{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Intro to Deep Learning 4\n", "## Neural Network Mathematics\n", "\n", "## Import Dependencies" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import datetime\n", "import numpy as np\n", "import pandas as pd\n", "from dateutil.parser import parse\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Masage Data\n", "In this step I am going to drop all of the columns that are not pertinent to our solution. I then will go about conver" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def normalize(column):\n", " min = column.min()\n", " max = column.max()\n", " column = (column - min)/(max - min)\n", " return column" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateTimeLatitudeLongitudeMagnitudeNormMagnitudeBias
00.0000000.5724290.5906490.9044936.00.1388891
10.0001050.4790320.4840600.8537595.80.0833331
20.0001580.7541520.3464510.0167366.20.1944441
30.0003160.7845360.1103960.4345625.80.0833331
40.0003690.5644660.5458380.8511905.80.0833331
50.0004210.5670350.3904410.9628636.70.3333331
60.0005270.5641760.6403840.7440775.90.1111111
70.0006850.9706460.3910290.9617056.00.1388891
80.0007370.4809770.1264860.4248786.00.1388891
90.0007900.4467160.3220220.9958035.80.0833331
\n", "
" ], "text/plain": [ " Date Time Latitude Longitude Magnitude NormMagnitude Bias\n", "0 0.000000 0.572429 0.590649 0.904493 6.0 0.138889 1\n", "1 0.000105 0.479032 0.484060 0.853759 5.8 0.083333 1\n", "2 0.000158 0.754152 0.346451 0.016736 6.2 0.194444 1\n", "3 0.000316 0.784536 0.110396 0.434562 5.8 0.083333 1\n", "4 0.000369 0.564466 0.545838 0.851190 5.8 0.083333 1\n", "5 0.000421 0.567035 0.390441 0.962863 6.7 0.333333 1\n", "6 0.000527 0.564176 0.640384 0.744077 5.9 0.111111 1\n", "7 0.000685 0.970646 0.391029 0.961705 6.0 0.138889 1\n", "8 0.000737 0.480977 0.126486 0.424878 6.0 0.138889 1\n", "9 0.000790 0.446716 0.322022 0.995803 5.8 0.083333 1" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('database.csv')\n", "df = df[['Date','Time','Latitude','Longitude','Magnitude']]\n", "df = df.dropna()\n", "\n", "# Masage the Date column to get it into days since beginning of data\n", "df.Date = pd.to_datetime(df['Date'])\n", "df.Date = df['Date'].values.astype('datetime64[D]')\n", "df.Date = df.Date - df.Date.min()\n", "df.Date = df.Date.values / np.timedelta64(1, 'D')\n", "df.Date = df.Date.values.astype('int')\n", "\n", "# Masage the Time column to get it in seconds since 00:00:00\n", "df.Time = pd.to_datetime(df['Time'])\n", "now = datetime.datetime.now()\n", "midnight = now.replace(hour=0, minute=0, second=0, microsecond=0)\n", "df.Time = df.Time - midnight\n", "df.Time = df.Time.values / np.timedelta64(1, 's')\n", "df.Time = df.Time.values.astype('int')\n", "\n", "#Normalize data\n", "df.Date = normalize(df.Date)\n", "df.Time = normalize(df.Time)\n", "df.Latitude = normalize(df.Latitude)\n", "df.Longitude = normalize(df.Longitude)\n", "df['NormMagnitude'] = normalize(df.Magnitude)\n", "df['Bias'] = 1\n", "\n", "df.head(10)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizations\n", "\n", "### Time of Day\n", "The first graph we can take a look at is the distribution of earthquakes by time of day. As we can see below there appears to be a relativley equal distribution of earthquakes throughout each hour of the day." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XHW9//HXJ3uzNmvXdKELpZQ9sosgKFCU6kURFHdB\nUdyvjx9XvPyQq9frxuIVr6A/r7ixqli1iiyiyCYFCrSFtmlLm7SlWZtmaTJJ5vv7Y84M05Blspw5\nJ837+XjkkZkzZ2Y+c2aS93y/33O+x5xziIiIAGQEXYCIiISHQkFERBIUCiIikqBQEBGRBIWCiIgk\nKBRERCRBoSAiIgkKBRERSVAoiIhIQlbQBYxWRUWFW7BgQdBliIhMKs8880yTc65ypPUmXSgsWLCA\ntWvXBl2GiMikYmY7UllP3UciIpKgUBARkQSFgoiIJCgUREQkQaEgIiIJCgUREUlQKIiISMKkO05B\nREavrauXh17eS33rAcoLczhjSSXVZflBlyUhpFCQSck5x+62bnbvO0Bvf5TivGwWVxWSl50ZdGmh\n4pzjJ4+9wnf/somuSP9Bt5175Ay+vPII5pcXBFSdhJFCQXznnOOf21v40/pXqWvpoigvi6PnTudt\nR8+iqjhvVI+zdkcrdz9dx982N9LQ3nPQ7dmZRs38Mi46YS4XHjObnKxw9Y529PTxm2fr+fvmRvYf\n6GNRVSGXnljN0XOn+/J8/VHHNb99kTufruPsZVV89pwlLJtZTH1rF/et281P/rGdlTc/yldXreBd\nJ8z1pQaZfMw5F3QNo1JTU+M0zcXk0dDezZd/8yIPvtTAtOxMFlQU0NYVYXdbNxkGb142gw+duoDT\nFpdjZoM+xoFIP795rp6fPvYKWxo6KMjJ5KxlVZy0sIx55QXkZGbQ0hnhxV1t/Hn9Hl5p7mJu6TSu\nPn8ZFxw1a8jHTRfnHL9bt5vr/7CRls4Ih1UWUFGYy4ZdbXRG+vnwaQv48sojyM6c2BC7+cEt3Pjg\nZq46azFffOvS122H3fsO8Pm71vHU9hauOOMwrj5vGRkZwW4r8Y+ZPeOcqxlxPb9Cwcx+ArwNaHDO\nrRjkdgNuBlYCXcCHnHPPjvS4CoXJY0dzJ+/90VM0dfTwxbcu5f0nL2BaTqx7Z1tjB/c+U89dT9fR\n3BlhcVUhHzxlPm89ciZVRbn09EVZv6uNP69/lXufrWdfVy8r5hTzgZMXcMHRsyjIHbyR65zjb5sb\n+fb9m9iwez8XHDWLr71jBaUFOeN6Lc0dPfyjtom6li4yMzJYOqOQUxaVk58zfGO7vrWLr9y3nkc2\nNXJs9XSufftyjp9XCkB7dy/fuX8Ttz+xgwuOmsXNlxxL1gQFwzM7Wrn41id4+9GzuOmS44Zcrz/q\n+OrvN/CzJ3bw9mNmc8PFx0x4OEk4hCEUzgA6gJ8NEQorgU8TC4WTgJudcyeN9LgKhcmhqaOHVd9/\njK5IHz/7yEkcNbdk0PW6e/v54wt7uP2JV3ihvg2AzAyjPxr7XGZnGm9eVsVHTlvIiQvLUv7W3x91\n3Pr3rdz4wGaqivL40QdqWD67eNSvo62rl2/d/zL3rK0n0h896LbcrAzevKyKVcfO5szDqw4azzgQ\n6eeXT+3ghgc2A/Clcw/nA6csIHOQb+I/fnQbX/vjS1zyhmq+8S9Hjbtl097dy8rvPYpzsOazb6Q4\nL3vY9Z1z/PBv2/jmn1+e8HCS8Eg1FHwbU3DO/d3MFgyzyipigeGAJ81supnNcs7t8asmSY/+qONT\nv3yWpo4e7vnEKUMGAkBediYXnTCXfzl+Dut37WftjhaaOnrIzcpkSVUhpy2pGPGf2mAyM4xPnrmY\n0xZVcMXP13LR/zzODRcfw/lHzUr5Mf65vYXP3fkcDe09vOcN1VxcU82yWUX09jteqN/HXzbs5Q8v\n7OFP61+lKC+L0xZVMKM4l6aOCP+obaLtQC9vWlrJ19+5grmlQ+/p87E3HkZrV4Rb/rqVFXNKuOzk\n+aN+vcn+7+82sHtfN3d//OSUtp2ZceWZi8jKML6+5iXM4Kb3KBimqiAHmucAdUnX671lCoVJ7n8f\n285T21v4zruPSXkQ1cw4am7JsAEyFsdUT+f3V53OJ37xDFf+8lmuPHMRX3zL0mH/4fX1R/new7V8\n/+EtzCvL5zefPPWg15GbBacuquDURRV85YIjeHxrM79bt5vn6lp5fGsTJfnZnHPEDN7zhmpOXFiW\nUp1feMvhbNy9n+tWb2D57OJEF9No/W7dLn7z3C4+d84STpif2nPHXX7GYUSd4xt/epnMDOOGi48d\ntGUjh7ZJsfeRmV0BXAEwb968gKuR4dS1dPGdv2zi7GVVXHT8nKDLAaCqOI87rjiZ61Zv5H8e2crz\ndfu48T3HMmOQPZ+2NXbwr/c8z7M793HR8XP56qojKRxi/AIgKzODM5ZWcsbSEc9dMqzMDOOm9xzH\n277/KFf98ln++Jk3jnocJD5+ccL8Uq46a/GY6vj4mxbR7xzf+vMmsjMz+NZFR2vweYoJsn24C6hO\nuj7XW/Y6zrnbnHM1zrmaysrx/fGJv258cDPOwX+8Y0Xge/0ky83K5Bv/chTfftfRPLOjlbO+8wg3\nPrCZ7U2d9PZHqW3o4D/XvMT5Nz/K1sZObr7kWL578THDBsJEK8nP5gfvPYGmjgifv3sd0Wjq4319\n/VE+f9c6cOPv+vnkmYv53DlLuPeZeq65bz2TbQ9FGZ8gWwqrgavM7E5iA81tGk+Y3Dbvbee3z+3i\n8jcexuzp04IuZ1DvrqnmpIXlfH3NRm5+aAs3P7QlcVuGwYXHzObLK48Y1fETE+mouSVc+/blfOW+\n9fzgkVquevOSlO73g0e28vQrrdz0nmMn5Ejlz569hEhflB88spWcTOO6C48MVciLf3wLBTO7AzgT\nqDCzeuD/AtkAzrkfAmuI7XlUS2yX1A/7VYukx61/20Z+diZXvmlR0KUMa155Pre+v4a6li7+vqWR\n5o4IM4pzOX1JJXNCEGbvO2keT7/Swg0PbOb4+aWcuqhi2PUfq23ipgc3887j5vCO4yamy87M+NK5\nhxPpi/Ljf2wnJyuDL688QsEwBfi599GlI9zugE/59fySXs0dPfz+hd1c8obqcR8TkC7VZfm876Tx\n7enjBzPjP995FBt27+czdzzHr688dcipKOpbu/jsnc+xqLKQr73jdXt+j7uOay44gt7+KD96dDsd\nPX1cv2qFjmM4xOndlQlx19o6In1RPnBK+P7JTkYFuVn88LLj6Y863vujp6ht6HjdOrv3HeB9P36K\nSF+U/7ns+CEP6BsPs1jX0VVnLeaOf9bx0dvX0nagd8KfR8JDoSDj5pzj3mfqOWlhGYurioIu55Cx\nuKqIX3zsJA709rPq+//g9sdfYX93b2zaj2freft//4Pmjgi3f+REX7e7mfGv5x7ONy86isdrm1h5\n86OsfaXFt+eTYGnuIxm3l1/dz3k3PcrX3rFi3AdeyevtaTvAF+56nie2NR+0/MjZxdx8ybFpDeLn\ndrby2TvXUd/axafOWsyn37wkdBMPyuACP6JZpo41L+whw+C8FTODLuWQNKtkGr+6/CSe3dnKk9ta\n6O2Pcvy8Uk5fXJH2YwiOm1fKHz9zOtet3sh/P1zLwy83cMPFx3L4TLUQDxVqKci4nf3dR5hRnMev\nLj856FIkje7f8CrX/PZF9h/o4+rzl/GR0xcGXZIMI9WWgtp9Mi679h1ga2MnZx8xI+hSJM3OPXIm\n93/uDN50eCXX/2EjNz24OeiSZAIoFGRcHqttAuD0xcPvSy+HpvLCXG697ATedcJcbnpwC2te1PGn\nk51CQcblsdomKgpzWTqjMOhSJCAZGbHjKo6pns6/37eeti7tsjqZKRRkzJxzPL61mVMXDX3WNJka\ncrIy+M93rohNAf5IbdDlyDgoFGTMtjZ20tjew6mLyoMuRULgyNklvO3o2dzx1E46evqCLkfGSKEg\nY/Z83T4Ajp8/trn/5dDzkdMX0t7Tx6+fqQ+6FBkjhYKM2Qv1+8jPyWRRpcYTJObY6uksm1nEH17Y\nHXQpMkYKBRmz5+vbWDGnRGfnkoOsPGoWa3e0snd/d9ClyBgoFGRMIn1RNu7ZzzETfPpMmfxWHjUT\n5+AvG/cGXYqMgUJBxmTz3nYifdGUz8EsU8eiykJmleTx5NbmkVeW0FEoyJis39UGwFFz1FKQg5