
NXtranslate

Peter F. Peterson

NXtranslate
by Peter F. Peterson

NXtranslate is an anything to NeXus converter. This is accomplished by using translation
files and a plugin style of architecture where NXtranslate can read from new formats as
plugins become available. This document describes the usage of NXtranslate by three types
of individuals: the person using existing translation files to create NeXus files, the person
creating translation files, and the person writing new Retrievers. All of these concepts are
discussed in detail.

Table of Contents
1. Overview ...1

Command line arguments ...1
2. The Translation File...3

Overview ..3
Simple Translation...5
Translation from NeXus ...6

Anatomy of Links ..7
Strings for Translation ..7

NeXus ..7
Simple ASCII ..7
SNS Histogram...7
XML retriever ...9

3. Retriever Details ..11
The Simple ASCII Retriever as an Example ..11

iii

iv

Chapter 1. Overview

NXtranslate is designed to be the anything to NeXus converter. To this end it
is built in a modular fashion so the types of files that can be read from can vary
between different installations. The reason for this is to minimize the size of the
executable. In line with this modularity is the author’s desire to work with users
of NXtranslate to add abilities, clarify documentation, and fix bugs.

NXtranslate operates by parsing a translation file to create a NeXus file. The
translation file contains the organization of the resulting NeXus file, data, and
instructions on other how to obtain data using retrievers. This book is organized
into chapters with an increasingly sophisticated user in mind. The chapter you
are reading is a general overview on how to use NXtranslate with an existing
installation and existing translation files. Chapter 2 is aimed at writing translation
files and chapter 3 will discuss in more detail what retrievers are and how to write
them.

Command line arguments
This section will explain the various command line arguments to NXtranslate .
For all of the examples here the name of the translation file is test.xml.

nxtranslate [--help] [-o outputfile] [--hdf4 | --hdf5] [-D
macro] {translationfile} [--append outputfile]

First to get the easy arguments out of the way. Typing just nxtranslate will give
a usage statement similar to what is above. nxtranslate --help will print the full
help message. Generally speaking this is not what you are interested in.

The minimum argument list for NXtranslate to do anything other than print the
usage message is to supply a translation file. The cannonical example is

bash$ nxtranslate test.xml

This tells NXtranslate to parse the file test.xml and produce a NeXus file called
test.nxs using the default base format (base format is discussed below). To
change the name of the output file use the "-o" switch.

bash$ nxtranslate test.xml -o my_file.nxs

The only difference with the previous example is that the resulting NeXus file is
my_file.nxs.

The switches "--hdf4" and "--hdf5" are mutually exclusive and take no argu-
ments. These are used to select the base format for the output file. NeXus is actu-
ally written using the Hierarchical Data Format (HDF) which is produced by the
National Center for Supercomputer Applications (NCSA). There are two (incom-
patible) versions of HDF that have widespread use that are commonly referred
to as HDF4 and HDF5. Part of the purpose of the NeXus API is to hide the dif-
ference between the different bases. In this spirit NXtranslate only exposes the
bases with these switches. To create two files with the same structure and diffent
bases is easy.

bash$ nxtranslate --hdf4 test.xml -o my_hdf4.nxs
bash$ nxtranslate --hdf5 test.xml -o my_hdf5.nxs

The last command line argument is the "-D" switch. This switch allows for sub-
stituting strings in the the translation file for the NXS:mime_type , NXS:source ,
and NXS:location attributes in the translation file. To get a better understanding
of what this means see Chapter 2. For now it is enough to show an example.

bash$ nxtranslate test.xml -DFILE1=old_nexus.nxs

1

Chapter 1. Overview

This example assumes that there is a macro FILE1 in the translation file.
NXtranslate will convert the string FILE1 into old_nexus.nxs before creating
the resulting NeXus file. This allows for a script to convert an entire directory of
files to look like (using python)

listing=glob.glob("*.nxs")
for file in listing:

os.system("nxtranslate converter.xml -DFILE1=%s -o new_%s" % (file,file))

This bit of code (plus the proper import statements) would use the translation file
converter.xml to translate all *.nxs in the current working directory.

