{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 1\n", "Import NumPy under the alias `np`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 2\n", "Import pandas under the alias `pd`." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 3\n", "Given the pandas Series `my_series`, generate a NumPy array that contains only the unique values from `my_series`. Assign this new array to a variable called `my_array`. Print `my_array` to ensure that the operation has been executed successfully." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1\n", "1 1\n", "2 2\n", "3 2\n", "4 3\n", "5 3\n", "6 4\n", "7 4\n", "8 5\n", "9 5\n", "10 6\n", "11 6\n", "12 7\n", "13 7\n", "14 8\n", "15 8\n", "16 9\n", "17 9\n", "dtype: int64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_series = pd.Series([1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9])\n", "my_series" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3, 4, 5, 6, 7, 8, 9])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Solution goes here\n", "my_array = my_series.unique()\n", "my_array" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 4\n", "Given the pandas DataFrame `my_data_frame`, generate a NumPy array that contains only the unique values from the second column. Assign this new array to a variable called `another_array`. Print `another_array` to ensure the operation has been executed successfully." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01234
00.9501201.104541-0.135333-2.157449-1.786119
1-1.7721710.207613-1.4803140.191361-2.296765
2-0.576407-0.6151811.2331000.092227-1.881353
\n", "
" ], "text/plain": [ " 0 1 2 3 4\n", "0 0.950120 1.104541 -0.135333 -2.157449 -1.786119\n", "1 -1.772171 0.207613 -1.480314 0.191361 -2.296765\n", "2 -0.576407 -0.615181 1.233100 0.092227 -1.881353" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_data_frame = pd.DataFrame(np.random.randn(3,5))\n", "my_data_frame" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.95011976, -1.7721715 , -0.57640705])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Solution goes here\n", "another_array = my_data_frame[0].unique()\n", "another_array" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 5\n", "Count the occurence of every element within the `my_series` variable that was created earlier in these practice problems." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9 2\n", "8 2\n", "7 2\n", "6 2\n", "5 2\n", "4 2\n", "3 2\n", "2 2\n", "1 2\n", "dtype: int64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_series.value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 6\n", "Given the function `triple_digit`, apply this to every element within `my_series`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def triple_digit(x):\n", " return x + x*10 + x*100" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 111\n", "1 111\n", "2 222\n", "3 222\n", "4 333\n", "5 333\n", "6 444\n", "7 444\n", "8 555\n", "9 555\n", "10 666\n", "11 666\n", "12 777\n", "13 777\n", "14 888\n", "15 888\n", "16 999\n", "17 999\n", "dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Solution goes here\n", "my_series.apply(triple_digit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 7\n", "Sort the `my_data_frame` variable that we created earlier based on the contents of its second column." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01234
1-1.7721710.207613-1.4803140.191361-2.296765
2-0.576407-0.6151811.2331000.092227-1.881353
00.9501201.104541-0.135333-2.157449-1.786119
\n", "
" ], "text/plain": [ " 0 1 2 3 4\n", "1 -1.772171 0.207613 -1.480314 0.191361 -2.296765\n", "2 -0.576407 -0.615181 1.233100 0.092227 -1.881353\n", "0 0.950120 1.104541 -0.135333 -2.157449 -1.786119" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_data_frame.sort_values(0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }