=(10, 8))\n",
"sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n",
"plt.title('Correlation Matrix for Cryptocurrency Data', fontsize=16)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BUILDING MODEL "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Selection "
]
},
{
"cell_type": "code",
"execution_count": 178,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" open high low close volume weightedAverage \\\n",
"19 28308.00 30800.00 28257.99 29993.89 1.142210e+05 29150.945 \n",
"20 29993.89 30500.00 29525.61 29884.92 6.331282e+04 29939.405 \n",
"21 29884.91 31431.94 29800.00 30688.50 8.158243e+04 30286.705 \n",
"22 30688.51 30800.00 30250.00 30527.43 3.201427e+04 30607.970 \n",
"23 30527.44 31046.01 30277.49 30462.66 3.155572e+04 30495.050 \n",
"... ... ... ... ... ... ... \n",
"5525 102.75 122.25 99.35 119.57 1.807382e+06 111.160 \n",
"5526 119.57 139.42 114.92 132.93 4.045921e+06 126.250 \n",
"5527 132.75 135.16 122.70 130.89 1.956176e+06 131.820 \n",
"5528 130.90 135.62 121.97 133.69 1.384338e+06 132.295 \n",
"5529 133.69 146.79 124.94 135.78 2.098452e+06 134.735 \n",
"\n",
" date id symbol weighted_score ma_5 ma_20 lag_1 \\\n",
"19 2023-06-21 215 BTC 3.661211 27600.640 26635.0170 28307.99 \n",
"20 2023-06-22 215 BTC 3.733190 28274.226 26788.3665 29993.89 \n",
"21 2023-06-23 215 BTC 3.764895 29143.932 26960.6620 29884.92 \n",
"22 2023-06-24 215 BTC 3.794224 29880.546 27133.5725 30688.50 \n",
"23 2023-06-25 215 BTC 3.783915 30311.480 27300.9455 30527.43 \n",
"... ... ... ... ... ... ... ... \n",
"5525 2024-12-01 887 LTC 1.010143 103.970 92.1560 102.74 \n",
"5526 2024-12-02 887 LTC 1.011520 111.110 94.9680 119.57 \n",
"5527 2024-12-03 887 LTC 1.012029 118.180 97.7430 132.93 \n",
"5528 2024-12-04 887 LTC 1.012072 123.964 100.3085 130.89 \n",
"5529 2024-12-05 887 LTC 1.012295 130.572 102.9125 133.69 \n",
"\n",
" lag_2 lag_3 daily_return \n",
"19 26844.36 26339.97 0.059556 \n",
"20 28307.99 26844.36 -0.003633 \n",
"21 29993.89 28307.99 0.026889 \n",
"22 29884.92 29993.89 -0.005249 \n",
"23 30688.50 29884.92 -0.002122 \n",
"... ... ... ... \n",
"5525 104.77 95.54 0.163812 \n",
"5526 102.74 104.77 0.111734 \n",
"5527 119.57 102.74 -0.015346 \n",
"5528 132.93 119.57 0.021392 \n",
"5529 130.89 132.93 0.015633 \n",
"\n",
"[5340 rows x 16 columns]\n"
]
}
],
"source": [
"model_data = ohlcv_data\n",
"\n",
"model_data['ma_5'] = model_data.groupby('symbol')['close'].transform(lambda x: x.rolling(window=5).mean())\n",
"model_data['ma_20'] = model_data.groupby('symbol')['close'].transform(lambda x: x.rolling(window=20).mean())\n",
"\n",
"# Add lagged features\n",
"for lag in range(1, 4): # Lagged values for the past 3 days\n",
" model_data[f'lag_{lag}'] = model_data.groupby('symbol')['close'].shift(lag)\n",
"\n",
"# Add daily return as a feature\n",
"model_data['daily_return'] = model_data.groupby('symbol')['close'].pct_change()\n",
"\n",
"model_data = model_data.dropna()\n",
"# Columns used to train the model (e.g., open, high, low, volume, etc.).\n",
"features = [\n",
" 'open', 'high', 'low', 'volume', 'ma_5', 'ma_20', \n",
" 'lag_1', 'lag_2', 'lag_3'\n",
"]\n",
"\n",
"print(model_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Handling Missing Values "
]
},
{
"cell_type": "code",
"execution_count": 179,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing values in features:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:7: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:7: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:7: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:7: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:7: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"SeriesGroupBy.fillna is deprecated and will be removed in a future version. Use obj.ffill() or obj.bfill() for forward or backward filling instead. If you want to fill with a single value, use Series.fillna instead\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"SeriesGroupBy.fillna is deprecated and will be removed in a future version. Use obj.ffill() or obj.bfill() for forward or backward filling instead. If you want to fill with a single value, use Series.fillna instead\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"SeriesGroupBy.fillna is deprecated and will be removed in a future version. Use obj.ffill() or obj.bfill() for forward or backward filling instead. If you want to fill with a single value, use Series.fillna instead\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"SeriesGroupBy.fillna is deprecated and will be removed in a future version. Use obj.ffill() or obj.bfill() for forward or backward filling instead. If you want to fill with a single value, use Series.fillna instead\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"SeriesGroupBy.fillna is deprecated and will be removed in a future version. Use obj.ffill() or obj.bfill() for forward or backward filling instead. If you want to fill with a single value, use Series.fillna instead\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: FutureWarning:\n",
"\n",
"Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:16: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n",
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/2843346195.py:20: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n"
]
}
],
"source": [
"# Check for missing values in features\n",
"print(\"Missing values in features:\")\n",
"timeframes = [5, 30, 90, 180, 365]\n",
"\n",
"# Fill NaN in target columns with the last known price\n",
"for t in timeframes:\n",
" model_data[f'target_{t}d'] = model_data.groupby('symbol')['close'].transform(\n",
" lambda x: x.shift(-t).ewm(span=t, adjust=False).mean()\n",
" )\n",
"\n",
"# Replace NaN values with the last known price\n",
"last_known_prices = model_data.groupby('symbol')['close'].last()\n",
"\n",
"# Step 2: Forward fill missing values within each symbol group\n",
"for t in timeframes:\n",
" model_data[f'target_{t}d'] = model_data.groupby('symbol')[f'target_{t}d'].fillna(method='ffill')\n",
"\n",
"# Step 3: Fill remaining NaN values with the last known price for each symbol\n",
"for t in timeframes:\n",
" model_data[f'target_{t}d'] = model_data.apply(\n",
" lambda row: last_known_prices[row['symbol']] if pd.isna(row[f'target_{t}d']) else row[f'target_{t}d'], axis=1\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train-Test Split "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"80-20 split: 80% of the data (292 days) is used for training, and 20% (73 days) for testing.\n",
"\n",
"The 80-20 split is a standard practice in machine learning and data analysis.\n",
"\n",
"We used time-based split instead of random selection and it is the best practice for time-series data because:\n",
"\n",
"- It preserves the sequential nature of the data.\n",
"- This simulates a real-world scenario where you train the model on historical data and then evaluate or use it to predict future data."
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(4220, 9)\n",
"(1120, 9)\n",
"(4220, 5)\n",
"(1120, 5)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/96/zkx_7hk579v922k6dk_fc26c0000gn/T/ipykernel_26365/1468742617.py:4: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n"
]
}
],
"source": [
"# Train-test split\n",
"from datetime import datetime, timedelta\n",
"\n",
"model_data['date'] = pd.to_datetime(model_data['date'])\n",
"\n",
"start_date = datetime(2023, 6, 1)\n",
"end_date = datetime(2024, 12, 5)\n",
"total_days = (end_date - start_date).days + 1 # Total number of days including the end date\n",
"training_days = int(total_days * 0.8) # Calculate the number of training days (80% of total days)\n",
"cutoff_date = pd.to_datetime((start_date + timedelta(days=training_days - 1)))# Calculate the cutoff date\n",
"\n",
"train_data = model_data[model_data['date'] < cutoff_date] # Contains rows before the cutoff date.\n",
"test_data = model_data[model_data['date'] >= cutoff_date] # Contains rows from the cutoff date onward.\n",
"\n",
"targets = [f'target_{t}d' for t in timeframes] # The prediction targets (target_5d, target_30d, etc.) defined for different timeframes (e.g., 5 days, 1 month, etc.).\n",
"\n",
"X_train = train_data[features]\n",
"X_test = test_data[features]\n",
"Y_train = train_data[targets]\n",
"Y_test = test_data[targets]\n",
"\n",
"\n",
"print(X_train.shape)\n",
"print(X_test.shape)\n",
"print(Y_train.shape)\n",
"print(Y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Selection "
]
},
{
"cell_type": "code",
"execution_count": 182,
"metadata": {},
"outputs": [],
"source": [
"# X_train, X_test: Feature sets.\n",
"# Y_train, Y_test: Target values for each timeframe.\n",
"#Train Model\n",
"from sklearn.ensemble import RandomForestRegressor # A machine learning model used for regression tasks.\n",
"\n",
"# Train models for each target\n",
"models = {}\n",
"predictions = {}\n",
"\n",
"for target in Y_train.columns: # Loops through each target column (target_5d, target_30d, etc.).\n",
" # Train the model\n",
" model = RandomForestRegressor(n_estimators=100, random_state=42) # Trains a separate Random Forest model for each target timeframe.\n",
" model.fit(X_train, Y_train[target])\n",
" \n",
" # Save the model\n",
" models[target] = model # Each trained model is stored in the models dictionary for future use.\n",
" \n",
" # Make predictions\n",
" predictions[target] = model.predict(X_test) # Predictions for the test set (X_test) are stored in the predictions dictionary."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Evaluation "
]
},
{
"cell_type": "code",
"execution_count": 183,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"target_5d - MSE: 20720289.35\n",
"target_30d - MSE: 28110491.94\n",
"target_90d - MSE: 20997786.79\n",
"target_180d - MSE: 3297805.00\n",
"target_365d - MSE: 4080.68\n"
]
}
],
"source": [
"from sklearn.metrics import mean_squared_error\n",
"\n",
"# Mean Squared Error (MSE): A common metric for evaluating regression models.\n",
"# Measures the average squared difference between the actual (y_test) and predicted values (predictions[target]).\n",
"# Calculates and prints the MSE for each prediction target (target_5d, target_30d, etc.).\n",
"# A lower MSE indicates better model performance.\n",
"for target in predictions.keys():\n",
" mse = mean_squared_error(Y_test[target], predictions[target])\n",
" print(f\"{target} - MSE: {mse:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RESULTS "
]
},
{
"cell_type": "code",
"execution_count": 186,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Symbol \n",
" Current Price \n",
" 5D Prediction \n",
" 1M Prediction \n",
" 3M Prediction \n",
" 6M Prediction \n",
" 1Y Prediction \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" BTC \n",
" $96,945.63 \n",
" $96,939.33 \n",
" $90,473.03 \n",
" $77,968.14 \n",
" $70,912.84 \n",
" $67,982.73 \n",
" \n",
" \n",
" 1 \n",
" ETH \n",
" $3,785.20 \n",
" $3,725.93 \n",
" $3,337.72 \n",
" $2,985.61 \n",
" $2,926.36 \n",
" $3,122.91 \n",
" \n",
" \n",
" 2 \n",
" BNB \n",
" $717.10 \n",
" $704.77 \n",
" $645.32 \n",
" $605.68 \n",
" $576.16 \n",
" $583.39 \n",
" \n",
" \n",
" 3 \n",
" SOL \n",
" $235.84 \n",
" $233.65 \n",
" $223.79 \n",
" $191.07 \n",
" $171.69 \n",
" $155.72 \n",
" \n",
" \n",
" 4 \n",
" LTC \n",
" $135.78 \n",
" $128.49 \n",
" $99.34 \n",
" $82.41 \n",
" $77.36 \n",
" $74.38 \n",
" \n",
" \n",
" 5 \n",
" AVAX \n",
" $50.30 \n",
" $49.92 \n",
" $40.31 \n",
" $32.95 \n",
" $31.50 \n",
" $28.39 \n",
" \n",
" \n",
" 6 \n",
" DOT \n",
" $10.37 \n",
" $9.98 \n",
" $7.51 \n",
" $5.88 \n",
" $5.73 \n",
" $5.43 \n",
" \n",
" \n",
" 7 \n",
" XRP \n",
" $2.24 \n",
" $2.29 \n",
" $1.50 \n",
" $0.97 \n",
" $0.78 \n",
" $0.64 \n",
" \n",
" \n",
" 8 \n",
" DOGE \n",
" $0.43 \n",
" $0.42 \n",
" $0.36 \n",
" $0.25 \n",
" $0.19 \n",
" $0.16 \n",
" \n",
" \n",
" 9 \n",
" TRX \n",
" $0.32 \n",
" $0.31 \n",
" $0.22 \n",
" $0.18 \n",
" $0.16 \n",
" $0.14 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Symbol Current Price 5D Prediction 1M Prediction 3M Prediction \\\n",
"0 BTC $96,945.63 $96,939.33 $90,473.03 $77,968.14 \n",
"1 ETH $3,785.20 $3,725.93 $3,337.72 $2,985.61 \n",
"2 BNB $717.10 $704.77 $645.32 $605.68 \n",
"3 SOL $235.84 $233.65 $223.79 $191.07 \n",
"4 LTC $135.78 $128.49 $99.34 $82.41 \n",
"5 AVAX $50.30 $49.92 $40.31 $32.95 \n",
"6 DOT $10.37 $9.98 $7.51 $5.88 \n",
"7 XRP $2.24 $2.29 $1.50 $0.97 \n",
"8 DOGE $0.43 $0.42 $0.36 $0.25 \n",
"9 TRX $0.32 $0.31 $0.22 $0.18 \n",
"\n",
" 6M Prediction 1Y Prediction \n",
"0 $70,912.84 $67,982.73 \n",
"1 $2,926.36 $3,122.91 \n",
"2 $576.16 $583.39 \n",
"3 $171.69 $155.72 \n",
"4 $77.36 $74.38 \n",
"5 $31.50 $28.39 \n",
"6 $5.73 $5.43 \n",
"7 $0.78 $0.64 \n",
"8 $0.19 $0.16 \n",
"9 $0.16 $0.14 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Summarize predictions by symbol\n",
"\n",
"summary = model_data.groupby('symbol').last().reset_index()\n",
"# Select relevant columns for summary\n",
"summary = summary[['symbol', 'close', 'target_5d', 'target_30d',\n",
" 'target_90d', 'target_180d', 'target_365d']].sort_values(\"close\", ascending= False)\n",
"\n",
"# Rename columns for clarity\n",
"summary.rename(columns={\n",
" 'name': 'Name',\n",
" 'symbol': 'Symbol',\n",
" 'category': 'Crypto Type',\n",
" 'description': 'Description',\n",
" 'close': 'Current Price',\n",
" 'target_5d': '5D Prediction',\n",
" 'target_30d': '1M Prediction',\n",
" 'target_90d': '3M Prediction',\n",
" 'target_180d': '6M Prediction',\n",
" 'target_365d': '1Y Prediction',\n",
"}, inplace=True)\n",
"\n",
"# Format prices as currency\n",
"summary['Current Price'] = summary['Current Price'].apply(lambda x: f\"${x:,.2f}\")\n",
"summary['5D Prediction'] = summary['5D Prediction'].apply(lambda x: f\"${x:,.2f}\")\n",
"summary['1M Prediction'] = summary['1M Prediction'].apply(lambda x: f\"${x:,.2f}\")\n",
"summary['3M Prediction'] = summary['3M Prediction'].apply(lambda x: f\"${x:,.2f}\")\n",
"summary['6M Prediction'] = summary['6M Prediction'].apply(lambda x: f\"${x:,.2f}\")\n",
"summary['1Y Prediction'] = summary['1Y Prediction'].apply(lambda x: f\"${x:,.2f}\")\n",
"\n",
"summary.reset_index(drop=True, inplace=True)\n",
"\n",
"pd.set_option('display.max_colwidth', 100) \n",
"pd.set_option('display.max_rows', None) \n",
"pd.set_option('display.max_columns', None) \n",
"display(summary)\n"
]
},
{
"cell_type": "code",
"execution_count": 189,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAPeCAYAAAB+zXC1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zO9f/H8cc1mzHMYTRks2REzl9y6IfEnFJOUQ6x5JxUDqFvBzo4ROT7LWeJHCKkQtrIoVKhDEmY7+YUKWEJM3x+f7zbFTbbtePnurbn/Xbb7frs87k+1/Xc+6br3fV5fd7vt8OyLAsREREREREREREREREREZEcysvuACIiIiIiIiIiIiIiIiIiIllJhXEREREREREREREREREREcnRVBgXEREREREREREREREREZEcTYVxERERERERERERERERERHJ0VQYFxERERERERERERERERGRHE2FcRERERERERERERERERERydFUGBcRERERERERERERERERkRxNhXEREREREREREREREREREcnRVBgXEREREREREREREREREZEcTYVxkWwUGxuLw+EgKioKgE2bNuFwODh79my2Z7nvvvt45plnMv11w8PDadeuXaa/rohIbnPz52lWfW6nJqv6qpv7RBERyRj1GyIikpqQkBDeeust5+8Oh4NVq1Zle47Ro0dTo0aNTH/d9957jyJFimT664qI5CbqKySnU2Fc3EJ4eDgOh8P5ExAQQMuWLdm9ezdgPqyuP57cT2xsLJZlMWvWLOrWrUvBggUpUqQItWvX5q233uLChQvJvnfiBZbr37t58+bs3Lkzy//uBg0acOLECQoXLuzS87Pz4tb1be7l5UWZMmV4/PHHOXXqVIrnTZ06lffeey9bMopI7nNzf5H407JlS+eF+JR+Nm3alOL/AKf2P/vXv3/evHkpX748r7zyCleuXMmaP/g6K1eu5NVXX3Xpudl941VISIizXQoUKECtWrX48MMPUzwnKCiIEydOUKVKlWzJKCK5S2rfLxI5HA7y5cvH4cOHb9jfrl07wsPD0/x6KeVQv/EP9Rsi4k5+++03BgwYQHBwML6+vpQsWZIWLVrw9ddf3/C8rVu30rp1a4oWLUq+fPmoWrUqkydP5urVqzc8L60FhPR8JmaWEydO0KpVK5eem1UFiuSk91rdI488woEDB7Ilo4jkbjfflHrz51ZyP4nXzDdu3Ejr1q0JCAjAz8+PypUrM3ToUI4fP37L91NfkZT6CkkvFcbFbbRs2ZITJ05w4sQJNmzYgLe3N23atAHMh1XisRMnTlC/fn369Olzw76goCAee+wxnnnmGdq2bcvGjRuJiorixRdf5OOPPyYiIiLF91+/fj0nTpzg888/5/z587Rq1eqWF4YSEhIy5W/OmzcvJUuWxOFwZMrrZTZ/f39OnDjBsWPHmD17Np999hmPPfZYss+9evUq165do3DhwrrjSkSy1PX9ReLPkiVLnDcbJf507tw5yXMbNGiQae9/8OBBhg4dyujRo5k4cWKyz718+XKG3y9RsWLFKFSoUKa9XmZ75ZVXOHHiBDt37qROnTo88sgjbN26NdnnXr58mTx58lCyZEm8vb2zOamI5BYpfb+4nsPh4KWXXsq017vVeeo3bqR+Q0TcRceOHdm5cyfz58/nwIEDfPLJJ9x3332cPn3a+ZyPPvqIxo0bU6ZMGTZu3MjPP//M008/zWuvvcajjz6KZVkZypDWz8TMUrJkSXx9fTPt9TJbWq/V5c+fn9tuuy17Q4qI8M9NnIk/Q4cO5e67775h3yOPPMLMmTNp1qwZJUuWZMWKFfz000/MmDGDc+fO8eabb6b4Huorkqe+QtJKhXFxG4l35ZYsWZIaNWowcuRIjh49ym+//Ub+/Pmdx0qWLEnevHnx8/O7Yd+KFStYtGgRS5Ys4fnnn6dOnTqEhITQtm1bvvjiC5o0aZLi+wcEBFCyZElq167NpEmT+PXXX/nuu++cdx4tXbqUxo0bky9fPhYtWgTAnDlzqFSpEvny5eOuu+5i2rRpN7zmtm3bqFmzJvny5aN27dpJ7lZKbmTG119/zX333Yefnx9FixalRYsWnDlzhvDwcDZv3szUqVNvGCUP8OOPP9KqVSsKFixIYGAgjz32GL///rvzNf/66y969OhBwYIFKVWqVKqdbCKHw0HJkiUpXbo0rVq1YvDgwaxfv56LFy86R1x+8sknVK5cGV9fX44cOZLkbrlr167xxhtvUL58eXx9fQkODub11193Hj969CidO3emSJEiFCtWjLZt2zr/rsQ2uueeeyhQoABFihTh3nvvTTKiR0Ryl+v7i8SfokWLOm82SvzJnz9/kufmzZs3096/bNmyDBgwgGbNmvHJJ58A/9wx/Prrr1O6dGkqVqwIpP5Zd/XqVYYMGUKRIkUICAjgueeeS3Jx7eZZQ+Lj4xkxYgRBQUH4+vpSvnx55s6dS2xsrLPPK1q0KA6Hwznq8dq1a4wbN4477riD/PnzU716dZYvX37D+6xdu5YKFSqQP39+mjRpckPOlBQqVIiSJUtSoUIF3nnnHfLnz8+nn34KmDubX331VXr06IG/vz99+/ZNdkrcvXv30qZNG/z9/SlUqBANGzbk0KFDzuMp9buXL19m0KBBlCpVinz58lG2bFnGjRvnUnYRyZlS+n5xvUGDBrFw4UJ+/PHHTHm9W52nfuNG6jdExB2cPXuWL7/8kgkTJtCkSRPKli3LPffcw6hRo3jooYcAc02lT58+PPTQQ8yaNYsaNWoQEhJC7969mT9/PsuXL2fZsmUZypHWz0SAr776ioYNG5I/f36CgoIYPHgwf/31l/M1T506xYMPPkj+/Pm54447nNeyrnfz6PZjx47RpUsXihUrRoECBahduzbfffcd7733HmPGjGHXrl1JRj6ePXuW3r17U6JECfz9/bn//vvZtWvXDe8zfvx4AgMDKVSoEE888QSXLl1yqV3Seq0uudnBPv30U+rUqUO+fPkoXrw47du3dx6Lj49n2LBh3H777RQoUIC6deuyadMm5/HDhw/z4IMPUrRoUQoUKMDdd9/N2rVrXcouIrlL4k2ciT8FCxbE29v7hn2nT59m8ODBDB48mHfffZf77ruPkJAQGjVqxJw5c1K9WVd9RfLUV0haqTAubun8+fMsXLiQ8uXLExAQ4NI5ixYtomLFirRt2zbJMYfD4fJ05QD58+cHbryzauTIkTz99NPs27ePFi1asGjRIl566SVef/119u3bx9ixY3nxxReZP3++829o06YNlStX5vvvv2f06NEMGzYsxfeNioqiadOmVK5cmW+++YavvvqKBx98kKtXrzJ16tQkI+WDgoI4e/Ys999/PzVr1mTHjh2sW7eOX3/9lc6dOztfd/jw4WzevNk5cn7Tpk388MMPLrfH9e1y7do159SPFy5cYMKECcyZM4e9e/cme6fVqFGjGD9+PC+++CI//fQTixcvJjAwEDB3aLVo0YJChQrx5Zdf8vXXX1OwYEFatmzJ5cuXuXLlCu3ataNx48bs3r2bb775hr59+7rtCHsRyZ3y589/Q3+xYcMG9u/fT2RkJKtXr071sw7gzTff5L333uPdd9/lq6++4o8//uCjjz5K8X179OjBkiVL+M9//sO+ffuYOXMmBQsWJCgoiBUrVgCwf/9+Tpw4wdSpUwEYN24cCxYsYMaMGezdu5dnn32W7t27s3nzZsAUYjp06MCDDz5IVFQUvXv3ZuTIkWluE29vb3x8fG5ol0mTJlG9enV27tzJiy++mOSc48eP06hRI3x9ffniiy/4/vvv6dWrl7PPSa3f/c9//sMnn3zCsmXL2L9/P4sWLSIkJCTN2UUkZ0rp+8W9995LmzZt0vR5l57vK4nUbySlfkNE7FKwYEEKFizIqlWriI+PT/Y5ERERnD59OtlrOg8++CAVKlRgyZIlmZbJlc/EQ4cO0bJlSzp27Mju3btZunQpX331FYMGDXKeEx4eztGjR9m4cSPLly9n2rRpKS6Pd/78eRo3bszx48f55JNP2LVrF8899xzXrl3jkUceSTL68ZFHHgGgU6dOnDp1is8++4zvv/+eWrVq0bRpU/744w8Ali1bxujRoxk7diw7duygVKlSSQaWuMKVa3U3W7NmDe3bt6d169bs3LmTDRs2cM899ziPDxo0iG+++YYPPviA3bt306lTJ1q2bMnBgwcBePLJJ4mPj2fLli3s2bOHCRMmULBgwTRnFxEB+PDDD7l8+TLPPfdcssfTMgur+orkqa8Ql1gibqBnz55Wnjx5rAIFClgFChSwAKtUqVLW999/n+zzGzdubD399NM37KtUqZL10EMPpfm9Y2JiLMDauXOnZVmWdebMGat9+/ZWwYIFrZMnTzqPv/XWWzecd+edd1qLFy++Yd+rr75q1a9f37Isy5o5c6YVEBBgXbx40Xl8+vTpN7zXxo0bLcA6c+aMZVmW1aVLF+vee++9Zdbk/u5XX33Vat68+Q37jh49agHW/v37rT///NPKmzevtWzZMufx06dPW/nz50/yWtebN2+eVbhwYefvBw4csCpUqGDVrl3beRywoqKibjivZ8+eVtu2bS3Lsqy4uDjL19fXmj17drLv8f7771sVK1a0rl275twXHx9v5c+f3/r888+t06dPW4C1adOmW+YUkdzl5v4i8ef1119P9rmJn0fXS/z8uvk1Evufjz76KMX3T3zNa9euWZGRkZavr681bNgw5/HAwEArPj7eeU5qn3WWZVmlSpWy3njjDefxhIQEq0yZMjfkv74P2L9/vwVYkZGRyea8uX+xLMu6dOmS5efnZ23duvWG5z7xxBNWly5dLMuyrFGjRlmVK1e+4fiIESOSvNbNypYta02ZMsX5t40dO9YCrNWrVzuPt2vX7oZzbu5/R40aZd1xxx3W5cuXk32P1Prdp556yrr//vtvaGcRyb1c/X6R+Lm/d+9eK0+ePNaWLVssy7Kstm3bWj179kzz6yWXQ/1GUuo3RMSdLF++3CpatKiVL18+q0GDBtaoUaOsXbt2OY+PHz8+xc+1hx56yKpUqZLz99S+U9wsPZ+JTzzxhNW3b98b9n355ZeWl5eXdfHiRefn/rZt25zH9+3bZwHO97o568yZM61ChQpZp0+fTjbnyy+/bFWvXj3Je/r7+1uXLl26Yf+dd95pzZw507Isy6pfv741cODAG47XrVs3yWtdL73X6m6+llW/fn2rW7duyb7H4cOHrTx58ljHjx+/YX/Tpk2tUaNGWZZlWVWrVrVGjx59y5wiknvd6ppTouQ+MwcMGGD5+/un6/3UVySlvkLSS4tzidto0qQJ06dPB+DMmTNMmzaNVq1asW3bNsqWLZvq+VYG13Nq0KABXl5e/PXXX5QrV46lS5cSGBjonAqwdu3azuf+9ddfHDp0iCeeeII+ffo491+5csU5Mn3fvn1Uq1aNfPnyOY/Xr18/xQxRUVF06tQpTbl37drFxo0bk70L6dChQ1y8eJHLly9Tt25d5/5ixYo5p2lMyblz5yhYsCDXrl3j0qVL/N///R9z5sxxHs+bNy/VqlW75fn79u0jPj6epk2b3jJ7dHR0krUPL126xKFDh2jevDnh4eG0aNGCsLAwmjVrRufOnSlVqlSq2UUk57q+v0hUrFixNL1GoUKFkp05IzQ0NNVzV69eTcGCBUlISODatWt07dqV0aNHO49XrVr1hinbU/usO3fuHCdOnLjhc9rb25vatWvfsm+LiooiT548NG7cONW8iaKjo7lw4QJhYWE37L98+TI1a9YEzOf29Tkg9b4r0YgRI3jhhRe4dOkSBQsWZPz48TzwwAPO49f3o8mJioqiYcOG+Pj4JDnmSr8bHh5OWFgYFStWpGXLlrRp04bmzZu7lF1Ecqa0fL+oXLkyPXr0YOTIkXz99dcZfr3rqd9InvoNEXEXHTt25IEHHuDLL7/k22+/5bPPPuONN95gzpw5zqUlIOPXnVKS1s/EXbt2sXv37humvLUsi2vXrhETE8OBAwfw9vbmX//6l/P4XXfdleJoxKioKGrWrJmm71a7du3i/PnzSWZPuXjxonNpi3379tG/f/8bjtevX5+NGzem+vppuVZ3q7/p+n7genv27OHq1atUqFDhhv3x8fHOv2fw4MEMGDCAiIgImjVrRseOHVO8DiYikhLLsjI0E6r6iuSpr5C0UmFc3EaBAgUoX7688/c5c+ZQuHBhZs+ezWuvvZbq+RUqVODnn39O9/svXbqUypUrExAQkOyHf4ECBZzb58+fB2D27NlJLgTlyZMn3RkSp/pIi/Pnz/Pggw8yYcKEJMdKlSpFdHR0uvMkFo68vLwoVapUknz58+dPsTNP7e85f/48//rXv5Jdu6REiRIAzJs3j8GDB7Nu3TqWLl3KCy+8QGRkJPXq1UvHXyQiOcHN/UV6eHl5pfs1EgsjefPmpXTp0nh73/i/U9f3F+DaZ11apbe/ADNF1O23337DMV9f33TluN7w4cMJDw+nYMGCBAYGJukfbm6Xm6X0N7nS79aqVYuYmBg+++wz1q9fT+fOnWnWrFmStXBFJPdI6/eLMWPGUKFChRvWz8vI6yVSv5E89Rsi4k7y5ctHWFgYYWFhvPjii/Tu3ZuXX36Z8PBw58Xwffv20aBBgyTn7tu3j8qVK2fo/dP6mXj+/Hn69evH4MGDk7xWcHAwBw4cSHOG9PYVpUqVumGt1URpmRL4VtJyrS45qfUVefLk4fvvv09yLS9x8Env3r1p0aIFa9asISIignHjxvHmm2/y1FNPpf2PEZFcr0KFCs6bXNMz8Et9RfLUV0haaY1xcVsOhwMvLy8uXrzo0vO7du3KgQMH+Pjjj5McsyyLc+fOpXh+UFAQd955p0sfxoGBgZQuXZr//e9/lC9f/oafO+64A4BKlSqxe/duLl265Dzv22+/TfF1q1WrxoYNG255PG/evFy9evWGfbVq1WLv3r2EhIQkyVKgQAHuvPNOfHx8+O6775znnDlzxqWOL7FwVK5cuXR1eqGhoeTPn/+Wf1OtWrU4ePAgt912W5Ls168JX7NmTUaNGsXWrVupUqUKixcvTnMWEZHMklgYCQ4OTlLcSE5qn3WFCxemVKlSN3xOX7lyhe+///6Wr1m1alWuXbvmXOP1ZokjD6/vMypXroyvry9HjhxJkiMoKAgwfde2bdtueK3U+q5ExYsXp3z58pQsWTJdd0BXq1aNL7/8koSEhCTHXOl3Afz9/XnkkUeYPXs2S5cuZcWKFc71qkREUvt+ERQUxKBBg3j++eeT/D93el4vkfqN5KnfEBF3VrlyZf766y8AmjdvTrFixXjzzTeTPO+TTz7h4MGDdOnSJUPvl9bPxFq1avHTTz8l+YwrX748efPm5a677krSN+zfv5+zZ8/e8jWrVatGVFTULT8Hb3VN6uTJk3h7eyfJUbx4ccD0Fdf3WeB6X5GWa3XJSek6W82aNbl69SqnTp1Kkr1kyZI3ZOjfvz8rV65k6NChzJ49O11ZREQefvhh8ubNyxtvvJHs8ZQ+o0F9xa2or5C0UmFc3EZ8fDwnT57k5MmT7Nu3j6eeeso5GtoVnTt35pFHHqFLly6MHTuWHTt2cPjwYVavXk2zZs1cmnYjLcaMGcO4ceP4z3/+w4EDB9izZw/z5s1j8uTJgCnUOxwO+vTpw08//cTatWuZNGlSiq85atQotm/fzsCBA9m9ezc///wz06dP5/fffwcgJCSE7777jtjYWH7//XeuXbvGk08+yR9//EGXLl3Yvn07hw4d4vPPP+fxxx/n6tWrFCxYkCeeeILhw4fzxRdf8OOPPxIeHo6XV9b/558vXz5GjBjBc889x4IFCzh06BDffvstc+fOBaBbt24UL16ctm3b8uWXXxITE8OmTZsYPHgwx44dIyYmhlGjRvHNN99w+PBhIiIiOHjwIJUqVcry7CLivq7vLxJ/Ej8n3VFqn3UATz/9NOPHj2fVqlX8/PPPDBw4MMUvIiEhIfTs2ZNevXqxatUq52suW7YMgLJly+JwOFi9ejW//fYb58+fp1ChQgwbNoxnn32W+fPnc+jQIX744Qf++9//Mn/+fAD69+/PwYMHGT58OPv372fx4sW89957Wd1EAAwaNIi4uDgeffRRduzYwcGDB3n//ffZv38/kHq/O3nyZJYsWcLPP//MgQMH+PDDDylZsmSm3H0sIp4pPd8vRo0axS+//ML69esz5fXSQ/2Ga9RviEhmOH36NPfffz8LFy5k9+7dxMTE8OGHH/LGG2/Qtm1bwNzgNHPmTD7++GP69u3L7t27iY2NZe7cuYSHh/Pwww/TuXPnG143JiaGqKioG34SC+2ZYcSIEWzdupVBgwYRFRXFwYMH+fjjjxk0aBCAc5mIfv368d133/H999/Tu3fvFAc9dOnShZIlS9KuXTu+/vpr/ve//7FixQq++eYbwPQliX/X77//Tnx8PM2aNaN+/fq0a9eOiIgIYmNj2bp1K//+97/ZsWMHYPqsd999l3nz5nHgwAFefvll9u7dm2ltkZKXX36ZJUuW8PLLL7Nv3z727NnjnHGxQoUKdOvWjR49erBy5UpiYmLYtm0b48aNY82aNQA888wzfP7558TExPDDDz+wceNGXZMSEadz584l+aw/evToLZ8fFBTElClTmDp1Kk888QSbN2/m8OHDfP311/Tr149XX301U/Opr3CN+opcyL7lzUX+0bNnTwtw/hQqVMiqU6eOtXz58mSf37hxY+vpp59Osv/q1avW9OnTrTp16lh+fn6Wv7+/9a9//cuaOnWqdeHChWRfKyYmxgKsnTt3pvn4okWLrBo1alh58+a1ihYtajVq1MhauXKl8/g333xjVa9e3cqbN69Vo0YNa8WKFTe81saNGy3AOnPmjPOcTZs2WQ0aNLB8fX2tIkWKWC1atHAe379/v1WvXj0rf/78FmDFxMRYlmVZBw4csNq3b28VKVLEyp8/v3XXXXdZzzzzjHXt2jXLsizrzz//tLp37275+flZgYGB1htvvHHLNkw0b948q3Dhwmk+3rNnT6tt27bO369evWq99tprVtmyZS0fHx8rODjYGjt2rPP4iRMnrB49eljFixe3fH19rXLlyll9+vSxzp07Z508edJq166dVapUKStv3rxW2bJlrZdeesm6evXqLXOJSM52c3+R+FOxYsVkn3v951GilD7fAOujjz5K8f2Te83Ujqf0WWdZlpWQkGA9/fTTlr+/v1WkSBFryJAhVo8ePW54rZs/ty9evGg9++yzzs/I8uXLW++++67z+CuvvGKVLFnScjgcVs+ePS3Lsqxr165Zb731llWxYkXLx8fHKlGihNWiRQtr8+bNzvM+/fRTq3z58pavr6/VsGFD6913303SV92sbNmy1pQpU9J0PLn+ddeuXVbz5s0tPz8/q1ChQlbDhg2tQ4cOOY+n1O/OmjXLqlGjhlWgQAHL39/fatq0qfXDDz/cMpOI5Gyufr9I7nN/7NixFuD87EzL6yWXQ/1GUuo3RMRdXLp0yRo5cqRVq1Ytq3Dhwpafn59VsWJF64UXXkhyHWnLli1WixYtLH9/fytv3rzW3XffbU2aNMm6cuXKDc9L7vsKYH355ZfJZkjPZ6JlWda2bdussLAwq2DBglaBAgWsatWqWa+//rrz+IkTJ6wHHnjA8vX1tYKDg60FCxYkea2b+8HY2FirY8eOlr+/v+Xn52fVrl3b+u6775xt1bFjR6tIkSIWYM2bN8+yLMuKi4uznnrqKat06dKWj4+PFRQUZHXr1s06cuSI83Vff/11q3jx4lbBggWtnj17Ws8995xVvXr1W/7N6b1Wl9x3vRUrVjj7guLFi1sdOnRwHrt8+bL10ksvWSEhIZaPj49VqlQpq3379tbu3bsty7KsQYMGWXfeeafl6+trlShRwnrssces33///Za5RST3uNX1qSeeeMKyLMt6+eWXb/k5FxkZabVo0cIqWrSolS9fPuuuu+6yhg0bZv3yyy+3fD/1FUmpr5D0cliWZWVJxV1ERERERERERERERERERMQNaCp1ERERERERERERERERERHJ0VQYFxERERERERERERERERGRHE2FcRERERERERERERERERERydFUGBcRERERERERERERERERkRxNhXEREREREREREREREREREcnRVBgXEREREREREREREREREZEczdvuAO7o2rVr/PLLLxQqVAiHw2F3HBERW1mWxZ9//knp0qXx8tL9VDdTnyEiYqi/SJn6CxERQ/1FytRfiIj8Q31GytRniIgYaekvVBhPxi+//EJQUJDdMURE3MrRo0cpU6aM3THcjvoMEZEbqb9InvoLEZEbqb9InvoLEZGk1GckT32GiMiNXOkvVBhPRqFChQDTgP7+/mk6NyEhgYiICJo3b46Pj09WxMsR1E6uUTulTm3kmoy0U1xcHEFBQc7PRrlRevsM/dt1jdrJNWon16idUqf+IuvoO0bWUzulTm3kGrWTa9LbTuovUqb+IuupnVyjdkqd2sg1+o6RddRnZC21kWvUTq5RO6Uuu/oLFcaTkTjtiL+/f7o6FD8/P/z9/fWPOwVqJ9eonVKnNnJNZrSTpmRKXnr7DP3bdY3ayTVqJ9eonVKn/iLr6DtG1lM7pU5t5Bq1k2sy2k7qL5Kn/iLrqZ1co3ZKndrINfqOkXXUZ2QttZFr1E6uUTulLrv6Cy3MISIiIiIiIiIiIiIiIiIiOZoK4yIiIiIiIiIiIiIiIiIikqOpMC4iIiIiIiIiIiIiIpJOgwcPJiQkBIfDQVRUlHN/8+bNqVatGjVq1KBhw4bs3LnTeezgwYM0aNCAChUqUKdOHfbu3WtDchGR3EWFcRERERERERERERERkXR6+OGH+eqrryhbtuwN+5ctW8bu3buJiopiyJAhhIeHO4/169ePvn37cuDAAUaMGHHDMRERyRoqjIuIiIiIiIiIiIiIiKRTo0aNKFOmTJL9RYoUcW6fO3cOh8MBwKlTp9ixYwfdu3cHoGPHjhw9epTo6OhsySsiklt52x1AREREREREREREREQkJ+rRowcbN24EYO3atQAcPXqUUqVK4e1tSjQOh4Pg4GCOHDlC+fLlk32d+Ph44uPjnb/HxcUBkJCQQEJCQpoyJT4/reflJmoj16idXKN2Sl1G2igt56gwLiIiIiIiIiIiIiIikgUWLFgAwPz58xkxYoSzOJ5W48aNY8yYMUn2R0RE4Ofnl67XjIyMTNd5uYnayDVqJ9eonVKXnja6cOGCy89VYVxERERERERERERERCQL9ezZk/79+3P69GmCgoI4ceIEV65cwdvbG8uyOHLkCMHBwbc8f9SoUQwZMsT5e1xcHEFBQTRv3hx/f/80ZUlISCAyMpKwsDB8fHzS/TflZGoj16idXKN2Sl1G2ihxBg1XqDAuIiIiIiIiIiIiIiKSic6ePcuFCxcoXbo0AKtWrSIgIIBixYrhcDioVasWCxcuJDw8nBUrVlCmTJlbTqMO4Ovri6+vb5L9Pj4+6S60ZeTc3EJt5Bq1k2vUTqlLTxul5fkqjIuIiIiIiIiIiIiIiKRTv379WLNmDSdPnqRFixYUKlSIDRs20KlTJy5evIiXlxclSpRg9erVOBwOAGbOnEl4eDhjx47F39+fefPm2fxXiIjkfCqMi4iIiIiIiIiIiIiIpNPMmTOT3b9t27ZbnlOxYkW++eabrIokIiLJ8LI7gIiIiIiIiIiIiIiIiIiISFZSYTwTXb0Kmzc72LLldjZvdnD1qt2JRETEHam/EBERV6nPEBERV6i/EBERV6nPEJHcTIXxTLJyJYSEQFiYN5Mn1yYszJuQELNfREQkkfoLERFxlfoMERFxhfoLERFxlfoMEcntVBjPBCtXwsMPw7FjN+4/ftzsV6ciIiKg/kJERFynPkNERFyh/kJERFylPkNERIXxDLt6FZ5+Giwr6bHEfc88g6YjERHJ5dRfiIiIq9RniIiIK9RfiIiIq9RniIgYKoxn0JdfJr3D6nqWBUePmueJiEjupf5CRERcpT5DRERcof5CRERcpT5DRMRQYTyDTpzI3OeJiEjOpP5CRERcpT5DRERcof5CRERcpT5DRMRQYTyDSpXK3OeJiEjOpP5CRERcpT5DRERc4Wo/EBeXtTlERMT96TuGiIihwngGNWwIZcqAw3Hr55QqZZ4nIiK5V2r9hcMBQUHqL0RERH2GiIi4xpVrUgADBsDIkXDpUvbkEhER96PvGCIihgrjGZQnD0ydarZv1al4ecGff2ZfJhERcT+u9BdvvWWeJyIiuZv6DBERcUVK/YXDYX7uvdesGzthAtSsCd9+m/05RUTEfqn1GaDvGCKSO6gwngk6dIDly+H222/cX7o0FCsGx49Dx45w+bI9+URExD3cqr8AeOABc1xERARu3Wc4HDB/vvoMERExbtVflClj9n/1FXz0EQQGws8/m0L5sGFw8aI9eUVExD636jOKFDH79R1DRHIDFcYzSYcOEBsLkZFXGDJkB5GRVzhyBL74AgoWNI8DBpi7dEVEJPe6ub947bWrAGzdqqkNRUTkRjf3GWXLWlgWnDljdzIREXEnyV2Tion5p8DRrh389BM89hhcuwZvvgnVq5uiuYiI5C7X9xkNGx4F4O67VRQXkdxDhfFMlCcPNG5s0ajRcRo3tsiTx3zRWLrUTKf+7rtm6ioREcndru8vhg69RlAQ/PGHGckhIiJyvZv7DIBp03TDrYiI3Ci5a1LXK1YMFiyA1avNDIcHD0KjRvD00/DXX/ZkFhEReyT2GT17/oTDYfHVV3D4sN2pRESyhwrj2aB1a/jPf8z2qFGwbJm9eURExH3kyQO9epnt2bPtzSIiIu6ta9drFCwI+/fDxo12pxEREU/0wAOwd6/5DmJZ5npVtWqwaZPdyUREJLsVL36JRo3MHbeLF9scRkQkm6gwnk2efBKeecZs9+gB33xjaxwREY/WvHlzqlWrRo0aNWjYsCE7d+7k9OnT1KhRw/lToUIFvL29+eOPPwA4deoULVu2JDQ0lCpVqrBlyxbn66V0LDv06mXWjN240YzcEBERSY6/v/kuAWbUuIiISHoUKQJz58K6dRAUBP/7HzRpAgMHwp9/2p1ORESyU5cuZlaqRYs0K5WI5A4qjGejSZPgoYcgPh7atjVfPEREJO2WLVvG7t27iYqKYsiQIYSHhxMQEEBUVJTzp2/fvrRq1YpixYoBMHLkSOrVq8fBgweZN28eXbt2JSEhIdVj2SE4GFq2NNtz5mTb24qIiAcaMMA8rloFx4/bGkVERDxcixbw44/Qr5/5ffp0qFoVIiPtzSUiItmnQweLvHnNbCK7d9udRkQk66kwno3y5DF3XtWqBb/9ZqavOnPG7lQiIp6nSJEizu1z587hcDiSPGfu3Lk88cQTzt+XLVtG//79AahTpw6lS5dm8+bNqR7LLn36mMf33oPLl7P1rUVEcp2UZhlx5xlGAKpUMWvCXr0Ks2Zl+9uLiEgO4+8PM2bAhg0QEmLWmG3e3Hw/OXfO7nQiIpLVihSBNm3M9qJFtkYREckW3nYHyG0KFoRPP4W6deHnn6FjRzN1Vd68dicTEfEsPXr0YOPfC6yuXbv2hmNbt27lzJkztPn7/+xPnz5NQkICJUuWdD4nJCSEI0eOpHgsOfHx8cTHxzt/j4uLAyAhISFNo8wTn5v42KIFBAZ68+uvDj766AodOmj+KkjaTpI8tZNr1E6py0gbeVK7Js4ykmjSpEls3ryZYsWK0atXL+rVq8e6devYvn077du3JyYmBh8fH+cMI8kdy04DB8KWLaYw/sILkM1vLyIiOdD998OePTBqFLz9tpnJ6rPPTF/TurXd6UREJCt16wYrV8KSJTB+PHhpOKWI5GAqjNugdGlYswbuvdesJ9uvH7z7rllfVkREXLNgwQIA5s+fz4gRI24ojs+dO5cePXrg7Z353dy4ceMYM2ZMkv0RERH4+fml+fUir5un8P/+rxIrVlRgwoTT5Mv3bYZy5jSRms/RJWon16idUpeeNrpw4UIWJMkec+fOZdy4cYCZRSQ6Ohq4cRaRZs2apXgsO7VvD4GBcPKkmVK9U6dsfXsREcmhChaE//7X9Cu9esGhQ2a2w549YcoUKFrU7oQiIpIVWreGwoXh2DFzA+5999mdSEQk66gwbpNq1WDZMjNNyXvvQWgoPP+83alERDxPz5496d+/P6dPnyYgIIDz58+zbNkytm/f7nxOQEAA3t7enDx50jkyPDY2luDg4BSPJWfUqFEMGTLE+XtcXBxBQUE0b94cf39/l3MnJCQQGRlJWFiYc6RhxYqwYgVERd1G5cqtCQlJa2vkPMm1kySldnKN2il1GWmjxBk0PM31s4y44wwjiedc/+hwQK9eXowbl4d33rlGu3ZX0/R6OZVmhUid2sg1aifXpLed1K7ur1Ejs87sCy/AW2/B/PkQEWGmXH/oIbvTiYhIZsuXDx5+GObONdOpqzAuIjmZCuM2atXKTE81cCD8+99Qrhw8+qjdqURE3NvZs2e5cOECpUuXBmDVqlUEBARQrFgxAJYuXUr16tW56667bjivU6dOzJgxg9GjR7N9+3aOHz9O48aNUz12M19fX3x9fZPs9/HxSVeh7frz7roLmjaFDRscvP++D6+8kuaXy7HS2765jdrJNWqn1KWnjTy1TbNqlpHMnmEEbhzJX65cPry8mrN5sxczZ24iKOjPdGfNaTQrROrURq5RO7kmre3kSTOMXLp0iUcffZSffvqJ/Pnzc9tttzF9+nTKly/P448/zvfff4+Xlxc+Pj6MHz+epk2bAnDq1Cl69OjBoUOH8PX1Zdq0aTRq1MjmvyZt/Pxg8mRTKOnVC/bvh7ZtoWtX+M9/ICDA7oQiIpKZunUzhfHly03NIplLXyIiOYIK4zYbMACio82XjfBwCA6GBg3sTiUi4r7OnTtHp06duHjxIl5eXpQoUYLVq1fj+Hs9irlz59KnT58k502YMIHHHnuM0NBQ8ubNy8KFC51FnJSOZbc+fWDDBrPExksvQRbMBi8iIn+7eZYRd5xhBG49kn/1aouPP3awb19j+vW7lqbXzIk0K0Tq1EauUTu5Jr3t5GkzjPTt25dWrVrhcDh4++236d27N5s2bWLKlCkUKVIEgJ07d9K0aVN+//13vLy8GDlyJPXq1WPdunVs376d9u3bExMT45H/nho0gJ07YfRomDQJFi+G9eth2jTo2NHudCIiklkaN4bbb4fjx2HtWrN8k4hITqTL7W7gjTfMuk0ff2zuvv32W7jzTrtTiYi4p7Jly7Jt27ZbHt+6dWuy+wMDA4mIiEjzsezWrp0ZfXH8OKxbZ5bcEBGRrJHcLCPuOsNIcucOGmS+Q7z/fh4mTMhDwYLpetkcR7NCpE5t5Bq1k2vS2k6e1Kb58uWjdevWzt/r1avHpEmTAJxFcTA3715v2bJlREdHA1CnTh1Kly7N5s2badasWdaHzgL588OECaYQ/vjj8NNPZiT5ww/DO+/AbbfZnVBERDLKywu6dDE3QS1apMK4iORcKoy7gTx5TGfTuDF8/z088ABs3Qp/zwosIiK5iK8v9OxpZhKZPVuFcRGRrJTcLCOeMsMIwP33Q4UKcOAALFwI/fvbFkVEJFeYOnUqbdu2df4+cuRIPvzwQ86cOcOKFSvw8vLi9OnTJCQkOGcXAQgJCeHIkSPJvmZ8fDzx8fHO3xNH1CckJKR7/fasWse9Zk347jt4/XUvJk70YvlyBxs3Wrz11lU6d7b4exIvt5fV7ZRTqJ1SpzZyTUbaSW2bvbp1M4Xx1avh3DkoXNjuRCIimU+FcTdRoAB8+inUrWvWberQASIiIG9eu5OJiEh2693bFMbXrIFffoG/l1MXEZFMltwsI54ywwiYUR0DBsCzz5opbfv1w2OKEiIinmbs2LFER0ezYcMG577x48czfvx41q9fz3PPPcfXX3+d5tcdN24cY8aMSbI/IiICPz+/dGVN67rvaVWvHrzxRmH++9+axMYW5rHHvHn77RP077+LokXjU38BN5HV7ZRTqJ1SpzZyTXra6cKFC1mQRG6lenWoXNnMDLJiBfTqZXciEZHMp8K4GylVyhRB7r0XNm8268y+954ubomI5DaVKsH//R989RXMmwf//rfdiURExF317AnPPw979sDXX5v+Q0REMtekSZNYuXIl69evT7ZY3axZMwYNGsSePXv417/+hbe3NydPnnSOGo+NjSU4ODjZ1x41ahRDhgxx/h4XF0dQUBDNmzfH398/TTnTu+57evXrBxMmXGXcOC+++64UBw6U5M03r9Ktm3uPHs/udvJUaqfUqY1ck5F2SpxFQ7KHw2FGjf/732aGWxXGRSQnUmHczVStCh9+aKZTX7AAQkPhhRfsTiUiItmtTx9TGJ87F0aNMqMCRUREbla0KHTtavqLadNUGBcRyWyTJ09myZIlrF+/3rmueEJCAocPH6Z8+fIAbNu2jVOnTlGuXDkAOnXqxIwZMxg9ejTbt2/n+PHjNG7cONnX9/X1xdfXN8n+jKxxn5Fz0/Y+8MorZq3xxx+HH35w0KuXNytWwMyZcPvtWR4hQ7KrnTyd2il1aiPXpKed1K7Zr2tXUxjfuBGOH3f/z3IRkbTK1svs69ato3bt2lSrVo169eqxa9cuAO677z7uuOMOatSoQY0aNZgyZYrznFOnTtGyZUtCQ0OpUqUKW7ZsyfAxd9eiBbzzjtl+8UVYvNjePCIikv0eftis5RQTA9fN1igiIpLEwIHmcfly+PVXe7OIiOQkx44dY+jQoZw9e5YmTZpQo0YN6tatS0JCAj179qRKlSrUqFGDZ599luXLl1O0aFEAJkyYwNatWwkNDSU8PJyFCxfm6OJOtWrw7bfw+utmScA1a8xUvHPngmXZnU5ERNIiJMTMaGtZsGSJ3WlERDJfto0YP3PmDN26dWPLli3cfffdfPnll3Tr1o0ff/wRgClTptCuXbsk540cOZJ69eqxbt06tm/fTvv27YmJicHHxyfdxzxBv34QHQ2TJpm7boODNfpDRCQ38fOD7t3NjVKzZ0NYmN2JRETEXdWqZdZ7/fZbU4R4/nm7E4mI5AxlypTBukVlN6X1xAMDA4mIiMiqWG7Jx8f0P23bmql3t22D3r1h2TLzfeYWM8mLiIgb6tbNLNO0aBEMG2Z3GhGRzJVtI8YPHTpEQEAAd999NwANGzbkyJEj/PDDDymet2zZMvr37w9AnTp1KF26NJs3b87QMU8xYQK0bw+XL0O7dqZQLiIiuUefPuZx1Sr47Tdbo4iIiJtLHDU+YwZcvWpvFhERyb3uvtsUU954A3x9ISICqlQxU6tr9LiIiGfo3Bm8vSEqCn76ye40IiKZK9tGjIeGhnL69Gm2bt1KgwYN+OSTT/jzzz+JjY0FzMjwF198kcqVKzNu3DjKlSvH6dOnSUhIoGTJks7XCQkJ4ciRI+k+lpz4+Hji4+Odv8fFxQFmzaiEhIQ0/Z2Jz0/rebcybx4cPZqHHTu8aNXK4ssvrxAQkCkvbavMbqecSu2UOrWRazLSTmpb+1SvDnXqwPbtMH++7tIVEZFb69QJnn0Wjh6F1avNiD0RERE7eHvD8OHw0ENm9PjWrdC/vxk9PmcO3HGH3QlFRCQlAQHQqhV8+qkZNf7663YnEhHJPNlWGC9cuDDLly9n1KhRnD9/nvr161O5cmW8vb15//33CQoKwrIs3nnnHdq0acNP2Xgr0rhx4xgzZkyS/REREfj5+aXrNSMjIzMay+nJJ3157rlGREf70azZOUaP/gYfn2uZ9vp2ysx2ysnUTqlTG7kmPe104cKFLEgirurTxxTGZ8+GoUPB4bA7kYiIuKN8+eCJJ8wIvWnTVBgXERH7VawIW7bAf/9rpln/4guoWhXGjzcznXhl2zyWIiKSVt26mcL44sXw2mu6HiUiOUe2FcYBmjRpQpMmTQAzSrtkyZJUrlyZoKAgABwOB4MGDWLYsGGcPn2agIAAvL29OXnypHP0d2xsLMHBwek+lpxRo0YxZMgQ5+9xcXEEBQXRvHlz/P390/Q3JiQkEBkZSVhYWKauZ169Otx3n8XevcX56KMHmDfvqkd3RlnVTjmN2il1aiPXZKSdEmfREHs8+qgZAXjggLmo1Lix3YlERMRd9esHEyeaaWsPHoTQULsTiYhIbpcnDzzzDLRpY27g2rIFnnoKPvwQ5s6F8uXtTigiIsl58EEoWBBiY83MH/fea3ciEZHMka2F8RMnTlCqVCkAXn31Ve6//35CQkL49ddfCQwMBGDFihUEBgYS8Pd84Z06dWLGjBmMHj2a7du3c/z4cRr/XRVI77Gb+fr64uvrm2S/j49PugttGTk3OTVrwvLlZgqTxYu9qFjRi5deyrSXt01mt1NOpXZKndrINelpJ7WrvQoVgi5dzJSDs2erMC4iIrdWrpz5vrB2rVlr/M037U4kIiJilC8PGzfC9OkwYoQpkFerZqbnHTzYFNBFRMR9+PlBhw6wYIGZTl2FcRHJKbJ10qKXXnqJu+66i/Lly3P48GHmzp1LfHw8DzzwAFWrVqV69epMmzaNTz75xHnOhAkT2Lp1K6GhoYSHh7Nw4UJnkSa9xzxVWJj5AgHw8suwcKG9eUREJHv06WMely+HP/6wN4uIiLi3J580j/PmgVZDERERd+LlZfqpPXugaVO4eBGGDIGGDeHnn+1OJyIiN+vWzTwuWwYJCfZmERHJLNk6Ynz27NnJ7t+xY8ctzwkMDCQiIiJTj3myPn0gOtqsHfjEE1C2rPkCISIiOVedOmY0xe7d5qaowYPtTiQiIu6qRQu44w6IiYGlS+Hxx+1OJCIicqM77oDISDMj1rBh8M03UKMGvPKKKZR7Z+vVShERuZX774fAQPj1V/j8c7MshoiIp8vWEeOSOcaNg44d4fJlaNfOrB8oIiI5l8Pxz6jx2bPBsuzNIyIi7itPHujf32xPm2ZvFhERkVtxOKBvX/jxR3NTV3y8mWK9QQOzT0RE7OftDY8+arYXLbI3i4hIZlFh3AN5eZm1Pe65x0yp27o1nD5tdyoREclK3bpBvnzmItF339mdRkRE3FmvXuDrCzt2wLZtdqcRERG5teBg+OwzePddKFwYtm+HWrXM2uOatldExH6J06l//DH8+ae9WUREMoMK4x7Kzw8++cRMpR4dbUaOx8fbnUpERLJK0aLQqZPZvsXKJCIiIgAULw6dO5ttjRoXERF353CYpT/27jXT9CYkwAsvQN26sGuX3elERHK32rUhNBQuXoRVq+xOIyKScSqMe7DAQFi7Fvz94auvzMgQTa8rIpJz9e1rHj/4AOLi7M0iIiLubeBA8/jBB5pdSkREPMPtt5tBIO+/b24M3rnTFGRGjzbLCYqISPZzOP4ZNa7p1EUkJ1Bh3MNVrgwrVpj1PhYvhjFj7E4kIiJZ5d57oVIluHABliyxO42IiLizunWhZk0zq9S8eXanERERcY3DAd27w08/Qfv2cOWKudZVpw58/73d6UREcqfEwnhkJJw8aW8WEZGMUmE8B2jWDKZPN9tjxpj1x0VEJOdxOKB3b7Ot6dRFRCQlDgc8+aTZnj4drl2zN4+IiEhalCxpBoJ88IFZImT3bnPT1/PPaylBEZHsVr483HOP+U6xdKndaUREMkaF8Ryid28YOfKf7c2b7c0jIiJZo0cPyJvXjJbYudPuNCIi4s66dIHCheF//4OICLvTiIiIpI3DAY88YkaPd+4MV6/CuHFQqxZs22Z3OhGR3KV7d/Oo6dRFxNOpMJ6DvP46dOoECQlmuqn9++1OJCIima14cfMZDxo1LiIiKfPzg8cfN9vTptmbRUREJL1KlDAjFFesgNtuM4Xy+vXhuefg4kW704mI5A6PPAJ58sD27XDwoN1pRETST4XxHMTLC+bPN1NLnTkDDzwAv/9udyoREclsffqYx0WL4K+/7M0iIiLurX9/87h6NcTG2hpFREQkQzp0MEXxbt3MdL4TJ0KNGrB1q93JRERyvttug7Aws61R4yLiyVQYz2Hy54dPPoGQEDh0CNq1g0uX7E4lIiKZqUkTKFcO4uLgww/tTiMiIu6sYkVo1gwsC2bOtDuNiIhIxgQEwMKF5tpXqVJw4AD83//Bs8/qpmERkazWrZt5XLTIfL8QEfFEKoznQLfdBmvXmvUEv/4aevVSRyUikpN4eUHv3mZb06mLiEhqBg40j3PmQHy8vVlEREQyw4MPwt69EB5urnm99RZUrw6bN9udTEQk52rXzizXFB1tplQXEfFEKoznUJUqmbWXvL1hyRJ4+WW7E4mISGYKDzdrO23dai4IiYiI3MqDD0KZMmaZpeXL7U4jIiKSOYoWhXnzzOCQMmXMzIn33QeDBsH583anExHJeQoWhLZtzbamUxcRT6XCeA7WtOk/0yW++qpZf1xERHKGUqVMoQPMCEAREZFb8faGfv3M9rRp9mYRERHJbK1awY8/Qp8+5vd33oGqVWHDBntziYjkRInTqX/wAVy5Ym8WEZH0UGE8h+vVC55/3mz36QObNtkaR0REMlHihZ8FC+DSJXuziIiIe+vd2xTIt26FqCi704iIiGSuwoVh1iyIjISyZSE2Fpo1MzeGxcX987yrV2HzZgdbttzO5s0Orl61LbKIiEdq3hyKF4dTp3QDkoh4JhXGc4FXX4VHHoGEBGjfHn7+2e5EIiKSGVq0gKAg+OMPWLnS7jQiIuLOSpaEjh3N9vTp9mYRERHJKs2awZ49MHCg+X3WLLj7bli3znxnCgmBsDBvJk+uTViYNyEh+i4lIpIWPj7QubPZ1nTqIuKJVBjPBby8zJpL9evD2bPwwAPw2292pxIRkYzKk8fMDAIwe7a9WURExP0lFgkWLjTfC0RERHKiQoXMdOobN0K5cnDsmJluvWNHs32948fh4YdVHBcRSYvE6dQ/+gguXLA3i4hIWqkwnkvkzw8ff2y+EPzvf9C2rabdFRHJCXr1AofDLJVx8KDdaURExJ01bGhGzV24YJbhEBERycnuuw9274annrr1cyzLPD7zDJpWXUTERfXrwx13wPnz8MkndqcREUkbFcZzkRIlYM0aKFIEvvkGwsPh2jW7U4mISEYEB0PLlmZ7zhx7s4iIiHtzOP4ZNT5t2j/FABERkZyqQAHo0CHl51gWHD0KX36ZPZlERDydwwFdu5ptTacuIp5GhfFc5q67zPRQ3t6wdCm89JLdiUREJKP69DGP770Hly/bGkVERNxc9+5QsCDs32+mmBUREcnpTpzI3OeJiMg/06mvWwe//25vFhGRtFBhPBdq0uSftWhff92sPy4iIp6rTRsIDIRTp+DTT+1OIyIi7szfH3r0MNvTptmbRUREJDuUKpW5zxMREahUCWrWhCtXYNkyu9OIiLhOhfFcKjwcXnjBbPftC198YWscERHJAB8fePxxs51445OIiMitDBhgHletguPHbY0iIiKS5Ro2hDJlzNS/yXE4ICjIPE9ERFzXvbt51HTqIuJJVBjPxV55BR591NzV1bEj7NtndyIREUmv3r3NY0QExMbaGkVERNxclSrQqBFcvaobqkREJOfLkwemTjXbtyqOv/WWeZ6IiLju0UfN5+rWrRATY3caERHXqDCeizkcZhr1Bg3g7Fl44AEzDa+IiHieO++Epk3BsuDdd+1OIyIi7m7gQPM4axYkJNibRUREJKt16ADLl8Ptt9+43+GA9983x0VEJG1Kl4b77zfbixfbm0VExFUqjOdy+fKZKRTvvNPc1dW2LVy8aHcqERFJjz59zOO775rZQERERG6lfXsIDIQTJ8z3ARERkZyuQwczu1Zk5BWeeWYHpUtbWBb8/rvdyUREPFe3buZx0SIzWENExN2pMC6UKAFr1kDRovDtt9CzJ1y7ZncqERFJq3btICDArBe7bp3daURExJ3lzfvPDVXTptmbRUREJLvkyQONG1vcd99x/v1vc/FryhTdWCwikl4dOoCvr1mmNSrK7jQiIqlTYVwAqFgRVq4EHx/48EN44QW7E4mISFr5+pqbm0BrxoqISOr69gUvL9i0CX76ye40IiIi2at792uUKAGHD5trYSIiknaFC8ODD5rtRYvszSIi4goVxsXpvvtgzhyzPW4czJ1raxwRkVtq3rw51apVo0aNGjRs2JCdO3cCEB8fz6BBgwgNDaVq1ap0797dec7Bgwdp0KABFSpUoE6dOuzdu9elY56md2/zuGYN/PKLvVlERMS9BQWZpZQApk+3N4uIiEh2y58fnnrKbE+cqCmARSRjBg8eTEhICA6Hg6i/h05funSJdu3aUaFCBapXr05YWBjR0dHOc06dOkXLli0JDQ2lSpUqbNmyxab0GZM4nfqSJXD1qr1ZRERSo8K43KBHD3jpJbPdvz9s2GBvHhGR5Cxbtozdu3cTFRXFkCFDCA8PB2DkyJE4HA4OHDjAnj17mDRpkvOcfv360bdvXw4cOMCIESOc56R2zNNUqgT/93/mi8i8eXanERERdzdwoHmcPx/On7c3i4iISHYbOBD8/GDnTti40e40IuLJHn74Yb766ivKli17w/6+ffuyf/9+du3aRdu2bemdOKIBcx2rXr16HDx4kHnz5tG1a1cSEhKyO3qGtWoFRYqYARqbN9udRkQkZSqMSxKjR0PXrmZ9pY4dNa2iiLifIkWKOLfPnTuHw+Hgr7/+Yu7cubz++us4HA4ASpYsCZg7cHfs2OEcQd6xY0eOHj1KdHR0isc8VeKasXPnwrVr9mYRERH3dv/9UKEC/Pmnpj4UEZHcJyAAevUy2xMn2ptFRDxbo0aNKFOmzA378uXLR+vWrZ3XqerVq0dsbKzz+LJly+jfvz8AderUoXTp0mz2wMqyry906mS29Z1CRNydt90BxP04HKaYcuQIfPUVPPAAfPstBAbanUxE5B89evRg49+39K9du5ZDhw5RrFgxxo4dy/r168mfPz+jR4+madOmHD16lFKlSuHtbbo9h8NBcHAwR44coXDhwrc8Vr58+STvGx8fT3x8vPP3uLg4ABISEtJ0V2/ic7PiTuC2baFwYW9iYhx8/vkVmjXz3DkBs7KdchK1k2vUTqnLSBupXT2TlxcMGADPPgvTppl1x/++biciIpIrJPaB69bBnj1QtardiUQkp5o6dSpt/17L6PTp0yQkJDgHdQCEhIRw5MiRW56fWdekEs+5/jGjHnnEwezZ3ixfbvHWW1fIly9TXtZWuobgGrWTa9ROqcuua1IqjEuy8uWDjz6C+vUhOtoUWTZuNOsviYi4gwULFgAwf/58RowYwWuvvcbhw4epXLky48ePZ+fOnYSFhWX6euHjxo1jzJgxSfZHRETg5+eX5teLjIzMjFhJ3HtvVdauLcdrr/3K5cs7suQ9slNWtVNOo3ZyjdopdelpowsXLmRBEskOPXvC88/D7t3w9ddmSQ4REZHcolw5M2Pihx/CpElmeRERkcw2duxYoqOj2ZCBtUsz+5oUZN7342vXoHjxMH7/3Y/XXttJgwYnMuV13YGuIbhG7eQatVPqsvqalArjckvFi8OaNaY4/t13Zv3xpUvNqBIREXfRs2dP+vfvz+23346XlxfdunUDoGbNmtxxxx3s2bOHatWqceLECa5cuYK3tzeWZXHkyBGCg4Px9/e/5bHkjBo1iiFDhjh/j4uLIygoiObNm+Pv7+9y7oSEBCIjIwkLC8PHxydjjZCM22+HtWth+/bS1K7dmttuy/S3yBZZ3U45hdrJNWqn1GWkjRJHK4jnKVrULKU0d64ZMafCuIiI5DbDh5vC+OLF8PrrcNNsyCIiGTJp0iRWrlzJ+vXrnQXsgIAAvL29OXnypHPUeGxs7C2vR0HmXZOCrPl+3LOnF2++CT//XJvXXruaKa9pJ11DcI3ayTVqp9Rl1zUpFcYlRRUqmJHjzZrB8uVmJMn48XanEpHc7OzZs1y4cIHSpUsDsGrVKgICArjtttto2rQpn3/+Oa1btyYmJoaYmBgqVarEbbfdRq1atVi4cCHh4eGsWLGCMmXKOKdKT+nYzXx9ffH19U2y38fHJ13/U5Pe81JTuzbUqQPbtztYvNiH4cMz/S2yVVa1U06jdnKN2il16WkjtalnGzjQFMaXL4cpU7SMkoiI5C516kDjxrB5M0ydqvXGRSTzTJ48mSVLlrB+/XqKFClyw7FOnToxY8YMRo8ezfbt2zl+/DiNGze+5Wtl9jWpjJ57sx494M03Yd06L86f96Jo0Ux5WdvpGoJr1E6uUTulLquvSWnsr6SqUSN4912zPWECzJ5tbx4Ryd3OnTtHu3btqFq1KtWrV+ftt99m9erVOBwOZsyYwcSJE6latSrt2rVj5syZ3H777QDMnDmTmTNnUqFCBcaPH8+8efOcr5nSMU/Wp495nDMHLM9dZlxERLJBrVpQrx4kJJgCuYiIwKVLl2jXrh0VKlSgevXqhIWFER0dDcDjjz/u3H/vvfeyfft253kXLlygS5culC9fngoVKrB8+XK7/gRJg8SbiWfOhHPn7M0iIp6nX79+lClThmPHjtGiRQvKly/PsWPHGDp0KGfPnqVJkybUqFGDunXrOs+ZMGECW7duJTQ0lPDwcBYuXOjRBbNq1aBqVbh82dxwKyLijjRiXFzSvbtZa3zMGBgwAEJCICzM7lQikhuVLVuWbdu2JXusXLlybNy4MdljFStW5JtvvknzMU/26KPw7LNw4ABs2WJGQIiIiNzKwIHw7bcwYwaMGAF58tidSETEfn379qVVq1Y4HA7efvttevfuzaZNm2jfvj2zZ8/G29ub1atX06lTJ2JjYwEzZa6vry/R0dHExMRQt25dmjRpQkBAgL1/jKSoVSuoXBl++glmzcLjZ90Skew1c+bMZPdbKYxUCAwMJCIiIqsi2aJbNxg5EhYt+mfAhoiIO9GIcXHZyy+bAvnVq/Dww7B3r92JREQkJYUKQZcuZluzfYiISGo6dYKAADh6FNassTuNiIj98uXLR+vWrXE4HADUq1fPWfx+6KGH8Pb2du4/fvw4V65cAWDp0qX0798fgDvuuIP77ruPjz76KPv/AEkTLy8YNsxsT51qRjyKiEjaJF6H2rzZfK8QEXE3GjEuLnM4zHS8hw/Dl1/CAw+YESUlS9qdTEREbqVPH/PZvXw5/Oc/UKyY3YlERMRd5csHTzwBb7wB06bBQw/ZnUhExL1MnTqVtm3bJru/devWzkL5kSNHKFu2rPN4SEgIR44cSfY14+PjiY+Pd/4eFxcHQEJCAgkJCWnKl/j8tJ6X26TUTp06wb//7c3x4w4WLrzCY4/l3jWp9O8pdWoj12SkndS2nic42CzNumULLFkCzz1ndyIRkRupMC5p4usLH30E9evDwYPmYtmmTeDnZ3cyERFJTp06Zo2n3bth4UIYPNjuRCIi4s769YOJE+Hzz83/74eG2p1IRMQ9jB07lujoaDZs2HDD/oULF7Js2TK2bNmSrtcdN24cY8aMSbI/IiICv3RebImMjEzXebnNrdqpWbNQ3n+/Mq+88hfFim3i7wkDci39e0qd2sg16WmnCxcuZEESyWrdupnC+KJFKoyLiPtRYVzSLCDATK1Yrx5s3w6PPQYffmimnBIREfficJhR4089ZaZTf+opcv2FHRERubVy5cwaq2vXmrXG33zT7kQiIvabNGkSK1euZP369TcUq5cuXcqYMWPYsGEDgYGBzv3BwcEcPnyYUqVKARAbG0vz5s2Tfe1Ro0YxZMgQ5+9xcXEEBQXRvHlz/P3905QzISGByMhIwsLC8PHxSdO5uUlq7dSgAXz0kcXhw4Xx9n6AFi1y56hx/XtKndrINRlpp8RZNMSzPPwwDBpkBmn8+CNUqWJ3IhGRf6gwLukSGgqrVkGzZrByJYwcaaZcFBER99OtGwwfbr6MfPedubFJRETkVgYONIXxefPg1Vc1O5SI5G6TJ09myZIlrF+/niJFijj3L1u2jBdeeIH169cTHBx8wzmdOnVixowZ1KtXj5iYGDZt2sS0adOSfX1fX198fX2T7Pfx8Ul3oS0j5+Ymt2qnEiXMzcVTpsCUKd60aWNDODeif0+pUxu5Jj3tpHb1TMWKQevW8PHHZtT4uHF2JxIR+YfG+Eq6NWxoLpaBmW5x5kx784iISPKKFjVr5YEZNS4iImZN10GDBhEaGkrVqlXp3r07AGvXrqVWrVrUqFGDKlWqMH/+fOc5p06domXLloSGhlKlSpV0T5vr7lq2hDvugDNnYOlSu9OIiNjn2LFjDB06lLNnz9KkSRNq1KhB3bp1AejWrRuXLl2ibdu21KhRgxo1anD69GkAhg8fzsWLF7nzzjtp0aIFb7/9NsWLF7fzT5E0euYZyJMHvvgCfvjB7jQiIp6nWzfzuHgxXLtmbxYRketpxLhkSNeuEB0NL78MTz4JISHQooXdqURE5GZ9+8L778MHH5iRD2mclVFEJMcZOXIkDoeDAwcO4HA4OHnyJJZl0b17dzZt2kS1atWIjY3lrrvuokOHDhQqVIiRI0dSr1491q1bx/bt22nfvj0xMTE5biRLnjzQvz+MGAHTpsHjj9udSETEHmXKlMGykp9GOyEh4ZbnFShQgKW6s8ijBQfDo4+akY4TJ8KSJXYnEhHxLG3aQKFCcOQIfP21GWQnIuIONGJcMuzFF80641evmhGJP/5odyIREbnZvfdCpUpw4YIu6oiI/PXXX8ydO5fXX38dh8MBQMmSJQFwOBycPXsWMGsaBgQEOKe4XbZsGf379wegTp06lC5dms2bN2f/H5ANevUCX1/YsQO2b7c7jYiISPYbPtw8fvghxMbaGkVExOPkzw8dO5rtRYvszSIicj2NGJcMczjM1LxHjsDmzfDAA/Dtt1CqlN3JREQkkcMBvXvD0KHmM7tfP7sTiYjY59ChQxQrVoyxY8eyfv168ufPz+jRo2natClLly6lQ4cOFChQgDNnzrBy5Ury5s3L6dOnSUhIcBbQAUJCQjhy5Eiy7xEfH098fLzz97i4OMCMMExplGFyEp+f1vMyonBhePjhPCxa5MXbb19jzpyr2fbe6WVHO3katZFr1E6uSW87qV3FU1SvDmFhEBkJb71lfkRExHXdusF778GyZfCf/0DevHYnEhFRYVwyia8vrFwJ9evDgQPw0EOwaRMUKGB3MhERSdSjB4waBd9/Dzt3Qs2adicSEbHHlStXOHz4MJUrV2b8+PHs3LmTsLAw9u7dy2uvvcbKlStp1KgR27dv56GHHmLPnj3OkeWuGjduHGPGjEmyPyIiAj8/v3TljoyMTNd56VWtWlEWLWrEBx9YNGsWib+/ZxSzsrudPJHayDVqJ9ektZ0uXLiQRUlEMt+wYaYwPmeOWUawaFG7E4mIeI4mTczguRMn4LPPoG1buxOJiKgwLpmoWDFYuxbq1jVTLj72mJluKk8eu5OJiAhA8eLQvj0sXWpGjU+bZnciERF7BAcH4+XlRbdu3QCoWbMmd9xxB++//z6//PILjRo1Asx06WXKlHEWzr29vTl58qRz1HhsbCzBwcHJvseoUaMYMmSI8/e4uDiCgoJo3rw5/v7+acqbkJBAZGQkYWFh2bqeeatWsGSJRVRUHn75pQWPPnot2947PexqJ0+iNnKN2sk16W2nxBk0RDxBWJgZOb5rF0yfDs8/b3ciERHPkScPPPooTJliplNXYVxE3IEK45Kp7rwTPv4Y7r8fPvoIRoyASZPsTiUiIon69DGF8UWLYOJEzewhIrlT8eLFadq0KZ9//jmtW7cmJiaGmJgYOnXqxJgxY9i3bx+VKlUiOjqaQ4cOUbFiRQA6derEjBkzGD16NNu3b+f48eM0btw42ffw9fV1rk1+PR8fn3QX2jJybno9+aTpO2bNysPw4Xnw8srWt08XO9rJ06iNXKN2ck1a20ltKp7E4TCjxh97zEwDPGQI5MtndyoREc/RvbspjH/6KcTFQRrvERYRyXQecFlDPM2995q1QwDefNPcUSsiIu6hSRMoV858GfnwQ7vTiIjYZ8aMGUycOJGqVavSrl07Zs6cSdmyZZk1axadO3emevXqtG/fnrfffts5KnzChAls3bqV0NBQwsPDWbhwYY4v8HTtatYb/9//ICLC7jQiIiLZ75FHICgIfv0VFi60O42IiGepWRPuugsuXTJLsYqI2E2FcckSXbrAq6+a7aeegnXr7M0jIiKGlxf07m22Z8+2N4uIiJ3KlSvHxo0b2bNnD7t27aJjx44AdOnSxblvz549dO3a1XlOYGAgERERHDx4kL1799KkSRO74mcbPz94/HGzrSU4REQkN/LxgWeeMduTJsE1915ZRETErTgc8PcKVixaZG8WERFQYVyy0L//DT17wtWr0Lkz7N5tdyIREQEIDzfrPG3dCnv32p1GRETcXf/+5nH1aoiNtTWKiIiILfr0MTOo7N8Pa9bYnUZExLMk3mv8xRdw4oS9WUREVBiXLONwwKxZcN998Oef8MAD8MsvplC+ebODLVtuZ/NmB1ev2p1URCR3KVUKHnzQbGvUuIiIpKZiRWjWDCzL/P+9iIhIblOo0D83ik2caG8WERFPU64c1K9vZtz44AO704hIbqfCuGSpvHnN2iEVK8KxY/B//wdly0JYmDeTJ9cmLMybkBCtLyIikt369DGP779v1nkSERFJycCB5nHOHIiPtzeLiIiIHQYPNtOqf/klfPed3WlERDyLplMXEXehwrhkuaJFYe1ac3dtTAwcP37j8ePH4eGHVRwXEclOLVpAUBD88Yc+f0VEJHUPPgi33w6//QbLl9udRkREJPuVLv1PYUejxkVE0qZzZ7Os3/ffm2UpRETsosK4ZIuyZSFfvuSPWZZ5fOYZNK26iEg2yZMHevUy25pOXUREUuPtDf36me1p0+zNIiIiYpdhw8zjypUQHW1vFhERT1KihBmkARo1LiL2UmFcssWXX5rRJbdiWXD0qHmeiIhkj169wOGATZvg4EG704iIiLvr08cUyLduhagou9OIiIhkv7vvhtatzXWsyZPtTiMi4lmun049cbCciEh2U2FcssWJE5n7PBERybjgYGjZ0mzPmWNvFhERcX8lS0LHjmZ7+nR7s4iIiNhl+HDzOG9eyoNARETkRm3bQoEC8L//wXff2Z1GRHIrFcYlW5QqlbnPExGRzNGnj3l87z24fNnWKCIi4gEGDjSPCxfCuXP2ZhEREbFD48ZQuzZcuqTlRURE0qJAAWjXzmxrOnURsYsK45ItGjaEMmXMlL3JcTggKMg8T0REsk+bNhAYCKdOwaef2p1GRETcXcOGZhrZCxdgwQK704iIiGQ/h+OfUeNvv236RBERcU3idOpLl0JCgr1ZRCR3ytbC+Lp166hduzbVqlWjXr167Nq1C4BTp07RsmVLQkNDqVKlClu2bHGekxXHJPvlyQNTp5rtWxXH33rLPE9ERLKPjw88/rjZnj3b3iwiIuL+HI5/Ro1Pm6a1AUVEJHfq0AFCQuD332H+fLvTiIh4jrAwKFHCLEURGWl3GhHJjbKtMH7mzBm6devG/Pnz2b17NxMnTqTb37cHjRw5knr16nHw4EHmzZtH165dSfj7dqGsOCb26NABli+H22+/cX/evGZ/hw725BIRye169zaPEREQG2trFBER8QDdu0PBgvDzz7Bxo91pREREsp+3NwwZYrbffBOuXrU3j4iIp/D2hkcfNduaTl1E7JBthfFDhw4REBDA3XffDUDDhg05cuQIP/zwA8uWLaN///4A1KlTh9KlS7N582aALDkm9unQwRRdIiOv0L//Lry9LS5f1triIiJ2uvNOaNrUjPp7912704iIiLvz94fHHjPbWltVRERyq169oFgxOHQIVq2yO42IiOdInE591So4f97WKCKSC3ln1xuFhoZy+vRptm7dSoMGDfjkk0/4888/iYmJISEhgZIlSzqfGxISwpEjRzh9+nSmH0tOfHw88fHxzt/j4uIASEhISPMo88Tna3R6yho0SOCvv2L566+7ef99b9588xpLluj22pvp31Pq1EauyUg7qW1zhz59YMMGUxh/6SVzB6+IiMitDBwI06ebi1nHjyedFUpERCSnK1DA9IevvQYTJ5rBILdaPlBERP5xzz1mkMahQ/Dxx/8UykVEskO2XfYuXLgwy5cvZ9SoUZw/f5769etTuXJlzrvBLUHjxo1jzJgxSfZHRETg5+eXrteM1AIZLvnXv7bw/vv389FHDubN20hg4EW7I7kl/XtKndrINelppwsXLmRBEnE37dpBQIApbqxbB23a2J1IRETcWZUq0KgRbNkCs2fD6NF2JxIREcl+gwaZovh338FXX0HDhnYnEhFxfw6HKYa/8oqZTl2FcRHJTtk6HqxJkyY0adIEMKO0S5Ysyb333ou3tzcnT550jvCOjY0lODiYgICATD+WnFGjRjEkcWEgzIjxoKAgmjdvjr+/f5r+xoSEBCIjIwkLC8PHxydtDZSLJLZTnz71+PTTa2zY4MW+fU15/PFrdkdzK/r3lDq1kWsy0k6Js2hIzubrCz17wuTJpsChwriIiKRm4EBTGJ81C/79b9D/iomISG4TGGi+R82aBZMmqTAuIuKqxMJ4RAScOgW33WZ3IhHJLbK1MH7ixAlK/b2Y9Kuvvsr9999P+fLl6dSpEzNmzGD06NFs376d48eP07hxY4AsOXYzX19ffH19k+z38fFJd6EtI+fmJj4+Pgwd6sWGDTB3bh7GjMlDGu9FyBX07yl1aiPXpKed1K65R+/epjC+Zg388guULm13IhERcWft25uCwIkTZgrEhx+2O5GIiEj2GzrU3Fz8ySfw889w1112JxIRcX8VKkDt2rBjByxbZmbgEBHJDl7Z+WYvvfQSd911F+XLl+fw4cPMnTsXgAkTJrB161ZCQ0MJDw9n4cKFzkJMVhwT99KihfnS8OefZm1bERGxR6VK8H//B1evwrx5dqcRERF3lzcv9Oljtt95x94sIiIidqlQAdq2NdtvvmlvFhERT5I4hfqiRfbmEJHcJVtHjM+ePTvZ/YGBgURERGTbMXEvXl7w7LPQrx9MnWruDvPO1n+ZIiKSqE8fszbe3LkwapT5jBYREbmVvn1h7FjYtAl++gkqV7Y7kYiISPYbNgxWrYIFC+DVV+HvlR1FRCQFjz5qZt349ls4dAjuvNPuRCKSG+hyt7iFxx6DgACIjTVfJERExB4PPwyFC0NMDGzYYHcaERFxd0FB8NBDZnv6dHuziIiI2OXee6F+fbh8Gf77X7vTiIh4hpIloWlTs714sb1ZRCT3UGFc3EL+/DBggNmeMsXeLCIiuZmfH3TvbrZnzbI3i4iIeIYnnzSP8+fD+fP2ZhEREbHL8OHmcfp09YciIq66fjp1y7I3i4jkDiqMi9t48kmzTuHWrWb6FBERsUfierEffwynTtmbRURE3N/995v1Vf/8U+sDiohI7vXQQxAaCmfOmKWpREQkde3bQ758sH8//PCD3WlEJDdQYVzcRsmS0KWL2daocRER+1SvDnXqQEKCGf0nIiKSEi+vf2Z/mjZNIz1ERCR3ypPHrJUL5rrWlSv25hER8QT+/v8szaSbbEUkO6gwLm7l2WfN44oVcPiwvVlERHKzxFHjc+aowCEiIqnr2dMsj7R7t5kBSkREJDfq0QNKlDDXtJYvtzuNiIhnSJxOfckSuHrV3iwikvOpMC5upXp1aNrUdID//a/daUREcq9HH4UCBeDAAdiyxe40IiLi7ooWha5dzfY779ibRURExC7588NTT5ntiRN1k7GIiCtatoRixeDkSfjiC7vTiEhOp8K4uJ3EUeOzZ5t1CkVEJPsVKvTP8hazZ9ubRUREPMPAgeZx+XL49Vd7s4iIiNhlwABTIP/hB9i40e40IiLuL29e6NzZbGs6dRHJaiqMi9tp1QoqVoS4OHj3XbvTiIg7at68OdWqVaNGjRo0bNiQnTt3AhASEkLFihWpUaMGNWrUYOnSpc5zDh48SIMGDahQoQJ16tRh7969Lh3LzRKnU1++HP74w94sIiLi/mrVgrp1ISEB5s61O42IiIg9iheHXr3M9sSJ9mYREfEUidOpr1wJFy/am0VEcjYVxsXteHnBM8+Y7alTta6IiCS1bNkydu/eTVRUFEOGDCE8PNx5bOnSpURFRREVFcUjjzzi3N+vXz/69u3LgQMHGDFixA3npHQsN6tTB6pVg/h4WLjQ7jQiIuIJnnzSPM6Yof+PFxGR3GvIEHN9a9062LPH7jQiIu6vQQMoW9bMIPvpp3anEZGcTIVxcUs9eph1RWJi4OOP7U4jIu6mSJEizu1z587hcDhSfP6pU6fYsWMH3bt3B6Bjx44cPXqU6OjoFI/ldg7HP6PGZ8/W+ngiIpK6Tp0gIACOHoU1a+xOIyIiYo9y5aBjR7M9aZK9WUREPIGXF3TtarY1nbqIZCVvuwOIJMfPz6zJ9PrrMHkydOhgdyIRcTc9evRg498Ltq1du/aG/ZZlcc899zB+/HhKlCjB0aNHKVWqFN7epttzOBwEBwdz5MgRChcufMtj5cuXT/K+8fHxxMfHO3+Pi4sDICEhgYSEBJfzJz43LefYoXNnGD7cmx9/dPD111eoWzd7q+Oe0k52Uzu5Ru2Uuoy0kdpVAPLlgyeegDfegGnT4KGH7E4kIiJij+HD4cMPYfFic32rTBm7E4mIuLdu3WDcOPjsM7OkX7FidicSkZxIhXFxW08+aS6off01bNsG99xjdyIRcScLFiwAYP78+YwYMYK1a9eyZcsWgoODSUhI4IUXXqBnz543FM0zw7hx4xgzZkyS/REREfj5+aX59SIjIzMjVpaqV68WmzYFMXr0cZ56KsqWDJ7QTu5A7eQatVPq0tNGFy5cyIIk4on69TNrqn7+OURHQzL3mYmIiOR4depA48aweTP85z/mGpeIiNza3XdD9eqwa5e5sahfP7sTiUhOpMK4uK1SpaBLF1iwAKZMgSVL7E4kIu6oZ8+e9O/fn9OnTxMcHAyAj48PzzzzDBUqVAAgKCiIEydOcOXKFby9vbEsiyNHjhAcHIy/v/8tjyVn1KhRDBkyxPl7XFwcQUFBNG/eHH9/f5dzJyQkEBkZSVhYGD4+PhlogaxXuLCDTZvgm2+CWbq0NGn4MzPMk9rJTmon16idUpeRNkqcQUOkXDlo1QrWrjVrjWsKWRERya2GDzeF8Zkz4YUXyNbvUiIinqhbN1MYX7RIhXERyRoqjItbe/ZZUxj/8EOYMAFuUacSkVzk7NmzXLhwgdKlSwOwatUqAgICyJcvH2fPnnWuP75kyRJq1qwJwG233UatWrVYuHAh4eHhrFixgjJlyjinSk/p2M18fX3x9fVNst/Hxyddhbb0npedGjeGSpVg3z4Hy5f72PLFxBPayR2onVyjdkpdetpIbSrXGzjQFMbffRdeecUslSQiIpLbtGqV+F0KZs2CYcPsTiQi4t66dIERI+DLL+HwYShb1u5EIpLTeNkdQCQlNWpAkyZw9Sq8/bbdaUTEHZw7d4527dpRtWpVqlevzttvv83q1av59ddfadKkCdWqVaNq1aps3rzZOd06wMyZM5k5cyYVKlRg/PjxzJs3z6VjAg4H9O5ttmfPtjeLiIh4hpYtISQEzpyBpUvtTiMiImIPL69/iuFvvQWXL9saR0TE7ZUpYwZogGaQFZGsocK4uL3EGYtnzYLz5+3NIiL2K1u2LNu2bWPPnj3s2rWL9evXU6NGDcqVK8fOnTvZvXs3e/bs4eOPPyYkJMR5XsWKFfnmm284cOAAO3bsoGrVqi4dE6NHD8ibF77/HnbutDuNiIi4uzx5YMAAsz1tmr1ZRETS69KlS7Rr144KFSpQvXp1wsLCiI6OBmDs2LFUrFgRLy8vVq1adcN5p06domXLloSGhlKlShW2bNliQ3pxF926meUCjx+HDz6wO42IiPvr1s08Llpkbw4RyZlUGBe317o1VKgA586BBnGKiNijeHFo395sa9S4iIi4olcv8PWFHTtg+3a704iIpE/fvn3Zv38/u3btom3btvT+eyqlZs2a8dlnn9GoUaMk54wcOZJ69epx8OBB5s2bR9euXUlISMju6OImfH1h8GCzPWkSWJa9eURE3N3DD5vBGT/+CLt3251GRHIaFcbF7Xl5wTPPmO233jLTqouISPbr08c8LloEf/1lbxYREXF/xYtD585mW6PGRcQT5cuXj9atW+NwOACoV68esbGxANxzzz2UK1cu2fOWLVtG//79AahTpw6lS5dm8+bN2ZJZ3FP//lCwIOzZAxERdqcREXFvRYrAAw+YbY0aF5HM5m13ABFX9OgBL7wA//sffPLJP6MWRUQk+zRpAuXKmc/iDz+E8HC7E4mIiLsbOBDef99MHTtpEgQE2J1IRCT9pk6dStu2bVN8zunTp0lISKBkyZLOfSEhIRw5ciTZ58fHxxMfH+/8PS4uDoCEhIQ0jzJPfL5Gp6fMjnYqUACeeMKLqVPz8MYb17j/fvcf9aF/T6lTG7kmI+2kts29uneHjz6CxYth3DgzeE5EJDOoMC4eoUAB6NfPdIJTpqgwLiJiBy8v6N0bnn8eZs1SYVxERFJXty7UrAk7d8J778HQoXYnEhFJn7FjxxIdHc2GDRsy9XXHjRvHmDFjkuyPiIjAz88vXa8ZGRmZ0Vi5Qna3U5Uq+fHyasYXX3jx3/9u4c47z2Xr+6eX/j2lTm3kmvS004ULF7IgiXiC1q2hcGE4dgy2bIH77rM7kYjkFCqMi8cYNMiMMvnyS7NGYZ06dicSEcl9wsPhxRfhm29g7164+267E4mIiDtzOMyo8T59YPp0ePZZjfYQEc8zadIkVq5cyfr161MtVgcEBODt7c3Jkyedo8ZjY2MJDg5O9vmjRo1iyJAhzt/j4uIICgqiefPm+Pv7pylnQkICkZGRhIWF4ePjk6ZzcxM722nDBjOLyrZtjXjqKfceNa5/T6lTG7kmI+2UOIuG5D758pm1xufONdOpqzAuIplFhXHxGKVLwyOPwMKFZtT44sV2JxIRyX1KlYIHH4RVq2D2bHjrLbsTiYiIu+vaFYYNg0OHzLqqLVvanUhExHWTJ09myZIlrF+/niJFirh0TqdOnZgxYwajR49m+/btHD9+nMaNGyf7XF9fX3x9fZPs9/HxSXehLSPn5iZ2tNOIEaYwvny5FxMmeFG2bLa+fbro31Pq1EauSU87qV1zt27dTGF8+XJ4+21IprsUEUkz3asvHuXZZ83jhx/C0aP2ZhERya369DGP778Ply7Zm0VERNyfnx88/rjZnjbN3iwiImlx7Ngxhg4dytmzZ2nSpAk1atSgbt26ALz22muUKVOGb775ht69e1OmTBl+++03ACZMmMDWrVsJDQ0lPDychQsXqrgjANSoAc2awdWrZtCHiIjcWuPGcPvtcPYsrF1rdxoRySlUGBePUquWmTblyhVzl5iIiGS/Fi0gKAj++ANWrrQ7jYiIeIL+/c3j6tUQG2trFBERl5UpUwbLsjh06BBRUVFERUXx3XffAfDCCy9w7Ngx4uPj+f333zl27BglSpQAIDAwkIiICA4ePMjevXtp0qSJnX+GuJnhw83jnDlw5oy9WURE3JmXF3TpYrYXLbI3i4jkHCqMi8dJHDU+axacP29vFhGR3ChPHujVy2zPnm1vFhER8QwVK5oRcpZl/j9eREQktwoLg+rV4a+/YMYMu9OIiLi3bt3M4+rVcO6cvVlEJGdQYVw8Tps2UL68mULlvffsTiMikjv16gUOB2zaBAcP2p1GREQ8wcCB5nHOHIiPtzeLiIiIXRwOGDbMbP/nP+oTRURSUr06VK5sPitXrLA7jYjkBCqMi8fx8oJnnjHbb71l1mUSEZHsFRwMLVua7Tlz7M0iIiKe4cEHzRqBv/2mi1oiIpK7PfIIlCkDJ0/CwoV2pxERcV8Oxz+jxjWduohkBhXGxSOFh0PRonDokJlGRUREsl+fPubxvffg8mVbo4iIiAfw9oZ+/cz2O+/Ym0VERMROPj7/DPqYNAmuXbM1joiIW+va1Txu3AjHj9ubRUQ8nwrj4pEKFPjnotrkyfZmERHJrdq0gcBAOHUKPv3U7jQiIuIJ+vQxBfKtWyEqyu40IiIi9unTB/z94eefYc0au9OIiLivkBC4916wLPjgA7vTiIinU2FcPNagQeai2pYt8P33dqcREcl9fHzg8cfN9uzZ9mYRERHPULIkdOxotqdPtzeLiIiInfz9oX9/sz1xor1ZRETcnaZTF5HMosK4eKzbbzdrMgFMmWJvFhGR3Kp3b/MYEQGxsbZGERERDzFwoHlcuBDOnbM3i4iIiJ2eftrccPzll/Ddd3anEZGMGDx4MCEhITgcDqKumxrpVvsBDh48SIMGDahQoQJ16tRh79692Rvag3TqZAbJ7dwJP/1kdxoR8WQqjItHe/ZZ87h0qdYXERGxw513QtOmZjqrd9+1O42IiHiChg3h7rvhwgVYsMDuNCIiIvYpXfqfUZAaNS7i2R5++GG++uorypYt69J+gH79+tG3b18OHDjAiBEjCA8Pz6a0nqd4cWjVymxr1LiIZIQK4+LR/vUvaNQIrlyBt9+2O42ISO7Up495fPdd83ksIuIJ4uPjGTRoEKGhoVStWpXu3bunuB80oiOzOBz/jBqfNs3cXCUiIpJbDRtmHleuhEOH7M0iIunXqFEjypQp4/L+U6dOsWPHDuf3jY4dO3L06FGio6OzPKunSryRaPFifYcQkfTztjuASEYNGWLWGZ8xA/79byhY0O5EIiK5S7t2EBBgZu5Ytw7atLE7kYhI6kaOHInD4eDAgQM4HA5OnjyZ4n74Z0RHeHg4y5cvJzw8nO3bt9v1J3i07t1hxAj4+WfYtAmaNLE7kYiIiD3uvhtat4a1a2HyZHjnHbsTiUh2OHr0KKVKlcLb25RoHA4HwcHBHDlyhPLlyyd7Tnx8PPHx8c7f4+LiAEhISCAhISFN75/4/LSeZ6eWLaFgQW9iYx1s2XKFBg2ytjruiW1kB7WTa9ROqctIG6XlHBXGxeO1aWOm8j10CObPhyeftDuRiEju4usLPXuaizizZ6swLiLu76+//mLu3LkcO3YMh8MBQMmSJW+5H/4Z0REREQGYER2DBg0iOjr6lheu5Nb8/eGxx2D6dFMAUGFcRERys2HDTGF83jwYM8ZMGSwicrNx48YxZsyYJPsjIiLw8/NL12tGRkZmNFa2qlOnJhs3BjN+/FH699+dLe/paW1kF7WTa9ROqUtPG124cMHl56owLh4vTx545hl46il46y0YMAC8tEiAiEi26t3bFMbXrIFffjFr5YmIuKtDhw5RrFgxxo4dy/r168mfPz+jR4+mRIkSye5v2rRpmkd05PbRHK7o0wemT/dh1SqL2Ngr3H57xl4vp7ZTZlIbuUbt5Jr0tpPaVSSp++4zywV+/725Yezll+1OJCJZLSgoiBMnTnDlyhW8vb2xLIsjR44QHBx8y3NGjRrFkCFDnL/HxcURFBRE8+bN8ff3T9P7JyQkEBkZSVhYGD4+Pun+O7Kbj4+DjRth+/YQVqwoQ1ZG99Q2ym5qJ9eonVKXkTZKvObiChXGJUcID4cXX4ToaFi9Gh56yO5EIiK5S6VK8H//B199ZUY5/PvfdicSEbm1K1eucPjwYSpXrsz48ePZuXMnYWFhrFmzJtn96VlLXKM5XHP33feyd29xRo48RJcu+zPlNXNiO2U2tZFr1E6uSWs7pWU0h0hu4XDA8OHw6KPw9ttmO53/uyAiHuK2226jVq1aLFy4kPDwcFasWEGZMmVSnI3K19cXX1/fJPt9fHzSXWjLyLl2aN4cAgPh118dfPGFT7bMWuhpbWQXtZNr1E6pS08bpeX5KoxLjlCwIPTtC2+8AVOmqDAuImKHPn1MYXzOHBg1SrN3iIj7Cg4OxsvLi27dugFQs2ZN7rjjDo4ePZrs/j179lCtWrU0jejQaA7XnD/voHt32LKlIu++e2eGRnzk5HbKLGoj16idXJPedkrLaA6R3KRjRwgJgdhYs1TggAF2JxKRtOjXrx9r1qzh5MmTtGjRgkKFChEdHX3L/QAzZ84kPDycsWPH4u/vz7x582z+K9yft7e5iWjqVFi0SMv5iUjaqTAuOcZTT5lpfDdtgh9+gFq17E4kIpK7PPwwDB5sLuSsX2/u4hURcUfFixenadOmfP7557Ru3ZqYmBhiYmKoX79+svsrVaqU5hEdGs3hmk6dYOhQOHHCwdq1Pjz8cMZfMye2U2ZTG7lG7eSatLaT2lQked7eMGSI+U715ptmAEiePHanEhFXzZw5M037ASpWrMg333yTVZFyrG7dTGH844/hzz+hUCG7E4mIJ9FYLskxypQxF9bAjBoXEZHs5ecH3bub7dmz7c0iIpKaGTNmMHHiRKpWrUq7du2YOXMmt99++y33g7moNXPmTCpUqMD48eM1oiMT5M1rZhwBmDbN3iwiIiJ269ULihWDQ4dMwUdERJKqXRtCQ+HiRVi1yu40IuJpVBiXHCVxtsoPPoDjx+3NIiKSGyUWNz7+GE6dsjeLiEhKypUrx8aNG9mzZw+7du2iY8eOKe6Hf0Z0HDhwgB07dlC1alW74ucoffua5Tc2boR9++xOIyIiYp8CBWDgQLM9cSJYlr15RETckcNhRo2DmU5dRCQtVBiXHKV2bWjYEK5cgXfesTuNiEjuU7061KkDCQlmXTwREZHUBAXBQw+ZbY0aFxGR3G7QIPD1hW+/ha+/tjuNiIh7SiyMR0bCr7/am0VEPIsK45LjPPuseZw5E/76y94sIiK5UeKo8TlzNMJBRERc8+ST5nH+fDh/3t4sIiIidgoMhB49zPbEifZmERFxV+XLwz33wLVrsHSp3WlExJOoMC45zkMPQbly8McfsGCB3WlERHKfRx81UwAeOABbttidRkREPMH990OFCvDnn5oOUUREZOhQM1XwJ5/Azz/bnUZExD1pOnURSQ8VxiXHyZMHnnnGbE+ZYu4aExGR7FOoEHTpYrZnz7Y3i4iIeAYvLxgwwGxPm6YZR0REJHerWPGfZUbefNPeLCIi7uqRR0wtYNs2OHjQ7jQi4ilUGJcc6fHHoXBh0yGuXWt3GhGR3CdxOvXly80MHiIiIqnp2RPy54fdu2HrVrvTiIiI2Gv4cPO4YAGcPGlvFhERdxQYCGFhZlujxkXEVSqMS45UsCD07Wu2J0+2N4uISG5Upw5Uqwbx8bBwod1pRETEExQtCl27mu1p0+zNIiIiYrd774X69eHyZXj7bbvTiIi4p+unU9esUyLiChXGJcd66ikzlcrGjRAVZXcaEZHcxeH4Z9T47Nn6ciIiIq4ZONA8fvghnDplbxYRERG7JY4anzYNzp+3N4uIiDtq1w78/CA6GrZvtzuNiHgCFcYlxwoKgk6dzPaUKfZmERHJjbp1g3z54Mcf4bvv7E4jIiKeoFYtqFsXEhJgzhy704iIiNjroYcgNBTOnIF337U7jYiI+ylYENq2NduaTl1EXKHCuORozz5rHpcsgRMn7M0iIpLbFC36zw1Ks2fbm0VERDzHk0+axxkz4OpVe7OIiIjYKU8eGDLEbE+ZAleu2JtHRMQdJU6n/sEH+pwUkdSpMC452j33mDWZEhLgnXfsTiMikvv07WseP/gA4uLszSIiIp6hUycICICjR2HNGrvTiIiI2KtnTyhRAmJjYflyu9OIiLif5s2heHGzFNOGDXanERF3p8K45HiJd9ZOnw4XLtibRUQkt7n3XqhUyXz+LllidxoREfEE+fLBE0+Y7WnT7M0iIiJit/z5YdAgsz1xIliWvXlERNyNjw907my2NZ26iKRGhXHJ8dq2hTvugD/+gAUL7E4jIpK7OBzQu7fZ1nTqIiLiqn79TB/y+ecQHW13GhEREXsNHGgK5D/8ABs32p1GRMT9JE6n/tFHGhwnIilTYVxyvDx54OmnzfZbb8G1a7bGERHJdXr0gLx54fvvYedOu9OIiIgnKFcOWrUy2zNm2JtFRETEbsWLQ69eZnvSJHuziIi4o/r1zeC48+fhk0/sTiMi7ixNhfErV67w5ptvMmDAAAAOHTrEF198kSXBRDJTr17g7w/798Nnn9mdRiR3U1+S+xQvDu3bm22NGheRzKL+JOcbONA8vvsuXLxobxYR8VzqLySnGDIEvLzMda0ff7Q7jUjOo/7Cszkc0LWr2dZ06iKSkjQVxgcNGsTPP//Mpk2bAAgICOC5557LilwimapQIejTx2xPmWJvFpHcLjP6kubNm1OtWjVq1KhBw4YN2XnTMOR58+bhcDhYtWqVc9+pU6do2bIloaGhVKlShS1btrh0TDJH4mfwwoXw11/2ZhGRnEHfTXK+li0hJATOnIEPPrA7jYh4KvUXklOUKwcdO5ptjRoXyXzqLzxf4nTq69bB77/bm0VE3FeaCuPffvsts2fPJl++fAAUKVKEhISELAkmktmeespMq75hA+zaZXcakdwrM/qSZcuWsXv3bqKiohgyZAjh4eHOY7GxscyePZt69erdcM7IkSOpV68eBw8eZN68eXTt2tX5vikdk8zRpIm5kPPnn7Bsmd1pRCQn0HeTnC9PHvh7wA7TptmbRUQ8l/oLyUmGDTOPixfD8eP2ZhHJadRfeL5KlaBmTbhyBT780O40IuKu0lQYT+wUEl29epVraViwee3atdSqVYsaNWpQpUoV5s+fD8B9993HHXfcQY0aNahRowZTrhvSm94Rfhr9JzcrWxYefthsa9S4iH0y2peA+XKS6Ny5czgcDgCuXbtG7969+e9//4uvr+8N5yxbtoz+/fsDUKdOHUqXLs3mzZtTPSaZw8sLevc225pOXUQyQ2b0J+L+evUCX1/YsQO2b7c7jYh4IvUXkpPccw80agQJCTB1qt1pRHIW9Rc5Q+KocU2nLiK34p2WJ1erVo2FCxdy7do1oqOjmTBhAvfdd59L51qWRffu3dm0aRPVqlUjNjaWu+66iw4dOgAwZcoU2rVrl+S8xFF869atY/v27bRv356YmBh8fHzSfUxyr2efhaVLzZ2148ZBqVJ2JxLJfTLSl1yvR48ebNy4ETA3XgFMnjyZe++9l3/96183PPf06dMkJCRQsmRJ576QkBCOHDmS4rHkxMfHEx8f7/w9Li4OgISEhDTdSZz43Nx093G3bvDii958842DqKgE7r479XNyYzulh9rJNWqn1GWkjbK7XTOrPxH3Vrw4dO4M779vRo3Pm2d3IhHxNOovJKcZPhy2bIGZM+GFF8Df3+5EIjmD+oucoUsX8zn59dcQEwN33GF3IhFxN2kqjE+ePJmhQ4dy8uRJ7r33Xtq1a8f48eNdPt/hcHD27FnAFBICAgKSjOi72bJly4iOjgZuHMXXrFmzdB+T3KtuXWjQALZuNRfWXn3V7kQiuU9G+5JECxYsAGD+/PmMGDGCN954gxUrVmT5DCHjxo1jzJgxSfZHRETg5+eX5teLjIzMjFgeo3bte/juu1K8+OIRevf+0eXzcls7pZfayTVqp9Slp40uXLiQBUluLbP6E3F/AweawvgHH5g1VQMC7E4kIp5E/YXkNK1bm+mC9+2DWbP+mV5dRDJG/UXOULo03H+/WU518WL497/tTiQi7iZNhfGCBQsyc+ZMZs6cmeY3cjgcLF26lA4dOlCgQAHOnDnDypUryZs3L2BGhr/44otUrlyZcePGUa5cuXSP8LNr9F/iOdc/SvLsbKennnKwdas306dbDB9+hfz5sz2Cy/TvKXVqI9e40wjAjPQlyenZsyf9+/fn448/JjY2ltDQUABOnjxJ3759OXHiBAMGDMDb25uTJ086+4bY2FiCg4MJCAi45bHkjBo1iiFDhjh/j4uLIygoiObNm+Ofhlv1ExISiIyMJCwsLFfNZuJwOGjbFrZuLcfixcHcNFNZErm1ndJK7eQatVPqMtJGif8PnV0yuz8R91W3rlkrcOdOeO89GDrU7kQi4knUX0hO4+VliuFPPAFvvQWDB8Pfl1dFJAPUX+Qc3bqZwviiRfD88/D3CowiIkAaC+Mvv/wygwcPJuDvW/R///133nnnHV5++eVUz71y5QqvvfYaK1eupFGjRmzfvp2HHnqIPXv28P777xMUFIRlWbzzzju0adOGn376KX1/UTpk9ug/0EgkV9nRTnnzOrjttqacOlWAkSP30qLF4WzPkFb695Q6tZFr3GEEYEb6EoCzZ89y4cIFSpcuDcCqVasICAjg+eef59/X3QZ633338cwzzziX6ejUqRMzZsxg9OjRbN++nePHj9O4ceNUj93M19c32dlOfHx80lVoS+95nuqBByAoCI4edfDppz507eraebmtndJL7eQatVPq0tNG2d2mGe1PxHM4HGbUeJ8+MH26WR7Jy8vuVCLiKdRfSE7UrZuZRv34cbNk4GOP2Z1IxPOpv8g5OnSAAQPMzBpRUeYmWxGRRGkqjH/88cc3FJCLFy/Oxx9/7FLnEBUVxS+//EKjRo0AM715mTJl2LlzJ2FhYYAZRTZo0CCGDRvG6dOnUxzFl95jycms0X+gkUiusrudYmK8GDYMvviiOlOm3O22F9bsbidPoDZyjTuNAMxIXwJw7tw5OnXqxMWLF/Hy8qJEiRKsXr0aRyq3f06YMIHHHnuM0NBQ8ubNy8KFC51tkdIxyVx58kCvXjBmDMyejcuFcRGRm2W0PxHP0qWLGR136BBEREDLlnYnEhFPof5CciJfXzNSfNQomDgRunfXiEiRjFJ/kXMULgwPPgjLl5tR4yqMi8j10lQYv3btWpJ9ly9fduncoKAgTpw4wb59+6hUqRLR0dEcOnSIihUr8uuvvxIYGAjAihUrCAwMdN6Zld4RfnaO/svoubmJXe3Up48pyuzf7+CLL3xo1SrbI6SJ/j2lTm3kGncYAZiRvgSgbNmybNu2LdXnbdq06YbfAwMDiYiISPa5KR2TzNerF7zyCmzaBAcPwt+z34uIpElG+xPxLAUKwOOPmyljp01TYVxEXKf+QnKqfv3gtddgzx5z01iLFnYnEvFs6i9ylm7dTGF8yRKYMMEM1BARAUjTONmKFSvyxhtvcPXqVa5cucKECRO46667XDo3MDCQWbNm0blzZ6pXr0779u15++23CQgI4IEHHqBq1apUr16dadOm8cknnzjPmzBhAlu3biU0NJTw8PAkI/zSc0zE398UxwEmT7Y3i0huk5G+RHKG4OB/Chpz5tibRUQ8l/qT3Kd/f/O4ejXExtoaRUQ8iPoLyamKFv3n2tbEifZmEckJ1F/kLK1aQZEi8MsvsHmz3WlExJ2kqTA+depU1q1bR/78+SlQoADr16/nv//9r8vnd+nShT179rBr1y727NlD165dKVCgADt27HDu37BhA9WrV3eekziK7+DBg+zdu5cmTZpk+JgImCmnvLxg/XrYvdvuNCK5R0b7EskZEi/gvPce6AZsEUkP9Se5T8WK0KwZWBbMmmV3GhHxFBnpLy5dukS7du2oUKEC1atXJywsjOjoaABOnTpFy5YtCQ0NpUqVKmzZssV5XkrHRDLTM8+YUZAbNsAPP9idRsSz6ftFzuLrC506me1Fi+zNIiLuJU2F8dKlS/PFF19w5swZ/vjjDyIjIylVqlRWZRPJUmXLQseOZvutt2yNIpKrqC8RgDZtIDAQTp2CTz+1O42IeCL1J7nTwIHmcc4ciI+3N4uIeIaM9hd9+/Zl//797Nq1i7Zt29K7d28ARo4cSb169Th48CDz5s2ja9euJCQkpHpMJDOVLQuPPGK2J02yN4uIp9P3i5ynWzfzuHw5XLpkbxYRcR8uFcYPHjwIwO7du9m9ezeHDh3i0KFDzt9FPNWQIeZx0SI4edLeLCI5nfoSuZ6Pj1krFmD2bHuziIhnUX+Suz34INx+O/z2G6xYYXcaEXFnmdFf5MuXj9atW+NwOACoV68esX+v5bBs2TL6/73GQ506dShdujSb/56rNaVjIplt+HDzuGwZHD5sbxYRT6TvFzlXw4YQFARxcbBmjd1pRMRdeLvypGeffZbVq1fTtm3bJMccDgf/+9//Mj2YSHaoV8/8fPstTJ8OY8bYnUgk51JfIjfr3RvGj4eICLNWbEiI3YlExBOoP8ndvL2hXz946SWYNg26drU7kYi4q6zoL6ZOnUrbtm05ffo0CQkJlCxZ0nksJCSEI0eOpHgsOfHx8cRfNwVGXFwcAAkJCWkeZZ74fI1OT1lOa6e774amTfOwYYMXkydfZdKka5nyujmtnbKC2sg1GWmn7Ghbfb/Iuby8oEsXeOMNMzAucfZYEcndXCqMr169Gsuy+PrrryldunRWZxLJVkOGQOfO5sLayJGQP7/diURyJvUlcrM774SmTc16eO++C6+8YnciEfEE6k+kd2/TZ3z9NezaBdWr251IRNxRZvcXY8eOJTo6mg0bNnDx4sVMSGiMGzeOMcncpR8REYGfn1+6XjMyMjKjsXKFnNRO//d/JdiwoQGzZlncc08kBQtmXjExJ7VTVlEbuSY97XThwoUsSHIjfb/I2bp1M4XxNWvgzBkoWtTuRCJiN5cK44maN2/Ojz/+mFVZRGzRvr1Zk+nwYVi4EPr0sTuRSM6mvkSu16fPP4Xxl14yIwFFRFyh/iT3KlXKjPZYutTc3Dpzpt2JRMSdZUZ/MWnSJFauXMn69evx8/PDz88Pb29vTp486RwZHhsbS3BwMAEBAbc8lpxRo0YxJHGdN8yI8aCgIJo3b46/v3+aciYkJBAZGUlYWBg+Pj7p/GtzvpzYTq1awcqVFnv2eBMT04IRIzI+ajwntlNmUxu5JiPtlDiLRnbQ94ucqVo1qFIFfvzRLMXUu7fdiUTEbi5ffnY4HJQpU4bff/+d4sWLZ2UmkWzl7Q2DB8PQoTBliukc/14+TEQymfoSuVm7dhAQAMePw7p10KaN3YlExBOoP5GBA01hfOFCMwKkcGG7E4mIO8qM/mLy5MksWbKE9evXU6RIEef+Tp06MWPGDEaPHs327ds5fvw4jRs3TvXYzXx9ffH19U2y38fHJ92Ftoycm5vktHYaPhx69IB33snD8OF5SOafVbrktHbKCmoj16SnnbKrXfX9Imfr3t3MFLtokQrjIpLGEeMFCxakRo0atG7dmoIFCzr3T548OdODiWSnJ56A0aNh3z74/HNo2dLuRCI5l/oSuZ6vL/TsCZMnw6xZKoyLiOvUn+RuDRuaNVX37oUFC+Cpp+xOJCLuKiP9xbFjxxg6dCjlypWjSZMmgClkf/fdd0yYMIHHHnuM0NBQ8ubNy8KFC50FnJSOiWSVRx+F55+HY8fMjWNPPGF3IhHPou8XOVeXLqYwvmkTHD0KQUF2JxIRO6WpMF61alWqVq2aVVlEbFO4sPnC8NZbpjijwrhI1lFfIjfr3dt89q5ZY0aO33673YlExBOoP8ndHA4zavzJJ8106oMG2Z1IRNxVRvqLMmXKYFlWsscCAwOJiIhI8zGRrOLj8//s3Xt8zvX/x/HHtV0zh4xMjjNTJuSUKCkkttCJOZTzSkxy3LccCqGcIjkzJZQO5FCKavNLKApl0dEhjEVKmNC6xn5/vNskw7XDtc91eN5vt92uz/X5fC577d3V9b4+n9f7/XrDwIHw5JMweTI88gj4+VkdlYjn0PWF9woNhcaNYcMGeOstGDzY6ohExEpOJ8a//fZbatasSe3atbnhhhtcGZOIJfr3h+nTISHBrDlSo4bVEYl4H/UlkpVq1eDOO+Gzz2DBAhg+3OqIRMTdqT8RMCURhwyBH380sz/uvNPqiETE3ai/EF/TsyeMGWP6xjVrVJFLxFnqL7xf584mMf7GG0qMi/g6p8YNzp49mzvvvJOJEydyyy23sHLlSlfHJZLvKlWCqCiz/dJL1sYi4o3Ul8iV9OxpHufPh/PnrY1FRNyb+hPJEBQEXbua7VmzYP16Gxs2lGf9ehvnzlkbm4hYT/2F+KKgIOjd22xPmmRtLCKeQv2Fb2jXzlTW2LHDTIoTEd/ldGJ8x44dfPnll2zcuJEXX3zR1XGJWGLQIPP4xhvw66/WxiLibdSXyJW0a2eWtdi/H9autToaEXFn6k/k3/r0MY/Ll0NEhJ0pU+oREWEnLAxWrLA0NBGxmPoL8VX9+5vkz4YNsGWL1dGIuD/1F76hRAlo1cpsv/GGtbGIiLWcSowHBAQQGhoKmLU2zpw549KgRKxy++1w222Qmgpz5lgdjYh3UV8iV1K4sCmJC/Dyy9bGIiLuTf2J/NuuXVnvT042g66UHBfxXeovxFeVLw+dOpltzRoXuTr1F76jc2fz+OabqlYo4sucWmP8r7/+YufOnaSnpwNw9uzZi57XqlXLdRGK5CObDWJj4aGHYPZsGDoUCha0OioR76C+RK6mZ09TCve99+DoUShVyuqIRMQdqT+RDOfOwYABWR9LTzff7QcOhAcfBH//fA1NRNyA+gvxZU8+CYsWmQFie/eClkwWuTz1F77jvvugaFFISoLPP4dGjayOSESs4FRi/OzZszzwwAMX7ct4brPZ+Pnnn/M+MhGLREVBaKjpIN94A3r0sDoiEe+gvkSupnZtqF8ftm41N3GeesrqiETEHak/kQwbN8KhQ5c/np4OBw+a8+66K9/CEhE3of5CfFmNGtCyJXz4IUyZYgYgi0jW1F/4jkKFoG1bWLjQ3PdXYlzENzmVGN+/f7+LwxBxH3a7WY/pySfhpZfg0UfNbBMRyR31JeKMnj1NYvyVV8znsIjIf6k/kQyHD+fteSLiXdRfiK976imTGF+wAEaPhpIlrY5IxD2pv/AtnTubxPg778D06VCggNURiUh+c2qNcRFf89hjcM018N13kJBgdTQiIr7j4YehSBGzZuyGDVZHIyIi7qxs2bw9T0RExJvcdRfccgucPWuWCxQREWja1Fwf/PEHfPSR1dGIiBWUGBfJQrFiF0qoT5libSwiIr6kaFHo2NFsv/yytbGIiIh7a9QIQkIuX93JZoMKFVQiUUREfJPNdmF5qpkzTYJcRMTX+fubSRlgyqmLiO9RYlzkMvr3Bz8/+PhjM3NcRETyR8+e5nHZMjOCV0REJCv+/jBtmtm+XHJ86lRznoiIiC9q2xbCwuC332DRIqujERFxD507m8dVqyAlxdpYRCT/KTEuchnXXw+tW5vtqVOtjERExLfUrw+1akFqKowZ48eGDeVZv97GuXNWRyYiIu4mKsoMpCpf/tJjffqY4yIiIr7KbofYWLP94ovomkpEBKhbF6pWhb/+gpUrrY5GRPKb3ZmTxowZc8XjI0eOzJNgRNxNbCysWAGvvw5jx0KpUlZHJOK51JeIs2w2kxzfsQNmz/YH6jFliimXO22akhwivk79ifxXVBQ8+CCsW5fGhx8mcurUzbz8sj9vvw2jRkHJklZHKCJWUH8hYjzyCDz7LOzZA++9p+spkf9Sf+F7bDYza3zECFi8GLp3tzoiEclPTs0YP3XqFKdOneKHH35g5syZJCUlcfDgQWbNmsWPP/7o6hhFLNOwoUnOpKbCnDlWRyPi2dSXiLNWrIBXX710f3IytGtnjouI71J/Ilnx94cmTdJp3DiZqVPPU6sWHDt2YW1VEfE96i9EjGuuMVVUACZNgvR0a+MRcTfqL3xTp07m8ZNP4PBha2MRkfzlVGJ80qRJTJo0iWPHjpGYmMgrr7zCyy+/TGJiIseOHXN1jCKWsdkulJyaPduUVxGRnFFfIs44dw4GDMj6Zk3GvoEDVQJQxJepP5GrCQiAuDjzXX7hQvj0U6sjEhErqL8QuaBfPwgMhC++gM8/tzoaEfei/sI3XX893H47nD8Pb79tdTQikp+ytcb4L7/8Qrly5TKfly1bluTk5DwPSsSdtG0LFSrA0aPw5ptWRyPi+dSXyJVs3AiHDl3+eHo6HDxozhMR36b+RK6kQQOIiTHbvXubClAi4pvUX4hA6dLQrZvZnjTJ2lhE3JX6C9/TubN5fOMNa+MQkfyVrcR4SEgIzz77LAcPHuTgwYOMGjWKkJAQV8Um4hYCAszIWoCXXlLJKZHcUl8iV+Js+SqVuRIR9SdyNePHm0TATz/BCy9YHY2IWEX9hYjxv/+ZaiqrVpm+UUQupv7C93ToYJZk+uorfS6K+JJsJcYXLlzIDz/8QJ06dbj55pv58ccfWbhwoYtCE3EfPXtCkSLw7bewdq3V0Yh4NvUlciVly+bteSLivdSfyNUULw5Tp5rtsWNh924roxERq6i/EDFuvBEeeMBsv/iitbGIuCP1F77nuuvgnnvMtmaNi/gOe3ZOLlOmDEuXLnVVLCJuq3hx6NEDpk+HKVMgIsLqiEQ8l/oSuZJGjSAkBJKTs67QYbOZ440a5X9sIuJe1J+IMx56CBYsgPh46NPHPNpsVkclIvlJ/YXIBU89Be+9B6+9Bs89ZyqriIih/sI3de4Ma9aYxPjo0bpWEPEF2ZoxfvLkSfr27cv9998PwPfff89bb73lksBE3E3//qZj/Ogj+P57q6MR8VzqS+RK/P1h2jSzfbmLkalTzXki4tty25+kpqbSt29fwsPDqVmzJl26dLno+IIFC7DZbLz77ruZ+44ePUqLFi0IDw+nRo0abNiwIU/+FnEdmw1mz4aCBU3lJ33lEPE9uv4QuaBhQ2jQAFJTYcYMq6MRcS/qL3zTgw+aSrE//wxffml1NCKSH7KVGI+JiaFMmTLs27cPgEqVKjFx4kSXBCbibm64AVq3NtsZJRlFJPvUl8jVREXBsmVQvvylx1580RwXEcltfzJ06FBsNhu7du1i586dTJ48OfPY/v37efnll2nQoMElr2nQoAG7d+9mwYIFdOrUCYfDkTd/kLjMDTfA8OFme9AgOH7c2nhEJH/p+kPkApvNzBoHM3Dszz+tjUfEnai/8E1Fily4569y6iK+IVuJ8V27djF8+HACAgIAKFSoEOlZ1TkV8VKDBpnH11+H336zNhYRT6W+RJwRFQX790NCQhqxsdto1Og8oIodInJBbvqT06dPM3/+fMaOHYvtn/IUZcqUAeD8+fM89thjzJgxg8DAwItet3TpUnr37g1A/fr1KVeuHOvXr8+rP0lc6KmnoFo1OHoUhg61OhoRyU+6/hC52IMPQuXKZqDYq69aHY2I+1B/4bs6dzaPS5aAxj2LeL9srTFeoECBi56fPXtWnYP4lDvvhHr1YNs2mDsXRoywOiIRz6O+RJzl7w9NmqRz+nQy999fh6ZN/Vi8GMaPh5IlrY5ORKyWm/5k7969lChRgnHjxrF27VoKFSrEqFGjaNasGVOmTOGOO+7glltuueg1x44dw+FwZCbQAcLCwkhKSsryd6SmppKampr5PCUlBQCHw5HtWeYZ52t2+pVdqZ1sNpg500azZnbmzYPOndO4/Xbf+/6h95Jz1E7OyWk75Xe76vpD5GL+/vC//8Hjj8NLL0GfPmDP1h1iEe+k/sJ3RUTAddeZiXBr10LLllZHJCKulK2vPU2bNmXs2LH89ddfrF27lpdeeok2bdq4KjYRt2OzQWwsdOoEs2bB4MHwn4lEInIV6kskJxo2TKduXfj6a5g3D55+2uqIRMRquelP0tLSOHDgANWrV2fChAls376diIgIli9fzvLly/Nk7fDx48czevToS/bHx8dTuHDhHP2bCQkJuQ3LJ1ypnZo1q8P//V9FunY9w5Qpn2K3++bNTr2XnKN2ck522+nMmTMuiiRruv4QuVT37jBypKnStXw5PPSQ1RGJWE/9he+y283n4MyZppy6EuMi3i1bifHnnnuOSZMmERQUxNNPP03r1q0Zqjp04mPatTMJ8UOH4K23IDra6ohEPIv6EskJmw0GDoRu3czApKeegn+qm4mIj8pNfxIaGoqfnx+d/6mZd/PNN1OpUiV27NjB/v37CQ8PB+DIkSP06tWLw4cP8/jjj2O32zly5EjmrPH9+/cTGhqa5e8YNmwYsbGxmc9TUlKoUKECkZGRBAUFZetvdTgcJCQkEBERkVnaUS7lTDvddhvUrJlOUlIQu3bdy5NPns/nKK2l95Jz1E7OyWk7ZVTQyC+6/hC5VKFC0LcvPPssTJoEHTqYay4RX6b+wrd16WIS4+++C6dPm7XHRcQ7ZSsx/v333zNs2DCGDRuWuW/Hjh3UqlUrzwMTcVcBAdCvHwwZAlOmmFG2ungQcZ76EsmpDh1MQvyXX2DZMujY0eqIRMRKuelPSpYsSbNmzfj4449p1aoV+/btY9++fURFRdGvX7/M8+666y4GDhxI69atAWjfvj1z585l1KhRbN26leTkZJo0aZLl7wgMDLxkjXKAgICAHCfacvNaX3KldipTBiZPNoNbn3vOn44d/QkLy9fw3ILeS85ROzknu+2U322q6w+RrPXpAxMmwFdfwaefQtOmVkckYi31F77t1lvhhhtg71547z1TMVZEvJNfdk6OzmJqbFb7RLxdz55QuDDs3An/939WRyPiWdSXSE4FBpqbNwBTp1oaioi4gdz2J3PnzmXSpEnUrFmT1q1bExcXR/ny5a/4mokTJ7Jp0ybCw8OJjo5m8eLFSpp5oG7d4K674OxZeOIJ0NKRIt5N1x8iWStZEh55xGxPmmRtLCLuQP2Fb7PZ4J+CYixebG0sIuJaTs0YP3r0KEeOHOHs2bPs3LmT9H/uHJw8eZLTp0+7NEARd3TttfDoo6a8yksvQfPmVkck4v7Ul0heiImBsWNhyxb44gto0MDqiEQkv+VVf3L99dezbt26K57z6aefXvS8dOnSxMfHZztmcS82G8yZA7VqwZo1Zm3Vdu2sjkpE8pquP0SuLjYW5s6FDz+Eb7+FGjWsjkgk/6m/kAydO8OYMRAfD0ePmhyAiHgfpxLjb731FlOnTuWXX37hgQceyNxfrFgxBg8e7LLgRNzZgAFmnds1a+CHH6BaNasjEnFv6kskL5QubcpZLVwI06YpMS7ii9SfSF6oWhWGDTM3vgYMgMhIyObS7yLi5tRfiFzdDTdAVJRZqmryZHOdJeJr8qq/6N+/P6tWreLAgQNs376dOnXqALB79266d+/O77//TrFixVi4cCE33XTTVY9J/qtSBerVg23bYOlSMzlDRLyPU6XUBwwYwL59+xg+fHjm+nv79u0jMTGRHj16uDpGEbdUuTJkfFeaNs3aWEQ8gfoSySsDBpjHd96BQ4esjUVE8p/6E8krw4ZBeDj88gsMH251NCKS19RfiDjnqafM45tvQnKytbGIWCGv+ot27drx2WefUbFixYv2x8TE0KtXL3bt2sWQIUMuKs9+pWNijYxy6m+8YW0cIuI62VpjvE6dOpw4cSLz+fHjx1m9enVexyTiMWJjzeOiRfD779bGIuIp8qIviYyMpFatWtSpU4dGjRqxffv2K+4HMwq3YcOGVKlShfr16/Pdd985dUzcT5060LgxnDsHs2dbHY2IWEXXJpJbBQte6EdmzoStW62NR0RcQ/2FyJXdequ5vnI4YPp0q6MRsU5u+4vGjRsTEhJy0b6jR4+ybds2unTpAkDbtm05ePAge/bsueIxsc7DD4Ofn1m+b+9eq6MREVdwqpR6hhEjRpCYmJj5vHjx4owYMYJ77703r+MS8QiNGsEtt8BXX5k1mTTTROTq8qIvWbp0KcWLFwdg5cqVREdH880331x2P1wYhRsdHc2yZcuIjo5m6z93wK90TNzTwIGwYQPExZnP3sKFrY5IRPKbrk0kLzRvbmaFvPGGKZW4ZQvYs3WVLCLuTv2FyNU99ZS5vpo7F555RsuLiG9yRX9x8OBBypYti/2fL5g2m43Q0FCSkpIoVqzYZY9Vrlw5y38vNTWV1NTUzOcpKSkAOBwOHA5HtmLLOD+7r/N2wcFw993+rF3rx5tvpnPLLWqjq9F7yTlqp6vLTRtl5zW5uuS32WycO3cuN/+EiEez2WDQIOjSxaw3/tRTEBhodVQiniUnfUlG8hvg5MmT2Gy2K+7PGIUbHx8PmFG4ffv2Zc+ePQQFBV322OUuRMR6DzwAYWGwf79JZvTsaXVEImI1XZtITr34IqxeDdu3m5njAwdaHZGIuJL6C5FLtWoF1arBDz/Ayy/D//5ndUQi1nPH/mL8+PGMHj36kv3x8fEUzuGMgYSEhNyG5XWqV6/A2rV1mTMnjW7dyrNz59dUr34Mf3+rI3Nvei85R+10dTlpozNnzjh9brYS40WLFmXTpk00bNgQgM8//5yiRYtmLzoRL9O+PQwZYtZhevtt6N7d6ohE3Fte9SXdunVj3bp1AKxZs+aK+/NyhG5ejc7VKEHnXKmd+vTxY/Bgf6ZOTad79zT+GQfhk/R+co7a6erya3RuXtC1ieSV0qVh4kQzY3zECGjXDv5TBVNEPJj6C5Gr8/MzyfDHHoOpU6F/f6sjEsl/rugvKlSowOHDh0lLS8Nut5Oenk5SUhKhoaEEBQVd9tjlDBs2jNiMtT0x96QqVKhAZGQkQdks9eBwOEhISCAiIoKAgIAc/43e6MQJG5DO778XZsqUegCUL5/OlCnnaNMm3drg3JDeS85RO11dbtoo4x69M7KVGH/hhRdo06YNVatWBcyarCtXrsxWcCLepkAB6NsXhg2Dl16Cbt3w6eSMyNXkVV/y2muvAbBo0SKGDBmSmQS/3P68ktejczVK0DlZtVO5cnYKFryH77+3M2HCVmrX/s2CyNyL3k/OUTtdnatH5+YFXZtIXnrsMVi0CDZtMsmAFSusjkhE8or6CxHndOlilqk6dMhM/Hj4YasjEslfrugvSpUqRd26dVm8eDHR0dEsX76ckJCQzIkYVzqWlcDAQAKzKFcaEBCQ40Rbbl7rjVasgEceuXT/L7/YePhhO8uWQVRU/sflCfReco7a6epy0kbZOT9bifHbb7+dH374gc2bNwPQsGHDi8rWiviqXr3guefgm29g3Tq4+26rIxJxX3ndl3Tv3p3evXtz7NgxgoODs9yflyN082p0rkYJOudq7fT55zbmzIEvv2zAsGHuVeIsP+n95By109Xl1+jcvKBrE8lLfn4QFwc33wwrV8KqVWbZDhHxfOovRJwTGGgGhz39NLzwApQpY2PDhvIUKWKjaVNUQli8Xm77i5iYGFavXs2RI0e45557KFq0KHv27CEuLo7o6GjGjRtHUFAQCxYsyHzNlY5J/jt3DgYMgPQsJoWnp5vJcAMHwoMP6jNRxJNle43xa6+9llatWrkiFhGPVaKEGUk2axZMmaLEuMjV5KYvOXHiBGfOnKFcuXIAvPvuuwQHB+Pn58cvv/xyyf4SJUpgs9nybIRuXo/O1ShB51yunQYOhDlzYM0aP/bv9yM8PP9jcyd6PzlH7XR1rh6dm1d0bSJ5qUYNU0Z24kRTEeruu+Gaa6yOSkTygvoLEef07g2jR8O330JkpB2ox5QpZomRadM0S1K8X276i7i4uCz333jjjZnJ9uwck/y3caOpmnE56elw8KA576678i0sEcljTiXGmzRpwvr167n22mux/atGdHp6OjabjT/++MNlAYp4igEDYPZsWL0afvoJbrzR6ohE3Ete9SUnT56kffv2nD17Fj8/P6677jo++OADUlJSstyf8bs0Qtc7VakCrVrBmjUwYwZMn251RCLiaro2EVcaORKWLIH9+2HUKJg82eqIRCSn1F+IZN+6dZCaeun+5GRo1w6VEBavpP5CMhw+nLfniYh7ciox/vbbbwOQmJjoylhEPFp4ONx/vym7OHWqmcEoIhfkVV9SsWJFtmzZkuWxy+0HjdD1ZgMHmsT4ggVmWYtixayOSERcSdcm4kqFC5sqUPfea77Td+0KtWtbHZWI5IT6C5HsySghnBWVEBZvpv5CMpQtm7fniYh7cioxXvaf/9MrVqzo0mBEPN2gQSYxvmgRPP88/Gu5YxGfp75EXKV5c6heHb7/Hl591XwWi4j3Un8irtaqFbRvD++8AzEx8PnnSgCIeCL1FyLZoxLC4qvUX0iGRo3M0hHJyVmvMw5QoYI5T0Q8l1OJ8UqVKl1URuS/fv755zwLSMSTNWkCN98M27dDXBw8/bTVEYm4D/Ul4io2m5nZEBNjyqn3768Ehog3U38i+WHqVPj4Y/jyS5g3Dx5/3OqIRCS71F+IZI9KCIuvUn8hGfz9Ydo0s3SEzZZ1cnzKFN1zEvF0TiXGP/jgA8CUFdm/fz8xMTEAvPzyyxpJJfIvNhvExpqSizNnwpNPQoECVkcl4h7Ul4grdekCw4bBvn3w/vvQurXVEYmIq6g/kfxQrhyMHQv9+sHQoaZfUclEEc+SV/1F//79WbVqFQcOHGD79u3UqVMHgI8++ojhw4fz999/U7hwYeLi4qj9z9oLR48epVu3buzdu5fAwEBmz55N48aN8/YPFMljKiEsvkrXF/JvUVGwbJmZgPHvKhoZifJjx6yLTUTyhlOJ8ZtuugkwX/q3bt2auf+OO+7g1ltvZcyYMa6JTsQDdegAgwebEbRLlpgkuYioLxHXKlwYevaEiRPN6F4lxkW8l/oTyS+PP26WSNq2zSzT8c/ykyLiIfKqv2jXrh2DBw/mzjvvzNx3/PhxOnfuzIYNG7jpppvYuHEjnTt35ttvvwVg6NChNGjQIPN3t2nThn379hEQEJCHf6FI3rpaCWGbzRxXCWHxNrq+kP+KioIHH4R169L48MNEWrasw7ff2hk0yAyabdMGSpWyOkoRySm/7Jx88uRJTp8+nfn89OnTnDx5Ms+DEvFkBQqYmSVgSqtcbj0SEV+lvkRc5YknTDmrTz+FxESroxERV1N/Iq7m72+WR/LzMwNeP/7Y6ohEJCdy2180btyYkJCQi/bt3buX4ODgzGRKo0aNSEpK4uuvvwZg6dKl9O7dG4D69etTrlw51q9fn9s/RcSlMkoIg0mC/1d6OkyYoBLC4r10fSH/5u8PTZqk07hxMk2apNO3r1lC9cQJeOopq6MTkdxwasZ4hk6dOtGgQQM6dOgAwDvvvEOXLl1cEpiIJ4uJgeefN4mZTz+Fpk2tjkjEfagvEVepUAHatoWlS2H6dHj1VasjEhFXUn8i+aFuXVNG8aWXoE8f+PZbKFTI6qhEJDtc0V+Eh4dz7NgxNm3aRMOGDVm1ahWnTp1i//79VKxYEYfDQZkyZTLPDwsLIykpKct/KzU1ldTU1MznKSkpADgcDhwOR7biyjg/u6/zNWqny7v/fnj7bRuxsf4kJ1/Ijvv5pXP+vI01a87Trt25LBPnvkjvJefkpp3ys211fSFXYrfD3LnQoAG89ho8+ig0aWJ1VCKSE9lKjI8aNYr69evzySefADBx4kRatmzpksBEPFmJEtC9O8yZY26iKTEucoH6EnGlgQNNYvzNN81sBpW2EvFe6k8kv4wZA++8Az//bAa/jh1rdUQikh2u6C+KFSvGsmXLGDZsGH/++Se333471atXx27P1m02AMaPH8/o0aMv2R8fH0/hwoVzFF9CQkKOXudr1E5ZCww0A42//z6Y48cLcu21fwHw7LMNeeMNP4KCdnDPPQcsjtK96L3knJy005kzZ1wQSdZ0fSFXc+utZkLc3Llm2aXERFM9VkQ8S7a/sUdGRlK1alVuuOEGV8Qj4jUGDjSJ8fffh127oEoVqyMScR/qS8RVGjSA+vVh61ZT/nbECKsjEhFXUn8i+eGaa2DGDLOW4KRJ0KkT/FM9WUQ8hCv6i6ZNm9L0n1HwqamplClThurVqxMcHIzdbufIkSOZs8b3799PaGholv/OsGHDiI2NzXyekpJChQoViIyMJCgoKFsxORwOEhISiIiI0HrmV6B2ck6LFhe3k92ezrBhMH9+bbp1q8Ett2jtQL2XnJObdsqoopFfdH0hVzNuHCxfDj/8YCbEDRlidUQikl3ZSox/+umndOrUCbvdTlJSElu3bmXatGksXrzYVfGJeKwqVeC+++CDD8waTbNmWR2RiHtQXyKuZLOZkrddusDs2eYCRaN3RbyT+hPJT61bwwMPwKpV0Ls3rF9v1h4XEffnqv7i8OHDlC1bFoDnnnuOu+++m8qVKwPQvn175s6dy6hRo9i6dSvJyck0uUy91cDAQAIDAy/ZHxAQkONEW25e60vUTs7JaKchQ+DLL+Hdd208/LCdr76C4GCro3MPei85JyftlJ/tqusLcca118LkyaZa7Jgx8PDDULGi1VGJSHZk61J+6NChbNy4keB/vvXUr1+f7du3uyQwEW+QMeh7wQL44w9rYxFxF+pLxNXat4eyZeHIEVNWXUS8k/oTyW8zZkCRIvDZZ+b7vYh4htz2FzExMYSEhHDo0CHuueeezOT3yJEjqVq1KpUrV+bAgQPMnz8/8zUTJ05k06ZNhIeHEx0dzeLFi5U0E49ns8HChVC5Mhw4AF27wvnzVkclknd0fSHO6trVrC9+5gz07291NCKSXdlKjJ87d+6SMiIFNA1L5LLuugvq1IGzZ01JXxFRXyKuV6AA9OljtqdNg3RV+BPxSupPJL+FhkLGMsCDB8Nvv1kbj4g4J7f9RVxcHIcOHSItLY1ff/2VPXv2APDyyy/z448/smfPHl5//XWKFy+e+ZrSpUsTHx/P7t27+e677zJLrot4umLFYNkyKFgQPvwQxo61OiKRvKPrC3GWzWaqFNrtpqLUqlVWRyQi2ZGtxHjBggX5888/sdlsAOzcuZNChQo5/fo1a9ZQt25d6tSpQ40aNVi0aBEAR48epUWLFoSHh1OjRg02bNiQ+RpXHBPJLzYbDBpktmfOhL//tjYeEXeQ275ExBkxMRAYCNu2webNVkcjIq6g/kSsMGAA1K5tqkE9+aTV0YiIM9RfiOSt2rVhzhyz/eyzkJBgbTwieUX9hWRH9eoXrgf69YPTp62NR0Scl63E+IgRI4iMjCQ5OZkuXboQERHB888/79Rr09PT6dKlCwsXLiQxMZEPPviAmJgYTp06xdChQ2nQoAG7d+9mwYIFdOrUCYfDAeCSYyL56eGHTUnfX35RSV8RyF1fIuKs666Dzp3N9tSploYiIi6i/kSsYLfDvHlmAOxrr8G6dVZHJCJXo/5CJO9FR8Njj5nqXJ06wcGDVkckknvqLyS7hg8364snJYHeKiKew+nEeHp6OjVr1uSNN95g1KhRNGzYkM8//5y7777b6V9ms9k4ceIEACkpKQQHBxMYGMjSpUvp3bs3YNbuKFeuHOvXrwdwyTGR/FSgADzxhNmeMkUlfcW35UVfIuKsAQPM44oV5iJFRLyH+hOx0q23wuOPm+3evSE11dp4ROTy1F+IuM6MGVC3Lvz+O3TooCqJ4tnUX0hOFCkC06eb7cmT4fvvrY1HRJxjz87JERERfPvttzyecRcgG2w2G0uWLCEqKooiRYpw/PhxVqxYwalTp3A4HJQpUybz3LCwMJKSkjh27FieH8tKamoqqf+6m5GSkgKAw+HI9izzjPM1O/3KfK2dHn0Uxo61s327jU8+SaNxY+ey477WTjmhNnJObtopr9s2N32JSHbUqgVNm5rZfLNmwcSJVkckInlJ/YlYadw4M/Bq1y6YMMGUkhUR96T+QsQ1ChY0643XrQtffGFKCmckiEQ8kfoLyYkHHjA/q1ZBnz7mHtQ/1fhFxE05nRi32WyEhITw+++/U7JkyWz/orS0NJ5//nlWrFhB48aN2bp1Kw888ACJiYnZ/rfy2vjx4xk9evQl++Pj4ylcuHCO/s0ELbDjFF9qpyZNavHRR5V4+unfePrpLdl6rS+1U06pjZyTk3Y6c+ZMnv3+3PYlItk1YIC5KHn5ZRg50ozmFRHPp/5ErFasmFmq4+GHTZK8Y0eoUsXqqETkv9RfiLhWpUrw+utw//1mBnnDhqZvFPE06i8kN6ZPh7VrYf1685nYrZvVEYnIlWRrxvg111xDnTp1aNWqFddcc03m/ilTplz1tYmJifzyyy80btwYMOXNQ0JC2LFjB3a7nSNHjmTO8N6/fz+hoaEEBwfn+bGsDBs2jNjY2MznKSkpVKhQgcjISIKCgrLTRDgcDhISEoiIiCAgICBbr/UlvthON9wAH30EW7eWITy8FeHhV3+NL7ZTdqmNnJObdsqoopFXctOXiGTXfffB9dfDzz+bi5N/VlkRES+g/kSs1qEDLFxovuM//ri5GabZISLuR/2FiGvddx88/bQZKPbYY1C7NlSrZnVUItmn/kJyqmJFMxlj6FBTPeO++6BECaujEpHLyVZivGbNmtSsWTNHv6hChQocPnyYH374gWrVqrFnzx727t3LjTfeSPv27Zk7dy6jRo1i69atJCcn06RJEwCXHPuvwMBAAgMDL9kfEBCQ40Rbbl7rS3ypnWrUgHvvhdWrbcyeHcDMmc6/1pfaKafURs7JSTvldbvmpi8RyS5/f+jXDwYNMiN4Y2KUtBDxFupPxGo2m1mq46ab4JNP4I03oEsXq6MSkf9SfyHiemPGmHLqn3wCbdvCli3wr7yiiEdQfyG5MWgQvPaaWWf8mWdgzhyrIxKRy3E6Mf7tt99Ss2ZNateuzQ033JDtX1S6dGnmzZtHhw4d8PPz4/z588ycOZPQ0FAmTpxI165dCQ8Pp0CBAixevDgzEeOKYyJWiY2F1athwQJz0aCRY+JrctuXiOTEo4+akbs//AAJCRAZaXVEIpJb6k/EXVx/veljnn7afNdv1Urf8UXcifoLkfzh7w9vvQU332yuu3r2hDff1KBk8RzqLyS3ChSA2bPhrrsgLg4eeQRuvdXqqEQkK37OnDR79mzuvPNOJk6cyC233MLKlStz9Ms6duzIzp07+eabb9i5cyedOnUCTNI8Pj6e3bt3891339G0adPM17jimIhVmjaFWrXgzBmz3q2IL8mrvkQku4KCzAUJmPVgRcSzqT8Rd/O//0H16vDbbzBkiNXRiEgG9Rci+atUKVi6FOx2ePttU1VFxBOov5C80qSJWV88Pd0s5ZeWZnVEIpIVpxPjO3bs4Msvv2Tjxo28+OKLro5LxCvZbGYmCcCMGeBwWBuPSH5SXyJW6tfPfAZ/+CH89JPV0YhIbqg/EXdToICZFQLwyivw2WfWxiMihvoLkfx3xx0waZLZjo015dVF3J36C8lLkybBtdfC9u1mBrmIuB+nEuMBAQGEhoYCZq2NM2fOuDQoEW/28MNQujQkJ8M771gdjUj+UV8iVqpcGe67z2xPn25tLCKSO+pPxB3deSf06GG2e/eGv/+2Nh4RUX8hYpUBA6B9ezMZpH17U1FFxJ2pv5C8VKoUjB9vtocPh19+sTYeEbmUU2uM//XXX+zcuZP09HQAzp49e9HzWrVquS5CES8TGAh9+8KIEfDii9Cxo9ZcEt+gvkSsNmAAvP8+LFoEY8dC8eJWRyQiOaH+RNzVCy/AqlXw3XcwZQoMHWp1RCK+Tf2FiDVsNlNB5ZtvYNcu6NzZVO7y97c6MpGsqb+QvNazJ7z6KmzZYqpnvP221RGJyL85lRg/e/YsDzzwwEX7Mp7bbDZ+/vnnvI9MxIv17m2SMl9/DRs3QuPGVkck4nrqS8Rqd98NNWrAt9/C/PlmTVgR8TzqT8RdlShhBr526wajR0OHDnD99VZHJeK71F+IWCcoCJYvh9tug4QEGDPG9I0i7kj9heQ1Pz+YOxfq1YMlS0xlqYgIq6MSkQxOJcb379/v4jBEfEvJkuaG2bx58NJLSoyLb1BfIlaz2cys8Z49YcYMs2136puQiLgT9Sfizrp0gYUL4ZNP4IknYM0aVYcSsYr6CxFr1ahh7nt16WIS4w0aQMuWVkclcin1F+IKN99sqsZOn26uC3bsgIIFrY5KRMDJNcZFJO8NHGge33sP9uyxNBQREZ/RuTMEB8OBA6bcrYiISF6y2WD2bChQAD76CN55x+qIRERErNO5Mzz+uNnu0sVch4mI+IrnnoOyZWH3brPskoi4ByXGRSxSrRq0agXp6TBtmtXRiIj4hkKFICbGbE+damkoIiLipW68EYYNM9sDBsDJk9bGIyIiYqWXXoL69eGPP6BdO0hNtToiEZH8ERRkPgMBxo3T5DgRd6HEuIiFBg0yjwsWwPHj1sYiIuIr+vQxJdQ3boSvv7Y6GhER8UZDh0KVKnDkCDzzjNXRiIiIWCcw0FRQKVECtm27UEFRRMQXdOhg1hdPTTWl1dPTrY5IRJQYF7FQs2ZQsyacPg0vv2x1NCIivqF8eWjf3myrYoeIiLhCwYIwd67Znj0btmyxNh4RERErVawIb7xhlhyZOxcWL7Y6IhGR/GGzwcyZZqmljz+G5cutjkhElBgXsZDNdmHW+IwZ4HBYG4+IiK8YMMA8vv02/PqrtbGIiIh3atoUunY1s0JiYiAtzeqIRERErNOiBYwYYbZ79YJvv7U2HhGR/FKliqkoBaZqxqlTloYj4vOUGBexWKdOULo0HDoEy5ZZHY2IiG+47TZo0AD+/vvCjD4REZG8NnkyXHstJCbC9OlWRyMiImKtkSMhMhLOnoW2bSElxeqIRETyx7BhcMMNkJwMzz5rdTQivk2JcRGLBQbCE0+Y7SlTtM6IiEh+yZg1Pnu2WetJREQkr5UqBS+8YLZHjoSkJGvjERERsZK/vympXqEC7NoFjz6q+2Ai4hsKFoRZs8z29OnwzTfWxiPiy5QYF3EDvXubBPm2bfD551ZHIyLiG9q2NeuNHz0KS5ZYHY2IiHirRx+FO+6A06ehf3+roxEREbFWyZLwzjsQEGDW2p061eqIRETyxz33QPv2cO4cPP44nD9vdUQivkmJcRE3cN110K2b2Z4yxdpYRER8RUDAhYodU6dqpoKIiLiGnx/ExYHdDu+9B+++a3VEIiIi1rrtNnjpJbM9eDB89pm18YiI5JeXXoJrroHNm+HVV62ORsQ3KTEu4iYGDjSP774Le/daGYmIiO/o1cuUs9q+XTdjRETEdW66CZ56ymz36wenTlkbj4iIiNX69IGOHSEtDTp0gF9/tToiERHXK18exowx20OGwO+/WxuPiC9SYlzETVSvDi1amBmL06dbHY2IiG8IDoauXc32tGnWxiIiIt5t+HCoVAkOHYJnn7U6GhEREWvZbDBvHlSrBocPX0iSi4h4u379oHZt+OMPUzVDRPKXEuMibiQ21jzOnw8nTlgaioiIz8hY73XlSti/39JQRETEixUuDLNnm+1p00y1EhEREV92zTVmnfEiRWDdOhg50uqIRERcz26HOXPM9oIFqmAokt+UGBdxI82bQ40acPq0GTW7fr2NDRvKs369jXPnrI5ORMQ71ahhPn/Pn4dZs6yORkREvFmLFqZc7PnzEBODvuOLiIjPq1bNTBABGD8e3n/f2nhERPLD7bdDz55m+/HHweGwNh4RX6LEuIgbsdlg0CCz/fTTEBFhZ8qUekRE2AkLgxUrLA1PRMRrDRhgHl9+Gf7809pYRETEu02dCkFBsHUrzJ1rdTQiIiLWe+ihC5W8unaFn3+2Nh4RkfwwfjyULAnffmuuEUQkfygxLuJmChc2j/+dPZKcDO3aKTkuAhAZGUmtWrWoU6cOjRo1Yvv27fz111+0bt2aKlWqULt2bSIiItizZ0/ma44ePUqLFi0IDw+nRo0abNiwwalj4htatYLKleHkSXjtNaujERERb1a2rLkJBjBsGPzyi7XxiIiIuINJk8wMypMnzf2vv/6yOiIREdcKDoYXXjDbo0bBwYOWhiPiM5QYF3Ej587BU09lfSw93TwOHKiSiyJLly5lx44dJCYmEhsbS3R0NAC9evXip59+4ptvvuHBBx/ksccey3zN0KFDadCgAbt372bBggV06tQJxz91iq50THyDn9+FGQrTppkStyLi3VJTU+nbty/h4eHUrFmTLl265GqQlUh2xMTArbfCqVPm+72IiIivK1AAli41sye3b4d+/ayOSETE9bp3hzvvhDNnLlQzFBHXUmJcxI1s3AiHDl3+eHq6GTm2cWP+xSTijooXL565ffLkSWw2GwULFqRVq1bYbDYAGjRowP79+zPPW7p0Kb179wagfv36lCtXjvXr11/1mPiO6GhT2nbXLvj4Y6ujERFXGzp0KDabjV27drFz504mT54M5HyQlUh2+PtDXJx5fOcd+PBDqyMSERGxXkgIvPWWWWrwlVdgwQKrIxIRcS0/P5gzB+x2WLkSVq+2OiIR72e3OgARueDw4bw9T8SbdevWjXXr1gGwZs2aS45PmzaNBx98EIBjx47hcDgoU6ZM5vGwsDCSkpKueCwrqamppKamZj5PSUkBwOFwZCs5knGuEipXlp/tVLAgPPKIH9Om+TN16nmaN/ec8hx6PzlH7XR1uWkjT2rX06dPM3/+fA4dOpQ5oCqjH2jVqlXmeQ0aNMhMmIMZSJUxg/zfA6maN2+ej9GLt6hTx8wKmTIF+vSB7767sKySiIiIr2reHMaMgREjTP94882mzxQR8VY1asCgQWZJib59oWlTXReIuJIS4yJupGzZvD1PxJu99s9C0IsWLWLIkCEXJcfHjRvHnj17+L//+788/73jx49n9OjRl+yPj4+ncA6+tSYkJORFWF4vv9qpWrXC2GzNiY/3Iy5uHRUq/Jkvvzev6P3kHLXT1eWkjc6cOeOCSFxj7969lChRgnHjxrF27VoKFSrEqFGjaNas