2

Chapter 2. The Translation File

The file produced by NXtranslate is entirely determined by the contents of the
translation file. This chapter discusses the format of a translation file as well as
listing "location strings" for the external formats.

Overview
Translation files are written in xml and read using an xml parser. For this rea-
son they must be a valid xml file. 1 This means that the following rules must be
adhered to

• Every opening tag must have a corresponding closing tag at the same
level. This means that <entry><data></data></entry> is allowed while
<entry><data></entry></data> and <entry><data></data> are not.

• Tags and attribute names are case sensitive. Therefore <entry> and <Entry>
are distinct tags. While this can lead to confusion when writing a translation
file it is easily avoided in practice.

• Attribute values must be inside single (’) or double (") quotes.

• Tags and attribute names cannot start with a number or special character. An-
other way of saying this is that the name must start with a letter.

• Certain characters will break the parsing of the xml. The characters, and how
to create them are <(<), >(>), &(&), "("), and '(&apos).

• Empty tags, <data></data>, can be replaced with a single tag, <data/>. This
convenience will make more sense during the discussion of translation files
when specifying information outside of the file.

There are some other rules to note about the translation file. It is not simply a
XML file, there are additional constraints. However, the translation file is not di-
rectly validated to follow these constraints, but failing to follow them will result
in the program exiting early without creating a NeXus file. Also, NXtranslate is
intended to be used to write any file readable by the NeXus API, so the trans-
lation file is not validated against definition files. 4 First some definitions used
througout this document.

Translation file definitions

napi

An abbreviation for the NeXus Abstract Program Interface.

node

A point in the hierarchy, it can either contain other nodes (be a parent with
children) or not (a leaf node). Any pair of opening an closing tags represents
a single node.

group

A node that contains other nodes.

field

A node that does not contain other nodes (a leaf node). In other places in
NeXus this is sometimes refered to as a "data" or a "SDS".

retriever

An object whose job is to retrieve information from a source external to
the translation file. Which retriever is created is determined by the value of
NXS:mime_type . The retriever is initialized using the value of NXS:source .
Information is produced by the retriever using the NXS:location.

3

Chapter 2. The Translation File

special attribute

An attribute that is interpreted by NXtranslate as a command to deal
with external information. The special attributes are NXS:mime_type ,
NXS:source , NXS:location , and target .

NXS:mime_type

A keyword that denotes what library to use to retrieve information from an
external source. It can be a valid mime type.

NXS:source

A string denoting what a retriever should use to initialize itself. This is gen-
erally a file on the local system for the retriever to open.

NXS:location

A string passed to the retriever for it to generate data from. For example,
when using the NeXus retriever this is a path to a particular node in the file
which will be written out to the resulting NeXus file.

NAPIlink

This denotes a node that is a link to another node in the file. It must have a
target attribute. All other attributes will be ignored

target

The attribute denoting what a NAPIlink node should be linked to. The syn-
tax for describing location is the same as for the NeXus retriever. If this at-
tribute appears in a node other than NAPIlink it will be treated as a normal
attribute.

primative type

Any of the following types (ignoring bit-length): NX_UINT (unsigned
integer), NX_INT (signed integer), NX_FLOAT (floating point number),
NX_CHAR (character), NX_BOOLEAN (boolean, or true/false), NX_BINARY
(binary value). At the moment NX_BOOLEAN and NX_BINARY are not
supported by NXtranslate and the NeXus API supports only one
dimension arrays of NX_CHAR.

Now that the definitions have been presented the other constraints of a transla-
tion file can be explained.

• The root node in a file will be <NXroot>. There will be nothing before or af-
ter it, and only one of them. The NXroot can be used to set global values for
NXS:mime_type and NXS:source .

• Only groups can exist directly inside the root. This is a constraint of the NeXus
API.

• Every node (except the NXroot and NAPIlink) needs a name and type. If the
node has a NXS:location then the type can be omitted since the retriever will
provide it.

