import math import sys from inspect import isfunction import torch import torch.nn.functional as F from einops import rearrange from torch import nn, einsum from ldm.modules.diffusionmodules.util import checkpoint def exists(val): return val is not None def uniq(arr): return {el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x + h_ class CrossAttention(nn.Module): def __init__(self, query_dim, superfastmode=True, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() self.dim_head = 40 inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.fast_forward = superfastmode def _maybe_init(self, x): """ Initialize the attention operator, if required We expect the head dimension to be exposed here, meaning that x : B, Head, Length """ _, M, K = x.shape try: import xformers import xformers.ops self.attention_op = xformers.ops.AttentionOpDispatch( dtype=x.dtype, device=x.device, k=K, attn_bias_type=type(None), has_dropout=False, kv_len=M, q_len=M, ).op except Exception as err: raise Exception( f"Please install xformers with the flash attention / cutlass components or disable it.\n{err}") def light_forward(self, x, context=None, mask=None, dtype=None, fucking_hell=False): try: import xformers import xformers.ops except Exception as e: raise ModuleNotFoundError("Please install xformers!", e) q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, int(t.shape.numel() / (b * self.heads * t.shape[1]))) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], int(t.shape.numel() / (b * self.heads * t.shape[1]))) .contiguous(), (q, k, v), ) # init the attention op, if required, using the proper dimensions self._maybe_init(q) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) del q, k, v out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], int(out.shape.numel() / (b * self.heads * out.shape[1]))) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], int(out.shape.numel() / (b * out.shape[1]))) ) return self.to_out(out) def forward(self, x, speed_mp=None, context=None, mask=None, dtype=None, fucking_hell=False): if speed_mp: return self.light_forward(x, context=context, mask=mask, dtype=dtype, fucking_hell=fucking_hell) h = self.heads device = x.device secondary_device = device if (self.fast_forward and sys.platform != "darwin") else torch.device("cpu") # macs dtype = x.dtype if dtype is None else dtype x = x.to(dtype, non_blocking=True) q_proj = self.to_q(x) context = default(context, x) k_proj = self.to_k(context) v_proj = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_proj, k_proj, v_proj)) del q_proj, k_proj, v_proj if sys.platform != "darwin" and device != "cpu": # means we can't count gpu memory torch.cuda.empty_cache() stats = torch.cuda.memory_stats(device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) mem_free_torch = mem_reserved - mem_active mem_free_total = (mem_free_cuda + mem_free_torch) mem_free_total = math.ceil(mem_free_total / 10 ** int(math.log10(mem_free_total) - 1)) * ( 10 ** int(math.log10(mem_free_total) - 1)) dtype_multiplyer = 2 if str(dtype) == "torch.float16" else 4 s1, s2, s3, s4 = (q.shape[0] * q.shape[1] * q.shape[1] * 1.5 * dtype_multiplyer), \ (q.shape[0] * (q.shape[1] ** 2) * dtype_multiplyer), \ (q.shape[0] * q.shape[1] * q.shape[2] * 3 * dtype_multiplyer), \ (q.shape[0] * q.shape[1] * v.shape[2] * 2 * dtype_multiplyer) s = int((s1 + s2 + s3 + s4)) # 4 main operations' needed compute memory: softmax, einsum, another einsum, and r1 allocation memory. chunk_split = int(((s / mem_free_total) + 1)) * (2 if fucking_hell else 1) if s > mem_free_cuda else 1 else: chunk_split = 1 r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=secondary_device) mp = q.shape[1] // chunk_split # print("The operation will need \t", s, s // 1024 // 1024) # print("The available memory is \t", mem_free_total, mem_free_total // 1024 // 1024) # print(f"Splitting into {chunk_split} chunks") for i in range(0, q.shape[1], mp): q, k = q.to(device, non_blocking=True), k.to(device, non_blocking=True) s1 = einsum('b i d, b j d -> b i j', q[:, i:i + mp], k) q, k = q.to(secondary_device, non_blocking=True), k.to(secondary_device, non_blocking=True) s1 *= self.scale s1 = F.softmax(s1, dim=-1) r1[:, i:i + mp] = einsum('b i j, b j d -> b i d', s1, v).to(secondary_device, non_blocking=True) r1 = rearrange(r1, '(b h) n d -> b n (h d)', h=h).to(dtype).to(device, non_blocking=True) return self.to_out(r1) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., superfastmode=True, context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, superfastmode=superfastmode) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, superfastmode=superfastmode) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, speed_mp=None, context=None, fucking_hell=False): return checkpoint(self._forward, (x, speed_mp, context, fucking_hell), self.parameters(), self.checkpoint) def _forward(self, x, speed_mp=None, context=None, fucking_hell=False): x = self.attn1(self.norm1(x), speed_mp=speed_mp, dtype=x.dtype, fucking_hell=fucking_hell) + x x = self.attn2(self.norm2(x), speed_mp=speed_mp, context=context, dtype=x.dtype) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., superfastmode=True, context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, superfastmode=superfastmode, dropout=dropout, context_dim=context_dim) for _ in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None, speed_mp=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') for block in self.transformer_blocks: x = block(x, speed_mp=speed_mp, context=context, fucking_hell=True) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in