2UXnOTvIKit5NZAq4zX/fpSseWI7DR8O77xjZ/9+G6NGnWPsWNeu5eGJbWQFtZNzctpOalcRuZqnn4bNm2HNGrPe+LZt8K/CcSIiXmfkSHj7bdi/H8aONT8i4hpKjIu4kUaNTNmo5OQLa4r/m81mjjdqlP+xibir7t2707t3b44dO0ZwcDCTJ09mxYoVrF27NjNRHRwcjN1u58iRI5kJjf379xMaGnrFY1kZNmwYsbGxmc9TUlKoUKECkZGRBAUFOR23w+EgISGBiIgIAgICcvrnez0r2mn16nTef9/Gzp13ERPjGYuN6/3kHLXT1eWmjTISv54gLS2NAwcOUL16dSZMmMD27duJiIjgu+++o3Tp0kDuB1nl9UAq0KAOZ3laO3XtWoZx425jyhQbISEbqVjxlMt/p6e1kVXUTs7Jbjt50kAqEbGGnx+8/jrUrQt795plr1auNPfFRES80TXXwLRpEBVlZo537QpVq1odlYh3UmJcxI34+5sOsF0782X/v8nx9HSYOtWcJ+KrTpw4wZkzZyhXrhwA7777LsHBwZQoUYIpU6bw1ltvsXbt2ovWIQdo3749c+fOZdSoUWzdupXk5GSaNGly1WP/FRgYSGBg4CX7AwICcpRoy+nrfE1+tlNsLLz/Prz+uj/jx/tTokS+/No8ofeTc9ROV5eTNvKkNg0NDcXPz4/OnTsDcPPNN1OpUiV27txJ6dKlsz3IKit5NZAKNKjDWZ7aTq1awbffnmfVKj/efvsu1q07h5+fa36Xp7ZRflM7OSen7eRJA6lExDolSsCyZXDHHfDeeyZRNHiw1VGJiLhO69Zw771mnfE+feD//k8DgkRcQYlxETcTFWW++A8YAIcOXXysaFGoV8+auETcxcmTJ2nfvj1nz57Fz8+P6667jg8++IDk5GT+97//cf3119O0aVPAJLG//PJLACZOnEjXrl0JDw+nQIECLF68OPMG3pWOie9p0gRq1YIdO+CVV3TzRcQblSxZkmbNmvHxxx/TqlUr9u3bx759+6hWrVqOB1n9V14PpMrta32JJ7bTzJnwySewebMfr73mR8+erv19nthGVlA7OSe77aQ2FRFn1asH06dD794wbBjcdpu5XhMR8UY2G8yYYa4L1q2DN9+Ef8Zyi0geUmJcxA1FRcGDD8K6dWl8+GEid99dhxEj7GzfbmaTb9gABQtaHaWINSpWrMiWLVuyPJae1RoE/yhdujTx8fHZPia+x2aDgQPh0UdNoiI2Fuz6xiTidebOnUuPHj0YMmQIfn5+xMXFkZ6enuNBViK5UaECjBlj+pwhQ8y1QKlSVkclIiJivV69YNMmeO01eOgh2L4dypa1OioREdeoVAmGD4dnnjHXBvfeC/8Zry0iuaTbvCJuyt8fmjRJ5/TpZCIja3PTTXDLLbB1K/TvD/PmWR2hiIj36tjRJCYOHjRr2bVvb3VEIpLXrr/+etatW3fJ/pwOshLJrX79zE3/xET43//M2qoiIiK+zmaDOXNMQnznTpMc/7//A41NFBFv9eST5lrgxx9NgnzWLKsjEvEuLlq5TETyWlgYvPWWuSB4+WVT3ldERFyjYEGIiTHb06ZZG4uIiPgGu90MfrXZYPFic9NfREREoHBhs+xg0aKwcSM8/bTVEYmIuE6BAheS4XPmwLZt1sYj4m2UGBfxIJGR8PzzZvuJJ+Ay1aRFRCQPPP64mYXw+ee6CBERkfxRv775ng+mH/rrL2vjERERcRdVqsDChWZ78mRYscLScEREXOruu8364unp0Ls3nDtndUQi3kOJcREPM3QotG4Nf/9t1hv/7TerIxIR8U7lykGHDmZbs8ZFRCS/PP+8WTt1924YP97qaESkf//+hIWFYbPZSExMzNy/Zs0a6tatS506dahRowaLFi3KPHb06FFatGhBeHg4NWrUYMOGDRZELuJ9oqLMciMAjzxi+koREW/14otQrBh89RXMnWt1NCLeQ4lxEQ/j5weLFpmRsgcPwsMPQ1qa1VGJiHingQPN45IlcPiwpaGIiIiPKFbswoCsCRPgp5+sjUfE17Vr147PPvuMihUrZu5LT0+nS5cuLFy4kMTERD744ANiYmI4deoUAEOHDqVBgwbs3r2bBQsW0KlTJxwOh1V/gohXGT8e7rwTUlKgbVs4c8bqiEREXKN0aRg3zmw//TQcOWJtPCLeQolxEQ8UFAQrV0KRIvDJJ/DMM1ZHJCLinerVg4YNweEw6zqJiIjkh3btoGVLUyWqd29TQlFErNG4cWNCQkIu2W+z2Thx4gQAKSkpBAcHExgYCMDSpUvp3bs3APXr16dcuXKsX78+32IW8WYBAWbgcunSsHMn9OmjflJEvFdMjLk3lZJyoWKGiOSO3eoARCRnqleHBQtMmd8XXjDrEbZrZ3VUIiLeZ+BA2LTJlK16+mkoWNDqiERExNvZbDBrFtx0E3z6Kbz+OnTrZnVUIpLBZrOxZMkSoqKiKFKkCMePH2fFihUUKFCAY8eO4XA4KFOmTOb5YWFhJCUlZflvpaamkpqamvk8JSUFAIfDke1Z5hnna3b6lamdnOPO7XTddbB4sY177vFn0SIbDRqk0aNH/mfH3bmN3Elu2kltK77O399M1Lj1VnjzTXj0UWjWzOqoRDybEuMiHqx9e3jySZg82aytdNNNUK2a1VGJiHiXNm2gQgWzfMVbb5nPWxEREVerVAmefRaGDjWzQ+69F4KDrY5KRADS0tJ4/vnnWbFiBY0bN2br1q088MAD7Ny5E5vNlq1/a/z48YwePfqS/fHx8RQuXDhH8SUkJOTodb5G7eQcd26nLl0q89prN9Gvn43Tpz+jcuWTlsThzm3kTnLSTmdUK1+EevVMdYxZs+CJJ+Cbb+CfIjUikgNKjIt4uPHj4auvYN06k7zZssWUWhcRkbxht5sLj6FDzZqv0dFmJp+IiIirxcbC4sXw7bcweDDMn291RCICkJiYyC+//ELjxo0BUy49JCSE7du3ExERgd1u58iRI5mzxvfv309oaGiW/9awYcOIjY3NfJ6SkkKFChWIjIwkKJsX9w6Hg4SEBCIiIggICMjhX+f91E7O8YR2atkS/vjjPB984M/MmU344os0SpTIv9/vCW3kDnLTThlVNER83fPPw7Jl8NNPZpKcllYVyTklxkU8nN0Ob78Nt9xiOsboaFi+XEkbEZG81LMnjB5tRuWuXw933WV1RCIi4gsCAiAuDu64A1591XzXb9TI6qhEpEKFChw+fJgffviBatWqsWfPHvbu3cuNN94IQPv27Zk7dy6jRo1i69atJCcn06RJkyz/rcDAwMy1yf8tICAgx4m23LzWl6idnOPu7fT66+ae2M8/2+jRI4BVq8DPL39jcPc2chc5aSe1q4hRvDhMmQKdO5skeceOcP31Vkcl4pny+WuCiLhCqVImGV6gAKxcCRMnWh2RiIh3KVHiwtqu06ZZG4uIiPiWhg3NAC2AmBj4+29r4xHxNTExMYSEhHDo0CHuueceKleuTOnSpZk3bx4dOnSgdu3atGnThpkzZ2bOCp84cSKbNm0iPDyc6OhoFi9erOSOiIsUL27uiRUsCKtXm8qKIiLeqGNHuPtu+Osv6NcP0tOtjkjEMykxLuIlbr0VZs402888A1reSEQkb/Xvbx7few9+/tnaWERExLdMmADXXQc//GBKJ4pI/omLi+PQoUOkpaXx66+/smfPHgA6duzIzp07+eabb9i5cyedOnXKfE3p0qWJj49n9+7dfPfddzRt2tSq8EV8Qp06Zu1dgJEj4f/+z9JwRERcwmYzn3UBAbBmjZkgJyLZp8S4iBfp2RN69IDz580IsgMHrI5IRMR7VK8OkZFmRG7GQCQREZH8UKIEvPSS2X7uOdi719p4RERE3M2jj5qfjHtiyclWRyRysY8++oh69epRq1YtGjRowDfffAPA0aNHadGiBeHh4dSoUYMNGzZYHKm4s6pVYfBgsz1gAPz5p7XxiHgiJcZFvMzMmVCvHhw7BlFRcPas1RGJiHiPAQPM4/z5cOqUtbGIiIhv6dQJmjc3pRP79FHpRBERkf+aOdPMHv/tN2jfXsuPiPs4fvw4nTt3ZtGiRezYsYNJkybRuXNnAIYOHUqDBg3YvXs3CxYsoFOnTjgcDosjFnf2zDNQqRIcOgSjR1sdjYjnUWJcxMsULGjWVipZEr7+Gp54QjfNRETySosWUKUKpKTAwoVWRyMiIr7EZoPZsyEwEOLjYckSqyMSERFxL4UKmXtixYrB5s0XZlWKWG3v3r0EBwdz0003AdCoUSOSkpL4+uuvWbp0Kb179wagfv36lCtXjvXr11sZrri5QoUuVDJ86SXYudPaeEQ8jd3qAEQk74WGwttvm5K/CxbAbbdBTIzVUYmIeD4/P7PWeN++MGOGGXzkp2GGIiKST8LD4emn4dlnYeBAM2CreHGroxIREXEf118Pr70GDz4I06ZBw4bQoYPVUYmvCw8P59ixY2zatImGDRuyatUqTp06xb59+3A4HJQpUybz3LCwMJKSkrL8d1JTU0lNTc18npKSAoDD4cj2LPOM8zU7/fLcuY0iIqB1a3/efdeP3r3P88kn5yy7P+XO7eRO1E5Xl5s2ys5rlBgX8VLNmsG4cTB0KPTrB7VrQ4MGVkclIuL5unc3Zat274YPP4R777U6IhER8SVDhsCbb8JPP5kk+ezZVkckIiLiXh54wNwPmzABevSAWrXMurwiVilWrBjLli1j2LBh/Pnnn9x+++1Ur16dP7O5QPT48eMZnUXt7Pj4eAoXLpyj2BISEnL0Ol/irm10770F+eijZmzaZOfJJ7+hefOsB1TkF3dtJ3ejdrq6nLTRmTNnnD5XiXERLzZ4MGzdaspItWsHX30FpUtbHZWIiGe75hp47DF48UWYOlWJcRERyV+BgTB3LjRtah67ddMAWBERkf967jn48ktYtw7atjXb11xjdVTiy5o2bUrTpk0BM/O7TJky3HHHHdjtdo4cOZI5a3z//v2EhoZm+W8MGzaM2NjYzOcpKSlUqFCByMhIgoKCshWPw+EgISGBiIgIAgICcvhXeTdPaKNjx2wMHQpvvVWHZ56pQXBw/sfgCe3kDtROV5ebNsqooOEMJcZFvJjNZkqpf/cd/PgjPPwwJCSAXf/ni4jkSt++Zh2ntWvNZ+w/y4SJiIjki7vuMhVMFi0ySyZt2wa6tyIiInKB3Q5vvQU33wzff2/6y8WLzb0yESscPnyYsmXLAvDcc89x9913U7lyZdq3b8/cuXMZNWoUW7duJTk5mSZNmmT5bwQGBhIYGHjJ/oCAgBwn2nLzWl/hzm0UG2s+27791saIEQG8/LJ1sbhzO7kTtdPV5aSNsnO+VsUU8XJFi8LKlWZU7KefmlJSIiKSO2Fh0Lq12Z42zcpIRETEV02eDCVKwI4d6otERESyUro0LFkC/v5mGZI5c6yOSHzZyJEjqVq1KpUrV+bAgQPMnz8fgIkTJ7Jp0ybCw8OJjo5m8eLFSpqJ0wICTBUpgFdegU2brI1HxBMoMS7iA6pWNbNJwJT+XbLE2nhERLzBgAHm8fXX4dgxa2MRERHfU7IkTJpktp99Fg4csDYeERERd9SoEbzwgtkeOBC2bLE0HPFhL7/8Mj/++CN79uzh9ddfp3jx4gCULl2a+Ph4du/ezXfffZdZbl3EWXfcAY8+arYffxzS0qyNR8TdKTEu4iOiomDIELPdo4cp/SsiIjnXqJEpy/fXXzBvntXRiIiIL3rkEdMfnTkD/fpBerrVEYmIiLifQYPMOuMOB7RrB7//bnVEIiJ5a+LEC9Wkpk+3OhoR96bEuIgPef55aNYMTp+GNm3g5EmrIxIR8Vw224VZ47NmmZssIiIi+clmM6UTAwLg/ffh3XetjkhERMT92Gzw6qsQHg4HD0KXLnDunNVRiYjknZIlTXIcTDWpQ4esjUfEnSkxLuJD7HZ46y0IDYXdu6FbNzh/3uqoREQ818MPQ6lSkJwMK1ZYHY2IiPii6tVh8GCz3a8fnDplbTwiIiLuKCgIli+HQoXg44/N5BEREW/y6KNw++3w55+mUoaIZE2JcREfc9115kIgMBBWrYLx462OSETEcwUGmvWbAKZOtTQUERHxYc88AzfcYAZqjRhhdTQiIiLuqWZNiIsz26NHw0cfWRuPiEhe8vMz1aT8/WHZMn3GiVyOEuMiPqhePZg922yPGGFGyoqISM707m1K2H7xBXz5pdXRiIiILypU6ML3+xkz4OuvrY1HRETEXXXtCjExkJ4OnTtDUpLVEYmI5J1atS4s+/fEE3D2rLXxiLgjJcZFfNSjj0KvXuZCoGNH2LfP6ohERDxTmTLmcxRg2jRrYxEREd8VGWmW+Dh/3tzw19qpIiIiWZs6FW65Bf74A9q3h9RUqyMSEck7o0ZB+fLw88+qFiuSFSXGRXzY9Olw661w/DhERcGZM1ZHJCLimTJG477zjiljK+KJzp2D9ettbNhQnvXrbUqqiXigl16CYsVg27YLM8hFRETkYgULmjLD114LW7ZAbKzVEYmI5J2iRS8s9zdxIuzaZWk4Im5HiXERHxYYaC4ErrsOEhPNOrnp6VZHJSLieerWhUaNIC0N5syxOhqR7FuxAsLCICLCzpQp9YiIsBMWZvaLiOcoUwYmTDDbzzyjwVoiIiKXExYGixeb7dmz4c03LQ1HRCRPtW0LLVrA33+bkuq65y9ygRLjIj6uQgVYsgT8/OC115TQERHJqYxZ43Pnag0n8SwrVkC7dnDo0MX7k5PNfiXHRTxLr17QoAGcOnWhbxIREZFLtWoFw4eb7Z494bvvrI1HRCSv2Gwwc6apkLF2rbn/LyJGviXGjx07Rp06dTJ/qlSpgt1u548//uCuu+6iUqVKmcdeeumlzNcdPXqUFi1aEB4eTo0aNdiwYUOuj4nIxZo2NWVVAAYOhE2bLA1HRMQjPfggVKwIx45ptoF4jnPnTOIsq9HjGfsGDtRaxSKexM8P4uLA3x+WL4fVq62OSERExH2NGgXNm5vlBdu2NQPLRES8wQ03wNNPm+1Bg+DkSWvjEXEX+ZYYDw4OJjExMfOnV69etGzZkhIlSgDw0ksvZR4bNGhQ5uuGDh1KgwYN2L17NwsWLKBTp044HI5cHRORS/3vf9C+PTgcZnbYkSNWRyQi4lnsdujb12xPnaoyVeIZNm68dKb4v6Wnw8GD5jwR8Ry1apmbX2BKJ54+bW08IiIi7srf3wxsDgmBn36CHj10LSci3mPwYKhSxdzrHzHC6mhE3INlpdTnz59Pjx49rnre0qVL6d27NwD169enXLlyrF+/PlfHRORSNhu8+ipUrw6HD0OHDiZJLiIizuvRAwoXhm+/hXXrrI5G5OoOH87b80TEfYwaBaGhcOAAjBljdTQiIiLu67rrYOlSM9j5nXdg+nSrIxIRyRuBgTBrltmeNQu+/traeETcgd2KX7pp0yaOHz/Offfdl7lv6NChjBgxgurVqzN+/Hiuv/56jh07hsPhoEyZMpnnhYWFkZSUlONjWUlNTSU1NTXzeUpKCgAOhyPbs8wzztfs9CtTOzknv9spMNCsN9KwoZ2NG208+eQ5Jk8+ny+/O6f0XnJObtpJbSvivGuvhehomD3bzBq/+26rIxK5srJl8/Y8EXEfRYqYdQUfeABefBE6d4Zq1ayOSkRExD3dfrvpLwcMgCefhPr1oWFDq6MSEcm95s3h4Yfh7behd2/YvNlUyxDxVZYkxufPn0+3bt2w282vf/3116lQoQLp6enMmjWL++67j++//z7f4hk/fjyjR4++ZH98fDyFCxfO0b+ZkJCQ27B8gtrJOfndTk88UYYJE25j+nR/7PbtNG6cnK+/Pyf0XnJOTtrpzJkzLohExHv1728S4x98AHv3mjWdRNxVo0ambOTlyqnbbOZ4o0b5G5eI5I3774eoKFixAnr1gjFjbGzYUJ4iRWw0baobYiIiIv/Wrx9s2mQmjbRvD9u3Q6lSVkclIpJ7U6bAmjWwdSu8/LJJkIv4qnxPjP/5558sXbqUrVu3Zu6rUKECADabjb59+/Lkk09y7NgxgoODsdvtHDlyJHP29/79+wkNDc3xsawMGzaM2NjYzOcpKSlUqFCByMhIgoKCsvX3ORwOEhISiIiIICAgIFuv9SVqJ+dY1U6tWkF6+jkmTvRn7txb6Ny5NjVr5tuvzxa9l5yTm3bKqKIhIs658UZo2RI+/BBmzDAzx0Xclb+/qWzw2muXHrPZzOPUqUqeiXiyadPMTbAvv4R77rED9ZgyxQx6mTbNJM5FRETEfP995RX45hv48Ufo1Ak+/ljfhUXE85UtC88/byZzDBsGbdpA6dJWRyVijXxPjC9ZsoTatWtTtWpVANLS0jh27Bil//m/cPny5ZQuXZrg4GAA2rdvz9y5cxk1ahRbt24lOTmZJk2a5OrYfwUGBhIYGHjJ/oCAgBwn2nLzWl+idnKOFe00dqwZGRsfb6NDhwC2bYPixfM1hGzRe8k5OWkntatI9g0YYBLjr75q1nXN5jg7kXzz6afwxhtmu3hxOHHiwrGQEJMUV9JMxLNt2QJ//XXp/uRkaNcOli3T/+ciIiIZrrkGli+HW2+F//s/ePZZk0wSEfF0ffrAwoVmnfGnnsp6gLyIL/DL7184f/58evTokfk8NTWVe++9l5o1a1K7dm1mz57NqlWrMo9PnDiRTZs2ER4eTnR0NIsXL85M0uT0mIhcnb8/vPkmhIWZUsBdu8J5915uXETEbURGQtWqcOoULFhgdTQiWUtOhocegnPnTD//22+QkJBGbOw2EhLS2LdPyTIRT3funBmslZX0dPM4cKA5T0RERIzq1U2pYTATR1avtjYeEZG84O8Pc+aY6hivv24Gyov4onyfMb5p06aLnhcpUoRt27Zd9vzSpUsTHx+fp8dExDnBwWaU7B13mLVyn38eRo60OioREfdns5lExOOPw/Tp0Levyu+Je/n7b7Nu4tGjUKsWzJ0Ldjs0aZLO6dPJNGlSW+9ZES+wcSMcOnT54+npcPCgOe+uu/ItLBEREbfXsaNZb3zmTOjSxcywrFTJ6qhERHLn1lshJsbcA+jTBxIToUABq6MSyV/5PmNcRDxL3bqmowQYNcqsTygiIlfXtaspTf3zz5phIO7nySdh82YoVswMgitc2OqIRMQVDh/O2/NERER8yYsvwm23meWG2rXLemkSERFPM24clCoFP/wAU6ZYHY1I/lNiXESuqnt3M+sxPR06dzal1UWsFBkZSa1atahTpw6NGjVi+/btAPTv35+wsDBsNhuJiYkXvWb37t00bNiQKlWqUL9+fb777junjonkVJEi0KuX2Z42zdpYRP7tjTdgxgyz/frrULmytfGIiOuULZu354mIiPiSAgVg6VJTUfHrry+/PImIiCe59lqYPNlsjxkD+/dbGo5IvlNiXEScMnUqNGhgRslGRcGZM1ZHJL5s6dKl7Nixg8TERGJjY4mOjgagXbt2fPbZZ1SsWPGS18TExNCrVy927drFkCFDMl9ztWMiufHEE6aE+iefwI4dVkcjAjt3Xhiw8cwzcP/91sYjIq7VqBGEhJglPi4nJMScJyIiIpcKDYU33zR96bx5sGiR1RGJiORely5mKaWzZ6F/f6ujEclfSoyLiFMKFIBly0yZlR07zE319HSroxJfVbx48cztkydPYvvnbm/jxo0JCQm55PyjR4+ybds2unTpAkDbtm05ePAge/bsueIxkdwKDTWDicCsNS5ipZMnLwxui4iA0aOtjkhEXM3f/0LVksslx8uVu3LiXERExNdFRprlBQF699agZxHxfDYbzJ4Ndju8/z68957VEYnkH7vVAYiI5yhf3pSQatbMlGG97Tbo18/qqMRXdevWjXXr1gGwZs2aK5578OBBypYti91uuj2bzUZoaChJSUkUK1bssscqZ1FfODU1ldTU1MznKSkpADgcDhwOh9PxZ5ybndf4Im9opyeesPHOO3YWL05nzJg0rrsu73+HN7RTfvDldjp/Hrp29WfPHj9CQ9NZtCiN8+fN/n/LTRv5YruKeIKoKDPAdcAAOHTowv5SpeCPP2DLFhg5Ep5/3roYRURE3N3w4bB5M3z0EbRtC19+CV9/bWPDhvIUKWKjaVMzIE1ExFNUqwZPPgkTJphZ482bm2UBRbydEuMiki1NmsCkSRAba35uvhnuvNPqqMQXvfbaawAsWrSIIUOGXDU5nlfGjx/P6CymWcbHx1O4cOFs/3sJCQl5EZbX8+R2Sk+HG25owt69xRk8eA/t2+9y2e/y5HbKT77YTsuXh/P++9Wx28/Rr99nbNly4orn56SNzmidFRG3FRUFDz4I69al8eGHibRsWYemTe288QZ07w5jx5obY507Wx2piIiIe/Lzg8WLoW5d2LPHTB756y87UI8pU8zSJNOmXagYJiLiCUaMgLfeggMH4LnnTJJcxNspMS4i2TZwoJlZ8vbb0L49fP01lC1rdVTiq7p3707v3r05duwYwcHBWZ5ToUIFDh8+TFpaGna7nfT0dJKSkggNDSUoKOiyx7IybNgwYmNjM5+npKRQoUIFIiMjCQoKcjpuh8NBQkICERERBAQEZO+P9iHe0k4nTth45BFYt64qcXGVKVAgb/99b2knV/PVdvrkExtvvGGmr8yYkU6PHg0ve25u2iijgoaIuCd/f2jSJJ3Tp5Np0qQ2/v7QrRv88IO5AdajB1x/Pdx+u9WRioiIuKfgYHjiCRgyBP766+JjycnQrp2p0qLkuIh4isKFYcYMeOABePFF6NoVbrrJ6qhEXEuJcRHJNpsNXnkFvv3W/LRvD598Qp4nekSycuLECc6cOUO5cuUAePfddwkODqZEiRKXfU2pUqWoW7cuixcvJjo6muXLlxMSEpJZKv1Kx/4rMDCQwMDAS/YHBATkKNGW09f5Gk9vp06dYNgw+OUXG++9F0CnTq75PZ7eTvnFl9rp4EHo0sWUTH/kEYiJsTu1lnBO2shX2lTE24wdCz/+CO++C61bw9atcJnxgSIiIj7t3DmTQMpKerq5XzZwoKnSorLqIuIp7r/ffG699x706QOffopT9w1EPJWf1QGIiGcqUgRWrIBixeDzz816JCL54eTJk7Ru3ZqaNWtSu3ZtZs6cyQcffIDNZiMmJoaQkBAOHTrEPffcc1FyOy4ujri4OKpUqcKECRNYsGCBU8dE8kKBAubiAmDqVHPTRMTVUlPNrJXffzdLn8yapYtbEbmUnx+8/jrUrg1Hj5rZIn/+aXVUIiIi7mfjRjh06PLH09PNwNSNG/MvJhGRvDBtmpk9vmED/LN6pYjX0oxxEcmx8HCzvtL995sRs7feamalibhSxYoV2bJlS5bH4uLiLvu6G2+8kc2bN2f7mEheiYmB5583M/G++EKlasX1Bg0yS59cey0sXw6FClkdkYi4q2uugVWroH59+OYb851+xQqTNBcRERHj8OG8PU9ExF1UrAgjR8LQoWYC3P33wxWKc4p4NF3mikiu3HcfjBhhtnv1gsRES8MREXFbpUqRWUJ92jRrYxHvt2gRzJljZoi/8QZUqmR1RCLi7kJDTTn1wEBTRvGZZ6yOSERExL2ULZu354mIuJNBg6B6dVN17umnrY5GxHWUGBeRXHv2WWjZEs6ehago+OMPqyMSEXFPAwaYx2XLTIk9EVdITITevc12Rh8tIuKM22+H+fPN9oQJKqMoIiLyb40aQUjIlZcnCgkx54mIeJoCBcwAe4B58+DLL62NR8RVlBgXkVzz9zcl1StVgn37TOnF8+etjkpExP3UqQNNmsC5czB7ttXRiDc6fhzatoW//jIJ8YyqLiIizurc+cIMkZ49YdMma+MRERFxF/7+F6p/XS45ft115npPRMQTNW4M3btDeroZcJ+WZnVEInlPiXERyRMlSph1CAsWhA8/hNGjrY5IRMQ9DRxoHufNgzNnLA1FvMz589C1K/z8M4SFmUFrWh/48lJTU+nbty/h4eHUrFmTLl26ALB7924aNmxIlSpVqF+/Pt99913ma650TMSbPPcctGkDf/8NrVvDgQNWRyQiIuIeoqJMBbDy5S/eX6qUmW25fTt066bkuIh4rkmT4NprTTW6WbOsjkYk7+lWmYjkmTp14OWXzfaYMfD++5aGIyLilu6/31TY+OMPk7gUySvjxsHq1WZ94OXLzaA1ubyhQ4dis9nYtWsXO3fuZPLkyQDExMTQq1cvdu3axZAhQ4iOjs58zZWOiXgTPz94/XXz/f6330zfdeqU1VGJWKN///6EhYVhs9lITEwE4NixY9SpUyfzp0qVKtjtdv74Z12xo0eP0qJFC8LDw6lRowYbNmyw8C8QkbwWFQX790NCQhqxsdtISEjjl1/gvfcgIACWLIE+fcyMSxERT3PddWZZJTBV6H75xdp4RPKaEuMikqe6dIG+fc12166wZ4+18YiIuBt//wufk9Om6WaJ5I2PP4aRI832nDlQt6618bi706dPM3/+fMaOHYvtnzqYZcqU4ejRo2zbti1z9njbtm05ePAge/bsueIxEW9UpAisWgVlysDOndCpk2a/iW9q164dn332GRUrVszcFxwcTGJiYuZPr169aNmyJSX+GZU2dOhQGjRowO7du1mwYAGdOnXC4XBY9SeIiAv4+0OTJuk0bpxMkybp+PtDixbwxhtmgNm8eTBsmNVRiojkzGOPwW23mcGxsbFWRyOSt+xWByAi3ufFF+Hrr816hG3awBdfmBtrIiJi9OgBzz4L338Pa9dCRITVEYkn27/fJKzS06FXL3jkEasjcn979+6lRIkSjBs3jrVr11KoUCFGjRpF8eLFKVu2LHa7uUyy2WyEhoaSlJREsWLFLnuscuXKl/yO1NRUUlNTM5+npKQA4HA4sp0cyThfSZUrUztdXXbbqEwZWLbMRrNm/nzwgY3Bg88xYcJ5V4boFvReck5O28nT2rVx48ZXPWf+/PmMHz8+8/nSpUszB07Vr1+fcuXKsX79epo3b+6yOEXEPbRvDydPQs+eMHEiFC8OQ4daHZWISPb4+ZlB9/XqmSoYPXro3pV4DyXGRSTPFSgA77wDt9wC335rRpi9+Sb8MyFLRMTnFSsG0dEwc6aZNa6LC8mpv/6Cdu1Maf569cz7Sa4uLS2NAwcOUL16dSZMmMD27duJiIhg9erVefY7xo8fz+jRoy/ZHx8fT+HChXP0byYkJOQ2LJ+gdrq67LbRE0+UZ8qUekyZ4o/D8Q3Nmh10UWTuRe8l52S3nc6cOeOiSKyxadMmjh8/zn333QeYMusOh4MyZcpknhMWFkZSUlKWr9dAqvyndnKO2unqLtdG3bvDH3/4MWSIP8OGQdGi5+jVy/sHll1Obt5Lev+JWOfmm6FfP3OfoU8fU0WqYEGroxLJPSXGRcQlypUzyfGmTeHtt03plYEDrY5KRMR99O9vEuOrV8Pu3RAebnVE4on69YOvvoLgYFi2TBepzgoNDcXPz4/OnTsDcPPNN1OpUiUOHDjA4cOHSUtLw263k56eTlJSEqGhoQQFBV32WFaGDRtG7L9qzqWkpFChQgUiIyMJCgrKVrwOh4OEhAQiIiIICAjI+R/u5dROV5fTNmrVCgoWPMe4cf7MnXszUVG1uOMO710LRO8l5+S0nTISv95i/vz5dOvWLbOiSHZpIJV11E7OUTtdXVZtdOON0L59Vd5550b69fPj55+307hxsgXRuY+cvJe8bTCViKcZM8bc49+zx1TBePZZqyMSyT0lxkXEZe68E6ZMMcmfJ580o8yaNLE6KhER9xAeDvfeaxLj06fDjBlWRySeZv58eOUVU5HlzTfhX0ufylWULFmSZs2a8fHHH9OqVSv27dvHvn37uOOOO6hbty6LFy8mOjqa5cuXExISklkq/UrH/iswMJDAwMBL9gcEBOQ40Zab1/oStdPV5aSNnnsOdu0ypdXbt7ezZQtUquSiAN2E3kvOyW47eVOb/vnnnyxdupStW7dm7gsODsZut3PkyJHMWeP79+/XQCo3onZyjtrp6q7WRi1bQsmS55gzx5/p02+hUaM63Huv9w4su5zcvJe8bTCViKcJCoKXXoKHHoLx46FzZ7jMJbCIx1BiXERcqm9f+PJLeOMN6NDBrD1evrzVUYmIuIeBA01ifMECk3AoXtzqiMRTfPUVPPGE2X7uOYiMtDYeTzR37lx69OjBkCFD8PPzIy4ujvLlyxMXF0d0dDTjxo0jKCiIBQsWZL7mSsdEvJ2fHyxaBD//bL7T338/bNpkbpaJ+KolS5ZQu3ZtqlatetH+9u3bM3fuXEaNGsXWrVtJTk6myWVGiWsglXXUTs5RO13dldpo5kw4dQoWL7bRsaOdjz7y3UkjOXkv6b0nYr327c2g/IQEcx/io4+0ZKp4NiXGRcSlbDaYN8+sQbJjh1kHdf16sw65iIiva9YMbroJvvsOXn0V/jVZSOSyjh2Dtm0hNdUkpoYNszoiz3T99dezbt26S/bfeOONbN68OcvXXOmYiC8oXBjeew9uvdX0XZ06mef+/lZHJuI6MTExrF69miNHjnDPPfdQtGhR9uzZA5gy6j179rzkNRMnTqRr166Eh4dToEABFi9erOSOiI/y8zPXeidPwvvvm+/vn3wC9epZHZmIiHNsNpg1C2rWhPh4s4xb+/ZWRyWSc35WByAi3q9wYVixwsyE/OILGDTI6ohERNyDzWaWmwBTSv3cOWvjEfd37pwpXXbgANxwA7z2mrnZJiKSX0JCTDK8YEFT9WTIEKsjEnGtuLg4Dh06RFpaGr/++mtmUhxg06ZNPPLII5e8pnTp0sTHx7N7926+++47mjZtmp8hi4ibCQiApUuhaVMze7xFC/j+e6ujEhFxXng4DB1qtgcOBK1yIJ5Mt9FEJF/ccIMpp26zwezZpgyjiIhAly5QogTs3w+rVlkdjbi7MWPg44+hUCFYvlzl90XEGvXrX/g+/+KLMH++tfGIiIi4u4IFzcCy+vVNBajISHMNKCLiKYYONeuL//ILPPus1dGI5JwS4yKSb1q1utBp9u5t1iYUEfF1hQtDr15me9o0a2MR97Z6tUmMA8TFQe3a1sYjIr6tQ4cL3+0ffxw2bLA2HhEREXdXtCh8+CFUrw7JydC8ORw+bHVUIiLOKVjQlFQHmD4dEhMtDUckx5QYF5F8NWIE3Hcf/PUXREWZUbIiIr7uiSfM+qzr1+vCQrL288+mugBAnz7Qtau18YiIAIwcaRLkDof5bv/zz1ZHJCIi4t6CgyEhASpVgr174Z574I8/rI5KRMQ5kZFmffHz583g2PPnrY5IJPuUGBeRfOXnB6+/bkqrHzgAnTppTV0RkZAQaNfObGvWuPzX2bPQti2cOAG33QZTplgdkYiI4ecHCxZAvXpmwOv998PJk1ZHJSIi4t7KlTPJ8TJlYOdOuPde+PNPq6MSEXHOSy/BNdfAF1/Ayy/D+vU2Nmwoz/r1Nt3nF4+gxLiI5LvixWHFCrM+any81iQREQEYMMA8vvkmHD1qbSziPtLTzSjsxES47jpYtgwCA62OSkTkgsKFzZqp5crB99/Dww9DWprVUYmIiLi3G24wyfFrrzXJpdatITXV6qhERK6ufHl47jmz/fjjEBFhZ8qUekRE2AkLM/f9RdyZEuMiYolateCVV8z22LHmZpqIiC9r0ABuvRX+/hvmzrU6GnEX8+bBokVmVubbb5vqAiIi7qZcOVi1ygx8/egjeOopqyMSERFxfzVqmDXHixSB//s/6NhRg8tExDOUL28e09Mv3p+cbCoiKjku7kyJcRGxTKdOF2ZIdusGu3ZZG4+IiJVstgufiXPmmAS5+LYtW6B/f7M9bhzcfbe18YiIXMktt5iBPABTp5qyiiIiInJlt91mBpcFBsLKldCzp9bsFRH3du4cxMZmfSwjUT5woJZPFfelxLiIWGrSJGjUCFJSoE0brakkIr6tXTsz6+7IEVi61OpoxEq//27eD3//bfrHwYOtjkhE5Orat4cxY8x2nz7w6aeWhiMiIuIR7r4bliwBf39YuNAknP47C1NExF1s3AiHDl3+eHo6HDxozhNxR0qMi4ilAgJM8idjTcJHH9WXfxHxXQUKmEQCmNl2+jz0TefOmTKKBw9CeDgsWGAqCoiIeILhwy+sM962LezZY3VEIiIi7u/BB833foBp0y4MNBMRcTeHD+fteSL5TYlxEbFcmTLwzjsmSf7OOzBlitURiYhYp1cvKFgQvvoKNm2yOhqxwsiRsHYtFC5s1uUqVszqiEREnGezwauvQv368McfcP/9cOKE1VGJiIi4v65dYcYMsz1qlEmQi4i4m7JlnTtv7VpdB4h7UmJcRNxCw4ZmdiTAkCGwbp2l4YiIWOa666BzZ7Od8bkovuO998x64gCvvAI1algbj4hIThQqZD7PypeHH3+8MINcRERErqxv3wuzxQcONKXVRUTcSaNGEBJy9cp2r74KFSvCiBFw7Fj+xCbiDCXGRcRtPP44dOtmSsg+9JApISsi4osGDDCPK1dCUpK1sUj+2b3b9IMA/fubcuoiIp6qbFl4/31T/eLjj+F//7M6IhEREc8wfLhZZxygRw9TRUpExF34+1+oaPHf5LjNZn4GDYKbboKUFHj+eZMgHzwYfv01/+MV+S8lxkXEbdhsMHcu1KkDv/0G7dpBaqrVUYmI5L+aNeHuu81AoVmzrI5G8sPp02Yt3pQUuOMOmDTJ6ohERHLv5pvh9dfN9vTp5ru+iIiIXJnNBpMnw6OPwvnzZsDs2rVWRyUickFUFCxbZipE/VtIiNk/ZQrs2AHLl5trgtOnzX2OSpVMNYzkZEvCFgGUGBcRN1OokBkJe+21sGWLmTEnIuKLMmaNz5tnLiDEe6WnQ+/esHMnlC4NS5dCgQJWRyUikjeioswsETDlYT/5xNp4REREPIHNZq4F27WDv/+G1q1h82aroxIRuSAqCvbvh4SENGJjt5GQkMa+fWY/gJ+f2f7qK/jgA7jtNjh71sw2v/56Uz12/34r/wLxVUqMi4jbqVQJ3nrrwkXAq69aHZGISP6791644QY4ceLCbDvxTrNnw+LFphzZkiVQrpzVEYmI5K2nn4ZOnUwllHbtzNIRIiIicmX+/uY6ITLSDJZu1crMwBQRcRf+/tCkSTqNGyfTpEk6/v6XnmOzmXtcmzdDQgI0bmwG/MydC+HhpjrGnj35H7v4LiXGRcQt3XMPjBljtvv0gW3brI1HRCS/+ftDv35me9o0U0JPvM/mzWbtLYAXXoAmTayNR0TEFWw2mD/fzBI5fhzuu888ioiIyJUFBprKig0bmkHTkZFKIImIZ7LZoHlzWL/e/EREQFoaLFgAN94IXbrA999bHaX4AiXGRcRtPf00PPCAWWe8bVv4/XerIxIRyV+PPAJFi8KPP5pRteJdfv3VzJx0OMxjRoJcRMQbFSwI774LFSrArl3QoYP5/BMREZErK1IEVq+G2rXNNUTz5nDokNVRiYjkXOPGEB9vJgvce6+ZDPLGG1CjBrRvD4mJVkco3kyJcRFxW35+8NprpqRKUhJ07GjKL4qI+IqgIFNSCmDqVEtDkTyWlgYPPwy//AJVq5plQ2w2q6MSEXGtMmVg1SooXBjWrtWAIBEREWcVLw4ff2zukR04YGaOawKJiHi6Bg3M+uNff23WI09Ph2XL4OabzYS5rVutjlC8kRLjIuLWihUzJaOKFDE3z4YPtzoiEZH81a+fSZh+9JGZOS7e4Zln4NNP4ZprTD9XtKjVEYmI5I86dcxsEIBZs2D2bEvDERER8RilS5tKYiEh8MMP0KIFpKRYHZWISO7dfDMsXw47d5rJcX5+8P77cOut5rPus8+sjlC8iRLjIuL2atQwM+kAJkwwCQQREV9xww1w//1me8YMa2ORvLF8uVlPHEz/Vq2atfGIiOS31q1h/Hiz3b+/GQArIiIiV1exokmOlywJX31lrhXPnrU6KhGRvFGjBrz5phn80707+PubahmNGkHTpvDJJ2ZWuUhuKDEuIh6hQweIjTXb3btr1qSI+JYBA8zjwoVw/LiloUgu/fSTWTse4H//M2tniYj4oiFDoGtXs1RS+/bm81FERESurmpVkygKCoING0w/6nBYHZWISN6pUsXcA9u1C3r1goAAU3WvWTO44w748EMlyCXnlBgXEY8xcSLcdRf8+Se0aQMnTsD69TY2bCjP+vU2rT8uIl6raVOoWRPOnIH5862ORnLqzz/NmlmnTkHjxqYKioiIr7LZYN48uP12873+/vvhjz+sjkpERMQz1K1r1uUtWBBWrzaTSHRfzL2tWbOGunXrUqdOHWrUqMGiRYsAOHr0KC1atCA8PJwaNWqwYcMGiyMVcR/XXw9xcbB3r1lqsGBB2LwZWrWC+vXh3Xfh/HmroxRPo8S4iHgMux2WLIHy5c2M8XLlICLCzpQp9YiIsBMWpjLrIuKdbLYLs8ZnzIC0NGvjkexLT4fHHoPvv4eyZU1/ZrdbHZWIiLUKFoSVKyE0FHbv1ow3ERGR7GjUyCzTZLfDW29B376aQemu0tPT6dKlCwsXLiQxMZEPPviAmJgYTp06xdChQ2nQoAG7d+9mwYIFdOrUCYe+EIlcpEIFmD4d9u0z1fcKFzbLSbRpA3XqwNKlGhwkzlNiXEQ8SqlS5os+XLqGUnIytGun5LiIeKdOnSA4GJKS4L33rI5Gsmv69AvJ8HfegTJlrI5IRMQ9lC4N778PRYqYNQP799dNfREREWe1agWLF5vB1HPnwtNPWx2RXI7NZuPEiRMApKSkEBwcTGBgIEuXLqV3794A1K9fn3LlyrF+/XoLIxVxX2XKwOTJsH+/+bwrWhR27oSHHjLrk7/+uiaTyNVpnoqIeJRz52DWrKyPpaebC4GBA+HBB8HfP19DExFxqUKFoHdvGDsWpk2Dtm2tjkic9dln8OSTZvvFF816WCIickGtWvDmm9C6tbmpf9NNFwbDioiIyJU99BCkpJh1eCdMgGuvhcGDrY5K/s1ms7FkyRKioqIoUqQIx48fZ8WKFZw6dQqHw0GZf42cDgsLIykpKct/JzU1ldTU1MznKSkpADgcjmzPMs84X7PTL09t5Bwr2ql4cRg1ylRXnDXLjxkz/PjxRxvdusGoUekMHnyOLl3SKVAg30K6Kr2fri43bZSd1ygxLiIeZeNGOHTo8sfT0+HgQXPeXXflW1giIvmiTx+YONF8xn39tVlXTtzb4cOmNHBaGnTsaNbEEhGRSz3wgLmZP2SIucFVpQpERlodlYiIiGfo2RNOnDAJ8SFDTNKoVy+ro5IMaWlpPP/886xYsYLGjRuzdetWHnjgARITE7P174wfP57Ro0dfsj8+Pp7ChQvnKLaEhIQcvc6XqI2cY1U71a0Ls2bZ+fDDSrz33g38/HMgvXvbGT78DFFRe2je/AAFCrjPQuR6P11dTtrozJkzTp+rxLiIeJTDh/P2PPFMkZGRHDlyBD8/P4oWLcr06dO5+eab2b17N927d+f333+nWLFiLFy4kJtuugkgx8dE3Em5ctChg5lVN20aLFpkdURyJQ6Hmb1x5IiZ/fjyy6ayiYiIZO2pp+D7703/1qEDfPEFVK1qdVQiIiKe4amn4PhxGD/eVBsLCoKHH7Y6KgFITEzkl19+oXHjxoApmR4SEsKOHTuw2+0cOXIkc9b4/v37CQ0NzfLfGTZsGLGxsZnPU1JSqFChApGRkQQFBWUrJofDQUJCAhEREQQEBOTwL/NuaiPnuEs7tWtnlrF75ZVzTJnix+HDhZk3rxbvv1+T2NjzPPbYeYoUsSw8t2knd5abNsqooOEMJcZFxKOULevceYcOXSitLt5n6dKlFC9eHICVK1cSHR3NN998Q0xMDL169SI6Opply5YRHR3N1q1bAXJ8TMTdDBhgEuNvvWVmj2utavc1ZIiZ3V+0KKxYgaUXYCIinsBmg7g42LMHPv8c7rsPvvwSgoOtjkxERMQzjB1rZo7PmQNdu5rkeKtWVkclFSpU4PDhw/zwww9Uq1aNPXv2sHfvXm688Ubat2/P3LlzGTVqFFu3biU5OZkmTZpk+e8EBgYSGBh4yf6AgIAcJ9py81pfoTZyjju0U/HiZim7vn3h1VdNRaqDB2089ZQ/L7zgT2ysqcaYzXEkecod2snd5aSNsnO+X3YDEhGxUqNGEBJy9YT34MFw991mlol4n4ykOMDJkyex2WwcPXqUbdu20aVLFwDatm3LwYMH2bNnT46PibijW2+FBg3MbOS5c62ORi5n6VJ46SWzvWiRKQksIiJXFxgIK1dCWBjs3Wtmfvz9t9VRiYiIeAabDWbOhE6dzHJObdvChg1WRyWlS5dm3rx5dOjQgdq1a9OmTRtmzpxJaGgoEydOZNOmTYSHhxMdHc3ixYuVNBPJpYIFTQJ8zx5Tve/66+G332DYMHOdMXq0qbAhvkkzxkXEo/j7m/LB7dqZL/vp6ReOZSTL770X4uPh00/h9tvhwQfh+eehRg1LQhYX6datG+vWrQNgzZo1HDx4kLJly2K3m67NZrMRGhpKUlISxYoVy9GxypUrX/J7U1NTSU1NzXyeUabF4XDgcDicjj/j3Oy8xhepnbLWt6+NL76wM2dOOk8+mYafn9rJGfn1fvr+e3j0UTtg48knz3HffefxlP80uWkjvf9EJK9cdx28/775Lv/pp2bGR1ycqkGJiIg4w88PFi6ElBT44ANTgWXdOrjlFqsj820dO3akY8eOl+wvXbo08fHxFkQk4v0KFIDHHoPoaFN5cexY+OknGDUKpkwx1xmDBkHJklZHKvlJiXER8ThRUbBsmSknfOjQhf0hITB1qjmelGRGfi1cCO+9B6tWQZcuZl+lSlZFLnnptddeA2DRokUMGTKE5557Ll9+7/jx4xk9evQl++Pj4ylcuHC2/72EhIS8CMvrqZ0uVrCgjeDgCI4eLcQzz+zk7rsPAmonZ7mync6csfPUU405fbooNWv+xu23b2bNmvSrv9DN5KSNzpw544JIRMRX1ahhbl498ICZ5XHTTeb7v4iIiFxdQICpYtWyJaxfDy1amGWeqla1OjIRkfxnt5vlJTp1guXLzSS6nTth3DiTT3j8cVOCXcsV+gYlxkXEI0VFmZng69al8eGHibRsWYemTe34+5vjoaEwfz489RSMGGES6a+/Dm+/Db16wfDh6ui8Rffu3enduzchISEcPnyYtLQ07HY76enpJCUlERoaSlBQUI6OZWXYsGHExsZmPk9JSaFChQpERkYSlI0FahwOBwkJCURERKhE1hWonS7vxx/9GD4cNmy4mXHjqrJ2rdrpalz9fkpPh4cf9ic52Y/y5dP58MPilCrVMs9/jyvlpo0yKmiIiOSV++6DSZPMTarYWLjxRnNjX0RERK6uUCEzUaRZM9i2DSIi4LPPoGJFqyMTEbGGvz906GCq0a5aBc89B19/DS++aJah6NnTLNFaoYLVkYorKTEuIh7L3x+aNEnn9OlkmjSpnZkU/7eqVeGdd8wFwNNPQ0ICzJoFCxbAwIEmcf6v5arFA5w4cYIzZ85Qrlw5AN59912Cg4MpVaoUdevWZfHixURHR7N8+XJCQkIyy6Hn9Nh/BQYGEhgYeMn+gICAHCXacvo6X6N2ulTv3qYEVGKijbi4QJKTy1OkSIGLBglJ1lz1fpo82ayLGxAAy5bZKF/ec9+zOWkj/T8qIq4QG2uWqHj1VXjoIdi8GapXtzoqERERzxAUBB9+CI0bww8/QPPmJjleurTVkYmIWMfPD1q3NhPvPvrIJMg3bzbJ8bg4U3p92DBVnvVWflYHICKSH+rVM+uOf/IJ3HYbnDljSqVcfz1MnGiei2c4efIkrVu3pmbNmtSuXZuZM2fywQcfYLPZiIuLIy4ujipVqjBhwgQWLFiQ+bqcHhNxV8HBcOedZvt///NnypR6RETYCQuDFSssDc0nffopDB1qtqdOhQYNrIxGRMR72GwwZw40amTWSr3/fvj9d6ujEhER8RwlS5qJImFhsGcPREbC8eNWRyUiYj2bzSw58fnnsHYtNGkCDodZyik83CTId+2yOkrJa/mWGD927Bh16tTJ/KlSpQp2u50//viDo0eP0qJFC8LDw6lRowYbNmzIfJ0rjomI72ra1Iz+evdds07h8eMmkVG5srnh5nBYHaFcTcWKFdmyZQs7d+7km2++Ye3atdSpUweAG2+8kc2bN7Nr1y62bdtGzZo1M1+X02Mi7mrFCvOl/b+Sk01JKCXH809yspnFeO6cWbPq8cetjkhExLsUKGDWAqxUCX7+Gdq2hb//tjoqERERz1G+vEmOly4NO3bAvffC6dNWRyUi4h5sNrPsxKefwoYNZgDRuXOwaBFUqwYdO8K331odpeSVfEuMBwcHk5iYmPnTq1cvWrZsSYkSJRg6dCgNGjRg9+7dLFiwgE6dOuH4JzvlimMi4ttsNlMm5Ztv4LXXzIjZw4ehTx9Tev2NN+D8eaujFBG5vHPnYMAAs6b1f2XsGzjQnCeu9fffZn2qo0ehVi2YO9f0MyIikreuuw7efx+KFjU3q/r0ybofFBERkaxVrmyS49deayaNtGkDqalWRyUi4l4aNYKPP4YvvzTVqs6fh7ffhpo1ISoKtm+3OkLJLctKqc+fP58ePXoAsHTpUnr37g1A/fr1KVeuHOvXr3fZMRERMGuUd+0KP/0EM2aYUbM//wxdukCdOvDBB7rZJiLuaeNGOHTo8sfT0+HgQXOeuNaTT8KmTVCsmJnNWLiw1RGJiHivm26CJUvMmoDz55ulK0RERMR5NWvCmjVQpIhJknfuDGlpVkclIuJ+br0VVq0yifC2bc2+lSuhbl247z6TOBfPZLfil27atInjx49z3333cezYMRwOB2XKlMk8HhYWRlJSkkuOZSU1NZXUfw2PS0lJAcDhcGR7lnnG+ZqdfmVqJ+eona4uL9rIZoOYGJMQnzHDjxdf9GPnThv33w+3336e558/T6NGnp0hz0076f0n4n4OH3buvIULzSzmEiVcGo7PeuMNM7AK4PXXzQwMERFxrZYtYfJkiI01g5OqVDHlYEVERMQ5DRqYJQbvvdcM7u3VC155xQw8ExGRi9WpA8uWwXffwbhxZvb46tXmp3lzGDECGje2OkrJDksS4/Pnz6dbt27Y7Zb8+kuMHz+e0aNHX7I/Pj6ewjmc9pOQkJDbsHyC2sk5aqery6s2qlULZs4MYOXKcD74oBKbN9tp1syPunV/pUuXH7j++pN58nuskpN2OnPmjAsiEZHcKFvWufMWLTJf2Nu0gR494O67dbMjr+zcaW4gATzzjCmvJSIi+WPgQPj+e3MTv2NHUw72ppusjsq3nDsH69fb2LChPEWK2Gja1FTkEhERz9C8ublWbNcOFiyA4sXhxRe1LJSIyOXcdJOZIDFqFIwfbyZIrF1rfho1Mgny5s31OeoJ8j0z/eeff7J06VK2bt0KmLXH7XY7R44cyZzhvX//fkJDQ11yLCvDhg0jNjY283lKSgoVKlQgMjKSoKCgbP19DoeDhIQEIiIiCAgIyF7j+BC1k3PUTlfnqjZ66CH45Zd0xo8/x/z5fnz9dWm+/ro07dufZ9Soc4SH59mvyhe5aaeMKhoi4j4aNYKQEEhOznrJB5vNlPYODYUdO8wNj7ffhrAweOQR81OhQr6H7TVOnjTrSp05AxERkMX4ShERcSGbDWbNgt27Yf16Mzjpyy/NOuTieitWwIABcOiQHajHlCnme8m0aaZ/FBERz9CmDbz6KkRHw0svmbXHR4ywOioREfcWHm4+O0eOhAkTzOCijRshMhJuuw2GDzcVOf6dINegUveS73OGlixZQu3atalatWrmvvbt2zN37lwAtm7dSnJyMk2aNHHZsf8KDAwkKCjooh+AgICAHP3k5rW+9KN2Uju5extVrBjA3Ln+/PijjU6dTGf2zjt+1KoVwBNPBPDrr9b/7fnVTiLiXvz9zc1nuHQkasbz+fMhMRG2bYPHHzeJ8v374dlnoWJFaNEC3nkH/rWajDjh/Hno3h327DEDD958UxczIiJWKFDAlH+94QbYt88kZNWnud6KFWZ24aFDF+9PTjb7V6ywJi5X6t+/P2FhYdhsNhITEzP3p6am0rdvX8LDw6lZsyZdunTJPLZ7924aNmxIlSpVqF+/Pt99950FkYuIXF337jB1qtkeORKmT7c0HBERjxEWBnPnwt690L8/FCxoBuvefz/ccov5Xnz+vHkMC4OICDtTptQjIsJOWJh3fm/2FPmeGJ8/fz49evS4aN/EiRPZtGkT4eHhREdHs3jx4sxEjCuOiYhkxw03mDIpiYlw331mhNfLL5u1ZJ98Eo4dszpCEfFFUVFmjaPy5S/eHxJi9kdFmST5LbfA7Nnwyy+mzNNdd5lZ5h9/DB06mNcPGgTffmvJn+FxXngB3nvPJGSWLYOSJa2OSETEdwUHw/vvQ1AQfPaZGQiWVSUVyRvnzpmZ4lm1cca+gQPNed6kXbt2fPbZZ1SsWPGi/UOHDsVms7Fr1y527tzJ5MmTM4/FxMTQq1cvdu3axZAhQ4iOjs7nqEVEnDdggCkNnLH92muWhiMi4lEyKift3w9PPQVFisD27dC2rUmIt23rW4NKPUG+l1LftGnTJftKly5NfHx8lue74piISE7UqmVuvH3+OQwbZkqkvPgizJtnEuSDBkHRolZHKSK+JCoKHnwQ1q1L48MPE2nZsg5Nm9qznMFcuDB06WJ+9uwxpZ4WLjQJ86lTzc+tt5q1yB9+2CQZ5GL/939mPXGAmTOhfn1r4xEREahWDZYsMeUKFyyA6tXNd3PJexs3XnpT79/S0+HgQXPeXXflW1gu17hx40v2nT59mvnz53Po0CFs/5TryVjK7+jRo2zbti3znlTbtm3p27cve/bsZZBJYAABAABJREFUoXLlyvkXuIhINowcCSdOmOvCRx8114OtW1sclIiIByld2kymGDzYfJZOn26+G2clPd1MZhk40NzXUyXC/JXviXEREU93xx1mLcOPPoKnnzYzyZ991iRJnnkGeveGwECroxQRX+HvD02apHP6dDJNmtR26st05cowdqxZG/vjj03Z9fffhy1bzM+gQdC+vUmS33nnpeXafdHBg2bAwPnzZo32xx6zOiIREcnQooVZG3XAAHMjqmpVU+lJ8sa5c7B164VlXK7m8GHXxuMO9u7dS4kSJRg3bhxr166lUKFCjBo1imbNmnHw4EHKli2L3W5uudlsNkJDQ0lKSsoyMZ6amkrqv9YBSElJAcDhcOBwOLIVV8b52X2dr1E7OUftdHXe1kYTJsAff/jz2mt+PPRQOqtWnePuu3NfiiU37eQtbSsivqNkSXj+eWjQwJRVvxxvHVTqCZQYFxHJAZsNWraEe+4xa/SOGAG7d5tRXlOmmBJUXbuCXZ+yIuLG7HYzw+7ee+HXX02p9fnz4ccfYdEi81Olipkx0L07/DMRyuekppoSV7//DjffDLNmabCAiIi76dcPvv8e4uKgY0fYtAlq1rQ6Ks914oQZPLd6NXz4oekDnVW2rMvCchtpaWkcOHCA6tWrM2HCBLZv305ERESO1hIfP348o0ePvmR/fHw8hQsXzlF8CQkJOXqdr1E7OUftdHXe1EYPPmhj1656fPFFOVq3hjFjNlOlyvE8+bdz0k5nzpzJk98tIpLfTp1y7ryJE8HhgMaNNdkuvyhlIyKSC35+8NBDppzxwoVm9mVSkkkiTZpkRoe1aaMEioi4v9KlTenZ//0PNm82CfIlS2DXLhg61FTEuPdeM4u8VSvfGvgzaJCZSX/ttbB8ORQqZHVEIiLyXzYbzJhh+q1168zsjC1boFQpqyPzDOnp8MMPJhG+erVZs/3fa4UHBUFkpFlW5MSJrNcZt9nMGouNGuVb2JYJDQ3Fz8+Pzp07A3DzzTdTqVIldu7cSa1atTh8+DBpaWnY7XbS09NJSkoiNDQ0y39r2LBhxMbGZj5PSUmhQoUKREZGEpTNtW0cDgcJCQlEREQQEBCQ8z/Qy6mdnKN2ujpvbaPISGjT5jxr19oZP74Ra9em5WqwWW7aKaOKhoiIp3F2sOhHH5mfwoWhWTMzGa9lS7M+ubiGD93SFBFxnYAA6NnTrN07axaMH29uLLVta9agHTcOmje3OkoRkauz2aBhQ/MzdSosXWqS5Js3w6pV5qdMGTOD/NFHzYxyb/baazBnjmmXN96ASpWsjkhERC4nIMBUc2rQAPbsMQNUP/lEMy8u56+/zCCCjGT4/v0XH69W7UJlmTvuMO27YoWpomKzXZwczxgIPHWqb6yRWLJkSZo1a8bHH39Mq1at2LdvH/v27aNatWqUKlWKunXrsnjxYqKjo1m+fDkhISGXXV88MDCQwCzepAEBATlOtOXmtb5E7eQctdPVeVsbBQTAypUQEQFffGHj3nsD+OwzuOGG3P672W8nb2pXEfEtjRqZQaPJyZcfVFqihBnQ+/HHZjmi9983P2C+i7dqZZLkjRpBgQL5G78387M6ABERb1KokJlx+fPPprx6kSJmPb6ICDPia8sWqyMUEXFe0aJmhvimTfDdd2Y2+XXXwZEjptTTjTeaUk+LFsHp01ZHm/cSEyEmxmw/+6y5GBEREfcWHGxuJhUrZvqvXr2yvhHlqw4ehLlzzQ24EiXMzbZZs0xSPDDQLBU1Ywbs3WtK00+aZNY8zMhLREXBsmVQvvzF/25IiNkfFZXff5HrxcTEEBISwqFDh7jnnnsyE9xz585l0qRJ1KxZk9atWxMXF0f5fxomLi6OuLg4qlSpwoQJE1iwYIGVf4KISLZdcw2sWWOWJTlyxEz2SE62OioREc/h7w/Tppnt/1aTzXg+bx4sWGA+X7dvN5Pr7rzTvPaHH+DFF83nb3CwGfQ7b575Pi+5oxnjIiIuUKwYjBkDffuaDm3OHDNb5bbboHVrU2L9ppusjlJExHnVq8PkyeYz7YMPzCzyjz6CjRvNT79+Zk3XHj1MpQxPX0Li+HFT9eOvv0xCfMQIqyMSERFnVa1qZo63bGkqf9x0EwwebHVU1jh3Dr744sKs8B07Lj5evvyFWeHNmpmBvVcTFQUPPgjr1qXx4YeJtGxZh6ZN7V47UzwuLi7L/ddffz3r1q3L8tiNN97I5s2bXRmWiIjLXXstxMebmYp79pgS6+vXQ8mSVkcmIuIZMgaVDhgAhw5d2B8SYiotZQwqtdmgTh3zM2yYuSeVkAAffmh+fv0V3n3X/IAZtNSypRnk2rDhhUGs4hzNGBcRcaFSpUwnt2sXREebNcnffRdq1TLP/1uuUETE3RUoYL64r14NBw6YgT7XXw+nTpmRq7fdZj7jpk6F33+3OtqcOX8eunY11T/CwmDxYvP5LSIiniMiwvRFAEOHwnvvWRpOvvrjD3jzTejc2VyP3HmnWeppxw7TnzVsCGPHmsooBw9CXBw88IBzSfEM/v7QpEk6jRsn06RJutcmxUVEfF2ZMiY5U768qSTSsiVo2W8REedFRZkcQEJCGrGx20hISGPfvitXWrr2WujQwcwm/+UX2LYNnnsObr/dfJ/fuRNeeMFUdipZ0ix1NH++OVeuTrf4RETyQcWKpiPbudN0eufPm9LDVapA//5m1JeIiKcJCYFnnoHdu01VjM6doWBB+PZbGDQIypUzX+Q//tjMWPMU48aZxH9gICxfbkrNivcJCwvjxhtvpE6dOtSpU4clS5YAsGbNGurWrUudOnWoUaMGixYtynzN0aNHadGiBeHh4dSoUYMNGzZYFb6IOOGJJ+Dxx00p9c6d4ZtvrI7INdLTTdJ7/HiTBL/uOvP3vvmmSZIXLw4PP2wGev36K3z+OTz9NNSu7fkVXkRExPXCwkxyvGRJk5x58EE4e9bqqEREPEduBpX6+cEtt8Dw4WapqKNHzff8rl3N53JKirl39dhjZhBTnTrmu/5nn0Famsv+JI+mxLiISD6qXt10VFu2mPVBHA6zht8NN5gyvSdPWh2hiEj2+flB06bmhvvhw2at0rp1zWfcO+9AixZQqZJZp9vdK2V8/DGMHGm258wxf4d4ryVLlpCYmEhiYiIPPfQQ6enpdOnShYULF5KYmMgHH3xATEwMp06dAmDo0KE0aNCA3bt3s2DBAjp16oTD4bD4rxCRy7HZzLp+zZrB6dNmXW1vGZB65oxZ2uTxx80g3Nq1zQ2wzz83g3Br1IAhQ2DDBvjtN3jrLZMsV/lbERHJiWrVzFJaRYvCp5/CQw+Z6z0REclfwcFmKcPXXjPXNlu2wKhRcOut5vrnm2/MgNlGjcyA2YcegoUL4cgRqyN3H0qMi4hYoH59M9p27VrTaZ0+faEc8aRJGnkrIp6reHHo0we++gq2b4e+fU0JqIMHYcwY8zkXEQFvv23W73Yn+/dDp05m5l2vXvDII1ZHJFaw2WycOHECgJSUFIKDgwkMDARg6dKl9O7dG4D69etTrlw51q9fb1WoIuKEgAAzSKtKFdMXtWnjfv2Ps/bvN4PPWrUyN8Tuvx/mzjV/V8GCZp3w2bPNeTt3woQJ5oaY3W515CIi4g1uuQXef9/0Oe+/b5YIPH/e6qhERHyXn5/JMzz7LHz5pUmUv/66ubdVogScOAFLl5r7W2XLms/xESPMzHNPquyY13R5JCJioWbN4IsvzLrjw4eb9ZoGDzbrIY4cCY8+am7miYh4ojp1TFWMSZNg5Uqz3tH//Z8ZFLR2rUmYd+kCPXqYmW5W+usvsybTH39AvXpmhqF4v27dupGens6tt97KhAkTuO6661iyZAlRUVEUKVKE48ePs2LFCgoUKMCxY8dwOByUKVMm8/VhYWEkJSVl+W+npqaSmpqa+Tzln8UYHQ5HtmeZZ5yv2elXpna6Ol9to2uugRUr4M477WzebKNHj/MsWHDusmXE3aWdHA7YvNnGmjU2PvzQjx9+uDjg0NB0WrY8T6tW6dx1VzqFCl38WtfHl7N2srpdRUQk55o0gWXLoHXr/2fvPsOjqrq/j/8mhUCA0HsCoTeRgKKA0kRCkSZIkxYpQUVQsSCPBbAA3jcW0BupgnSQbgGJioCCCkoAkRYkdERBDTWknOfF/mckpE1CkpNJvp/ryjUnc87MrCzIrJxZZ+9tpvItWlR6/32W5gCAnKBUKfM5W79+pvG9Y4f0+efm66efpJ9/Nl+vv24a58HB5qLbtm2l0qXtjj770BgHAJs5HGbkSufOZhrisWOlY8ekRx+VJk82Iyx79TJXgAGAO8qf30zz1KePdPSoNHeu+Tp50jTO33vPXLU6eLA5pmjR7I9xxAhzklCihPmgJ3/+7I8B2WvLli2qWLGiYmJi9NJLL2ngwIFat26dXn/9da1atUrNmzfXjh071LlzZ+3du1eOdH7aN3HiRI0fPz7J/Rs3bpSvr2+GYg4LC8vQ4/Ia8pS2vJqjp58upfHjG2vxYg95eBzQQw8dTvV4O/IUFZVPP/1UWj/9VEa7dpXW5cv/XiXr4RGvWrUu6M47f9cdd/yuihUvyuEwM51s2pTtoTqlN09XrlzJokgAANnhgQfMFL59+5qZSooWld54w+6oAAA38vSUGjc2X6++akaTb9ggrV9vlhG8cMHM5rh0qelP3HmnaZK3b2+207MOuruhMQ4AOYSnpzRwoNS7tzRzprlyKyLCTH3y5pvShAmmMHEVLgB3Vrmy+YN87FizpMScOdLataYp/dNP0qhRZuT2oEFmNEJ2XBQ0Z440e7Z5f1282KzVityvYsWKkiRvb2899dRTqlGjhsLDw3X69Gk1b95ckpku3d/fX7t27VKbNm3k5eWls2fPOkeNR0ZGOp/nZmPGjNGoUaOc30dFRSkgIEDBwcHy8/NLV6wxMTEKCwtTmzZt5M1UMikiT2nL6znq0EEqXtzSiBHSwoV11LlzDXXtaiU5LjvzZFlSeLi0fr2H1q936McfHbKsf//gL1HCUtu2ZmR4cLClYsWKSCoiqUaWxuWKjOYpYQYNAID76tNHiooygzomTDDN8eeeszsqAEBKypQxvYeBA6XYWDP1esJo8vBwM7p8xw5p/HipZEkzijxhNHmJEnZHn7lojANADuPjY0YuPvKImcr3P/+Rdu82V+Tee680caK5BQB35ukptWtnvv74w8yYMWeOtG+f2V640KxHPmiQWbuuQoWsieOnn6Thw832a6+ZaaSQ+12+fFkxMTEq+n/TEyxZskQNGjRQQECAzpw5o/3796t27dqKiIjQkSNHVLNmTUlSjx49NH36dI0bN047duzQqVOn1KJFi2Rfw8fHx7k2+Y28vb0z3Gi7lcfmJeQpbXk5R088IR08aKZ9DQnx0rffSg0aJH9sVuXp0iWzpMhnn5kPok6fTry/fn3zt3/HjtJddznk6emQlHOnj0pvnvLq/z0AyG2GDTPr177wglkWsGhRaehQu6MCAKTFy0u65x7z9cYb5nwkYTT5xo3Sn39KixaZL4dDuvvuf0eTN2zo/jPb0hgHgByqUCHpxRfN1bdvvmmmGv72W6lZM1OI3njDrN8LAO6uVCnp6aelp56SfvzRNMiXLpV++0166SXplVdMA33wYNMkyJcvc173/HkzOj06WurUSRozJnOeFznf77//ru7duysuLk6WZalKlSqaP3++ypQpo5kzZ6pnz57y8PBQfHy83n//feeo8DfffFP9+/dX9erVlS9fPi1cuJAGD+CG3nnHNMfDwsxyRjt2SP83EUSWOXLENMI/+0z65hvp+vV/9/n6Svffb5rhHTpI/v5ZGwsAAJll9Gjpr7/M51bDhklFikg9e9odFQAgPcqXNwNTBg2SYmKk7dvNBbzr10t79kjff2++XnnFrEXerp05bwkOlooVszv69KMxDgA5XIkSZtT4k0+a0YyzZ/87zUnv3ua+atXsjhIAbl3CVah3322aFh9/bJrk33777/teqVLSgAGmSV67dsZfKy5O6tdPioyUqlY1a+S5+xWvcF2VKlW0a9euZPf16dNHffr0SXZfmTJltHHjxqwMDUA28PKSli2TmjQxDfKuXc0a3QUKZN5rXL9u6ldCM/zgwcT7q1QxjfAHHjBLh+TPn3mvDQBAdpo40YwcnzHDnGMVLmxGFQIA3I+3t9S8ufmaNEk6edI0yNevNxcWnztnPkNL+BytSRPznt+hgxnE5w7LwPLxHwC4iQoVpOnTpf37TUNcMiMqa9c2o8pvnoIRANxZwYJmCvWtW6UDB8zUfGXKmGnX33pLqlNHatrUNM4vXUr/87/2mpkmqkABaeVKM+0fACDvKFZM+uQTc/vDD+aCKyvpcuPp8vvv0ty5ZjaSkiWl1q2lt982TXEvL6llS+m//zV/z0dESFOnmjX7aIoDANyZwyH973/ms6qYGKl7d3MeBwBwf/7+ZpmMVavMzItffy09+6xUt64UHy99952Z7bFhQ9O/GDRIWrFC+ucfuyNPGY1xAHAz1atLS5ZIu3aZK7FiY81VuVWrmsbRhQuJj4+LkzZvdmjLlgravNmhuDh74gaAjKpZ00zNd+KEtGaNmfbW09NM7TRkiJn+dvBgadu2lJsaN74Xvvmmh8aPN/fPmGHWcgUA5D3Vq5uLo7y8zN/XEyak72/n+Hhp505p/HjprrtMPRo0yDznxYtmmsGBA6Xly806fZs2mQ+RatVyj5EUAAC4ytPTjB7s0EG6etUsgfXzz3wmBQC5Sb58UqtW5mLfX34xszBOn24+p/P1lc6cMRcK9+hhZsFt0cKMOt+zJ+2LkLOzXtAYBwA3FRRkpmXcskW6917p2jVTlCpXNuuPX7pkruQKDJTatPHS22/fqTZtvBQYaO4HAHfj7S116SKtXWua5JMmmabG5cvShx9K99xjrlidPNlM7ZTg5vfCl1/2lGRG6fXvb8/PAgDIGVq1kt5/32y/9JKZnSS1v52jokzje9AgsxZfo0bSuHFmnXJJuuMOs/beDz+YD4bmzTMfDBUpks0/GAAA2czb2yyH1by5qZetWpmRhnwmBQC5U6VK0rBh5nO6CxfMVOtPP20uBI6LM32LMWPMgJSAADPyfPVqUyNulN09DBrjAODmmjUzReazz0yRiYoyH+pVqGCmrzp5MvHxp06Z6R05EQHgzsqVk0aPNtPTbtliRuQVKGCmp33uOfMe2K2b9OKL5j3v5vdCSdq4kfdCAID5MKdDB7N9/nzifQl/O4eEmKnRS5Y038+da6ZOL1TI1Js5c8zSRjeOIPfgExcAQB7j62uWKqlc2Xw+dfZs4v18JgUAuZOPj3T//WYpqf37pSNHzAXIDzxgPq87dUqaPducO5UoId13nxnk9+67yX9ul5X1gtM0AMgFHA7zYd7PP0uLF0tVqiS98ipBwrQlTz0lprAC4PYcDnOB0Lx55kOXGTNMMyI21lyFOmFC6tM18V4IAIiLM9P7JceyzNdHH5n19GJizGwlTz1lRkT8+ee/I8jLlcvWsAEAyJEKFpSio5Pfx2dSAJA3VKkiDR8uffqpufh4wwZp5EhzLhUba5aZev55M8I8uc/tsrJe0BgHgFzEw0Pq08c0hlJjWWYa4q1bsycuAMgOfn5SaKiZvnbPHjNrRmp4LwQASKYOJDezyM2GD5cOHTJf77xjRkT4+GR9fAAAuJOtW80sKinhPAwA8pYCBcxyhlOmmHOpw4elqVPNslSpyap6QWMcAHKhP/5w7bgzZ7I2DgCwS716aTfGE/BeCAB5m6t14J57zAgHAACQMlfrKudhAJA3VasmjRhhRou7IrPrBY1xAMiFXJ3GkekeAeRmvBcCAFxBvQAAIPNQVwEArrCrXtAYB4BcqFkzyd/frL2bHIdDCggwxwFAbsV7IQDAFdQLAAAyD3UVAOAKu+oFjXEAyIU8Pc2aHVLSwpLw/bvvmuMAILfivRAA4ArqBQAAmYe6CgBwhV31gsY4AORS3bpJK1ZIFSokvt/f39zfrZs9cQFAduK9EADgCuoFAACZh7oKAHCFHfXCK/OfEgCQU3TrJnXpIm3aFKv168PVvn2QWrXy4qpcAHkK74UAAFdQLwAAyDzUVQCAK7K7XtAYB4BcztNTatHC0uXLp9SiRX1OQADkSbwXAgBcQb0AACDzUFcBAK7IznrBVOoAAAAAAAAAAAAAgFyNxjgAAAAAAAAAAAAAIFejMQ4AcCvXrl1T165dVaNGDdWvX19t2rRRRESEJGnHjh265557VL9+fQUFBenrr792Pu7KlSvq06ePqlWrpho1amjFihUu7QMAAAAAAAAAAO6PNcYBAG4nNDRU7du3l8Ph0Pvvv68hQ4Zo06ZNevDBBzVv3jzdf//9OnTokO6//34dPHhQBQoU0OTJk+Xj46OIiAgdPXpUd999t1q1aqUSJUqkug8AAAAAAAAAALg/RowDANxK/vz51aFDBzkcDklS48aNFRkZqfPnz+uPP/7Q/fffL0mqUaOGihYtqvXr10uSli1bpkcffVSSVLlyZbVs2VKrV69Ocx8AAAAAAAAAAHB/jBgHALi1KVOmqEuXLipZsqTKlSun5cuXq2fPntqxY4cOHjyoyMhISdLx48dVqVIl5+MCAwN1/PjxNPfdLDo6WtHR0c7vo6KiJEkxMTGKiYlxOe6EY9PzmLyIPLmGPLmGPKXtVnJEXgEAAAAAAJCT0RgHALitCRMmKCIiQl999ZUkae3atRo9erQmTpyounXr6t5775WXV+aWuokTJ2r8+PFJ7t+4caN8fX3T/XxhYWGZEVauR55cQ55cQ57SlpEcXblyJQsiAQAAAAAAADIHjXEAgFuaPHmyVq1apS+//NLZkK5fv742bNjgPKZ27dqqW7euJKlixYo6duyYypUrJ0mKjIxUcHBwmvtuNmbMGI0aNcr5fVRUlAICAhQcHCw/Pz+X44+JiVFYWJjatGkjb2/vdPzkeQt5cg15cg15Stut5ChhBg0AAAAAAAAgJ6IxDgBwO2+//baWLFmiL7/8UkWLFnXef+bMGWdze9asWSpYsKDuu+8+SVKPHj00ffp0NW7cWEePHtU333yjadOmpbnvZj4+PvLx8Ulyv7e3d4YabRl9XF5DnlxDnlxDntKWkRyRUwAAAAAAAORkHnYHAABAepw8eVLPPPOM/v77b7Vq1UpBQUG6++67JUkzZ85UjRo1VL16dX3yySdavXq1HA6HJOm5557T1atXVbVqVbVt21bvv/++SpYsmeY+AAAAAAAAAADg/hgxDgBwK/7+/rIsK9l9Y8eO1dixY5PdV7BgQS1btizd+wAAAAAAAAAAgPujMZ6MhIZLRtZJjImJ0ZUrVxQVFcV0kqkgT64hT2kjR665lTwlvBem1IzO6zJaM/i/6xry5Bry5BrylDbqRdbhHCPrkae0kSPXkCfXZDRP1IvUUS+yHnlyDXlKGzlyDecYWYeakbXIkWvIk2vIU9qyq17QGE/GxYsXJUkBAQE2RwIAOcfFixdVpEgRu8PIcagZAJAY9SJ51AsASIx6kTzqBQAkRc1IHjUDABJzpV44LC63SiI+Pl6nT59W4cKFnWvTuioqKkoBAQE6ceKE/Pz8sihC90eeXEOe0kaOXHMrebIsSxcvXlT58uXl4eGRRRG6r4zWDP7vuoY8uYY8uYY8pY16kXU4x8h65Clt5Mg15Mk1Gc0T9SJ11IusR55cQ57SRo5cwzlG1qFmZC1y5Bry5BrylLbsqheMGE+Gh4eH/P39b+k5/Pz8+M/tAvLkGvKUNnLkmozmiatyU3arNYP/u64hT64hT64hT2mjXmQ+zjGyD3lKGzlyDXlyTUbyRL1IGfUi+5An15CntJEj13COkfmoGdmDHLmGPLmGPKUtq+sFl1kBAAAAAAAAAAAAAHI1GuMAAAAAAAAAAAAAgFyNxngm8/Hx0dixY+Xj42N3KDkaeXINeUobOXINecp5+DdxDXlyDXlyDXlKGznKmfh3cQ15Shs5cg15cg15ynn4N3ENeXINeUobOXINecqZ+HdJGzlyDXlyDXlKW3blyGFZlpWlrwAAAAAAAAAAAAAAgI0YMQ4AAAAAAAAAAAAAyNVojAMAAAAAAAAAAAAAcjUa4wAAAAAAAAAAAACAXI3G+C0IDAxUzZo1FRQUpKCgIC1btizR/fXr11e1atXUpUsXbdu2zeZo7TFy5EgFBgbK4XAoPDzceX9gYKBKly6tmJgY532bNm2Sw+HQU089lf2B2iw4OFi33367goKC1KxZM+3atUsSebpZdHS0nnjiCVWvXl316tVTv379JJGnmyX3e9e3b1/9v//3/xId98ADD2jy5Mk2RJg3UTNSR71wDfXCNdQL11Ezch7qReqoF66jZqSNeuE66kXOQ71IGzXDNdQL11AzXEO9yJmoGamjXriGeuEa6oXr7KoZNMZv0bJlyxQeHq7w8HD16tUr0f27d+9WRESEBg4cqA4dOuiHH36wMVJ7PPTQQ/r2229VqVKlJPsqVqyodevWOb+fM2eO7rzzzuwML8dYvny59uzZo/DwcI0aNUohISHOfeTpXy+88IIcDocOHTqkvXv3JnozJE//Su737v3339eiRYu0Y8cOSSY/UVFRGjVqlF1h5knUjJRRL1xDvXAN9cJ11IyciXqRMuqF66gZaaNeuI56kTNRL1JHzXAN9cI11AzXUC9yLmpGyqgXrqFeuIZ64Tq7agaN8WzQrVs3Pfroo3nyKrjmzZvL398/2X2PPPKIPvzwQ0nSP//8o++//17t2rXLzvByjKJFizq3//nnHzkcDuf35Mm4fPmy5syZozfeeMOZn7Jlyzr3k6d/Jfd7V6xYMc2YMUMhISE6fPiwXnnlFX300Ufy8KAM5DR5tWZQL1xDvUgb9SJ9qBnui3qRFL/fiVEzUke9SB/qhfvKq/VComa4inqRNmqG66gX7i2v1gzqhWuoF2mjXqSPXTWD6nOLBgwYoHr16mnw4MH6448/Ujzu7rvv1r59+7IxspzvnnvuUWRkpE6fPq0lS5aoR48e8vT0tDss2wwYMEABAQF6+eWXtWDBAuf95Mk4cuSIihcvrgkTJujOO+9Us2bN9NVXXzn3k6e0tWvXTs2aNVOjRo30yiuvqEqVKnaHlOdQMzKG3+/EqBepo15kDmqGvagXGcPvd1LUjJRRLzIH9cJe1IuM43c8MepF6qgZt456YT9qRsbw+50Y9SJ11IvMkdU1g8b4LdiyZYv27Nmjn3/+WSVLltTAgQNTPNayrGyMzH30799f8+bN04cffqhBgwbZHY6t5s+frxMnTuj111/X6NGjE+0jT1JsbKyOHTumOnXqaOfOnZo6dap69eql33//3XkMeUrbc889p/j4eA0bNszuUPIcasat4ff7X9SL1FEvMg81wx7Ui1vD73di1IyUUS8yD/XCHtSLW8fv+L+oF6mjZmQO6oV9qBm3ht/vf1EvUke9yDxZWTO8Mv0Z85CKFStKkry9vfXUU0+pRo0aKR67Y8cO3XbbbdkVmtsYMGCAGjZsqBo1aqh69ep2h5MjDBw4UI8++qjOnz/vvI88md83Dw8P9e3bV5LUoEEDVa5cWXv37nUeQ57S5unpyVRVNqFm3Bp+v5OiXiSPepF5qBn2oF7cGn6/k0fNSIp6kXmoF/agXtw6fseTol4kj5qROagX9qFm3Bp+v5OiXiSPepF5srJm0BjPoMuXLysmJsa5rsKSJUvUoEGDZI9du3atPvjgA33xxRfZGKF7KF++vCZOnKhatWrZHYpt/v77b125ckXly5eXJK1Zs0YlSpRQ8eLFnceQJ6lkyZJq3bq1vvjiC3Xo0EFHjx7V0aNHVbt2becx5Ak5FTXj1vH7Tb1wFfUC7ox6cev4/TaoGWmjXsCdUS8yB7/j1AtXUTPgzqgZt47fb+qFq6gX7oHGeAb9/vvv6t69u+Li4mRZlqpUqaL58+c79/fq1Uv58+fX5cuXVadOHX3++ee6++67bYzYHsOGDdNnn32ms2fPqm3btipcuLAiIiISHfPII4/YFF3O8M8//6hHjx66evWqPDw8VKpUKX366adyOByJjsvreZKk6dOna/DgwRo9erQ8PDw0Y8YMVahQIdEx5Mm13ztkL2pG2qgXaaNeuI564TpqRs5CvUgb9cI11AzXUC9cR73IWagXrqFmpI164TpqhmuoFzkPNSNt1Iu0US9cR71wnV01w2GxaAQAAAAAAAAAAAAAIBdjUQ8AAAAAAAAAAAAAQK5GYxwAAAAAAAAAAAAAkKvRGAcAAAAAAAAAAAAA5Go0xgEAAAAAAAAAAAAAuRqNcQAAAAAAAAAAAABArkZjHAAAAAAAAAAAAACQq9EYBwAAAAAAAAAAAADkal52BwC4g6CgIEnS9evXdfDgQdWrV0+SVLNmTedX3759M+31jhw5oh49esiyLI0cOVKPPPJIpj03ACBrUTMAAK6gXgAAXEG9AAC4ipoBpM1hWZZldxCAu4iMjFRQUJD+/vvvLH2dN998U7/99ptmzJiRZF9sbKy8vLimBQByOmoGAMAV1AsAgCuoFwAAV1EzgJQxlTpwi0JCQvTuu+9KksaNG6eePXuqU6dOqlGjhjp27KhffvlFbdu2VY0aNdSnTx/Fx8dLki5evKihQ4fqrrvu0u23367Q0FBdv35d8+fP1zvvvKNVq1YpKChIv/76q1q2bKmRI0eqSZMmCg4OVmxsrNq2bas777xTdevW1cMPP6zLly9Lkr755hvddttteuyxx3T77berXr162rNnj0JCQlSvXj3dfffdOnXqlDP+yZMn66677lLDhg3Vrl07HTt2LNtzCAB5BTUDAOAK6gUAwBXUCwCAq6gZgEFjHMhkO3fu1Pz583Xw4EFdvHhRQ4YM0YoVK/Trr79q//79Wr9+vSTpmWeeUbNmzfTjjz9q9+7dio+P15QpUzRgwAA9+uij6tu3r8LDw1WnTh1J0qFDh7RlyxZ9/fXX8vT01OLFi7Vz50798ssvKlKkiN577z1nDAcOHNCQIUO0Z88ede3aVffdd59eeOEF7d27V3feeaezAC5evFgHDx7U9u3b9fPPP6tv3756/PHHsz1nAJBXUTMAAK6gXgAAXEG9AAC4ipqBvIp5DIBMFhwcrGLFikmSGjZsKB8fHxUuXFiS1KBBAx0+fFiStGbNGm3fvl1vv/22JOnq1avy9PRM8Xn79esnb29vSZJlWXrnnXf02WefKTY2Vv/884+aNm3qPLZatWq64447JEl33nmnqlWrplq1akmS7rrrLq1evdoZw44dO5zHxsXFZVoeAABpo2YAAFxBvQAAuIJ6AQBwFTUDeRWNcSCT5c+f37nt6emZ5PvY2FhJpiisXLlSNWrUcOl5CxUq5NxevHixvv76a23evFl+fn6aOnWqvv766wzFMGbMGIWGhqbzpwQAZAZqBgDAFdQLAIArqBcAAFdRM5BXMZU6YJOuXbvqzTffdL65//XXX4qIiHDpsX/99ZdKliwpPz8/Xbx4UfPmzctwDNOnT9eFCxckSTExMdq1a1eGngsAkHWoGQAAV1AvAACuoF4AAFxFzUBuQ2McsMk777yjAgUKKCgoSLfffrtat26tyMhIlx47YMAAXblyRTVr1lT79u3VrFmzDMXQt29fhYSEqFWrVqpfv76CgoISXbEFAMgZqBkAAFdQLwAArqBeAABcRc1AbuOwLMuyOwgAAAAAAAAAAAAAALIKI8YBAAAAAAAAAAAAALkajXEAAAAAAAAAAAAAQK5GYxwAAAAAAAAAAAAAkKvRGAcAAAAAAAAAAAAA5Go0xgEAAAAAAAAAAAAAuRqNcQAAAAAAAAAAAABArkZjHAAAAAAAAAAAAACQq9EYBwAAAAAAAAAAAADkajTGAQAAAAAAAAAAAAC5Go1xAAAAAAAAAAAAAECuRmMcAAAAAAAAAAAAAJCr0RgHAAAAAAAAAAAAAORqNMYBAAAAAAAAAAAAALkajXEAAAAAAAAAAAAAQK5GYxwAAAAAAAAAAAAAkKvRGAcAAAAAAAAAAAAA5Go0xoEcwOFwaM2aNZKkyMhIORwOhYeHZ3scISEh6tq1a6Y/77hx4xQUFJTpzwsAud3NNeGbb76Rw+HQ33//ne2xtGzZUk899VSmP29W1R4AyEtufo8ODAzUu+++m+1xzJs3T0WLFs3057Wz/gFAXsB5BwDgZje/b2bV+3Nasqom2dmHgb1ojMNW27dvl6enpx544AHnfb///ru8vb21dOnSZB8zePBgNWzY0Pn91atXVbx4cZUsWVLR0dGJjj19+rSKFSumqVOnJrr/hx9+kLe3tzZu3JhibA6Hw/lVpEgR3XPPPfr6668z8mOmS0BAgM6cOaPbbrvNpeOz8w/7hCKU8FWmTBl1795dv/32W6qPe/bZZ/XVV19lS4wAcq+QkBDn+4+3t7fKlCmjNm3a6MMPP1R8fHyS47dt26YOHTqoWLFiyp8/v+rVq6e3335bcXFxksyH9ze+pyX3FRkZmeR5E/5wTvgqUaKEgoODtWvXrqxOgZo2baozZ86oSJEiLh2fnSctN+bTw8ND/v7+euSRR3Tu3LlUHzdlyhTNmzcvW2IEkHfExcWpadOm6tatW6L7//nnHwUEBOjFF1+UlPQ9vXjx4mrRooW2bt2a6HHjxo1zHuPl5aXAwEA9/fTTunTpUooxtGzZ0vmY/Pnzq06dOpo2bVrm/7DJ2LFjh0JDQ106Nqua2SnJyHlWeusfANwss88lbrRp0yZ17NhRpUqVUv78+VW1alX16tVLW7ZscR5z8+cpN36dPXs22Zg570ge5x0A7JLWZ0jjxo1z+fyiV69euuuuuxLVlZiYGN1xxx3q27dvijHcWM/y5cunatWq6dVXX1VsbGyW/dwJVq1apddee82lY7P7AqvAwEBnXgoWLKiGDRvq448/TvUx6e3DIPegMQ5bzZkzRyNGjNCWLVt0+vRpSVKZMmX0wAMP6MMPP0xy/OXLl7V8+XINHjzYed/KlStVt25d1apVyznqOkH58uX13nvvacyYMTp8+LAk00gfOHCghgwZouDg4FTjmzt3rs6cOaPvvvtOJUuWVMeOHVNsAsfExKTnR0+Rp6enypYtKy8vr0x5vqxw8OBBnT59Wh9//LH27dunTp06JXtyaFmWYmNjVahQIZUoUcKGSAHkNu3atdOZM2cUGRmp9evXq1WrVnryySfVsWPHRCcBq1evVosWLeTv769NmzbpwIEDevLJJ/X666+rd+/esixLvXr10pkzZ5xfTZo00dChQxPdFxAQkGIsX375pc6cOaMvvvhCly5dUvv27VP8gz+zakS+fPlUtmxZORyOTHm+zObn56czZ87o5MmTmjVrltavX6/+/fsne2xcXJzi4+NVpEiRbG3IAMgbPD09NW/ePG3YsEGLFi1y3j9ixAgVL15cY8eOTXR8wnv6li1bVL58eXXs2FG///57omPq1q3rrEFvvvmmZs6cqWeeeSbVOBLqyq+//qqePXtq+PDhWrJkSbLHXr9+PYM/bVKlSpWSr69vpj1fZkvveVZOr38A3ENmnkskmDZtmlq3bq0SJUpo2bJlOnjwoFavXq2mTZvq6aefThLDwYMHE51vnDlzRqVLl041bs47kuK8A4Adbnzvfvfdd53vRQlfzz77rPPYtM4vpk2bpuPHj2vSpEnO+1577TWdOXNG77//fqpxJNSzw4cP65lnntG4ceP03//+N9ljM/Mco3jx4ipcuHCmPV9me/XVV3XmzBnt2rVLjRo1Uq9evbRt27Zkj71+/bpb9GGQRSzAJhcvXrQKFSpkHThwwOrVq5f1xhtvOPetW7fO8vDwsI4dO5boMXPnzrXy589v/fXXX877WrZsaU2fPt364IMPrDZt2iT7Wg8++KDVtGlTKy4uznryySetKlWqWBcvXkw1PknW6tWrnd+fOnXKkmRNnz7duX/atGlWp06dLF9fX2vs2LGWZVnWmjVrrAYNGlg+Pj5W5cqVrXHjxlkxMTHO5zl06JDVrFkzy8fHx6pdu7a1cePGRK919OhRS5K1a9cu52N++eUX64EHHrAKFy5sFSpUyLr33nutiIgIa+zYsZakRF+bNm2yLMuyjh8/bvXo0cMqUqSIVaxYMatz587W0aNHnc8ZGxtrPf3001aRIkWs4sWLW88995w1YMAAq0uXLinmZNOmTZakRPlftGiRJck6cOCAc//nn39uNWzY0PL29rY2bdpkjR071qpfv36i55ozZ45Vp04dK1++fFbZsmWt4cOHO/f99ddf1uDBg62SJUtahQsXtlq1amWFh4c794eHh1stW7a0ChUqZBUuXNhq2LChtWPHjpT/MQHkCgMHDkz2Peqrr76yJFmzZs2yLMuyLl26ZJUoUcLq1q1bkmPXrVtnSbKWLl2aZF+LFi2sJ598Ms04knuf/u677yxJ1oYNG5z7ly5dajVv3tzy8fGx5s6da1mWZc2aNcuqVauW5ePjY9WsWdP63//+l+i5f/jhBysoKMjy8fGx7rjjDmvVqlWJXiu59+Fvv/3WatGihVWgQAGraNGiVnBwsHXhwgVr4MCBSWpEQh3Yu3ev1a5dO6tgwYJW6dKlrX79+ll//PGH8zkvXbpk9e/f3ypYsKBVtmxZa/LkyWnmZ+7cuVaRIkUS3ffGG29YHh4e1pUrV5z7165da9WuXdvy9PS0jh49muTfNS4uznrzzTetqlWrWvny5bMCAgKs119/3bk/rfq2adMmq1GjRpavr69VpEgRq2nTplZkZGSKcQPI3aZMmWIVK1bMOn36tLVmzRrL29s70d+Vyb2n79mzx5JkrV271nlfcn/PDh061CpbtmyKr53c+2b16tWt3r17O/cPHz7cevLJJ60SJUpYLVu2tCwrc96jK1WqZL3zzjvO7//66y8rNDTUKl26tOXj42PVrVvX+uSTT5x15cavhPOaa9euWc8884xVvnx5y9fX17rrrruc5xoJ5s6dawUEBFgFChSwunbtak2ePDlJLbhZRs6z0lP/LMvUkgkTJliBgYFW/vz5rdtvv936+OOPnY+9cOGC9fDDD1slS5a08ufPb1WrVs368MMPU40bgHvLinOJY8eOWd7e3tbTTz+d7GvGx8c7t5N7H0sL5x3J47wDQE6Q3HuRZbl+fmFZlrV27VorX7581u7du60dO3ZYXl5e1meffZbq6yZXz9q0aWM1btw40f7XX3/dKleunBUYGGhZVub0Cm5+f7527Zr1/PPPW/7+/la+fPmsqlWrWrNnz3bm4MavgQMHWpaV9t/plmVZn332mVW9enUrf/78VsuWLa25c+emWUNvPv+JiYmxfH19rRdeeMG5/9VXX7X69+9vFS5c2Bo4cGC6+jAJUquv0dHR1vDhw62yZctaPj4+VsWKFa0JEyakGDPsw4hx2Gb58uWqVauWatasqX79+unDDz90XnXboUMHlSlTJskUR3PnzlW3bt2cV3geOXJE27dvV8+ePdWzZ09t3bpVx44dS/Ja06dP1+HDh9W3b1+9//77mjt3rgoVKpSueAsUKCAp8VVW48aN04MPPqi9e/dq0KBB2rp1qwYMGKAnn3xSv/76q2bMmKF58+bpjTfekCTFx8erW7duypcvn3744QdNnz5do0ePTvV1T506pebNm8vHx0dff/21fvrpJw0aNEixsbF69tln1bNnT+dVYmfOnFHTpk0VExOjtm3bqnDhwtq6dau+++47FSpUSO3atXPG/9Zbb2nevHn68MMP9e233+rChQtavXp1unKSUl5eeOEFTZo0Sfv379ftt9+e5DEffPCBhg8frtDQUO3du1fr1q1TtWrVnPt79Oihc+fOaf369frpp5/UsGFDtW7dWhcuXJAk9e3bV/7+/tqxY4d++uknvfDCC/L29k537AByh/vuu0/169fXqlWrJEkbN27U+fPnE12pm6BTp06qUaNGiqP1Miql98Inn3xS+/fvV9u2bbVo0SK98soreuONN7R//35NmDBBL7/8sj766CNJ0qVLl9SxY0fVqVNHP/30k8aNG5fsz3Cj8PBwtW7dWnXq1NH27dv17bffOmfxmDJlSpJR8AEBAfr777913333qUGDBtq5c6c2bNig33//XT179nQ+73PPPafNmzdr7dq12rhxo7755hv9/PPPGcpLfHy8cwTOlStX9Oabb2r27Nnat29fsqNjxowZo0mTJunll1/Wr7/+qsWLF6tMmTKSlGZ9i42NVdeuXdWiRQvt2bNH27dvV2hoaI4d6QIg640YMUL169dX//79FRoaqldeeUX169dP8firV69q/vz5ksxoudQUKFAg3SMwbn7MRx99pHz58um7777T9OnTs+Q9Oj4+Xu3bt9d3332nhQsX6tdff9WkSZPk6emppk2bJhntklB7nnjiCW3fvl1Lly7Vnj171KNHD7Vr1845E9cPP/ygwYMH64knnlB4eLhatWql119/PV35SMiJlPp51s1Sq3+SNHHiRM2fP1/Tp0/Xvn379PTTT6tfv37avHmzJDlrzPr167V//3598MEHKlmyZLpjB+D+buVcYuXKlYqJidHzzz+f7HNnxd+gnHeknBfOOwDkRKmdX3Tu3Fm9e/fWgAEDNHDgQA0cOFAdOnRI92vcfI7x1Vdf6eDBgwoLC9Onn36aZb2CAQMGaMmSJZo6dar279+vGTNmqFChQgoICNDKlSsl/TtTypQpUySl/Xf6iRMn1K1bN3Xq1Enh4eEaMmSIXnjhhXTnxMvLS97e3onyMnnyZNWvX1+7du3Syy+/nOQxqfVhJKVZX6dOnap169Zp+fLlOnjwoBYtWqTAwMB0x45sYHdnHnlX06ZNrXfffdeyLHMFT8mSJRONQHjhhResypUrO6+wjYiIsBwOh/Xll186j/l//+//WV27dnV+36VLF+cIh5tNnz7dkmQ99thjLsWnG0YyXL582Xr88cctT09Pa/fu3c79Tz31VKLHtG7dOslVQAsWLLDKlStnWZZlffHFF5aXl5d16tQp5/7169enOmJ8zJgxVuXKla3r168nG2dyV4ktWLDAqlmzZqKrk6Ojo60CBQpYX3zxhWVZllWuXDnrP//5j3N/TEyM5e/vn64R46dPn7aaNm1qVahQwYqOjnbuX7NmTaLH3TzCpnz58taLL76Y7Gts3brV8vPzs65du5bo/qpVq1ozZsywLMuyChcubM2bNy/FOAHkTimN8rAsy+rVq5dVu3Zty7Isa9KkSaleSdq5c2fnsTfK6Ijxv/76y3rwwQetQoUKWWfPnnXuT6hxCapWrWotXrw40X2vvfaa1aRJE8uyLGvGjBlWiRIlrKtXrzr3f/DBB6mO3OjTp491zz33pBhrcj/Ta6+9ZgUHBye678SJE5Yk6+DBg9bFixetfPnyWcuXL3fuP3/+vFWgQIF0jdw4dOiQVaNGDevOO+907peUaKSmZSX+d42KirJ8fHycI3ZullZ9O3/+vCXJ+uabb1KME0Des3//fkuSVa9evUQzOVnWv+/pBQoUsAoWLGg5HA5LknXHHXck+vv75r9nd+7caZUsWdJ66KGHUnzdG9+DY2NjrQULFliSrPfff9+5v0GDBokek1nv0TeOmPjiiy8sDw8P6+DBg8nGmdxol2PHjlmenp6Jzlssy5zvjBkzxrIsU4M6dOiQaH+vXr3SNWLc1fOs9NS/a9euWb6+vta2bdsS3T948GCrT58+lmVZVqdOnaxHHnkk1TgB5C5ZcS7x6KOPWn5+fon2r1ixwipYsKDza8+ePZZl/fs+duO+ggULWnXq1EkxZs47ksd5B4CcIK0R42mdXyS4cOGCVaBAAatMmTLWP//8k+br3vheFh8fb4WFhVk+Pj7Ws88+69xfpkwZKzo62vmYzOoV3Phef/DgQUuSFRYWlmycyc084srf6WPGjElSG0ePHp2uEePR0dHWhAkTLEnWp59+6tx/Yx/JstLfh0mrvo4YMcK67777EuUZOROT58MWBw8e1I8//ui86sjLy0u9evXSnDlz1LJlS0nSoEGDNGnSJG3atEn33Xef5s6dq8DAQN13332SzBpBH330kfNqI0nq16+fnn32Wb3yyivy8Ph3QoS4uDjNmzdPvr6++v777xUbG+vS2hF9+vSRp6enrl69qlKlSmnOnDmJRkDfeeediY7fvXu3vvvuO+cI8YTXvnbtmq5cuaL9+/crICBA5cuXd+5v0qRJqjGEh4erWbNm6RoRvXv3bkVERCRZ8+PatWs6cuSI/vnnH505c0Z33323c5+Xl5fuvPPORGtlpcTf31+WZenKlSuqX7++Vq5cmeiKt5vzcqNz587p9OnTat26dYqxX7p0Kcma5FevXtWRI0ckSaNGjdKQIUO0YMEC3X///erRo4eqVq2aZtwAci/LspJcne/K+9mtaNq0qTw8PHT58mVVqVJFy5YtU5kyZRQZGSkp8Xvh5cuXdeTIEQ0ePFhDhw513h8bG6siRYpIknOWjfz58zv3u1IjevToka64d+/erU2bNiU7c8qRI0d09epVXb9+PVGNKF68uGrWrJnmc//zzz8qVKiQ4uPjde3aNd17772aPXu2c3++fPmSnUkkwf79+xUdHZ1qjUitvgUHByskJERt27ZVmzZtdP/996tnz54qV65cmrEDyL0+/PBD+fr66ujRozp58mSyV+0vW7ZMtWrV0i+//KLnn39e8+bNS/L39969e1WoUCHFxcXp+vXreuCBB9Jc/2/atGmaPXu2cw27p59+Wo899phz/x133JHo+Kx4jw4PD5e/v79q1KiRaqw32rt3r+Li4pI8Jjo62vl3+v79+/Xggw8m2t+kSRNt2LAhzedP73nWzVKrfxEREbpy5YratGmT6P7r16+rQYMGkqTHHntM3bt3188//6zg4GB17dpVTZs2TTNuALnTrZxL3Py4tm3bKjw8XKdOnVLLli2dM1kk2Lp1a6K/ZV35rIfzjqQ47wCQ07lyfiFJS5YskcPh0J9//qkDBw7orrvuSvO5P/30UxUqVEgxMTGKj4/Xww8/rHHjxjn316tXL9Fn9VnRKwgPD5enp6datGiRZrwJXPk7ff/+/YnikNKuUQlGjx6tl156SdeuXVOhQoU0adIkPfDAA879rpxjpNSHcaW+hoSEqE2bNqpZs6batWunjh07Kjg42KXYkb1ojMMWc+bMUWxsbKIGsWVZ8vHx0fvvv68iRYqoevXqatasmebOnauWLVtq/vz5Gjp0qPOk44svvtCpU6fUq1evRM8dFxenr776KtEb7OTJk/Xbb79p586datGihSZMmKBXXnklzTjfeecd3X///SpSpIhKlSqVZH/BggUTfX/p0iWNHz9e3bp1S3LsjScc6ZEwTVZ6XLp0SXfccYcWLVqUZF9yP0d6bd26VX5+fipdunSSgiolzcuN0vp5Ll26pHLlyumbb75Jsi9hCv1x48bp4Ycf1meffab169dr7NixWrp0aZIP5gDkHfv371flypUlyfkh/v79+5P9kHv//v2qU6fOLb/msmXLVKdOHZUoUcL5/nSjG98LL126JEmaNWtWkj/wPT09MxxDRmtEp06d9OabbybZV65cOUVERGQ4nsKFC+vnn3+Wh4eHypUrlyS+AgUKpDq9oCs1Iq36NnfuXI0cOVIbNmzQsmXL9NJLLyksLEyNGzfOwE8EwN1t27ZN77zzjjZu3KjXX39dgwcP1pdffpnkvSggIEDVq1dX9erVFRsbqwcffFC//PKLfHx8nMfUrFlT69atk5eXl8qXL5/mVOuSWQLoxRdfVIECBVSuXLlEF+9KyZ9PZPZ7dEZrhaenp3766ackdSq9S1IlJ73nWTdL7WdKqLmfffaZKlSokGhfwr9n+/btdezYMX3++ecKCwtT69atNXz4cE2ePDm9PwqAXCCj5xLVq1fXP//8o7Nnz6ps2bKSzHtktWrVUhyMUbly5WTPHVLDeUdSnHcAyOlcOb/47bff9Pzzz+uDDz7Qpk2bFBISol27diU6JjmtWrXSBx98oHz58ql8+fJJak5y5xiZ3SvIaF2QUv87/VY899xzCgkJUaFChVSmTJkkdSAzzjFSq68NGzbU0aNHtX79en355Zfq2bOn7r//fq1YsSIjPw6yEGuMI9vFxsZq/vz5euuttxQeHu782r17t8qXL59o3dfBgwdr5cqVWrlypU6dOqWQkBDnvjlz5qh3796JniM8PFy9e/fWnDlznMft27dPY8eO1QcffKDatWvrgw8+0Ouvv649e/akGWvZsmVVrVo1lwtEw4YNdfDgQVWrVi3Jl4eHh2rXrq0TJ07ozJkzzsd8//33qT7n7bffrq1btyomJibZ/fny5UtyBXLDhg11+PBhlS5dOkkcRYoUUZEiRVSuXDn98MMPzsfExsbqp59+cunnrFy5sqpWrZpsUzwthQsXVmBgoL766qtk9zds2FBnz56Vl5dXkthvXPevRo0aevrpp7Vx40Z169ZNc+fOTXcsAHKHr7/+Wnv37lX37t0lScHBwSpevLjeeuutJMeuW7dOhw8fVp8+fW75dQMCAlS1alWXPtgqU6aMypcvr99++y3Je1vCh3C1a9fWnj17dO3aNefjXKkRKb2fSinXiH379ikwMDBJLAULFlTVqlXl7e2dqEb89ddfOnToUJo/p4eHh6pVq6YqVapk6CSpevXqKlCgQKo1IrX6lqBBgwYaM2aMtm3bpttuu02LFy9OdywA3N+VK1cUEhKixx57TK1atdKcOXP0448/avr06ak+7qGHHpKXl5emTZuW6P58+fKpWrVqCgwMdKkpLklFihRRtWrVVKFChSRN8eRkxXv07bffrpMnT6Z4THK1okGDBoqLi9O5c+eSxJHQ/Kldu3aiOKS061aC9J5n3Sy1+lenTh35+Pjo+PHjSWIPCAhwHleqVCkNHDhQCxcu1LvvvquZM2dmKBYA7u1WziUeeugheXt7J9v4zUycdyTFeQcAd5Lc+UV8fLxCQkLUunVrDRgwQO+++64uXrzo0mC+ggULqlq1aqpYsaJLs+JmRa+gXr16io+Pd64NfrOE86Uba4Mrf6fXrl1bP/74Y6LncvUco2TJks7zldQujkpJan0YV+qrJPn5+alXr16aNWuWli1bppUrV+rChQvpjgVZi8Y4st2nn36qv/76S4MHD9Ztt92W6Kt79+6Jmto9evSQt7e3hg0bpuDgYOcb5B9//KFPPvlEAwcOTPIcAwYM0Jo1a3ThwgXFxsZq4MCB6tatm3MUd/fu3dW9e3eFhIQoNjY2U3+2V155RfPnz9f48eO1b98+7d+/X0uXLtVLL70kSbr//vtVo0YNDRw4ULt379bWrVv14osvpvqcTzzxhKKiotS7d2/t3LlThw8f1oIFC3Tw4EFJUmBgoPbs2aODBw/qzz//VExMjPr27auSJUuqS5cu2rp1q44ePapvvvlGI0eO1MmTJyVJTz75pCZNmqQ1a9bowIEDevzxx/X3339naj5SMm7cOL311luaOnWqDh8+rJ9//lnvvfeeJJOjJk2aqGvXrtq4caMiIyO1bds2vfjii9q5c6euXr2qJ554Qt98842OHTum7777Tjt27FDt2rWzJXYA9oqOjtbZs2d16tQp/fzzz5owYYK6dOmijh07asCAAZLMCcKMGTO0du1ahYaGas+ePYqMjNScOXMUEhKihx56SD179sz22MePH6+JEydq6tSpOnTokPbu3au5c+fq7bffliQ9/PDDcjgcGjp0qH799Vd9/vnnaY5cGzNmjHbs2KHHH39ce/bs0YEDB/TBBx/ozz//lGRqxA8//KDIyEj9+eefio+P1/Dhw3XhwgX16dNHO3bs0JEjR/TFF1/okUceUVxcnAoVKqTBgwfrueee09dff61ffvlFISEhLjV0blX+/Pk1evRoPf/885o/f76OHDmi77//3vm3QVr17ejRoxozZoy2b9+uY8eOaePGjTp8+DA1AsijxowZI8uyNGnSJEnmPXHy5Ml6/vnnndPPJsfhcGjkyJGaNGmSrly5kk3RGlnxHt2iRQs1b95c3bt3V1hYmHMUQ8KU54GBgbp06ZK++uor/fnnn7py5Ypq1Kihvn37asCAAVq1apWOHj2qH3/8URMnTtRnn30mSc5RcpMnT9bhw4f1/vvvuzSNemZIrf4VLlxYzz77rJ5++ml99NFHOnLkiPN846OPPpJkztvWrl2riIgI7du3T59++im1AsgDMvtcomLFinrrrbc0ZcoUDRw4UJs2bVJkZKR+/vlnTZ06VVLSUdrnzp3T2bNnE32lNBAiozjvSBvnHQCyU3LnF1OmTNG+ffs0Y8YMSeaC2tmzZ+vtt99O0hi+VVnRKwgMDNTAgQM1aNAgrVmzxvmcy5cvlyRVqlRJDodDn376qf744w9dunTJpb/TH330UR0+fFjPPfecDh48qMWLF2vevHmZmo+UpNWHSau+vv3221qyZIkOHDigQ4cO6eOPP1bZsmXTPVMMsoFtq5sjz+rYsaPVoUOHZPf98MMPliRr9+7dzvtCQ0MtSdby5cud902ePNkqWrSodf369STPER0dbRUtWtSaMmWKNX78eKts2bLW+fPnEx1z/vx5q2zZstb48eNTjFOStXr16nTv37Bhg9W0aVOrQIEClp+fn3XXXXdZM2fOdO4/ePCgde+991r58uWzatSoYW3YsCHRcx09etSSZO3atcv5mN27d1vBwcGWr6+vVbhwYatZs2bWkSNHLMuyrHPnzllt2rSxChUqZEmyNm3aZFmWZZ05c8YaMGCAVbJkScvHx8eqUqWKNXToUOuff/6xLMuyYmJirCeffNLy8/OzihYtao0aNcoaMGCA1aVLlxR/5k2bNlmSrL/++itd+8eOHWvVr18/0X3Tp0+3atasaXl7e1vlypWzRowY4dwXFRVljRgxwipfvrzl7e1tBQQEWH379rWOHz9uRUdHW71797YCAgKsfPnyWeXLl7eeeOIJ6+rVqynGDSB3GDhwoCXJkmR5eXlZpUqVsu6//37rww8/tOLi4pIcv2XLFqtt27aWn5+flS9fPqtu3brW5MmTrdjY2GSfv0WLFtaTTz6ZZhzJvU+7un/RokVWUFCQlS9fPqtYsWJW8+bNrVWrVjn3b9++3apfv76VL18+KygoyFq5cmWi50ruffabb76xmjZtavn4+FhFixa12rZt69x/8OBBq3HjxlaBAgUsSdbRo0cty7KsQ4cOWQ8++KBVtGhRq0CBAlatWrWsp556yoqPj7csy7IuXrxo9evXz/L19bXKlClj/ec//0kzP3PnzrWKFCmS7v0DBw5MVHvi4uKs119/3apUqZLl7e1tVaxY0ZowYYJzf2r17ezZs1bXrl2tcuXKWfny5bMqVapkvfLKK8n+/wCQu33zzTeWp6entXXr1iT7goODrfvuu8+Kj49P8T378uXLVrFixaw333zTsqzk/55NS1rvmyntz4z36EqVKlnvvPOO8/vz589bjzzyiFWiRAkrf/781m233WZ9+umnzv2PPvqoVaJECUuSNXbsWMuyLOv69evWK6+8YgUGBjr/Zn/wwQetPXv2OB83Z84cy9/f3ypQoIDVqVMna/LkyanWAsvK2HlWeutffHy89e677zrPN0qVKmW1bdvW2rx5s2VZlvXaa69ZtWvXtgoUKGAVL17c6tKli/Xbb7+lGjcA95aV5xJhYWFW+/btreLFi1teXl5WmTJlrK5du1obNmxwHpPwPpbc1/bt25ONmfOO5HHeASAnSOm9xpXzi4MHD1oFChSwFi1alOTxQ4cOtWrXrm1du3Yt2de9+b3M1f2Z0Su4+f356tWr1tNPP+18L6xWrZr14YcfOve/+uqrVtmyZS2Hw2ENHDjQsqy0/063LMv65JNPrGrVqlk+Pj5Ws2bNrA8//DDVnoRlJT3/cWV/evswlpV6fZ05c6YVFBRkFSxY0PLz87Nat25t/fzzzynGBPs4LMuysrTzDgAAAAAAAAAAAACAjZhKHQAAAAAAAAAAAACQq9EYBwAAAAAAAAAAAADkajTGAQAAAAAAAAAAAAC5Go1xAAAAAAAAAAAAAECuRmMcAAAAAAAAAAAAAJCr0RgHAAAAAAAAAAAAAORqXnYHkBPFx8fr9OnTKly4sBwOh93hAICtLMvSxYsXVb58eXl4cD3VzagZAGBQL1JHvQAAg3qROuoFAPyLmpE6agYAGOmpFzTGk3H69GkFBATYHQYA5CgnTpyQv7+/3WHkONQMAEiMepE86gUAJEa9SB71AgCSomYkj5oBAIm5Ui9ojCejcOHCkkwC/fz80vXYmJgYbdy4UcHBwfL29s6K8HIF8uQa8pQ2cuSaW8lTVFSUAgICnO+NSCyjNYP/u64hT64hT64hT2mjXmQdzjGyHnlKGzlyDXlyTUbzRL1IHfUi65En15CntJEj13COkXWoGVmLHLmGPLmGPKUtu+oFjfFkJEw74ufnl6GC4uvrKz8/P/5zp4I8uYY8pY0cuSYz8sSUTMnLaM3g/65ryJNryJNryFPaqBdZh3OMrEee0kaOXEOeXHOreaJeJI96kfXIk2vIU9rIkWs4x8g61IysRY5cQ55cQ57Sll31goU5AAAAAAAAAAAAAAC5Go1xAAAAAAAAAAAAAECuRmMcAAAAAAAAAAAAAJCr0RgHAAAAAAAAAAAAAORqNMYBAAAAAAAAAAAAALkajXEAAAAAAAAAAAAAQK5GYxwAAAAAAAAAAAAAkKvRGAcAAAAAAAAAAAAA5Go0xgEAAAAAAAAAAAAAuRqNcQAAAAAAAAAAAABArkZjHACQJ4wcOVKBgYFyOBwKDw933n/48GE1bdpUNWrUUKNGjbRv3z77ggQAAAAAAAAAAFnC7RvjgYGBqlmzpoKCghQUFKRly5ZJsqfRERcnbd7s0JYtFbR5s0NxcVn+kgAAFz300EP69ttvValSpUT3Dxs2TKGhoTp06JBGjx6tkJCQLI+FegEAcBU1AwDgCuoFAMBV1AwAeZnbN8YladmyZQoPD1d4eLh69eolKfsbHatWSYGBUps2Xnr77TvVpo2XAgPN/QAA+zVv3lz+/v6J7jt37px27typfv36SZK6d++uEydOKCIiIsvioF4AAFxFzQAAuIJ6AQBwFTUDQF7nZXcAWSGh0bFx40ZJptHxxBNPKCIiQtWqVcv011u1SnroIcmyEt9/6pS5f8UKqVu3TH9ZAMAtOnHihMqVKycvL1MOHQ6HKlasqOPHj6dYL6KjoxUdHe38PioqSpIUExOjmJiYVF9v9WqHevf2/L964XDef+qUpYcekpYujdODD1opPj4vSshpWrnN68iTa8hT2m4lR+Q1c3GOAQBwBfUCAOAqagYA5JLG+IABA2RZlu666y5NmjQp3Y2OW2lyxMVJI0d6JWlySKbAOByWnnxS6tAhVp6et/Zz5iZ8MO0a8pQ2cuQaGh2ZZ+LEiRo/fnyS+zdu3ChfX98UHxcXJz3+eLAsy1NJ64VDkqXhw6/LyyuMepGMsLAwu0NwC+TJNeQpbRnJ0ZUrV7IgkrwpLk568smkH1hJCecY0lNPSV26iJoBAHkY9QIA4CpqBgAYbt8Y37JliypWrKiYmBi99NJLGjhwoF577bV0PUdGmxyStHdvCZ06dW+K+y3LoZMnpcmTf1C9eufTFVdewAfTriFPaSNHrqHRkVhAQIDOnDmj2NhYeXl5ybIsHT9+XBUrVkzxMWPGjNGoUaOc30dFRSkgIEDBwcHy8/NL8XGbNzt0/nxqZdehP//0lZ/fA2rRglHjCWJiYhQWFqY2bdrI29vb7nByLPLkGvKUtlvJUcLFpbh1W7dKJ0+mvN+ypBMnzHEtW2ZbWACAHIZ6AQBwFTUDAAy3b4wnNC+8vb311FNPqUaNGuludGS0yWGOdaS6P0GlSo3VoQONjgR8MO0a8pQ2cuQaGh3JK126tBo2bKiFCxcqJCREK1eulL+/f6rLbvj4+MjHxyfJ/d7e3qnm9o8/XIvpjz+8xH/lpNLKLwzy5BrylLaM5IicZp4zZzL3OABA7kS9AAC4ipoBAIZbN8YvX76smJgYFS1aVJK0ZMkSNWjQIN2Njow2OSQpIMC1WAMCaHQkhw+mXUOe0kaOXJOXGx3Dhg3TZ599prNnz6pt27YqXLiwIiIiNGPGDIWEhGjChAny8/PT3Llzs+T1y5XL3OMAALkXNQMA4ArqBQDAVdQMADDcujH++++/q3v37oqLi5NlWapSpYrmz58vSdnW6GjWTPL3l06dSn59DofD7G/WLEteHgDgohkzZiR7f82aNbV9+/Ysf33qBQDAVdQMAIAr0qoXkhnQQb0AAHCOAQCGWzfGq1Spol27diW7L7saHZ6e0pQp0kMPmeKRXFF5911zHAAg76JeAABcRc0AALjClXrRoQP1AgCQes1w/N9qsZxjAMgLPOwOIDfo1k1asUKqUCHpvsmTzX4AAFKrF++8Q70AAPwrpZrh42Pup2YAAKSU60WRIuZ2zhxp06bsjwsAkPOkVDNKluQcA0DeQWM8k3TrJkVGSmFhsRo1aqeaN4+XJO3fb29cAICc5eZ60bixqRd//GFvXACQm127dk1du3ZVjRo1VL9+fbVp00YRERFJjtu7d6+aN2+uWrVq6bbbbtOgQYN09epV536Hw6F69eopKChIQUFB2rp1a5bGfWPNGDJkjyRL0dFSvXpZ+rIAADdz8zlGWFis/vxT6ttXio01owOTKXsAgDzoxppx223mw6gOHWiKA8g7aIxnIk9PqUULS82bn9Krr5pGx8KF0vnzNgcGAMhRbqwXw4eberF4ccrrAgIAbl1oaKgOHjyo3bt3q0uXLhoyZEiSY/Lnz6/3339fBw4c0O7du3X58mW9+eabiY7ZunWrwsPDFR4ermbZsABfQs3o2PGo2rc3hWLWrCx/WQCAm7nxHKNFC0teXtLs2dJdd0kXLkidO0v//GN3lACAnCChZvTpc1CStGqVdOWKzUEBQDahMZ5FmjSx1LChdO2aOREBACA5HTtaKlhQOnpU+v57u6MBgNwpf/786tChgxz/t3he48aNFRkZmeS46tWr6/bbb5ckeXp6qlGjRskeZ5fBg83FVHPnStHRNgcDAMjx8ueX1qyR/P3NjIa9e0txcXZHBQDIKWrXPq9KlSxdvCh98ond0QBA9vCyO4DcyuGQRo6UQkKk//1PeuYZyYtsAwBuUrCg9OCDZoaRxYulJk3sjggAcr8pU6aoS5cuqR5z+fJlzZ49WxMnTkx0f+vWrRUbG6vWrVvrtddeU8GCBZN9fHR0tKJv6F5HRUVJkmJiYhQTE5OueBOOb9PmusqX99Tp0w6tWBGrnj2ZauRGCXlKb37zEnLkGvLkmozmibxmr3LlpLVrpXvvlTZskJ57Tnr7bbujAgDkBB4eUp8+8Zo0yVMLFki9etkdEQBkPVq1WahXL3PCceKEOQnp3t3uiAAAOdHDD5vG+LJl0jvvcCEVAGSlCRMmKCIiQl999VWKx1y/fl29evVScHCwHnzwQef9x44dU8WKFXX58mU9+uijeu655zRt2rRkn2PixIkaP358kvs3btwoX1/fDMW+aVOY7r23lpYvr6k33/xLhQpty9Dz5HZhYWF2h5DjkSPXkCfXpDdPV5irNds1bCjNny/16GHON+rWlQYPtjsqAEBO8PDDpjG+YYN07pxUurTdEQFA1uKj9yyUP780bJj0+uvS1Kk0xgEAybv/fqlUKemPP6Qvv5TatbM7IgDInSZPnqxVq1bpyy+/TLE5HRMTo169eqlcuXKaMmVKon0VK1aUJBUsWFCPP/64QkNDU3ytMWPGaNSoUc7vo6KiFBAQoODgYPn5+aUr7piYGIWFhalNmza67TZvffyxpb17S6l69Q6qXj1dT5Wr3Zgnb29vu8PJkciRa8iTazKap4QZNJC9HnpIGj9eGjtWeuwxqXp1qXlzu6MCANitVi3pzjulnTvNgI0RI+yOCACyFo3xLPboo9KkSdKWLVJ4uBQUZHdEAICcxttb6tnTLL2xeDGNcQDICm+//baWLFmiL7/8UkWLFk32mNjYWPXu3VvFixfXzJkznWuSS9Jff/0lHx8f+fr6Kj4+XsuWLVODBg1SfD0fHx/5+Pgkud/b2zvDjTZvb29Vreqt9u2lzz+X5s3z1n/+k6GnytVuJcd5BTlyDXlyTXrzRE7t8/LL0q+/msZH9+7Sjz9KlSvbHRUAwG79+5vG+IIFNMYB5H4edgeQ21WoYK7KlaT33rM3FgBAzvXww+Z29WqJ2SUBIHOdPHlSzzzzjP7++2+1atVKQUFBuvvuuyVJr7zyiqZPny5JWrZsmVatWqWdO3eqQYMGCgoK0vDhwyVJBw4cUOPGjVW/fn3Vq1dP58+f17vvvmvLzzNsmLmdO1e6YRlzAABS5XBIH35oRgb++afUqZPEAH4AQO/ekqentGOHdPCg3dEAQNZixHg2GDlSWrpUWrRIevNNqWRJuyMCAOQ0TZpIgYFSZKT0ySdSr152RwQAuYe/v78sy0p236uvvurc7tu3r/r27ZvscU2aNNGePXuyJL706tDBXIB76pS0Zg01AwDgOl9fUzsaNZL27ZP69jXfe3raHRkAwC6lS0tt25pZqRYulF57ze6IACDrMGI8GzRuLN1xhxnNMWuW3dEAAHIih+PfUeOLF9sbCwAgZ/PykgYPNtszZtgbCwDA/VSoIK1dK+XPL336qTRmjN0RAQDs1r+/uV24UIqPtzcWAMhKNMazgcNhRo1L0rRpUkyMvfEAAHKmhMb4+vXShQv2xgIAyNkGD5Y8PKRNm6RDh+yOBgDgbho1MktySNJ//yt99JG98QAA7NW5s1S4sJnJ8Lvv7I4GALIOjfFs0quXmZLk5EkzRRUAADerW1eqX99cQLVihd3RAABysooVpfbtzTazUgEAMqJ3b+nll812aKi0bZu98QAA7OPrK3XvbrYXLrQ3FgDISjTGs4mPjzRsmNl+7z17YwEA5FxMpw4AcFVoqLmdN88s2wQAQHqNG2caIdevSw8+KB07ZndEAAC7JEynvny5dO2avbEAQFahMZ6NHn3UrAe4dau0a5fd0QAAcqI+fczt5s3SiRP2xgIAyNk6dDDrxP75J7NSAQAyxsPDTKMeFCSdO2em0r10ye6oAAB2aNlS8veX/v5b+uwzu6MBgKxBYzwblS8v9ehhthk1DgBITkCA1Ly52V661N5YAAA5m5eXWWtckmbMsDcWAID7KlhQWrdOKlNG2rPHjBiMj7c7KgDIGQ4fPqymTZuqRo0aatSokfbt25fkmO3btysoKEhBQUGqW7euhg0bpugbpnSaM2eOqlevrqpVq2ro0KGKiYlxaV928/D4dyZDplMHkFvRGM9mI0ea28WLpT/+sDcWAEDOlHASsmiRvXEAAHK+wYPNB1ibNkmHDtkdDQDAXQUEmNlHfHzMbcLa4wCQ1w0bNkyhoaE6dOiQRo8erZCQkCTH1K9fXzt27FB4eLj27t2rc+fOadq0aZKko0eP6uWXX9bWrVsVERGh33//XTNnzkxzn10SplP/7DPp/HlbQwGALEFjPJvdfbfUqJFZA3DWLLujAQDkRA89JHl7S7t3S8lciAwAgFPFilL79mab8wsAwK1o3FiaPdtsT5jAhboAcO7cOe3cuVP9+vWTJHXv3l0nTpxQREREouN8fX3l7e0tSbp+/bquXr0qh8MhSVqxYoU6d+6ssmXLyuFw6NFHH9WSJUvS3GeX224zy2vExJi1xgEgt/GyO4C8xuEwo8b795emTZOee840PwAASFCihNSunfTJJ9KSJdLrr9sdEQAgJxs2zIzomDfP1AwfH7sjAgC4q379zMW5kyaZWUmqVTODPAAgLzpx4oTKlSsnLy/TRnE4HKpYsaKOHz+uatWqJTo2MjJSXbp00ZEjR/TAAw/o8ccflyQdP35clSpVch4XGBio48ePp7kvOdHR0YmmaI+KipIkxcTEpHsK9oTjk3tcnz4eCg/31IIF8RoyJC5dz5ubpJYj/Is8uYY8pe1WcpSex9AYt0GPHtKzz0qnTkmrV0s9e9odEQAgp+nb1zTGFy+WXnvNXFgFAEBy2reXKlT49/yid2+7IwIAuLM33pD275fWrpW6dpV+/NFMtQ4ASFlgYKB2796tS5cuqV+/flq1apV6Z/If5hMnTtT48eOT3L9x40b5+vpm6DnDwsKS3FeqlI88PNpq+3YPzZnzlcqVu5Kh584tkssRkiJPriFPactIjq5ccf19isa4DXx8pEcflcaPl6ZOpTEOAEiqUyepYEHp6FHp+++lJk3sjggAkFN5eUlDhpjzi5kzaYwDAG6Nh4e0YIF0zz3S3r1Sly7S1q3m/AQA8pKAgACdOXNGsbGx8vLykmVZOn78uCpWrJjiYwoVKqTevXtr0aJF6t27typWrKgjR44490dGRjofn9q+5IwZM0ajRo1yfh8VFaWAgAAFBwfLz88vXT9bTEyMwsLC1KZNG+c08DdassRSWJhDp0/fp8GD49P13LlFWjmCQZ5cQ57Sdis5SphBwxU0xm0ybJhZr+m776SffpLuuMPuiAAAOYmvr/Tgg9LChWbUOI1xAEBqBg82M4xs2iQdOiTVqGF3RAAAd1a4sJnBqlEjadcuaeBAs9ash4fdkQFA9ildurQaNmyohQsXKiQkRCtXrpS/v3+SadQjIiJUqVIleXt76/r161q9erVuv/12SWZd8nvvvVfjxo1TmTJlNH36dOdI8tT2JcfHx0c+yayb5O3tneFGW0qP7d9fCguTFi/21Pjxnnl6JsNbyW9eQp5cQ57SlpEcped4/py1SblyZkp1SXrvPXtjAQDkTH37mttlyySWnwEApCYgQOrQwWzPmmVvLADg7g4fPqymTZuqRo0aatSokfbt25fisZZl6b777lPRokUT3f/pp5+qVq1aql69urp165auUSw5RaVKZokOb29p5UozMwkA5DUzZszQjBkzVKNGDU2aNElz586VJA0ZMkTr1q2TJH399ddq0KCB6tevrwYNGqhMmTJ6+eWXJUlVqlTR+PHjdc8996hatWoqVaqUhg0bluY+uz34oBm0ceSI9MMPdkcDAJmHxriNRo40t0uWSOfO2RsLACDnad1aKlVK+uMP6auv7I4GAJDThYaa23nzpOhoW0MBALc2bNgwhYaG6tChQxo9erRCQkJSPPadd95R1apVE9136dIlDR48WGvWrNHhw4dVvnx5vfbaa1kcdda45x6zTIckvfqquWgXAPKSmjVravv27Tp06JB27typevXqSZJmz56tzp07S5JCQ0P1yy+/aPfu3dq3b5+mTp2q/PnzO59j6NChOnLkiI4cOaI5c+YkGtmY2j47FSokdetmthcssDcWAMhMNMZtdPfd0l13Sdev/3uSAQBAAm9vqWdPs71okb2xAAByvvbtJX9/6c8/zQg/AED6nTt3Tjt37lS/fv0kmWluT5w4oYiIiCTH7tu3T2vWrNELL7yQ6P7169erQYMGqlWrliTp8ccf15IlS7I++CwSEiI9++y/2zt32hkNACC7/F8p1NKlpocBALkBa4zbbORIU2A++EAaPdo0QQAASNC3r/S//5kGx5UrZhorAACS4+Vl1hofP16aMUNKZXlCAEAKTpw4oXLlysnLy3xk5nA4VLFiRR0/fjzRmrIxMTEaOnSo5syZI09Pz0TPcfz4cVWqVMn5fWBgoM6cOaPY2Fjn8yaIjo5W9A3TfCRMuR4TE6OYdK6nlHB8eh/nitdek3791VOff+6hLl0sffddrCpUyPSXyRZZmafchDyljRy55lbyRG7t1bq1VLasdPastGGD9H8D5AHArdEYt1mPHuaq29OnpVWrpF697I4IAJCTNG4sVa4sHT0qffIJdQIAkLrBg03z4ptvpEOHpBo17I4IAHKn8ePHq1u3bqpdu7YiIyMz/DwTJ07U+GQW7964caN8M3hVbFhYWIbjSU2/fl765ZdmOn7cT23aXNIbb3wrH5/4LHmt7JBVecptyFPayJFrMpKnK1euZEEkcJWXl/Tww9Lbb5vp1GmMA8gNaIzbLF8+6dFHpXHjpKlTaXgAABJzOMxJyBtvmOnUqRMAgNQEBEgdOkiffmqWa5o82e6IAMC9BAQEJBrdbVmWjh8/rooVKyY6bvPmzTp+/Ljef/99xcbGKioqSoGBgdqxY4cqVqyYqAEUGRmZaBT6jcaMGaNRo0Y5v4+KilJAQICCg4Pl5+eXrthjYmIUFhamNm3aZNkatQ0bSvfcYykiophWrnxACxbEyeHIkpfKMtmRp9yAPKWNHLnmVvKUMIsG7NOvn2mMf/KJ9PffUtGidkcEALeGxngOMGyYaXhs22bWabrzTrsjAgDkJAmN8fXrpfPnpRIl7I4IAJCThYaaxvi8eaZ++PjYHREAuI/SpUurYcOGWrhwoUJCQrRy5Ur5+/snmkZdkrZu3ercjoyMVFBQkHPkeLt27TR8+HAdOHBAtWrV0rRp09Q7hfUtfHx85JPMG7W3t3eGG2238ti01KwprVwp3X+/tHy5h267zUMvv5wlL5XlsjJPuQl5Shs5ck1G8kRe7RcUJNWtK+3bJ61YIQ0ZYndEAHBrPOwOAGadjoQRgO+9Z28sAICcp04dqX59KTbWfAgFAEBq2reX/P3NxVSrVtkdDQC4nxkzZmjGjBmqUaOGJk2apLlz50qShgwZonXr1qX5+MKFC2v27Nnq2rWrqlWrppMnT+pld+0eJ6NFC+mDD8z2K69wjgIAuZnDIfXvb7YXLLA3FgDIDDTGc4iRI83t0qXS77/bGwsAIOfp29fcLlpkbxwAgJzPy8usNS6Z6dQBAOlTs2ZNbd++XYcOHdLOnTtVr149SdLs2bPVOZkFVgMDA/X3338nuq9z5846cOCAIiIitGbNGhUpUiQ7Qs82Q4ZITz1ltgcMkHbtsjUcAEAWevhh0yDfskX6v8lRAMBt0RjPIRo1kho3lq5f58MrAEBSCTMvbtkinThhbywAgJxv8GDJw0P65hvp4EG7owEA5Eb//a/Utq105YrUubN09qzdEQEAskJAgNSypdlevNjWUADgltEYz0ESRo1/8IFpkAMAkCAgQGre3GwvWWJvLACAnC8gQOrQwWzPmmVvLACA3MnLS1q2TKpVSzp5UuraVbp2ze6oAABZ4cbp1C3L3lgA4FbQGM9BuneXypWTzpxhfSYAQFIJ06lzdS4AwBXDhpnbefNoVAAAskaRItK6dVKxYtIPP5gp1mmYAEDu0727lD+/dOCA9NNPdkcDABlHYzwHyZdPeuwxsz11qr2xAABynocekry9pd27pX377I4GAJDTtWsn+ftL589Lq1fbHQ0AILeqXl1ascKMIF+0SHrzTbsjAgBkNj8/qUsXs71wob2xAMCtoDGew4SGmgb5999LP/5odzQAgJykeHGpfXuzzahxAEBavLzMyD1JmjHD3lgAALnbffdJ771ntv/f/5PWrrU3HgBA5kuYTn3JEik21t5YACCjaIznMGXKSL16me2EEwoAABI8/LC5XbyYKQoBAGkbPFjy8JA2b5YOHrQ7GgBAbvboo9Lw4eY8pW9fac8euyMCAGSm4GCpVCnp3Dlp40a7owGAjKExngONGGFuly2Tzp61NxYAQM7SqZNUqJAUGSlt3253NACAnM7fX3rgAbM9a5a9sQAAcr9335Xuv1+6fNmcu5w7Z3dEAIDM4u0t9e5ttplOHYC7ojGeAzVqJDVpIsXEMOUhACAxX1/pwQfNNtOpAwBcERpqbufNk65dszUUAEAu5+UlLV9u1h0/flzq1k2KjrY7KgBAZkmYTn3NGuniRVtDAYAMoTGeQ40caW6nT5euX7c3FgBAzpIwnfry5eYiKgAAUtO+vRk5fv68tHq13dEAAHK7YsWkTz6RihaVvvvOTLHOMlAAkDvceadUs6Z09aq0cqXd0QBA+tEYz6G6d5fKlzdTqa9YYXc0AICc5P77zZpOf/whffml3dEAAHI6T09pyBCzzYxUAIDsULOmuZDX09PMWPLWW3ZHBADIDA6H1K+f2WY6dQDuiMZ4DuXtLT32mNmeOtXeWAAAOYuXl9Srl9lmOnUAgCsGD5Y8PKTNm6WDB+2OBgCQF7RpI73zjtl+/nnp00/tjQcAkDkSGuNffy2dPGlvLACQXjTGc7DQUClfPumHH8wXAAAJEqZTX71aunLF3lgAADmfv7/0wANme+ZMe2MBAOQdTzwhDRtmplLv00f65Re7IwIA3KrAQKlZM/PezoANAO6GxngOVrq0OWmQpPfeszcWAEDO0rixVLmydPmytG6d3dEAANzBsGHm9qOPpGvX7I0FAJA3OBzmM62WLaVLl6TOnaU//7Q7KgDArWI6dQDuisZ4DjdihLldvlw6c8beWAAAOYfD8e+oca7OBQC4ol07KSBAOn9eWrXK7mgAAHmFt7e0YoVUtap09KjUvbt0/brdUQEAbkWPHma22717pd277Y4GAFxHYzyHu+MO6Z57pJgYacYMu6MBAOQkCY3x9etNkwMAgNR4ekpDhphtplMHAGSnEiWkTz6R/PykLVuk4cPNFLwAAPdUrJjUqZPZXrDA3lgAID1ojLuBkSPN7fTpUnS0vbEAAHKOOnWkoCApNtaMwAAAIC2DBkkeHtLmzdKBA3ZHAwDIS2rXlpYuNXVo9mxpyhS7IwIA3IqE6dQXL5bi4uyNBQBcRWPcDTz4oFShgvT779LHH9sdDQAgJ2E6dQBAevj7Sx07mu1Zs+yNBQCQ97RvL02ebLafeUbasMHeeAAAGdehg1S8uFkC9uuv7Y4GAFxDY9wNeHtLjz1mtqdMYaopAMC/+vQx641v2SIdP253NAAAdxAaam7nzZOuXbM1FABAHvTUU2YGk/h4qVcvaf9+uyMCAGREvnzmfVxiOnUA7oPGuJsIDZV8fKSdO6UffrA7GgBATuHvLzVvbraXLrU3FgCAe2jXTgoIkC5ckFatsjsaAEBe43BIH3wgNWsmRUWZNWrPn7c7KgBARiRMp75qlXT5sr2xAIAraIy7iVKlzKhASZo61d5YAAA5C9OpAwDSw9NTGjLEbM+YYW8sAIC8KV8+aeVKKTBQOnJE6tlTiomxOyoAQHo1aSJVrWqa4mvW2B0NAKSNxrgbGTHC3H78sXT6tL2xAAByjoceMstu7N4t7dtndzQAAHcwaJDk4WGW4jhwwO5oAAB5UalS0iefSIUKmbVpR45k+UAAcDcOx7+jxplOHYA7oDHuRho2lO69V4qNZWQHAOBfxYtL7dubbUaNAwBc4e8vdexotmfOtDcWAEDeddtt0pIlprEyfbo0bZrdEQEA0qtvX3MbFiadOWNvLACQFhrjbmbkSHM7fboUHW1vLACAnOPG6dQZZQEAcEVoqLn96CPp2jV7YwEA5F0dO0pvvmm2n3zSNFYAAO6jenWpcWMpPl5autTuaAAgdTTG3UzXrmZ0x7lz0vLldkcDAMgpOnUyUxBGRkrbt9sdDQDAHbRrJwUESBcumHVeAQCwy7PPSgMGSHFxZr3xQ4fsjggAkB79+5tbplMHkNPRGHcz3t7S44+b7SlTGBUIADB8faUHHzTbTKcOAHCFp6c0ZIjZZjp1AICdHA5Ti5o0kf7+21z4+9dfdkcFAHBVz56Sl5e0a5e0b5/d0QBAymiMu6GhQyUfH+mnn6Tvv7c7GgBATpGwptOyZVJMjL2xAADcw+DBkoeHtGWLtH+/3dEAAPIyHx9p9WqpYkUzYrxnTyk21u6oAACuKFlS6tDBbC9caG8sAJAaGuNuqGTJf5sfU6faGwsAIOdo3VoqVUr680/pyy/tjgYA4A4qVDBru0rSrFn2xgIAQJky0rp1UsGC5pxm1Ci7IwIAuCphOvVFi8x64wCQE9EYd1MjRpjbFSukU6fsjQUAkDN4eUm9epltplMHALhq2DBz+9FH0rVr9sYCAED9+v+ONnzvPWnGDHvjAQC4pmNHqUgR6cQJafNmu6MBgOTRGHdTQUFS8+ZmSqnp0+2OBgCQUyTMKLJ6tXT5sr2xAADcQ9u2ZtraCxeklSvtjgYAAKlrV+mNN8z2E09ImzbZGg4AwAX580s9ephtplMHkFPRGHdjI0ea2xkzGNkBADDuvluqXNk0xT/5xO5oACDnuHbtmrp27aoaNWqofv36atOmjSIiIpI99tNPP1WtWrVUvXp1devWTVFRUS7tc1eentKQIWZ75kx7YwEAIMGYMdLDD5tBId27SymUbQBADpIwnfqKFdLVq/bGAgDJoTHuxrp0kQICpD/+kJYtszsaAEBO4HCYD48ks6YTAOBfoaGhOnjwoHbv3q0uXbpoSEI3+AaXLl3S4MGDtWbNGh0+fFjly5fXa6+9luY+dzdokGmQb9ki7d9vdzQAAJhzm9mzpbvukv76S+rcWfrnH7ujAgCk5t57pUqVpKgoad06u6MBgKRojLsxLy/p8cfN9pQpkmXZGw8AIGdImE59wwbp/Hl7YwGAnCJ//vzq0KGDHA6HJKlx48aKjIxMctz69evVoEED1apVS5L0+OOPa8mSJWnuc3cVKpg1ASVp1ix7YwEAIEGBAtKaNZK/v7lwq3dvKS7O7qgAACnx8Pj3cymmUweQE3nZHQBuzZAh0vjx0q5d0rZt0j332B0RAMButWtLQUFSeLiZumrYMLsjAoCcZ8qUKerSpUuS+48fP65KlSo5vw8MDNSZM2cUGxub6j4vr8SnVtHR0YqOjnZ+nzDlekxMjGJiYtIVa8Lx6X1ceg0a5NDatV766CNL48fHKn/+LH25TJddeXJn5Mg15Mk1Gc0TeUV6lSsnrV1rRiFu2CA995z09tt2RwUASEn//tKECeY9+48/pFKl7I4IAP5FY9zNlSxprsCaM0d67z0a4wAAo29f0xhftIjGOADcbMKECYqIiNBXX32VZa8xceJEjR8/Psn9GzdulK+vb4aeMyws7FbDSlVcnFSqVBv98Yevxo7doxYtTmbp62WVrM5TbkCOXEOeXJPePF25ciWLIkFu1rChNH++1KOH9M47Ut260uDBdkcFAEhOrVrSnXdKO3dKS5dKI0bYHREA/IvGeC4wYoRpjK9YIZ08aaaXAgDkbb17S88/L23dKh0/LlWsaHdEAJAzTJ48WatWrdKXX36ZbIO6YsWKiZo8kZGRKleunLy8vFLdd7MxY8Zo1KhRzu+joqIUEBCg4OBg+fn5pSvmmJgYhYWFqU2bNvL29k7XY9Nrzx4PjR8v7djRQG++eXuWvlZmy848uSty5Bry5JqM5ilhBg0gvR56yMyaOHas9NhjUvXqUvPmdkcFAEhOv36mMb5wIY1xADkLjfFcoH59qUULafNmafp06fXX7Y4IAGA3f3/zIdHmzdKSJdLo0XZHBAD2e/vtt7VkyRJ9+eWXKlq0aLLHtGvXTsOHD9eBAwdUq1YtTZs2Tb17905z3818fHzk4+OT5H5vb+8MN9pu5bGuGjrUnE98+62HIiI8VLt2lr5clsiOPLk7cuQa8uSa9OaJnOJWvPyytG+ftHy51L279OOPUuXKdkcFALhZnz7SM8+Y9+mDB6WaNe2OCAAMD7sDQOYYOdLczpghXbtmbywAgJyhb19zu3ixvXEAQE5w8uRJPfPMM/r777/VqlUrBQUF6e6775YkvfLKK5o+fbokqXDhwpo9e7a6du2qatWq6eTJk3r55ZfT3JdbVKggdexotmfOtDcWAABu5nBIc+eaKXr//FPq1EliEgIAyHlKl5batjXbCxfaGwsA3IjGeC7RubOZJvfPP826HQAAdO8ueXtLe/ZIv/xidzQAYC9/f39ZlqUjR44oPDxc4eHh+uGHHyRJr776qh599FHnsZ07d9aBAwcUERGhNWvWqEiRIi7tyy2GDTO3H33ERbcAgJzH11das0YqV86MHu/bV4qLszsqAMDN+vUztwsXSpZlbywAkIDGeC7h5SUNH262p06l0AAApOLFpQ4dzDajxgEArgoONhfd/vWXtGKF3dEAAJBUhQrS2rVS/vzSp59KY8bYHREA4GZdukiFC0uRkdJ339kdDQAYNMZzkSFDpAIFpF27KDQAAOPhh83t4sVcNAUAcI2npzm3kJhOHQCQczVqZKZVl6T//tfMdAIAyDl8fc1shpK0YIG9sQBAAhrjuUjx4v9OTzJ1qr2xAAByho4dpUKFpGPHpO3b7Y4GAOAuBg0yDfKtW6Vff7U7GgAAkte7t/TSS2Y7NFTats3eeADkPocPH1bTpk1Vo0YNNWrUSPv27UtyzNdff6277rpLderUUd26dfX8888rPj5ekvTFF18oKCjI+VW+fHk1bNjQ+ViHw6F69eo592/dujXbfrbskNCvWL5cio62NxYAkGiM5zojRpjbVaukEyfsjQUAYD9fX6lbN7O9aJG9sQAA3EeFCubiKkmaNcveWAAASM348WZE4vXrUteu5qJgAMgsw4YNU2hoqA4dOqTRo0crJCQkyTHFihXT0qVL9euvv+qnn37Stm3bNH/+fElS27ZtFR4e7vxq2LCh+vbtm+jxW7dude5v1qxZdvxY2aZlS3Nu8fff0mef2R0NANAYz3Xq1ZNatZLi4qQPPrA7GgBATpAwnfry5VJMjL2xAADcx7Bh5vajj6SrV+2NBQCAlHh4mFoVFCT98YfUubN06ZLdUQHIDc6dO6edO3eq3/8Ne+7evbtOnDihiIiIRMc1aNBAVapUkSTlz59fQUFBioyMTPJ8p0+f1ldffaX+/ftneew5haenlHAdANOpA8gJvOwOAJlvxAhp0yazHuDLL5t1xwEAeVfr1lLp0tK5c1JYmNShg90RAQDcQXCwVLGidPy4tHLlv9MgAgCQ0xQsKK1bZ9Yd37NH6t/f1C4PhgQBuAUnTpxQuXLl5OVl2igOh0MVK1bU8ePHVa1atWQfc/bsWa1YsUKffvppkn3z5s1Thw4dVLp06UT3t27dWrGxsWrdurVee+01FSxYMNnnjo6OVvQN85FHRUVJkmJiYhSTzpEQCcen93EZ0auX9J//eOuzzyydPRurEiWy/CUzRXbmyJ2RJ9eQp7TdSo7S8xga47lQp05SpUpm6qglS8z6gACA1G3YsEEvvfSSrl+/Ll9fX82YMUP169e3O6xM4eVlTkLee09avJjGOADANZ6e0tCh5mLbGTNojAMAcraAAGnNGjNt75o1pn698YbNQQHIU6KiotSpUyc9//zzuvPOOxPtsyxLH374oaZOnZro/mPHjqlixYq6fPmyHn30UT333HOaNm1ass8/ceJEjR8/Psn9GzdulK+vb4ZiDgsLy9Dj0iswsKUiI4to/Phf1a5dZLa8ZmbJrhy5O/LkGvKUtozk6MqVKy4fS2M8F/LykoYPl55/Xpo6VXrkEcnhsDsqAMi5/vrrL/Xt21dbtmxR3bp1tXXrVvXt21e//PKL3aFlmocfNo3xNWuky5fNiAoAANIyaJA0bpz07bfSr79KderYHREAAClr3FiaPduMGJ8wwdStm5byBQCXBQQE6MyZM4qNjZWXl5csy9Lx48dVsWLFJMdevHhR7dq1U5cuXTRq1Kgk+zdv3qxr166pbdu2ie5PeK6CBQvq8ccfV2hoaIrxjBkzJtFzR0VFKSAgQMHBwfLz80vXzxYTE6OwsDC1adNG3t7e6XpsRhw86KHRo6Xdu+tp6lT3OKnI7hy5K/LkGvKUtlvJUcIMGq6gMZ5LDR4sjR0r7d5tPsRq1szuiAAg5zpy5IhKlCihunXrSpKaNWum48eP6+eff1bDhg1tji5z3H23VKWK9NtvZorBPn3sjggA4A7KlzczUq1ZY5ZqevdduyMCACB1/fpJ+/ZJkyaZz8eqVTPnQwCQXqVLl1bDhg21cOFChYSEaOXKlfL3908yjfqlS5fUrl07tWvXTi+99FKyzzVnzhyFhITI09PTed9ff/0lHx8f+fr6Kj4+XsuWLVODBg1SjMfHx0c+Pj5J7vf29s5wo+1WHpse/fpJY8ZI27d76PhxD1WtmuUvmWmyK0fujjy5hjylLSM5Ss/xNMZzqeLFzdWxM2eaUeM0xgEgZdWrV9f58+e1bds2NW3aVOvWrdPFixcVGRmZpDGeWes52bGuTK9eHpo40VMLF8broYfisu11bwXr77iGPLmGPKUtu9ZzgnsJDTWN8fnzpYkTpQIF7I4IAIDUvfGGtH+/tHat1KWLtGOHmWodANJrxowZCgkJ0YQJE+Tn56e5c+dKkoYMGaLOnTurc+fOmjJlin788UddvnxZq1atkiT16NFDL774oiTpn3/+0apVq7R3795Ez33gwAENGzZMDodDsbGxatiwoaZMmZK9P2A2KV9eat1aCguTFi2SXnnF7ogA5FU0xnOxESNMY3z1aun4cSmZGV4AAJKKFCmiFStWaMyYMbp06ZKaNGmiOnXqyMsraZnM7PWcsnNdmfLlC0lqrS++kJYuDZOfn/s0sVh/xzXkyTXkKW1ZvZ4T3EtwsFSpknTsmLRihbkAFwCAnMzDQ1qwQLrnHmnvXtMc37qVJaUApF/NmjW1ffv2JPfPnj3buf3iiy86m+DJKVKkiC5fvpzk/iZNmmjPnj2ZE6gb6N/fNMYXLJBefpnlXwHYI9c0xufOnatBgwZp9erV6tq1q1q2bKljx46pSJEikqSBAwfq6aeftjnK7HXbbdJ990lffy198IEZ3QEASF6rVq3UqlUrSWZUeNmyZVUnmYVUM2s9J7vWlZkzx1J4uIeiotqqd+/4bHvdjGL9HdeQJ9eQp7Rl13pOcC+entKQIebDq5kzaYwDANxD4cLSJ59IjRpJu3ZJAwdKS5ZImzc7tGVLBRUs6FCrVqbOAQCy3oMPSr6+UkSE9MMPUuPGdkcEIC/KFY3xyMhIzZo1S41veid955131LVrV3uCyiFGjjSN8ZkzzfQkTHsIAMk7c+aMypUrJ0l67bXXdN999yVZM0rK/PWcsntdmb59pfBwadkyTw0f7j6fALH+jmvIk2vIU9qyej0nuJ9Bg6Rx46Rvv5V+/VVK5toxAABynEqVpFWrzMCRlSulkiWlqCgvSXfq7bclf39pyhSpWze7IwWA3K9QIdMcX7RIWriQxjgAe3jYHcCtio+P15AhQ/Tee+8l26jI6zp2lAIDpQsXpMWL7Y4GAHKuV155RbVq1VK1atV07NgxzZkzx+6QskTv3maqqq1bzZS4AAC4onx5qVMnsz1zpr2xAACQHvfeK4WGmu2bJ7g5dUp66CHTPAcAZL2E2aeWLpWuX7c3FgB5k9uPGH/77bd1zz336I477kiy74UXXtDLL7+sOnXqaOLEiapSpUqyzxEdHa3o6Gjn9wnTQMbExCgmJn3rryYcn97HZaXHHvPQ6NGemjLFUv/+sTli7Y6cmKeciDyljRy55lbylFdyO2vWLLtDyBb+/lKLFtI335iTkNGj7Y4IAOAuhg2T1qyR5s83yzQxGxUAwB3ExUlr1ya/z7LMhcNPPWXWIWdadQDIWq1bS2XKSL//Lm3YIHXubHdEAPIat26M//LLL1q5cqW2bNmSZN+CBQsUEBAgy7L0v//9Tx07dtSvv/6a7PNMnDhR48ePT3L/xo0b5evrm6HYwsLCMvS4rFChgrd8fIK1d6+X/vvfH3TbbeftDskpJ+UpJyNPaSNHrslInq5cuZIFkcBODz9sGuOLF9MYBwC4rk0bMyXtsWPSihWsNQ4AcA9bt0onT6a837KkEyfMcS1bZltYAJAneXmZz6XeecdMp05jHEB2c+vG+NatWxUZGanq1atLks6ePavQ0FCdOXNGjz32mCTJ4XDoiSee0LPPPqvz58+rRIkSSZ5nzJgxGjVqlPP7qKgoBQQEKDg4WH5+fumKKSYmRmFhYWrTpk2OWmdxyxaHZs6Udu5squefj7M7nBybp5yGPKWNHLnmVvIUdfNcc3B7Dz0kDR8u7dkj/fKLdNttdkcEAHAHnp7S0KHSSy+Z6dRpjAMA3MGZM5l7HADg1vTvbxrj69ZJf/8tFS1qd0QA8hK3bow/9thjzga4JLVs2VJPPfWUOnbsqN9//11lypSRJK1cuVJlypRJtikuST4+PsmuT+7t7Z3hRtutPDYrPPmk+fBq3ToPnT7toUqV7I7IyGl5yqnIU9rIkWsykifymvsUKyZ16GCmE1y8WJowwe6IAADu4pFHpLFjpW+/lfbtk+rWtTsiAABSV65c5h4HALg1QUFSnTrSr7+amaiGDLE7IgB5iYfdAWSF6OhoPfDAA6pXr57q16+vadOmad26dXaHZas6dcz6HfHx0rRpdkcDALDbww+b28WLzdSBAAC4onz5f6c7nDXL3lgAAHBFs2aSv79ZSzw5DocUEGCOAwBkPYfj39mnFi60NxYAeU+uaox/88036tq1qwoWLKidO3dq79692r17t7766ivVr1/f7vBsN3KkuZ01S2LJYADI2zp1kgoVMuvEbttmdzQAAHcSGmpuP/pIunrV3lgAAEiLp6c0ZYrZTqk5/u675jgAQPbo29e8J2/ebD6bAoDskqsa40jdAw9IlStLf/0lLVpkdzQAADsVKCB162a2Fy+2NxYAgHsJDpYqVTLrAa5YYXc0AACkrVs3U7MqVEi67913/z03AgBkj4AAqWVLs02vAkB2ojGeh3h6Sk88Ybbfe4+pcwEgr+vb19wuXy7FxNgbCwDAfXh4SEOHmu0ZM+yNBQAAV3XrJkVGSmFhsRo1aqfuuSdekrR3r71xAUBe1a+fuV2wgF4FgOxDYzyPGTRI8vU1f/Rv3mx3NAAAO913n1S6tPTnn1JYmN3RAADcyaBB5sLb776T9u2zOxoAAFzj6Sm1aGGpefNTmjDBNMbnz5fOnrU5MADIgx56SMqfXzpwQPr5Z7ujAZBX0BjPY4oWlQYONNtTp9oaCgDAZl5eUq9eZpvp1AEA6VGunNS5s9meOdPeWAAAyIgmTSw1aSJdvy797392RwMAeY+fn9Sli9lesMDeWADkHTTG86CE6dTXrjVTSAEA8q6E6dTXrJEuX7Y1FACAmwkNNbfz50tXr9obCwAAGfHss+Z22jTOhwDADgnTqS9ZIsXG2hsLgLyBxngeVKeO1KaNFB9v/vAHAORdd90lValiPgRat87uaAAA7iQ4WKpUSfr7b+njj+2OBgCA9OvSRapaVbpwQZo3z+5oACDvadtWKlVKOneOZf4AZA8a43nUyJHmdtYsrogFgLzM4ZAefthsL1pkbywAAPfi4SENHWq2mU4dAOCOPD2lUaPM9ttvS3Fx9sYDAHmNt7fUu7fZZjp1ANmBxnge1aGDuSL2779phABAXpfQGP/iC+nPP+2NBQDgXgYNMk2F776T9u2zOxoAyByHDx9W06ZNVaNGDTVq1Ej7knmD2759u4KCghQUFKS6detq2LBhio6OliR98803KlCggHN/UFCQrrLmRI4VEiKVKCH99ptZYgoAkL0SplNfs0a6eNHWUADkATTG8ygPj3/XGp86VbIse+MBANindm2pQQOzltOKFXZHAwBwJ+XKSZ07m21GjQPILYYNG6bQ0FAdOnRIo0ePVkhISJJj6tevrx07dig8PFx79+7VuXPnNO2G9epq1qyp8PBw51eBAgWy8SdAevj6So8/brb/+18+IwOA7NaokVSjhnT1qrRqld3RAMjtaIznYY88IhUsaEZ2bNpkdzQAADv17WtumUUEAJBew4aZ2/nzzYdZAODOzp07p507d6rf/w1f6969u06cOKGIiIhEx/n6+srb21uSdP36dV29elUOhyPb40XmGD5c8vGRfvhB2rbN7mgAIG9xOKT+/c0206kDyGpedgcA+xQpIg0cKE2bZkaN33ef3REBAOzSq5f03HPSt99Kx45JlSrZHREAwF20aSMFBkqRkdLHH0sDBtgdEQBk3IkTJ1SuXDl5eZmPzBwOhypWrKjjx4+rWrVqiY6NjIxUly5ddOTIET3wwAN6PGHYsaQjR46oYcOG8vT01COPPJJo342io6OdU7BLUlRUlCQpJiZGMTEx6Yo94fj0Pi6vSS5PxYtL/fp5as4cD/3nP/FasYLFxvn/lDZy5JpbyRO5zTv69pVefln6+mvp1CmpQgW7IwKQW9EYz+OeeMI0xtetk44elSpXtjsiAIAd/P2lFi2kb76Rli6VRo+2OyIAgLvw8JCGDpVefFGaMYPGOIC8IzAwULt379alS5fUr18/rVq1Sr1791bDhg118uRJFSlSRCdPnlSHDh1UsmRJ9ezZM8lzTJw4UePHj09y/8aNG+Xr65uhuMLCwjL0uLzm5jw1aFBIUmt98olDs2ZtVoUKl+0JLIfh/1PayJFrMpKnK1euZEEkyIkqV5buvdcM2Fi82AzeAICsQGM8j6tdWwoOljZulP73P2nyZLsjAgDYpW9f0xhftIjGOAAgfR55RBo71kw/+8sv0m232R0RAGRMQECAzpw5o9jYWHl5ecmyLB0/flwVK1ZM8TGFChVS7969tWjRIvXu3Vt+fn7Off7+/urTp4+2bt2abGN8zJgxGjVqlPP7qKgoBQQEKDg4ONHzuCImJkZhYWFq06aNc5p3JJVanj7/PF6ff+6h3btbaejQeJsizBn4/5Q2cuSaW8lTwiwayBv69zeN8QULaIwDyDo0xqGRI01jfM4cafx4s+44ACDv6d5devxxae9e81Wvnt0RAQDcRblyUufO0qpV0syZZqkmAHBHpUuXVsOGDbVw4UKFhIRo5cqV8vf3TzKNekREhCpVqiRvb29dv35dq1ev1u233y5JOnPmjMqUKSMPDw9dvHhRn376qQYPHpzs6/n4+MjHxyfJ/d7e3hlutN3KY/OS5PL0/PPS559L8+d76vXXPVWqlE3B5SD8f0obOXJNRvJEXvOWHj2kESPMZ1K7d0v169sdEYDcyMPuAGC/9u2lqlWlv/+WFi60OxoAgF2KFZM6dDDbixfbGwsAwP2EhprbBQskZr0E4M5mzJihGTNmqEaNGpo0aZLmzp0rSRoyZIjWrVsnSfr666/VoEED1a9fXw0aNFCZMmX08ssvS5JWrlypevXqqX79+mrcuLHatGmjRx55xLafB65r3ly6807p2jWz9CAAIPsUKyZ17Gi26VMAyCo0xiEPD3MllmRGdliWvfEAAOzTt6+5XbJEis/bMwcCANKpTRspMNBccLtihd3RAEDG1axZU9u3b9ehQ4e0c+dO1fu/qZRmz56tzp07S5JCQ0P1yy+/aPfu3dq3b5+mTp2q/PnzS5KeeOIJ7du3z7lv3Lhxcjgctv08cJ3DIT37rNl+/33p6lV74wGAvKZ/f3O7eLEUF2dvLAByJxrjkCSFhEiFCkm//ip9/bXd0QAA7NKxo1S4sHTsmLR9u93RAADciYeHNHSo2Z4xw95YAADIqO7dpUqVpD//lObPtzsaAMhb2rc3I8dPn6ZPASBr0BiHJKlIEdMcl1gPEADysgIFpG7dzPaiRfbGAgBwP4MGSV5e0rZt0i+/2B0NAADp5+UlPf202X7rLWbSAoDs5OMj9epltplOHUBWoDEOpyeeMLeffCL99pu9sQAA7PPww+Z2+XIpJsbeWAAA7qVsWen/ZhnWzJn2xgIAQEYNGiQVLSodPmw+JwMAZJ+E6dRXrpQuX7Y3FgC5D41xONWsKbVrZ9YY/9//7I4GAGCX++6TSpeWzp+XwsLsjgYA4G6GDTO3CxZIV67YGwsAABlRuLD06KNme/Jke2MBgLymSROpShXTFF+zxu5oAOQ2NMaRyMiR5nbOHOnSJXtjAQDYw8tL6t3bbDOdOgAgve6/X6pcWfr7b+njj+2OBgCAjBkxQvL2lr79Vvr+e7ujAYC8w+GQ+vUz20ynDiCz0RhHIm3bStWrS//8Y0Z4AADypoTp1NesYdoqAED6eHhIQ4eabaZTBwC4q/Llpb59zfZbb9kbCwDkNQmN8Y0bpbNn7Y0FQO5CYxyJeHiYK2IlaepUM606ACDvuesuqWpVMwXu2rV2RwMAcDePPGJmINm2TfrlF7ujAQAgY555xtyuWiUdOWJvLACQl1SvLt19txQfLy1ZYnc0AHITGuNIYuBAqVAh6cAB6csv7Y4GAGAHh+PfUeOLF9sbCwDA/ZQtK3XpYrYZNQ4AcFe33Sa1a2caM+++a3c0AJC39O9vbplOHUBmojGOJPz8zAgPyYwaBwDkTQmN8S++kP78095YAADuJzTU3M6fb2YgAQDAHT37rLn98EPp/Hl7YwGAvKRXLzML1c8/S7/+anc0AHILGuNI1hNPmNvPPpMiIuyNBQBgj1q1pIYNpdhY6eOP7Y4GAOBu7r9fqlxZ+ucf6ggAwH3dd58UFGQu8po+3e5oACDvKFlS6tDBbC9YYG8sAHIPGuNIVo0aUvv2Zo3x//3P7mgAAHZhOnUAQEZ5eEhDh5rtGTPsjQUAgIxyOP4dNf7ee9K1a/bGAwB5Sb9+5nbRIrOsBQDcKhrjSNHIkeb2ww+lS5fsjQUAYI/evc0HQd9+Kx07Znc0AAB388gjZvrD7dulvXvtjgYAgIzp2VPy95d+/900ZwAA2aNTJ6lIEenECWnLFrujAZAb0BhHioKDzcjxqCizLiAAIO+pUEFq2dJsL1liaygAADdUtqzUpYvZnjnT3lgAAMgob2/pqafM9ltvMWoRALJL/vxSjx5mm+nUAWQGGuNIkYeHNGKE2X7vPf7oB4C8iunUAeQGI0eOVGBgoBwOh8LDw5M9Zu7cuQoKCnJ+lSxZUt26dZMkRUZGytPTM9H+I0eOZONP4L5CQ83tggVmfVYAANzR0KGSn5+0f7+0YYPd0QBA3pEwnfqKFdLVq/bGAsD90RhHqgYOlAoXlg4ckL780u5oAAB26N5dypfPTIHLNLgA3NVDDz2kb7/9VpUqVUrxmEceeUTh4eHOr7Jly6pv377O/YULF060v2rVqtkRutu7/36pcmXpn3+k5cvtjgYAgIzx8/v3Yq/Jk+2NBQDykmbNpIoVzcy2n3xidzQA3B2NcaSqcGFp0CCzPXWqvbEAAOxRrJjUoYPZZtQ4AHfVvHlz+fv7u3z8Dz/8oHPnzqlz585ZGFXe4OFhRtlJTKcOAHBvI0dKXl7Spk3STz/ZHQ0A5A0eHv+OGmc6dQC3ysvuAJDzPfGEaYp/9pl0+LBUvbrdEQEAstvDD0tr1ph1xt94w5yUAEBuNmfOHPXv31/e3t7O+y5fvqxGjRopLi5OXbt21YsvvihPT89kHx8dHa3o6Gjn91FRUZKkmJgYxcTEpCuWhOPT+7icpF8/6ZVXvLR9u0M//xyjevUy/zVyQ56yGjlyDXlyTUbzRF7hzgICpN69pYULzVrjXDgMANmjXz9pwgSzlMUff0ilStkdEQB3RWMcaapWzYwU/Owz6X//k9591+6IAADZrWNHM4vIsWPStm3SvffaHREAZJ3Lly9r6dKl+v777533lStXTqdOnVLp0qV14cIF9erVS2+99Zaef/75ZJ9j4sSJGj9+fJL7N27cKF9f3wzFFRb2/9m77/CoqrWNw79JIfSq1BCQLjVBsIBSxCCiFANHkKKhVwEjUgxVugKCIBoEUaRLE7ERGyCggEoXpUWKFHtohiTk+2N9CURa+pry3NfFlZ2ZPeOTdTiszH73eldkml7nLGrXrs2WLcUZPvwY3btn3t4crj5OWUFjlDIap5RJ7ThduHAhk5KIZI3nnjOF8WXLYMIEuMkuLSIikkHuvBPuust061i61CzmExFJCxXGJUX69TOF8bfegjFjTHFEREQ8R44cEBIC77xjVkWoMC4i7uy9996jSpUqVK5cOekxPz8/ChcuDEDBggXp3LkzixYtumFhfOjQoYSFhSV9Hx0dTcmSJWncuDF58+ZNVZ7Y2FgiIyMJDg5OtoLd1WTL5qBpU9i06Q4WLSpJGu8PuCF3GafMpDFKGY1TyqR1nBI7aIi4qsBAeOgh+OwzmD4dpk61nUhExDN07GgK4+++q8K4iKSdCuOSIsHBUKkS7N9viiKaeEREPE+7dmYOWLbMXADSdWIRcVdz586lS5cuyR47c+YMBQoUwNfXl5iYGFauXElQUNAN38PPzw8/P79rHvf19U1zoS09r3UGDz8MZcrA4cMOVq3yJTQ0c/47rj5OWUFjlDIap5RJ7ThpTMUdDBxoCuNvvgkjRkD+/LYTiYi4v7ZtTdeOrVvh55+hQgXbiUTEFWmHUEkRh+NKMXzGDLh82W4eERHJeg8+CEWKwB9/wLp1ttOIiKROjx498Pf35/jx4zz88MOUK1cOgK5du7JmzZqk83766Sd27NhBmzZtkr3+66+/JigoiBo1alCzZk2KFi1KeHh4lv4Mrs7LC7p1M8cREXaziIiIpEfjxlC1Kpw7B7Nn204jIuIZihQx//6C2dJCRCQtVBiXFHvqKcib19yNpYKIiIjn8fGBxDrRokV2s4iIpFZERATHjx8nLi6O06dPc/DgQQDmzJlD8+bNk86rWLEiZ8+eJc9/9g4KCQlhz5497Ny5k7179zJjxozrrgiXmwsNNfPJN9/Arl2204iIiKSNw2FWjYPppnXpkt08IiKeomNH83XBAkhIsJtFRFyTCuOSYnnyQOfO5vjVV+1mERERO9q3N19XrzarI0RERFKjaFFo2dIcv/mm1SgiIiLp8uSTULw4/PorLFliO42IiGdo0QJy54YjR2DTJttpRMQVqTAuqdKnj7kr9uOP4cAB22lERCSr1a4NZcvChQtwVedhERGRFOve3Xx9910zn4iIiLiibNmgXz9zPHmyVi6KuKsDBw5Qp04dKlSoQO3atdm7d+8153zxxRfcfffdVK5cmSpVqjBo0CAu//9epFFRUXh7exMYGJj059ChQ0mvXbt2LZUqVaJ8+fKEhIQQHR2dZT+bK8qZE1q1Msdqpy4iaaHCuKRKuXLw6KPmeOZMu1lERCTrORzQrp05Vjt1ERFJi0aNoEwZ+OcfWLbMdhoREZG069HDrFzcvRsiI22nEZHM0KNHD7p3787PP//M4MGDCQ0NveacAgUKsGTJEvbt28d3333H5s2bmT9/ftLzefLkYceOHUl/ypYtC8C5c+fo0qULq1ev5sCBAxQvXpwxY8Zk1Y/mshLbqS9bBjExdrOIiOtRYVxSLfFu2HnzQDewiYh4nsTC+Kefwu+/280iIiKux8sLunUzxxERdrOIiIikR/780LWrOZ482WoUEckEZ86cYfv27XTo0AGAVq1acezYMQ4ePJjsvKCgIMqUKQNA9uzZCQwMJCoq6pbv//HHHxMUFESlSpUA6N27N4sXL87YH8INNWhgtrL46y/48EPbaUTE1fjYDiCu56GH4M474ccf4Z134JlnbCcSEZGsVKkS1KwJ338P770HvXrZTiQiIq6mUycYPhy++QZ27YLq1W0nEhERSZv+/eHVV82K8Z07oUYN24lEJKMcO3aMYsWK4eNjyigOh4OAgACOHj1KuXLlrvuaU6dOsXz5ctauXZv02Pnz56lduzbx8fG0bNmS8PBwvL29OXr0KKVKlUo6r3Tp0pw8eZK4uLik/+bVYmJiiLlqiXRi2/XY2FhiY2NT9bMlnp/a1zmLtm29mDrVm/nzL9OsWXym/DdcfYyyisYpZTROt5aeMUrNa1QYl1RzOEwxvHdvmDHD7Dvupd4DIiIepX17UxhfuFCFcRERSb0iRaBlS1i+HGbP1jZNIiLiukqXhv/9D5YuhSlT4KruySLiYaKjo2nWrBmDBg2iVq1aABQrVowTJ05QuHBh/vzzT9q0acOUKVMYNGhQqt9/woQJjB49+prH161bR86cOdOUOdJF94EICMgDPMiHH8LSpZHkyZN5xUZXHaOspnFKGY3TraVljC5cuJDic1UYlzTp2BGGDoUDB0wr3UcesZ1IRESyUps2MHAgbNoEUVHmYpCIiEhq9OhhCuPvvgsvvQRpvJYnIiJi3cCBpjC+eDGMHw/+/rYTiUhGKFmyZLIV3AkJCRw9epSAgIBrzj179ixNmjShRYsWhIWFJT3u5+dH4cKFAShYsCCdO3dm0aJFDBo0iICAgGQFoKioqGQr1P9r6NChyd47OjqakiVL0rhxY/LmzZuqny02NpbIyEiCg4Px9fVN1Wudxdy5Ceze7cU//zxMmzaXM/z93WGMsoLGKWU0TreWnjGKTsW+zyqMS5rkzg1dusDUqaZdlArjIiKepUQJs6fTl1/CkiUwZIjtRCIi4moefBDKlIHDh00xoVMn24lERETSplYtqF8f1q8318leesl2IhHJCIULF6ZmzZosWLCA0NBQVqxYgb+//zVt1M+dO0eTJk1o0qQJw4YNS/bcmTNnKFCgAL6+vsTExLBy5UqCgoIAaNKkCX369GH//v1UqlSJWbNm0bZt2xvm8fPzw8/P75rHfX1901xoS89rbXvqKXj+eVi82Js+fbwz7b/jymOUlTROKaNxurW0jFFqzlcDbEmzPn1MW/VPPoGffrKdRkREslr79ubrwoV2c4iIiGvy8oLu3c3x7Nl2s4iIiKTXwIHma0QEpGLRkog4uYiICCIiIqhQoQITJ05k3rx5AHTt2pU1a9YAMH36dLZu3crKlSsJDAwkMDCQcePGAfD1118TFBREjRo1qFmzJkWLFiU8PByAPHnyMGfOHFq2bEm5cuU4fvw4w4cPt/ODuqB27Ux9YtMmc7OtiEhKaMW4pFmZMtCsGaxZY/YEnDHDdiIREclKISHQuzfs2QO7d0O1arYTiYiIqwkNhWHD4JtvYNcuqF7ddiIREZG0adoUKlWC/fthzhy4qtuxiLiwihUrsmXLlmsenzNnTtJxeHh4UrH7v0JCQggJCbnh+zdv3pzmzZunP6gHKl4cGjWCzz6DBQtgxAjbiUTEFWjFuKRLv37m69tvwz//WI0iIiJZrEABc/EHYNEiu1lERMQ1FSkCjz9ujrVqXEREXJmXFzz3nDmeNg1iY63GERHxCB07mq8LFkBCgt0sIuIaVBiXdHnwQahcGc6dM8VxERHxLInt1BctgsuX7WYRERHXlNhO/d134fx5u1lERETSo0MHKFwYjh2D996znUZExP2FhEDOnHDgAGzdajuNiLgCFcYlXRwOeOYZczxjhooiIiKe5tFHIU8eOHoUNm+2nUZERFzRgw+abZqio2HZMttpRERE0i579ivXySZP1upFEZHMljs3tGxpjt9912oUEXERKoxLunXsCPnywaFD8PHHttOIiEhWypEDWrUyxwsX2s0iIiKuycvryqrxiAi7WURERNKrVy/zOemHH+DLL22nERFxf4nt1Jcs0TYWInJrKoxLuuXKBV27muMZM+xmERGRrNeunfm6bBlcumQ3i4iIuKbQUPDxgW+/hZ07bacRERFJu0KFoHNnczx5st0sIiKe4KGHoEgR+OMP+OQT22lExNmpMC4Zok8f01b9009h/37baUREJCs1bGg+gPz5J0RG2k4jIiKuqEgRePxxczx7tt0sIiIi6fXss+Y62ccfw549ttOIiLg3H58rizbUTl1EbkWFcckQd9wBzZub45kz7WYREZGs5eMDbduaY7VTFxGRtEpsp75gAZw/bzeLiIhIepQtCyEh5njqVLtZREQ8QYcO5uuaNfDPP3aziIhzU2FcMky/fubr229r8hER8TSJd+a+/z6cO2c3i4iIuKYHHzSFhOhoWLrUdhoREZH0GTjQfF2wAE6etJtFRMTdBQVB5coQEwPLl9tOIyLOTIVxyTANG0KVKmZ1x7x5ttOIiEhWql3bFDMuXDB354qIiKSWlxd062aO1U5dRERc3b33Qt26EBur7ooiIpnN4YCOHc2x2qmLyM2oMC4ZxuG4smp8xgyIj7ebR0REso7DAe3bm2O1UxcRkbTq1Al8feHbb2HnTttpRERE0idx1fjrr6uzlohIZkvsZrh+PRw9ajeLiDgvFcYlQ7VvDwUKwOHD8PHHttOIiEhWSvwA8umn8NtvdrOIiIhrKlwYWrY0x1o1LiIirq5ZMyhfHv76S90VRUQyW0AANGhgjrVoQ0RuxHphPC4ujilTptCrVy8ADh06xBdffGE5laRVrlzQtas5fvVVu1lExL1ovnB+FSvCXXeZjiHvvWc7jYi4G80DnqNHD/N1wQKzTZOISGpovhBn4u0NYWHm+JVXIC7Obh4RT6R5wbNc3U49IcFuFhFxTtYL43379mX//v189dVXABQqVIhBgwbZDSXp0ru32R8wMhL27bOdRkTcheYL15C4anzRIrs5RMT9aB7wHA0bQtmyEB0NS5faTiMirkbzhTibp56C226DI0dg1SrbaUQ8j+YFz9KqFWTPDj/+CD/8YDuNiDgj64Xxb775hjfffJPs2bMDkD9/fmJjYy2nkvQoXRpatDDHM2dajSIibkTzhWto08bsN75pE0RF2U4jIu5E84Dn8PKC7t3Nsdqpi0hqab4QZ5MzJ/TpY45fflkrGEWymuYFz5IvHzRvbo7ffdduFhFxTtYL44kTUqL4+HguX75sKY1klGeeMV/feQf+/ttqFBFxE5ovXEOJEmalH8DixXaziIh70TzgWUJDwdcXvv0Wdu60nUZEXInmC3FGvXubFYzbtsHXX9tOI+JZNC94nsR26osXawsLEbmW9cJ49erVWbBgAZcvX+bgwYP07NmTBg0a2I4l6dSgAVStChcuwFtv2U4jIu5A84XrUDt1EckMmgc8S+HC8Pjj5lirxkUkNTRfiDMqXBieftocT55sN4uIp9G84HkefthsYXH6NHz2me00IuJsrBfGp06dysaNGzl16hR169bFy8uLiRMn2o4l6eRwQL9+5njmTIiPt5tHRFyf5gvX0aoVZMsGe/bArl2204iIu9A84HkS26kvWADnz9vNIiKuQ/OFOKtnnzXXy9asgZ9+sp1GxHNoXvA8vr7Qtq05Vjt1Efkv64Xx3LlzExERwenTpzl9+jQRERHkypXLdizJAO3bQ4ECcOQIfPSR7TQi4uo0X7iO/Pnh0UfNsVaNi0hG0TzgeRo2hHLlIDoali61nUZEXIXmC3FWFSte2fd26lS7WUQ8ieYFz5TYTn3VKjh71m4WEXEu1gvjI0eO5I8//kj6/vfff2f06NEWE0lGyZkTunUzx6++ajeLiLg+zReuJbGd+uLFoK27RCQjaB7wPF5eVz5PRETYzSIirkPzhTizgQPN13fegTNn7GYR8RSaFzxT7dpQvjxcvAgrV9pOIyLOxHph/P3336dQoUJJ39922228//77FhNJRurd21zQ+uwz2LfPdhoRcWWaL1zLo49C3rxw9Chs2mQ7jYi4A80Dnik01LRC3LoVduywnUZEXIHmC3FmdevCPfdATAy89prtNCKeQfOCZ3I4rqwaX7DAbhYRcS7WC+OXr7OM7NKlSxaSSGYoVQpatjTHM2ZYjSIiLk7zhWvJkQNCQsyx2qmLSEbQPOCZCheGxx83x7Nn280iIq5B84U4M4fjyqrx116DCxfs5hHxBJoXPFf79ubr55/DiRN2s4iI87BeGK9YsSIvvfQS8fHxxMXFMWnSJCpVqmQ7lmSgfv3M1/nz4a+/7GYREdel+cL1JLZTX7YM9JlTRNJL84Dn6tHDfF2wAM6ft5tFRJyf5gtxdo8/DnfcAX/8YVqqi0jm0rzgucqUMZ06EhK0aENErrBeGJ8+fTqffPIJOXLkIFeuXHz22WfM0NJit1KvHlSvbu6Cfest22lExFVl9nzx0UcfUbNmTQIDA6latSrv6ApFuj34IBQpAn/+CevW2U4jIq5Onxs8V4MGUK4cnD0LS5bYTiMizk7zhTg7b28ICzPHU6dCfLzdPCLuTvOCZ1M7dRH5L+uF8eLFi/PFF1/w119/8eeffxIZGUmxYsVsx5IM5HBcWTU+c6Z+4ReRtMnM+SIhIYEOHTrw9ttvs2PHDtauXUuPHj04e/Zshry/p/L2hrZtzbHuzBWR9NLnBs/l5QXdu5tjtVMXkVvRfCGuoFMnKFAADh6ENWtspxFxb5oXPNsTT0C2bLBrl/kjIuJj6z984MABypcvz64b/GtUvXr1LE4kmaldOxg0CKKiYO1aaNrUdiIRcRVZNV84HA7+/vtvAKKjoylUqBB+fn4Z8t6erH17mD4d3n8fzp2D3LltJxIRV6PPDQLw9NMQHg5bt8KOHRAYaDuRiDgbzRfiSnLlgt69Ydw4mDzZtFcXkYyleUHA3IT06KOwahW8+y68/LLtRCJim7XC+LPPPsvatWtp0aLFNc85HA4OHz5sIZVklhw5zCqPiRPh1VdVGBeRlMuK+cLhcLB06VJCQkLIlSsXf/31FytXriRbtmzXnBsTE0NMTEzS99HR0QDExsYSGxub4v9m4rmpeY0rqlEDypXz4eBBBytWxNGuXUKqXu8p45ReGqeU0TjdWnrGKLPGVZ8bBKBwYVM0WLbMrBqfNct2IhFxNpovxNX07WsKNJs3mz916thOJOJeNC9Ioo4dTWF80SJTn/D2tp1IRGyyVhhfu3YtCQkJbNq0ieLFi9uKIVmoVy/zC/8XX8DbbzvYv78EuXI5aNhQk5GI3FhWzBdxcXGMHTuWlStXUq9ePbZt20bz5s3ZvXs3t912W7JzJ0yYwOjRo695j3Xr1pEzZ85U/7cjIyPTnNtV3HVXRQ4erMSMGb+TP/+3aXoPTxinjKBxShmN062lZYwuXLiQCUn0uUGu6NHDFMYXLICXXlIXEhFJTvOFuJqiRaFDB3jrLZgyRYVxkYymeUESNW1qVo7/+it8+SU89JDtRCJik7XCeKLGjRuzZ88e2zEkCwQEQO3a8M030L27D1CLqVPB39+02Q0JsZ1QRJxZZs4XO3bs4Ndff6VevXoA1K5dG39/f3744QeCg4OTnTt06FDCwsKSvo+OjqZkyZI0btyYvHnzpvi/GRsbS2RkJMHBwfj6+mbMD+KkypaFpUthx44i1K7dlNtvT/lrPWmc0kPjlDIap1tLzxgldtDILPrcIA0aQLlyZj/WpUuhSxfbiUTEGWm+EFcSFmYK46tWmfmtXDnbiUTcj+YF8fMze41HRJh26iqMi3g2q4Vxh8OBv78/v//++zUr8sT9rFxpiuL/deIEtG4Ny5erOC4i15fZ80XJkiU5efIkP/74I3feeScHDx7k0KFDVKxY8Zpz/fz8rrv3uK+vb5oKbWl9nSupWhXuugu++87B6tW+9O6d+vfwhHHKCBqnlNE43Vpaxigzx1SfGwTAy8tszzRokLmopcK4iPyX5gtxNVWqmJWMH30Er7wCr71mO5GIe9G8IIk6djSfIVauNNsy5cplO5GI2GJ9xXju3LkJDAykadOm5L6qF97UqVMtppKMFh8P/ftf/7mEBHA4YMAAaNFCbdVF5Poyc74oUqQIs2fP5oknnsDLy4vLly8zc+ZMAgIC0v3eYrRrB999Z/ZzSkthXEREnxsE4OmnITwctm2DH36AoCDbiUTE2Wi+EFczcKApjM+bB6NHg2p3IhlL84KA2a6iTBk4fBjef99cpxIRz2S9MF6tWjWqVatmO4Zkso0b4fjxGz+fkADHjpnzGjTIslgi4kIye7548sknefLJJzPt/T1d27bmgs+mTRAVBaVL204kIq5GnxsEoHBh02Vq6VKYPRtef912IhFxNpovxNU0aAA1a8L335t5bfhw24lE3IvmBQGzMK9DB3jxRdNOXYVxEc9ltTC+Z88eqlWrRo0aNShbtqzNKJLJTp7M2PNExLNovnB9xYtDw4bwxReweDEMHWo7kYi4Es0DcrXu3U1hfOFCePlluGrhj4h4OM0X4oocDnMTcbt2MGMGPP88ZM9uO5WIe9C8IFdLLIyvWwenT0ORIrYTiYgNXrb+w7NmzeL+++9n0qRJ3HXXXaxatSpd7zdv3jwcDgerV68G4MyZMzRp0oTy5ctTtWpVNmzYkAGpJa2KFcvY80TEc2T0fCH2tG9vvi5caDqFiIikhOYB+a+GDaFcOTh7FpYssZ1GRJxFRs4XBw4coE6dOlSoUIHatWuzd+/ea87ZsmULgYGBBAYGUqVKFXr06EFMTEzS83PnzqV8+fKULVuWbt26ERsbm+Y84v5at4aAAPjtN7OSUUTST58j5L/Kl4d77oHLl82iDRHxTFYL47t27eLbb79l48aNTJkyJc3vFRUVxZtvvsm9996b9NiQIUO49957OXDgAPPmzaNdu3b6EGLRAw+Av7+5C/Z6HA4oWdKcJyJytYycL8SukBDIlg327oXdu22nERFXoXlA/svhMKvGwbRTFxGBjJ0vevToQffu3fn5558ZPHgwoaGh15xTo0YNtm3bxo4dO9i9ezdnzpxh1qxZABw5coThw4ezceNGDh48yOnTp5mtf7DkJnx9YcAAczxliinaiEj66HOEXE/HjuarbkIS8VzWCuO+vr4EBAQAZp+PCxcupOl9Ll++TNeuXZkxYwZ+fn5Jjy9btoyePXsCULt2bYoXL8769evTH1zSxNsbpk83xzcqjk+bZs4TEblaRs0XYl/+/PDoo+Z40SKrUUTEhWgekOsJDTVFhG3b4IcfbKcREWeQUfPFmTNn2L59Ox06dACgVatWHDt2jIMHDyY7L2fOnPj6+gJw6dIlLl68iOP/L3gsX76c5s2bU7RoURwOBz179mSxlqbJLXTtCvnywU8/wYcf2k4j4vr0OUKup00b8PGB77+HfftspxERG6ztMf7vv/+ye/duEv6/l+rFixeTfV+9evUUvc/UqVOpW7cud911V9Jjf/zxB7GxsRQtWjTpsdKlS3P06NHrvkdMTEyydlfR0dEAxMbGpnqVeeL5Wp1+rWbNYMkSB2Fh3pw4kbw6XrXqZR57LB4NW3L6+3RrGqOUSc842R7bjJovxDm0bw+rVpnC+Pjx4GXtFj0RcRWaB+R6br/ddCJZutSsGn/9dduJRMS2jJovjh07RrFixfDxMZfMHA4HAQEBHD16lHLlyiU7NyoqihYtWnDo0CEeffRRevfuDcDRo0cpVapU0nm6JuVcnHWcsmeHrl29mDLFm5dfvkyTJvFW8zjrODkTjVHK2Lompc8Rcj233QaPPAIffAALFphrUyLiWawVxi9evEjz5s2TPZb4vcPh4PDhw7d8jz179rBixYp07x8+YcIERo8efc3j69atI2fOnGl6z8jIyHRlcld+fvDqq7BvXyH++is7ANOnB7F7tzdjxnxLrVpnLCd0Tvr7dGsao5RJyzjZvqM2I+YLcR6PPgp588KxY7Bpk7bQEJFb0zwgN9KjhymML1wIL79sPmuIiOeyMV+ULl2anTt3cu7cOTp06MDKlStp27Ztqt5D16TsccZxqlw5O97ewWzc6MX06RspX/5v25GccpycjcYoZbL6mpQ+R8iNdOxoCuMLF8LYsVq0IeJprBXGo6Ki0v0eGzduJCoqivLlywNw6tQpunfvzujRo/Hx8eHUqVNJq8ajoqKSWqf819ChQwkLC0v6Pjo6mpIlS9K4cWPy5s2bqkyxsbFERkYSHByc1FJLrtWkyZVxApg6FZYvv5cXXojDx9rfSuejv0+3pjFKmfSMU+KKBVsyYr4Q55E9O7RqBfPmmVXjKoyLyK1oHpAbadAAypeHAwdgyRJ4+mnbiUTEpoyaL0qWLMnJkyeJi4vDx8eHhIQEjh49esNrSgC5c+embdu2LFy4kLZt2xIQEMChQ4eSZdM1Kefh7OP05ZdmFePWrQ/Qv7+9VePOPk7OQGOUMrauSelzhNzIY4+ZRRtHj8LGjVC/vu1EIpKVXLoE2atXL3r16pX0fYMGDRgwYAAtW7bk22+/5Y033mDUqFFs27aNEydOUP8G/8L5+fkl2588ka+vb5p/qUnPaz2Jr68vw4d78847sH+/g7ff9uWq/0nl/+nv061pjFImLeOkcZWM1q6dKYwvWwbTp0O2bLYTiYiIK3I4oHt3eP55iIiA0qUdbNhQgly5HDRsCN7ethOKiCsqXLgwNWvWZMGCBYSGhrJixQr8/f2vaaN+8OBBSpUqha+vL5cuXWLVqlVJbXlbtWrF/fffz6hRoyhSpAhvvPHGDVeS65qUPc46Ts8/bwrjK1Z48dJLXpQubTePs46TM9EYpYyuSYmzyJED/vc/mDsX3n1XhXERT+O2TSImTZrE5s2bKV++PKGhoSxYsEATqZPKnx8Su4aNGAH//GM1joiIZLKGDaFoUfjzT1i3znYaEfEU/fr1o3Tp0jgcDnbs2HHdc7766ity5MhBYGBg0p+LFy8mPT937lzKly9P2bJl6datm/aTdAJPPw0+PrB9OwQH+zB1ai2Cg30oXRpWrrSdTkRcVUREBBEREVSoUIGJEycyb948ALp27cqaNWsA+OKLLwgKCqJGjRoEBQVRpEgRhg8fDkCZMmUYPXo0devWpVy5ctx+++306NHD2s8jrqV6dWjcGC5fhmnTbKcREXFPHTuar++9B1d95BMRD+DSK8b/66uvvko6LlKkCOt0td1ldO8OM2bATz/BhAkwcaLtRCIiklm8vaFtW3ORZ+FC08JKRCSztW7dmkGDBnH//fff9LyKFStet3B+5MgRhg8fzvfff0+RIkVo0aIFs2fPpk+fPpmUWFJi40aIi7v28RMnoHVrWL4cQkKyPpeIuLaKFSuyZcuWax6fM2dO0nH37t3p3r37Dd+jW7dudOvWLVPyifsbONDcRDxnDowcCQUK2E4kIuJeHngAAgJMO/W1a80KchHxDG67Ylxci68vTJ5sjl95BbQFjIiIe2vXznx9/304d85uFhHxDPXq1cPf3z/Nr1++fDnNmzenaNGiOBwOevbsyeLFizMwoaRWfDz073/95xISzNcBA8x5IiIiruShh8zK8fPnzXYhIiKSsby8oH17c/zuu3aziEjWsrZi/MUXX7zp8yNGjMiiJOIsHn0UHnwQvvgChg4FXWcUEdB84a5q1YJy5eDgQVMcT/wwIiLyX1k9Dxw6dIiaNWvi7e1Np06d6N27NwBHjx6lVKlSSeeVLl2ao0eP3vB9YmJiiImJSfo+OjoagNjY2FS3YE88X63bk1u/3sHx4zf+SJuQAMeOwZdfxlG/fkIWJnNe+ruUMhqnlEnrOGXWuOpzg7gTh8OsGn/qKXj1VXj2WbjOVvQichOaF+RWOnQw3Ws//hh++w1uv912IhHJCtYK42fPngXg+PHjfP755zRv3hyHw8GaNWto1KiRrVhikcMBU6ZAzZqwZIlZ/XHvvbZTiYhtmi/ck8NhiuGjR5t26iqMi8iNZOU8ULNmTY4fP06+fPk4fvw4TZs25bbbbuOJJ55I9XtNmDCB0aNHX/P4unXryJkzZ5ryRUZGpul17mrDhhJArVue9/HHOzh//kTmB3Ih+ruUMhqnlEntOF24cCFTcuhzg7ibNm3MwpETJ8zikdBQ24lEXIvmBbmVypVNLeL772HZMtAuWSKewVph/OWXXwagcePG7Nixg+LFiwPmTq5Q/abnsQIDzS/68+ZBWBhs2mSKJyLiuTRfuK927UxhfN063ZkrIjeWlfNA3rx5k479/f158skn2bhxI0888QQBAQEcOnQo6fmoqCgCAgJu+F5Dhw4lLCws6fvo6GhKlixJ48aNk/13UiI2NpbIyEiCg4Px9fVN1WvdWa5cDqZOvfV5jzwSSP36NTI/kAvQ36WU0TilTFrHKbGDRkbT5wZxN9mymUUjgwaZ7QefflrXyERSQ/OCpETHjqYw/u67KoyLeAprhfFEv/76a9KkBFCsWDFOnNDd/J5s7FhYuhS2bIH33oM0LNARETek+cL9VKhgWqpv3647c0Xk1rJiHjh58iRFihTBy8uLs2fPsnbtWrp06QJAq1atuP/++xk1ahRFihThjTfeoG3btjd8Lz8/P/yu0/PU19c3zYW29LzWHTVsCP7+ZiVdwnU6pTsc5vmGDX3w9s76fM5Mf5dSRuOUMqkdp8weU31uEHfSvTuMGQN798Knn0KTJrYTibgezQtyM08+abau+PZb+Plnc61KRNybl+0A/v7+jBw5kmPHjnHs2DFGjRqFv7+/7VhiUfHi5m5YgMGD4d9/7eYREeeg+cI9tWtnvi5aZDeHiDi/9M4DPXr0wN/fn+PHj/Pwww9Trlw5ALp27cqaNWsAWLFiBdWqVaNGjRrce++9BAcH06lTJwDKlCnD6NGjqVu3LuXKleP222+nR48eGf+DSop5e8P06eb4Rivopk1DRXERD6PPDeJO8uWDbt3M8eTJdrOIuCrNC3IzRYpAcLA5XrDAbhYRyRrWC+Nvv/02P/74I4GBgQQFBbF//37efvtt27HEsoEDTYE8KgpmzLCdRkScgeYL99SmjSlmbN4MR47YTiMiziy980BERATHjx8nLi6O06dPc/DgQQDmzJlD8+bNAejbty979+5l586d7N27l1GjRuG4quLarVs3Dh06xKFDh5g7d65WkjqBkBBYvhxKlLj2uQEDzPMi4ln0uUHcTf/+5iavzz+HH36wnUbE9aR3Xjhw4AB16tShQoUK1K5dm717915zzhdffMHdd99N5cqVqVKlCoMGDeLy5csA7N69m3r16lGpUiWqVq1K586duXjxYtJrHQ4H1apVIzAwkMDAQDZu3Jjun1lSp2NH83XBgut3ohIR92K9lXrRokVZtmyZ7RjiZHLlgnHjoFMn01o9NFR7z4p4Os0X7ql4cXjwQXORZ/FieOEF24lExFlpHpAbCQmBFi3gyy/j+PjjHfzxRxDvvOPN0qUwejTkyWM7oYhkJc0X4m4CAswNxYsWwZQpWtEoklrpnRd69OhB9+7dCQ0NZfny5YSGhrJt27Zk5xQoUIAlS5ZQpkwZ/v33Xx566CHmz59PaGgo2bNnZ+bMmVSvXp34+HjatWvHpEmTGDVqVNLrN27cSP78+dOcUdKnZUvIndss2Ni8GerWtZ1IRDKT9RXj//zzD3379qVZs2YA7Nu3j8WLF1tOJc7gqacgKAiio80FLRHxbJov3FdiO/WFC3VnrojcmOYBuRlvb6hfP4F69U4wY8ZlypaFX381+7KKiGfRfCHu6LnnzNclS+DYMbtZRFxNeuaFM2fOsH37djp06ABAq1atOHbsWFL3qURBQUGUKVMGgOzZsxMYGEhUVBQA5cuXp3r16gB4e3tTu3btpOfEOeTMeaXT1Lvv2s0iIpnP+orxHj16ULVqVb766isA7rjjDtq1a8eTTz5pN5hY5+Vl7oR98EF44w3o0wfuvNN2KhGxRfOF+woJgV69YN8+2L0b/v/zoohIMpoHJKWyZzd7jz/2GLzyCnTuDJUq2U4lIllF84W4o5o1zfWxL74wc5z2GxdJufTMC8eOHaNYsWL4+JgyisPhICAggKNHj1KuXLnrvubUqVMsX76ctWvXXvPc+fPnmTNnDhMmTEj2eKNGjYiLi6NRo0aMGTOGXLlyXfe9Y2JiiImJSfo+OjoagNjYWGJjY2/581wt8fzUvs5dPfmkg/nzfVi2LIHJk+Pw89MYpZTGKWU0TreWnjFKzWusF8Z//vlnlixZwooVKwDIkSMHCVouJv+vYUNo3hzWrIFBg+CDD2wnEhFbNF+4r/z5TfFi5UqzalyFcRG5Hs0DkhqPPmrmlrVr4ZlnYN06uGq7eBFxY5ovxF0NHGgK47Nnw/DhkC+f7UQiriEr54Xo6GiaNWvGoEGDqFWrVrLnLl26RJs2bWjcuDGPP/540uO//PILAQEBnD9/np49e/L8888za9as677/hAkTGH2d1qrr1q0jZ86cacocGRmZpte5m/h4KFiwMX/+mYNx437g3ntPJj2nMUoZjVPKaJxuLS1jdOHChRSfa70wni1btmTfX7x4UR9YJJmXXoKPPjIXtT7/HBo1sp1IRGzQfOHe2rUzhfHFi2HCBNM1RETkapoHJLWmT4fISPjsM1ixAlq3tp1IRLKC5gtxV02aQOXKptPWm2+aQrmI3Fp65oWSJUty8uRJ4uLi8PHxISEhgaNHjxIQEHDNuWfPnqVJkya0aNGCsLCwZM/FxsbSpk0bihUrxvTp05M9l/heuXLlonfv3nTv3v2GeYYOHZrsvaOjoylZsiSNGzcmb968KfqZrs4UGRlJcHAwvr6+qXqtuwoN9WLqVPjxx1q8+GK8xiiFNE4po3G6tfSMUWIHjZSwXhhv2LAh48aN499//+Wzzz7jlVdeSXbHlEjFiqbF7owZZk+l774zewiKiGfRfOHeHn0U8uY1++V9/TXUq2c7kYg4G80DklplysDgwfDiixAWBo88AjfoSikibkTzhbgrh8MUwzt3hmnToF8/+E+9T0SuIz3zQuHChalZsyYLFiwgNDSUFStW4O/vf00b9XPnztGkSROaNGnCsGHDkj0XFxdH27ZtKViwILNnz8ZxVRujv/76Cz8/P3LmzMnly5dZunQpQUFBN8zj5+eHn5/fNY/7+vqmudCWnte6m6efhqlT4eOPvTh71os8eczjGqOU0TiljMbp1tIyRqk53/p6rDFjxuDl5UXevHl54YUXqFu3LiNHjrQdS5zMyJGm1e7OnfDOO7bTiIgNmi/cW/bs0KqVOV60yG4WEXFOmgckLYYMgdKlzY1X48fbTiMiWUHzhbizdu2gaFE4cQKWLbOdRsQ1pHdeiIiIICIiggoVKjBx4kTmzZsHQNeuXVmzZg0A06dPZ+vWraxcuZLAwEACAwMZN24cAEuXLmXlypVs376doKAgAgMD6dOnDwD79+/n3nvvpUaNGlSrVo0//viDadOmZewASIpVr27+XLoE771nO42IZBbrK8b37dvH0KFDGTp0aNJju3btoro2GJWrFCoEw4aZO2OHDYMnnoDcuW2nEpGspPnC/bVrB/PmmQ8fr76q1Q8ikpzmAUmLHDnglVfg8cdh8mQIDYXy5W2nEpHMpPlC3JmfHzzzDISHm3mtfXuzklxEbiy980LFihXZsmXLNY/PmTMn6Tg8PJzw8PDrvr59+/a0b9/+us/dd9997Nq1K0U5JGt06ACDBsG775oOHSLifqyvGA8NDU3RYyJ9+5p2iCdPwssv204jIllN84X7a9jQrH7480/49FPbaUTE2WgekLRq0cLsy3rpkmk7q62GRdyb5gtxdz17Qs6cpqvi55/bTiPi/DQvSGq0a2duONq0CQ4ftp1GRDKDtRXjZ86c4dSpU1y8eJHdu3eT8P9XJ/755x/Onz9vK5Y4MT8/mDQJ/vc/Uxjv3h1KlLCdSkQym+YLz+HtDW3bmv3yFi2CZs1sJxIRZ6B5QNLL4TCdSKpWhU8+gfffh5YtbacSkYym+UI8RcGC0KULzJhhVo0/9JDtRCLOSfOCpEWJEtCoEXz2GSxe7MVNtnwXERdlrTC+ePFipk2bxq+//krz5s2THs+XLx+DBg2yFUucXKtWULeuuWMrPBzeftt2IhHJbJovPEv79qYw/v77cO6cuSlKRDyb5gHJCOXLm22Zxo+HAQPg4YdNm3URcR+aL8STDBgAr71mOm3t2mX2xBWR5DQvSFp17GgK42++6UXbtiXIlctBw4ZmQYeIuD5rrdT79+/PkSNHGDZsGEeOHEn6s2PHDrp06WIrljg5hwOmTjXH8+fD99/bzSMimU/zhWe56y5TvLh4EVavtp1GRJyB5gHJKC+8ACVLwi+/wMSJttOISEbTfCGepEwZs3gErlwnE5HkNC9IWiUWwH/91cHUqbUIDvahdGlYudJqLBHJINb3GA8MDOTvv/9O+v6vv/7iww8/tBdInN7dd5u9PhIS4LnntEegiKfQfOEZHA7zbzyYduoiIok0D0h65cp1pXgwaRIcOmQ3j4hkDs0X4imee858XbQITpywm0XEmWlekNRYudKsGP+vEyegdWsVx0XcgfXC+PDhw8mfP3/S9/nz52f48OH2AolLGD/etNf96iv44APbaUQkK2i+8ByJhfF16+DMGbtZRMR5aB6QjNCqldmLNSbGtKEVEfej+UI8xT33wAMPQGys2W9cRK5P84KkVHw89O9//YV4iY8NGGDOExHXZb0w/l8Oh4N4/csit1CqFISFmeOBA+HSJbt5RCTrab5wXxUqQK1a5oPGihVO96uKiDgJzQOSFg6HKR74+MDateaPiLg3zRfizgYONF/feAPOnrWbRcRVaF6QG9m4EY4fv/HzCQlw7Jg5T0Rcl/WrzXny5GHz5s1J32/atIk8efJYTCSuYsgQKFwYDhwwHwBExL1pvvAsiavGIyIcbNhQgvXrHbojV8TDaR6QjFKpEjz7rDnu3x/+/dduHhHJWJovxJM89pi5sfiff2DuXNtpRJyT5gVJqZMnM/Y8EXFOPrYDvPTSSzz++ONUqlQJgAMHDrBq1SrLqcQV5M0LL74IPXvC6NFm748CBWynEpHMovnCs+TNa77u2+fFvn21mDoV/P1h+nQICbGbTUTs0DwgGWn4cFi4EA4fhpdfNt+LiHvQfCGexMvL7DXeowdMmwZ9+5quKCJyheYFSalixTL2PBFxTtZ/Vbrvvvv48ccf2bJlCwB16tRJtueHyM106WJaIe7dC2PHwpQpthOJSGbRfOE5Vq6Ebt2uffzECWjdGpYvV3FcxBNpHpCMlCeP+ezw5JMwfry5ybZ0adupRCQjaL4QT9OxIwwbBr/8AitWQJs2thOJOBfNC5JSDzxgFmWcOHH9fcYBSpQw54mI67LeSh2gQIECNG3alKZNm2pSklTx8YHJk83xjBlw6JDdPCKSuTRfuL/4eNPW9nofQBIfGzAAtVUX8VCaByQjtWkDDRqYVuphYbbTiEhG0nwhniRHDrNSHEwXlBsVc0Q8meYFSQlvb9OpEMDhuP45BQrA5ctZl0lEMp61wnj9+vUBMykVLFgw6U/i9yIp1aQJPPwwxMbC4MG204hIRtN84Vk2boTjx2/8fEICHDtmzhMRz6B5QDKLw2FurvX2hlWr4NNPbScSkfTQfCGerHdvyJ4dvvsONmywnUbEOWhekLQICTGdCkuUSP540aLm39k9e8wWFiLiuqy1Ul+yZAkAO3bssBVB3MjkyRAZaVpGff013H+/7UQiklE0X3iWkycz9jwRcX2aByQzVa0K/frBK6/AM8/A7t3g52c7lYikheYL8WS33QadOsHrr5trZP9fDxTxaJoXJK1CQqBFC/jyyzg+/ngHjzwSSMOGPnzwATz+uLm5tkYNs82riLgea4XxYsWKAVCqVClbEcSNVK0KXbvC7NmmDeI334CXU2wUICLppfnCs/z//9wZdp6IuD7NA5LZRo2CxYvhwAGYOhWGDrWdSETSQvOFeLpnn4U33oC1a+HHH+HOO20nErFL84Kkh7c31K+fwPnzJ6hfvwbe3tCyJYweDSNHQq9e5t/ZOnVsJxWR1LJWGL/jjjtw3GijBuDw4cNZmEbcwYsvwqJFsG0bLFkC7drZTiQiGUHzhWd54AHw94cTJ66/N57DYZ5/4IGszyYidmgekMyWN6/Zk7VjRxg7Fjp0gJIlbacSkdTSfCGernx5U7RZtcrc6PXmm7YTidileUEyw7BhsGuX6VwbEgLbt5vrVCLiOqwVxteuXQuYliZRUVH06NEDgDfffFN3cUmaFCliVneEh8OQIaatSY4ctlOJSHppvvAs3t4wfTq0bm2K4P8tjickwLRp5jwR8QyaByQrtG8PERFmW6bnnoNly2wnEpHU0nwhAgMHmsL4/PkwZozZE1fEU2lekMzg5QVvv226Te3aZW5I2rhRdQgRV2KtMF6lShUAPvnkE7Zt25b0eN26dbn77rt58cUXbUUTF5bYNurYMVM4URtEEden+cLzhITA8uXQvz8cP578ucKF4bHH7OQSETs0D0hWcDhg5kyoWRPeew8++wweesh2KhFJDc0XIqal7333wZYt8Nprpjgu4qk0L0hmyZ0bVq+G2rXhu++gWzd4913zmUJEnJ/1XZj/+ecfzp8/n/T9+fPn+eeffywmEleWIwdMmGCOx4+H06ft5hGRjKP5wrOEhEBUFERGxhEWtp0PPoijSBE4c8as6BMRz6N5QDJbjRrQp485fuYZuHTJbh4RSRvNF+LpBg40X2fNgqv+ryDisTQvSGa44w5zQ623NyxcCJMn204kIillbcV4onbt2nHvvffyxBNPAPDee+/RoUMHy6nElT35pFktvn07jBxpVpCLiOvTfOF5vL2hfv0Ezp8/wcMP12DUKOjVy6x6CA2FPHlsJxSRrKR5QLLCiy/CkiWwfz+8+uqV4oKIuA7NF+LpWrSAsmXh0CHT7jfxpi8RT6V5QTJLw4ZmO8C+fWHwYKhWDZo0sZ1KRG7F+orxUaNGMXHiRP7++2/+/vtvJk2axIgRI2zHEhfm5QVTp5rjN9+EPXvs5hGRjKH5Qrp0gfLl4bffrvw7LyKeQ/OAZIX8+WHSJHM8ejT8+qvVOCKSBpovxNN5e0NYmDmeOhXi4+3mEbFN84Jkpt69oWtXSEiAtm3hp59sJxKRW7G+YhygcePGVKpUibJly9qOIm7igQdMG96VK+H55+Hjj20nEpGMoPnCs/n6wtix0KaNaVHVq5fZc1xEPIfmAckKTz8Ns2fDN9+YFeOLFtlOJCKppflCPF1oKIwYAYcPm31wW7WynUjELs0LklkcDnjtNfjxR9i0yXTt+PZbyJfPdjIRuRHrK8a/+uorSpUqRcOGDQHYtm2bWplIhpg0yRRRPvkEPv3UdhoRSS/NFwLQujXUrAnnzsG4cbbTiEhW0jwgWcXLy1zccjhg8WL46ivbiUQkNTRfiEDOnGYVI8DLL5uVjCKeSvOCZLZs2WDFCvD3NyvG27VTtw4RZ2a9MD5kyBA2btxIoUKFAKhduzY//PCD5VTiDsqVM/t7ADz3HMTF2c0jIumj+ULAFCsmTjTHr78OR47YzSMiWUfzgGSlmjWhZ09z/MwzEBtrN4+IpJzmCxGjTx/w8zMrFzdvtp1GxB7NC5IVihQxHTqyZ4ePPoJhw2wnEpEbsV4Yj4+Pv6aFSbZs2SylEXczfDgULAh798Jbb9lOIyLpoflCEgUHQ6NGpkihbcFEPIfmAclqY8dCoUKwZ49ZQS4irkHzhYhRpAg89ZQ5njzZbhYRmzQvSFa5664rNYiJE033KRFxPtYL49mzZ+fcuXM4HA4Adu/eTY4cOSynEndRoMCVosnw4RAdbTePiKSd5gu5WuKq8YULYdcuu1lEJGtoHpCsVrAgTJhgjkeOhFOn7OYRkZTRfCFyRViY+fr++/Dzz3aziNiieUGy0pNPwuDB5rhzZ/juO7t5RORa1gvjw4cPp3Hjxpw4cYIOHToQHBzM2LFjbccSN9KrF5QvD2fOmH3HRcQ1ab6Qq9WqBf/7n9kr74UXbKcRkaygeUBs6NIFatc2N9gOGmQ7jYikhOYLkSsqVYJmzcznpldesZ1GxA7NC5LVxo2Dpk3h33+hZUs4fdp2IhG5mtXCeEJCAtWqVWPhwoWMGjWKOnXqsGnTJh588EGbscTNZMsGL79sjqdOhaNH7eYRkdTTfCHXM3YseHvDhx/Cxo2204hIZtI8ILZ4eZk26g4HvPsufP217UQicjOaL0SuNXCg+fr22/Dbb1ajiGQ5zQtig7c3LFoEFSvC8ePQqhVcumQ7lYgk8rEdIDg4mD179tCrVy/bUcSNNW8O9evD+vVmZeGCBbYTiUhqab6Q/6pQAbp2hYgI06Zq0yZTuBAR96R5QGypXdusHJ8zB/r2he3bwcf6J2kRuRHNFyLJPfCAmcu2bYNZs8z2ICKeRPOC2JAvn9nG4p57zPWqvn3N9StdtxKxz+qKcYfDgb+/P7///rvNGOIBHA6zWtzhMPvRbt1qO5GIpIbmC7mRESMgRw7YsgXWrLGdRkQyi+YBsW3CBChQAHbuhDfesJ1GRG5E84XItRyOK6vGZ86Eixft5hHJSpoXxKaKFWHxYvPv8Jtvwuuv204kIuAEK8Zz585NYGAgTZs2JXfu3EmPT5061WIqcUc1a0LHjjB/Pjz3HGzYoDu0RFyJ5gu5nuLFYcAAU7B44QV47DHTskpE3I/mAbHpttvMXoG9e8Pw4fDEE1C4sO1UInI9mi9ErhUSAqVLQ1SUuS7Wo4ftRCJZR/OC2PTIIzBxoul02L8/VK4MDRrYTiXi2awXxqtVq0a1atVsxxAPMW4cvPee2Rtw5Uqzv4eIuAbNF3IjgwaZ1Xv79pmLPJ062U4kIplB84DY1r27Wenxww8wdCjMnWs7kYhcj+YLkWv5+JgbigcMgClToFs38LLaR1Qk62heENuef950nlq0CFq3NlszlS5tO5WI57JaGN+zZw/VqlWjRo0alC1b1mYU8RD+/qZ91Jgx5i6txx4DPz/bqUTkVjRfyM3kz29Wiz//vNkv78knIXt226lEJCNpHhBn4O0Nr70GderAW2+ZosK999pOJSJX03whcmOdO8OoUXDgAHzwAbRoYTuRSObTvCDOwOGAOXPgp5/gu+/Mv7+bNsFVDQxEJAtZuzdw1qxZ3H///UyaNIm77rqLVatW2YoiHmbQIChaFA4dMhe2RMS5ab6QlOjb19z8dOyY/m0XcTeaB8SZ3HcfhIaa4z59ID7eahwRuYrmC5Gby5MHevY0x5Mn280ikhU0L4gzyZEDVq+GIkVg1y7zmSIhwXYqEc9ktTC+a9cuvv32WzZu3MiUKVNsRREPkzs3jB1rjseMgT/+sJtHRG5O84WkRPbsMHq0OR4/Hv75x24eEck4mgfE2UyaBPnywfffm5UfIuIcNF+I3Nozz4Cvr9li8JtvbKcRyVyaF8TZ+PvDihXm3+EVK67UKEQka1krjPv6+hIQEACYfT4uXLhgK4p4oNBQqF4d/v4bXnzRdhoRuRnNF5JSTz0Fd94Jf/4JL71kO42IZBTNA+JsChc2N9iC2cpDN9qKOAfNFyK3Vrw4tG9vjlUjFHeneUGcUd268Prr5njECLOKXESylrU9xv/99192795Nwv/3i7h48WKy76tXr24rmngAb2/zASA4GGbNMm0QK1SwnUpErkfzhaSUj49ZLf744/DKK6a9erFitlOJSHppHhBn1KuXWS2+a5cpjkdE2E4kIpovRFLmuefg7bdh5UqzzaC2XRZ3pXlBnFWXLrBzJ8yYAR07wpYtULWq7VQinsNaYfzixYs0b9482WOJ3zscDg4fPmwjlniQhx6CRx+FDz80+47r7iwR56T5QlKjRQuz/+uWLaYjSOJduCLiujQPiDPy8YGZM6FePXjzTejWDWrVsp1KxLNpvhBJmapVoUkT+OQTmDbNFGZE3JHmBXFmU6bAnj3w5ZfmWtbWrVCokO1UIp7BWmE8KirK1n9aJMnLL5sPAu+/D199BQ0a2E4kIv+l+UJSw+GAiROhfn1TqAgLg/LlbacSkfTQPCDO6oEHoEMHWLDAdKDasgW8rG1WJiKaL0RSbuBAcz3srbdg9GgoWNB2IpGMp3lBnJmvL7z3HtSuDYcPQ5s25t9lH2sVOxHPoY/t4tHuvBN69DDHYWFw+bLdPCIikn716kHTphAfD8OG2U4jIiLu7KWXIE8es8Jj3jzbaURERFLmwQchMBAuXIA33rCdRkTEMxUqZBbs5coFn39ubloSkcynwrh4vFGjIG9e+OEHePdd22lERCQjTJhgVo8vWwbffWc7jYiIuKtixcznCYAhQ+DPP63GERERSRGH40oB5tVXISbGbh4REU9VrRrMn2+Op0/XzbYiWUGFcfF4t98O4eHmODwczp+3m0dERNKvenVo394cDxliN4uIiLi3Z56BKlXg999h+HDbaURERFLmiSfA3x9On4aFC22nERHxXCEhMHKkOe7Z02zRJCKZR4VxEaBfPyhVCk6cgClTbKcREZGM8OKLZs+mzz4zf0TEs/Xr14/SpUvjcDjYsWPHdc/54osvuPvuu6lcuTJVqlRh0KBBXP7/vXaioqLw9vYmMDAw6c+hQ4ey8CcQZ+XrCzNnmuM33jCdqERERJydry8MGGCOJ0/W9oIiIjaNGAGPPw6XLplC+YkTthOJuC8VxkWA7Nlh0iRzPGkS/Pqr3TwiIpJ+d9wBvXqZ4yFDdKFHxNO1bt2ar7/+mlKlSt3wnAIFCrBkyRL27dvHd999x+bNm5mf2NcOyJMnDzt27Ej6U7Zs2ayILi6gQQNo29bMNX37as4RERHX0K2b2V7wxx/hk09spxER8VxeXqaletWqcOqUKZJfvGg7lYh7UmFc5P898QTcey9cuKAWiCIi7iI8HHLnNvuML19uO42I2FSvXj38/f1vek5QUBBlypQBIHv27AQGBhIVFZUF6cQdvPwy5MoFmzfDu+/aTiMiInJrefNC9+7mePJku1lERDxd7tzw/vtQsCBs22b+fU5IsJ1KxP342A4g4iwcDpg6FerUgXnzTHv1GjVspxIRkfQoXBgGDoRRo0yR/PHHTctAEZFbOXXqFMuXL2ft2rVJj50/f57atWsTHx9Py5YtCQ8Px9vb+7qvj4mJISYmJun76OhoAGJjY4mNjU1VlsTzU/s6T2N7nIoUgfBwL154wZtBgxJo2jSO/PmtRLkh22PkKjROKZPWcdK4ijiXfv1g2jT48ktzQ/Fdd9lOJCLiucqUgffeg8aNYcECCAyE556znUrEvagwLnKV++6DNm1g6VIz4URGmoK5iIi4rrAweO01OHgQ5s6Fnj1tJxIRZxcdHU2zZs0YNGgQtWrVAqBYsWKcOHGCwoUL8+eff9KmTRumTJnCoEGDrvseEyZMYPTo0dc8vm7dOnLmzJmmXJGRkWl6naexOU7lyzvw92/I8eN56Nz5KF277rGW5Wb0dyllNE4pk9pxunDhQiYlEZG0KFnSbAeyYAFMmQKLFtlOJCLi2R58EF55xdy4NGiQaa/+8MO2U4m4DxXGRf5jwgRYtQo+/xw++ggefdR2IhERSY88ecwWGf36wejR0LGjaXUrInI9Z8+epUmTJrRo0YKwsLCkx/38/ChcuDAABQsWpHPnzixatOiGhfGhQ4cme310dDQlS5akcePG5M2bN1WZYmNjiYyMJDg4GF+1vbghZxmnXLkcNG0KH39chtGjA6hWzVqUazjLGDk7jVPKpHWcEjtoiIjzeO45UxhftsxcFytVynYiERHP1rcv7NgBb71lbl7auhXKl7edSsQ9qDAu8h933AEDBsBLL5n2u40bq+2uiIir69HDbJcRFQXTp8MLL9hOJCLO6Ny5czRp0oQmTZowbNiwZM+dOXOGAgUK4OvrS0xMDCtXriQoKOiG7+Xn54efn981j/v6+qa50Jae13oS2+P0yCPQqhWsWOFgwABf1q93vi5UtsfIVWicUia146QxFXE+gYHw0EPw2Wfm89LUqbYTiYh4NocDZs2CH3+ELVugeXP49ltI5T3WInIdXrYDiDijF16A226D/fvhzTdtpxERkfTKlg3GjDHHkybBH3/YzSMiWa9Hjx74+/tz/PhxHn74YcqVKwdA165dWbNmDQDTp09n69atrFy5ksDAQAIDAxk3bhwAX3/9NUFBQdSoUYOaNWtStGhRwsPDrf084tymToWcOWHjRrWkFRER1zBwoPn65pvw999Wo4g4lQMHDlCnTh0qVKhA7dq12bt37zXnfPHFF9x9991UrlyZKlWqMGjQIC5fvpz0/Nq1a6lUqRLly5cnJCQkWfeUmz0nns3PD1auhBIlTJ2ifXuIj7edSsT1qTAuch358pl2uwAjR8I//9jNIyIi6deuHVSvDtHRpj2giHiWiIgIjh8/TlxcHKdPn+bgwYMAzJkzh+bNmwMQHh5ObGwsO3bsSPqTWPwOCQlhz5497Ny5k7179zJjxozrrggXAQgIgMT7JgYONHOPiIiIM2vc2Oxje+4cvPEGrF/vYMOGEqxf71AhRjxajx496N69Oz///DODBw8mNDT0mnMKFCjAkiVL2LdvH9999x2bN29m/vz5gOlK1aVLF1avXs2BAwcoXrw4Y/7/zv2bPScCULQorF4N2bPD2rUwYoTtRCKuT4VxkRvo3h0qVYLff4fx422nERGR9PLyulIQnzkTjh2zm0dERNzbc89BuXJw6hS8+KLtNCKSGuldHRgVFYW3t3dS95HAwEAOHTqU1T+GSKo4HFdWjYeHQ3CwD1On1iI42IfSpc2qRRFPc+bMGbZv306HDh0AaNWqFceOHUu6yTZRUFAQZcqUASB79uwEBgYSFRUFwMcff0xQUBCVKlUCoHfv3ixevPiWz4kkqlUL5swxx+PHw9KldvOIuDrtMS5yAz4+MHkyPPYYTJsGPXua/cdFxP388ccfNGrUKOn7CxcucPjwYc6cOUPBggUtJpOM9sgjUK8ebNgAo0bB3Lm2E4mIiLvy84NXX4WmTc1+rZ07Q+XKtlOJSEokrg4MDQ1l+fLlhIaGsm3btmTnJK4OLFOmDP/++y8PPfQQ8+fPT1pJmCdPHnbs2JH14UXSIUcO8/WqDtAAnDgBrVvD8uUQEpL1uURsOXbsGMWKFcPHx5RRHA4HAQEBHD16NGlrpv86deoUy5cvZ+3atQAcPXqUUqVKJT1funRpTp48SVxc3E2fS/xvXi0mJoaYmJik7xPbrsfGxhIbG5uqny3x/NS+zpM40xg98QR8/70XU6d606lTAnfcEUdQkO1UhjONkzPTON1aesYoNa9RYVzkJpo2hUaN4PPPYehQWLLEdiIRyQyFChVKdtFq8uTJrF+/XkVxN+RwmD3G77sP3n7brOZTkUJERDLLI49Aixbw/vvQt6/5XOFw2E4lIjeTuDpw3bp1gFkd2LdvXw4ePJisCBJ01dXo/64OFHFF8fHm89H1JCSY+WvAADOveXtnaTQRlxEdHU2zZs0YNGgQtWrVyvD3nzBhAqMT9/+8yrp168iZM2ea3jMyMjK9sdyes4xR3brw1Vf38v33RXj00VgmT15P/vyXbMdK4izj5Ow0TreWljG6cOFCis9VYVzkJhwOmDIFgoJMi5L+/U0xRUTc29y5c5mgTajd1r33QsuWZo+m8HBYtcp2IhERcWfTpsGnn8KXX8J775nVHiLivDJidSDA+fPnqV27NvHx8bRs2ZLw8HC8r1NN1Oq/rKdxur716x0cP37jS8UJCWY7qi+/jKN+/YQsTOa89HcpZbJqBWBmKFmyZLIV3AkJCRw9epSAgIBrzj179ixNmjShRYsWhIWFJT0eEBCQrMgTFRWVNM/c7LnrGTp0aLL3jo6OpmTJkjRu3Ji8efOm6meLjY0lMjKS4OBgfH19U/VaT+GMY/TAA1CnTgIHD+ZkzpyH+eSTeLJls5vJGcfJGWmcbi09Y5T4O3RKqDAucgs1akCnTvDWWxAWBps3a5WHiDvbvHkzf/31F4899th1n8+oC1f6AJ0ymTVOo0fDmjU+rF7tYOPGOO6917Uv7OjvU8ponG7NlS9aiTir0qVN96mRI83niaZNIXdu26lEJKNcb3VgsWLFOHHiBIULF+bPP/+kTZs2TJkyhUGDBl3zeq3+s0fjlNyGDSWAW69w/fjjHZw/fyLzA7kQ/V1KmcxeAZgZChcuTM2aNVmwYAGhoaGsWLECf3//a26UOnfuHE2aNKFJkyYMGzYs2XNNmjShT58+7N+/n0qVKjFr1izatm17y+eux8/PDz8/v2se9/X1TXOhLT2v9RTONEa33w4ffAD33ANff+3Fc8958cYbtlMZzjROzkzjdGtpGaPUnK/CuEgKjBljVox/8w0sWwZt2thOJCKZZe7cuTz11FM3vDs3oy9c6QN0ymTGODVsGMjnn5eiV6+/GTt2k1vc9KS/Tymjcbo1V7xoJeLMnn/ebOFx5AiMHQsTJ9pOJCI3khGrA/38/ChcuDAABQsWpHPnzixatOi6hXGt/st6Gqfry5XLwdSptz7vkUcCqV+/RuYHcgH6u5QyWbUCMLNEREQQGhrK+PHjyZs3L/PmzQOga9euNG/enObNmzN9+nS2bt3K+fPnWblyJQD/+9//CA8PJ0+ePMyZM4eWLVsSFxdH1apVeeeddwBu+pzIjVSqBIsWQbNmEBEBgYHQs6ftVCKuQ4VxkRQoXhwGDTKrPAYPNvspZc9uO5WIZLRz586xbNkytm3bdsNzMurClT5Ap0xmjlO1alC5cgJ7996Gl9ejPPKI664a19+nlNE43ZqrX7QScVY5csD06dC8OUydajpSVaxoO5WIXE9GrA48c+YMBQoUwNfXl5iYGFauXJlsT/KrafWfPRqn5Bo2BH9/OHHCtE3/L4fDPN+woY/2GP8P/V1KmcxeAZhZKlasyJYtW655fM6cOUnH4eHhhIeH3/A9EgvoqX1O5EYefRTGjzedqZ55Bu68E+rXt51KxDWoMC6SQs89B7Nnwy+/wKuvmkK5iLiXpUuXUqNGDSpVqnTDczL6wpU+QKdMZoxTmTLmw8PkyTB8uA+PPQZeXhn6n8hy+vuUMhqnW3PVi1YizqxZM3MB68MPzfzz6afaoknEWaV3deDXX3/NiBEj8Pb2Ji4ujgcffPCmBRMRZ+DtbW7iat3azE//LY4nJMC0aagoLiLiJAYPhp07YckS82/39u1QqpTtVCLOT4VxkRTKlQvGjYPQUPO1Uyezp4eIuI+5c+fSrVs32zEkCw0dCm++Cbt2mTZUHTrYTiQiIu5s+nSIjDR/Vq2CkBDbiUTketK7OjAkJIQQ/R9cXFBICCxfDv37w/Hj1z6v+yBFRJyHwwFz58LPP8P335sut5s2mTqGiNyYi6+LEslaHTtCzZoQHQ2jRtlOIyIZbfPmzXTq1Ml2DMlCBQuaO2wBhg+HmBi7eURExL2VLXul89Szz8KFC3bziIiI/FdICERFQWRkHGFh21m3Lo7u3c1z7drBnj1W44mIyFVy5oTVq6FwYbN6vFOn62+HISJXqDAukgpeXjBlijmOiIAff7SbR0RE0q9/fyhWzFz8iYiwnUZERNzd0KGmxeHRo2ZfQBEREWfj7Q316ydQr94JGjRIYOZMswf5uXNma5DffrOdUEREEpUsCStWmK4e772nzxgit6LCuEgqNWhg2pLEx8Pzz9tOIyIi6ZUzJ4wcaY7HjoWzZ+3mERER95YzJ7zyijl++WU4eNBuHhERkVtJLLaULWtuKG7VCi5dsp1KREQS3X8/vPaaOR42DNassZtHxJmpMC6SBi+9BD4+8OGH8NlnttOIiEh6de4M5cublQ+JnUFEREQyS8uW8PDDpqjQv7/aHYqIiPMrVAg++ADy5oWNG6FXL81fIiLOpFs36NPHHLdvD3v32s0j4qxUGBdJgwoVoHdvc/zcc2b1uIiIuC5fXxg3zhxPmQJnztjNIyIi7s3hgFdfNfPPRx+ZQoOIiIizu/NOWLrUbDX41lswbZrtRCIicrVXXjEdb8+dM11v//zTdiIR56PCuEgajRgB+fPDrl3w9tu204iISHq1bg21apkPD2PH2k4jIiLurkIFc5MtmFXjFy/azSMiIpISTZpc6bI1cCB8/LHdPCIickXi1helSsGhQ9C2LcTF2U4l4lxcvjDeuHFjqlevTmBgIA888AA//PADAKVLl6ZixYoEBgYSGBjI0qVLLScVd1OoEAwfbo6HDTOFFBERcV0OB0ycaI7feAMOH7abR0RE3N+wYeDvb/Zrfekl22lERERSpn9/6NoVLl82RZd9+2wnEhGRRLfdBu+/DzlzQmQkDBpkO5GIc3H5wviyZcvYtWsXO3bsICwsjNDQ0KTnli5dyo4dO9ixYwdt2rSxF1LcVp8+ULYsnDqlC1kiIu6gUSMIDobYWNMZREREJDPlygVTp5rjiRPhyBG7eURERFLC4YDXXoN69SA6Gpo3hz/+sJ1KREQS1agB8+eb41degXfesZtHxJm4fGE8f/78Scf//PMPDofDXhjxOH5+MGmSOZ48GY4ft5tHRETSL3HV+KJFsHOn3SwiIuL+WreGBx+Ef/+FAQNspxEREUmZbNlgxQooXdq0623d2txgLCIizqFVqysdb3v0gG+/tZtHxFn42A6QEZ566im+/PJLAD766KNkjyckJHD33XczceJEbr/99uu+PiYmhpiYmKTvo6OjAYiNjSU2lb/RJZ6f2td5Gncap2bNoG5dbzZt8mLo0Mu89VZ8hr23O41TZtEYpUx6xkljK56mZk1o0waWLoWhQ+GqXy1EREQynMMBM2dC9eqwZo2Zd5o2tZ1KRETk1m67DT74AO67D776Cp55Bl5/3cxtIiJi36hRsGuXaa3++OOwfTsUL247lYhdblEYn///PSHeeecdBg8ezEcffcSGDRsICAggNjaWYcOG8fTTTycrml9twoQJjB49+prH161bR86cOdOUKTIyMk2v8zTuMk4tW+Zn06b6LFjgRWDgBsqV+ydD399dxikzaYxSJi3jdOHChUxIIuLcxo41qx8+/hjWr4f69W0nEhERd3bnnWa1+OTJ0K+fWUGePbvtVCIiIrdWtSosXmzaqUdEQJUqpkAuIiL2eXnBu++aG5j27jXF8fXr9VlDPJtbFMYTPf300/Ts2ZM//viDgIAAAHx9fRkwYAAVKlS44euGDh1KWFhY0vfR0dGULFmSxo0bkzdv3lRliI2NJTIykuDgYHx9fdP2g3gAdxyn77+/zOLFXqxZU4/IyPgMuTvWHccpo2mMUiY945TYRUPEk5QrB926mdUOgwfDli1a9SAiIplrxAhYuNC0o50yBcLDbScSERFJmcceg5deguefNzd6VawIjRvbTiUiIgB58pgV47Vrw9at0LMnzJun61ziuVy6MP73339z4cIFiv9/74fVq1dTqFAhsmfPzt9//520//jixYsJCgq64fv4+fnh5+d3zeO+vr5pLrSl57WexJ3GaeJEWLUKNmzw4qOPvGjZMuPe253GKbNojFImLeOkcRVPNWIEvPOO2YNp9WpzV62IiEhmyZPHrBhv3x7GjYMOHaBUKdupREREUua552DPHvMZ6oknzOeoihVtpxIREYCyZWHZMmjSxPw7XaMGPPus7VQidnjZDpAe//zzDy1btqRatWrUqFGDmTNnsnbtWk6fPk3Dhg2pXr061apVY/369Unt1kUyS0AAJDYeGDQILl2ym0dERNKnaNErHxJeeAHi4uzmERER9/fkk2b7josXr3y2EBERcQUOh2mlXqcO/PMPNGsGf/5pO5WIiCR66CHTmQpg4EDQzqTiqVy6MF6qVCm2bt3K7t272blzJ5999hmBgYGUKVOGH374gV27drF7927ef/99SpcubTuueIAhQ6BwYThwwLTfFRER1/b881CoEOzfb+6oFRERyUwOB8ycCd7esHIlrFtnO5GIiEjK+fmZbooBAeba2BNPQGys7VQiIpKoXz8IDYXLl6FNGzh40HYikazn0oVxEWeTJw+MGWOOR4/WnbEiIq4uXz6zWhxg5Eizgk9ERCQzVa0Kzzxjjvv1UycqERFxLYULwwcfQK5c8PnnatUrIuJMHA544w2491746y9o3hyio22nEslaKoyLZLDOnaFKFTOxjB1rO42IiKRX795QsiScOAGvvWY7jYiIeIJRo6BIEfjpJ3jlFdtpREREUqd6dVi40BRgXntNXRVFRJyJn5/pTlW8OPz4I3ToYFaQi3gKFcZFMpiPz5W9OmbOVDsSERFXlz276QICMH48/P231TgiIuIB8uWDl14yx2PGwPHjdvOIiIikVosWMG6cOX7mGfjiC7t5RETkimLFzNYXfn6my8fIkbYTiWQdFcZFMsHDD0OTJmYfpcGDbacREZH0euopqFzZdANJLFSIiIhkpo4doW5dOH8eBg60nUZERCT1hgwxKxHj46F1a7PvuIiIOIe774Y33zTHY8fCe+/ZzSOSVVQYF8kkkyeDl5dpS7Jxo+00IiKSHt7eZrU4wLRp8OuvVuOIiIgHcDhMByovL1i6FL780nYiERGR1HE4TNHlnnvMTcbNmqkDl4iIM+nYEZ57zhyHhsKOHTbTiGQNFcZFMkmVKtCtmzkOC9M+HSIirq55c6hTBy5ehBdftJ1GREQ8QWAg9Opljvv2NR2pREREXEn27LB6Nfj7w08/Qdu2EBdnO5WIiCSaOBEaN4YLF6BlS/jtN9uJRDKXCuMimWj0aMidG7Zvh8WLbacREZH0cDjMhwWAOXPg55/t5hEREc8wZgzcfjvs2wevvmo7jYiISOoVLQpr1kDOnPDpp/D887YTiYhIIh8fWLIEypWDX34xW1/ohlxxZyqMi2SiIkXghRfM8dChZpWhiIi4rgcegEcfNXvkDRtmO42IiHiCAgWu3Jg1ahScPGk1joiISJoEBcH8+eZ42jRzs7GIiDiHAgXMDUx58sCGDdC/v+1EIplHhXGRTDZgAAQEwLFj8MorttOIiEh6TZhgVo+/957pCCIiIpLZQkPN/qznzmmVnYiIuK5Wra5sS9WrF6xfbzePiIhcceedsHChueb1+usQEWE7kUjmUGFcJJPlyGGKKGC+njplN4+IiKRPtWrQoYM5HjLEbhYREfEMXl4wc6a5SLVwoVnFISIi4oqGDbuyz3irVnD4sO1EIiKSqFkzGDvWHPftCxs32s0jkhlUGBfJAm3bQu3aZoXHyJG204iISHq9+CJkywaffw6RkbbTiIiIJ6hVC7p3N8d9+5qCgoiIiKtxOOCtt8y89scfpggTHW07lYiIJBo6FNq0uXID09GjthOJZCwVxkWygJcXTJ1qjufMgT177OYREZH0KV3atP4Ds2r88mWrcURExEOMGwcFC8Lu3TBrlu00IiIiaZMjB7z/PhQvDvv2wZNPQny87VQiIgLmBqa5cyEwEH77DVq2hAsXbKcSyTgqjItkkfvvN3dYXb4MAwfaTiMiIukVHg558sD335v9xkVERDJboUJXtmkaPhxOn7abR0REJK2KF4fVqyF7dvjoI21TJSLiTHLlMjcw3X47/PADdO4MCQm2U4lkDBXGRbLQpEng6wuffgqffGI7jYiIpMftt1+50WnYMIiNtZtHREQ8Q5cucNddpu3s4MG204iIiKRd7drw9tvmePLkK8ciImJfQACsWAE+PrB0KUycaDuRSMZQYVwkC5UtC888Y46fe077AoqIuLqwMChcGA4eNFtliIiIZDZvb3jtNXP8zjuwebPdPCIiIunRpg2MGGGOu3eHTZvs5hERkSseeABmzjTH4eHwwQd284hkBBXGRbLYsGFmX8B9+8xeHSIi4rpy5zatbAFefBHOn7ebR0REPMM995iV4wB9+mhfVhERcW0jR5rtB2Nj4fHHISrKdiIREUnUowf06mVaqbdvDz/+aDuRSPqoMC6SxQoUML/wgymmREfbzSMiIunTvTuUKQOnTsG0abbTiIiIp5gwAfLnhx07ICLCdhoREZG08/IyXVCCguC336B5czh71nYqERFJNG0a1Ktn/m1u3hz++st2IpG0U2FcxIJevaBCBfPLvvbmEBFxbdmywZgx5vill+CPP+zmERERz3D77TB2rDkODzefLURERFxVrlzw/vtQpAjs3g0dOsDly7ZTiYgImGtfy5ebfccPHoS2bbVNrLguFcZFLPD1hZdfNsdTp8Ivv9jNIyIi6dO2LQQGmi4g48fbTiMiIp6iZ08z//z9N7zwgu00IiIi6VOypCmO+/nBmjXmxi8REXEOt99u/o3OmRPWrYMhQ8yWTuvXO9iwoQTr1zu0xZO4BBXGRSxp1gwaNICYGF3EEhFxdV5epqUtwMyZcPSo3TwiIuIZvL3htdfM8dy5sHWr3TwiIiLpdc89Zk4D02Xx3Xft5hERkSsCA+Htt83xlClQuDAEB/swdWotgoN9KF0aVq60GFAkBVQYF7HE4TCTh8MBixbpIpaIiKt7+GFzw9OlSzBypO00IiLiKerUgaefhoQE6NMHrdIQERGX1749DB1qjrt2hW++sZtHRESu+N//oFUrc/znn8mfO3ECWrdWcVycmwrjIhbVrAlPPWWOw8LMxSwREXFNDodZ0QAwfz7s3Ws3j4iIeI5JkyBvXti+/coqOxEREVc2diy0bGluPG7ZUl25REScRXw8fPvt9Z9LrG8MGKAbdsV5qTAuYtm4cZAjB2zaBCtW2E4jIiLpcc89EBICly9rmwwREck6RYrAiy+a46FD4Y8/7OYRERFJLy8v00a9enU4fRpatIDz522nEhGRjRvh+PEbP5+QAMeOmfNEnJEK4yKWlSgBzz9vjgcPNnuOi4iI6xo3zlzEWbPG3PQkIiKSFfr0gWrVTDvDYcNspxEREUm/3LnN56rChWHHDtN18fJl26lERDzbyZMZe55IVlNhXMQJPP88FCsGhw/DzJm204iISHpUqgSdO5vjIUO0TYaIiGQNH58rnyUiIuC77+zmERERyQilSsGqVZAtm9mzduRI24lERDxbsWIpO69o0czNIZJWKoyLOIHcuc3eSQBjxsDvv9vNIyIi6TNqFGTPDl9/DR9+aDuNiIh4inr1oF07c1NWnz5aVSciIu6hTh2YPdscjx0LixfbzSMi4skeeAD8/cHhuPl5L74I+/dnTSaR1FBhXMRJPP001KgB//xzZX9AERFxTSVKQL9+5njoUIiPt5tHRKBfv36ULl0ah8PBjh07bnje3LlzKV++PGXLlqVbt27Exsam6DkRZ/Hyy+bG22+/hXfesZ1GREQkYzz99JWtCDt3hq1b7eYREfFU3t4wfbo5/m9xPPF7X1/46iuoXh3Cw+HChSyNKHJTKoyLOAlvb5gyxRy//jrs2wfr1zvYsKEE69c7VFQREXExQ4ZA/vywZw8sWmQ7jYi0bt2ar7/+mlKlSt3wnCNHjjB8+HA2btzIwYMHOX36NLP/f3nSzZ4TcSbFi5vOJQCDB8Nff1mNIyIikmEmTIDHHoN//4WWLeHECduJREQ8U0gILF9uFoZczd8fVqyAn36CRx+F2FgYPx6qVFFHRXEeKoyLOJFGjcwv+HFxcNddEBzsw9SptQgO9qF0abOXkoiIuIYCBUxxHGD4cIiJsZtHxNPVq1cPf3//m56zfPlymjdvTtGiRXE4HPTs2ZPF/9+r82bPiTibfv3gzjvht99gxAjbaURERDKGtzcsXGgKLCdPQosWWoUoImJLSAhERUFkZBxhYduJjIzjyBHz+B13wAcfmHqGv78577HHoFUrOHbMdnLxdD62A4hIcsHBsHatufv1aidOQOvW5k6skBA72UREJHWeeQZefRV++QXeeAP697edSERu5ujRo8lWlJcuXZqjR4/e8rnriYmJIeaqO2Kio6MBiI2NTXUL9sTz1br95jROyU2b5uDhh32YNSuBp56KIzBQY5RSGqeUSes4aVxFJD3y5jXFltq14bvvoFMnWLLk1nvdiohIxvP2hvr1Ezh//gT169fA2/vKcw4HPP64qXeMHg2vvGIK5Z9+ar7v18+0XBfJaiqMiziR+HizJ+D1JCSYyWTAAHNH7NWTjIiIOKecOWHkSOjRA8aONRdt8ua1nUpEssKECRMYPXr0NY+vW7eOnDlzpuk9IyMj0xvLI2icrqhbtxabNpXg6aejGT/+66SigcYoZTROKZPacbqg5Z0ikk533GGKKw89BMuWmRXk6pAimeXAgQM8/fTT/P777+TLl4+3336bKlWqJDsnKiqK0NBQfvjhB+644w527NiR9Ny8efOYnrghM3D8+HHq1avHypUriYqKomzZslSrVi3p+RUrVlC2bNlM/7lEskru3Kbm0bEj9OoFmzfDwIHwzjtmEUmdOrYTiqdRYVzEiWzcCMeP3/j5hATTamTjRmjQIMtiiYhIOnTuDFOmwM8/m6/XqZOJiJMICAjg0KFDSd9HRUUREBBwy+euZ+jQoYSFhSV9Hx0dTcmSJWncuDF5U3mHTGxsLJGRkQQHB+OrW+pvSON0rerVoVq1BH78sRB//fUobdpc0hilgP4upUxaxymxg4aISHrUqwevvw5du5qbke+8E/73P9upxB316NGD7t27ExoayvLlywkNDWXbtm3JzsmbNy9jx47ln3/+ITw8PNlznTp1olOnTknfV61alfbt2yd9nydPnmSFdBF3Vb26qWvMmweDBsHu3VC3LnTpApMmQaFCthOKp1BhXMSJnDyZsvNuVjwXERHn4uMD48aZizRTpkDv3lCkiO1UInI9rVq14v7772fUqFEUKVKEN954g7Zt297yuevx8/PDz8/vmsd9fX3TXGhLz2s9icbpijvugOHDYcgQGDLEh4IFYcOGEuTKlY2GDX3UheoW9HcpZVI7ThpTEckoXbrA3r2mPe/TT0OZMnDXXbZTiTs5c+YM27dvZ926dYD5TNC3b18OHjxIuXLlks4rWLAg999/P1999dVN3+/bb7/lzJkzNG/ePDNjizgtLy/zb3eLFjB4MLz1FsydC6tXm1XlTz9tzhHJTCqMiziRYsVSdt4zz8DWrdCuHdxzj/ZREhFxdq1amT3wtm0zLdVnzLCdSMTz9OjRgw8//JBTp07x8MMPkydPHg4ePEjXrl1p3rw5zZs3p0yZMowePZq6desC0KBBA3r06AFw0+dEnNmzz8L06eYm3JYtfYBaTJ0K/v7m8ZAQ2wlFRETS7qWX4Mcf4ZNPTKFl27aUX18TuZVjx45RrFgxfHxMGcXhcBAQEMDRo0eTFcZTau7cuXTs2DHZTWLnz5+ndu3axMfH07JlS8LDw/G+wd2LMTExxMTEJH2f2IUlNjaW2NjYVGVJPD+1r/MkGqOUScs45ctn2qh37Oigb19v9u510LkzzJ17mRkz4qlaNbPS2qO/T7eWnjFKzWtUGBdxIg88YC5QnThh2qZfj5cX/P23KarMmGFWgbRrZ/5UrpylcUVEJIUcDpg4ERo1gogIU6QoU8Z2KhHPEhERcd3H58yZk+z7bt260a1bt+uee7PnRJzV2rXX70x14gS0bg3Ll6s4LiIirsvHB5YsgfvuMwXyli3hq68gRw7byUSSO3/+PEuWLOGbb75JeqxYsWKcOHGCwoUL8+eff9KmTRumTJnCoEGDrvseEyZMYPR19mdbt24dOXPmTFOuyMjINL3Ok2iMUiat4zR6tIMPPijLkiUV2bTJh9q1oVmzQ7Rt+xPZs8dncEr79Pfp1tIyRhcuXEjxuSqMizgRb2+zaqN1a1NEubo4nrgqfPFiyJMHFi2CVavgyBHTonfcOKhRA558Etq2hVKl7PwMIiJyfQ8+CI0bw7p1pq3twoW2E4mIiLuLj4f+/a//XEKC+YwxYIBZYae26iIi4qry5YM1a0xXxa1bzb7jCxaow6KkX8mSJTl58iRxcXH4+PiQkJDA0aNHCQgISPV7vffee1SpUoXKV61s8vPzo3DhwoBpx965c2cWLVp0w8L40KFDCQsLS/o+OjqakiVL0rhxY/LmzZuqPLGxsURGRhIcHKxtTm5AY5QyGTFOzZvD8OEJhIVdZs0aL1avLs9335XjlVfiad78BisIXYz+Pt1aesYosYNGSqgwLuJkQkLMqo3+/ZPvJe7vD9OmXVnN8cgjcP68WQGyaBF8/DHs3Gn+DBkC999vVpH/739w221WfhQREfmPiRNNYXzRInj+eQgMtJ1IRETc2caNyT9T/FdCAhw7Zs5r0CDLYomIiGS4cuXM9bTGjc3nrSpV4IUXbKcSV1e4cGFq1qzJggULCA0NZcWKFfj7+6e5jXqXLl2SPXbmzBkKFCiAr68vMTExrFy5kqCgoBu+h5+fH35+ftc87uvrm+ZCW3pe6yk0RimT3nEqWxbef9/UO/r2hV9+cdC6tQ/NmsGrr0Lp0hmX1Sb9fbq1tIxRas7XNvYiTigkBKKiIDIyjrCw7URGxnHkyLUtDnPlgjZtzIRx6hTMnm0uaDkc8PXX0Lu32Vfp0UfNysRz52z8NCIikigoyHT1ABg61G4WERFxf9droZ6e80RERJxZw4Ywc6Y5Dg83nRZF0isiIoKIiAgqVKjAxIkTmTdvHgBdu3ZlzZo1gGnh6+/vz//+9z/27duHv78/Q6/60P/TTz+xY8cO2rRpk+y9v/76a4KCgqhRowY1a9akaNGihIeHZ90PJ+KEHnsM9u0z1818fOCDD8wWshMnwqVLttOJO9CKcREn5e0N9esncP78CerXr3HL1oYFC0K3bubP8eOwdKm5Q/b77+Gjj8yfHDlMm8R27eDhhyFbtqz5WURE5IoxY8xKhk8+MXvfaYWeiIhklmLFUnbeN9+YTlM+ukIgIiIurkcP2LPHFMg7dIBNm9SpS9KnYsWKbNmy5ZrH58yZk3ScM2dOjt+kTU/FihU5e/bsNY+HhIQQ8t+VUCJCzpwwfrz5d7x3b1i/3hTK330XZs2C+vVtJxRXphXjIm7I3x+eew6++w5+/BFGjDAtpS5ehCVLzJ4dRYuaDwvr18Ply7YTi4h4jnLloHt3czx4sGljKyIikhkeeMB8NrjVHquvvgq1a8PmzVmTS0REJDO98goEB8OFC+Ya2OnTthOJiEhaVK4MX34J77wDt99uVpI3aABPPw1nzthOJ65KhXERN1epEoweDT//DFu3woABpij+119XWq8HBJi9bn/4QQUaEZGsMHy4uft161a19xMRkczj7Q3Tp5vj/xbHHQ7zp1s3yJ8fduyAunWhUyddZBIREdfm42M6KVaoAMeOweOPw7//2k4lIiJp4XDAU0/B/v1moZ/DAfPnm7rH7Nla9Cepp8K4iIdwOMwqkFdeMa3WP/sMOneGfPngxAmYPBlq1jR3YY0ZAwcP2k4sIuK+ihaFsDBz/MILEBdnN4+IiLivkBCzhUeJEskf9/c3j8+ebW6i7dLFPP7221CxIrz2GsTHZ3lcERGRDFGggNmXNn9+2LLFFFO0GERExHUVLAhvvGG6XAUGmoV/PXqYm3t37LCdTlyJCuMiHsjbGxo1grlzTTupVavMnoLZs5s7r0aMgPLl4Z57zAqTkydtJxYRcT/PPw+FCsFPP5kihIiISGYJCYGoKIiMjCMsbDuRkXEcOWIeB9OWcM4cc5EpKAj+/hv69jU31l5nS00RERGXUKECLFtmroPNnw8vv2w7kYiIpNe998K2bWYBYO7c8M03cNdd8OyzcPas7XTiClQYF/Fwfn7QsqX5oHD6tNmv4+GHwcvrSut1f3+zN9O8eeYimYiIpF/evBAebo5HjYKLF63GERERN+ftDfXrJ1Cv3gnq10/A2/vac+67z1xkeu01s8Luhx+gTh2zmvy337I8soiISLoFB8O0aeZ4yBCzilxERFybj4+pW+zfbxb8Xb5s/q2vVMl0xVKHELkZFcZFJEnevGa/jk8+gV9/hRkzzMWxy5evtF4vUsSsLFmxQkUcEZH06tULAgLMlhYzZthOIyIiYgrovXubjiadO5vH3nrLrLqbNUvt1UVExPX06QM9e5pCSbt2sHu37UQiIpIRSpQwC/4++QTKljU1jf/9D5o2hUOHbKcTZ6XCuIhcV5Eipn3i5s1mEhk3zuw/fumSab3eurU5J2l1BEkAAEQtSURBVDQU1q3T/rgiImmRPTu8+KI5njDB7I8kIiLiDAoXNlsvJe7h9/ffprCg9uoiIuJqHA549VVo2BDOnYPmzdUJRUTEnTz8sLnpacQIyJbNFMqrVoUxYyAmxnY6cTYqjIvILZUpAy+8AHv2wM6dMHiwWeF49uyV1uslSkC/fmZPD7UqERFJuQ4dzC/rf/8NkybZTiMiIpLcfffB9u0wc6baq4uIiOvy9YX33jMrCqOiTDfES5dspxIRkYySIweMHm0K5A89BP/+awrl1avD55/bTifORIVxEUkxh8NMJBMnwpEjsHGjaQNcqBCcOXOl9Xq5cjBsGOzbZzuxiIjz8/aG8ePN8fTppq26iIiIM/H2NqvFf/oJOnUyjyW2V3/9dbVXFxER11CokNljPG9e+Pprc01LiztERNxLhQqmw+3ixVC0KPz8symUt28Pp07ZTifOQIVxEUkTLy+4/36zz+DJk/Dhh2ZyyZULDh82rderVDFtF196CY4etZ1YRMR5PfYY1K1r7mYdPdp2GhERkesrXNgUxDdtutJevXdvuPtu+PZb2+lERERu7c47YelSc13rrbdg2jTbiUREJKM5HNC2Lezfb7aL9fKCRYugUiV47TXd2OvpVBgXkXTz9YWmTWHBAjh9GpYsMfs1+fpeab1eqhTUqwdvvAG//247sYiIc3E4rrRRf+stsyJPRETEWdWpA9u2mY5R+fLB99/DvfdC165qry4iIs6vSROYMsUcDxwIH39sN4+IiGSOfPnMZ5atW6FWLfjnH1Mov/des12UeCYVxkUkQ+XKBW3awPvvm9Yks2dDgwam6JPYer1YMbM6ctEiOHfOdmIREedQty40a2buWg0Pt51GRETk5nx8zEWln36C0FDz2Ny5ULGiuRlWqzDElR04cIA6depQoUIFateuzd69e68554svvuDuu++mcuXKVKlShUGDBnH58uWk59euXUulSpUoX748ISEhREdHZ+WPICK30L+/uaHr8mWzqlDbAYqIuK+77oJvvjGrxfPlM0Xxu+82n2f+/tt2OslqKoyLSKYpWBC6dYMvvzSt1CdPhpo1IS7uSuv1IkWgXTtYuxYuXbKdWETErvHjzY1EK1aYu1lFREScXZEiMG+e2au1Rg346y9zM+w992guE9fVo0cPunfvzs8//8zgwYMJTbz74yoFChRgyZIl7Nu3j++++47Nmzczf/58AM6dO0eXLl1YvXo1Bw4coHjx4owZMyaLfwoRuRmHwxRI6tWD6Ghzk/Iff9hOJSIimcXb22wDtX+/qUskJJh5oFIls4AvIcF2QskqKoyLSJbw94fnnoPvvoMff4QRI6BcObhwARYvNh9AihWDnj1hwwZzx66IiKepWhWeesocDxmiX8pFRMR11K1rVl68+irkzWt+77/3XujeXVspiWs5c+YM27dvp0OHDgC0atWKY8eOcfDgwWTnBQUFUaZMGQCyZ89OYGAgUVFRAHz88ccEBQVRqVIlAHr37s3ixYuz7ocQkRTJls3clHzHHXD4MLRurUUbIiLurmhRsyXsZ59BhQpma9j27SE4WFsbegof2wFExPNUqgSjR8OoUebi2aJFZl/yU6cgIsL88feHJ580q8lr1DB38v5XfDysX+9gw4YS5MrloGFDc+eXiIgrGz3a3DD05ZcQGQmNG9tOJCIikjI+PvDMM/DEEzBoEMyfD2++aYoO48eblrX6fV2c3bFjxyhWrBg+PuaSmcPhICAggKNHj1KuXLnrvubUqVMsX76ctWvXAnD06FFKlSqV9Hzp0qU5efIkcXFxSe+bKCYmhpiYmKTvE1uux8bGEhsbm6rsieen9nWeRuOUMp4yTvnywcqV8MADPnz1lYM+feJ57bXL170O9V+eMkbplZ5x0tiKSGZp1Ah27YKXX4Zx4+Dzz6F6dRg8GIYOhRw5bCeUzKLCuIhY43BA7drmz+TJ8NVXpki+YgUcP24mpZdfhjvvNEXyJ580q8zBfGjp3x+OH/cBajF1qimmT58OISE2fyoRkfQpVQr69IFXXjGrxh96CLzU40dERFxIkSLwzjtmW6U+fcwFp549Yc4cmDXL/P4v4i6io6Np1qwZgwYNolatWql+/YQJExg9evQ1j69bt46cOXOmKVNkZGSaXudpNE4p4ynj1L9/EcaPv4c5c7yBvTz22JEUv9ZTxii90jJOFy5cyIQkIiKGnx8MG2YW5/XtCx9/DGPGwMKFps16kya2E0pmUGFcRJyCt7e5S6tRIzPpfPyxKZKvXXul9fqIEXD33VClCrz99rUthk+cMG2vli9XcVxEXNsLL8DcufDDD7BsGbRtazuRiIhI6t1/v2mpPmsWDB9uukXdc48pmI8fD4UK2U4ocq2SJUsmW92dkJDA0aNHCQgIuObcs2fP0qRJE1q0aEFYWFjS4wEBAckKQFFRUclWoV9t6NChyV4bHR1NyZIlady4MXnz5k1V9tjYWCIjIwkODsbX1zdVr/UkGqeU8bRxatoU8uS5zJAh3rz1VjUef7wywcE339vK08YordIzToldNEREMlOZMvDhh1cW4x0+DI88YmoN06ZBiRK2E0pGUmFcRJxO9uzw+OPmT3Q0rF5tiuSRkbB1q/lzPQkJZhX6gAHQooXaNIqI67rtNnj+eVNEGDbM3OyTLZvtVCIiIqnn4wP9+pn26oMHm/bqs2ebm1knTIAuXfR7uziXwoULU7NmTRYsWEBoaCgrVqzA39//mjbq586do0mTJjRp0oRhw4Yle65Jkyb06dOH/fv3U6lSJWbNmkXbG9zp6Ofnh5+f3zWP+/r6prnQlp7XehKNU8p40jgNGmQWZ7zzjoN27Xz49luoWPHWr/OkMUqPtIyTxlVEsorDAa1amS0NR46EV181n1k++QRefNFsGXWdexzFBakxp4g4tbx54amnzAT066/motrNJCTAsWOwcWPW5BMRySwDBphWtIcOmdazIiIirqxoUdNefcMGqFYN/vwTevSA++6DbdtspxNJLiIigoiICCpUqMDEiROZN28eAF27dmXNmjUATJ8+na1bt7Jy5UoCAwMJDAxk3LhxAOTJk4c5c+bQsmVLypUrx/Hjxxk+fLi1n0dEUsbhgIgIqFsX/vkHmjUz85WIiHiOPHlg6lTT+eree+HcOQgLg1q14JtvbKeTjKDCuIi4jCJFzGSUEidPZm4WEZHMlju3WTEO5s7Uc+fs5hEREckIDzwA339vWhLmzWuK4vfcY4rkf/xhO52IUbFiRbZs2cLPP//M9u3bqVatGgBz5syhefPmAISHhxMbG8uOHTuS/oSHhye9R/Pmzdm/fz8HDx5k9erV5MuXz8rPIiKp4+dnWukGBMCBA6bjSWys7VQiIpLVatSATZtMt6sCBWDnTqhTx3xu0U1Trk2FcRFxKcWKZex5IiLOrFs3s8/R6dOmgCAiIuIOfHzM3n0//QQdO5quT7NnQ4UK8OabcPmy7YQiIuLJCheGDz6AXLng88/h2WdtJxIRERu8vMy1uZ9+gqefvvK5pVIl0w0rIcF2QkkLFcZFxKU88AD4+5v2VjficJgikoiIq8uWDcaONccvvQS//243j4iISEYqWtTsOb5+PVStalZedO9u2qtv3247nYiIeLLq1WHhQnON6bXX4PXXbScSERFbbr8d3n7bfG6pXBl++w1CQ6FBA9i3z3I4STUVxkXEpXh7w/Tp5vi/xfHE7xMSoG1beOYZiInJ2nziumJiYujbty/ly5enWrVqdOjQwXYkEQDatIGgIDh7FsaPt51GREQk49WrZ9qrv/KK2dNv61a4+27o1UttCkVExJ4WLa58BnvmGbN6XEREPFe9evDDDzBxIuTIARs2mJbrQ4fChQu200lKqTAuIi4nJASWL4cSJZI/7u8Py5bBkCHm+5kz4f774fDhrM8ormfIkCE4HA5+/vlndu/ezeTJk21HEgFM26YJE8zxa6/BL7/YzSMiIpIZfH1hwADTprB9e3Oz6xtvmPbqc+aovbqIiNgxeDB06ADx8fC//5l9x0VExHNly2bmhh9/hObNIS7OFMorVzbbcIjzU2FcRFxSSAhERUFkZBxhYduJjIzjyBHzIWXCBPjoIyhUyLRgrFkTVq2ynVic2fnz55k7dy7jxo3D8f+tB4oWLWo5lcgVjRtDw4Zw6RKMHGk7jYiISOYpVgwWLICvvoIqVeCPP8y+fnXqwHff2U4nIiKexuGAN9+Ee+6Bv/6CZs3g779tpxIREdtKlYL334fVqyEgwCxkad4cWraEo0eTnxsfD+vXO9iwoQTr1zuIj7eRWBL52A4gIpJW3t5Qv34C58+foH79Gnh7X3nukUdMW5O2bWHzZlNI79/f7NGbLZu9zOKcDh06RMGCBRk/fjyfffYZOXLkYNSoUTRq1Oiac2NiYoi5qkd/dHQ0ALGxscTGxqb4v5l4bmpe44k0TleMHeugbl0f5s9PoH//OKpWvfKcxillNE63lp4x0riKSEaqX9/8Pj9zprkp7NtvoXZt6NkTxo6FggVtJxQREU+RPbspfNSubTqbtG1riiEbN5oiR65cDho2JNl1KRER8QwtWsBDD8GLL8LUqWZ+iIw0n2GefdasIu/fH44f9wFqMXWq6Xw7fbqpWUjWU2FcRNxWyZJmpUl4OLz8splstmyBpUuhdGnb6cSZxMXF8csvv1C5cmUmTpzIDz/8QHBwMHv37qVIkSLJzp0wYQKjR4++5j3WrVtHzpw5U/3fjoyMTHNuT6JxMu67rzZbthSnR4/fCQ/fes3zGqeU0TjdWlrG6II21BKRDObray4mtWkDzz8PixbB66/De++ZdoWdOpktR0RERDJb0aKwZo3Zsu/TT+G22+DcORU5REQEcuWCSZOgY0fo3Rs2bjTt1mfOhGPHrj3/xAlo3dpsF6t5I+upMC4ibs3X16wSf+ABePpp2LoVgoLgnXdMaxMRgICAALy8vGjfvj0AQUFB3HHHHezevfuawvjQoUMJCwtL+j46OpqSJUvSuHFj8ubNm+L/ZmxsLJGRkQQHB+Pr65sxP4gb0jglV7YsBAYmsG1bMfLle5S6dRMAjVNKaZxuLT1jlNhBQ0QkoxUvDgsXQvfu0KcP7N0LXbua1razZpmtk0RERDJbUJApeEyeDOfOJX9ORQ4REalaFdavN7WHgQOvXxQHSEgwW3UMGGBWnKvjSNZSYVxEPEKzZqYVY5s2pg1jixbw3HNmP3LVRuS2226jUaNGfPrppzRt2pQjR45w5MgR7rzzzmvO9fPzw8/P75rHfX1901RoS+vrPI3GyahaFTp3NoWAYcN82LjR/CKdSOOUMhqnW0vLGGlMRSSzJbZXnzHjSnv1WrWgVy/TXr1AAdsJRUTEncXHw5Il139ORQ4REQEzF4SGms8mLVve+LyEBFM437gRGjTIonACgJqOiYjHKFUKNmww7RgBpkwxF9dudOeWeJY33niDl19+mWrVqtGyZUsiIiIoUaKE7Vgi1xg50uxxt2kTrF1rO42IiEjW8vWFsDCzx2u7duaC0qxZUKECvPUWXL5sO6GIiLirjRvh+PEbP391kUNERDxbSnebO3kyc3PItVQYFxGPki0bTJ0Kq1ZBvnxmz/HAQPjoI9vJxLYyZcrw5Zdfsnv3bnbu3EmrVq1sRxK5rhIloH9/czx0qFm1ICIi4mkS26t/+SVUrgy//w5dukDduvD997bTiYiIO0pp8UJFDhERKVYsY8+TjKPCuIh4pJYtTRvGWrXgzz/h0UdhyBCIi7OdTETk1gYPhvz5zR6r8+fD+vUONmwowfr1DhXKRUTEozRoADt2mP1ec+eGb76B2rWhb1/46y/b6URExJ2ktHihrT1EROSBB8DfP/kWiP/l7Q2//WY6jkjWUWFcRDzWHXfA11/DM8+Y7ydNgoYN4cQJu7lERG6lQAGzWhygWzcIDvZh6tRaBAf7ULo0rFxpNZ6IiEiW8vWF556D/fuhbVvTTv2116BiRZg3T+3VRUQkY6SkyAHQsyesWZM1mURExDl5e8P06eb4RvNGfDw88QQ89hgcOZJ12TydCuMi4tH8/ODVV+G99yBvXlMoDwyETz+1nUxE5OZKljRf/7tC/MQJaN1axXEREfE8JUrA4sXwxRdw551m9UXnznD//aZblIiISHrcrMiR+H2hQvDLL9CiBTRrBocPZ21GERFxHiEhsHy5+ZxytZIlYdEiGDbM3OT70Udme6jx4+HSJTtZPYkK4yIimCLS999DUJDZn7BJEzMxqbW6iDij+HgYNOj6zyW2XxowQPuPi4iIZ2rY0LRXf/llyJULtmwxWyg98wz8/bftdCIi4spuVOTw94cVKyAqymzV5+sLa9eaQsfo0XDxopW4IiJiWUiImRsiI+MIC9tOZGQcR47Ak0/CmDGwa5f5/PLvvxAeDjVqwJdf2k7t3lQYFxH5f2XLwubN0KuX+X7cOHjoITh50m4uEZH/2rgRjh+/8fMJCXDsmDlPRETEE2XLBgMHmvbqbdqYduozZ0KFCvD222qvLiIiaXejIkdICOTODRMmmEJHo0YQEwOjRkHVqvDhh7aTi4iIDd7eUL9+AvXqnaB+/QS8va88V6kSfP45LFgAhQubzy8PPggdO8Lp0/YyuzMVxkVErpI9O8yaBUuWQJ48sH69aa3+2We2k4mIXJHSG3ZGj4Zp08y/YadOXVlNLiIi4in8/c3v9p99Zi46/fYbdOpk9ondscN2OhERcVU3K3KAmXMiI2HpUihe3LRUf+wx02Jd+8iKiMjVHA5o3x5++gl69zbfL1hg5pLXX1dHyIymwriIyHW0aQPbt0P16nDmDDRubO7w1SQkIs6gWLGUnffVV/DssxAcbF5z++3QoAH07QsREbBpk1rKioiIZ2jUCHbuhJdeMu3VN2+Gu+6Cfv2Sz4Xx8bB+vYMNG0qwfr1Dv/+LiEiaORzwxBNm9d/zz4OPD6xZY9qrjxlj2uaKiIgkyp8fXnsNvv0WatY0n1N694Y6dcw2sJIxVBgXEbmBChXgm2+ge3ezynL0aFMgP3XKdjIR8XQPPGBWwDkc13/e4YBChWDYMNPOr0IF8PKCP/4wnTBeew169oT774cCBaBkSXjkEXOx5p134Lvv4MKFrP2ZREREMlu2bGauu7q9+owZULEizJ9v9oYtXRqCg32YOrUWwcE+lC4NK1faTi4iIq4sTx5zY9bOneZG5X//hREjoFo1+OQT2+lERMTZ1K4NW7fCq69C3rzmuHZt6N8foqNtp3N9KoyLiNxEjhxmVeWCBWZlyRdfQFAQfPml7WQi4sm8vWH6dHP83+J44vezZ5tVCCtWmFZM586Zu0vnz4dBg6BpUwgIMOceP24uyEyeDKGhUKuW2RuvfHl4/HEYPty0ANy7F2Jjs+zHFBERyRT/ba9+5gw8/TS0bm3mxKudOGEeV3FcRETSq3Jlc11p0SLT0evgQXODckgI/PKL7XQiIuJMvL3hmWfMTb1t25qbel991Xx+WbpU2yWmhwrjIiIp0L69aa1etapZMf7QQ6bgpNaKImJLSAgsXw4lSiR/3N/fPB4SkvzxHDnMjT0dO8KkSfDhh+biy99/m5bqERHmF+6GDeG228wv2AcPwurVMHas+SW8alVzk1C1avB/7d17fM/1///x+3vvjfh8bDk00QhpynEWEc3xg5QQOUVsCEny8amkvukkOqOjfWpIRQqpHIrKqVIRc8wxYlLyqdhn/LSx3x+Pz6a1zfu14+u97Xa9XHbJ3u/X++3pkfceXq/H6/l49OsnPf649P770r599g90AACKkrT26pMnZ9+FJe2C05gx/NsfAJB3Ho+dS+3cKY0da4WP996TrrxSmjRJOn3a7RUCAPxJlSrS3LnS8uW2geXIEbtG16mTtGeP26srmgLdXgAAFBVXXGHzPe68U5oxw9perV1ru8lDQ91eHYCSqEcPqVs3aeXKFC1bFq/OnSPUtm2gvF7n7xESYrOKWrTI+PjRo9K2bZm/EhPP/frPypa1HRD162f8qlo1+2IDAABuK1VKat78/DsuUlOlQ4fs3/5t2hTa0gAAxVhwsPTss1JMjHTHHdKaNdIDD0izZkkvvmij/AAASNOhg7Rli43mmDRJWrHCNq7cd599XXCB2yssOor8jvGOHTuqYcOGioiIUFRUlDZt2iRJ2rNnj1q0aKHw8HA1bdpU27dvd3mlAIqDsmWluDibwVu2rCWgxo3tBAYA3OD1Sq1bp6pVq8Nq3To1R0Xx8wkNldq1k0aPtrbsX34pHT9uu8yXLLFd57feaj8DS5e2meQbNtiFnLvvlq67znavV6hgM9Fvv91mm69ebbPOAQDwF0eO5O9xAAA4Vb++tGqVbbqoXNl2/3XqZGM8Dh1ye3UAAH9ywQW2WW/bNruB6vRp6ZFHrEC+fLnbqys6ivyO8XfeeUcXXnihJOm9995TdHS0Nm/erOHDh2vYsGGKjo7W/PnzFR0drfXr17u7WADFxsCBNoO3Vy9pxw5rPTxxojRunBRQ5G85AoCseTw2l7x6dZtRnubMGWun/tfd5bt3W6v2zz+3rz+7+GL7h/ufd5fXrWuzzQEAKExVqjg7buJEKTBQuukm+y8AAPnB47ERfl26SA8/LL3wgrRggbRsmRVA/vlP63ACAIAk1a4tffSR9O67NvJp7167qap3b2nKFOveiOwV+fJNWlFcko4fPy6Px6OjR49qw4YNGjBggCSpZ8+eOnTokPbu3evSKgEUR3XrSt98Y0Xys2el+++XbrhBOnbM7ZUBQOHyeqXwcGvtPmGC9M47dtNQUpLNbn3rLWn8eOnGG6WaNe01P/1kXTemTJGGDJGaNZPKlZNq1ZK6drWfqXPmWJuo/Jizd+aMtHq1R2vWXKLVqz3MiQUApIuKsi4nvkZ/7NhhF5tq17b2t8ePF876AAAlQ0iInR9t3Chde6115brvPqlhQ+mTT9xeHQDAn3g8dm6yc6d01122We+dd2wc7PPPSykpbq/QfxWLe5wHDhyolStXSpKWLl2qQ4cOqUqVKgr83y3cHo9H1atX18GDB1W7du1Mrz99+rRO/+mK64kTJyRJycnJSk5OztFa0o7P6etKGuLkDHHyze0YlSolvfqqdO21Ho0e7dVHH3nUuHGq3nzzjFq0OM+gwkKWlzjx9w9AbpUubRdxGjbM+HhiohUX/rrD/KefpP377evDD88dn1Z4/+v88ssuk6PW8QsX2klCQkKgpCZ67jkrgEybZsV8lAx79uzRoEGDdOzYMYWEhGjWrFmqV69ehmNmzpypadOmpX+fkJCgVq1aaeHChTpw4IAuu+wyNWjQIP35BQsW6LLLLiu0PwOAguH1Wk64+Wa7wPTneeNpxfJXX7VxIq+8Yv+9+27b1TdkiI0dqVXLlaUDAIqhhg1tZN8bb0j33CPt2mWzZXv3thuzwsLcXiEAwF8EB0tTp0qDBkkjRthGvrvuslGH06dLV1/t9gr9T7EojM+ePVuS9Prrr2vcuHF67LHHcvT6yZMn65FHHsn0+PLly1W2bNlcrWnFihW5el1JQ5ycIU6+uR2j0FDpiSfK6emnmyohoZzatQvQgAHfqXv3vX7VWj03cTp58mQBrARASVaunO0Qb9Ys4+PHjknbt2cumP/+u/Tdd/b17rvnjr/gAunKKzMXzKtVO1fIWLjQCh2pf7lX6fBhe3z+fIrjJYWTUUsxMTGKiYlJ/75+/frq379/+vflypVTfHx8YS0ZQCHq0cNygt1Ide7xsDC70JSWK8aPt04oU6bYTV7TplnL2+7drdVty5a+d54DAOCLx2MdCrt2ta5cL71kOwGXLJEeesjyFe3VAQBpGjeWvvzSbugdP17atElq3lwaPlyaNEkqX97tFfqPYlEYTzNo0CCNGDFCYWFhOnLkiFJSUhQYGKjU1FQdPHhQ1atXz/J148eP19ixY9O/P3HihKpVq6aOHTsqODg4R2tITk7WihUr1KFDBwUFBeXpz1OcESdniJNv/hajgQOlkSPP6u23AzR7dj0dO3al4uLOqGJFd9eVlzilddEAgIJWqZLUurV9pUlNlX78MXOxfPt26dQp+4f+pk0Z36dcuXMzyxcsyFwUT3tfj8dmMXXr5mznOYqutFFLy5cvl2SjlkaNGqW9e/dm2VFKkr7++msdPXpUXbt2LcylAnBRjx6WE1auTNGyZfHq3DlCbdsGZsgRZcpIQ4faTvHly61A/vHHdiPWwoVS06ZWIL/5ZskPTk8AAEXchRdaS9zBg6U77rCix733SjNnWrG8bVu3VwgA8Bder+0av+km6zjyxhu2a3zhQus40r8/N/FKRbww/vvvv+vkyZOq+r9J8osWLVLFihUVGhqqyMhIvfnmm4qOjtaCBQsUFhaW7UWv0qVLq3Tp0pkeDwoKynWhLS+vLUmIkzPEyTd/iVH58jYTt21ba6m4dGmAmjUL0Lx5doeW23ITJ3+IK4CSy+ORLrnEvjp1Ovf4mTPSgQOZC+Y7d1qr9nXr7Ot8UlOlQ4ektWulNm0K8k8Bt+V01JIkxcXF6dZbb82QB5OSktS0aVOdOXNG3bt31wMPPCBvNndVMK6p8BEn34iRMy1aJCsp6bBatKirs2dTdfZs1se1a2df27dLL7zg1VtvebR+vUe33CLde2+qbr/9rIYOPVtsd2fk9u8Tf/8AIOciIuy8ZfZsK4x/953loH79pGeekf53eRwFwMlIpgMHDig6OlqbNm1SzZo1M3SZWrVqlTp37qw6deqkP7Zu3TqVKVNGkp13PPHEEzp79qzatWunl19+mWtxAPKkcmXLF4MHS7ffbtfKbr1VmjFDevllm0NekhXpwvjx48fVq1cvnTp1SgEBAbrooou0ePFieTwexcbGKjo6WpMmTVJwcLBmzpzp9nIBlBAejzRsmLUI7tVL2rNHioqSnnzSdo9wVxYA5J3XazPGL7vMdvel+eMP+7m7bZv09tvSokW+3+vw4QJbJoqopKQkvf322/rqq6/SH6tSpYoOHz6s0NBQ/frrr+rTp4+effZZ3XvvvVm+B+Oa3EOcfCNGzuQkTl27Sq1aldLHH9fQ0qU1lZBwgR54wKtHH01V+/YH1aXL96paNakAV+uenP59YlQTAOROQIAUHW3nPw8+KL3yijR3rvThh9Ijj0h33km3koLgZCRTcHCwJk6cqOPHj+uBBx7I9B516tTJciTT/v379eCDD2rjxo2qXLmyunXrpn//+9+64447CuqPA6AEadNG2rzZdos/+qi0cqXUsKHtJn/gASmXlyaKvCJdGL/00kv1zTffZPlcnTp1tM7XNiEAKECNGkkbNliRfN486V//ktassXZXxXXXCAC4rVQpqV49+6pc2VlhfMwY6dtvpb59rQUuNzAVP9WqVcvRqKV3331X9erVU926ddMfK126tEJDQyVJFSpU0ODBgzVnzpxsC+OMayp8xMk3YuRMXuJ0yy3S6dPSvHkpmjrVq23bArV0aS0tW1ZTN9yQqrvuOqtWrVKLRa7JbZwY1QQAeVO+vPTii7YTcORI6euv7ZrTjBnWXv3Po6mQN05HMlWoUEHXXnutVq1alaP3nz9/vrp27aqLL75YkjRixAhNmjSJwjiAfFOqlM0c79vXbqBassRmjs+ZY7nkhhvcXmHhK9KFcQDwd8HBdvdu69ZWeHn/fSkyUnrnHSu+AAAKTlSUFBZmO8KzmjMuWRH82DGbETtlilSrlp0s9O1rc8qLQ+ECyvGopbi4OA0ZMiTDY0ePHlX58uUVFBSk06dPa+HChWrcuHG2vyfjmtxDnHwjRs7kNk5BQTaDfPBg6bPPLL8sWeLR4sUeLV4coMaNrZNUnz52oaqoy2mc+LsHAPkjMtJmjs+cKY0bZ6M92rSxGbJPPy1VqeL2Cou+3Ixkysq+ffsUGRkpr9ermJgYjRw5UpJ08OBBXXrppenH1ahRQwcPHsz2fRjXVLiIkTPEyRm34xQWZrPG33/fo7FjvTpwwKMuXaTu3c/q2WfPqFo1V5aVQV5ilJPXUBgHgALm8dgsj7TW6t9/L7VsaTOg7ryTogsAFBSvV5o2Tbr5ZvtZ++fieNrP3rlzpTJlrO36++/bz+hJk+yrbl0rkPfpI4WHu/NnQP7JbtTS0KFD1bVrV3Xt2lWStGvXLsXHx2vp0qUZXv/5559rwoQJ8nq9SklJUbt27bJskwgAaTweqX17+9q503LS669LmzZJAwdaEWPUKGn4cKliRbdXCwAoigIC7Gasm26ytrixsdJbb1l79Ucfle64QwqkAuCqyMhIJSQkKCQkRAkJCbr++utVqVIl9e7dO8fvxbgmdxAjZ4iTM27HqVQp6emnvZo3r44++OAyLVoUoI8+Oqu+fXeqS5fvFRiYzc6SQpSbGOVkXBNpEQAKSWSktHGjnbAsWCDddZe1Vo+Lk0JC3F4dABRPPXpI8+fbz9yEhHOPh4VJU6fa85LNhk1KspZSb78tLV0q7dghTZhgX5GR54rk2XTfhp/LbtTSa6+9lum4xMTETMf16NFDPdL+wgBADl1xhc2CnTjRihYvvigdOWJFjIkTrVA+ZowdBwBATlWoYHlmyBBrr75+veWVuDhrrx4V5fYKi6acjmTKyp/HKIWFhalfv35au3atevfurerVq2vfvn3pzx84cOC87824psJFjJwhTs74W5x69pS2bDmjO++U1q0L1KxZ9bVhQz299NIZXXONO8XxvMQoJ+OaKIwDQCEKCZHefdcuhP3rX1Yg37TJHouMdHt1AFA89eghdesmrVyZomXL4tW5c4Tatg2U15vxuL/9Terd276OH7f55G+/La1YYTc2bdwo3Xuv1KKFFcl79ZL+NwoOAABHKlaU7r9fuvtuG6/03HN2PhAba1/XX29t1tu3p7MUACDnmjSRvvrKCuL33Sdt3Sq1amU3YD31lFS5stsrLFpyOpIpK0eOHFHlypUVEBCgxMRELV68OH1sU8+ePXXttdfq4YcfVuXKlTV9+nT17ds32/diXJM7iJEzxMkZf4rTVVdJn39uIznuvVfats2j1q0DNWSI9OST7nW1yk2McnJ8QE4XBADIG4/HWqh/8YVUo4a17b3mGunll7OfgQsAyBuvV2rdOlWtWh1W69apmYrifxUSIg0aJC1bJv30kzR9us3r83hsjt/o0dIll0j/+If06qvSf/5TKH8MAEAxUaqUNGCA9O230qpV1rnE47GOJR06SI0a2QWqP40RBQDAkYAA6bbbpN27pWHDLL/Mnm3joV54QUpJcXuFRUtsbKxiY2MVHh6uJ554IsNIpg8++ECStfANCwtTr169tGPHDoWFhWn8+PGSpAULFqhBgwZq1KiRmjdvrg4dOigmJkaSVKtWLT3yyCNq2bKlateurYsuukjDhw935w8KoERKG8mxa5c0eLA9Fhcn1alj5yNnz7q7voJAYRwAXNK0qe0+7NZN+uMPm/vUt6+Ug64fAIBCUKmSzX9dudLasU+dKjVvbicHn35qF5suvljq0kV6801+jgMAnPN4pNatpffft4tRo0ZZB5OtW+3CVPXqNiP2l1/cXikAoKipWNG6kXz1le0KPHHCbvBt0sRu9oUzaSOZdu/erQ0bNqhBgwaSbCRT165dJUlly5ZVQkKCfvnlF/3xxx9KSEjQ5MmTJUmjRo3S9u3btXnzZm3fvl0PP/ywPH9qC3Pbbbdp37592rdvn+Li4vxmJymAkqVSJSuIr10r1a9vG0AGD7ZzlW3b3F5d/qIwDgAuKl9eeu89a6EYGGjtFJs0keLj3V4ZACArVavavPJ166zjxxNPSBERtutiyRLp1lutPeHNN9ts81On3F4xAKCouPxy28l36JC1LgwLk44elR56SKpWTRo6VNq+3e1VAgCKmquvlr7+2maQly8vbd4stWxpBY+jR91eHQDAn1x7rW3me+opqWxZa7XeuLG1Wk9Kcnt1+YPCOAC4zOOxOYJr19qOkD17bCdibCyt1QHAn9WsKY0bZ7Nhv/vOChd16kj/7/9JCxbYDPLQUGuVu3ixdQcBAMCX8uXtwtP330tz51qnqdOnbQdH/fpSp07SRx9xrgAAcM7rlUaMsO4k/xtvrZkz7fzl5ZelM2fcXR8AwH8EBUn33GPXum66yTaDPP20dOWV0qJFRf88hMI4APiJ5s2tuNKli134GjHCiin//a/bKwMA+HLFFdLDD9tJw6ZNVjC/9FL7Gf7WW9KNN1q79aFDpU8+Ya4fAMC3oCAbtfT117ZTo0cPmwG4fLnUubMVyV99le4kAADnLrpIeu01a6XeuLH0++822q9pU2u5DgBAmurVpYULpQ8/lGrUsM5WN90kde0qHTjg9upyj8I4APiRChVsvuBTT9ndvHPmWGv1rVvdXhkAwAmPx1qrP/GEtH+/tVy/6y6pShXpt99st1+HDtIll0h33il98YXNKgcAIDsej7W8XbBA2rtXGjNGKldO2rFDGjbMLlhNmCD99JPbKwUAFBXXXCOtXy+99JJ04YV2c+8119iNvL/84vbqAAD+pEsXG+k0frzdvLt4sVS3rjR5ctHsjkhhHAD8TECAtSpZs8bmCu7aZfOg4uKKfpsSAChJPB7rBjJ1qt1Vu3KlNHy4VLGizfJ78UWb3VSjhv3c//Zbfs4DAM6vZk1pyhTLK88+a91Jjh2THnvMfh0dbbNjAQDwxeuVRo60607R0fZYXJy1V58+nfbqAIBzypaVJk2yc43Wra1r1f332+aQ1avdXl3OUBgHAD/VooXdsdu5s82rHTpUGjRISkpye2UAgJzyeqU2bewC05Ej0rJl9jM9ONiKG888Yx1CwsOlBx+0O3EBAMhOSIg0dqztIH/3Xdvl98cf0uuv28Wp9u1tJwddSQAAvoSG2rzxzz+XGjWyTle33243+X7zjdurAwD4kyuvtI0fs2fbeI7vvrPrXYMG2SaQooDCOAD4sUqV7ILW5MlWVHnjDZv7RMEEAIquoCDpuuukWbOkn3+W3ntP6tNHKlPGChwTJ9rc2AYNpMcft8cAAMhKYKB08802K3bdOql3bztv+Owz6cYb7cLVK69wcy0AwLeWLaUNG6Tnn7cbeDdssOL4sGHSf/7j9uoAAP7C45FuvdU6jgwfbt/Pni1dcYUUG+v/N+dSGAcAPxcQIN13n92JVbWq3YV19dW2GwQAULRdcIHUvbv09tt2Z+2cOVLXrlY837ZN+r//ky6/3G6KevZZ210OAEBWmjeX5s2Tvv9euvtuK2rs3m1tcqtVs1aHhw+7vUoAgD8LDJTuvNPyx8CBNurp1Vets9Wrr/p/sQMAUHjKl7fOiOvWWdeq336TRoywTrjx8W6vLnsUxgGgiIiKstbqHTtKJ0/a/KfBg+3XAICi7+9/l/r1k95/33aSz5hhP/O9XtutcffdUvXqlg9eeqnotKgCABSu6tWlp5+WEhKkadOkWrXsItXkyVKNGtKAAdK337q9SgCAP6tc2TZkrFljnax+/dV2jl9zjZ2bAACQplkzaf16aepUqVw56euvpauukv75Tykx0e3VZUZhHACKkNBQm0v72GO2k3zmTEs8O3e6vTIAQH4qX16KiZE+/lj68Ufp5ZelVq3suc8/l0aNkqpUscL5jBlW8AAA4M/KlZNGj7Zdf++9ZzdWpaRIb70lNWkitW4tLVoknTnj9koBAP4qKkrauFGaMsXyyjffWBfD22+3YjkAAJJ1HLnrLut227u3dRiZOtXaq7/7rnUg8RcUxgGgiAkIsNa6n3wiXXyxtdpt0sQucAEAip/QULvwtHq1tVJ/7jlrrX72rLRihTRkiO3o6NrVWrH/979urxgA4E+8XhvbsWaN7eS45Ra7cLVmjXTTTVKdOtILL5A/AABZCwyUxoyxWbL9+1txY/p0yx9xcbRXBwCcc8klNt7po4+kyy6zzR69e0udO0v79rm9OkNhHACKqLZtbVZHu3ZSUpK1RBw2TDp1yu2VAQAKSliYtaL65htp717p8celhg2l5GTpww/tQlVoqJ10LFxITgAAZJR2Q+3+/dJ991mHkn37bGd5WJh07712ExYAAH9VpYr05pvSqlVSvXrSsWPS0KFSy5a2qxwAgDSdOklbt0oTJkilSllHxHr1pEcflU6fdndtFMYBoAirXFlavlx66CHJ45FefdXmPe3e7fbKAAAF7bLLpPvvlzZvlrZvlx58ULr8ciuGv/uu1LOn5YmBA6WlS614DgCAZEXwyZOtCP7SS5Y/jh+32eQ1a0p9+9pNWNk5c0ZavdqjNWsu0erVHtqxA0AJ0rq1tGmT9Oyz0t//Ln31lXW0GjWKEU8AgHPKlJEeecQK5P/4hxXEH3rINnh8+ql766IwDgBFnNcrPfywFchDQ61ActVV1rJE4qIVAJQEdevaXbe7dknffivdc49UrZqUmCi98YZ0ww02fmPYMOmzz7KeJ0u+AICS529/k0aOlHbulD74wLpSnTlj5xLNmtkuwPnzbTZ5moULpRo1pA4dAvXcc03UoUOgatSwxwEAJUNQkDR2rJ1/9Otn7dRfesnaq8+ada69OucYAIDwcKtdzJ1r16Z277ZC+S23SD/9ZMcUZr6gMA4AxcQ//mGt1Vu3tvmAfftK110nXXopF60AoKTweKTISOmpp6QDB6QvvpDuvNN2jv/6q3UWad/edgredZe0bp3NCKTIAQAlW0CAdOONdvPUpk3WbSQoSPryS6lXL9tRPmWKtdC9+WYpISHj6w8ftsfJGwBQslStKs2ZYzv/rrxS+uUXKSZGioqyHeWcYwAAJLte1bev3ZA7apSdf8ydazdUDR1auPmCwjgAFCNVqkiffCI98IB9//HHdpHqz7hoBQAlQ0CA1KKF9Pzz9rP/00+l226zebI//WSPt2hhRfOePSlyAABMRIT0+uvSDz9I//d/UsWKdrPV2LFWME9NzfyatMfGjMm6KwkAoHhr1842azz1lHUj+fJL6e67OccAAGQUEiK98IKNbWrSRDpxQoqLK9x8QWEcAIqZwECb3VGpUtbPc9EKAEoer9cuVv3731YUX7xYGjDALlr98kvWryFfAEDJVqWK9Nhj0sGDUmysjejIqiieJjXVZpavXVt4awQA+I9SpWyk0/btNlc2K5xjAAAkGwX7xRfShRdm/XxB5gsK4wBQDK1dKx07lv3zXLQCgJKrVCmbOf7GG9KCBec/lnwBAChbVho2TJo82dnxR44U7HoAAP5t/37p1Knsn+ccAwAgWXeR33/P/vmCyhcUxgGgGHJ6MYqLVgBQsv36q7PjyBcAgEsucXZclSoFuw4AgH/jmhQAwAm38gWFcQAohpxejOKiFQCUbOQLAIBTUVFSWJjk8WT9vMdj7dajogp3XQAA/8I5BgDACbfyBYVxACiGuGgFAHCCfAEAcMrrlaZNs1//NW+kfT91qh0HACi5OMcAADjhVr6gMA4AxRAXrQAATpAvAAA50aOHNH9+5rbqYWH2eI8e7qwLAOA/OMcAADjhVr6gMA4AxRQXrQAATpAvAAA50aOHdOCAtGJFisaO3aAVK1K0fz/5AgBwDucYAAAn3MgXgfn/lgAAf9Gjh9Stm7RyZYqWLYtX584Rats2kLtyAQAZkC8AADnh9UqtW6cqKemwWrduRL4AAGTCOQYAwInCzhcUxgGgmOOiFQDACfIFAAAAgPzEOQYAwInCzBe0UgcAAAAAAAAAAAAAFGsUxgEAAAAAAAAAAAAAxRqFcQAAAAAAAAAAAABAsUZhHAAAAAAAAPifPXv2qEWLFgoPD1fTpk21ffv2TMccOHBAbdq0UUhIiCIiIjI8t2rVKpUpU0YRERHpX6dOnSqk1QMAAADIDoVxAAAAAAAA4H+GDx+uYcOGaffu3Ro3bpyio6MzHRMcHKyJEydqzpw5Wb5HnTp1FB8fn/5VpkyZAl41AAAAAF8ojAMAAAAAAACSjh49qg0bNmjAgAGSpJ49e+rQoUPau3dvhuMqVKiga6+9Vn/729/cWCYAAACAXAh0ewEAAAAAAACAPzh06JCqVKmiwEC7ZObxeFS9enUdPHhQtWvXdvw++/btU2RkpLxer2JiYjRy5Mgsjzt9+rROnz6d/v2JEyckScnJyUpOTs7R2tOOz+nrShri5Axx8o0YOZOXOBFbAEB+ozAOAAAAAAAA5JPIyEglJCQoJCRECQkJuv7661WpUiX17t0707GTJ0/WI488kunx5cuXq2zZsrn6/VesWJGr15U0xMkZ4uQbMXImN3E6efJkAawEAFCSURgHAAAAAAAAJFWrVk1HjhxRSkqKAgMDlZqaqoMHD6p69eqO3yM4ODj912FhYerXr5/Wrl2bZWF8/PjxGjt2bPr3J06cULVq1dSxY8cM7+NEcnKyVqxYoQ4dOigoKChHry1JiJMzxMk3YuRMXuKU1kUDAID8QmEcAAAAAAAAkBQaGqrIyEi9+eabio6O1oIFCxQWFpajNupHjhxR5cqVFRAQoMTERC1evFhDhgzJ8tjSpUurdOnSmR4PCgrKdaEtL68tSYiTM8TJN2LkTG7iRFwBAPktwO0FAAAAAAAAAP4iNjZWsbGxCg8P1xNPPKGZM2dKkoYOHaoPPvhAkrX3DQsLU69evbRjxw6FhYVp/PjxkqQFCxaoQYMGatSokZo3b64OHTooJibGtT8PAAAAAMOO8SykpqZKyl2rluTkZJ08eVInTpzgjrbzIE7OECffiJEzeYlT2s/CtJ+NyCi3OYO/u84QJ2eIkzPEyTfyRcHhHKPgESffiJEzxMmZ3MapKOSLOnXqaN26dZkef+2119J/XbZsWSUkJGT5+lGjRmnUqFG5+r3JFwWPODlDnHwjRs5wjlFwyBkFixg5Q5ycIU6+FVa+oDCehcTEREk2VwoAYBITExUSEuL2MvwOOQMAMiJfZI18AQAZkS+yRr4AgMzIGVkjZwBARk7yhSeV260yOXv2rH788UeVK1dOHo8nR689ceKEqlWrpkOHDik4OLiAVlj0ESdniJNvxMiZvMQpNTVViYmJqlq1qgICmMDxV7nNGfzddYY4OUOcnCFOvpEvCg7nGAWPOPlGjJwhTs7kNk7ki/MjXxQ84uQMcfKNGDnDOUbBIWcULGLkDHFyhjj5Vlj5gh3jWQgICFBYWFie3iM4OJi/3A4QJ2eIk2/EyJncxom7crOX15zB311niJMzxMkZ4uQb+SL/cY5ReIiTb8TIGeLkTG7iRL7IHvmi8BAnZ4iTb8TIGc4x8h85o3AQI2eIkzPEybeCzhfcZgUAAAAAAAAAAAAAKNYojAMAAAAAAAAAAAAAijUK4/msdOnSeuihh1S6dGm3l+LXiJMzxMk3YuQMcfI//D9xhjg5Q5ycIU6+ESP/xP8XZ4iTb8TIGeLkDHHyP/w/cYY4OUOcfCNGzhAn/8T/F9+IkTPEyRni5FthxciTmpqaWqC/AwAAAAAAAAAAAAAALmLHOAAAAAAAAAAAAACgWKMwDgAAAAAAAAAAAAAo1iiM50GNGjVUp04dRUREKCIiQvPmzcvweKNGjVS7dm1169ZNX375pcurdcfo0aNVo0YNeTwexcfHpz9eo0YNhYaGKjk5Of2xlStXyuPxaMyYMYW/UJd17NhRDRs2VEREhKKiorRp0yZJxOmvTp8+rVGjRunyyy9XgwYNNGDAAEnE6a+y+tz1799f999/f4bjbrjhBj3zzDMurLBkImecH/nCGfKFM+QL58gZ/od8cX7kC+fIGb6RL5wjX/gf8oVv5AxnyBfOkDOcIV/4J3LG+ZEvnCFfOEO+cM6tnEFhPI/mzZun+Ph4xcfHq0+fPhke37x5s/bu3atBgwbp+uuv19dff+3iSt1x88036/PPP9ell16a6bnq1avrgw8+SP8+Li5OTZo0Kczl+Y133nlHW7ZsUXx8vMaOHavo6Oj054jTOffdd588Ho92796trVu3ZvhhSJzOyepz9+KLL+qtt97S+vXrJVl8Tpw4obFjx7q1zBKJnJE98oUz5AtnyBfOkTP8E/kie+QL58gZvpEvnCNf+CfyxfmRM5whXzhDznCGfOG/yBnZI184Q75whnzhnFs5g8J4IejRo4dGjBhRIu+Ca9WqlcLCwrJ8LiYmRjNmzJAkHT9+XF999ZWuu+66wlye37jwwgvTf338+HF5PJ7074mTSUpKUlxcnB5//PH0+Fx88cXpzxOnc7L63JUvX16xsbGKjo7Wnj17NGHCBL3++usKCCAN+JuSmjPIF86QL3wjX+QMOaPoIl9kxuc7I3LG+ZEvcoZ8UXSV1HwhkTOcIl/4Rs5wjnxRtJXUnEG+cIZ84Rv5ImfcyhlknzwaOHCgGjRooCFDhuiXX37J9rhmzZpp+/bthbgy/9eyZUsdOHBAP/74o+bOnatevXrJ6/W6vSzXDBw4UNWqVdODDz6oN954I/1x4mT27dunChUqaNKkSWrSpImioqL06aefpj9PnHy77rrrFBUVpaZNm2rChAmqVauW20sqccgZucPnOyPyxfmRL/IHOcNd5Ivc4fOdGTkje+SL/EG+cBf5Ivf4jGdEvjg/ckbekS/cR87IHT7fGZEvzo98kT8KOmdQGM+DNWvWaMuWLdq4caMqVaqkQYMGZXtsampqIa6s6Lj11ls1a9YszZgxQ4MHD3Z7Oa6aPXu2Dh06pIkTJ2rcuHEZniNOUkpKin744QfVrVtXGzZs0PPPP68+ffro559/Tj+GOPl2zz336OzZsxo+fLjbSylxyBl5w+f7HPLF+ZEv8g85wx3ki7zh850ROSN75Iv8Q75wB/ki7/iMn0O+OD9yRv4gX7iHnJE3fL7PIV+cH/ki/xRkzgjM93csQapXry5JCgoK0pgxYxQeHp7tsevXr1f9+vULa2lFxsCBAxUZGanw8HBdfvnlbi/HLwwaNEgjRozQf/7zn/THiJN93gICAtS/f39JUuPGjVWzZk1t3bo1/Rji5JvX66VVlUvIGXnD5zsz8kXWyBf5h5zhDvJF3vD5zho5IzPyRf4hX7iDfJF3fMYzI19kjZyRP8gX7iFn5A2f78zIF1kjX+SfgswZFMZzKSkpScnJyelzFebOnavGjRtneez777+vV155RR9//HEhrrBoqFq1qiZPnqwrrrjC7aW45vfff9fJkydVtWpVSdKiRYtUsWJFVahQIf0Y4iRVqlRJ7du318cff6zrr79e+/fv1/79+3XllVemH0Oc4K/IGXnH55t84RT5AkUZ+SLv+HwbcoZv5AsUZeSL/MFnnHzhFDkDRRk5I+/4fJMvnCJfFA0UxnPp559/Vs+ePXXmzBmlpqaqVq1amj17dvrzffr00QUXXKCkpCTVrVtXS5cuVbNmzVxcsTuGDx+uJUuW6KefflKnTp1Urlw57d27N8MxMTExLq3OPxw/fly9evXSqVOnFBAQoIsuukiLFy+Wx+PJcFxJj5MkTZ8+XUOGDNG4ceMUEBCg2NhYXXLJJRmOIU7OPncoXOQM38gXvpEvnCNfOEfO8C/kC9/IF86QM5whXzhHvvAv5AtnyBm+kS+cI2c4Q77wP+QM38gXvpEvnCNfOOdWzvCkMjQCAAAAAAAAAAAAAFCMMdQDAAAAAAAAAAAAAFCsURgHAAAAAAAAAAAAABRrFMYBAAAAAAAAAAAAAMUahXEAAAAAAAAAAAAAQLFGYRwAAAAAAAAAAAAAUKxRGAcAAAAAAAAAAAAAFGsUxgEAAAAAAAAAAAAAxVqg2wsAioKIiAhJ0h9//KFdu3apQYMGkqQ6deqkf/Xv3z/ffr99+/apV69eSk1N1ejRoxUTE5Nv7w0AKFjkDACAE+QLAIAT5AsAgFPkDMA3T2pqaqrbiwCKigMHDigiIkK///57gf4+Tz75pL7//nvFxsZmei4lJUWBgdzTAgD+jpwBAHCCfAEAcIJ8AQBwipwBZI9W6kAeRUdHa+rUqZKkhx9+WL1799aNN96o8PBwdenSRdu2bVOnTp0UHh6ufv366ezZs5KkxMRE3Xbbbbr66qvVsGFDDRs2TH/88Ydmz56tKVOmaOHChYqIiNCOHTvUpk0bjR49Wtdcc406duyolJQUderUSU2aNFG9evV0yy23KCkpSZK0atUq1a9fX7fffrsaNmyoBg0aaMuWLYqOjlaDBg3UrFkzHT58OH39zzzzjK6++mpFRkbquuuu0w8//FDoMQSAkoKcAQBwgnwBAHCCfAEAcIqcARgK40A+27Bhg2bPnq1du3YpMTFRQ4cO1fz587Vjxw599913WrZsmSTpX//6l6KiovTNN99o8+bNOnv2rKZNm6aBAwdqxIgR6t+/v+Lj41W3bl1J0u7du7VmzRp99tln8nq9mjNnjjZs2KBt27YpJCREL7zwQvoadu7cqaFDh2rLli3q3r272rVrp/vuu09bt25VkyZN0hPgnDlztGvXLq1bt04bN25U//79NXLkyEKPGQCUVOQMAIAT5AsAgBPkCwCAU+QMlFT0MQDyWceOHVW+fHlJUmRkpEqXLq1y5cpJkho3bqw9e/ZIkhYtWqR169bpueeekySdOnVKXq832/cdMGCAgoKCJEmpqamaMmWKlixZopSUFB0/flwtWrRIP7Z27dq66qqrJElNmjRR7dq1dcUVV0iSrr76ar333nvpa1i/fn36sWfOnMm3OAAAfCNnAACcIF8AAJwgXwAAnCJnoKSiMA7kswsuuCD9116vN9P3KSkpkiwpLFiwQOHh4Y7e9+9//3v6r+fMmaPPPvtMq1evVnBwsJ5//nl99tlnuVrD+PHjNWzYsBz+KQEA+YGcAQBwgnwBAHCCfAEAcIqcgZKKVuqAS7p3764nn3wy/Yf7b7/9pr179zp67W+//aZKlSopODhYiYmJmjVrVq7XMH36dP3666+SpOTkZG3atClX7wUAKDjkDACAE+QLAIAT5AsAgFPkDBQ3FMYBl0yZMkVlypRRRESEGjZsqPbt2+vAgQOOXjtw4ECdPHlSderUUefOnRUVFZWrNfTv31/R0dFq27atGjVqpIiIiAx3bAEA/AM5AwDgBPkCAOAE+QIA4BQ5A8WNJzU1NdXtRQAAAAAAAAAAAAAAUFDYMQ4AAAAAAAAAAAAAKNYojAMAAAAAAAAAAAAAijUK4wAAAAAAAAAAAACAYo3COAAAAAAAAAAAAACgWKMwDgAAAAAAAAAAAAAo1iiMAwAAAAAAAAAAAACKNQrjAAAAAAAAAAAAAIBijcI4AAAAAAAAAAAAAKBYozAOAAAAAAAAAAAAACjWKIwDAAAAAAAAAAAAAIo1CuMAAAAAAAAAAAAAgGLt/wMl27b0O+dH3QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# Define the list of coins\n",
"coins = summary['Symbol'].unique() # Adjusted to match \"Name\" column in the table\n",
"\n",
"# Define the timeframes and labels\n",
"timeframes = ['5D Prediction', '1M Prediction', '3M Prediction', '6M Prediction', '1Y Prediction']\n",
"labels = ['5D', '1M', '3M', '6M', '1Y']\n",
"\n",
"# Create a 2x5 grid for the plots\n",
"fig, axes = plt.subplots(2, 5, figsize=(20, 10)) # 2 rows, 5 columns\n",
"axes = axes.flatten() # Flatten axes array for easy iteration\n",
"\n",
"# Plot data for each coin\n",
"for i, coin in enumerate(coins):\n",
" # Extract data for the current coin\n",
" coin_data = summary[summary['Symbol'] == coin].iloc[0]\n",
" predictions = coin_data[timeframes].values\n",
"\n",
" # Convert predictions to float for plotting (if they are strings with \"$\" formatting)\n",
" predictions = [float(pred.replace('$', '').replace(',', '')) for pred in predictions]\n",
"\n",
" # Plot the predictions\n",
" axes[i].plot(labels, predictions, marker='o', linestyle='-', color='blue')\n",
" axes[i].set_title(f'{coin} Predicted Prices', fontsize=10)\n",
" axes[i].set_ylabel('Predicted Price', fontsize=8)\n",
" axes[i].set_xlabel('Timeframe', fontsize=8)\n",
" axes[i].grid(True)\n",
"\n",
" # Customize y-axis for better readability\n",
" axes[i].tick_params(axis='y', labelsize=8)\n",
" axes[i].tick_params(axis='x', labelsize=8)\n",
"\n",
"# Adjust layout and remove empty subplots\n",
"for ax in axes[len(coins):]: # Hide any unused subplots\n",
" ax.axis('off')\n",
"\n",
"# Adjust layout for better spacing\n",
"plt.tight_layout()\n",
"\n",
"# Display the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 192,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAMWCAYAAADLc44dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhUVQMG8PfODAybgKAsKgoqLrjgvqeiKWquZS59KWpqi5rmllpulUtlpiWVZYq2upVrkWm4lOZu7kuKlQqIGwjIMjPn+wPmyjAzMCzDsLy/5+GBOffce8+ZYUbvyznnSkIIASIiIiIiIiIiomKmsHUDiIiIiIiIiIiofGIwRURERERERERENsFgioiIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIiIyCYYTBERERERERERkU0wmCIiIiIiIiIiIptgMEVERERWc/36dUiShBEjRti6KSXWiBEjIEkSrl+/Lpft3bsXkiRh3rx5VjlnREQEJElCRESEVY5vbSkpKahatSrGjh1r66aUaqZ+9/Lr0qVLUKlU+OSTT4quYUREVK4wmCKiEkGSpHx92cL+/fsxdepUhISEwM3NzaKLbZ1Oh48//hiNGjWCo6MjKleujKFDh+LatWsFasPly5cxYcIENGjQAK6urlCr1fDz88PAgQOxefNm6HS6Ah3XGubNmwdJkrB3715bN4XySf/aZf9ydnZG48aNMW/ePCQnJ9u6iQWivwjP/uXq6oqWLVviww8/REZGhq2bWGTKeiD4/vvv486dO3jzzTcNyjt37gxJkhAbG2ujllnmjz/+wLPPPouqVavC3t4eFStWRL169fDcc89h7dq1tm5evtStWxdDhw7F/Pnz8fDhQ1s3h4iISiGVrRtARAQAc+fONSpbtmwZEhISTG6zhdWrV2Pt2rVwcnJC9erVkZiYmOc+L774IlatWoUGDRrg1Vdfxa1bt7Bhwwbs2rULf/75JwIDAy0+/wcffIDXX38dOp0OHTp0QLdu3eDk5IT//vsPu3fvxubNmzFq1Ch8+eWXhekmkeyZZ55Bw4YNAQAxMTHYtm0b5s+fj+3bt+PQoUOwt7fP8xhVq1bFhQsX4ObmZu3mWuyFF15AtWrVIITAf//9hx9++AGTJ0/Gb7/9hu3bt9u6eQCAVq1a4cKFC6hUqZJVjj9gwAC0adMGvr6+Vjm+NSUmJmLJkiUYPHgwqlevbuvm5FtERARGjRoFlUqFXr16ITAwEJIk4dKlS/jpp5+wf/9+hIWF2bqZ+TJ9+nR8/fXX+Oijj/DGG2/YujlERFTKMJgiohLB1HSViIgIJCQkWG0qS36NHz8e06ZNQ7169XD06FG0bds21/pRUVFYtWoVOnbsiF9//VW+iH/uuefQq1cvjB8/Hr/88otF5/78888xdepU+Pv7Y/PmzWjWrJnBdo1Gg7Vr1+LAgQMF6xyRCQMHDsSQIUPkx0uWLEGrVq1w4sQJfPvttxaNxrGzs0O9evWs2Mr8Gz16NNq0aSM/fuedd9C0aVPs2LEDe/fuRefOnW3XuCxOTk5Wfd7c3NxKVFiYH1999RWSkpIwfPhwWzcl31JSUvDqq6+iQoUKOHjwIBo0aGCwPSMjo1SOMm3UqBEaN26ML774AjNnzoRCwUkZRERkOf6rQUSlzp07dzBp0iQEBARArVbDy8sLgwYNwtmzZ43q6qfuXLt2De+99x4CAwPh4OCAgIAAvPXWW/mautOiRQs0aNAASqXSovpffPEFAODtt982GFnSs2dPdO7cGbt27cK///6b53EePHiAadOmwd7eHjt37jQKpQBApVLhhRdewMqVK+Wy7FPpIiIi0KxZMzg5OaFz585YtWoVJEnCe++9Z/Kcv/32GyRJwosvviiX+fv7w9/fHw8ePMCLL74IHx8fODg4oGnTpvjuu+8M9u/cuTPmz58PAAgJCZGnTfn7+xvUO3v2LAYNGgQvLy+o1WoEBARg0qRJuHv3rsl23b59G1OmTEHdunXh6OgIDw8PtG7dGkuWLJHr5LY2j7npTdn7Nn78ePj5+UGlUiEiIsJgnwsXLmDAgAHw9PQ0Wpdl69at6Nq1KypWrAgHBwc0bNgQS5YsgVarNThX9rV9du3ahXbt2sHJyQmenp4ICwsz2/e//voL//vf/1CtWjWo1Wr4+vqiR48e8gifgrym+VWhQgX5uTt69KhRf7Zv34727dujQoUK8mud25Syhw8fYv78+WjcuDGcnJzg5uaGpk2bYvbs2UbvzejoaIwePRrVq1eX+z9ixAj8888/Be6PXpUqVfD0008b9Cu390/29s+dOxcNGjSAo6Mj3N3dERoait9//93kec6dO4fevXujQoUKcHNzQ69evUx+bgG5/x7n9T6IiIhAQEAAAGDt2rUGUxf1oUdua0z98ccfeOqpp+Dh4QEHBwfUq1cPc+fORUpKilFdSZLQuXNnxMXFISwsDJUqVYKjoyPatGljMmCJiYnBxIkTERgYKD9n9evXx0svvYSEhASTz0VOa9asgYeHB7p06WJRfXM0Gg2WLl2K4OBgODo6ws3NDSEhIWZHzaWkpGD69Onw8/OT3+NffPFFvtYDO3v2LB4+fIiQkBCjUArIDHK7detmct+tW7eie/fu8PT0hIODA/z9/TFs2DCD36HLly9j+vTpaNasmVyvTp06mDFjBpKSkix7YrLs378fffr0QaVKlaBWqxEYGIg333zT5O8BAAwaNAj//PMPoqKi8nUeIiIijpgiolIlPj4ebdu2xdWrV9G5c2cMGTIE0dHR2LRpE3bu3IlffvkFHTp0MNpv0qRJ+OOPPzBo0CC4uLhg+/btmDt3Lk6fPo1NmzZZpa179+6Fs7Mz2rdvb7QtNDQUe/fuxb59+zBs2LBcj7Np0yYkJibiueeeQ1BQUK511Wq1Udn777+PqKgo9OvXD927d4dSqcTQoUMxZcoUfPnll5g+fbrRPvpQbcyYMQbl6enpePLJJ5GUlIRhw4YhOTkZGzZswHPPPYc7d+5gwoQJACCHEPv27UNYWJgcUri7u8vH+v333xEaGor09HQMHDgQ/v7+OHToEJYvX44dO3bgzz//NJjGdOnSJYSEhCAmJgYdOnRA//79kZycjHPnzmHhwoWYOnVqrs9NXtLS0tClSxckJSWhb9++UKlU8Pb2lrf//fffaNOmDRo1aoQRI0bg7t27cuA4c+ZMLF68GFWrVsXTTz8NNzc3HDhwANOmTcPhw4exceNGo/Nt27YNO3fuRJ8+fdCuXTvs378f69atw9WrV42Cjc2bN+O5556DEAJ9+vRB3bp1cfv2bRw+fBhffvkl+vTpU+DXtKByrvW2ceNG7Nq1C71798Yrr7yS51TX27dvo1OnTrh48SKaNGmCl19+GTqdDhcvXsS7776LKVOmyL8vhw8fRmhoKJKTk9G7d28EBgbi+vXr+Oabb/Dzzz/j0KFDqFmzplX6Zer9AwD37t1Dx44dce7cObRv3x4vvfQSEhMTsXXrVoSEhGDjxo3o37+/fJyzZ8+iffv2SEpKwtNPP43AwEAcOXIE7du3R3BwsMXts+R90KRJE0ycOBHLly9HcHCwQTtyhsM5bdy4EUOHDoVarcbgwYPh5eWFXbt24a233sIvv/yCvXv3wsHBwWCfBw8eoEOHDnBzc8OwYcNw+/ZtrF+/HqGhoTh+/Lg8HTQlJQXt27fH9evX0b17dwwYMADp6emIjo7GV199halTp+Y5iuv+/fs4efIkunfvXqhROUIIDBw4EFu3bkWdOnUwbtw4JCcnY/369ejbty+WLl2K1157Ta6v1WrRu3dvREVFoVGjRnjuuedw7949TJkyJV8j7Dw9PQEA165dg1artfgPHVOmTMHSpUvh4eGB/v37w8vLS57G3bx5c/k5/uGHH/Dll18iJCQEnTt3hk6nw59//ol3330X+/btw/79+2FnZ5fn+T799FOMGzcO7u7u6NOnD7y8vHDs2DEsWLAAUVFRiIqKMprKqx9FvGfPHnTt2tXi54SIiAiCiKiEqlGjhsj5MTVy5EgBQMycOdOgfOfOnQKAqF27ttBqtXJ5WFiYACAqV64s/vvvP7k8LS1NdOzYUQAQmzZtynfbDh06JACIsLAwk9uTkpIEANGwYUOT2zdt2iQAiNmzZ+d5rhEjRggAYtWqVflq49y5cwUA4ezsLE6fPm20/eWXXxYAxN69ew3K7969K9RqtWjSpIlBuf716Nixo0hLS5PL//vvP1GpUiWhVqvFjRs3jM4fFRVldG6tVitq1aolAIjIyEiDbdOmTRMAxKhRowzKW7RoIQCIzz//3Oh42V/bqKgoAUDMnTvXqF50dLTJ103ft9DQUJGSkmJyHwBizpw5RsfctWuXvG9SUpJcrtPpxEsvvWT0O7ZmzRoBQKhUKvH777/L5RqNRnTu3FkAEIcOHZLLY2NjhbOzs3B2dhYnTpzIte/5fU3N0b923333nUH5w4cPRVBQkAAg1q5da9AfhUIhfv31V6NjmXvOn3nmGQFAzJo1y2if2NhYkZGRIYQQIj09Xfj7+4sKFSoY9f/AgQNCqVSK3r17W9Qv/edB9udXCCFiYmKEt7e3ACD27dtn8ByYe/8899xzAoD44osvDMrj4uKEn5+fqFy5snj06JFc3qlTJwFAfP311wb1Z86cKf9+RUdHy+Xmfo8tfR+Ye9719K/bmjVr5LKEhATh5uYm1Gq1+Ouvv+RyrVYrBg8eLACIt956y+A4+ra/8sorBp+9q1atEgDEiy++KJdt27ZNABCTJk0yas/Dhw9FamqqybZmp/+sf+ONN0xu1z/PMTExuR5n7dq1AoDo1KmTwefZP//8IypVqiRUKpW4evWqUX969uwpNBqNXH7u3Dnh4OBg9jMnJ51OJ5o3by4AiA4dOogvvvhCnDlzxuCYOW3fvl0AEI0aNRJ37twx2JaRkSFiY2Plxzdu3DDoj978+fNN/v7p3xPZf/fOnTsnVCqVCA4ONjrfokWLBACxZMkSo3MkJCTI/0YQERHlB6fyEVGpkZ6eju+++w6enp5Gd2Lq1asXunXrhr///ht//PGH0b4TJ05EtWrV5Mf29vZYsGABAFjldun6KSnm/vrv6upqUC83+rtLZW9/fowdOxaNGjUyKn/ppZcAZE4By+6rr75CWlqa2ZE1CxcuNPhLebVq1TBx4kSkpaXh+++/t6hNf/zxB65evYqePXsiNDTUYNucOXPg4eGBb7/9Funp6QCAI0eO4NixY+jYsaPJdhX0ucnpvffeg6Ojo8ltPj4+Jhf1XbFiBYDMdcCcnZ3lckmSsHjxYkiSZDTVEchcayz7aDqlUikveKyfTgZkTsVKTk7GlClT0LRpU6PjZO97QV9TczZt2oR58+Zh3rx5ePnll1G3bl2cP38eLVq0MFh7CgD69euHJ5980qLjxsbG4ocffkCtWrVMTn/y9vaGSpU5qHvHjh24fv06pk2bZtT/Dh06oF+/fvjpp58suhmB3qpVqzBv3jzMnTsXL7zwAurXr4+4uDj069cPHTt2NKhr6v1z584drF+/Hl26dMHo0aMNtnl5eWHatGmIj4/H7t27AQD//vsv9u3bh8aNG+N///ufQf1Zs2YZjCTMjbXfB1u3bkVCQgJGjRqFxo0by+UKhQLvvfeePL01J2dnZ7z77rsGI5jCwsKgUqkMfpf1TL3HXFxcTI74zOnGjRsAYDCasSD0d7577733DD7Pqlevjtdeew0ajQbffPONXP71118DABYsWGAwyikoKChfa11JkoRNmzahffv2+P333zFmzBg0atQIrq6uePLJJxEREWE0/feTTz4BACxfvlwecaWXc2Sn/i5/OY0fPx4A5N/J3KxcuRIajQYff/yx0fmmT5+OypUrm/xMc3V1hYODg/waERERWYpT+Yio1Lh48SJSU1MREhICJycno+0hISH49ddfcerUKTzxxBMG23I+BjKnHahUKpw8edJqbS4JWrVqZbK8cePGaNOmDTZt2oSPP/5Yvjj+8ssv4eTkZHQBDWReBJla9F3//Fr6XOrrmZoC4+LighYtWmDXrl24dOkSGjVqhCNHjgAAunfvbtHxC8LBwcFkgKcXHBxs8oLvzz//hLOzM1avXm1yP0dHR1y8eNGovHnz5kZl+mDhwYMHcll++l6Q1zQ3mzdvxubNmwFkLsZdq1YtjB07FlOnTjV6Lsz9nply7NgxCCEQEhKS57SiP//8E0DmFDZTIVZsbCx0Oh0uX76MFi1aWHT+7HeudHFxQf369fG///0P48aNM6prql9Hjx6FVqtFWlqayTZduXIFQOZnVu/evfHXX38BgMlpxi4uLmjSpIlFC15b+32Q2/uyevXqqFmzJi5fvoyHDx+iQoUK8rY6derAxcXFoL4+MMn+u9yxY0f4+vpi8eLF+Ouvv9C7d2906tQJ9evXN5pCaY5+DTZLwzxzTp48CScnJ5Ovb0hICADg1KlTctlff/0FZ2dnk+Fw+/bt8fnnn1t8bn9/f/z+++84deoUdu/ejWPHjuGPP/7Anj17sGfPHqxbtw4///yzHNQdOXIEarUanTp1yvPYQgisWbMGEREROHv2LBISEqDT6eTtt27dyvMY+vfcL7/8gj179hhtt7OzM/mZBgAeHh64c+dOnucgIiLKjsEUEZUa+hER5v5Srr/tuamRE6b2USqV8PT0tHjB3fzQj5Qyd2x9Gy25K5aPjw8A4ObNmwVqS24jC1588UWMHDkSX3/9NcaPH4/Dhw/jzJkzCAsLM9m2SpUqmVzXRX8OS5/L/L6W+uNWrVrVouMXhJeXV64Xx+baeu/ePWg0Gnmxd1OSk5ONyvSj5rLTjxLKPmIiv33P72uam++++85oZJQ5+RnBkp8+3bt3DwAMRq+YYuo5NufQoUMGd+XLjal+6dv0xx9/mByhmbNN+v56eXlZfA5TrP0+sOR9efnyZSQmJhoEU6Z+l4HM3+fsv8tubm74888/MWfOHGzfvh0//fQTAMDPzw8zZszAK6+8kmcb9aOtUlNTLeuUGYmJifDz8zO5zdS/JbnVL+jorSZNmqBJkyby47179+L5559HVFQUPvnkE3mNq4SEBFStWtWiNbVeffVVrFixAn5+fujbty98fX3lgGv+/PlIS0vL8xj632/9qOL8ePTokck/HBEREeWGU/mIqNTQX/zExcWZ3K6f8mbqIsnUPlqtFnfv3rXKLdOdnZ3h6+uL6Ohoo2kZwOMRFYGBgXkeSz/dy9Rfri2RW9gyePBguLu7y1O/9N/NTfm6c+eOwV/f9fTPr6XPZX5fS/3oCEvCOf3Fm0ajMdqWW3CW14gNc9tdXV3h6ekJIYTZr+jo6DzbbU5++g7k/zUtKpaOeAHy1yf978D27dtzfY4tGU1SEKb6pW/TlClTcm3T3LlzATx+X9y+fdvkOcy9D3LK7+9CfhXmM9ZS1atXR0REBOLj43Hy5Em8++670Ol0GDdunMnpYTlVrlwZwOPwpKBcXV3Nvh6m+unq6or4+HiT9S19/fLSuXNnvP322wAy76Kp5+7uLo8MzM3t27cRHh6Oxo0b4+LFi4iIiMCiRYswb948eZqvJfT9TkxMzPX3OyedToeEhAT5NSIiIrIUgykiKjXq1asHBwcHHD161OTtqvVTYbL/BVrvwIEDRmWHDh2CRqMxOTWjKHTq1AnJyckmR1T88ssvAGC0no0pAwcOhKurKzZv3mx2+oSeJX8Nz87R0RHDhw/HX3/9haioKKxfvx7169c3eSdBIDPsOXTokFG5/vnN/lzq12ExFczp65mavpScnIxjx47B0dERdevWBfB4OtWuXbvy7FPFihUBmL54t8a0zdatW+Pu3bty2FjU8tN3IP+vqS20aNECCoUCUVFRyMjIyLVu69atAcDk752ttGzZEpIkWdwm/V33ct5tEQCSkpIMpozlJj+/C7m9/8zJ7X3533//4erVq6hZs6bBaKmCUigUaNKkCaZPny4HUtu2bctzP/1020uXLhXq/E2bNkVKSoo8PTI7U/+WBAcHIzk52eRrdfDgwUK1JbucUyKBzNc9LS0N+/bty3Xfa9euQQiBJ5980mjUkql/A83Rv+f0U/osdeXKFeh0ulynRBMREZnCYIqISg17e3sMHToUd+7cwaJFiwy2RUZG4pdffkHt2rVNXoAvX77cYEHW9PR0eSHrESNGWKW9Y8eOBQDMnj1bXsQbAH7++Wfs3bsX3bt3R40aNfI8jru7O95//32kpaXhqaeeMnlhpNVqsXbt2nz9VVzvxRdfBAA8//zzePjwYZ4ja2bNmmXQnxs3bmD58uVQq9UG0748PDwAZF7Q5tS+fXvUqlULP//8s9FivO+88w7u3r2LoUOHyusYtWzZEi1btsT+/fvxxRdfGB0vewhVt25dVKhQAdu2bTMYVREXF4d33nkn174VxKuvvgoAGDVqlLz+TXaxsbG4cOFCgY8fFhYGFxcXfPDBByZfe1MBXH5f0+Lm7e2NZ555BlevXjU5BfL27dvyiLd+/fqhevXqWLp0Kfbv329UNyMjw2TgY00+Pj4YNGgQDh48iPfff9/k6JHDhw/LAXr16tXRsWNHnD592mhK4sKFCw3WYcpNft4HFStWhCRJJt9/5vTr1w9ubm5Ys2YNzp07J5cLIfD6669Do9EU6vPy3LlzJkcX6cscHBzyPEajRo3g4eGBw4cPF7gdAOQbDcycOdMgHP3vv/+wdOlSqFQqgzXZ9D+/+eabBiOXLl68KC+kbono6GisWLECDx8+NNqWkpKC5cuXAzBcj0y/9tnEiRONRoppNBr5+dP/e3Lw4EGDNt64cQMzZ860uI2vvPIKVCoVJkyYgH///ddo+4MHD0yG/PrXxFqjF4mIqOziGlNEVKq8++672LdvH9555x0cPHgQrVu3xvXr17Fx40Y4OTlhzZo1JtfhaNOmDYKDgzF48GA4Oztj+/btuHTpEp5++mk888wzFp37999/l6dF6ad0/P777/KFWqVKlbBkyRK5fkhICEaPHo1Vq1ahWbNmeOqppxATE4P169fDw8MDH3/8scX9Hjt2LBITEzFjxgw0a9YMHTt2RNOmTeHo6IibN29iz549uHnzptEdwiwRFBSEJ554AgcOHIBarc71DlO+vr5ITk5G48aN0adPHyQnJ2PDhg24e/cuPvroI4O1b0JCQiBJEmbNmoVz587Bzc0N7u7uGD9+PBQKBSIiIhAaGopevXrh2WefRY0aNXDo0CHs3bsXtWrVwuLFiw3O/c0336Bz584YO3YsvvrqK7Rt2xapqak4d+4cTp48KYdC9vb2mDBhAhYuXIhmzZqhX79+ePjwIbZv345OnTrh6tWr+X6OctOjRw/Mnj0bb7/9NmrXro0ePXqgRo0auHv3Lv7++28cOHAA77zzDurXr1+g43t5eWHdunUYMmQIWrVqhb59+6Ju3bq4c+cODh8+DH9/f2zZssVgn/y8prbyySef4OzZs1iwYAF++ukndOnSBUIIXL58Gbt27UJcXBzc3d2hVquxadMm9OzZE506dUKXLl3QqFEjSJKEf/75BwcOHICnp2eeowmt0f5Lly5h+vTp8u+ju7s7/vvvPxw7dgxXrlxBTEyMPHIlPDwc7du3x/Dhw7FlyxYEBgbiyJEjOHr0qPxaWcLS94GLi4scYg0bNgyBgYFQKBQYNmyY2UDc1dUVX3zxBYYOHYrWrVtj8ODBqFy5Mnbv3o3jx4+jVatWmDZtWoGfs19//RXTpk1D+/btUadOHXh6euLatWvYtm0bHBwcTC4+n5MkSejXrx8iIiJw48YNs3cinDhxotk7bC5ZsgTDhg3DDz/8gK1bt6Jx48bo3bs3kpOTsX79ety7dw8ffPABatasKe8zcuRIfPXVV9i5cyeaNm2Knj174t69e/j+++/RrVs3bN++3aI1oBISEjBhwgRMmzYNHTp0QMOGDeXP8Z07d+Lu3bto3rw5JkyYIO/Tq1cvTJ06FUuWLEFgYCAGDBgALy8v+bN/6tSpmDRpEnx9ffHMM89g8+bNaNGiBbp27Yq4uDjs2LEDXbt2tfizr2HDhvjkk0/kO3H26tULtWrVwsOHD3Ht2jXs27cPI0aMwGeffWaw36+//gqVSoXevXtbdB4iIiKZICIqoWrUqCFMfUzFx8eLV199VdSoUUPY2dmJSpUqiYEDB4ozZ84Y1Q0LCxMAxNWrV8XixYtF7dq1hb29vahRo4aYN2+eSEtLs7g9a9asEQDMftWoUcNoH61WK5YvXy4aNGgg1Gq18PT0FIMHDxZ///13vp4LvYsXL4rx48eLoKAg4eLiIuzs7ETVqlVF//79xaZNm4ROp5Przp07VwAQUVFReR531apVAoAYMmSI2To1atQQNWrUEPfu3RNjx44V3t7eQq1Wi+DgYPHtt9+a3CciIkI0atRIqNVqk8/R6dOnxcCBA0WlSpWEnZ2dqFGjhpg4caKIj483ebzY2FgxceJEUbNmTWFvby88PDxE69atxdKlSw3qabVaMW/ePOHn5yfs7e1FnTp1xPLly8W1a9cEABEWFmayb6ZER0eb3CenX3/9VfTp00dUrlxZ2NnZCR8fH9G2bVvx9ttvi3///Veup/89WrNmjdExoqKiBAAxd+5co20nT54UgwYNEt7e3sLOzk74+vqKnj17ih07dphsjyWvqTn6353vvvsuz7q59UeI3J+/hIQEMXv2bFGvXj2hVquFm5ubaNKkiZgzZ45IT083qHvjxg0xceJEERgYKNRqtXB1dRX169cXo0ePFnv27LGoX/rPg0OHDuVZ15L3T0pKinjvvfdE8+bNhbOzs3B0dBQBAQGif//+Yt26dSIjI8Og/pkzZ0SvXr2Ei4uLqFChgujZs6c4c+aM3K7o6Gi5bm6/C5a+Dy5duiR69eol3N3dhSRJBv3J7XXbv3+/6Nmzp3B3d5ffP7NnzxZJSUlGdQGITp06mXx+cr6vzp8/LyZOnCiaNm0qPD09hVqtFjVr1hRhYWHi3LlzJo9hyuHDhwUA8e677xpt69SpU66f09mf54yMDLFkyRL5M6pChQqiU6dOYuvWrSbPm5SUJKZMmSKqVKki1Gq1CAoKEp9//rnYtGmTACA+/PDDPNuempoqNm/eLMaOHSuCg4NFpUqVhFKpFBUrVhQdOnQQS5cuFY8ePTK57+bNm0VISIhwc3MTarVa+Pv7i2HDhomzZ8/KdR4+fCimTJki/P39hVqtFoGBgeLtt98W6enpJl8rU797ekeOHBFDhgwRVapUkf+tbdasmZgxY4a4cOGCQd3k5GTh4uIi+vfvn+dzQERElJMkhInx50REZcSIESOwdu1aREdHw9/f39bNKbHGjx+P8PBw7NmzB126dDFZR//8Xb9+vfgaRgVmyWtKVFo98cQTiI+Px/nz5y0aqWRNb775pjzyr2fPnjZti62sWrUKY8aMwb59+yxaO5GIiCg7rjFFRFTOxcfHY+3atahbty5CQkJs3RwqAnxNqax7//33cenSJXz//ffFds6YmBijsvPnz+Ojjz6Cu7s7OnfuXGxtKUk0Gg0WLlyIvn37MpQiIqIC4RpTRETl1M6dO3HixAls2rQJSUlJmDdvHiRJsnWzqBD4mlJ50aZNG6xcuTJfdx0srJdffhnXr19Hq1atULFiRVy9ehXbt29HRkYGvvzyS7NrWpV1//77L4YPH45hw4bZuilERFRKMZgiIiqnNm7ciLVr16JKlSpYuHChwR31qHTia0rlif7Op8Xl2WefxWeffYYffvgBCQkJcHFxQadOnTBlyhSEhoYWa1tKkpo1a2LevHm2bgYREZViXGOKiIiIiIiIiIhsgmtMERERERERERGRTTCYIiIiIiIiIiIim+AaU/mg0+lw69YtVKhQgYvJEhERERERUbERQuDhw4eoUqUKFAqOMaGyg8FUPty6dQt+fn62bgYRERERERGVU//99x+qVatm62YQFRkGU/lQoUIFAJkfBK6urjZuDREREREREZUXiYmJ8PPzk69LicoKBlP5oJ++5+rqymCKiIiIiIiIih2XlaGyhhNTiYiIiIiIiIjIJhhMERERERERERGRTTCYIiIiIiIiIiIim+AaU0RERERERERkc1qtFhkZGbZuBhWSnZ0dlEqlxfUZTBERERERERGRzQghEBsbiwcPHti6KVRE3N3d4ePjY9Fi/QymiIiIiIiIiMhm9KGUl5cXnJyceOfBUkwIgZSUFNy+fRsA4Ovrm+c+DKaIiIiIiIiIyCa0Wq0cSnl6etq6OVQEHB0dAQC3b9+Gl5dXntP6uPg5EREREREREdmEfk0pJycnG7eEipL+9bRkzTAGU0RERERERERkU5y+V7bk5/VkMEVERERERERERDbBYIqIiIiIiIiIiGyCwRQRERERERERlVixsbGYMGECatasCbVaDT8/P/Tp0wd79uyx6nmvX78OSZJw6tQpq56nvONd+YiIiIiIiIioRLp+/Trat28Pd3d3vP/++2jUqBEyMjLwyy+/YNy4cbh48aLRPhkZGbCzs7NBa60nPT0d9vb2BmVCCGi1WqhUpTva4YgpIiIiIiIiIiqRXnnlFUiShCNHjuCZZ55BnTp10KBBA0yePBl//vkngMyFtj/99FP07dsXzs7OeOedd1C7dm0sWbLE4FinTp2CJEn4+++/Dfbr2bMnHB0dUbNmTWzatEmuHxAQAABo2rQpJElC586dAQA6nQ5vvfUWqlWrBrVajSZNmiAyMtLgXDdu3MDQoUPh4eEBZ2dntGjRAocPHwYAjBgxAv379zeoP2nSJPn4ANC5c2eMHz8ekyZNQqVKlRAaGoq9e/dCkiT8/PPPaN68OdRqNX7//XfodDosWrQIAQEBcHR0RHBwsEE/9Pvt2bMHLVq0gJOTE9q1a4dLly4ZtGH79u1o2bIlHBwcUKlSJQwYMAAA8NZbb6Fhw4ZGr02TJk0we/bsXF8/SzCYIiIiIiIiIqIS5969e4iMjMS4cePg7OxstN3d3V3+ed68eRgwYADOnDmDF154AaNGjcKaNWsM6q9ZswYdO3ZE7dq15bLZs2fjmWeewV9//YX//e9/GDJkCC5cuAAAOHLkCABg9+7diImJwQ8//AAAWL58OT744AMsWbIEp0+fRmhoKPr27YsrV64AAJKSktCpUyfcvHkT27Ztw19//YXp06dDp9Plq/9r166Fvb09/vjjD3z22Wdy+YwZM7B48WJcuHABjRs3xqJFi7Bu3Tp89tlnOHfuHF577TU8//zz2Ldvn8Hx3njjDXzwwQc4duwYVCoVRo0aJW/buXMnBgwYgF69euHkyZPYs2cPWrVqBQAYNWoULly4gKNHj8r1T548idOnT2PkyJH56pMppXu8FxERERERERGVSX///TeEEKhXr16edZ977jmDkGTEiBGYM2cOjhw5glatWiEjIwPffvut0SiqZ599FqNHjwYAvP322/j111/x8ccf45NPPkHlypUBAJ6envDx8ZH3WbJkCV5//XUMGTIEAPDuu+8iKioKy5YtQ3h4OL799lvEx8fj6NGj8PDwAACDMMxSgYGBeO+99+THMTExADJHMHXr1g0AkJaWhoULF2L37t1o27YtAKBmzZr4/fffsXLlSnTq1Enef8GCBfLjGTNm4KmnnkJqaiocHBywYMECDBkyBPPnz5frBwcHAwCqVauG0NBQrFmzBi1btgSQGfJ16tQJNWvWzHe/cuKIKSIiIiIiIiIqcYQQFtdt0aKFweMqVargqaeewurVqwFkTlNLS0vDs88+a1BPH+Zkf6wfMWVKYmIibt26hfbt2xuUt2/fXt7v1KlTaNq0qRxKFVTz5s1Nlmfv699//42UlBR069YNLi4u8te6detw9epVg/0aN24s/+zr6wsAuH37ttzmrl27mm3LmDFj8N133yE1NRXp6en49ttvDUZcFQZHTBERERERERFRiRMYGAhJkkwucJ6Tqal+o0ePxrBhw/Dhhx9izZo1GDx4MJycnKzRVAOOjo65blcoFEahW0ZGhlE9U33KWZ6UlAQgcype1apVDeqp1WqDx9kXhJckCQDk6YV5tblPnz5Qq9X48ccfYW9vj4yMDAwcODDXfSzFEVNEREREREREVOJ4eHggNDQU4eHhSE5ONtr+4MGDXPfv1asXnJ2d8emnnyIyMtLkCB/9AurZH9evXx8A5LvgabVaeburqyuqVKmCP/74w2C/P/74A0FBQQAyRyadOnUK9+7dM9muypUry9Py9E6dOpVrX8wJCgqCWq3Gv//+i9q1axt8+fn5WXycxo0bY8+ePWa3q1QqhIWFYc2aNVizZg2GDBmSZ5hlKY6YIiIiIiIiIqISKTw8HO3bt0erVq3w1ltvoXHjxtBoNPj111/x6aef5jrtTqlUYsSIEZg5cyYCAwONpu0BwMaNG9GiRQt06NAB33zzDY4cOYIvv/wSAODl5QVHR0dERkaiWrVqcHBwgJubG6ZNm4a5c+eiVq1aaNKkCdasWYNTp07hm2++AQAMHToUCxcuRP/+/bFo0SL4+vri5MmTqFKlCtq2bYsuXbrg/fffx7p169C2bVt8/fXXOHv2LJo2bZrv56dChQqYOnUqXnvtNeh0OnTo0AEJCQn4448/4OrqirCwMIuOM3fuXHTt2hW1atXCkCFDoNFo8NNPP+H111+X64wePVoO7XIGc4XBEVNEREREREREVCLVrFkTJ06cQEhICKZMmYKGDRuiW7du2LNnDz799NM893/hhReQnp5u9u5x8+fPx/fff4/GjRtj3bp1+O677+SRTyqVCh999BFWrlyJKlWqoF+/fgCAV199FZMnT8aUKVPQqFEjREZGYtu2bQgMDASQOdJq165d8PLyQq9evdCoUSMsXrwYSqUSABAaGorZs2dj+vTpaNmyJR4+fIjhw4cX+Dl6++23MXv2bCxatAj169dHjx49sHPnTgQEBFh8jM6dO2Pjxo3Ytm0bmjRpgi5dush3JdQLDAxEu3btUK9ePbRu3brA7c1JEvlZTayM8Pf3h6urKxQKBSpWrIioqCiL9ktMTISbmxsSEhLg6upq5VYSERERERERZSqr16OpqamIjo5GQEAAHBwcivz4Bw4cQNeuXfHff//B29vbYJskSfjxxx/Rv3//Ij9vWSSEQGBgIF555RVMnjw517r5eV3L7VS+gwcPwsXFxdbNICIiIiIiIqIilpaWhvj4eMybNw/PPvusUShF+RMfH4/vv/8esbGxZkefFVS5DaaIiIiIiIiIqGz67rvv8MILL6BJkyZYt26drZtT6nl5eaFSpUr4/PPPUbFixSI9dqlbY2r//v3o06cPqlSpAkmSsGXLFqM64eHh8Pf3h4ODA1q3bm00L1KSJHTq1AktW7aUFycrS7Q6gUNX72LrqZs4dPUutLpyN1uTiIiIiIiIyrERI0ZAq9Xi+PHjqFq1qsk6QghO47OQEALx8fF47rnnivzYpW7EVHJyMoKDgzFq1Cg8/fTTRtvXr1+PyZMn47PPPkPr1q2xbNkyhIaG4tKlS/Dy8gIA/P7776hatSpiYmLw5JNPolGjRmjcuHFxd8UqIs/GYP7284hJSJXLfN0cMLdPEHo09LVhy4iIiIiIiIiIDJW6EVM9e/bEO++8gwEDBpjcvnTpUowZMwYjR45EUFAQPvvsMzg5OWH16tVyHX1a6uvri169euHEiRPF0nZrizwbg5e/PmEQSgFAbEIqXv76BCLPxtioZURERERERERExkrdiKncpKen4/jx45g5c6ZcplAo8OSTT+LQoUMAMkdc6XQ6VKhQAUlJSfjtt98waNAgk8dLS0tDWlqa/DgxMREAoNFooNFo5OMrFArodDrodDqD8yoUCmi1WmS/8aG5cqVSCUmS5ONmLwcArVaba7lWJzBv2zmYmrQnAEgA5m8/j5A6laBUSAAypzQqlUqzbbd1n/RUKhWEEAbl5trOPrFPRd0njVaHP6/eQfzDNFSuoEarAA/Y26lKdZ/K4uvEPrFP7BP7xD6xT+wT+1TW+5SznKisKFPB1J07d6DVao1W2/f29sbFixcBAHFxcfJoK61WizFjxqBly5Ymj7do0SLMnz/fqPzkyZNwdnYGAFSuXBm1atVCdHQ04uPj5TrVqlVDtWrVcPnyZSQkJMjlNWvWhJeXF86ePYtHjx7J5fXq1YO7uztOnjxp8KHYuHFj2Nvb49ixYwZtaNGiBdLT03H69GkAwLn4DMQmpsEcASAmIRXtF+2Gk50EpQTY26ng4uwEbUY6MtLToFRkljuo1XCt4IzUlBRkZKRBKQFKSUIFF2e4ubog8cEDaDLSoZQAhUJCpYoV4VrBBfG3Y6HTajLLJaCKrw9cnJ3w3z//QIIOSkmCQgJqBtSA2t4e0Vf/lo+hlIAG9etBp9Ug+tpV+Rh2KiWaBjdG0sOHuB59VT6Gs5MjmjRuhHt37+Df69FQSJn/ULi5uaF+/fq4desWbty4Ife/pLxOQOY/LC1btkRCQoL8ewkAjo6OCA4Oxp07d3Dt2jW5nH2yXZ/uOlbD3K1nEfcwXS73dFRiwTPBaOalLJV9KouvE/vEPrFP7BP7xD6xT+xTeejTyZMnQVQWSSJ7RFvKSJKEH3/8UV6s7NatW6hatSoOHjyItm3byvWmT5+Offv24fDhw/k6vqkRU35+frh79y5cXV0BlJzEf/tfMXht42mUZ0qFBKVCgirH98yfFVAppcxgS4GsbQqoFBJUSkVm+JZtP5VSAZVCkVlXenwcO1VWuSSygjx9uRIqhQQJyDxP1nHslEoolRIUENnao4DaTgmFlFkut1WpgL1KCYUEuVypUMBOKcHeTgUFAEl6fBw7lRL2KiUkCCgAOZzjX5uKpk+/nIvD+O9OGY1ClLK+hz/XFN2DvEpVn4Cy9zqxT+wT+8Q+sU/sE/vEPpWXPt2/fx+enp5ISEiQr0fLgtTUVERHRyMgIAAODg62bg4Vkfy8rmVqxFSlSpWgVCoRFxdnUB4XFwcfH598H0+tVkOtVhuVq1QqqFSGT53+wyUn/YeIpeU5j2tpuY+7k8ntOc1+qj7q+rhCo9NBqxPQ6ES27zpotMKgXJtzu85we2Z9E+UmjqcTIttjU+fPKteaKdcJZGjN56j6tqabrVH2ZQ/jHodzisdhndJMucH2x+VKSYJSmTPsy7GfMpfjZQVuqmwhXn7b8Pi7Qj6XQtIfW0Cl0GVtV8rhnPx8FPD9pNUJvPPTxVynxr698wJCG/rKU2P1zH0W2PozIjtJkkyW57ft7BP7lN9y9ol9Atgnc23Mbzn7xD4B7JO5Nua3vLT3iai0K1O/2fb29mjevDn27Nkjj6LS6XTYs2cPxo8fb9vGWVmrAA/4ujkgNiHV5MW0BMDHzQEj2gcYXUiXNjqdgFZkC6605oKuzMAsZ9hmUFeb41gmwjmDUM4oNDMM5XQWhH1GbTUT1hmGgpaFc5qs+uWZcdClMDmSLnNEnIlypYSHqRqjmwhkp58a++aWM6jrXQFqOyUc7BRQq8x/V2d7bK9UGARoRERERERE5VWpC6aSkpLw999/y4+jo6Nx6tQpeHh4oHr16pg8eTLCwsLQokULtGrVCsuWLUNycjJGjhxpw1Zbn1IhYW6fILz89QlIgEE4pb/8ndsnqNSHUkDmmlQKSLAz/QeGckGXW9BlJqzLLZzL/VgWhG9G57ZsJJ0cCuY1kk5rXG6OPpwzv+Ja0fnuyH8F2k+SALUq9yDLVKBVmO+Zx2EgRkRERESUnVYncCT6Hm4/TIVXBQe0CvCw6nXziBEjsHbtWvmxh4cHWrZsiffeew8nTpzIM7uIjo5GjRo18MUXX+DLL7/EuXPnoFKpULt2bTz//PMYO3YsnJwsm1FVUpS6YOrYsWMICQmRH0+ePBkAEBYWhoiICAwePBjx8fGYM2cOYmNj0aRJE0RGRhotiJ4f4eHhCA8PN5qPXNL0aOiLT59vhvnbzxuM9vBxc8DcPkHo0dDXhq2joqRQSLCXPyzLX0InhIBOQA6yjIO3PEbS5TYqTidwKfYhPtl7Nc92dAyshAqOdkjL0CFNo0Vahg6puXzXLyEgBJCaoUNqhg4Jj3I/R1HLDMQUcLDLDKscVLl/V+exXf5up3x83Bzf7ZWZo9OIiIiIiEqSyLMxRtfPvsVw/dyjRw+sWbMGABAbG4s333wTvXv3xqVLl9CjRw+53tNPP42GDRvirbfekssqV66MYcOG4YcffsCbb76JFStWoHLlyvjrr7+wbNky+Pv7yzPISotSvfh5cUtMTISbm1uJX2yuuBNforJGqxPo8O5veU6N/f31Lha/t4TInIYpB1UZWqRpHn9Py/E4v99z278kzO60zx6I5eO7Op/1c35nIFZy8N8mIiKiwikt16P5ZavFzyPPxuDlr0+YvdnRp883s0o4NWLECDx48ABbtmyRy37//Xc88cQTuH37NipXriyXd+7cGU2aNMGyZcvksg0bNmDw4MHYsmUL+vXrZ3BsIYT8e2Jr5Xbxc8qkVEhoW8vT1s0gKrWsMTVWkiTYqyTYqxRAMd5sRIjMEWEFCrZMjvzKrJvze5qJcm22RCxdo0O6RoeHqZpcWlv07JWKHAGXBVMf7ZRwyLZP9sdG380ch4GLIVv9NZKIiIjKDyEEHmVYNstJqxOYu+1crjc7mrftPNrXrmTR/+sc7ZQFXjIjKSkJX3/9NWrXrg1Pz7yv47/55hvUrVvXKJQCMq85SkIolV8MpoiITCgrU2MlSYKdUoKdUoEKxXxujdZEkJU17THn9zQz5bl/Nx2oZV+DLF2rQ7pWh4dpxRuI2SmlXNYKK7oRYznDMpXS+E5Atmbur5GxCal4+esTVvtrJBEREZUvjzK0CJrzS5EcSwCITUxFo3m7LKp//q1QONlbHq/s2LEDLi4uAIDk5GT4+vpix44dJu/qmNOVK1dQt25di89VGjCYIiIyo0dDX3QL8uH0owJSKRVwUSrgoi7ef2o02qzQKvuIMH2YZWK0l9lRX/kMx9K1OrkNGVqBDK0GScWxCn82SoVkNKor91Ffea8XZsl0SpVCMvlXQq1OYP7287n+NXL+9vPoFuTD9xURERGVGyEhIfj0008BAPfv38cnn3yCnj174siRI6hRo0au+5bF1ZgYTFmgtCx+TkRFj1NjSx+VMnPkkLO6eM+r1QmkW2mdsNy+p2t0Bm1ITtciOb14/71SSDAZWGVodAYjDnMSAGISUjFlwyn4V3KGnVIBO6UElUIBO5UCdorM0X4qpQT7rNdV/lkhZdVRwE6VtY/SRH2FxAX4iYiIygFHOyXOvxVqUd0j0fcwYs3RPOtFjGyJVgEeFp07P5ydnVG7dm358apVq+Dm5oYvvvgC77zzTq771qlTBxcvXszX+Uo6BlMWGDduHMaNG1diFhEjIqKSR6mQ4GivhKN98d4pU6cTSNfmEWDlccdIS+8smX3h/rRsgZhOACnpWqSkawFk5LsPW07dKsJnxDSFhKzgKyv8UmYFX6qskCvnNn3IpVDAPiv4ehx45ahvEIopYJ91DJUic1257Nvt5P2Nj68P47Kf306p4GgyMsKbCRARGZMkyeLpdE8EVoavm0OeNzt6IrBysXy+SpIEhUKBR4/yvmX3c889hyFDhmDr1q0levHz/GAwRUREVIopFBIcFEo45PMvdYWlD8RyWx/srxv38f4vl/M8VmgDb1RyUUOjFcjQ6pChE8jQ6KDR6ZCuFdBoddBoM8+n0emQoRHI0OmQkVWekbWfRqvL/FmnQ85R7joBo0CttJAkZI4Mk0Mzw9Fh2UeNGQZnpkefGQZwpgM64xBOH8DlOLe+vhzCPR7JplJKZqd5UsHxZgJERIVnjZsd5UdaWhpiY2MBZE7lW7FiBZKSktCnT5889x00aBB+/PFHDB06FG+++Sa6d++OypUr48yZM/jwww8xYcIE9O/f3yrtthYGU0RERJRvhoGYnck6bWt54us//83zr5Gf/K95kf/HT6vLCrmywipN1kL4Gq3IDLw0md/12x+HXFn1dZnTJDU6/b4iK/jKVj/bOeTgLMcxTB8/a19NVgiXY5sux5MlhH4hfwAofcsKPB4d9ngEWc7gSx7BZjIUyx54mRiZZmJ6Z/ZATT5+tnZkH/FmMJItx9TQkhaq8WYCREWPIxDLL1ve7CgyMhK+vpnHr1ChAurVq4eNGzeic+fOee4rSRK+/fZbfP7551i9ejUWLFgAlUqFwMBADB8+HKGhlk1nLEkkURZXzrIS/ZC4hIQEuLq62ro5REREJZ7+Qhow/ddIXkgb04dqj0Mxw8BLDrJ0uqyRZTlDMZ3J0WemArgMrfG29OyjzwwCuBwj0wwCtswybc5UrZRTKSSTUzf1o8OyB2R2OYO0nCPT5BFsWQFYjhBOPpaZUW5KScK4b0/gbnK62fZ6u6qxdVwH2KsUUEiZFy9KhQSFBCgkKesrc6RASQvdiGyhtI1ALKvXo6mpqYiOjkZAQAAcHByK/fwMJ60jP68rg6l8KKsfBERERNZU2v7jTwWn0wk5yMo+/dJ4RNnjkWympm4abJdDOJEjRMtRXycMQjNTo+Dy2lbe6EMrSZKgzAqtFArjAMvUNv3PSkmClBV8ySFY9npZgVjmsfTnNL3NoJ4+SFNYWu/xMXNuMzhv9nq5bMv+HBgdw8xzZa5ersfIdl6Detn6RdZhbgRiSf7DSVm9HrV1MEXWkZ/XlVP5iIiIyKp6NPRFtyAf/jWyHFAoJNhnTdkrbYQQBqPDjEKurDtvmhvJluvU0GzhmX6Um9lpoDoT00a1AvdT0nH7YVqR9lmrE1mTQ8tfKFeaZA8JFWbCODnckrLqKczUy7Yt+4g6OYBUmB5dp99mKqjMbZtRvZwj+QoYcBrUyyXEVJrov1IhQScE3txy1uRvvkBmODV/+3l0C/Lhv1VExYDBlAXCw8MRHh4Orbb0retARERUEigVEtrW8rR1M4jMkqTHd0ssiQ5dvYuhX/yZZ73vxrRBm5oe0InM4Ekn9F+Zj0WOn7VZj3U68/UsPoYQWccx3iaEyDpWjnMJYXab/ngmj5Ftm8h6bPYYWduM6pnZJrLaJR9DJ0xuE9mfnxzH1FmwzVI6Aei0AgwQi48AEJOQiiPR9/hvF1ExYDBlgXHjxmHcuHGl8raLRERERFT6tQrwsOjW5q0CPLJGroAjPUq4AoV/DBCLJEBMSdcgMVWT52t0+2FqnnWIqPAYTBERERERlXC2vrU5FT0GiLZj6QhErwpc74ioOJTMscpERERERGRAf2tzHzfDi2UfN4cSuVAzUUmlH4FoLhKUkHmTjlYBHsXZLKJyiyOmiIiIiIhKCd5MgKjwOAKRqGRhMEVEREREVIrwZgJEhacfgTh/+3nEJDxeS8rHzQFz+wRxBCJRMWIwRUREREREROUORyASlQwMpiwQHh6O8PBwaLVaWzeFiIiIiIiIighHIBLZHhc/t8C4ceNw/vx5HD161NZNISIiIiIiIqKiotMC0QeAM5syv+usOyBlxIgRkCTJ6MvBwcFkefavvXv3IiIiAu7u7iaPLUkStmzZYtX2WwNHTBERERERERFR+XN+GxD5OpB463GZaxWgx7tAUF+rnbZHjx5Ys2aNQZkkSRDi8VL8EydORGJiokE9Dw8PXL9+3WrtshUGU0RERERERERUvpzfBmwYDsP7MgJIjMksH7TOauGUWq2Gj49PrnUcHR2RlpaWZ72ygMEUEREREREREZVuQgAZKZbV1WmBn6fDKJTKPBAAKXMkVc3OgEKZ9/HsnACJi+YXFIMpIiIiIiIiIirdMlKAhVWK6GAic3rfYj/Lqs+6Bdg7W3z0HTt2wMXFxfAQs2Zh1qxZFu2fkJBgtH9pxmCKiIiIiIiIiKiYhISE4NNPPzUo8/DwsHj/ChUq4MSJE0blgYGBhW6bLTCYIiIiIiIiIqLSzc4pc+SSJf45CHwzMO96/9sE1Ghn2bnzwdnZGbVr187XPtkpFIpC7V/SMJiyQHh4OMLDw6HVWve2kURERERERERUAJJk+XS6Wl0y776XGAPT60xJmdtrdbFsjSkqFIWtG1AajBs3DufPn8fRo0dt3RQiIiIiIiIiKgyFEujxbtaDnIuWZz3usdhqoVRaWhpiY2MNvu7cuWOVc5UGDKaIiIiIiIiIqHwJ6gsMWge4+hqWu1bJLA/qa7VTR0ZGwtfX1+CrQ4cOVjtfSScJIUyNWyMTEhMT4ebmhoSEBLi6utq6OURERERERFROlNXr0dTUVERHRyMgIAAODg7F3wCdNnPNqaQ4wMU7c00pTt8rtPy8rlxjioiIiIiIiIjKJ4USCHjC1q0o1ziVj4iIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIiIyCYYTBERERERERERkU0wmLJAeHg4goKC0LJlS1s3hYiIiIiIiIiozGAwZYFx48bh/PnzOHr0qK2bQkRERERERERUZjCYIiIiIiIiIiIim2AwRURERERERETlklanxdHYo/jp2k84GnsUWp3WqucbMWIEJEmSvzw9PdGjRw+cPn1ariNJEhwcHPDPP/8Y7Nu/f3+MGDEiX8cqDRhMEREREREREVG5s/uf3QjdHIpRv4zC6wdex6hfRiF0cyh2/7Pbquft0aMHYmJiEBMTgz179kClUqF3794GdSRJwpw5c4rkWCUdgykiIiIiIiIiKld2/7Mbk/dORlxKnEH57ZTbmLx3slXDKbVaDR8fH/j4+KBJkyaYMWMG/vvvP8THx8t1xo8fj6+//hpnz54t9LFKOpWtG0BEREREREREVBhCCDzSPLKorlanxaIjiyAgjI+TVbb4yGK09mkNpUKZ5/EcVY6QJCl/Dc6SlJSEr7/+GrVr14anp6dc3r59e1y+fBkzZszAjh07CnWsko7BFBERERERERGVao80j9D629ZFdry4lDi0+76dRXUPP3cYTnZOFh97x44dcHFxAQAkJyfD19cXO3bsgEJhOKlt0aJFaNy4MQ4cOIAnnniiUMcqyUpPS4mIiIiIiIiISrmQkBCcOnUKp06dwpEjRxAaGoqePXsaLXYeFBSE4cOHY8aMGYU+VknGEVNEREREREREVKo5qhxx+LnDFtU9Hnccr+x5Jc96n3T9BM29m1t07vxwdnZG7dq15cerVq2Cm5sbvvjiC7zzzjsGdefPn486depgy5YthT5WScVgioiIiIiIiIhKNUmSLJ5O165KO3g7eeN2ym2T60xJkODt5I12VdpZtMZUYUmSBIVCgUePjNfI8vPzw/jx4zFr1izUqlWrUMcqqTiVj4iIiIiIiIjKDaVCiRmtMqfHSTBctFz/+PVWr1stlEpLS0NsbCxiY2Nx4cIFTJgwAUlJSejTp4/J+jNnzsStW7ewe7fxnQLze6ySiMEUEREREREREZUrT9Z4Eks7L4WXk5dBubeTN5Z2XoonazxptXNHRkbC19cXvr6+aN26NY4ePYqNGzeic+fOJut7eHjg9ddfR2pqaqGPVRJJQgjjcWtkUmJiItzc3JCQkABXV1dbN4eIiIiIiIjKibJ6PZqamoro6GgEBATAwcGh2M+v1Wlx4vYJxKfEo7JTZTTzalYs0/fKuvy8rlxjygLh4eEIDw+HVqu1dVOIiIiIiIiIqIgoFUq09Glp62aUa5zKZ4Fx48bh/PnzOHr0qK2bQkRERERERERUZjCYIiIiIiIiIiIim2AwRURERERERERENsFgioiIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIiIyCYYTBERERERERERkU0wmCIiIiIiIiKicklotUg+fAQJO3Yi+fARCK3W6ueMj4/Hyy+/jOrVq0OtVsPHxwehoaH4448/5DoHDx5Er169ULFiRTg4OKBRo0ZYunQptDnaJ0kStmzZYvU2W5PK1g0gIiIiIiIiIipuibt2IW7hImhiY+UylY8PvGfNhGv37lY77zPPPIP09HSsXbsWNWvWRFxcHPbs2YO7d+8CAH788UcMGjQII0eORFRUFNzd3bF7925Mnz4dhw4dwoYNGyBJktXaV9wYTBERERERERFRuZK4axduTpwECGFQromLyyxfvswq4dSDBw9w4MAB7N27F506dQIA1KhRA61atQIAJCcnY8yYMejbty8+//xzeb/Ro0fD29sbffv2xYYNGzB48OAib5utcCofEREREREREZVqQgjoUlIs+tI+fIi4dxYYhVJZBwIgELdgIbQPH1p0PGHqOGa4uLjAxcUFW7ZsQVpamtH2Xbt24e7du5g6darRtj59+qBOnTr47rvv8vPUlHgcMUVEREREREREpZp49AiXmjUvooNljpy63LKVRdXrnjgOycnJoroqlQoREREYM2YMPvvsMzRr1gydOnXCkCFD0LhxY1y+fBkAUL9+fZP716tXT65TVnDEFBERERERERFRMXnmmWdw69YtbNu2DT169MDevXvRrFkzREREyHXyMwqrtOOIKSIiIiIiIiIq1SRHR9Q9cdyiuinHjuG/sS/mWc/v85VwatHConPnl4ODA7p164Zu3bph9uzZGD16NObOnYtly5YBAC5cuIB27doZ7XfhwgUEBQXl+3wlGUdMEREREREREVGpJkkSFE5OFn05t28PlY8PYO7OdpIElY8PnNu3t+h4RXGHvKCgICQnJ6N79+7w8PDABx98YFRn27ZtuHLlCoYOHVro85UkHDFFREREREREROWGpFTCe9bMzLvvSZLhIuhZIZP3rJmQlMoiP/fdu3fx7LPPYtSoUWjcuDEqVKiAY8eO4b333kO/fv3g7OyMlStXYsiQIRg7dizGjx8PV1dX7NmzB9OmTcPAgQMxaNAgg2NGR0fj1KlTBmWBgYFwdnYu8vZbA4MpC4SHhyM8PBxardbWTSEiIiIiIiKiQnLt3h1YvgxxCxdBExsrl6u8veE9a2bmditwcXFB69at8eGHH+Lq1avIyMiAn58fxowZg1mzZgEABg4ciKioKCxYsABPPPEEUlNTERgYiDfeeAOTJk0yGqE1efJko/McOHAAHTp0sEofipokytOKWoWUmJgINzc3JCQkwNXV1dbNISIiIiIionKirF6PpqamIjo6GgEBAXBwcCj28wutFinHjkMTHw9V5cpwatHcKiOlypv8vK4cMUVERERERERE5ZKkVMK5dStbN6Nc4+LnRERERERERERkEwymiIiIiIiIiIjIJhhMERERERERERGRTTCYIiIiIiIiIiIim2AwRURERERERERENsFgioiIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIioXNLpBG5euo/LR2Nx89J96HTCqucbMWIE+vfvDwC4fv06JEnK9SsiIgIAEBUVhV69esHT0xNOTk4ICgrClClTcPPmTau2tziobN0AIiIiIiIiIqLidvXkbRxYfwXJD9LkMmd3NZ4YHIhaTb2sfn4/Pz/ExMTIj5csWYLIyEjs3r1bLnNzc8PKlSvxyiuvICwsDJs3b4a/vz/+/fdfrFu3Dh988AGWLl1q9bZaE4MpIiIiIiIiIipXrp68jciVZ43Kkx+kIXLlWfR4saHVwymlUgkfHx/5sYuLC1QqlUHZjRs38Oqrr+LVV1/Fhx9+KJf7+/ujY8eOePDggVXbWBwYTBERERERERFRqSaEgCZdZ1FdnU7gwPrLudY5sP4KqtXzgEIh5Xk8lb0CkpR3vYLYuHEj0tPTMX36dJPb3d3drXLe4sRgioiIiIiIiIhKNU26Dp9P3Fdkx0t+kIZVr+23qO7Y5Z1gp1YW2bmzu3LlClxdXeHr62uV45cEXPyciIiIiIiIiKgEEkJYbTRWScERU0RERERERERUqqnsFRi7vJNFdW9deYAdK/7Ks17v8cGoEuhu0bmtpU6dOkhISEBMTEyZHTXFEVNEREREREREVKpJkgQ7tdKiL78gDzi7q3M9nktFNfyCPCw6njVHNA0cOBD29vZ47733TG7n4udERERERERERKWIQiHhicGBJu/Kp9dhUKBFC58XREJCAk6dOmVQ5unpabKun58fPvzwQ4wfPx6JiYkYPnw4/P39cePGDaxbtw4uLi744IMPrNLO4sJgioiIiIiIiIjKlVpNvdDjxYY4sP4Kkh+kyeUuFdXoMCgQtZp6We3ce/fuRdOmTQ3KXnjhBVSrVs1k/VdeeQV16tTBkiVLMGDAADx69Aj+/v7o3bs3Jk+ebLV2FhdJCCFs3YjSIjExEW5ubkhISICrq6utm0NERERERETlRFm9Hk1NTUV0dDQCAgLg4OBQ7OfX6QRirjxAcmIanF3V8A10t9pIqfIkP68rR0wRERERERERUbmkUEioWreirZtRrnHxcyIiIiIiIiIisgkGU0REREREREREZBPlMphKSUlBjRo1MHXqVFs3hYiIiIiIiIio3CqXwdSCBQvQpk0bWzeDiIiIiIiIiKhcK3fB1JUrV3Dx4kX07NnT1k0hIiIiIiIiIirXSlUwtX//fvTp0wdVqlSBJEnYsmWLUZ3w8HD4+/vDwcEBrVu3xpEjRwy2T506FYsWLSqmFhMRERERERERkTmlKphKTk5GcHAwwsPDTW5fv349Jk+ejLlz5+LEiRMIDg5GaGgobt++DQDYunUr6tSpgzp16hRns4mIiIiIiIiIyASVrRuQHz179sx1Ct7SpUsxZswYjBw5EgDw2WefYefOnVi9ejVmzJiBP//8E99//z02btyIpKQkZGRkwNXVFXPmzCmuLhARERERERERUZZSFUzlJj09HcePH8fMmTPlMoVCgSeffBKHDh0CACxatEiexhcREYGzZ8/mGkqlpaUhLS1NfpyYmAgA0Gg00Gg08jkUCgV0Oh10Op3BuRUKBbRaLYQQeZYrlUpIkiQfN3s5AGi1WovKVSoVhBAG5ZIkQalUGrXRXDn7xD6xT+wT+8Q+sU/sE/vEPrFP7BP7VLL6lLOcSrdDhw6hQ4cO6NGjB3bu3Im4uDhUq1YNX331FYYMGWJU/4UXXsDJkydx4sQJAMCjR49QtWpVKBQK3Lx5E2q1Wq5769YtNGjQAPPnz8err74qlx8+fBgdOnTAzp070b17d+t30kJlJpi6c+cOtFotvL29Dcq9vb1x8eLFAh1z0aJFmD9/vlH5yZMn4ezsDACoXLkyatWqhejoaMTHx8t1qlWrhmrVquHy5ctISEiQy2vWrAkvLy+cPXsWjx49ksvr1asHd3d3nDx50uBDsXHjxrC3t8exY8cM2tCiRQukp6fj9OnTcplSqUTLli2RkJBg0GdHR0cEBwfjzp07uHbtmlzu5uaG+vXr49atW7hx44Zczj6xT+wT+8Q+sU/sE/vEPrFP7BP7xD6VrD6dPHkSVPR0Oi1uXjiHpAf34eJeEVXrN4BCobT6eb/88ktMmDABX375JW7duoUqVargqaeewurVq42CqeTkZGzYsAGLFy+WyzZv3owGDRpACIEtW7Zg8ODB8rYqVarg448/xosvvoiePXsiMDAQjx49QlhYGEaPHl2iQikAkET2iLYUkSQJP/74I/r37w8gMxGsWrUqDh48iLZt28r1pk+fjn379uHw4cP5PoepEVN+fn64e/cuXF1dATDxZ5/YJ/aJfWKf2Cf2iX1in9gn9ol9Yp+s36f79+/D09MTCQkJ8vVoWZCamoro6GgEBATAwcGhWM995fBB/BbxOZLu3ZHLXDwqocuIsQhs3c5q501KSoKvry+OHTuGuXPnonHjxpg1axa2b9+O/v37Izo6GtWrV5frR0RE4OWXX0ZMTAzc3d0BACEhIRgyZAiEEPjhhx+wa9cuo/M8/fTTiIuLw4EDBzB58mRs374df/31F1xcXKzWN738vK5lJphKT0+Hk5MTNm3aJJcBQFhYGB48eICtW7cW+pyJiYlwc3Mrcx8EREREREREVLKV1etRWwVTVw4fxLalC81u7zt5ltXCqdWrV+PTTz/F0aNHsWPHDkyaNAlXrlyBTqeDn58fXnrpJYNlhzp16oRq1arhm2++AQBcvXoVDRo0QExMDIQQqFq1Ki5evIgaNWoYnOf27dto2LAhunbtio0bN+K3335Dx44drdKnnPLzupaqu/Llxt7eHs2bN8eePXvkMp1Ohz179hiMoCIiIiIiIiKiskUIgYzUVIu+0lKS8dualbke77eIlUhLSbboePkd7/Pll1/i+eefBwD06NEDCQkJ2LdvH5RKJcLCwhARESEf8+rVqzhw4ABGjRol77969Wr07NkTFStWhIeHB0JDQ7FmzRqj83h5eeHtt9/G999/j7FjxxZbKJVfpWqNqaSkJPz999/y4+joaJw6dQoeHh6oXr06Jk+ejLCwMLRo0QKtWrXCsmXLkJycLN+lr6DCw8MRHh5uNOyTiIiIiIiIiGxPk5aGj8IGFtnxku7dxYqRg/OuCODVtZtgZ+For0uXLuHIkSP48ccfAWROJx08eDC+/PJLdO7cGaNGjcLixYsRFRWFLl26YM2aNfD390eXLl0AZE5HXbt2LZYvXy4f8/nnn8fUqVMxZ84cKBSPxx9ptVpERETAyckJf/75JzQaDVSqkhcDlbwW5eLYsWMICQmRH0+ePBkA5ERx8ODBiI+Px5w5cxAbG4smTZogMjLSaEH0/Bo3bhzGjRsnD50kIiIiIiIiIsqvL7/8EhqNBlWqVJHLhBBQq9VYsWIFAgMD8cQTT2DNmjXo3Lkz1q1bhzFjxkCSJADAL7/8gps3bxosdg5khlB79uxBt27d5LIlS5bg2rVrOHbsGDp16oSFCxcaTBEsKUrtGlO2UFbn9BIREREREVHJVlavR4tqjSkhBDTZbl6WmxsXzuKHxfPyrPf0jHmoVr9hnvVUarUcHOVGo9GgWrVqmD59utGd8fr374+pU6fipZdewtq1a/Hyyy9j7dq1GDJkCK5fvw4/Pz8AwDPPPAN7e3u88cYbBvsvWLAAQgh8//33AIBz586hefPm+Pbbb/H0009j8+bNGDp0KI4dO4bGjRvn2dbCKheLn9tCWf0gICIiIiIiopKtrF6P2mLxc51Oiy/GvWBwN76cKnhWwugVX0KhUBbZebds2YLBgwfj9u3bRrOxXn/9dfz22284evQoUlJS4OvrC6VSidatW+Pnn38GAMTHx6Nq1arYtm0bevToYbD/zz//jAEDBuDWrVtwdXVFmzZtUKdOHXz77bdynaFDh8pTCa09pa9cLn5ORERERERERJQXhUKJLiPG5lonJGxskYZSQOY0vieffNLkEkHPPPMMjh07htOnT8PJyQlDhgzB/fv3DRY9X7duHZydndG1a1ej/bt27QpHR0d8/fXXWLhwIW7evIkVK1YY1AkPD0dMTAwWLjR/N0Jb4IipfCirCTURERERERGVbGX1etQWI6b0rhw+iN8iPjcYOVXBsxJCwsYisHW7Ym1LWZOf17VULX5uK7wrHxEREREREVHZEti6HWq1bI2bF84h6cF9uLhXRNX6DYp8pBTljiOm8qGsJtRERERERERUspXV61Fbjpgi6+EaU0REREREREREVOIxmCIiIiIiIiIiIptgMEVERERERERERDbBYIqIiIiIiIiIiGyCwZQFwsPDERQUhJYtW9q6KUREREREREREZQaDKQuMGzcO58+fx9GjR23dFCIiIiIiIiKiMoPBFBERERERERER2QSDKSIiIiIiIiIisgkGU0RERERERERExWDEiBGQJAmSJMHOzg7e3t7o1q0bVq9eDZ1OZ1D34MGD6NWrFypWrAgHBwc0atQIS5cuhVarBQBERETIxzL3df36dRv0Mn8YTBERERERERFRuSR0AqlXHyDl1G2kXn0AoRNWP2ePHj0QExOD69ev4+eff0ZISAgmTpyI3r17Q6PRAAB+/PFHdOrUCdWqVUNUVBQuXryIiRMn4p133sGQIUMghMDgwYMRExMjf7Vt2xZjxowxKPPz87N6fwpLZesGEBEREREREREVt0dn7+DB9qvQJqTLZUo3e7j3qQXHhpWsdl61Wg0fHx8AQNWqVdGsWTO0adMGXbt2RUREBIYOHYoxY8agb9+++Pzzz+X9Ro8eDW9vb/Tt2xcbNmzA4MGD4ejoKG+3t7eHk5OTfOzSgiOmiIiIiIiIiKhceXT2Du5+fcEglAIAbUI67n59AY/O3inW9nTp0gXBwcH44YcfsGvXLty9exdTp041qtenTx/UqVMH3333XbG2z5o4YsoC4eHhCA8Pl+dxEhEREREREVHJIYSAyNDlXRGZ0/fub7uaa537267CvrY7JIWU5/EkOwUkKe96ealXrx5Onz6Ny5cvAwDq169vtp6+TlnAYMoC48aNw7hx45CYmAg3NzdbN4eIiIiIiIiIshEZOtyac7DIjqdLTEfMvEMW1a3yVjtI9spCn1MIYRBwCWH99a5KAk7lIyIiIiIiIiKysQsXLiAgIAB16tSRH5urp69TFnDEFBERERERERGVapKdAlXeamdR3bToBNxdcy7Pep4jG0AdkPesKcmu8GN+fvvtN5w5cwavvfYaunfvDg8PD3zwwQdo186wT9u2bcOVK1fw9ttvF/qcJQWDKSIiIiIiIiIq1SRJsng6nUNgRSjd7I0WPs9O6aaGQ2BFi9aYyq+0tDTExsZCq9UiLi4OkZGRWLRoEXr37o3hw4dDqVRi5cqVGDJkCMaOHYvx48fD1dUVe/bswbRp0zBw4EAMGjSoyNtlKwymiIiIiIiIiKjckBQS3PvUwt2vTU+VAwD3PjWtEkoBQGRkJHx9faFSqVCxYkUEBwfjo48+QlhYGBSKzNFXAwcORFRUFBYsWIAnnngCqampCAwMxBtvvIFJkyYVyWLrJYUkystqWkVAv/h5QkICXF1dbd0cIiIiIiIiKifK6vVoamoqoqOjERAQAAcHh2I996Ozd/Bg+1WDkVNKNzXc+9SEY8NKxdqWsiY/rytHTBERERERERFRuePYsBIcgjyRFp0A3cN0KCrYQx3gZrWRUmQagykLhIeHIzw8HFqt1tZNISIiIiIiIqIiIikkONRyt3UzyrXCLx1fDowbNw7nz5/H0aNHbd0UIiIiIiIiIqIyg8EUERERERERERHZBIMpIiIiIiIiIiKyCQZTRERERERERERkEwymiIiIiIiIiIjIJhhMERERERERERGRTTCYIiIiIiIiIiIim2AwRURERERERERENsFgqizSaYHoA8CZTZnfdVpbt4iIiIiIiIioXNNqtWjXrh2efvppg/KEhAT4+fnhjTfewPXr1yFJkvzl4eGBTp064cCBAwb7zJs3T66jUqng7++P1157DUlJScXZpSLBYKqsOb8NWNYQWNsb2PxC5vdlDTPLiYiIiIiIiEim0+kQHR2NM2fOIDo6GjqdzmrnUiqViIiIQGRkJL755hu5fMKECfDw8MDcuXPlst27dyMmJgb79+9HlSpV0Lt3b8TFxRkcr0GDBoiJicH169fx7rvv4vPPP8eUKVOs1n5rUdm6AaVBeHg4wsPDodWW8JFH57cBG4YDEIbliTGZ5YPWAUF9bdI0IiIiIiIiopLk/PnziIyMRGJiolzm6uqKHj16ICgoyCrnrFOnDhYvXowJEyagS5cuOHLkCL7//nscPXoU9vb2cj1PT0/4+PjAx8cHs2bNwvfff4/Dhw+jb9/H1/QqlQo+Pj4AgMGDB2PPnj3Ytm0bVq5caZW2WwtHTFlg3LhxOH/+PI4ePWrrppin0wKRr8MolAIel0XO4LQ+IiIiIiIiKvfOnz+PDRs2GIRSAJCYmIgNGzbg/PnzVjv3hAkTEBwcjGHDhmHs2LGYM2cOgoODTdZ99OgR1q1bBwAGwZUpjo6OSE9PL/L2WhtHTJUV/xwEEm/lUkEAiTeBVd0AV19AaQco7XN82QEq9eOflWrDeqqc9U2V59hPpQYUKkCSiu2pICIiIiIiovJFCIGMjAyL6up0Ovz888+51omMjETNmjWhUOQ9nsfOzg5SPq55JUnCp59+ivr166NRo0aYMWOGUZ127dpBoVAgJSUFQgg0b94cXbt2NXvM48eP49tvv0WXLl0sbkdJwWCqrEiKy7sOANw6DuSWX1lLroGWPvzKHmiZCruyh2emgrVC7KfkW4HM0Gkzg9+kOMDFG6jRDlAobd0qIiIiIiLKJiMjAwsXLiyy4yUmJmLx4sUW1Z01a1aeo5lyWr16NZycnBAdHY0bN27A39/fYPv69etRr149nD17FtOnT0dERATs7OwM6pw5cwYuLi7QarVIT0/HU089hRUrVuSrHSUBr8bLChdvy+q1nwRU9Ae06Y+/NNl+1mYA2rSs7+mAJtvP2hz1NGnZ9sl+vDQYTSnUbyupJEXuo74sGmFWRCGZuf0sSOqpiJ3fljlFNvtoRNcqQI93uV4bEREREREVyMGDB/Hhhx9i165deOedd/DCCy9g9+7dBqOu/Pz8EBgYiMDAQGg0GgwYMABnz56FWq2W69StWxfbtm2DSqVClSpV8h2OlRQMpsqKGu0yL5gTY2B6nSkpc3vXOcUz2kOrMRF2ZQ+0TIVd5kKy/Oyn3549XDNzzOyEDtCkZn6VVJLSwkCrICPQLAnXLJj2WZambPJmAkREREREpYadnR1mzZplUd1//vnH4K545vzvf/9DjRo1LDq3pVJSUjBixAi8/PLLCAkJQUBAABo1aoTPPvsML7/8ssl9Bg4ciDlz5uCTTz7Ba6+9Jpfb29ujdu3aFp+7pGIwVVYolJmjODYMByDB8GI6Kyzosbj4piApVVnT45yK53z5JQSg05gf9WVRSJaf/QowAk2XY3600AIZKYBl06ZtQ2EqCMsRmFk8Ai1HYJbfkMxUuGbpemd53kxAyryZQL2nOK2PiIiIiKgEkCTJ4hFDtWrVgqurq9HC59m5urqiVq1aFq0xlR8zZ86EEEKeJujv748lS5Zg6tSp6Nmzp8l9JEnCq6++innz5uHFF1+Ek1MJvc4uIAZTZUlQ38xRHCanHi3m6I7sJCkrvLA82S52Ol1mOJWvkCxH8KXJGYDlDMJMjDAzGoGWIzDLfkyR4y6PuozMr4xk2zxneZJMBFomRphlpFh2M4Gt4wDP2jkCN3NTNtW5h28qdWawxymbRERERMWH64mWSwqFAj169MCGDRvM1unRo0eRh1L79u1DeHg49u7daxAuvfjii/jhhx/wwgsvYNWqVSb3DQsLwxtvvIEVK1Zg+vTpRdouW5OEEKaGBJAJiYmJcHNzQ0JCAlxdXW3dHPP44UrFRafNZdRXLoFWrqPFLAnXTI1Ay/6z/phptn6G8k+hyiXEyjnqzNxaaGrzwViB63KtMyIiIipjStl6oqXmejSfUlNTER0djYCAADg4OBTruc+fP4/IyEiDkVOurq7o0aMHgoKCirUtZU1+XleOmCqLFEog4Albt4LKA4USUDgCdo62bolpQmSFZzlDsjymVMacBva/m/fx6/YCnDzzmLKZlvsINZ3G8Jg6TeZXSZ2yabTWWX5CMHvzwZjBtMtChGgM4Usu/tGEiIhKEq4nSgCCgoJQr149/PPPP0hKSoKLiwtq1KhR5COlKHcMpoio7JKkbOudOVu+X92ewKmv8r6ZwOCvC39hrdMWLtiSy83dKCD7/rmte2bm/KVtrTP5Dpt5hVimQjAz65iZKjdZZmb9tOznUijL1k0CLFXK/iJNVOIx6KWyQv9HRP0f5nSazJsSyY+1ht9F9rq6HPtpcxxLa2a/rP977XsXXE+UgMxpfQEBAbZuRrnGYIqIKKfivJmAQpn5ZVe8w5Ytpl/rrLDBmCUhWJ4hXLpxWam7w6ZkYYhVgLKiqGuNu2vyL9JERYtBb+mVPYQRWtPBi1Ewk0fAYul+RufMcZxcj5v9cW775RYUmQmYhM7Wr4oZWeuJ/nOQM1GIigGDKSIiU3gzgUwKBaBQZwYpJZEQxtMyiyQYK8DoMnPBmmGDs+qV4PXP8h1sZVuDLGddhQo4/CnM/0UawPZXM0fhSdlGk0mKrJ8lE99z22amLM/9FFmZc85jKXI5T/ZtKOB+2fcvbJ+pXChNQa8+hCmSwKMk7VeIoKjEhjAllEKV+W+DQpX1pXj8s5T1hz15W7bHkplyhSrz81Shyvy/3Y0jebchKc76/SQiBlOWCA8PR3h4OLRabd6ViajsCOqbOYSb0yVKLknKDENU9rZuiWlCZF6MFHkwVoTTNnNe4JoaiWZNj+4DP75YfOcrs4ozjCuq/fITxsF6+5ltOwoQMmYPC4voNdFvgwD2L0GuQe/WcUDs6WyBiCUBiwXBTEECn5x37qXcGYQpBQ1hFIbHkBQ59lGZ2C/nsUvIfvJ7xUqiDwBre+ddz8Xbem0gIhnvypcPZfUuCEREVE7JNwgoTDCWS93b54HofXm3o3J9wKVyZnv07YLIvLiWf8753dQ2lI79iMq7XEe0KI1DDWuFMCYDn6zvFrexCPazdghDxnRaYFnDvNcTnXSmRP1Bsqxej9ryrnxkPbwrHxEREeXN4AYBTkV//OgDlgVTvd4vf2t4iIIEYdm+F2g//TYUcL/sYVxxh4f6dtviOcvZZxs91/eigf/+zPt3q2YIULmelcKUHPUKsh9DGCoJinM9USLKE4MpIiIiso4a7TL/4pzXX6RrtCvultmeJGVeuBNZytKpR09MKX9BL1FBcD1RohKDwRQRERFZB/8iTVR0GPQSFT2uJ0pUIihs3QAiIiIqw/R/kXb1NSx3rVKy7iBGVNLpg14AcrArY9BLVGAKZeYow0YDM7/zPURU7BhMERERkXUF9QUmnQXCdgDPfJn5fdIZhlJE+cWgl4ioyAmhxf37fyI2dhvu3/8Twsp3FR0xYgQkSYIkSbCzs4O3tze6deuG1atXQ6fTGdQ9ePAgevXqhYoVK8LBwQGNGjXC0qVLodUatzEqKgq9e/dG5cqV4eDggFq1amHw4MHYv3+/XGfv3r3yuXN+xcbGWrXfueFUPiIiIrI+/V+kiahwOPWIiKjI3L79Cy5feQtpaY9DGbXaB3UC58DLK9Rq5+3RowfWrFkDrVaLuLg4REZGYuLEidi0aRO2bdsGlUqFH3/8EYMGDcLIkSMRFRUFd3d37N69G9OnT8ehQ4ewYcMGSFk3k/jkk08wfvx4DBs2DOvXr0etWrWQkJCAqKgovPbaazh+/LjB+S9dumR0Z0cvLy+r9TcvDKaIiIiIiEoTBr1ERIV2+/YvOHN2HHKu25eWFoczZ8ehUcNwq4VTarUaPj4+AICqVauiWbNmaNOmDbp27YqIiAgMHToUY8aMQd++ffH555/L+40ePRre3t7o27cvNmzYgMGDB+Pff//FpEmTMGnSJCxdutTgPI0bN8arr75qdH4vLy+4u7tbpW8FwWCKiIiIiIiIiEo1IQR0ukcW1tXi8uX5MH0zCQFAwuUrb8HDox0kC+6iq1A4yqOXCqpLly4IDg7GDz/8AE9PT9y9exdTp041qtenTx/UqVMH3333HQYPHozNmzcjIyMD06dPN3ncwrarODCYIiIiIiIiIqJSTad7hL37GhXR0QTS0mKxb38Ti2p37nQGSqVToc9ar149nD59GpcvXwYA1K9f32w9fZ3Lly/D1dVVHoEFAJs3b0ZYWJj8+NChQ2jU6PFzU61aNYPj1ahRA+fOnSt0+wuKwRQRERERERERkY0JIQxGOAlhakSXsZyjokJDQ3Hq1CncvHkTnTt3Nlos/cCBA6hQoYL82M7OrhCtLjwGU0RERERERERUqikUjujc6YxFde8/OIq//hqVZ73g4NWo6N7SonMXhQsXLiAgIAB16tSRH7dr185kvaCgIABAYGAgEhISEBsbK4+acnFxQe3ataFSmY58AgICStQaUwpbN4CIiIiIiIiIqDAkSYJS6WTRl6dHB6jVPgDMrb8kQa32hadHB4uOVxTrOP322284c+YMnnnmGXTv3h0eHh744IMPjOpt27YNV65cwdChQwEAAwcOhJ2dHd59991Ct8FWOGKKiIiIiIiIiMoNSVKiTuCcrLvySTBcBD0zZKoTONuihc8LIi0tDbGxsdBqtYiLi0NkZCQWLVqE3r17Y/jw4VAqlVi5ciWGDBmCsWPHYvz48XB1dcWePXswbdo0DBw4EIMGDQIAVK9eHR988AEmTpyIe/fuYcSIEQgICMC9e/fw9ddfAwCUSsN+3L59G6mpqQZlnp6eNpvSx2CKiIiIiIiIiMoVL69QNGoYjstX3kJaWqxcrlb7oE7gbHh5hVrt3JGRkfD19YVKpULFihURHByMjz76CGFhYVAoMie2DRw4EFFRUViwYAGeeOIJpKamIjAwEG+88QYmTZpkMEprwoQJqF+/PpYuXYqBAwciMTERnp6eaNu2LSIjIw0WPgeAunXrGrXp0KFDaNOmjdX6nBtJWLqaFiExMRFubm5ISEiAq6urrZtDRERERERE5URZvR5NTU1FdHQ0AgIC4ODgUOznF0KLBw+OIi3tNtRqL7i7t7TaSKnyJD+vK0dMEREREREREVG5JElKVKxom5FClImLnxMRERERERERkU0wmCIiIiIiIiIiIptgMGWB8PBwBAUFoWXLlrZuChERERERERFRmcFgygLjxo3D+fPncfToUVs3hYiIiIiIiIiozGAwRURERERERERENsFgioiIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIioXNIKgT/uP8SPcffxx/2H0AphtXNJkpTr17x583D9+nWDMg8PD3Tq1AkHDhwwONbgwYPRqlUraLVauSwjIwPNmzfH//73P6v1wRoYTBERERERERFRubMz/gFaHDqPZ05dxcvn/8Ezp66ixaHz2Bn/wCrni4mJkb+WLVsGV1dXg7KpU6fKdXfv3o2YmBjs378fVapUQe/evREXFydv/+STT/Dvv/9i8eLFctnbb7+NmJgYrFixwirttxYGU0RERERERERUruyMf4DRZ68jJi3DoDw2LQOjz163Sjjl4+Mjf7m5uUGSJIMyFxcXua6npyd8fHzQsGFDzJo1C4mJiTh8+LDB9s8//xxvvfUWTp8+jWPHjmHRokVYtWoVKlasWORttyaVrRtARERERERERFQYQgik6HQW1dUKgTcu34SpSXsCgATgzSs38URFFyglKc/jOSkUkCyoVxCPHj3CunXrAAD29vYG2/r27YshQ4Zg+PDhyMjIQFhYGHr16mWVdlgTgykiIiIiIiIiKtVSdDrU2n+mSI4lAMSkZaDOgbMW1b/asRGclcoiObdeu3btoFAokJKSAiEEmjdvjq5duxrVW7ZsGapWrQpXV1csXbq0SNtQXDiVj4iIiIiIiIioBFm/fj1OnjyJzZs3o3bt2oiIiICdnZ1Rve+++w6SJOHOnTu4ePGiDVpaeBwxRURERERERESlmpNCgasdG1lU988HSfjf6eg8633TOABt3F3yrOekKPoxP35+fggMDERgYCA0Gg0GDBiAs2fPQq1Wy3WuXbuG6dOn49NPP0VUVBRGjBiBkydPGtQpDThiioiIiIiIiIhKNUmS4KxUWvTV2cMVvmo7mFsVSgJQRW2Hzh6uFh3PWutL6Q0cOBAqlQqffPKJXKbT6TBixAh07doVw4cPx7Jly/Dw4UPMmTPHqm2xBgZTRERERERERFRuKCUJ7wRWBQCjcEr/+O3AqhYtfF4cJEnCq6++isWLFyMlJQUAsHz5cpw7dw4rV64EALi5uWHVqlVYunQpjhw5Ysvm5huDKSIiIiIiIiIqV56q7I5VDf3hozZct8lXbYdVDf3xVGV32zTMjLCwMGRkZGDFihW4fPky3njjDXz88cfw8fGR64SGhmLkyJEYMWIE0tLSbNja/JGEEKbukEgmJCYmws3NDQkJCXB1dbV1c4iIiIiIiKicKKvXo6mpqYiOjkZAQAAcHByK/fxaIfDngyTcTtfAy16FNu4uJWakVGmWn9eVi58TERERERERUbmklCS0r1jB1s0o1ziVj4iIiIiIiIiIbILBFBERERERERER2QSDKSIiIiIiIiIisgkGU0REREREREREZBMMpoiIiIiIiIjIpoQQtm4CFaH8vJ4MpoiIiIiIiIjIJuzs7AAAKSkpNm4JFSX966l/fXOjsnZjiIiIiIiIiIhMUSqVcHd3x+3btwEATk5OkCTJxq2ighJCICUlBbdv34a7uzuUSmWe+5S7YOrBgwd48sknodFooNFoMHHiRIwZM8bWzSIiIiIiIiIql3x8fABADqeo9HN3d5df17xIopxN5NRqtUhLS4OTkxOSk5PRsGFDHDt2DJ6ennnum5iYCDc3NyQkJMDV1bUYWktERERERERUPq5HtVotMjIybN0MKiQ7OzuLRkrplbsRU0qlEk5OTgCAtLQ0CCG4yBoRERERERGRjSmVynwFGlQ2lLrFz/fv348+ffqgSpUqkCQJW7ZsMaoTHh4Of39/ODg4oHXr1jhy5IjB9gcPHiA4OBjVqlXDtGnTUKlSpWJqPRERERERERER6ZW6YCo5ORnBwcEIDw83uX39+vWYPHky5s6dixMnTiA4OBihoaEGc1Xd3d3x119/ITo6Gt9++y3i4uKKq/lERERERERERJSlVK8xJUkSfvzxR/Tv318ua926NVq2bIkVK1YAAHQ6Hfz8/DBhwgTMmDHD6BivvPIKunTpgoEDBxptS0tLQ1pamvw4MTERfn5+uHv3rjynV6FQQKFQQKfTQafTyXX15Vqt1mCqoLlypVIJSZKg0WgM2qAfxqjVai0qV6lUEEIYlEuSBKVSadRGc+XsE/vEPrFP7BP7xD6xT+wT+8Q+sU/sU8nq0/379+Hp6Vmm15ii8qlMrTGVnp6O48ePY+bMmXKZQqHAk08+iUOHDgEA4uLi4OTkhAoVKiAhIQH79+/Hyy+/bPJ4ixYtwvz5843KT548CWdnZwBA5cqVUatWLURHRyM+Pl6uU61aNVSrVg2XL19GQkKCXF6zZk14eXnh7NmzePTokVxer149uLu74+TJkwYfio0bN4a9vT2OHTtm0IYWLVogPT0dp0+flsuUSiVatmyJhIQEXLx4US53dHREcHAw7ty5g2vXrsnlbm5uqF+/Pm7duoUbN27I5ewT+8Q+sU/sE/vEPrFP7BP7xD6xT+xTyerTyZMnQVQWlakRU7du3ULVqlVx8OBBtG3bVq43ffp07Nu3D4cPH8aRI0cwduxYedHzcePG4cUXXzR5fI6YYp/YJ/aJfWKf2Cf2iX1in9gn9ol9Yp9KQp84YorKqnIXTBVGebg9JxEREREREZU8vB6lsqrULX6em0qVKkGpVBotZh4XFwcfHx8btYqIiIiIiIiIiEwpU8GUvb09mjdvjj179shlOp0Oe/bsMRhBRUREREREREREtlfqFj9PSkrC33//LT+Ojo7GqVOn4OHhgerVq2Py5MkICwtDixYt0KpVKyxbtgzJyckYOXJkgc8ZHh6O8PBwo/nIRERERERERERUcKVujam9e/ciJCTEqDwsLAwREREAgBUrVuD9999HbGwsmjRpgo8++gitW7cu9Lk5p5eIiIiIiIhsgdejVFaVumDKlvhBQERERERERLbA61Eqq8rUGlNERERERERERFR6MJgiIiIiIiIiIiKbYDBFREREREREREQ2wWDKAuHh4QgKCkLLli1t3RQiIiIiIiIiojKDi5/nQ2lZbE6r0+LE7ROIT4lHZafKaObVDEqF0tbNIiIiIiIiogIqLdejRPmlsnUDqGjt/mc3Fh9ZjLiUOLnM28kbM1rNwJM1nrRhy4iIiIiIiIiIDHEqXxmy+5/dmLx3skEoBQC3U25j8t7J2P3Pbhu1jIiIiIiIiIjIWIFHTJ0/fx7nz5/HnTt3IEkSKlWqhPr16yMoKKgo20cW0uq0WHxkMQSMZ2bqyxYfWYxO1TrBTmlX3M0jIiIiIiIiIjKSr2Bq7969iIiIwPbt2/HgwQPkXJ5KkiS4ubmhT58+GDlyJDp37lyUbaVcnLh9wmikVE5xKXFo9nUzKCQFVJIKKoXhl53CLvNnE9vkOpKdcf2cX1Lu28zum8c2O6Wd0fElSSqmZ5jKK67ZRkREREREZD0WBVORkZGYPXs2jh8/joYNG2LEiBFo3rw5atasiYoVK0IIgfv37yM6OhrHjx/Hr7/+iq+++grNmjXDggULEBoaau1+WFV4eDjCw8Oh1Wpt3RSz4lPiLa6rEzqki3Sk69Kt2KLioZSUJsMto4DLTNhmp7DLPaTLo56pwC6/QZ2dMvPYDNlKHq7ZRkREREREZF0W3ZXPxcUFo0ePxksvvYR69epZdOCLFy/is88+w+rVq5GYmFjohpYEJfkuCEdjj2LUL6PyrLc8ZDkaVWoEjU4DjU6DDJEh/2z0JTTI0D3env1nc3Vybsttv+yPDeoIDTK0GUZ1tKLkBoNFwWzwZS5sMxO45TbyTb8tr9FxhQ3iykLIpl+zLef0WAmZfVvaeSnDKSIiIiIqNiX5epSoMCwKpu7duwcPD48CnaAw+5Y0JfmDQKvTInRzKG6n3Da5zpQECd5O3oh8JrLUTkMSQjwOsYTpMC23beaCuJzBWV7HsCSMMxW2aXSPAzed0Nn66bSq7CPB8j2STDIdplkcthUisNNvkyCh39Z+ZqfHloX3E1Fx47RYIiKiwinJ16NEhWFRMEWZSvoHgX6EBwCDcIojPEoendDlGmCZDM7yuS379jzr5TFyLreRb2U9ZMtNJYdKcLJzglKhhFLK+jLzs0KRubabQXn27ZICKoXK7M+WbNdPbdWvI6eQFFAqlJk/K/LYbuJnfRtzlikk3tCV8ofTYomIiAqvpF+PEhVUgYOpCxcu4OrVq3j48CEqVKiA2rVrWzzNr7QqDR8Epv7z7+Pkg9dbvc7//JNV6EM2oxDMkpFkFkzrNBW25VWnoCPfTI02JGMSJIvCOFMBXF719aGZ/LOpgC779hw/5wzjct2ePYDLFtrluT3Hz9nrlIVprEWN02KJih5HIBIVndL0fioN16NEBZHvYGrlypVYsGABbt68abStevXqeOONNzB69Ogia2BJUlo+CErThytRSaLVaaERGhyOOYxxe8blWf+N1m+grkddaHVaaIX28Xdh4rGpn3PZrhM6aITGbB2d7vF2fV2d0Ml9yPmzRpdVJrSPf85RN/t5NEJTDM942WMyuLIkvMsR5FkSwJkcQacwHcDlNcIuZ11L+5F9NJ6p7ZKQ0HtLb06LJSpCHIFIVHRK2/uptFyPEuVXvoKpqVOnYunSpfDw8MCAAQPQsGFDuLi4ICkpCWfOnMGWLVtw//59TJ06Fe+++641220T/CAgKh/Kw5ptljAKrEyFakUYxpkM4LJCNXPHyL7d1M/ZAz6zAV2Ony1pOxUtN3s3qFVqOTwz+K5QQAGFwePs2yVJMr2fpJC/5HJFtv2yRv5ZtF+2/SVIJtuR634526ko4H45zptzPyr7OAKRqOiUxvcTr0eprLI4mDpy5AjatGmDAQMGYN26dXB2djaqk5ycjOeffx7btm3D4cOH0aJFiyJvsC3xg4Co/OCabWSOECLvECufYZxBAGdiX3MBnKkRdhYFdLmNsNOZ75u5EXbZ+0G2Y1Fglz3oMxHMFSToMxes5fqzfl+YDupy/TmrD6baYWq/XAPAXII+U8+LLafr6v9owhGIZA1CCAgI6C8Nsx5lbTR8rK+r/1lf32hbtuOZ25b9/1gG585tW452Pm6mBX3I2qYRGrz060u4m3rX5PNRUt9PvB6lssriYOrFF1/Ejh07cO3aNajVarP1UlNTUbNmTfTr1w+ffvppkTXUlsLDwxEeHg6tVovLly/zg4ConOCabUT5I4QwCKyOxh7F+N/G57nfvLbzUN+zvhz46cMv/WP9cQ22Z33XfxmUZ4VrAsLgOHnul3VeAWGyHbnuZ6qdumz7QWfwONf99OfQaTP3y3pMtiePmMsRruUMuPL62SgMs2AU3f3U+zgcezjPNj5R9QlUdqpsMmjQk7eZCBNyCyFyPs4ZNOj31T82CgiyBwi5bctxfINwI+e2HO0217/s++c3PMm5r6mfs5/H5POXS/9yO7fJ/uUj1MkruKHcrQ5djZY+LW3dDBmDKSqrVJZWPHToEJ599tlcQykAcHBwwLPPPouoqKhCN66kGDduHMaNGyd/EBBR+fBkjScR4hfCNduILCRJElSSCiqoACXQoWoHeDt55zkttn/t/nxf5UE/Us8ovDIVaOX8WWdZsFbQoM/i4FBXwP2y7a8P+fTtyNe+yLsteV2oC4jMNfgEgBKaFR64ecDWTSDKNwkSJEmSR6ZLkJD1Y+a2rO3Z6+bcN3vdrAdmt6Xr0pGckZxnu+JT4oukf0SUO4uDqf/++w/169e3qG5QUBDWrVtX4EYREZUUSoWyRP2ljKg0USqUmNFqBibvnQwJksFFv/7i4PVWrzOUsoB+KpkSStjBztbNKbPMjV4rCaP5oh9EY/3l9Xn24enaT8PP1U9+bO7CPHuZ/rFF23KGAia2ycFAjmPlui1HO3MNJXIGDwXog37fPPtnIhApij7kfP5MtSXX/hWyD2a3mXh9Le5DLq+RqefPllNjj8YexahfRuVZr7JT5WJoDRFZHEwlJiaiQoUKFtV1cXHBw4cPC9woIiIiKhuerPEklnZeavKuR5wWSyWNftRfSaTVabH3xt48RyDOaTuHYS9RHpp5NbNoRG8zr2Y2aB1R+WPxv7xCiHyl2vm42R8RERGVYZwWS1R4HIFIVHT4fiIqWSxe/FyhUKBp06aoWrVqnnVv3ryJU6dOQastW7fU5mJzRERERGRLvDEHUdEpbe8nXo9SWWVxMOXv75/vecDR0dEFalRJxQ8CIiIiIrI1rU7LEYhERaQ0vZ94PUpllcXBFPGDgIiIiIiIiGyD16NUVils3YDSIDw8HEFBQWjZknfmIiIiIiIiIiIqKkUyYurixYvYuHEjYmJiULduXYwcObJMJrhMqImIiIiIiMgWeD1KZZXFd+VbsWIFPvroIxw8eBCVKlWSy7dv345nn30W6enpctnHH3+MP//806AeERERERERERFRdhZP5du2bRtq1aplEDZpNBqMHj0aSqUSa9aswZkzZ7B48WL8888/WLBggVUaTEREREREREREZYPFwdT58+fRpk0bg7KoqCjEx8fjtddeQ1hYGBo0aIDp06dj0KBB+Omnn4q8sUREREREREREVHZYHEzdvXsXfn5+BmV79uyBJEkYMGCAQXn79u3x77//Fk0LiYiIiIiIiIioTLI4mPL29kZsbKxB2YEDB+Dk5ITg4GCDcnt7e9jb2xdNC4mIiIiIiIiIqEyyOJhq0aIF1q5di4cPHwIAzp07hyNHjiA0NBQqleEa6hcvXkS1atWKtqVERERERERERFSmWHxXvrlz56Jly5YIDAxEgwYNcPz4cUiShJkzZxrV/fHHH9GlS5cibSgREREREREREZUtFo+YatSoEX777Tc0b94ct27dQps2bfDTTz+hefPmBvX27t0LJycnPPvss0XeWCIiIiIiIiIiKjskIYSwdSNKi8TERLi5uSEhIQGurq62bg4RERERERGVE7wepbLK4hFT5Vl4eDiCgoLQsmVLWzeFiIiIiIiIiKjMsHjE1FtvvWX+IJIEBwcH1KhRA127doWnp2eRNbAkYUJNREREREREtsDrUSqrLA6mFArLBlep1WrMnTsXM2bMKFTDSiJ+EBAREREREZEt8HqUyiqL78oXHx+f6/aUlBRcvHgRn376Kd544w34+/tjyJAhhW4gERERERERERGVTUW++LkQAk888QSEEPjjjz+K8tA2x4SaiIiIiIiIbIHXo1RWFfni55IkoV+/fjhz5kxRH5qIiIiIiIiIiMoQq9yVz8nJCRqNxhqHJiIiIiIiIiKiMsIqwdTBgwcREBBgjUMTEREREREREVEZUaTBVFpaGj766CN8//33XPiciIiIiIiIiIhyZfFd+Ro3bpzr9kePHuG///5Deno6unfvjhkzZhS6cUREREREREREVHZZHEx5eHhAkiSz2x0cHNC1a1f06tULffr0ybUuERERERERERGRxcHU3r17rdgMIiIiIiIiIiIqb6yy+DkREREREREREVFeLAqmDh06VOATFGbfkiI8PBxBQUFo2bKlrZtCRERERERERFRmSEIIkVclR0dHtGnTBi+//DJ69+4NJyenXOsnJSVh27Zt+Oyzz3Ds2DGkpKQUWYNtKTExEW5ubkhISICrq6utm0NERERERETlBK9HqayyaI2py5cv46233sKwYcNgZ2eH1q1bo1mzZggICEDFihUhhMD9+/cRHR2NY8eO4ciRI9BoNBg+fDi++eYba/eBiIiIiIiIiIhKIYtGTOnduXMHX331FbZu3YqjR4/i0aNHBtsdHR3RokUL9OvXD8OGDUPlypWLvMG2xISaiIiIiIiIbIHXo1RW5SuYyk6j0eDff//F3bt3AQCenp6oXr06VCqLb/RX6vCDgIiIiIiIiGyB16NUVhU4RVKpVKhZsyZq1qxZlO0hIiIiIiIiIqJywqK78hERERERERERERW1sjvvrhwTWi1Sjh2HJj4eqsqV4dSiOSSl0tbNIiIiIiIiIiIywGCqjEnctQtxCxdBExsrl6l8fOA9ayZcu3e3YcuIiIiIiIiIiAxxKl8ZkrhrF25OnGQQSgGAJi4ONydOQuKuXTZqGVHpJbRaJB8+goQdO5F8+AiEVmvrJhEREREREZUZHDFVRgitFnELFwGmbrIoBCBJiFu4CBW6duW0PiILcQQiERERERGRdRU6mIqJicHt27dRu3ZtODs7F0WbqABSjh03GillQAhoYmNxpVNnKJycICkUgEIBSakAJAWgVEKSJECpBBQSJFNlCmXmPln7Qql4XE8hAQrDfR/vk21f+Xz64+Ssl7PM1D459lUqAUlh2AZ9mTKrrdn2kRRZfZIe1zO1j9xPU/tk325yH0Xmc0elln4EYs6wVz8CEcuXMZwiIiIiIiIqpAIHU1u3bsXrr7+OK1euAAB+/fVXdOnSBXfu3EG3bt0wd+5c9O/fv6jaSXnQxMdbVE975w44EamYZIV6j8O9nMGawnSZycAvj32zh3dGwaCJemb2MQj3zAWDkgUBo7lg0JKA0VwwaDZgNBMMKrKFq9l/1geMuQSHHIFIRERERERUPAoUTG3fvh1PP/002rZti+eeew7z5s2Tt1WqVAlVq1bFmjVrGEwVI1XlyhbV8549Gw716wE6HYRWBwhd5po5OgHotBA6HSCEcVnWV859hE5fT5ftZy1E9n3lfXQ56unkYxvua2ofU/vmOJ9WCyGy9jXYJ1v7cx5Hq4UQ5vc1dxyLCAFoNBAAkJGRWVSwl5eswWwwqAQ0GuiSk83vmzUC8Z/hYbCrUgUKBzUktYP8XXJQQ6H/7uBgsE3hoIbk6AiFWg3JwQGSWl9HndkGIiIiIiKicqRAwdRbb72Fjh07IioqCnfv3jUIpgCgbdu2WLlyZVG0jyzk1KI5VD4+0MTFmR7lIUlQeXuj4pDBHOFRSEKIzOc4W6iVZxCWFbRBmyO0k+tllpnax1RImPk9P8GhNsc+lgSH+nrFFRyaOF8ewaGp59ri4FC/n/51LcDvwqPjx/Ho+PEC7GmaZG8PycFBDq2Mg67ctpkJwQzCLwcoHLPVUXGZQSIiIiIisq0CXZWcPXsWS5cuNbvd29sbt2/fLnCjKP8kpRLes2Zmrn0jSYbhVNaUJe9ZMxlKFQFJkjKfU4UCXEWq5CmK4PDRqVOImTUrz3NVDBsOOx9fiNRH0KWmQaSmQpeWCpGaJn8XaanZthl/14+mAwCRng6Rng4Lo7XCU6keB136EVzZg66iCsP0Zfb2XHuNiIiIiIgMFCiYcnJyQnIu01yuXbsGT0/PAjeKCsa1e3dg+TLju4h5e/MuYlRuFEVwaF+jOuI/+ijPEYje06cXOuwVWq1hWCWHWakQaWmZ37MHXNmDrtRU02GYmRBMZB1TptFAp9EAycnFs/acJBkGXbmFYfmdHpk9DMt+bE6PJCIiIiIq0QoUTIWEhGDt2rWYNGmS0bbY2Fh88cUX6N27d2HbRgXg2r07KnTtmnmXvvh4qCpXhlOL5hwpRZQPxTkCUVIqITk7Q1FMdzUVQkDkDK0sCsOyhV+P8heGydMrhYB49AjaR4+Kpa8AINnZGazpZZXpkQ7ZgjY7u2LrW2kjtFr+20RERERERiQhTA0HyN2lS5fQpk0b+Pv749lnn8Xs2bMxdepU2NnZYeXKlRBC4NixY/D397dCk20nMTERbm5uSEhIgKurq62bQ0RWlrhrl/EIRB8fjkDMByEEkJFhHFrlCMMMy0yEYalp0KU+yvf0yGKnVBqOBHNw5PRI8L1ERERUFHg9SmVVgYIpADh37hwmTpyIqKgoZD9E586dER4ejvr16xdZI20tPDwc4eHh0Gq1uHz5Mj8IiMoRjvIofQo1PdLUGmGPUi2fHlncJCkzsDKaFumQNa3R9tMjE3ftyhx9mPO/G1mBWtXlyxhOERERWYDBFJVVBQ6m9O7fv4+///4bOp0ONWvWROXKlYuqbSUOPwiIiCinIpkeaW4kWKrpUMziu09agWRnZ8FC+Q5ZI7rskLBtO0RKitnjKd3d4btoYeY+dnYmv5D1XWFv//hxKRgpRkREVJR4PUplVaGDqfKEHwRERGRrRTk90vS0SP3UydSSMT3SHDMhlmRvB8nO3mzIlVknj+3Z69gX/DgM0IiIqCjxepTKqgItfv7RRx9h586d+OWXX0xu79mzJ/r+v707D5OrrNP/f59zau29s4cEkhDDkgABIYRNEERIREZHMSOKBkFk/CHqMF6OKOKAI+owX0WhBUExorOAzsA4IkFElnGQPYghAgHClpB0lt6XWs45vz9q6Tq1dXV1dVd19ft1Xbm66tRTp56nk66k7nyez/mrv9KnP/3pcU0OAAB4GYYhBQKyAgGpuXlSXrPc7ZHDf/6z+u67b9Tz+xculNnQIDcWG/kVjXpu52wFTD02QWuuFE9QlRNy5Qu/CoRdo4VpqUCuWJBW4Dzy+QjQphi2mQMA6klZwdSPf/xjnXbaaQUfX758uW6++WaCKQAA6kC5V48ceOzxkoKp+d/4hhpXH1t0jGvb3uAqJ7zKeiwWzToWzX1+9jlisZHAK/Oc0QLPzXOe7AAtfd4aVzC8CvgLVKflC8HyhGeFArVACWOyziPLIkATFxMAANSfsoKpl19+WZdccknBxw855BDdcsstZU8KAABMfQ3HHC3fvHmK79qVW/EkSYYh39y5ajjm6FHPZVhWoiIkFJqAmVaG67pSvgAtX7iVE6QVCsCyn5c/JFPGOZ1Y1HM/3+vkzH0qBGiGMXrF2GiBWt4QLFDCmNLDtIkM0ApdTCC+a1fiOBcTAABMQWUFU4FAQDsz/pcm21tvvSVzjFftAQAA9cWwLM398uWJD8yG4f0wnfzgPvfLl9fNFiTDMBLb4nw+KRyu9nQKcl1XisdLqgArGqYVrSTLrlgrULWWXbGW9ZysiSfG5wnWakoqQCuzl1lOoJZq+m9Z2vejH+cPeZPHdv7jVbLa2mQGAiPn8SXP7/ONnDN5m22cAIBaUFbz8/e85z16/vnn9ac//UnNWf0tenp6dOSRR+rggw/Wxo0bKzbRWkCzOQAAxo6tRyhHOkAbw1bKgkFauefIDtXyVKHV5MUBxsKfP7TKPCa/byTkyjc+kAy5MsMwz7iMc/myzuUvEJilq9l8OfMiUEMlTaWebXweRb0qK5h67LHHdMopp2jBggX6/Oc/rxUrVkiSNm/erOuuu047duzQAw88oOOPP77iE64m3ggAACjPVPqHPzAWqStlpoIqJxr19iorNQAbJUiLvPKKhp58ctT5WLNmyQwGE89LVcYlvyoen4TvyOTwVJcVCdbkLxaYjQRjuYHZSOjmCelKCtYytn9mBmr0Sas5U+0/Tvg8inpVVjAlSffdd58uvvhivfrqq+k3WNd1tWTJEt144406owZ/kMeLNwIAAABUw8Bjj+v19etHHXfAT39a8GICnhAtK7RK/EoFWBmhWPrxzPHRdNCVPhbNOlfyHMp+ft7XjkqxeMF5ybYr/e2sDsPIqkQrXKXmrUQLFBjnGzlPalye0M3w+bxjsh7LfE3PVtLUY3X6nwiFeraltpovqMGebXweRb0qO5iSJMdxtGnTJr388suSpKVLl+rtb3973f5PAG8EAAAAqAbXtvXSu04f9WICb7v/d3UXJLiOIzcezw3VcoKzqLd/Wt5QrJTALGtMNH9glh6XHaolb9dNoGaa3sqvVE+07Aq0Sdv+mRus5d3+WaTncfrnqVDf5Br9eeLzKOpVWc3PU0zT1NFHH62jjx79ajoAAAAAyjPdLiaQyTBNGYGAFAhUeypjkgrU3GiBKrR0pVlGz7LsACxaJDDLqWTLOleRKrScUC1zy6fjeBfiOFPjwgPZTDN3m2UytHJj8cKhlCS5ruI7d2rwyacKViACqJySgqmHH35YknTyySd77o8mNR4AAADA+LSccYb0vetye+LMnVuzPXGmsykbqNl2MqQqsG1ztCq0VOBWKDDL3vo5hiq0gqFaLJZbSeg4ciMRuZFI2d+L+O7d4/xuAihFSVv5TNOUYRgaGhpSIBBI3y/EdV0ZhiG7XspXkyidBAAAQLVxMQEg10ig5r1qZr4AbOjZP6vzW98a9ZzFerZVA59HUa9Kqph64IEHJEmBZNqfug8AAABgchmWVVMfloFaYFhWIqANBkcdG165Uvs2bBi1Z1vDMbSsASZDScHUKaeckr7tuq6OOuooBQIBhUKhCZsYAAAAAACVNp17tgG1qPClCgqIRqOaMWOGvv/970/EfFABjuNq+wtdevGJndr+Qpccp+wLLwIAAABA3Wk54wwt+N518s2d6znumztXC753HT3bgEk05qvyBYNBzZs3T8ESSiQx+V7e1Kn/vX2rBrpHmvw1tgX1jr9ZpqVHzanizAAAAACgdrSccYaa3/UuerYBVTbmiilJOv/883XbbbcpOtUuGVrnXt7UqY0/3OwJpSRpoDuijT/crJc3dVZpZgAAAABQe1I921rfe5YaVx9LKAVUwZgrpiTp8MMP11133aUVK1bo/PPP1+LFixUOh3PGfeADHxj3BFEax3H1v7dvLTrmD3ds1ZKVs2Waha+oCAAAAAAAMFkM1813GYLiTHP0QivDMGTbdlmTqlW1fHnO7S906a7vbhp13Kr3Ltb8pW0KhHwKhC0Fwj4Fwz5ZflOGQWAFAAAAALWolj+PAuNRVsXU73//e0KMGjPQGxl9kKQnfv1q3uOmaSgQHgmrEsFVIrQKhJLH0r8s7+OpX0FLBtVYAAAAAACgRGUFU+985zsrPA2MV2NLac3oZ+zXKMOQIkNxRYdsRYfjkpvYCjg8ENPwQGxc8/CHLAXDPvlDPgWzQq5EkGUlH0seywi9gsmxlr+s1mcAAAAAAGCKGVMwde+99+q6667Ttm3bNHPmTK1bt06f+9znJmpuGIP5y9rU2BbMaXyeqak9qL+54lhPjynXcRWL2ooOxRUZiis2bCdDq9SvRHiVuh8ZiifvJ56Tum3HHUlSbNhWbNiWVFoFVz6Wz/RUZaUCLE91VsZWxMxQK3XMH7So6gMAAAAAoMaVHEw99NBDes973iPXdTVr1iy9/PLLevTRR7V9+3b98z//80TOESUwTUPv+Jtl2vjDzQXHnLRuWU7jc8M0EoFOyKem9vJf3445I4HWsDfU8gRdw3bG7bgiGQFXItCS7LijoT5HQ33lV28ZhhIBVWaglRV0ebYiZm5XTFd0WTItqrcAAAAAAJgoJTc/P/PMM/XnP/9Zv/3tb3XYYYepq6tLH/rQh/THP/5Re/bsyXtVvnozFZrNvbypU/97+1ZP5VRTe1AnrVumpUfNqeLMRuc4rmLDeSq3Miq0IkNxxYbiiuRUbY3cd5wx9/MvyBcwC1duZVVtBTK3KGYc99FYHgAAAMA4TYXPo0A5Sq6Y2rx5s/6//+//02GHHSZJam9v1zXXXKPjjjtOzz33nI455pgJmyRKt/SoOVqycrbe2tqtgd6IGluCmr+sLadSqhaZpqFgg1/BBn/Z53BdV/GY492KmK7OKq1yKzoUVzya2JoYjzqKR6Ma7I2Oa13+cL7KLat4k/lk8JXq2TUVfg8BAAAAABiLkoOpnTt3asmSJZ5jBx54oCSpr6+vsrOaQG+88YY+9rGPqbOzUz6fT1/96lf1oQ99qNrTqijTNLTg4HHsy5vCDMOQP2DJH7DU2FpaQ/h8bNtRLHsrYkaYlajqyg20svtyucnG8pGBuCID8XGtzR+0ClRuWVlh1shWxOwgzOe3xjUHAAAAAAAqqeRgynXdnO1Iqfsl7gasCT6fT9ddd52OPPJI7dy5U0cffbTe8573qLGxsdpTQw2xLFNWk6lQ0/iqt2IRO2fLYSRPgJUKvvL16Uo3lo/YikXsog3uR2P6jIyrJnqrtlKBVv6+XFa6wbw/aMmgegsAAAAAUAFjuirfbbfdpkcffTR9f3h4WIZh6IYbbtBdd93lGWsYhr73ve9VZJKVNH/+fM2fP1+SNG/ePM2aNUv79u0jmELFGcZIY3m1j6N6K+aUV7k17L3aoiQ5cVdDfbFxNZaXoeS6ijeQTzxmZYRg3v5b1hRpLO847pTcGgsAAAAAU0HJzc9Nc2wfIg3DkG3bZU2qmIcffljXXnutnnrqKb311lu688479f73v98zpqOjQ9dee6127typlStX6vrrr9exxx6bc66nnnpK69ev1+bNha9kl4lmc5iqHCdVvRX3hFqZjeVHq9yqeGN5vyl/gf5awZAvT1+ujCAsGXz5AhPbWD7fxQQa24J6x9/U/sUEAAAAUF/4PIp6VXLFlOM4EzmPkg0MDGjlypW64IIL9IEPfCDn8dtvv12XXXaZbrrpJq1evVrXXXedzjzzTL3wwguaM2fkg+S+ffv08Y9/XLfccstkTh+oCtNMbOELhsdUJOnhuq7smFOkcitfoOWt3PI0lo85iseiGhpHY3nDNLIqtSxvdVZWA3nPVRMztjDmq4B6eVOnNv4wN7Qe6I5o4w83a83FhxFOAQAAAMA4lVwxVYsMw8ipmFq9erVWrVqlG264QVIiUNt///116aWX6ktf+pIkKRKJ6N3vfrcuuugifexjHyt4/kgkokhkpFKit7dX+++/v/bu3ZtOqE3TlGmachzHE96ljtu27enBVei4ZVkyDEPxuLdBtmUlmlVnV58VOu7z+RIBQsZxwzBkWVbOHAsdZ02saSLX5NiJ6i076mp4MKbhwWi6IisecRSL2IoMxjy9uFK9uiJDscT94URj+UrxBS0FQ5b8yXDLH7S085Ve2bHCgXyoya93X3Co/CFLvoCVCMVCAZl+yTBHevBN1d+nYsdZE2tiTayJNbEm1sSaWNPkr6mrq0szZ86kYgp1p/zyiRoUjUb11FNP6fLLL08fM01Tp59+uv74xz9KSlR9nH/++TrttNOKhlKS9M1vflNXXXVVzvFNmzale1LNnj1bS5cu1bZt27R79+70mIULF2rhwoV68cUX1dPTkz5+4IEHas6cOdq8ebOGhobSxw855BC1tbVp06ZNnjfFI444QoFAQE8++aRnDsccc4yi0aieffbZ9DHLsrRq1Sr19PTo+eefTx8Ph8NauXKl9uzZo1deeSV9vLW1VYceeqh27NihN998M32cNbGmyVpT75t7taM7uSZTmn1AYk0vv/yydu/uUThrTX/5y1/U09Mj1/XLiUsL5x+g5sY2PffsXzTYH5EddeXEpJlts2XKrzde2654xJEdleyYq6AvrNiwo4G+IdkxyU0uNx6xFY/YUk/p1VvD/TH9z/efzf+gIZmWZPokf9CncGNQthuTo3jyuKHm1ka1treop69LcSeaHj9vvzmaMatdb2x/TTEnKtMyZPmkZYe8TTNnt+tPz26SIzsdfPFnjzWxJtbEmlgTa2JNrGl6rGnTpk0C6lFdVUzt2LFDCxYs0COPPKLjjz8+Pe6LX/yiHnroIT322GP6wx/+oJNPPllHHHFE+vGf/exnOvzww3POT8UUa2JN9b0mO+4oOhSXHZOiQ3ENDUQVHYrrzb90acsf3tJowi1+maahWMRRPGbLiU/O26lhJKq8fH5T/qCVvu0LWPIHkl9DPvkDpiy/KV/AlD9gyRcwFQz7ZQWsRGgWsOQLmvIHfInjfkOmz5DlM2QYRs38Po12fCr+2WNNrIk1sSbWxJpYE2uiYgpIqKuKqVKcdNJJnjeLYoLBoILB3Kup+Xw++Xzeb13qzSVb6k2k1OPZ5y3nuGEYeY8XmuNYj7Mm1lTo+FRbk88nBUOBnMcbmoIlBVNnXniYFhzcnr5v247iUUfxaGL7YTxqKx5NbE+MRWzFY3Z6u2I8ljwWcRSLJSq2EsedxO30OUbO59iJf7i4rhQbthUbtsd3hcUC0sFXMujyJ2/7Aoltjqnwyxe00oGXP2P8yHEredzMeK4lMxl8pUzHP3ulHGdNrEliTYXmONbjrIk1Sayp0BzHepw11d6agKmurv5kz5o1S5ZladeuXZ7ju3bt0rx586o0KwBTzfxlbWpsC3quxpetqT2o+cvaPMcsy5QVNsfVZL6YdPCVDK4SgVWBICz5eDziZIzNGFNq8DUB6zBMw1PFNabgKxl0+QsGY7nBFwAAAIDaVVfBVCAQ0NFHH637778/vb3PcRzdf//9+sxnPlPdyQGYMkzT0Dv+Zlneq/KlnLRumfJdzW8i1ULwlQqzYtFElZc35Mp4TroiLFEF5gm+HDcdfE0ET/CVEXRlV3Wlgix/0PQEYwRfE8NxXL21tVsDvRE1tiSC3cn+GQIAAEDtmXLBVH9/v1566aX0/W3btumZZ57RjBkzdMABB+iyyy7T+vXrdcwxx+jYY4/Vddddp4GBAX3iE58o+zU7OjrU0dGRsx8ZQP1aetQcrbn4MP3v7Vs9lVNN7UGdtG6Zlh41p4qzmxiTGnyltzNmB2FTI/ga23ZGM6siLLm9cRoFXy9v6sz5WWpsC+odf1OfP0sAAAAoXUnNzy+44IKxn9gw9OMf/7isSRXz4IMP6tRTT805vn79em3YsEGSdMMNN+jaa6/Vzp07deSRR+r73/++Vq9ePe7X7u3tVWtrK83mgGmEKo+pIzv4iiW3LRYLvmIZ2x8zg6+RrZC2Ysntjqnga6LlC76KV3VlV4QlmtqPVIR5+3yZ1uQGXy9v6ixafbjm4sMIpwAAKAGfR1GvSgqmFi9enPOP2MHBwfSlMNvbE81/u7q6JCUul9nY2Oi5tGY94I0AAKYv23ZGqrgqEXyltkcmz+E4kxx8jWM7Y+JqjpYnEEuNsXwjTV8dx9VtX35k1H5tH/vGCQS+wBjwnybA9MTnUdSrkvZrvPrqq577W7Zs0RlnnKEvf/nL+vznP69Zs2ZJkvbs2aPvfve7uu2223T33XdXfLIAAFSLZZmyGkwFGybm/KngK93Xq+B2xpGgK5ZV1ZW7FTI3+HIdV9FhW9EJ2upoJnt8+YKWDEkDPdGi4/u7Itr4wz+reUZIhmXINA0ZpvdrqsrLtAwZptKPGcnH8j3HsAyZhpHnnEqeJ8/zMl4n+zmGWX9bLDE1sTUWAFBvSqqYyvaud71LBx54oG655Za8j1900UXatm2bfve73417grWEhBoAMFWNNfjKt50xlhV2ZVaNTVbFVzUZpjcYyw3NCoVqBcKwoqGaZFjmSJhWyvM8QV1ugJc5TzM7kMu4n3puvufkm4NhiNBukrA1Fqi8qVSByOdR1KuyOtw++uijOueccwo+ftRRR+nf//3fy54UAACorAmv+Io78lzJMWrrra3d+t87to763IOOm6vmtpAcx5XruMmviQ8Lru3IcSXXdrMeT37Nd9x25bpKfk3cTz028njya/J5qdd0iwRsbmpeqv8QbqxyQ7Ui1W95QzUVrX4rGKqlQzJ5zls0VEvPQzJNs+TgL7tyL3HcLD73Cn64dRxX/3t78Z+nP9yxVUtWzq7ZD9VAraECEagNZQVTM2bM0D333KNPf/rTeR//zW9+o7a2tvHMq6ZwVT4AAIqzfKYsnzf4mrmgSU//9vVRe0y96+PLa+aDtOsmQq3swCtfmJUThqXCtMzQzC0Qnjkj50rcV25olhWqpc6Zc55UYJY1x9HnruIBX9YaitXYu44r23Gl+OT9Xk0JhtJbSr2hmgqHYHm2lBqmoehQrOjPkpTYGnt3x5/U1B5KV7IZhiQzsbVV5sixzGq3kfvJ0M3w3paRnK8hqdD4zOcZynm+UXAOueOLzUFG7mNGCecUlX3IUqgCcaA7oo0/3EwFIjCJygqmLr74Yl155ZV63/vep0svvVRve9vbJElbt27V9ddfr3vuuUdXXXVVRSdaTZdccokuueSSdOkkAAAYnWkaesffLCu69eikdctqJpSSvB/krWpPpsa4br6KtkIVawVCtXRApoxQrUh4lvMcZ9RQLV0dlxMMqkgwmPu6+Sv48q+tYBGdKzmuK03iVtfXn9s3aa815SSDwpLCsazwLRXIJcKxYuO955SRrOgzks8bZXz2OVOhYur2yJh8wWLuOVOBnDfUKzw+3/mVb3zBOeQGhsXnUCBg9ASiWb9nFQgYqUAEaktZPaYk6atf/aquvfZaxWIxz3Gfz6cvfOEL+sY3vlGRCdYS9vQCADB2+bZKNLUHddI6tkqgPrhObnVcOnwrqdrOzRPUeSv39mzv19MbXxt1LoeeOF8tM8Mj1X+Om74tNxnqua7kjISNrqu84xOPj3xNPH/kXCNj8o8vNgdlP1ZgfPZjSn6vlXkM00u+gK1AmGgmjykrTIvHHA10Fa9AlKT3/91RWnBw+8SvqUR8HkW9KjuYkhJX4bvvvvv0+uuvS5IWLVqk008/PX2VvnrDGwEAAOWZSs1lgVrkOK5u+/Ijo26N/dg3Tph2P1vFgqzs4EtusvoteTt/mJbvHKnnJ0PHrHCs8Bxyz5+ag/KNLzqHCQwYi4yfzgHjuy9croNWzav2NNL