• Groups cannot have any attribute other than the special ones. Fields can have
any attribute. This reflects a restriction in the NeXus API and does not constrain
the contents of resulting NeXus files in any way.

• Groups cannot have any data in them. In other words things similar to <data
type="NXdata">1 2 3 4</data> are incorrect.

• To specify the dimensions of a field, use square brackets [] affter the type.
A single precision floating point array with five elements would have
type="NX_FLOAT32[5]". If the field has only one element, or is a character
array, the dimensions can be left off. For character arrays, the dimensions are
ignored.

4

Chapter 2. The Translation File

• To specify the type of a attribute denote the primative type separated from the
value using square brackets. For numeric types only scalars are allowed. If no
type is specified it is assumed to be a character array (length is determined
automatically).

Simple Translation
While NXtranslate is the anything to NeXus translator, it is possible to have
everything specfied in the translation file. Example 2-1 shows a translation file
where no information will be taken from any other file.

Example 2-1. Simple translation file test_simple.xml

<NXroot>
<NXentry name="entry1">
<NXnote name="note">
<author type="NX_CHAR">George User</author>

5 <type type="NX_CHAR">text/plain</type>
<data type="NX_CHAR">The data is a simple parabola, f(x)=x^2
</data>

</NXnote>
<NXdata name="parabola_1D">

10 <x type="NX_INT8[11]" axis="NX_INT:1" units="number">
0 1 2 3 4 5 6 7 8 9 10

</x>
<f_x type="NX_INT16[11]" signal="NX_INT:1" units="number">

0 1 4 9 16 25 36 49 64 81 100
15 </f_x>

</NXdata>
</NXentry>
<NXentry name="entry2">
<NXnote name="note">

20 <author type="NX_CHAR">George User</author>
<type type="NX_CHAR">text/plain</type>
<data type="NX_CHAR">The data is a two dimensional parabola,

f(x,y)=x^2+y^2</data>
</NXnote>

25 <NXdata name="parabola_2D">
<x type="NX_FLOAT32[4]" axis="NX_INT:1" units="number">

1.0 4.7 2.3 1.6
</x>
<y type="NX_FLOAT32[3]" axis="NX_INT:2" units="number">

30 3.3 6.2 9.2
</y>
<f_x_y type="NX_FLOAT64[4,3]" signal="NX_INT:1" axes="x,y" units="number">

11.89 32.98 16.18
13.45 39.44 60.53

35 43.73 41.00 85.64
106.73 89.93 87.20

</f_x_y>
</NXdata>

</NXentry>
40 </NXroot>

This example follows all of the rules laid out in the previous section and serves to
introduce several of the features of the translation file. First a style note though, in
XML files there is a concept of "ignorable whitespace". These are carriage returns
(\n), line feeds (\r), tabs (\t), and spaces. These are ignored (as suggested by the
term "ignorable whitespace") and are present to aid those looking at the raw XML
to see the node hierarchy.

The main purpose of Example 2-1 is to show how to specify information in a
translation file. Line 4 demonstrates the method for strings. Here the name is
author and the type is NX_CHAR. The length of the character array is determined
from the actual string supplied rather than what is specified in the type
attribute. The value is created by reading in the supplied string, converting

5

Chapter 2. The Translation File

tabs, carriage returns, and line feeds into a single space, turning any sections
of multiple whitespace into a single space, then chopping off any whitespace
at both ends of the string. This allows the person writting the file to add
whitespace in strings as needed to make the raw XML easier to read, without
changing what is written into the final NeXus file.

Next to look at is how arrays of numbers are specified. Lines 24-27 show both
one and two dimensional arrays. The dimension of the array is specified with the
type as discussed above. “The thing to notice here is that arrays of numbers are
specified as comma delimited lists. The brackets in the list of values are "syntatic
sugar". When the values are read in NXtranslate converts them into commas
then converts multiple adjacent commas into a single comma. The purpose of
this is so translation file authors can more easily see each dimension of the array
that they wrote. The brackets can also be removed altogether as seen in line 24.”

