{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Week13_Assignment.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "code", "metadata": { "id": "-c2YnvvCei8k", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "19957757-adac-4510-868d-068f17bfc75e" }, "source": [ "!pip install dimcli networkx pyvis -U --quiet" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "\u001b[K |████████████████████████████████| 307kB 8.6MB/s \n", "\u001b[K |████████████████████████████████| 51kB 4.3MB/s \n", "\u001b[?25h" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 299 }, "id": "sDZ3OTw1_KN0", "outputId": "53042041-cc49-4147-8240-b7b66dbd3e96" }, "source": [ "import networkx as nx\n", "from pyvis import network as net\n", "import pyvis\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import scipy\n", "from dimcli.core.extras import NetworkViz\n", "\n", "lrst = pd.DataFrame({'class': ['Math', 'Math', 'Math', 'Math','English', 'English', 'English', 'PE', 'PE', 'PE', 'PE', 'History', 'History', 'History', 'History', 'History'],\n", " 'name': ['Carole ', 'Wood', 'Terrence ', 'Bowen','Anne', 'Singleton', 'Yvette','Edwards', 'Terrence ', 'Foster', 'Austin ','Montgomery', 'Lorena', 'Yvette', 'Kirk', 'Alexander']})\n", "lrst.head(10)" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "application/vnd.google.colaboratory.module+javascript": "\n import \"https://ssl.gstatic.com/colaboratory/data_table/a6224c040fa35dcf/data_table.js\";\n\n window.createDataTable({\n data: [[{\n 'v': 0,\n 'f': \"0\",\n },\n\"Math\",\n\"Carole \"],\n [{\n 'v': 1,\n 'f': \"1\",\n },\n\"Math\",\n\"Wood\"],\n [{\n 'v': 2,\n 'f': \"2\",\n },\n\"Math\",\n\"Terrence \"],\n [{\n 'v': 3,\n 'f': \"3\",\n },\n\"Math\",\n\"Bowen\"],\n [{\n 'v': 4,\n 'f': \"4\",\n },\n\"English\",\n\"Anne\"],\n [{\n 'v': 5,\n 'f': \"5\",\n },\n\"English\",\n\"Singleton\"],\n [{\n 'v': 6,\n 'f': \"6\",\n },\n\"English\",\n\"Yvette\"],\n [{\n 'v': 7,\n 'f': \"7\",\n },\n\"PE\",\n\"Edwards\"],\n [{\n 'v': 8,\n 'f': \"8\",\n },\n\"PE\",\n\"Terrence \"],\n [{\n 'v': 9,\n 'f': \"9\",\n },\n\"PE\",\n\"Foster\"]],\n columns: [[\"number\", \"index\"], [\"string\", \"class\"], [\"string\", \"name\"]],\n columnOptions: [{\"width\": \"1px\", \"className\": \"index_column\"}],\n rowsPerPage: 25,\n helpUrl: \"https://colab.research.google.com/notebooks/data_table.ipynb\",\n suppressOutputScrolling: true,\n minimumWidth: undefined,\n });\n ", "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>class</th>\n", " <th>name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Math</td>\n", " <td>Carole</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Math</td>\n", " <td>Wood</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Math</td>\n", " <td>Terrence</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Math</td>\n", " <td>Bowen</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>English</td>\n", " <td>Anne</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>English</td>\n", " <td>Singleton</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>English</td>\n", " <td>Yvette</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>PE</td>\n", " <td>Edwards</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>PE</td>\n", " <td>Terrence</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>PE</td>\n", " <td>Foster</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " class name\n", "0 Math Carole \n", "1 Math Wood\n", "2 Math Terrence \n", "3 Math Bowen\n", "4 English Anne\n", "5 English Singleton\n", "6 English Yvette\n", "7 PE Edwards\n", "8 PE Terrence \n", "9 PE Foster" ] }, "metadata": { "tags": [] }, "execution_count": 5 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1B59dOs5AS9e", "outputId": "436b0e77-027a-4110-a15a-84db35599e75" }, "source": [ "df = nx.from_pandas_edgelist(lrst, source = 'class', target = 'name')\n", "data = nx.adjacency_matrix(df)\n", "print(data.todense())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "[[0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", " [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0]\n", " [0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]]\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 383 }, "id": "AZi4mVnLAopM", "outputId": "c55752ff-ce23-4c6b-98e5-bb4fb52c062d" }, "source": [ "nodes = list(df.nodes())\n", "documents = lrst['class'].unique().tolist()\n", "names = lrst['name'].unique().tolist()\n", "\n", "row_idx = []\n", "for name in names:\n", " temp = np.where(np.array(nodes) == name)\n", " row_idx.append(temp[0][0])\n", "\n", "col_idx = []\n", "for