kZ\npxxWzpPbmnUqz0lIoSBjsqWhg7zsDOZNwKkf5dBz8qJymjsjbBnkPBASbgoFGZMtDR0sripM+yyd\nMjmcuKAMgLWvtAZciYyWQkHGpHZvO0t0Qh0ZwvzyfIrzsli/uy3oUmSUFAoyau3dvexu62ZxlY5P\nkMGZGSvmlCTGnmTyUCjIqMXPF7xEoSDDWDGnhJf3xPZSk8lDoSCjFh88XDJD3UcytBVzSoj0R9nS\n0B50KTIKCgUZtdqGDnKyMqgunRZ0KRJiy7xTdG7Zqz2QJhOFgozaK02dzC/LJytTHx8Z2oLyAjIz\nLNHdKJOD/qpl1Ha2dOn4BBlRTlYG88vy1X00ySgUZFScc7FQKFcoyMgWVRWqpTDJKBRkVJo7I3RF\n+tVSkJQsqSpkR3MXvf3aA2myUCjIqOxs6QJiByeJjGRRZSF9UceO5q6gS5EUKRRkVHZ6f9xqKUgq\n4l8e6loVCpOFQkFGJd5SmFuqUJCRVXtfHupaFAqTha+hYGbnmdkmM6s1s6sHuX2emf3VzJ4zsxfM\nbKWf9cj47WzpYmZxHnnZmUGXIpNAZWEuOVkZCoVJxLdQMLNM4BbgfGA5cKmZLR+w2leAu51zxwGX\nAD/wqx6ZGDubtTuqpC4jw5hbOo26lgNBlyIp8rOlcCJQ65zb5pyLAHcCqwas44Bi73IJoLN9h9yu\nfQeYoyOZZRTmleVrTGES8TMU5gB1SdfrvWXJrgMuM7N6YA3w6cEeyMyuMLO1Zra2sbHRj1olBf1R\nx9793cwqyQu6FJlEqkvz1X00iQQ90Hwp8FPn3FxgJfBzM3tdTc6525xzNc65msrKyrQXKTFNHT30\nRR2zpqulIKmrLpvG/u4+2g70Bl2KpMDPUNgFVCddn+stS/ZR4G4A59wTQB5Q4WNNMg6798X6hWer\npSCjME97IE0qfobC08ASM1toZjnEBpJXD1hnJ3A2gJkdQSwU1D8UUq+2dQMwU6EgoxDffble4wqT\ngm+h4JzrA64C7gdeIraX0QYzu97MLvRW+yJwuZk9D9wBfMg55/yqScZntxcKs0vUfSSpm+N1N+7e\n1x1wJZKKLD8f3Dm3htgAcvKya5MubwRO87MGmTh79h0gLzuD6fnZQZcik8j0/GxysjJ4db9CYTII\neqBZJpE9+7uZVTINMwu6FJlEzIyZxXmJ7kcJN4WCpGzPvgPaHVXGZGZJnloKk4RCQVK2py3WUhAZ\nLbUUJg+FgqSkP+poaO9RS0HGJN5S0H4k4adQkJQ0d/TQH3XMKM4NuhSZhGYU5xHpi7KvSwewhZ1C\nQVLS0N4DQGWRWgoyejOLY5+bPepCCj2FgqSk0QuFKrUUZAziBzzu1WBz6CkUJCXxUKgsVCjI6MVD\nQS2F8FMoSEoa2mN/zJVFCgUZvaqiXMzQbqmTgEJBUtLY3kNxXpbOuCZjkp2ZQXlBLg0KhdBTKEhK\nGtp7qCrWILOMXUVhDk0dPUGXISNQKEhKGtt7NJ4g41JZlJsYm5LwUihISmItBYWCjF1lYS5NHZGg\ny5ARKBRkRM45tRRk3CqKcmns6NFRzSGnUJARdfT0caC3Xy0FGZeKwhwifVHae/qCLkWGoVCQEcWP\nZq7S0cwyDhVeS7NJ4wqhplCQESUOXNMxCjIO8c+PBpvDTaEgI3qtpaBQkLFLtBQ02BxqCgUZkVoK\nMhFeCwW1FMJMoSAjamzvISczg5JpOjezjF1ZQQ4ZplAIO4WCjKi5o4fywhydm1nGJTPDKCvIVSiE\nnEJBRtTcGaGsICfoMuQQUFGYo4HmkFMoyIgUCjJRKotyadRAc6gpFGRELZ09iUFCkfGoKMzVcQoh\np1CQEbV0qKUgE6OyKDamoKkuwkuhIMPq7u2nM9KvUJAJUVGYQ4+mugg1hYIMq7kz1v9brlCQCVBe\nEOuGbNa4QmgpFGRYLd4fb7nGFGQClBXGvly0dCoUwkqhIMNq6owNCqr7SCZCWb5CIex8DQUzO8/M\nNplZrZldPcQ6F5vZRjPbYGa/8rMeGb1ES0GhIBMg/uWiVaEQWll+PbCZZQK3AG8B6oGnzWy1c25j\n0jpLgH8DTnPOtZpZlV/1yNjEv9HFm/0i41HufY6aFQqhlVJLwcx+Y2YXmNloWhYnArXOuW3OuQhw\nJ7BqwDqXA7c451oBnHMNo3h8SYPmzgjZmUZRrm/fH2QKmZadSW5WBi2dOlYhrFL9J/8D4L3AFjP7\nLzM7PIX7zAHqkq7Xe8uSLQWWmtljZvakmZ032AOZ2RVmttbM1jY2NqZYskyE5o4eygtyNe+RTAgz\no7wgh5bO3qBLkSGkFArOuQedc+8DjgdeAR40s8fN7MNmNp6pM7OAJcCZwKXAj8xs+iDPf5tzrsY5\nV1NZWTmOp5PRatEUFzLBygpz1FIIsZS7g8ysHPgQ8DHgOeBmYiHxwBB32QVUJ12f6y1LVg+sds71\nOue2A5uJhYSERHNnJNEPLDIRSvNzaOlSSyGsUh1T+C3wKJAPvN05d6Fz7i7n3KeBwiHu9jSwxMwW\nmlkOcAmwesA69xFrJWBmFcS6k7aN+lWIb9RSkIkW6z5SSyGsUh09/JFzbk3yAjPLdc71OOdqBruD\nc67PzK4C7gcygZ845zaY2fXAWufcau+2t5rZRqAf+JJzrnnMr0YmXHxMQWSilBbkJHZ1lvBJNRS+\nBqwZsOwJYt1HQ/KCZM2AZdcmXXbAF7wfCZn4vEfqPpKJVF6QQ2ekn+7efvKyM4MuRwYYNhTMbCax\nPYammdlxQHwXlGJiXUlyCEsco6DuI5lAZV7Ls7UrwqySaQFXIwON1FI4l9jg8lzghqTl7cCXfapJ\nQkKhIH4oK4jtsNjSqVAIo2FDwTl3O3C7mV3knPt1mmqSkIifS7dC3UcygeItBc1/FE4jdR9d5pz7\nBbDAzF7X7++cu2GQu8kh4rWWggaaZeLEW54KhXAaqfuowPs91G6ncghT95H4QaEQbiN1H93q/f5q\nesqRMGnqiM17VJyneY9k4pRMyybDFAphlerBa98ys2Izyzazh8ys0cwu87s4CVZLZw9lBTma90gm\nVGaGMT0/RzOlhlSq01y81Tm3H3gbsbmPFgNf8qsoCYfY0cwaT5CJV1aQo3MqhFSqoRDvP7gAuMc5\n1+ZTPRIizZ0RnVxHfFFWoJZCWKUaCn8ws5eBE4CHzKwS6PavLAmD5g7NeyT+KMtXSyGsUp06+2rg\nVKDGOdcLdPL6E+bIIaZFM6SKT2LTZysUwmg0u5UsI3a8QvJ9fjbB9UhI9PT109HTp+4j8UV5QQ6t\nXRGiUUdGhnZkCJOUQsHMfg4sAtYRm80UwKFQOGTpwDXxU2l+DlEHbQd6KdUXj1BJtaVQAyz3ZjWV\nKaC5QweuiX/i3ZLNnRGFQsikOtC8HpjpZyESLvE9QzSmIH4ozddRzWGVakuhAthoZv8EEqdMcs5d\n6EtVErj4mbHUUhA/aKqL8Eo1FK7zswgJn3j3kQaaxQ/xFqhCIXxSCgXn3N/MbD6wxDn3oJnlEzvF\nphyiWjojZGYYxXnZQZcih6DXuo90ruawSXXuo8uBe4FbvUVzgPv8KkqC19IZoTQ/R7sLii/ysjMp\nyMmkpbM36FJkgFQHmj8FnAbsB3DObQGq/CpKgteiKS7EZ7ED2NRSCJtUQ6HHOZfo/PMOYNPuqYew\n2GR4CgXxT5lmSg2lVEPhb2b2ZWCamb0FuAf4vX9lSdBaOiOUaXdU8VGZd1SzhEuqoXA10Ai8CHwc\nWAN8xa+iJHiaIVX8VlaQS0uHQiFsUt37KGpm9wH3Oecafa5JAtbbH6XtQK+6j8RXZQXZNHdGcM7p\nRE4hMmxLwWKuM7MmYBOwyTvr2rXpKU+CEG/Sq6UgfioryKWnL8qB3v6RV5a0Gan76PPE9jp6g3Ou\nzDlXBpwEnGZmn/e9OglE/IAizUkjfop/6WhWF1KojBQK7wcudc5tjy9wzm0DLgM+4GdhEpzXZkhV\nKIh/SjXVRSiNFArZzrmmgQu9cQUd6nqIiv+RlmvabPFRYv4j7YEUKiOFwnDvlt7JQ5RaCpIO8e4j\n7YEULiOFwjFmtn+Qn3bgqJEe3MzOM7NNZlZrZlcPs95FZubMrGa0L0AmXryPtzRfjUHxT5kmxQul\nYXdJdc6NedI7M8sEbgHeAtQDT5vZaufcxgHrFQGfBZ4a63PJxGrpjDA9P5uszFQPYxEZvaLcLLIz\nTd1HIePnX/2JQK1zbps3RcadwKpB1vsP4JtAt4+1yChoigtJBzOjND9H3Uch42cozAHqkq7Xe8sS\nzOx4oNo590cf65BRau7s0TEKkhZlBZr/KGwC6x8wswzgBuCLKax7hZmtNbO1jY06oNpvailIupQV\naKbUsPEzFHYB1UnX53rL4oqAFcAjZvYKcDKwerDBZufcbc65GudcTWVlpY8lC0BLZy9l2h1V0iA2\nKZ7OqRAmfobC08ASM1toZjnAJcDq+I3OuTbnXIVzboFzbgHwJHChc26tjzXJCKJRR2tXhLIC7Xkk\n/isvyKG5Qy2FMPEtFJxzfcBVwP3AS8DdzrkNZna9mV3o1/PK+Ozv7qU/6tRSkLQoLchhf3cfvf3R\noEsRT0qzpI6Vc24NsWm2k5cNOpmec+5MP2uR1DR3ajI8SZ/456y1K0JVUV7A1QgEONAs4aSjmSWd\n4i1SHcAWHgoFOUj8aGaFgqRDqTd2pWMVwkOhIAdJTIanU3FKGsQnXdRRzeGhUJCDxE+wo5aCpEOZ\nps8OHYWCHKS5I0Jhbha5WWOe9kokZdO9SRd1op3wUCjIQVo6e9RKkLTJzsygZFp2ooUqwVMoyEGa\nOyM6DaekVbnmPwoVhYIcpKkjQmWhDlyT9Ckt0EypYaJQkIM0tvdQWaSWgqRPbP4jhUJYKBQkoT/q\naOnsoUItBUkjdR+Fi0JBElq7IkQdVBYpFCR9ygpyaO2MEI26oEsRFAqSpLE9NlulWgqSThWFufRF\nHfsOaArtMFAoSEJTh0JB0i/eMm3SFNqhoFCQhHhLQd1Hkk7xz1v88yfBUihIwmstBe19JOmjUAgX\nhYIkNHVEyMvOoDDX19NsiBwk3l2pUAgHhYIkNLbHdkc1s6BLkSmkOC+LnKwMjSmEhEJBEpo6dIyC\npJ+ZUVmYq5ZCSCgUJCF2NLNCQdKvsiiXRrUUQkGhIAlqKUhQKovUUggLhYIA0NcfpbkzopaCBKKi\nMFdjCiGhUBAgdjpE56BSu6NKACqLcmnujNDXHw26lClPoSAANLXHJiRT95EEobIoF+d0Ws4wUCgI\nAA3t3YCOZpZgxM/h0aBxhcApFASAvftjoTCjOC/gSmQqShzVrHGFwCkUBIBX22J/jAoFCUK8pdCk\nlkLgFAoCwKv7uykvyCEnSx8JSb94S0HdR8HTfwABYt1HaiVIUKblZFKUl0WD140pwVEoCAB72rqZ\nWaJQkODMLpnGnjaFQtB8DQUzO8/MNplZrZldPcjtXzCzjWb2gpk9ZGbz/axHhqaWggRtZkker6ql\nEDjfQsHMMoFbgPOB5cClZrZ8wGrPATXOuaOBe4Fv+VWPDK2nr5+WzggzFQoSoFkleWophICfLYUT\ngVrn3DbnXAS4E1iVvIJz7q/OuS7v6pPAXB/rkSE07I8N7s0s0TEKEpyZJXk0dfQQ6dNRzUHyMxTm\nAHVJ1+u9ZUP5KPAnH+uRIcSb7DNLpgVciUxls0rycO61Y2YkGKEYaDazy4Aa4NtD3H6Fma01s7WN\njY3pLW4KeNVrsqv7SIIU/1KicYVg+RkKu4DqpOtzvWUHMbNzgGuAC51zg+6k7Jy7zTlX45yrqays\n9KXYqSz+zUyhIEGa7e39pnGFYPkZCk8DS8xsoZnlAJcAq5NXMLPjgFuJBUKDj7XIMOpbD1CQk0nx\nNJ2bWYIT3yX61bYDAVcytfkWCs65PuAq4H7gJeBu59wGM7vezC70Vvs2UAjcY2brzGz1EA8nPqpv\n7aK6LF/nZpZAFeVlU5ibpZZCwHz9auicWwOsGbDs2qTL5/j5/JKa+tYDzC3VILMEb2ZJHnv2KRSC\nFIqBZgmOc84LhfygSxFhzvRp7Nqn7qMgKRSmuLYDvXT09KmlIKEwryyfnS1dI68ovlEoTHF1LbFv\nZWopSBjMK8un7UAvbV29QZcyZSkUprj61ti3suoytRQkeNVlsS8nda1qLQRFoTDF1beqpSDhMc8L\nBXUhBUehMMXVtXZRlJdFybTsoEsRSbRYdzQrFIKiUJji6lq6qFYrQUKiKC+bsoIctRQCpFCY4rY1\ndbKwsiDoMkQSqsvyqVMoBEahMIX19PVT19LFosrCoEsRSdBuqcFSKExhO5u7iDpYpJaChMjC8nzq\nW7vo7u0PupQpSaEwhW1t7ADgsAq1FCQ8lswoIupgW2Nn0KVMSQqFKWyr90enMQUJk6UzigDYvLc9\n4EqmJoXCFLa1oYOZxXkU5mrKbAmPhRUFZGWYQiEgCoUpbOOe/SybVRR0GSIHycnKYGFFAZv3dgRd\nypSkUJiiIn1RtjZ2cMSs4qBLEXmdpTOL1FIIiEJhiqpt6KC337FcoSAhtLSqiLrWLg5EtAdSuikU\npqiNe/YDqKUgoXT4zCKcg5de3R90KVOOQmGKWr+rjWnZmSys0J5HEj7HVk8H4Pm6fQFXMvUoFKao\nZ3a0ckx1CZkZOi+zhM/MkjxmFufx3E6FQropFKagzp4+Nu7ZT838sqBLERnScfOms04thbRTKExB\nz9fvoz/qOGFBadCliAzpuHnT2dnSRUN7d9ClTCkKhSnoyW0tZBgcX61QkPA6dVEFAI/VNgVcydSi\nUJiCHtnUwHHzSinJ14l1JLyWzyqmrCCHRzcrFNJJoTDFNLb38EJ9G2cdXhl0KSLDysgwTl9cwd+3\nNBGNuqBUsmBvAAAJr0lEQVTLmTIUClPMAxv3AnDWsqqAKxEZ2TnLZ9DU0cNT21uCLmXKUChMMfc+\nU8eSqkIdySyTwjlHVJGfk8nv1u0KupQpQ6EwhWzZ286zO/fx7pq5mOn4BAm//JwszjtyJn98YQ/7\nu3uDLmdKUChMIbf8tZZp2ZlcdPzcoEsRSdlHTl9Ie08fv3xyZ9ClTAkKhSli/a42Vj+/mw+cOp/y\nwtygyxFJ2Yo5JbxpaSU//NtWGtt7gi7nkOdrKJjZeWa2ycxqzezqQW7PNbO7vNufMrMFftYzVbV3\n9/L5u9ZRWZTLlW9aFHQ5IqP2729bzoFIP1f/+gX6tSeSr3wLBTPLBG4BzgeWA5ea2fIBq30UaHXO\nLQZuBL7pVz1TVcP+bj70v0+zvamT7777WKbn5wRdksioLa4q5CtvO4KHXm7gc3etoyvSF3RJhyw/\nz8N4IlDrnNsGYGZ3AquAjUnrrAKu8y7fC3zfzMw5p68CYxSNOpo