Translation from NeXus
Next is to show how to use NXtranslate to bring in information from external
sources. Example 2-2 demonstrates various features of importing information
from external sources, including modifying it before writing.

Example 2-2. Translation from NeXus file test_nexus.xml

<NXroot NXS:source="test_simple.nxs" NXS:mime_type="application/x-NeXus">
<entry_1D NXS:location="/entry1"/>
<entry_2D type="NXentry">
<note NXS:location="/entry1/note">

5 <description type="NX_CHAR">The functional form of the data
</description>

</note>
<parabola_2D type="NXdata">
<x axis="2" NXS:location="/entry2/parabola_2D/x"/>

10 <y axis="1" NXS:location="/entry2/parabola_2D/y"/>
<f_x_y type="NX_FLOAT64[3,4]" axes=""

NXS:location="/entry2/parabola_2D/f_x_y"/>
</parabola_2D>

</entry_2D>
15 </NXroot>

As suggested earlier the root node (line 1) has defined a NXS:source and
NXS:mime_type to use for creating a retriever. Line 2 demonstrates that entire
entries can be copied from one file to the next and that the name of a node can be
changed. In this case it is from entry1 to entry_1D. Lines 4-7 show how to copy
over an entire group and add a new field to it. For finer control of what is added
and have the ability to change attributes look at lines 9-12. Line 11 shows how to
change the dimensions of the field by using the type attribute. Please note that
this will not work for character arrays and the total number of array items must
remain constant. Also, the type itself cannot be changed (single precision float to
double precision float, etc.). Since the dimensions of the f_x_y array change it
makes sense to change the axes for plotting. This is done in both line 9 and 10 by
specifying the attribute and its new value. To add another attribute just specify it
similarly. Line 11 demonstrates erasing the axes attribute. Specify the attribute
with an empty string as the value.

These two examples have shown the way to set up a translation file. You can
import information from multiple files by declaring another NXS:source and
NXS:mime_type . There are a couple of things to know about these as well. The
default NXS:mime_type is "application/x-NeXus" so it does not need to be spec-
ified. For each NXS:source , whatever NXS:mime_type was defined in the parent
node will be used for the current NXS:source . Example 2-3 shows what, in prin-
ciple, could be done with NXtranslate as more retrievers get written.5

6

Chapter 2. The Translation File

Example 2-3. A contrived example

<NXroot>
<entry1 NXS:source="test_simple.nxs" NXS:location="/entry1">
<user type="NXuser" NXS:source="127.0.0.1" NXS:mime_type="mySQL">
<name type="NX_CHAR">George User</name>

5 <address NXS:location="query(George User):address"/>
<email NXS:location="query(George User):email"/>
<phone NXS:location="query(George User):phone"/>
<picture NXS:source="GeorgeUser.jpg" NXS:mime_type="img/jpeg" NXS:location="all"/>

</user>
10 </entry1>

<entry2 NXS:source="test_nexus.nxs" NXS:location="/entry_2D"/>
</NXroot>

Anatomy of Links
The two nodes involved in a link are the source and link. The source is the original
version of the information, the link is the copy. There is no way to decipher which
is the original and which is the copy without direct comparison of ids using the
NeXus api. Links can be either to a group or field. Links to attributes are not
supported by the napi . A link to a group and field are both shown in Example
2-4. The first link is to a group whose name was group1, while the second link is
to a field array1.

Example 2-4. Two links

<NAPIlink target="/entry/group1"/>
<NAPIlink target="/entry/group1/array1"/>

Strings for Translation
The previous section discussed how to write a translation file and several of its
features. This section will explain in more detail the strings available for use in
a translation file. In principle this section is incomplete because there may exist
retrievers that the authors have not been informed of so consider this list incom-
plete. Also, by nature, the retrievers are quite decouple so the location strings for
each retriever can be significantly different from the others.