4PIp6VdZWvpRZs2bp3HPPrdRcAABAnTJNo6b+1xmYaqbi1tjJYpiGDE2/ddebyQwYd7/eqz/c8dKoc2psCU7CygGUHUzZtq1f/OIXeuCBB9TZ2amrr75ahx9+uHp6enT//ffrxBNP1Ny5cys5VwAAAGDaWnrUHK25+DC2xqIuTWbAOO/AVm367RujViDOX9Y2KfMBpruygqnu7m6tWbNGjz/+uJqamjQwMKBLL71UktTU1KTPfvaz+vjHP65rrrmmopOtFq7KBwAAgFqw9Kg5WrJyNltjgXGgAhGoLWY5T/rSl76k5557Tvfee69eeeUVZbapsixL55xzjn7zm99UbJLVdskll2jLli164oknqj0VAAAATHOprbEHrZqnBQe38+EZKEOqArGxzbtdr6k9qDUXH0YFIjCJyqqYuuuuu3TppZfq3e9+t/bu3Zvz+EEHHaQNGzaMd24AAAAAAEwIKhCB2lBWMNXT06MlS5YUfDwWiykej5c9KQAAAAAAJhoX5wCqr6ytfEuXLtXTTz9d8PHf/va3Wr58edmTAgAAAAAAQP0rK5j65Cc/qVtvvVW33357ur+UYRiKRCL6yle+oo0bN+riiy+u6EQBAAAAAABQX8rayve5z31Ozz33nM4991y1tbVJkj7ykY9o7969isfjuvjii3XhhRdWcp4AAAAAAACoM4abeUm9MfrDH/6gX/7yl9q6dascx9HSpUu1bt06nXzyyZWcY9V1dHSoo6NDtm3rxRdfVE9Pj1paWqo9LQAAAADANNHb26vW1lY+j6LujCuYmm54IwAAAAAAVAOfR1GvyuoxZVmW/u3f/q3g47fffrssyyp7UgAAAAAAAKh/ZQVToxVZ2bYtwzDKmhAAAAAAAACmh7Kan0sqGDz19vbq3nvv1axZs8qeFMbHcWxt/8tz6u/uUlNbuxYcukKmSQUbAAAAAACoLSUHU1dddZWuvvpqSYlQ6rzzztN5552Xd6zruvrsZz9bmRliTLY+9oh+v+Fm9e/bkz7WNGOWTjv/U1q2+oQqzgwAAAAAAMCr5Obn99xzj37zm9/IdV394Ac/0Lvf/W4ddNBB3pMZhhobG3X00UfrAx/4gEyzrJ2CNavWm81tfewR/eo71xR8/K8u+zLhFAAAAABMQbX+eRQoV8kVU2vXrtXatWslSQMDA7r44ot13HHHTdjEMDaOY+v3G24uOuaBn96spatWs60PAAAAAADUhLJ6TP3kJz+p9DwwTtv/8pxn+14+fXv36PZ/vFxtc+bKHworEA7LHwopEEp89YfCCoTCCiRv+0MhBcKJY/5gSCZXWgQAAAAAABVUVjB1/fXX69e//rXuvffevI+vXbtWf/VXf6VPf/rT45pcrejo6FBHR4ds2672VArq7+4qadyOF7ZoxwtbynoNnz+QDqvSwVUyzBoJtkLJ4w3Jr6F0CDYybiQMo3oLAAAAAIDpq6xg6kc/+pFOO+20go8vX75cN998c90EU5dccokuueSS9J7eWtTU1l7SuLe/531qap+h6PCwYsNDig0PKzo8pGjydmx4SNHksdjwkKJDQ3IdR5IUj0UVj0U11NdbsXn7AsF0gJUIq7xVXKkQLBAM5a3ySj1npMorSNgFAAAAAMAUUVYw9fLLL+uSSy4p+PghhxyiW265pexJYewWHLpCTTNmFd3O1zxzlk752AVjCm5c15Udj6dDqlRwFRseVjQypNjQUDrkSnwdHHk8FXylnhcZzg27ohHFoxEN9faM+3uQ4gsGR4KrkgOt5LbFYEb1Vzj5eDAko84a+QMAAAAAUAvKCqYCgYB27txZ8PG33nqr7q7IV+tM09Jp53+q6FX5Tl3/qTFXExmGIZ/fL5/fr3BzZa784Lqu7Fgsq0prKKuKa1jRoUHFIhlVXMmAK/V4LKPSKzo0JNdNhl2RiOKRiFS5rCsddmVvW/RWeZUWghF2AQAAAACQYLiu6471Se95z3v0/PPP609/+pOam5s9j/X09OjII4/UwQcfrI0bN1ZsorVgKlyec+tjj+j3G272VE41z5ylU9d/SstWn1DFmU0sb9iVVcU1lBFgDQ8pFhnOqv7KfDwjHMsIuyaCP5jRbyucEVyVVOWVp3dXIEjYBQAAANSpqfB5FChHWcHUY489plNOOUULFizQ5z//ea1YsUKStHnzZl133XXasWOHHnjgAR1//PEVn3A1TZU3AsexE1fp6+5SU1u7Fhy6gr5LZXBdV/FY1Nt7y1O1ldubK73lMZJnK2Nyi+OEhV2GIX8w5A2u8vTuCoTDyVAsXLTKKxAKyxcMyjCMiZnvFMHPEwAAAGrBVPk8CoxVWcGUJN133326+OKL9eqrr6Y/uLquqyVLlujGG2/UGWecUdGJ1gLeCDBe6bArpzdXVlVXTqA1UumVr1G9yvsxHl1G2JUItDK2LYYbMq7CmAi70s3qM3t3ZWyBnGphV74KxKYZs3Ta+fVdgQgAAIDaw+dR1KuygylJchxHmzZt0ssvvyxJWrp0qd7+9rdPmQ+dY8UbAWqR67qKRyPe3lyp4CqSbEQ/NNKUPn9Pr9wtkBMZdnn7bY1UbI3Wuyu1zTHRrH4kGPMFKh92bX3skaI92/7qsi8TTgEAAGDS8HkU9WpcwdR0wxsBpotU2JWo2hrOquYqVu2VsZ1xeFixiHcL5IRJhl3lblvMbk5vBQPa8HefVv++vQVfsnnmLH3yhh+zrQ8AAACTgs+jqFclXZXv4YcfliSdfPLJnvujSY0HMLUYyS18/mCoYud0HUfxaNQTcnm2JQ5lbVvMDLgyenRFhwc9IVji5G7i+UMTGH5l6du7R7/6zjc1Y7+FyUqu5K9UVVfySo7+YDAdlvlDIfn8gbqtKgUAAACAsSqpYso0TRmGoaGhIQUCgfT9QlzXlWEYsm27opOtNhJqoLa4jqNYehtjRlVXKT28sqq/0n29IsMTOmfDMOUPBdPhlT/Vnysdanm/ZjazLzieqzICAADUPT6Pol6VVDH1wAMPSJICgYDn/nTR0dGhjo6OugvagKnOMM10c/VGtVfknK7jaNufntad3/rHUcceevKpamhuUWw4kgi6IpF0xVdiK+NwutIrHo0kzu86E1bd5UtVaeULt4IFKrpCBcKwdD+vINsVAQAAAEwYekyNAQk1MD04jq1bLrnQczW+bGPtMeU4tuKRiGKRSMYWxuHcECuS2s4YyWhO7x2XrviKRBIVXhP8Nu7zB+QLeQOuQCgkXzDk3a6Yt9IrdT88Epwlx1m+kv5vBAAAAOLzKOoXnwoAIItpWjrt/E8VvSrfqes/NaZKItO0ElcSDDdUrLpL8l6VMbNCK5YVckWzKrlSY6KpMcMRxSLeIMx1HElSPBZVPBbVcF9vxeYtSablSwRcoVDGFReDyRArt9JrJAxLHRsZnznO8vvp4wUAAABMESVVTF1wwQVjP7Fh6Mc//nFZk6pVJNTA9LL1sUf0+w03eyqnmmfO0qnrP6Vlq0+o4swmnuu6smOxrIqu3AArHsmt6MpsYp8ZgMWTz3Hs+ITO3TDNjKqtsKcXV26j+pGKrpzKr6wqMV8gSOAFAACqhs+jqFclBVOLFy/O+cf44OCgdu/eLUlqb0/8739XV5ckafbs2WpsbNQrr7xS6flWFW8EwPTjOLa2/+U59Xd3qamtXQsOXUHPpXGy47FkwJUIu+LZFV15ty8O5d3SmArC4sPDiseiEzvx9NUqi/TyGq1RvSf0So4LhqZF43p+lgAAGB8+j6JelbSV79VXX/Xc37Jli8444wx9+ctf1uc//3nNmjVLkrRnzx5997vf1W233aa777674pMFgMlmmpb2X3FEtadRVyyfX1aTX6Gmpoqe17FtTwP6vEFWuj+Xd8tj3v5eycAsHkk0rpfrJrc9Dmmwp7uic/cFgrkBV06j+gK9vLIb22dsbzSt2gh+8lUfNs2YpdPOr//qQwAAABRXVvPzd73rXTrwwAN1yy235H38oosu0rZt2/S73/1u3BOsJSTUADD9uI6jWKqPV5EgKzqcHYJl9vfKf8XGiW5cb/n9eaq68lR0ZVVzjba90fL5S57D1sceKdqv7a8u+zLhFDBGVCAC0xOfR1Gvymp+/uijj+qcc84p+PhRRx2lf//3fy97UgAA1ArDNBUIhRUIhSt6Xtd1FY9FRwKvfEFWZn+v9LHiVWHR4aF043o7FpMdi2m4v6+iczctq0BVV1YFVzCoP913T9Fz3fejDgXCYZk+nwzDkGFaMk0zedsc+ZW8n3gsdTw5xkgeL/ZY8vnAVEcFIgCg3pRVMbX//vvrqKOO0q9+9au8j7/3ve/VM888ozfffHPcE6wlJNQAgFrnuq7seHykoms4o6KrwHbF7K2Nhfp82fGJbVw/GTLDKplGVtCVCLASj5lZAZmVfiwVoKXDrzwBWOqXaZqSkfU6mSFbVvCWGmOmwzUr57H0PMw8884M6QqEc56555t3Cd8f77wt7zpLDBO5mMDYUYEITG98HkW9Kqti6uKLL9aVV16p973vfbr00kv1tre9TZK0detWXX/99brnnnt01VVXVXSiAABgdIZhyOf3y+f3K9zUXNFzpwOvzCBreFjRSG4lVzwyrJ2vvKRXn3lq1PM2zZipQCgs13XlOo5c15HjOCP3M3+5bvKxzOOuXNcpaQ2u48iVI8ce73cD45Yd9KXDsZH7+SrhcgI4w8gfqBUL84w8r5MOHPO8Tp7AMScwLBLcjRZG5gsTs8/nuokKw2J+/5ObtHDF4fIFArJ8Prb3AQCmhLIqpiTpq1/9qq699lrFYjHPcZ/Ppy984Qv6xje+UZEJ1hISagAASvfGc8/qjqu/POq4dVdeM+6LDLiuK6VDK1euY3uDrIxga+R2MgBzUsfs9PjEueyMx/IEZslwzHEcyckKzJJjPOdIzSv9WJ55ZZwzJ5hLr8XOeMz1zNvNMwfPa2WFf+l5Zz0v8T3InGPW62R+j52sQNEpLSTExDMMMxFQ+Xyykr9Mnz/x1bISF6Mo8Lj3uN8zJn3fssY23jMu47UtXzqIA1AYn0dRr8qqmJKkr3/96/rc5z6n++67T6+//rokadGiRTr99NPTV+kDAADT14JDV6hpxixPL5xszTNnacGhK8b9WoZhSIYhK91HqvQG7ai80gOw/OGfsgPFvNVyuYFivvBP2UFfZvjnuDlz8gSK7ijhX55QrqRAMR3sFQ4Gs88RGRjQYG/3GH8fHMVjUSkWnZjf6EoyjLzhWCJE85UWolmFHx9T6GZZnvAsezwhWn3hYgJA9ZUdTEnSrFmzdO6551ZqLgAAoI6YpqXTzv9U0Z44p67/FB8A6pBhGDIsS5Ilfncro9QKxA9++eva76CDZcfjsuNxOfG47Hgs730ndcyOjzI+cWzkdlxO5hg7e2zG43b+13XsrP20rpu+YIM0NDHfxEopIUQzfVbuGCtPtdgoIVqisi1f1Vl2aEaIVg4uJgDUhrKDKdu29Ytf/EIPPPCAOjs7dfXVV+vwww9XT0+P7r//fp144omaO3duJedaNR0dHero6JCd/RcoAAAoatnqE/RXl3055x/+zTNn6dT1/MMfKFWpFYgHHH7ElAh7XceRbdvpAMux7ZzALPd+ViCWOSb5/MyxRcfnGZM4R54Qzs668MMUDNESgdlo1WKjh2jp8UVCtlFDNMs7h9Rx07ImNUQrdDGB/n179KvvXMPFBIBJVFaPqe7ubq1Zs0aPP/64mpqaNDAwoPvuu0+nnXaabNvWokWL9PGPf1zXXFP4f0inIvb0AgBQHrZKAOPHVfmqw3XdglVl3ooyeyToKml8boiWGY6NHsqVEKJNMaVvuUyEbfkCrlJCNtM09dDPf6zh/v6Cc2meOUufvOHHNfV3FZ9HUa/Kqpj60pe+pOeee0733nuvjjrqKM2ZMyf9mGVZOuecc/Sb3/ym7oIpAABQHtO0xt3gHJjuqECsDsMwkqFG7feuS4RodpGqszxbMnNCtDzj7eLhWClbQ/OFbNlSj8fyrG2y9e3do+1/eY6/u4BJUFYwddddd+nSSy/Vu9/9bu3duzfn8YMOOkgbNmwY79wAAAAAZFi2+gQtXbWaCkTkZWT0v6r1GK1oiGaXtoWzUIjmfW7u4z27O7XntW2jzrG/u2sSvhMAygqmenp6tGTJkoKPx2IxxfMk4AAAAADGhwpE1INqhmilXkygqa19EmYDwBx9SK6lS5fq6aefLvj4b3/7Wy1fvrzsSQEAAAAAMBFSFxMopnnmLC04dMUkzQiY3soKpj75yU/q1ltv1e23365U73TDMBSJRPSVr3xFGzdu1MUXX1zRiQIAAAAAMF6maem08z9VdMyp6z/FFllgkpR1VT7XdfWpT31KP/7xj9XW1qbu7m7NnTtXe/fuVTwe18UXX6wbb7xxIuZbVVwFAQAAAADqw9bHHplSFxPg8yjqVVnBVMof/vAH/fKXv9TWrVvlOI6WLl2qdevW6eSTT67kHGsGbwQAAAAAUD8cx54yFxPg8yjq1Zibnw8ODuq8887TBz/4QX30ox/VSSedNBHzAgAAAABgQnExAaD6xtxjqqGhQb/73e80ODg4EfMBAAAAAADANFFW8/OTTjpJf/zjHys9FwAAAAAAAEwjZQVTN9xwg/73f/9XV1xxhd58881KzwkAAAAAAADTQFnNz5ubmxWPxxWNRiVJPp9PwWDQe2LDUE9PT2VmWSNoNgcAAAAAqAY+j6Jejbn5uSR98IMflGEYlZ4LAAAAAAAAppGygqkNGzZUeBoAAAAAAACYbsYUTA0PD+u///u/tW3bNs2aNUtnnXWW5s+fP1FzAwAAAAAAQB0rOZjq7OzUCSecoG3btinVlqqhoUF33XWXTj/99AmbIAAAAAAAAOpTyVfl+/rXv65XX31Vf/d3f6df//rXuu666xQOh3XxxRdP5PwAAAAAAABQp0qumPrtb3+rj3/84/qXf/mX9LG5c+fqIx/5iF544QUdfPDBEzLBWtDR0aGOjg7Ztl3tqQAAAAAAANSNkiumXn/9dZ100kmeYyeddJJc19WuXbsqPrFacskll2jLli164oknqj0VAAAAAACAulFyMBWJRBQKhTzHUvfj8XhlZwUAAAAAAIC6N6ar8r366qt6+umn0/d7enokSVu3blVbW1vO+Le//e3jmx0AAAAAAADqluGmLrE3CtM0ZRhGznHXdXOOp47VW0+m3t5etba2qqenRy0tLdWeDgAAAABgmuDzKOpVyRVTP/nJTyZyHgAAAAAAAJhmSg6m1q9fP5HzAAAAAAAAwDRTcvNzAAAAAAAAoJIIpgAAAAAAAFAVBFMAAAAAAACoCoIpAAAAAAAAVAXBFAAAAAAAAKqCYAoAAAAAAABVQTAFAAAAAACAqiCYAgAAAAAAQFUQTAEAAAAAAKAqCKYAAAAAAABQFQRTAAAAAAAAqAqCKQAAAAAAAFQFwRQAAAAAAACqgmAKAAAAAAAAVUEwBQAAAAAAgKogmAIAAAAAAEBVEEwBAAAAAACgKgimAAAAAAAAUBUEUwAAAAAAAKgKgikAAAAAAABUxbQMpv76r/9a7e3tOuecc6o9FQAAAAAAgGlrWgZTn/vc53TbbbdVexoTxnVcDb/crcFnOjX8crdcx632lAAAAAAAAHL4qj2BanjnO9+pBx98sNrTmBBDm/eo+39elt0TTR+zWgNqO3upwofNquLMAAAAAAAAvKZcxdTDDz+ss88+W/vtt58Mw9Bdd92VM6ajo0OLFy9WKBTS6tWr9fjjj0/+RKtgaPMe7f35XzyhlCTZPVHt/flfNLR5T5VmBgAAAAAAkGvKBVMDAwNauXKlOjo68j5+++2367LLLtPXvvY1Pf3001q5cqXOPPNMdXZ2TvJMJ5fruOr+n5eLjun+n1fY1gcAAAAAAGrGlNvKt3btWq1du7bg49/5znd00UUX6ROf+IQk6aabbtLdd9+tW2+9VV/60pfG9FqRSESRSCR9v7e3V5IUj8cVj8clSaZpyjRNOY4jx3HSY1PHbduW67qjHrcsS4ZhpM+beVySbNsuejzySk9OpVQ2uyeivb98QYEFTTJClsywX77GgBQ0paApM2TJ8Fs1s6YUn88n13U9xw3DkGVZOXMsdJw1sSbWxJpYE2tiTayJNbEm1sSapvKaso8D9WLKBVPFRKNRPfXUU7r88svTx0zT1Omnn64//vGPYz7fN7/5TV111VU5xzdt2qTGxkZJ0uzZs7V06VJt27ZNu3fvTo9ZuHChFi5cqBdffFE9PT3p4wceeKDmzJmjzZs3a2hoKH38kEMOUVtbmzZt2uR5UzziiCMUCAT05JNPeuZwzDHHKBqN6tlnn5Ukhd90NLOENQ0/vVvDT+8u+LhrSgqa8jcFFTXiiiouxy85fkNNM5rVOrddu7r3aCA+lDwuLTzwAM1aMEebt27RUGS4YmuSEm/Cq1atUk9Pj55//vn08XA4rJUrV2rPnj165ZVX0sdbW1t16KGHaseOHXrzzTfTx2vl94k1sSbWxJpYE2tiTayJNbEm1sSaylnTpk2bBNQjw82MaKcYwzB055136v3vf78kaceOHVqwYIEeeeQRHX/88elxX/ziF/XQQw/psccekySdfvrp+tOf/qSBgQHNmDFDv/jFLzzjU/JVTO2///7au3evWlpaJNVO4h95pUddt24Z9XsWOKhNht+UOxSXM2zLHbblDMXlDselCvxJMPymjLBPZrIiywz7EtVYYV+iSivkk9XolxnyyQ2YMsOWjJBPZtgnX0NAhmlM6f/FqMf/mWFNrIk1sSbWxJpYE2tiTayJNVV/TV1dXZo5c6Z6enrSn0eBelBXFVOl+t3vflfSuGAwqGAwmHPc5/PJ5/N+61JvLtlSbyKlHs8+b6nHrbfNUG9roOh2Pqs1qNnnHybDNHIecx1XbtSWMxyXM2TLHYrJGUrdj6fDKycZaDlDMbkZj7uRxBu5G3PkxqJyeiVpKOd1RmMELZlhXzLI8qVvJ4Ku7GO+RAgW9iUCrkDijVwq/PtR7d8nz1oNI+/xsc6dNbGmsR5nTaxJYk2F5jjW46yJNUmsqdAcx3qcNbEmiTUVmmOx48BUV1d/smfNmiXLsrRr1y7P8V27dmnevHlVmtXkMExDbWcv1d6f/6XgmLazD8wbSqWeb4QSYY/axv76ru3KjXiDK2fIHgmzhuJyhuPpSq3sY24s8T8LbsSWHbFld0dGecU8TI2EVaHMQMsvI2yNHMsMuNKVXZbkM9PBFgAAAAAAmHh1FUwFAgEdffTRuv/++9Pb+xzH0f3336/PfOYz1Z3cJAgfNkszzztU3f/zsqdyymoNqu3sAxU+bNaEvbZhGTIa/DIb/GU93407I9VXWcGVM5QKtDKDL+8x2a7kSM5gXBqMyx79JXNZRm41VqhQBZdvZHtiarxvyl3kEgAAAACAqppywVR/f79eeuml9P1t27bpmWee0YwZM3TAAQfosssu0/r163XMMcfo2GOP1XXXXaeBgYH0VfrK0dHRoY6Ojpz9yLUofNgshZbPVGRbj5y+qMzmgIJLWgtWStUKw2fKagrIagqM+bmu6ya2EBYJrjzbETOCr9Rz5EqyXTn9MTn9sfLWkOqvlVWxlXMsp2Ircb/Wf48AAAAAAKi0Kdf8/MEHH9Spp56ac3z9+vXasGGDJOmGG27Qtddeq507d+rII4/U97//fa1evXrcr93b26vW1laazdUZ13XlRjL7a2VVa3m2I+aGXqn+WuOVt79WkYotI9lbywz7PP21AAAAANQfPo+iXk25YKqaeCNAPq7j5lRreZvFZ25HLNxfa1wM5W0Yb4R8MhsyK7gyGsZnhF701wIAAABqG59HUa+m3FY+oNYYZg3013Ir1F8r1TurULWWZzsi/bUAAAAAAONDMAVUWV3118qu2MppFu99fCr013Idd8r1bAMAAACAqYJgCpjCDMOQEbCkgCWrJTjm51eqv5Ybc+TGonJ6o6O8YoF1BK2iWw2zK7bS/bVCPhnBieuvNbR5T56rXAbUdvbSCb3KJQAAAABMFwRTJZhKV+UDxsIwjEToE/JJbWN/fqX6a7kRW3bElq1IGYso0l8rnHksN/QyQr5EtVeeYGto8x7t/flfco7bPVHt/flfNPO8QwmnAAAAAGCcaH4+BjSbAypr1P5aWRVb2RVdsivw9pXRX8tIh1qWIi90yY0WbkxvNgc057NHyWrwybDosQUAAICJxedR1CsqpgBUzXj7aynuFN1q6AzH5QxOTH8tpy+qnd94LHHHZyaqsILJSq2gldiemNxqaIYsGcFk6BW0ZAaTzeMzxpshi6sjAgAAAJh2CKYATEmGYUh+S5Z/HP21oqmwyvYEWsMvdWtoU2fpJ4s7cvqdspvHp5lG0fAqcb9A2JURiBkBiwbtAAAAAKYEgikA05JhGIlgJ5jbX8tqC5YUTM268DAFFjQlqrEittxIcsth+muisXzia/J4xE5sW4xkHI/aieotx5UzGJcG4+X128pcX9DyhlmpkCsrzMoNuUYquIygxTZFAAAAABOKYAoAsgSXtMpqDXiuxpfNag0quLRNhmnIbPCP6/Vcx5UbSwVWecKsVMgViafHuMP5Qq64lGyLlWoor95xTS3RHD4zxMpXwVVgG2PmGPkMtikCAAAAyEEwVQKuygdML4ZpqO3spXmvypfSdvaBFdsuZ5iJ6i0FfbLGcZ50362i4VWBiq6M8c6wLcWTV0yMOXJjFdimaBmj9+DKCLIKVXUZAfpwAQAAAPWEq/KNAVdBAKaXoc171P0/L3sqp6zWoNrOPlDhw2ZVcWYTz407ye2J+cOrUbcpprc3VjjQNyQjkL/H1mgVXZ4xQZ8Mi4ALAABMHXweRb2iYgoACggfNkuh5TMV2dYjpy8qszmg4JLWadFY3PCZsnym1FiBbYrRAhVc2ZVdBbYxpvp3yZHkZmxTVOGtliWt0W+W3IOrWNN5w0cfLgAAAKBcBFMAUIRhGgotbav2NKYswzQSFUwhn9Q69qsnprium9hWOMYeXPmquRRPFAqntyn2VWCbYp7tiNm9twpXcyW+Gv763qboOu60DHkBAABQHMEUAKDmGYYhI2BJAUtWc2Bc5xp1m2KBiq7sMW40uU3RduUMxKWBuMa1cdFQ4e2J+Sq4spvOZ1R21Vrgk39bbEBtZy+t+22xwEQg6AUA1BOCKQDAtFLxbYqFGsrnqegqNEauEtsUh+Oyh+PjX2PALBhy5TSdT43JF3ZVYJvi0OY9eS8kYPdEtffnf9HM8w4lnALGgKAXAFBvCKYAACiDZ5uiKrBN0VOpNUrF1mjbFKOO3GhUTt84F+kz8vbgKlSplR12GQFLXb96uehLdP/PKwotn0m1B1ACgl4AQD0imCpBR0eHOjo6ZNsVvroUAGDa82xTVIW2KWZvS8xXwVWk6bwbdRInjLty4jFpIDa+bYpF2D0R7fzOk4mAzzBkSJIhyTASX5W4bRgZxzPGGBljMh/3jM857j23jMTvw8gx7xgj6xwyE4PGNKeccyWfkLxd9LjnXAVeI/v7JO9477m88zaM3LGe41lrGXmNrOPZ3zvP8cz1Za3BNDznMvLNP3WojvuwjcZ1XHX/D0EvUGlsjQWqz3Bd1632JKYKLs8JAJgOXDt1NcU8V08cLrAtsUCfLqDicgKrAoGcDBmp3ahZwV9OqGiOFlxmnbtYcJkdKpqZxwuHqenXKRCc2n1RRV7qHvXbEzpilvztocTrmsnXS982EsGqYSQ+eGfeTj5mJMcmjifnYKbGyHue9O3UmIzxpb6umRWcApNoqm2N5fMo6hUVUwAAwMOwDBlhn8zw+P6ZMPxyl/bcsnnUcS1rFss/r1Fy3XS/LSX/38zNPKaR2wWPK/ccctz0MM9x103cTD2YLBQbOZ4aNzLGzTxH1pj0nJT5eKHjmXPKfJ2s18g+nnWOxPm934PMMW7WOTxzypqn9/vt/f56vk/Zv0dOgeMFfo/GLfOcyQOFTjsd//d1+Nk9Gq72JMqRCrJyArGM26OEZ55ALPVY+na+wCz7cWUEdRnjUuFZOsArIYQzswK/Mcwx/Vpjed3s18Ko2BoL1A6CKQAAMCGCS9pktQY8/xOdzWoNqvnkhWybmEYKB1Z5QjknFXJpJCzTyO10KOdkH88K5FIvNaZQsXAg5wkVs8Z4Q82MMDBjPd7juaFevvA1vmdIA4/tHPX7GzpilnwtwUQg6yQn5CjjdnJdTtZtNznecRNhY56xiTH5H3MzH88zdtSU0JVkJxbsZh3GGKUq7zIDsZwQTEUq2rIDsaxgLbN6LqeSrkiwZo2hai/rdQuNLTT/0eboylXXf7M1FqgVBFMAAGBCGKahtrOX5v0f6ZS2sw/kH/3TjKd3lby/9/xJKMx1XA0/v2/UoHfmhw+pyZ+pdNCWFVq5dkZ4lgqxcgIz5YRnnvGuRo6XEJ55g7oSXtdxC7xWVuCX+bqpMC77tjvK/NNjlLHejNupx4p+szWytoxoj5BvbOyeiCLbehRa2lbtqQB1j2AKAABMmPBhszTzvEPz9PAIqu3sA9kmAZRoqge96UAy1c+rutOZ8goGazkhmEYP1rJDu4zwLDsQc8cQnuWc084IF4uFdgXmmPd1PefJ91rKHxzazugBnySnr3AQDKByCKYAAMCECh82S6HlM7nqETBOBL1ISbx/GpJFyFeO4Ze7teeWP486zmwe39VyAZSGYAoAAEw4wzTYDgFUAEEvMH7BJa0l9UAMLmmdxFkB05c5+hAAAAAAtSIV9DYcOUehpW2EUsAYpbbGFlPLW2OBekMwVYKOjg4tX75cq1atqvZUAAAAAADjlNoaa7V6t+tZrUHNPO9QtsYCk8hw09fTxWh6e3vV2tqqnp4etbS0VHs6AAAAAIBxcB13ymyN5fMo6hU9pgAAAAAA0xI9EIHqYysfAAAAAAAAqoJgCgAAAAAAAFVBMAUAAAAAAICqIJgCAAAAAABAVRBMAQAAAAAAoCoIpgAAAAAAAFAVBFMAAAAAAACoCoKpEnR0dGj58uVatWpVtacCAAAAAABQNwzXdd1qT2Kq6O3tVWtrq3p6etTS0lLt6QAAAAAApgk+j6JeUTEFAAAAAACAqiCYAgAAAAAAQFUQTAEAAAAAAKAqCKYAAAAAAABQFQRTAAAAAAAAqAqCKQAAAAAAAFQFwRQAAAAAAACqgmAKAAAAAAAAVUEwBQAAAAAAgKogmAIAAAAAAEBVEEwBAAAAAACgKgimAAAAAAAAUBUEUyXo6OjQ8uXLtWrVqmpPBQAAAAAAoG4Yruu61Z7EVNHb26vW1lb19PSopaWl2tMBAAAAAEwTfB5FvaJiCgAAAAAAAFVBMAUAAAAAAICqIJgCAAAAAABAVRBMAQAAAAAAoCoIpgAAAAAAAFAVBFMAAAAAAACoCl+1J4DKcxxHr732mvr7+9XU1KRFixbJNMkgAQAAAABAbSGYqjNbtmzRxo0b1dvbmz7W0tKiNWvWaPny5VWcGQAAAAAAgBdlNHVky5YtuuOOOzyhlCT19vbqjjvu0JYtW6o0MwAAAAAAgFwEU3XCcRxt3Lix6JiNGzfKcZxJmhEAAAAAAEBxbOWrE6+99lpOpVS23t5e/fjHP9acOXPU1NSU91cwGJykGQMAAAAAgOmOYKpO9Pf3lzRu+/bt2r59e8HH/X5/OqRqbm4uGGA1NjbKsqxKTR8AAAAAAExDBFN1oqmpqaRxJ5xwgkKhkPr7+z2/+vr6FIvFFIvF1NXVpa6urlHP1dDQUFKIFQqFZBjGeJcIAAAAAADqDMFUnVi0aJFaWlqKbudraWnR6aefLtPM31osEonkBFaFfrmuq8HBQQ0ODqqzs7Po3CzLygmrCgVZPh9/JAEAAAAAmC5IAeqEaZpas2aN7rjjjoJj1qxZUzCUkqRgMKhgMKiZM2cWfS3HcTQ4OFhSgDU8PCzbttXT06Oenp5R1xEKhUoKscLhcNG1AAAAAACA2me4rutWexJTRW9vr1pbW9XT06OWlpZqTyevLVu2aOPGjZ7KqZaWFq1Zs0bLly+f9PnEYrGSq7Bs2y75vKZpqrGxsaQQKxAITOAKAQAAAGDiTYXPo0A5CKbGYKq8ETiOo9dee039/f1qamrSokWLar66yHVdDQ8Pq6+vb9QAa3BwcEznDgQCebcNZodYDQ0NNHQHAAAAUJOmyudRYKzYyleCjo4OdXR0jKmip5pM09SSJUuqPY0xMQxD4XBY4XBYc+bMKTrWtm0NDAyMGmL19fUpHo8rGo1q37592rdv36jzyFeFlS/ECgaDNHQHAAAAAGCcqJgaAxLqqcV1XUWj0XRIVSzEGhgY0Fh+FHw+X8GrEGaGWI2NjTR0BwAAADBufB5FveITM+qWYRhlNXQfLcSKRCKKx+Pq7u5Wd3f3qPMIh8MlhVjhcJgqLAAAAADAtEIwBSix/TEVEM2bN6/o2Gg0qoGBgZJCLMdxNDQ0pKGhIe3evbvkOYwWZPn9/kouHwAAAACAqiCYAsYoEAgoEAiovb296DjHcTQ8POzpeVUowBoaGpLjOOrt7fVcUbGQYDBYUojV0NBQ843vAQAAAADTF8EUMEFM01RDQ4MaGhpGbegej8fTVVijhVjxeFyRSESRSER79+4tel7DMAo2dM8OsQKBAFsJAQAAAACTimAKqAE+n0+tra1qbW0tOs51XUUikZyrDxZr6J66Pxq/3z9qgJX6ZVlWpZYOAAAAAJjGCKaAKcQwDIVCIYVCIc2aNavoWNu20w3dRwuyotGoYrGYurq61NXVNeo8GhoaSgqwaOgOAAAAACiGYAqoU5Zlqbm5Wc3NzaOOjUajeauuskOsgYGB9BUMBwcH1dnZOeocSq3CoqE7AAAAAEw/BFMAFAgENGPGDM2YMaPouNRVBksJsYaHh2Xbtnp6etTT0zPqHEKhUEkB1mQ3dHccR6+99pr6+/vV1NSkRYsW0VAeAAAAACqEYApAyUzTVGNjoxobGzV37tyiY2OxmKehe7EQy7ZtDQ8Pa3h4WHv27Cl6XsMwSq7CCgaD41rvli1btHHjRs+VEltaWrRmzRotX758XOcGAAAAAEiG67putScxVfT29qq1tVU9PT1qaWmp9nSAuuC6roaHhwtehTAzxBocHBzTuf1+v5qbm0cNsBobG3Maum/ZskV33HFHwXOvW7eOcAoAAACThs+jqFdUTAGoKsMwFA6HFQ6HNXv27KJjbdsuWIWVHWLFYjHFYjHt27dP+/btG3UeqYbuzc3Namxs1PPPP190/MaNG3XIIYewrQ8AAAAAxoGKqTEgoQamjkgkUjDAygyxBgYGVO7b4AEHHKB58+alA63Mr5PdCwsAAAD1jc+jqFdUTAGoS8FgUMFgUDNnziw6LnWVwczQ6qWXXtLmzZtHfY3XX39dr7/+et7HUv24MrcSZodXqa/Z2wgBAAAAYLogmAIwrZmmmQ6OUlpbW0sKpo499lgFAgFPBVZfX58GBwflOI76+vrU19c36nkytxEWC7ECgcC41goAAAAAtYZgCgCyLFq0SC0tLZ6r8WVLXZ0v33Y927bz9r3KDK9Sx1IVW4ODg+rs7Cw6r0AgULDqKvN2OByWYRjj/j4AAAAAwEQjmAKALKZpas2aNUWvylcolJIky7LU2tqq1tbWoq/jOI6GhobyBlbZx2KxmKLRqPbu3au9e/cWPa9lWUW3DmY2eacPFgAAAIBqovn5GNBsDphetmzZoo0bN3oqp1KVUsuXL5+0ebium27mPlqINTw8XPJ5DcNQY2NjSSGWz8f/YwAAAFQTn0dRrwimxoA3AmD6cRxHr732mvr7+9XU1KRFixbVdJVRLBYrunWw3KsRhkKhguFVZogVDAbZRggAADAB+DyKesV/gQNAEaZpasmSJdWeRsn8fr/a29vV3t5edJxt2xocHMwJr/KFWLZta3h4WMPDw9q9e/eor18svMrsg1XLAR8AAACAyUEwBQDTkGVZam5uVnNzc9FxrutqaGgob3iVHWJFo1HFYjF1dXWpq6ur6Hkzr4ZYLMRqbGyUZVmVXDoAAACAGkIwBQAoyDAMNTQ0qKGhQXPmzCk6NhqNFgyvMkOswcFBOY6j3t7eolc+TGloaBi1Aqu5uVl+v79SywYAAAAwSQimAAAVEQgENHPmTM2cObPouHg8roGBgZJCLNd1NTg4qMHBQe3atavoeYPBYEnbCEOhEH2wAAAAgBpBMAUAmFQ+n0+tra1qbW0tOs5xHA0ODhYNr1Jf4/G4IpGIIpGI9u7dO+rrl7KNsKGhgT5YAAAAwAQjmAIA1KTMPlTz5s0rOM51XUUikVHDq76+PkUiEcXjcXV3d6u7u7vo6xuGkX790a5G6PPx1ykAAABQDv4lDQCY0gzDUCgUUigU0uzZs4uOjcViJVVgDQwMyHVd9fX1qa+vb9Q5hMNhT1BVKMQKBoOVWjYAAABQF6ZdMPXrX/9af//3fy/HcfQP//AP+uQnP1ntKQEAJonf71d7e7va29uLjrNtWwMDAyWFWI7jaGhoSENDQ+rs7Cx63kAgkFNtlS/ECofD9MECAADAtGC4rutWexKTJR6Pa/ny5XrggQfU2tqqo48+Wo888siojXpTent71draqp6eHrW0tEzwbAEAtS7VnD3VrL1YiBWLxUo+r2VZOcFVvhCrsbFRlmVN4AoBAECt4PMo6tW0qph6/PHHtWLFCi1YsECStHbtWv32t7/VueeeW+WZAQCmIsMw1NjYqMbGRs2dO7fo2Mw+WMVCrKGhIdm2rZ6eHvX09Iz6+g0NDUX7X6Vu+/3+Si59zBzH0Wuvvab+/n41NTVp0aJFNJcHAADA1AqmHn74YV177bV66qmn9NZbb+nOO+/U+9//fs+Yjo4OXXvttdq5c6dWrlyp66+/Xscee6wkaceOHelQSpIWLFig7du3T+YSAADTVDAYVDAY1KxZs4qOi8fjnqCqUIiV6oM1MDCggYGBUV8/FAqN2sS9ublZwWCw4tsIt2zZoo0bN6q3tzd9rKWlRWvWrNHy5csr+loAAACYWqZUMDUwMKCVK1fqggsu0Ac+8IGcx2+//XZddtlluummm7R69Wpdd911OvPMM/XCCy9ozpw5VZgxAABj4/P51NbWpra2tqLjHMfJ6YNVKMSybVvDw8MaHh7Wnj17Rn39QuFVZojV0NBQUsXTli1bdMcdd+Qc7+3t1R133KF169YRTgEAAExjUyqYWrt2rdauXVvw8e985zu66KKL9IlPfEKSdNNNN+nuu+/Wrbfeqi996Uvab7/9PBVS27dvT1dT5ROJRBSJRNL3U//TG4/HFY/HJSUuZ26aphzHkeM46bGp47ZtK7ONV6HjlmXJMIz0eTOPS4lGvKUc9/l8cl3Xc9wwDFmWlTPHQsdZE2tiTayJNU2NNYXDYTU0NGj+/PlF557ZBytVYZW64mDqeH9/vyKRiOLxuLq6utTV1aViTNNUY2NjOqhK/WppaVFzc7MaGhoUDod1zz33FD3Pxo0bddBBB3mO1dvvE2tiTayJNbEm1lSJNWUfB+rFlAqmiolGo3rqqad0+eWXp4+ZpqnTTz9df/zjHyVJxx57rDZv3qzt27ertbVV99xzj7761a8WPOc3v/lNXXXVVTnHN23apMbGRknS7NmztXTpUm3btk27d+9Oj1m4cKEWLlyoF1980dMj5MADD9ScOXO0efNmDQ0NpY8fcsghamtr06ZNmzxvikcccYQCgYCefPJJzxyOOeYYRaNRPfvss+ljlmVp1apV6unp0fPPP58+Hg6HtXLlSu3Zs0evvPJK+nhra6sOPfRQ7dixQ2+++Wb6OGtiTayJNbGm+lnTq6++mrOmI488Un/5y19y1tTW1qYnnnhCvb29ikQiGh4eVnNzs2KxmLZv367h4WFFIhFFo1E5jpMOt8ajt7dXv/71r+W6rnw+nyzLUltbmw4++GDt3btXnZ2d6X+o1/PvE2tiTayJNbEm1jTamjZt2iSgHk3Zq/IZhuHpMZXqH/XII4/o+OOPT4/74he/qIceekiPPfaYJOlXv/qVvvCFL8hxHH3xi1/Upz71qYKvka9iav/999fevXvTV0Eg8WdNrIk1sSbWNN3WZNuJrYF9fX3q7e1NV17lq8aq1D8zAoGAgsGgAoGAAoGA/H6/gsFg+mvqdurx1PhQKCSfz+d5LBwOy+fz1f3vE2tiTayJNbGm+lpTV1eXZs6cyVX5UHemXTA1HlyeEwCA0r3yyiu67bbbRh23YMEC+Xw+RaPRdEVW6tdEsSzLE2BlB1rF7hc6Vumm8QAAZOLzKOpV3WzlmzVrlizL0q5duzzHd+3apXnz5lVpVgAATF+LFy9WS0uL52p82VpaWnThhRfKNHMbqTuOo1gs5gmq8oVXo93PPJb6H3HbtjU0NOTZQjFeYw2zRrvv89XNP9MAAAAKqpt/8QQCAR199NG6//7701VUjuPo/vvv12c+85nqTg4AgGnINE2tWbMm71X5UtasWZM3lEo9P7VNr1Js2x41vBpr4JVS6Sqv1PrHW82Vuu/3+wt+rwEAAKplSgVT/f39eumll9L3t23bpmeeeUYzZszQAQccoMsuu0zr16/XMccco2OPPVbXXXedBgYG0lfpK1dHR4c6Ojpy9iMDAIDili9frnXr1mnjxo2eyqmWlhatWbNGy5cvn9T5WJalcDiscDhckfO5ruup6hpL9Vah+6neIo7jVLyqK9WTa7zVXKljqX4oAAAA5ZpSPaYefPBBnXrqqTnH169frw0bNkiSbrjhBl177bXauXOnjjzySH3/+9/X6tWrK/L67OkFAKA8juPotddeU39/v5qamrRo0SKqdwpIVXVVavtiNBqtWBP6bKZpVqSaK/MXfy4AID8+j6JeTalgqtp4IwAAAFON67qKx+MVqeZKHcu+YlQl5bu64ni2M/p8vrqr6iLoBaYnPo+iXk2prXwAAAAYG8Mw5Pf75ff7K3ZOx3Equn0xEomkq7pisZhisZgGBgYqMlfDMCpSzZV5v5oh0JYtW2pmaywAAJVAxdQYkFADAABUXqqqq5LbF2Ox2ITN1+fzVaSaK3W/1KquLVu2FL2YwLp16wingDrG51HUKyqmAAAAUFWZVV2NjY0VOWdmVVelAi/HcSRJ8Xhc8Xhcg4ODFZmrYRijhll+v19PP/100fP85je/0cKFCxUKheT3++tuCyMAoD5RMVWCzKvyvfjiiyTUAAAA01CqqqtS2xcnsqpLGunXldm3qxK3uRojUB1UTKFeEUyNAW8EAAAAqBTHcRSLxUoKs7Zv364XX3yx2lOW5K3wqnToRRN3oDA+j6JesZUPAAAAqALTNBUMBhUMBkcdu23btpKCqY9//ONauHChp9dW5tfx3LZtW1KiJ1gkElEkEhn39yCbZVkTEnqxtREAahfBFAAAAFDjFi1apJaWFs/V+LK1tLRo8eLFMk1TgUCg4nOwbXtMQdZYxqY2cdi2raGhIQ0NDVV8/pWu7krd9vn4SAUA48G7KAAAAFDjTNPUmjVril6Vb82aNRO6Fc6yLFmWpVAoVNHzpq7KWImqruxjmX28UvcHBgYqOv9UEDgRPb3Y2ghgOqDH1BiwpxcAAADVtGXLFm3cuNFTOdXS0qI1a9Zo+fLlVZxZbUr18apE6JUdgKW2Nk4kn883IaGXz+dja2OS4zh67bXX1N/fr6amJi1atKhmA0E+j6JeUTFVgsyr8gEAAADVsnz5ch1yyCFT5oN0tY2lj9dY2bZdsaAr+3ZKPB5XPB6v+Nwl5QRWlQq9LMuakPlOBIJeoDZQMTUGJNQAAAAAJlJqa+NENLCfqJArU2prY6VDr0pvbdyyZUvRrbHr1q2ruXCKz6OoV1RMAQAAAECNMAwjfSXBxsbGip47tbWxUk3rM287jpN+jeHhYQ0PD1d07tLI1sbxhl4+n0+/+c1vir7Wxo0bdcghh1CNCEwCgikAAAAAmAYmcmvjeBrYj/Z45mvE43ENDg5WfP7Zent79dprr2nJkiUT/lrAdEcwBQAAAAAYF5/PJ5/Pp3A4XNHzuq5b8Qb2g4ODnis2FtLf31/RtQDIj2AKAAAAAFCTDMNIb8Or1NbGbdu26ac//emo45qamiryegCKY8MsAAAAAGDaWLRo0ajNw1taWrRo0aJJmhEwvRFMlaCjo0PLly/XqlWrqj0VAAAAAMA4mKapNWvWFB2zZs0aGp8Dk8RwXdet9iSmCi7PCQAAAAD1YcuWLdq4caN6e3vTx1paWrRmzRotX768ijPLj8+jqFf0mAIAAAAATDvLly/XIYccotdee039/f1qamrSokWLqJQCJhnBFAAAAABgWjJNU0uWLKn2NIBpjSgYAAAAAAAAVUEwBQAAAAAAgKogmAIAAAAAAEBVEEwBAAAAAACgKgimAAAAAAAAUBUEUyXo6OjQ8uXLtWrVqmpPBQAAAAAAoG4Yruu61Z7EVNHb26vW1lb19PSopaWl2tMBAAAAAEwTfB5FvaJiCgAAAAAAAFXhq/YEUHmua6u7+wlFIp0KBueorW2VDMOq9rQAAAAAAAA8CKbqTGfnvXpx69WKRHamjwWD83TQsis1Z86ZVZwZAAAAAACAF1v56khn57368+ZLPKGUJEUiu/TnzZeos/PeKs0MAAAAAAAgF8FUnXBdWy9uvVpSvl72iWMvbv26XNee1HkBAAAAAAAUwla+OpHoKbWzyAhXkchb+sP/nSS/v02WGZJpBmVaia+WGfLeTj6WuJ26Hxy5b4VkmcHEcTMky8oYZwZlGMakrR0AAAAAAExNBFN1IhLpLGlcNNqpaLS0seORDqwyQq30fWskwLLSIdfIMU8gZgWTAVgoIwDLM44wDAAAAACAKYdgqk4Eg3NKGnfQQV9TY8NSOU5EtjMsxx5OfHUicuyIHCd1fzh5P5K+b9vDcpxo4rH0/Uj6tuSkXydxPKK4eiZoxbnMzAquZKiVCq1yKsLSQVkwXQGWWS02UgEWyqgUC+aEaIbBblgAAAAAAMpFMFWCjo4OdXR0yLZrtz9TW9sqBYPzFInsUv4+U4aCwXlauOCjMgxrQubgOLFksBWRkxlaJQOwRMiVeix1PFJgXCosS54vIyxLP+YMe3pmpcIwqXdC1pePaQZGAqx0oJUdjmUGY6kALJi+n1lV5t0qGUqfP3OrJGHY5HJdO7lVtlPB4By1ta2asJ8hAAAAAJhuDNd186UYyKO3t1etra3q6elRS0tLtaeTI3VVvoTM39bEFrfDD+vQnDlnTvq8JlIiDEtVbY0EWHZ2xVcyDMsbjiWrxUYqxTLGZVeVORG5bryqazaMgCwre3tjIGerpLePWCgjDAtmbZUcCdNGeod5K8emaxjW2XmvXtx6tad/WzA4Twctu7LufpYAAABQ22r98yhQLoKpMZgKbwT5P0jP10HLvsoH6QpxnHjGdsaRii/v9kZvIJZZRWYXqP7yVodFPFslaysMSzW8z+4jlrttMjMQ8wZgozXSD1a9Kmkk6M1+i6zfoBcAAAC1ayp8HgXKQTA1BlPljYCtR/VnJAyLZIRWBUIvzzbKSFbF13Ce6rBoVh+xVGVYrKprNgx/Tr8vK28j/exqsZCs1BbLrEb6mdVinkb6yfupnxPXtfV/j5xc5EqXia2xJ57wED9bAAAAmBRT5fMoMFb0mKpDhmGpvf24ak8DFWSaPplmk6SmSXvNRBgWyRuIeQOwPNVhnkAst5F+drVYKhDLDMNcNybbjsm2+ydtzakwTDJl28V6lbmKRN7Sa6/drBkzTpTf3y6/f4Ysq4GrQwIAAADAGFAxNQYk1MDEcl3bs4XRWx0WyegdNpy/QX5WPzBPOOZEvH3IktVirhut2PxNMyi/f4YCgRmJr/4Z8geSXzOOp277fC3Ttn8XAAAAxobPo6hXVEwBqBmGYcnna5TUOGmv6bp2TgDW1f2Enn/+8lGfGw4tluMOKxbbJ8eJynEiikTeUiTyVkmvbRhWutoqFWLlBFoZwZbf3y7T5G0bAAAAQP3gE04dsl1Xj3b3qzMa15yAT8e1NcliexGQl2FYsqwGWVZD+lg4fIC2bfueIpFdym1+LqV6TB1//G9lGJZc15VtDygW61I0tk+x6D5FY3uTX/cpFusauZ38atv9cl1b0egeRaN7NFDifH2+Vm9Flr9d/sDMgmGWZYUq8W0CAAAAgAlBMFVn7t7drSu2btdbkZFePfODfv3TsgU6a3Zb9SYGTCGGYemgZVcmr8pnyBtOJULeg5Z9Nd343DAM+XxN8vmaFA7vX9Jr2HZEsWRoNWqYFdunWKxbkqt4vEfxeI+kbSW9jmU15NlWmCfMSm4vtKwm+mQBAAAAmDT0mBqDWt/Te/fubn1y86sFLm4v/eiwxYRTwBh0dt6rF7de7bk6XzA4Xwct+6rmzDlzUufiunYyxMqtvorF9ioW7UqHWNFo4qvrxsf8OoYRUMDf7qm+8vvbk7dn5umX1cqVCQEAACZBrX8eBcpFMDUGtfxGYLuujvnjFk+lVCZDicqpJ45fzrY+YAxc11Z39xOKRDoVDM5RW9uqKRHEuK6reLwvWW01Elalv+Y57jhDZbySKb+/zdv0PTPM8s9QIDDTc9w0AxVfLwAAQL2r5c+jwHiwla9OPNrdXzCUkhIbkXZEYrr5jd16R3uTZvh9avf7FLa4IhhQjGFYam8/rtrTGDPDMOT3t8jvb5G0uKTn2PZQOqjKCbGiuWFWPN4ryUmPHxwsbW6W1ZQMqWZm9Mtqz9pWODPd8N2yGtheCAAAANQpgqk60RktbcvOVS/v8NwPm6Zm+C3N8PuSYZXl+TozGWDNSB/3qYEwC6hLlhVWOLxA4fCCksY7TizRCyvWpWh0b54QK+N4NHFfcmTb/Roa6tfQ0OslvY5pBr0VWf6ZyRCrPatSKxFm+XzNMgzepwAAAICpgGCqTswJlPZbuX/Ir2HHVVcsrrgrDTmOtkccbS9SbZUtbBrJsCoRWLVnhVozsoKsGX5LDaZJxQNQZ0zTr2BwjoLBOSWNd11H8XiPotGuZIi1N0+/rK6RRvCxfXKcqBwnokjkLUUib5X0OoZhJRq8e5q+z8zqlzUj3TfL72uTafLXIQAAAFAN/Eu8BB0dHero6JBt29WeSkHHtTVpftCvnZFYgYvbJ3pMPXpcoseU67rqsx11xeLaG4trX8xWVyyufbG4umK29iWPp253JcfEXFdDjquhSEw7xhBmBU1jJMjy+TQj4FO7L1mVlXE7FWTNTFZmEWYB9cMwzGRg1C7pwFHHu64r2x5IhlhduVcujGZf1XCfbLtfrmsrGt2jaHSPBkqcm8/XmlGR5b1aYWYj+MSxmbKs4Li+FwAAAAASaH4+BrXebC51VT4p38Xtx39VPtd11W872pcVZKXCrMwgKzPgipb5RyxgGDmVWO3J0Mp7bCTMaiTMAqY1244ke15lBlZ781RkpXppdUt54/ziLKshN8TKF2YltxpaVhPvTQAAYFxq/fMoUC6CqTGYCm8Ed+/u1hVbt3saoe8X9OvryxaMK5Qql+u6GrSd3KqsuK290cTXfbG49kXj6oonxuyLxRVxyvtj6TcMz/bC/P2zRoKsdr9PzYRZwLTlunYyxOrKs61wb7o3VmbTd9ctradfJsMIeBu8F6jOSlVt+f1t9MkCAAAeU+HzKFAOgqkxmCpvBLbr6tHufnVG45oT8Om4tiZZUyh4cV1Xg46Ts71wb1YlVmp7YapCa7jMMMtnKH+QldxemNp2mNkIvsVnEWYB05DruorH+xSL7U02d8++gmHucccZKuOVTPn9bVnN3TOuYJjR7D2Q7J1lmoGKrxcAANSOqfJ5FBgrgqkx4I2gtg0me2ZlbjUstL0wNWbIccp6LZ8htfmKVWXlXtWwxWfJJMwCph3bHkoHVd4Qa59nW2HqeDzeW9br+HzNyR5eM/P0y8oNsyyrocIrLc51bXV3P6FIpFPB4By1ta2SYViTOgcAAKYyPo+iXtH8HHWjwTLVYAW0IFR61cBQRpiVtyorbmtfNBlkJbcaDtqO4q60JxbXnljpW3pMKR1SZQdZ3v5ZI2NaCbOAKc+ywgqHFygcXlDSeMeJeXpk5YRYOWFWlyRH8Xif4vE+DQ29XtLrmGYoGVylrmA4M6tfljfM8vlayq4U7ey8Vy9uvVqRyM70sWBwng5adqXmzDmzrHMCAACgPlAxNQYk1JCkYdtJ98MqpSqrKxZXv11eZZYpqS0jvMrsn9XuszQjkKzKSt5u9/nU5rem1NZNAOPjuo7i8Z50SJV95UJv0/e9isX2yXGiY34dw/Clr6o4El5lhFmeHloz5fe1yTR96uy8V3/efIlym8wn3qcOP6yDcAoAgBLweRT1ioopYIxClqn5VkDzx3C1+IjjqKvEICvVP6vPduRIyWO2pEhJr2VIavdbavcVq8ryXtWwnTALmLIMw0wHRqVwXVe2PZCsxOrKvXJhNPuqhvtk2/1y3bii0d2KRndroMS5WVarHKdf+a98mDj2/AtXKBCYJb+/XT5/i3xWsyxrDG+wAAAAmNKomBoDEmpMpqjjqDtv0/fE172eLYeJMb3x8iqzDEmtqWbvmVVZySAr31UN230++UzCLGA6sO3ISI+sfGFWbJ9i0a6R27Fu5Q+jSmOaAfl8LfL5mpNfU7cT9/2+Flm+ZvnzPObzNcuyGrlABQCg7vB5FPWKiimgRgVMU3OCpuYE/SU/J+a46o7nr8ram3Ulw9TtnrgtV1J33FZ33NYrY7iAWCLMsjxXNWxPN33PrdRq8/nkJ8wCphzLCsqy5isUml/SeMeJKx7v1o63/ksvv/ztUcf7/e1y3bji8UR1leNEFY3uUTS6p6z5GoYly0qEVf7s4CpZleXzt6Qfzxdy0ZgdAABgchBMAXXEbxqaHfBrdqD0MCvuuJ6eWQWrsjJ6ZnXFbUlSTzwRbG0bKr1fTYvPTPbIKlaV5b2qYTXDLNt19Wh3vzqjcc0J+HRcWxPbHoFRmKZPgcAstbYcUdL4ww+7Qe3tx8l1neQ2w17F7T7FY72Kx3uTjd0zb/cpFs9+LPHVdeNyXVvxeLfi8W4Nl7kGy2qSz9fkqdgaCa+asiq5vIGX39cs02Q7IgAAQCkIpoBpzldmmNUdHyXIise1LzpyuyuWqMzqjTvqjUf1qkoPs5ot01OVNdpVDdv9loKmWcZ3w+vu3d26Yut2vRWJpY/ND/r1T8sW6KzZbeM+P1Dv2tpWKRicp0hkl/Jv7TMUDM5TW9uqxD3DTFcslcN1XTnOsCeoimWEWfFU4BXv9YResYxwy3ESZaO23S/b7vdcSXAsTDNYcCuiL6dCK/vxFllWA9sRAQDAtECPqTFgTy9QPtt11RNPbi+MJqqucrcceq922B2zVV7XLKkpHWYVuKphVqVWu8+nkDUSZt29u1uf3PxqgeuIST86bDHhFFCCkavySd5wqjavyuc40ZEgKzPU8oRcqVCrP6uSK/G1ElLbET1bEf35w6zckCtR1cV2RACoL3weRb0imBoD3giAyeVkhFnFthdmXtWwOx6XXea7WoNlJhu7W3pxIKJIkbfHmX5LPzlsiZp9lhosU41W4mvYNKhyALJ0dt6rF7de7ak+Cgbn66BlX62pUKoSEtsIB/JsP8y3FTH3eGo7YiUktiN6m8Z7Qi1Pv63MSq7Ec9iOCAC1hc+jqFcEU2PAGwFQ+xzXVW/c9lReZTeCzwyyUlsNyw2zshlKBFyJsMpUgzkSWjUmj3set6yR4+bImJzHLJPeVpjSXNdWd/cTikQ6FQzOUVvbKip68khsRxzK7aMV84ZX3u2K3uOOU25nLa/EdsT82w39ORVauQ3m2Y4IAJXF51HUK4KpMeCNAKhPbjLM6orb2heN69e7e/SDNzpHfd5MvyXJ0KDtaMgpd9Nh6UKmkRFqWZ4gKzP4SgVhpQRkjZapQAX6cQGoHSPbEYs1i8/TeyuW2K5o2/0VmYdhWImgymqWz9+cZ7th9pUTs7cksh0RADLxeRT1iubnAKY9wzDU6vep1e/T4nBQQ45TUjB184rFOrE90aTZcV0N2Y4GHUcDtqNBO/OrnXU/47iTuD1Y5DmpyGvYcTXsJKrBpFjBeY2Vz5A3tDJNbwBmZVdyFQ7H2NYIVJ9pBhQIzFQgMLOs549sR8wXZPV6msXn67EVj/elr44Yi3UpFutSuZdHTG1HzOmj5W/O2YboreRK3DfNQHkvXOOoQAQA1BOCKQDIclxbk+YH/doZiRW4jlji6nzHtTWlj5mGoUafpUZZml3Bubiuq4jjJgIrZySwyg6ycgIwJzfkyn5ONFkwG3elnritnrhdwZmPbGv0hFpmadsaR6q88leBsa0RmDiGYcnvb5HfX97/xqe2I3r6aOVsRcxsKJ/bSD61HXHk6ohvlTWXke2IJW5FzOi75fe1yDTDNRew5+/ZNk8HLbuy7nq2AQCmB7byjQGlk8D0kboqn5TvOmL1cVW+mONqMFm1lVvN5WjQtj3Blzf0svMEY05NbGvMDrMaLVPhUbY1pr6yrRGoDY4TyQiyCjWL71U81pfehph55cSKb0fM7KGVFWr5izzm8zVWtJJp5CqX+a8ZW2tXuQRQWXweRb0imCpBR0eHOjo6ZNu2XnzxRd4IgGni7t3dumLrdr0VGdk2t1/Qr68vWzDlQ6mJlNrWWKhyKzsEy7etsdBzJjry8huGt6KrhG2N2dsgvUEY2xpTbNfVo9396ozGNSfg03FtTVS+YcIktiP2F9iKmFuhlf/qiJWpIrWsJm+Flr94363sqyemtiO6rq3/e+RkT6WUl6FgcJ5OPOEhtvUBdYpgCvWKYGoMeCMAph8+TNcO13U17LjeICvupAOtogGY42gg7mjQSVSBDWUFY9EJ/quw0LbG/FsaS9vWmArApsKfx3wh7/ygX/9EyIsa5bqubHvQU41VeCtiX57He+U4kYrMxTRD8vlaZBg+RSI7Rh2/eNElamk5XKYVlmWGZFohWWZYlhWWaYaSX4MyDCpEgamGz6OoVwRTY8AbAQDUp9S2xtwqr+J9uvJtaxwJvGwNORP/V2zYNBTO7MNVwrZGz3HTVKNvpDqs0tsaU9ti8288qo9tsUA+mdsRc/ptpQOvPk/IZWeMrdR2xEJMMyjTDMuyUmFV4vZIeJX4aplhmVYw+TURdo08Hko+L5wOwFLHU2MIwIDK4fMo6hXNzwEA057fNNRq+tTqr+x57dTVGj2VW3aeKq/caq+hdJVX/p5eqW2NQ46rofTVGisnZ1vjKP258m1rDJmGvvTCm3kvIuAqEU59det2rZnVOiUqv4CxMM2gAoGgAoFZZT1/ZDtiIqjq6npUW1/6xqjPa2paLtMMynGGZNtDcuxh2c6wHGdIjhNNj3OcSDI8K2t6JcsMwEbCrlAi5EpWb6VDr6xwy0wGY6kALBF+5QvSQmxfBIApjIqpMSChBgDUgmLbGgs1sM+p6MqzrXHAdhSrwj8L5vp9avFbCpqmAqahgGEkvppmxm1DQdOU3xi5nflYwDQVNAz5U2MNU37TUDB9PnNkrJE8l2komHzMZ2ja9wFDbRvpMbVLuc3PpVJ6TLmuLdseToZWw3KcYdn2UCK4sodkO0Ny7Ejya2JM+rYTyRiTOJ55jpGv3gBssphmYKR6y1PNlQy7kqGWmRmMZVeJpcdmb4McORcBGKqJz6OoV1RMAQAwxRiGobCV2MI3s8J/lUezm9DnqdzKt60xFZANZARku6Oxkiq5dsXi2hWb4LKNURhSRijmDchSgVjQLC0wKzp2lMAsdZ/ADNkMw9JBy65MXpXPUL5rxh607KtFg5PEVQYbJTVO5FTlurYcJ5IIvdJB2FD6WCoYGwm5RoIx207dzgi9su6nzpnZx8txonKcqOLxngldm2EEvGFXqnrLDKarwLwBWGYwlj84M7OeY1lhAjAA0wrBFAAASEsEI6baKrCt8f+6+vTBZ14eddw1yxbo4MaQoo6rqOsmvjqOIsnbMcdVxHEyHnMVdR1FHVcRx1XMTT6eGpt8bOR83rFRx1HEcT1XeXQlRRxXEbmSPdHXfyzdWAIzv2FmBGKGAoaZE54VCsxS508FZn4z41wEZjVjzpwzdfhhHfrLi1/Xs9EZ6la72tSlIwJdOvSgKzRnzpnVnqKkRABmWQ2yrIYJfR3XdZJhVWb1V1bYlVHNlTg2nFX1lQi4PMFYTpA2nPGaUcXjUcXVO6FrSwVg6Z5dnkqujNAr3QeshIqwdGVYMkgzwzJNPg66rq3u7icUiXQqGJyjtrZVBIPAJOOdCAAATIjj2po0P+jXzkiswMajxNX51i+YVZUeU/Gs4CoVfKVCsHQgVkJgFksGX9GsUKyUwMxz7ikYmPnzba3MCMmKBWaeQMw0kuFZgcezArPMsaltnH7DqPvA7Aljta4wf6i3jIyrXJp+/ZOxQGdVcV7VYBjmJAZgkYyQayS8Gqn2ygy9MirCUuMLjPVug8wNwDThAZjfW71VavP7jP5gmdsg033DPH3AajcA6+y8Vy9uvVqRyM70sWBwng5admXNBL3AdECPqTFgTy8AAGOTuiqflG/jEVfly8d2kyFXCYFZLGNsJPlY7tj8gVl6rJsZnpUWmNWyYAmBmT87PEtusywlMBupPEueq8jYSgdmXOWyvrmum2xKP5SxZTGjwitfRVie/mAjTe9zx6a2Uk42w/BlhV35ru6Yrx9YOGs7ZGbVV0ZD/eS5TLP0ct/OznuTW2Pz/0QdflhHzYVTfB5FvSKYGgPeCAAAGLu7d3friq3b9VZkpMJjv6BfX1+2gA/RU0hmYDYSiCVDrszwLCswy9yC6R07emA2cjt/YBZ1XdlT5F+yIyFWeYGZZUj//tY+9RepnJvht/SDQxcpZJkKJq+MmXq9YMbXwDSoLENhiQAsmrFlsdA2yOLN71NjM/uGZfcDy9+of+KMBGDZYVdGRZgZlmEG1Nn5a9n2YKEzjXoxgWrg8yjqFcHUGPBGAABAeWzX1aPd/eqMxjUn4NNxbU1V2b6H+lMoMMsMvXICsVECs5jrZJwnIxQrKTBLvHatB2bBdBP+RFgVSlV5pUOskcqvULoiLPmYkRt2FXpe6pw5IZlhymfyHlDPPAFYRtjl3QaZ3fMrT9P7nO2P2X3ABjVRAdjbj/pXtbcfNyHnLgefR1GvanOzLwAAqCuWYejE9uZqTwN1yDIMNViGGiyz2lPxSAVmsWQIVkpgltnIPzsU29w3pPv2jd5vaL+gX2HT1HD6dRMhW8TxfnAfOVa9TZqWIQWMRGiV3v5YakiWE6gVDsvyhmQZ4RrVYxPDMAxZVlCWFVQFrqdRkOu6ct1o/gqvrB5eqTG9PZvUuXvjqOeORDoncOYAUgimAAAAgApLBWaqUGD2f119JQVT1x96QN4Q2HXddECWCqtS4dhwRi+x4fRVLJOBlusqYidCruH087LHZgZgiWPDGb3OMh+LZ+RjtisNuY6GHEmyK/J9KkfAyA22CodkI9shsyvJQqU8LytcC5lc6XK8DMOQYQRlmkH51VrSc7q6Hk0HU45MPa9D01e5PER/kZkMbIPBORM2bwAjCKYAAACAGlfqVS6Pa2vK+3zDSG3Bk6Tq9cyx3dwgyxtojYRd+aq+MseVFJJ5ArWRIC5T1HUVtV31VfHKl6aUUyE2akhm5G6jzA3JsrZRGoaCVuFwzZwm4Vhb2yoFg/P0h8hi3aZPaJ8xK/3YDHePPq6f6KTga2prW1XFWQLTB8EUAAAAUOMsw9A/LVugT25+VYbyX+Xy68sW1HzvtlrYeum6Iw36RwvJIsktlTmVZDlfi4Rkbr5ALTGHFEfSkJOqHquegJHdMD//NsqQ5d0OOaZeYxnhWNAYCcZSWzono3rMMCy9Pvcbuu713AqrfZqh6/QFHTC3RyfVUONzoJ4RTAEAAABTwFmz2/SjwxbnXOVyPle5HBPDMJIBjFTNzneZjfuzt1Fmb4fMDLRKCck8FWh5qs5SrzvsuJ6QM1U9VuzqjxPNkLL6jmWFXalKL2v0XmPe5v3JcYYhn2Homp2zJCOmkWg3NQFThlz9S+ds/c1St+bDXqAeEEwBAAAAU8RZs9u0ZlYrV7msA7VSPRZ3lb/XWLK/WLrXWDnbKO184VpuSJZZPeZKGnJcDTmT0Xcs/8+NK0M7IjE92t3PhTuASUAwBQAAAEwhXOUSlWIYhvyG5Dct5e9ONjkct1ClVzIcK6PXWGa1WPY2yj3RmHZG46POq7OEMQDGj2AKAAAAAFA1pmEobBkKT1L12P919emDz7w86rg5AT4uA5OhenWjAAAAAABMstRVLgttgDUk7VfkKpcAKotgCgAAAAAwbaSucinldpmaSle5BOoFwRQAAAAAYFpJXeVyXtDvOT4/6NePDlvMVS6BScSmWQAAAADAtMNVLoHaQDAFAAAAAJiWuMolUH1s5QMAAAAAAEBVEEwBAAAAAACgKgimAAAAAAAAUBXTMpj667/+a7W3t+ucc86p9lQAAAAAAACmrWkZTH3uc5/TbbfdVu1pAAAAAAAATGvTMph65zvfqeZmrrwAAAAAAABQTTUXTD388MM6++yztd9++8kwDN111105Yzo6OrR48WKFQiGtXr1ajz/++ORPFAAAAAAAAONSc8HUwMCAVq5cqY6OjryP33777brsssv0ta99TU8//bRWrlypM888U52dnekxRx55pA477LCcXzt27JisZQAAAAAAAGAUvmpPINvatWu1du3ago9/5zvf0UUXXaRPfOITkqSbbrpJd999t2699VZ96UtfkiQ988wzFZlLJBJRJBJJ3+/t7ZUkxeNxxeNxSZJpmjJNU47jyHGc9NjUcdu25bruqMcty5JhGOnzZh6XJNu2Szru8/nkuq7nuGEYsiwrZ46FjrMm1sSaWBNrYk2siTWxJtbEmlgTa6qtNWUfB+pFzQVTxUSjUT311FO6/PLL08dM09Tpp5+uP/7xjxV/vW9+85u66qqrco5v2rRJjY2NkqTZs2dr6dKl2rZtm3bv3p0es3DhQi1cuFAvvviienp60scPPPBAzZkzR5s3b9bQ0FD6+CGHHKK2tjZt2rTJ86Z4xBFHKBAI6Mknn/TM4ZhjjlE0GtWzzz6bPmZZllatWqWenh49//zz6ePhcFgrV67Unj179Morr6SPt7a26tBDD9WOHTv05ptvpo+zJtbEmlgTa2JNrIk1sSbWxJpYE2uqrTVt2rRJQD0y3MyItsYYhqE777xT73//+yVJO3bs0IIFC/TII4/o+OOPT4/74he/qIceekiPPfZYSec9/fTT9ac//UkDAwOaMWOGfvGLX3jOl5KvYmr//ffX3r171dLSIonEnzWxJtbEmlgTa2JNrIk1sSbWxJpY08SvqaurSzNnzlRPT0/68yhQD6ZlMFWu3t5etba28kYAAAAAAJhUfB5Fvaq55ufFzJo1S5ZladeuXZ7ju3bt0rx586o0KwAAAAAAAJRjSgVTgUBARx99tO6///70McdxdP/99+fdigcAAAAAAIDaVXPNz/v7+/XSSy+l72/btk3PPPOMZsyYoQMOOECXXXaZ1q9fr2OOOUbHHnusrrvuOg0MDKSv0jcROjo61NHRkbMfGQAAAAAAAOWruR5TDz74oE499dSc4+vXr9eGDRskSTfccIOuvfZa7dy5U0ceeaS+//3va/Xq1RM+N/b0AgAAAACqgc+jqFc1F0zVMt4IAAAAAADVwOdR1Ksp1WMKAAAAAAAA9YNgCgAAAAAAAFVBMFWCjo4OLV++XKtWrar2VAAAAAAAAOoGPabGgD29AAAAAIBq4PMo6hUVUwAAAAAAAKgKgikAAAAAAABUBcEUAAAAAAAAqsJX7QlMJal2XL29vVWeCQAAAABgOkl9DqVNNOoNwdQY9PX1SZL233//Ks8EAAAAADAd9fX1qbW1tdrTACqGq/KNgeM42rFjh5qbm2UYRrWnU1Rvb6/2339/vfHGG1yxARgnfp6AyuBnCagcfp6AypkqP0+u66qvr0/77befTJOuPKgfVEyNgWmaWrhwYbWnMSYtLS01/eYKTCX8PAGVwc8SUDn8PAGVMxV+nqiUQj0iZgUAAAAAAEBVEEwBAAAAAACgKgim6lQwGNTXvvY1BYPBak8FmPL4eQIqg58loHL4eQIqh58noLpofg4AAAAAAICqoGIKAAAAAAAAVUEwBQAAAAAAgKogmAIAAAAAAEBVEExNUf/4j/8owzA8vw455JD044sXL04fD4fDWrx4sdatW6ff//73VZw1UJsefvhhnX322dpvv/1kGIbuuusuz+PvfOc7ZRiGvvWtb+U896yzzpJhGPrHf/zHyZksUMNuvPFGHXHEEWppaVFLS4uOP/543XPPPenHU383/cd//EfOc1esWCHDMLRhw4ZJnDFQ27Zv367zzjtPbfHbBQAADalJREFUM2fOVDgc1uGHH64nn3wy/Th/PwFjU+jffJFIRCtWrNCnPvWpnOd88Ytf1JIlS9TX1zfJswWmD4KpKWzFihV666230r/+8Ic/eB6/+uqr9dZbb+mFF17Qbbfdpra2Np1++un6xje+UaUZA7VpYGBAK1euVEdHR8Ex+++/f84H5u3bt+v+++/X/PnzJ3iGwNSwcOFCfetb39JTTz2lJ598Uqeddpre97736bnnnkuP2X///fWTn/zE87xHH31UO3fuVGNj42RPGahZXV1dOvHEE+X3+3XPPfdoy5Yt+n//7/+pvb3dM46/n4DSFfo3XzAY1G233aYNGzbo3nvvTR9/9NFH9d3vflcbNmxQc3PzZE8XmDZ81Z4Ayufz+TRv3ryCjzc3N6cfP+CAA3TyySdr/vz5uvLKK3XOOefo4IMPnqypAjVt7dq1Wrt2bdEx733ve3XHHXfo//7v/3TiiSdKkn7605/qjDPO0Ouvvz4Z0wRq3tlnn+25/41vfEM33nijHn30Ua1YsUKS9NGPflTf/e539cYbb2j//feXJN1666366Ec/qttuu23S5wzUqm9/+9s5Qe6SJUtyxvH3E1C6Yv/mO/roo/WVr3xFF154oTZv3qxQKKRPfOITuvTSS3XKKadM8kyB6YWKqSls69at2m+//XTggQfqox/9aEn/+Pjc5z4n13X13//935MwQ6B+BAIBffSjH/V8QNiwYYMuuOCCKs4KqF22bes//uM/NDAwoOOPPz59fO7cuTrzzDP105/+VJI0ODio22+/nZ8lIMuvfvUrHXPMMfrQhz6kOXPm6KijjtItt9ySM46/n4DK+cpXvqJ58+bps5/9rK644goZhqFrrrmm2tMC6h7B1BS1evVqbdiwQRs3btSNN96obdu26R3veMeoe59nzJihOXPm6NVXX52ciQJ15IILLtAdd9yhgYEBPfzww+rp6dF73/veak8LqCl//vOf1dTUpGAwqL/927/VnXfeqeXLl3vGXHDBBdqwYYNc19Uvf/lLLV26VEceeWR1JgzUqFdeeUU33nijli1bpnvvvVef/vSn9dnPfjYd6mbi7yegMnw+n2677Tb94he/0PXXX6/bbrtNoVCo2tMC6h5b+aaozBLUI444QqtXr9aiRYt0xx136MILLyz6XNd1ZRjGRE8RqDsrV67UsmXL9Mtf/lIPPPCAPvaxj8nn420UyHTwwQfrmWeeUU9Pj375y19q/fr1euihhzzh1FlnnaWLL75YDz/8sG699VYqO4A8HMfRMccck67WOOqoo7R582bddNNNWr9+vWcsfz8BlbN8+XJ98IMfVHd3t4455phqTweYFvgbq060tbXpoIMO0ksvvVR03N69e7V79+68PQoAjO6CCy5QR0eHtmzZoscff7za0wFqTiAQ0Nve9jZJiX4dTzzxhL73ve/phz/8YXqMz+fTxz72MX3ta1/TY489pjvvvLNa0wVq1vz583OqDQ899FD953/+Z97x/P0EVI7P5yPcBSYRW/nqRH9/v15++eVRr77yve99T6Zp6v3vf//kTAyoMx/5yEf05z//WYcddljOBwYAuRzHUSQSyTl+wQUX6KGHHtL73ve+nKuMAZBOPPFEvfDCC55jL774ohYtWpR3PH8/AQCmKmLgKeoLX/iCzj77bC1atEg7duzQ1772NVmWpXPPPTc9pq+vTzt37lQsFtO2bdv085//XD/60Y/0zW9+M/2/2QASwW5mteG2bdv0zDPPaMaMGTrggAM8Y9vb2/XWW2/J7/dP9jSBmnf55Zdr7dq1OuCAA9TX16d/+7d/04MPPui59HbKoYceqj179qihoaEKMwVq39/93d/phBNO0DXXXKN169bp8ccf180336ybb74573j+fgJGN5Z/8wGYPARTU9Sbb76pc889V3v37tXs2bN10kkn6dFHH9Xs2bPTY6688kpdeeWVCgQCmjdvno477jjdf//9OvXUU6s4c6D2PPnkk56fi8suu0yStH79em3YsCFnfFtb2yTNDJhaOjs79fGPf1xvvfWWWltbdcQRR+jee+/Vu9/97rzjZ86cOckzBKaOVatW6c4779Tll1+uq6++WkuWLNF1112nj370owWfw99PQHFj/TcfgMlhuK7rVnsSAAAAAAAAmH7oMQUAAAAAAICqIJgCAAAAAABAVRBMAQAAAAAAoCoIpgAAAAAAAFAVBFMAAAAAAACoCoIpAAAAAAAAVAXBFAAAAAAAAKqCYAoAAAAAAABVQTAFAMA0cP7552vx4sVVe/2NGzfqyCOPVCgUkmEY6u7urtpcAAAAUDt81Z4AAAAoj2EYJY174IEHJngmxe3du1fr1q3TihUr1NHRoWAwqMbGxqrOCQAAALXBcF3XrfYkAADA2P385z/33L/tttt033336Wc/+5nn+Lvf/W7NmDFDjuMoGAxO5hQlJaql1q5dq/vuu0+nn376pL8+AAAAahcVUwAATFHnnXee5/6jjz6q++67L+d4tXV2dkqS2traRh07ODiohoaGCZ4RAAAAagU9pgAAmAaye0y9+uqrMgxD//Iv/6KOjg4deOCBamho0BlnnKE33nhDruvq61//uhYuXKhwOKz3ve992rdvX85577nnHr3jHe9QY2OjmpubddZZZ+m5555LP/7Od75T69evlyStWrVKhmHo/PPPTz922GGH6amnntLJJ5+shoYGffnLX5Yk/fd//7fOOuss7bfffgoGg1q6dKm+/vWvy7Ztz+unzvHss8/qlFNOUUNDg972trfpl7/8pSTpoYce0urVqxUOh3XwwQfrd7/7Xc4atm/frgsuuEBz585VMBjUihUrdOutt47r+w0AAIDSUDEFAMA09q//+q+KRqO69NJLtW/fPv3zP/+z1q1bp9NOO00PPvig/uEf/kEvvfSSrr/+en3hC1/wBDY/+9nPtH79ep155pn69re/rcHBQd1444066aSTtGnTJi1evFhf+cpXdPDBB+vmm2/W1VdfrSVLlmjp0qXpc+zdu1dr167Vhz/8YZ133nmaO3euJGnDhg1qamrSZZddpqamJv3+97/XlVdeqd7eXl177bWeNXR1dem9732vPvzhD+tDH/qQbrzxRn34wx/Wv/7rv+rzn/+8/vZv/1Yf+chHdO211+qcc87RG2+8oebmZknSrl27dNxxx8kwDH3mM5/R7Nmzdc899+jCCy9Ub2+vPv/5z0/8bwIAAMB05gIAgLpwySWXuIX+al+/fr27aNGi9P1t27a5ktzZs2e73d3d6eOXX365K8lduXKlG4vF0sfPPfdcNxAIuMPDw67rum5fX5/b1tbmXnTRRZ7X2blzp9va2uo5/pOf/MSV5D7xxBOesaeccooryb3pppty5js4OJhz7OKLL3YbGhrSc8g8x7/927+ljz3//POuJNc0TffRRx9NH7/33ntdSe5PfvKT9LELL7zQnT9/vrtnzx7Pa334wx92W1tb884DAAAAlcNWPgAAprEPfehDam1tTd9fvXq1pET/Kp/P5zkejUa1fft2SdJ9992n7u5unXvuudqzZ0/6l2VZWr16dclXAgwGg/rEJz6RczwcDqdv9/X1ac+ePXrHO96hwcFBPf/8856xTU1N+vCHP5y+f/DBB6utrU2HHnpoej2Za3vllVckSa7r6j//8z919tlny3VdzzrOPPNM9fT06Omnny5pHQAAACgPW/kAAJjGDjjgAM/9VEi1//775z3e1dUlSdq6dask6bTTTst73paWlpJef8GCBQoEAjnHn3vuOV1xxRX6/e9/r97eXs9jPT09nvsLFy6UYRg58x1tDbt371Z3d7duvvlm3XzzzXnnl2rcDgAAgIlBMAUAwDRmWdaYjruuK0lyHEdSos/UvHnzcsZlVlsVk1kZldLd3a1TTjlFLS0tuvrqq7V06VKFQiE9/fTT+od/+If0a1dqDeedd166QXu2I444oqR1AAAAoDwEUwAAYMxSDcznzJmj008/vaLnfvDBB7V3717913/9l04++eT08W3btlX0dWbPnq3m5mbZtl3xNQAAAKA09JgCAABjduaZZ6qlpUXXXHONYrFYzuO7d+8u+9ypSqdUZZMkRaNR/eAHPyj7nIVe54Mf/KD+8z//U5s3b855fDxrAAAAQGmomAIAAGPW0tKiG2+8UR/72Mf09re/XR/+8Ic1e/Zsvf7667r77rt14okn6oYbbijr3CeccILa29u1fv16ffazn5VhGPrZz37mCaoq5Vvf+pYeeOABrV69WhdddJGWL1+uffv26emnn9bvfvc77du3r+KvCQAAgBEEUwAAoCwf+chHtN9+++lb3/qWrr32WkUiES1YsEDveMc78l5pr1QzZ87Ur3/9a/393/+9rrjiCrW3t+u8887Tu971Lp155pkVXIE0d+5cPf7447r66qv1X//1X/rBD36gmTNnasWKFfr2t79d0dcCAABALsOdiP9+BAAAAAAAAEZBjykAAAAAAABUBcEUAAAAAAAAqoJgCgAAAAAAAFVBMAUAAAAAAICqIJgCAAAAAABAVRBMAQAAAAAAoCoIpgAAAAAAAFAVBFMAAAAAAACoCoIpAAAAAAAAVAXBFAAAAAAAAKqCYAoAAAAAAABVQTAFAAAAAACAqiCYAgAAAAAAQFX8/4cJh0xOaiBAAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Top 10 Cryptocurrency Price Predictions Summary Plot\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Define the timeframes and labels\n",
"timeframes = ['5D Prediction', '1M Prediction', '3M Prediction', '6M Prediction', '1Y Prediction']\n",
"labels = ['5D', '1M', '3M', '6M', '1Y']\n",
"\n",
"# Create the plot\n",
"# Create the plot\n",
"plt.figure(figsize=(12, 8))\n",
"\n",
"# Plot data for each coin\n",
"for coin in summary['Symbol'].unique():\n",
" coin_data = summary[summary['Symbol'] == coin].iloc[0]\n",
" predictions = coin_data[timeframes].values\n",
" predictions = [float(pred.replace('$', '').replace(',', '')) for pred in predictions]\n",
" plt.plot(labels, predictions, marker='o', label=coin)\n",
"\n",
"# Add title and labels\n",
"plt.title(\"Top 10 Cryptocurrency Price Predictions (Log Scale)\", fontsize=14)\n",
"plt.xlabel(\"Timeframe\", fontsize=12)\n",
"plt.ylabel(\"Predicted Price (USD)\", fontsize=12)\n",
"\n",
"# Set Y-axis to logarithmic scale\n",
"plt.yscale('log')\n",
"\n",
"# Add a legend\n",
"plt.legend(title=\"Cryptocurrency\", fontsize=10, bbox_to_anchor=(1.05, 1), loc='upper left')\n",
"\n",
"# Customize grid\n",
"plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
"\n",
"# Adjust layout for better spacing\n",
"plt.tight_layout()\n",
"\n",
"# Display the plot\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}