6e6ht6ODhlxq48+k6+qJRvnfp\ncZy+pCLo8kTG7AOnLKCjp49v37+JJ7c18/6T5/PGJRUcVlGoAzEnkJ+hMAeoS7peD5w01DrOuT4z\nawPKgQk/hPHup+u47dFtxPMmkTpJ8RO/OHCdeEQ5b0ni+iDRlfJ9B9yevPT16wzxmEl3jl/q6Y0S\n6Y8CkJlhnL9iJp87ZymLqwpfX6zIJPPJMxdz4oIybnhgc+IHIC87g/ycLKZlZ5KVGduzzgAzw+JX\nBi6bhD5z9hLefsxsX59jUpyx3cyuAK4AmDdv3pgeo7Qgh8NneOcjtoN+HbR75mvLBl/HBqyY/PF6\n/X0OXidxfeCDjOa+g9Sc/Bg5WRnMmT6N6tJ8TlhQSnGevkHJoaVmQRm/uvxkGtq7eXbHPna2dNLU\nEaEr0kdXpJ9oNPYVzDm830lfqtxrX9Amo5Jp/v89+xkKu4DqpOtzvWWDrVNvZllACdA88IGcc7cB\ntwHU1NSM6R19y/IZvGX5jLHcVURCqKooj/NWzAy6jEOOn3sfPQ0sMbOFZpYDXAKsHrDOauCD3uV3\nAQ9rPEFEJDi+tRS8MYKrgPuBTOAnzrkNZnY9sNY5txr4f8DPzawWaCEWHCIiEhBfxxScc2uANQOW\nXZt0uRt4t581iIhI6nREs4iIJCgUREQkQaEgIiIJCgUREUlQKIiISIJNtsMCzKwR2DHGu1fgwxQa\nE0B1jY7qGr2w1qa6Rmc8dc13zo14cvZJFwrjYWZrnXM1QdcxkOoaHdU1emGtTXWNTjrqUveRiIgk\nKBRERCRhqoXCbUEXMATVNTqqa/TCWpvqGh3f65pSYwoiIjK8qdZSEBGRYRxyoWBmZWb2gJlt8X6X\nDrFev5mt835WJy1faGZPmVmtmd3lTfudlrrM7Fgze8LMNpjZC2b2nqTbfmpm25NqPnac9ZxnZpu8\n13n1ILfneq+/1tseC5Ju+zdv+SYzO3c8dYyhri+Y2UZv+zxkZvOTbhv0PU1TXR8ys8ak5/9Y0m0f\n9N73LWb2wYH39bmuG5Nq2mxm+5Ju83N7/cTMGsxs/RC3m5l9z6v7BTM7Puk2P7fXSHW9z6vnRTN7\n3MyOSbrtFW/5OjNbm+a6zjSztqT369qk24b9DIyac+6Q+gG+BVztXb4a+OYQ63UMsfxu4BLv8g+B\nK9NVF7AUWOJdng3sAaZ7138KvGuCaskEtgKHATnA88DyAet8Evihd/kS4C7v8nJv/Vxgofc4mWms\n6ywg37t8Zbyu4d7TNNX1IeD7g9y3DNjm/S71Lpemq64B63+a2BT2vm4v77HPAI4H1g9x+0rgT8RO\nJngy8JTf2yvFuk6NPx9wfrwu7/orQEVA2+tM4A/j/Qyk8nPItRSAVcDt3uXbgXekekczM+DNwL1j\nuf9463LObXbObfEu7wYagBEPNhmDE4Fa59w251wEuNOrb6h67wXO9rbPKuBO51yPc247UOs9Xlrq\ncs791TnX5V19ktgZ/fyWyvYayrnAA865FudcK/AAcF5AdV0K3DFBzz0s59zfiZ0jZSirgJ+5mCeB\n6WY2C3+314h1Oece954X0vf5SmV7DWU8n81BHYqhMMM5t8e7/Cow1Dk488xsrZk9aWbxf9DlwD7n\nXJ93vR6Yk+a6ADCzE4kl/9akxV/3mrY3mlnuOGqZA9QlXR/sdSbW8bZHG7Htk8p9/awr2UeJfduM\nG+w9TWddF3nvz71mFj8VbSi2l9fNthB4OGmxX9srFUPV7uf2Gq2Bny8H/MXMnrHYeePT7RQze97M\n/mRmR3rLJnx7+XqSHb+Y2YPAYCdnvSb5inPOmdlQu1fNd87tMrPDgIfN7EVi//iCrgvvG9PPgQ86\n56Le4n8jFiY5xHZL+z/A9eOpdzIzs8uAGuBNSYtf954657YO/ggT7vfAHc65HjP7OLFW1pvT9Nyp\nuAS41znXn7QsyO0VamZ2FrFQOD1p8ene9qoCHjCzl71v+OnwLLH3q8PMVgL3AUv8eKJJ2VJwzp3j\nnFsxyM/vgL3eP9X4P9eGIR5jl/d7G/AIcBzQTKwZGw/LucCudNZlZsXAH4FrvGZ1/LH3eE3tHuB/\nGV+XzS6gOun6YK8zsY63PUqIbZ9U7utnXZjZOcSC9kJvewBDvqdpqcs515xUy4+BE1K9r591JbmE\nAV1HPm6vVAxVu5/bKyVmdjSx93CVc645vjxpezUAv2Xiuk1H5Jzb75zr8C6vAbLNrAI/ttd4BiTC\n+AN8m4MHdL81yDqlQK53uQLYgjc4A9zDwQPNn0xjXTnAQ8DnBrltlvfbgJuA/xpHLVnEBvAW8trg\n1JED1vkUBw803+1dPpKDB5q3MXEDzanUdRyxLrUlqb6naaprVtLldwJPepfLgO1efaXe5bJ01eWt\nt4zYIKmlY3slPccChh44vYCDB5r/6ff2SrGuecTGyU4dsLwAKEq6/DhwXhrrmhl//4iF0U