NeXus
As seen earlier in this chapter the NXS:mime_type for NeXus files is
application/x-NeXus. Similarly the NXS:locationstrings are as simple as
possible. NeXus files are organized hierarchically similar to the translation file.
A good analogy is to compare it to a file system where the groups are directories
and the fields are files. Using this analogy the NXS:location strings are absolute
paths to the directory or file to be copied. Since there examples of NeXus
location strings in Example 2-2 and Example 2-3 there is only one other thing to
mention, the path separator is a forward slash, "/".

Simple ASCII
The NXS:mime_type for the simple ASCII retriever is text/plain. The function-
ality of the simple ASCII retriever is limited. This is to emphasize the method-
ology for building retrievers, rather than build a general purpose one. All of the
location strings are integers defining the line number to use. The first line of the
file is zero.

7

Chapter 2. The Translation File

SNS Histogram
The NXS:mime_type for the SNS histogram retriever is
application/x-SNS-histogram.

The NXS:location is of the general form

[...,dim2,dim1][...,dimY,dimX]#{tag_name_1|operator_1}keyword_1{tag_name_2|
operator2}keyword_2...

Notice that the NXS:location is divided into two parts, declaration and defi-
nition, separated by #. The declaration describes the dimension of the retrieved
data. The definition describes which information the data consists of. Both of
these will be described in greated detail below.

The declaration part, [...,dim2,dim1][...,dimY,dimX] surrounded by square
brackets, contains between the first brackets the size of each dimension of the
array to be returned, separated by commas, and between the second set of brack-
ets, the dimensions of the array to read from. The values are specified as positive
integers. The current version of the retriever returns an array of the same size as
the initial array, no matter the dimensions given between the first set of brackets.

The definition part, {tag_name_1|operator_1}keyword_1{tag_name_2|operator2}...,
is where selecting the data to be transfered from the SNS histogram file is
described. Each part of the definition consists of a tag_name and operator
separated by a vertical slash "|". Multiple definitions can exist in a single
NXS:location separated by keywords. If the definition is missing, then all of the
available data will be retrieved.

The possible values for the tag_name are

pixelID

Select using unique pixel identifiers. Applicable for all detectors.

pixelX

Select using column numbers. Applicable for all area detectors

pixelY

Select using row numbers. Applicable for all area detectors

Tbin

Select using time channels. Applicable for all detectors

The operator can be of one of two forms

• loop(start,end,increment) is used to specify a series of identifiers that runs
inclusively from start to end in steps of increment.

• List of identifiers. The identifiers specify which data to include. The identifiers
must be separated by commas.

The keyword is used to link various declarations together into unions and inter-
sections. Keywords are entirely optional. Keywords that work on two definitions
are left associative.

!

The logical "not" operator. This negates the definition following it. Must be
placed just in front of the curly braces it is associated with.

8

Chapter 2. The Translation File

()

Grouping operation. This can be used to clarify what order multiple key-
words are applied. No associative parentheses are allowed within the curly
braces.

AND

The logical "and" operator. This generates the intersection of two definitions.
This parameter is case sensitive.

OR

The logical "or" operator. This generates the union of two definitions. This
parameter is case sensitive.

Examples

[150,256,167][304,256,167]#{pixelID|loop(1,38400,1)}

This retrieves the first 38400 pixel identifiers and put the data into a
150x256x167 array where the 167 dimension changes the fastest. In this
example, there are 167 time channels, 256 columns, and 150 rows. The data
are coming from a binary file where the data are stored as a 304x256x167 flat
array

[50,256,100][304,256,167]#{pixelID|loop(1,12800,1)}AND{Tbin|loop(1,100,1)}

This retrieves the union of the first 12800 pixel identifiers with the first 100
time channels then places the data into a 50x256x100 array. One must keep
in mind that if the array declared is of a different size than the data defined,
an error will be generated.

[7,167][304,256,167]#{pixelX|45,53,60,61,62,34500,34501}

This retrieves a series of columns.

XML retriever
The NXS:mime_type for the XML retriever is text/xml. The XML retriever is built
on top of libxml2’s document object model (DOM) parser. Because of this the
entire file for information to be retrived from is loaded into memory as a character
arrays. The DOM API was chosen to allow for jumping around the source file
without needed to parse its contents multiple times. The location string will be
formatted according to the following rules:

• The location string for a field will look like a (unix) path. Each level of the
hierarchy is separated by a forward slash, "/".