document in documents:\n", " temp = np.where(np.array(nodes) == document)\n", " col_idx.append(temp[0][0])\n", "\n", "column_names = lrst['class'].unique().tolist()\n", "doc_matrix = pd.DataFrame(data[np.ix_(row_idx, col_idx)].todense(), columns = column_names)\n", "doc_matrix.insert(0, 'name', pd.Series(names)) \n", "doc_matrix" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "application/vnd.google.colaboratory.module+javascript": "\n import \"https://ssl.gstatic.com/colaboratory/data_table/a6224c040fa35dcf/data_table.js\";\n\n window.createDataTable({\n data: [[{\n 'v': 0,\n 'f': \"0\",\n },\n\"Carole \",\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 1,\n 'f': \"1\",\n },\n\"Wood\",\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 2,\n 'f': \"2\",\n },\n\"Terrence \",\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 3,\n 'f': \"3\",\n },\n\"Bowen\",\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 4,\n 'f': \"4\",\n },\n\"Anne\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 5,\n 'f': \"5\",\n },\n\"Singleton\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 6,\n 'f': \"6\",\n },\n\"Yvette\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n }],\n [{\n 'v': 7,\n 'f': \"7\",\n },\n\"Edwards\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 8,\n 'f': \"8\",\n },\n\"Foster\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 9,\n 'f': \"9\",\n },\n\"Austin \",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n }],\n [{\n 'v': 10,\n 'f': \"10\",\n },\n\"Montgomery\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n }],\n [{\n 'v': 11,\n 'f': \"11\",\n },\n\"Lorena\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n }],\n [{\n 'v': 12,\n 'f': \"12\",\n },\n\"Kirk\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n }],\n [{\n 'v': 13,\n 'f': \"13\",\n },\n\"Alexander\",\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 0,\n 'f': \"0\",\n },\n{\n 'v': 1,\n 'f': \"1\",\n }]],\n columns: [[\"number\", \"index\"], [\"string\", \"name\"], [\"number\", \"Math\"], [\"number\", \"English\"], [\"number\", \"PE\"], [\"number\", \"History\"]],\n columnOptions: [{\"width\": \"1px\", \"className\": \"index_column\"}],\n rowsPerPage: 25,\n helpUrl: \"https://colab.research.google.com/notebooks/data_table.ipynb\",\n suppressOutputScrolling: true,\n minimumWidth: undefined,\n });\n ", "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>Math</th>\n", " <th>English</th>\n", " <th>PE</th>\n", " <th>History</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Carole</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Wood</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Terrence</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Bowen</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Anne</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Singleton</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Yvette</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Edwards</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Foster</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Austin</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Montgomery</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Lorena</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Kirk</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Alexander</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name Math English PE History\n", "0 Carole 1 0 0 0\n", "1 Wood 1 0 0 0\n", "2 Terrence 1 0 1 0\n", "3 Bowen 1 0 0 0\n", "4 Anne 0 1 0 0\n", "5 Singleton 0 1 0 0\n", "6 Yvette 0 1 0 1\n", "7 Edwards 0 0 1 0\n", "8 Foster 0 0 1 0\n", "9 Austin 0 0 1 0\n", "10 Montgomery 0 0 0 1\n", "11 Lorena 0 0 0 1\n", "12 Kirk 0 0 0 1\n", "13 Alexander 0 0 0 1" ] }, "metadata": { "tags": [] }, "execution_count": 7 } ] }, { "cell_type": "code", "metadata": { "id": "A1jAbNVsKOrB", "colab": { "base_uri": "https://localhost:8080/", "height": 576 }, "outputId": "39dbcf2e-ad14-498a-9636-7816e50aee05" }, "source": [ "G = NetworkViz(notebook=True)\n", "G.from_nx(df)\n", "G.show(\"example.html\")" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "<html>\n", "<head>\n", "<link rel=\"stylesheet\" href=\"https://cdnjs.cloudflare.com/ajax/libs/vis/4.16.1/vis.css\" type=\"text/css\" />\n", "<script type=\"text/javascript\" src=\"https://cdnjs.cloudflare.com/ajax/libs/vis/4.16.1/vis-network.min.js\"> </script>\n", "<center>\n", "<h1>None</h1>\n", "</center>\n", "\n", "<!