• To specify the type the value is preceeded using a name
separated using a colon, ":". The allowed names are
"INT8,INT16,INT32,UINT8,UINT16,UINT32,FLOAT32,FLOAT64". If no name
is specified it is (implicitly) a string. Therefore to get "the_answer" as a double
precision float the location is "FLOAT64:/numbers/the_answer".

• In the case where the field has a "type" attribute with the value being one of the
types above that will be used rather than as a character array. Specifying the
type in the location will override what is in the source file.

• Arrays can be specified as part of the type as either an attribute in the XML
file or in the location string. To get a six element integer array use the location
"/numbers/array" which points to a whitespace delimited list. Multiple di-
mensions are specified by using a comma delimited list in the square brackets
(i.e. "INT16[3,2]:/numbers/array")

9

Chapter 2. The Translation File

• To get an attribute specify it at the end of a path separated by a hash
symbol, "#". Therefore to get attr2 as a single precision float the location is
"FLOAT32:/numbers#attr2".

This methodolgy does not allow for automatically detecting the type of an im-
ported attribute (it will be read as a string), or differentiating two fields at the
same level with the same tag name.

Notes
1. There are many places to find more information about XML

2. http://www.w3.org/XML/
is the definitive standard while

3. http://studio.tellme.com/general/xmlprimer.html
has a one page overview of what XML is.

2. http://www.w3.org/XML/

3. http://studio.tellme.com/general/xmlprimer.html

4. This decision was made on the basis of performance since it was determined
that most of the time a "standard" translation file will be used to convert a
large number of files.

5. While retrievers that import information from mySQL and jpeg images would
be nice, they do not currently exist.

10

Chapter 3. Retriever Details

Example 3-1. listing of retriever.h

class Retriever{
typedef Ptr<Retriever> RetrieverPtr;

public:
/**
* The factory will call the constructor with a string. The string
* specifies where to locate the data (e.g. a filename), but
* interpreting the string is left up to the implementing code.
*/
//Retriever(const std::string &);

/**
* The destructor must be virtual to make sure the right one is
* called in the end.
*/
virtual ~Retriever()=0;

/**
* This is the method for retrieving data from a file. The whole
* tree will be written to the new file immediately after being
* called. Interpreting the string is left up to the implementing
* code.
*/
virtual void getData(const std::string &, tree<Node> &)=0;

/**
* This method is to be used for debugging purposes only. While the
* string can be anything, most useful is "[mime_type] source".
*/
virtual std::string toString() const=0;

/**
* Factory method to create new retrievers.
*/

static RetrieverPtr getInstance(const std::string &, const std::string &);
};

Example 3-1 is the listing of the Retriever abstract base class. In addition to these
methods there are a couple of assumptions made about classes that implement
this interface

Other constraints

1. The copy constructor and assignment operator will not be used. It is sug-
gested that they are made private methods.

2. There is a static const string called MIME_TYPE which will be used to de-
termine if that particular Retriever should be created by the factory. Care
must be made to select a unique MIME_TYPE to prevent name clashing.

3. The destructor will properly deallocate all resources allocated in the con-
strutor. Specifically, if a file is opened in the constructor, it should be closed
in the destructor.

4. If anything goes wrong during the course of the Retriever’s operation, an
std::exception will be thrown.

The rest of this chapter describes how to create the body of code, and header, for
an example implementation.

11

Chapter 3. Retriever Details

The Simple ASCII Retriever as an Example
The simplest retriever is the the one for the NXS:mime_typetext/plain. Because
of this it makes a good example of how to create your own retriever. The files are
located in the text_plain subdirectory as retriever.h and retriever.cpp.

Example 3-2. listing of text_plain/retriever.h

#include "../retriever.h"
#include <fstream>

// this is not intended to be inherited from
class TextPlainRetriever: public Retriever{
public:
TextPlainRetriever(const std::string &);
~TextPlainRetriever();
void getData(const std::string &, tree<Node> &);
std::string toString() const;
static const std::string MIME_TYPE;

private:
TextPlainRetriever(const TextPlainRetriever&);
TextPlainRetriever& operator=(const TextPlainRetriever&);
std::string source;
int current_line;
std::ifstream infile;

};

Note that none of the methods are virtual, so this is not intended to be derived
from directly. That being said, you may want to copy the header and code for
your own retriever as a basis of what works. In this example the copy constructor
and assignment operator are made private as specified in Other constraints 1. The
private data is a filehandle and the name of the file that is open for reading. The
file name and NXS:mime_type are used in the toString to identify it uniquely
for debugging as seen in Example 3-3.

Example 3-3. Listing of simple ascii toString

string TextPlainRetriever::toString() const{
return "["+MIME_TYPE+"] "+source;

}

The first non-trivial function to write is the constructor. The constructor is not
very complicated or insightful. The source and accounting for where in the file
the reading is (current_line) are initialized in line 1. Line 3 opens the file, and
line 6 confirms that it was opened without error. An exception is thrown if there
is a problem to follows Other constraints 4. The constructor is very brief because
C++ fstream library provides the ifstream object that does most of the work.

Example 3-4. Listing of the simple ascii constructor

TextPlainRetriever::TextPlainRetriever(const string &str): source(str),current_line(0){
// open the file
infile.open(source.c_str());

5 // check that open was successful
if(!infile.is_open())
throw invalid_argument("Could not open file: "+source);

}

The destructor for the Retriever in Example 3-5 is just as simple simpler since all
it has to do is close the file. There were no calls in the constructor (or anywhere
else) to new or malloc so the constructor does not need to call delete or free.

12

Chapter 3. Retriever Details

Example 3-5. Listing of the simple ascii destructor

TextPlainRetriever::~TextPlainRetriever(){
// close the file
if(infile)
infile.close();

}

Next is the getData function which is simple as well. All that getData does is
grab a line of text from the file and create a node. Lines 3-4 are error checking,
and line 7 converts the location string into an integer. Line 10 moves to the
appropriate place in the file while line 12 gets the string on that line. Since every
getData must put a node into the provided tree, line 15 creates a node to be
filled with data. Lines 18-20 update the generic node with the string read in from
the source file. Finally line 21 adds the single node to the supplied tree.

Example 3-6. Listing of the simple ascii getData

void TextPlainRetriever::getData(const string &location, tree<Node> &tr){
// check that the argument is not an empty string
if(location.size()<=0)
throw invalid_argument("cannot parse empty string");

5
// check that the argument is an integer
int line_num=string_util::str_to_int(location);

// set stream to the line before
10 skip_to_line(infile,current_line,line_num);

// read the line and print it to the console
string text=read_line(infile);

// create an empty node
15 Node node("empty","empty");

// put the data in the node
vector<int> dims;
dims.push_back(text.size());

20 update_node_from_string(node,text,dims,Node::CHAR);
tr.insert(tr.begin(),node);

}

Example 3-6 is brief because it leverages existing functionality. The ifstream
objects does all of the work of getting information out of a file. skip_to_line
and read_line are very short functions that scan to a point in an ascii file and
read from a point to the next end-of-line character, respectively. Finally, the func-
tion update_node_from_string existed in NXtranslatealready to assist node
creation while reading the translation file. The interested reader can look at the
source of node_util.cpp and text_plain/retriever.cpp to see the body of
the functions.

13

Chapter 3. Retriever Details

14

	NXtranslate
	Table of Contents
	Chapter 1. Overview
	Command line arguments

	Chapter 2. The Translation File
	Overview
	Translation file definitions

	Simple Translation
	Translation from NeXus
	Anatomy of Links

	Strings for Translation
	NeXus
	Simple ASCII
	SNS Histogram
	Examples

	XML retriever

	Chapter 3. Retriever Details
	The Simple ASCII Retriever as an Example