-- <link rel=\"stylesheet\" href=\"../node_modules/vis/dist/vis.min.css\" type=\"text/css\" />\n", "<script type=\"text/javascript\" src=\"../node_modules/vis/dist/vis.js\"> </script>-->\n", "\n", "<style type=\"text/css\">\n", "\n", " #mynetwork {\n", " width: 500px;\n", " height: 500px;\n", " background-color: #ffffff;\n", " border: 1px solid lightgray;\n", " position: relative;\n", " float: left;\n", " }\n", "\n", " \n", "\n", " \n", "\n", " \n", "</style>\n", "\n", "</head>\n", "\n", "<body>\n", "<div id = \"mynetwork\"></div>\n", "\n", "\n", "<script type=\"text/javascript\">\n", "\n", " // initialize global variables.\n", " var edges;\n", " var nodes;\n", " var network; \n", " var container;\n", " var options, data;\n", "\n", " \n", " // This method is responsible for drawing the graph, returns the drawn network\n", " function drawGraph() {\n", " var container = document.getElementById('mynetwork');\n", " \n", " \n", "\n", " // parsing and collecting nodes and edges from the python\n", " nodes = new vis.DataSet([{\"id\": \"Math\", \"label\": \"Math\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Carole \", \"label\": \"Carole \", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Wood\", \"label\": \"Wood\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Terrence \", \"label\": \"Terrence \", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Bowen\", \"label\": \"Bowen\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"PE\", \"label\": \"PE\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"English\", \"label\": \"English\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Anne\", \"label\": \"Anne\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Singleton\", \"label\": \"Singleton\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Yvette\", \"label\": \"Yvette\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"History\", \"label\": \"History\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Edwards\", \"label\": \"Edwards\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Foster\", \"label\": \"Foster\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Austin \", \"label\": \"Austin \", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Montgomery\", \"label\": \"Montgomery\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Lorena\", \"label\": \"Lorena\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Kirk\", \"label\": \"Kirk\", \"shape\": \"dot\", \"size\": 10}, {\"id\": \"Alexander\", \"label\": \"Alexander\", \"shape\": \"dot\", \"size\": 10}]);\n", " edges = new vis.DataSet([{\"from\": \"Math\", \"to\": \"Carole \", \"weight\": 1}, {\"from\": \"Math\", \"to\": \"Wood\", \"weight\": 1}, {\"from\": \"Math\", \"to\": \"Terrence \", \"weight\": 1}, {\"from\": \"Math\", \"to\": \"Bowen\", \"weight\": 1}, {\"from\": \"Terrence \", \"to\": \"PE\", \"weight\": 1}, {\"from\": \"English\", \"to\": \"Anne\", \"weight\": 1}, {\"from\": \"English\", \"to\": \"Singleton\", \"weight\": 1}, {\"from\": \"English\", \"to\": \"Yvette\", \"weight\": 1}, {\"from\": \"Yvette\", \"to\": \"History\", \"weight\": 1}, {\"from\": \"PE\", \"to\": \"Edwards\", \"weight\": 1}, {\"from\": \"PE\", \"to\": \"Foster\", \"weight\": 1}, {\"from\": \"PE\", \"to\": \"Austin \", \"weight\": 1}, {\"from\": \"History\", \"to\": \"Montgomery\", \"weight\": 1}, {\"from\": \"History\", \"to\": \"Lorena\", \"weight\": 1}, {\"from\": \"History\", \"to\": \"Kirk\", \"weight\": 1}, {\"from\": \"History\", \"to\": \"Alexander\", \"weight\": 1}]);\n", "\n", " // adding nodes and edges to the graph\n", " data = {nodes: nodes, edges: edges};\n", "\n", " var options = {\n", " \"configure\": {\n", " \"enabled\": false\n", " },\n", " \"edges\": {\n", " \"color\": {\n", " \"inherit\": true\n", " },\n", " \"smooth\": {\n", " \"enabled\": false,\n", " \"type\": \"continuous\"\n", " }\n", " },\n", " \"interaction\": {\n", " \"dragNodes\": true,\n", " \"hideEdgesOnDrag\": false,\n", " \"hideNodesOnDrag\": false\n", " },\n", " \"physics\": {\n", " \"enabled\": true,\n", " \"stabilization\": {\n", " \"enabled\": true,\n", " \"fit\": true,\n", " \"iterations\": 1000,\n", " \"onlyDynamicEdges\": false,\n", " \"updateInterval\": 50\n", " }\n", " }\n", "};\n", " \n", " \n", "\n", " \n", "\n", " network = new vis.Network(container, data, options);\n", "\n", " \n", "\n", "\n", " \n", "\n", " return network;\n", "\n", " }\n", "\n", " drawGraph();\n", "\n", "</script>\n", "</body>\n", "</html>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": { "tags": [] }, "execution_count": 8 } ] }, { "cell_type": "code", "metadata": { "id": "Ih6-1VeHBzzv" }, "source": [ "" ], "execution_count": null, "outputs": [] } ] }