5v26X0\nGRhVHRP5osLwQ6zf+yHvQ/5g/ANFrKvhx97lU4EXvQ34IvDRpPsfBvzT+2DcE//DSVNdlwG9wLqk\nn2O92x72al0P/AIoHGc9K4HNxP7BXuMtu57Yt2+APO/113rb47Ck+17j3W8TcP4Ev38j1fUgsDdp\n+6we6T1NU13fADZ4z/9XYFnSfT/ibcda4MPprMu7fh0DvkSkYXvdQWzvuV5i/dwfBT4BfMK73YBb\nvLpfBGrStL1GquvHQGvS52utt/wwb1s9773P16S5rquSPl9PkhRag30GxvOjI5pFRCRhUo4piIiI\nPxQKIiKSoFAQEZEEhYKIiCQoFEREJEGhICIiCQoFERFJUCiIiEjC/wdnkCs7lslnpwAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df['Time'].plot.kde()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we take a look at the density of earthquakes by date. As we see the number of earthquake reports seem to increase overtime. This could be due to technical improvements making it easier for scientists to capture seismic data." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XNWZ+PHvq96bJVm2LFmucgPbWBgwhBKaTQImS4q9\nmIUEYlLIbkL2t5Aly2ZJNhuSTQ8kIXQSiiFZ4hADsTElYFwB427LkotkWb1YklXn/P6YKzGWVUbW\n3Ll3NO/neebRzK2v7oz0zjnnnnPEGINSSikFEOF0AEoppdxDk4JSSqlemhSUUkr10qSglFKqlyYF\npZRSvTQpKKWU6qVJQSmlVC9NCkoppXppUlBKKdUryukAhiszM9MUFBQ4HYZSSoWUbdu21Rhjsoba\nLuSSQkFBAVu3bnU6DKWUCikictif7bT6SCmlVC9NCkoppXppUlBKKdVLk4JSSqlemhSUUkr10qSg\nlFKqlyYFpZRSvUKun4JSKniMMXxwtIEth+qIj45kyVnjyEyKdTosZSNNCkqpftW1dPCtP33Iq7sq\ne5f98NV9/HbFAhZNzXQwMmUnrT5SSp3mzf3VXP2zt3h9bzV3LZ7Be/9xJa9+/WLGp8Zz+1PbOFrX\n6nSIyiaaFJRSvdo6u/nO6l3c/Ohm0hOiefGrF/LlS6eQkRhDYU4yD99cBAJ3/fFDp0NVNrEtKYjI\noyJSJSI7B1h/o4h8KCI7RGSDiMy1Kxal1NB2H2viul+9zeMbDvH5CwtYfcdFzBqfcso2eRkJfOOK\n6Ww4WMs7xTUORarsZGdJ4XFg8SDrS4FLjDFnAd8FHrIxFqXUADwew+/eKuH6B96hvrWTJ76wkP+8\ndjZx0ZH9bv+P5+WTkxLHr984GORIVTDY1tBsjHlLRAoGWb/B5+VGYIJdsSil+tfU1sk3V21n7e5K\nrpo1lh/ccDYZiTGD7hMXHcmN5+Xz47X7OVTTQkFmYpCiVcHgljaFW4GXnQ5CqXBS1dTGPzy4gfV7\nq7j3k7P47U0LhkwIPT53bh6REcJzW4/aHKUKNseTgohchjcp3DXINitFZKuIbK2urg5ecEqNUpVN\nbSx7aCMVDSd56taFfOGiSYiI3/tnp8SxaMoYXt5RgTHGxkhVsDmaFETkbOBhYKkxpnag7YwxDxlj\niowxRVlZQ04cpJQaRHtXN7c/tY3jTW08eetCFk05sz4H15w1jkO1reypOBHgCJWTHEsKIpIP/Am4\nyRiz36k4lAo3//WX3XxwtIGffHYuCyZmnPFxrpo1lgiBl3dWBDA65TQ7b0l9BngXKBSRMhG5VUS+\nJCJfsja5FxgDPCgiH4iIzrGplM3e3F/N05uOcPvFk1k8Z9yIjjUmKZbzJo1h7e7KoTdWIcPOu4+W\nD7H+NuA2u86vlDpVa0cX9/zfDqZkJXLnVdMDcsxLCrP4wct7qWxqY2xKXECOqZzleEOzUio4fv3G\nQcrqT/I//3A2sVH990EYrounedv43tqvN4CMFpoUlAoD1SfaeeTtUq6dO56Fk868HaGvGTnJZCbF\n8vcD2rt5tNCkoFQYePCNYtq7PHzjimkBPW5EhHDxtEzeLq7B49FbU0cDTQpKjXLlDSf5w8YjfGbB\nBCZnJQX8+OdPGUNdSwfF1c0BP7YKPp1PQakgqj7Rzi/XH2Dd7kq6PIYlc3L4xpXTSUvwryfxmfjF\nugMAfO3ywJYSepxnVUdtLq1j+thkW86hgkdLCkoFyb7jJ1jy87/zzOYjzM9PZ+GkDH6/6Qg3/HoD\nlU1ttpzzYHUzL7xXxo3n55ObFm/LOfIzEshOjmVzaZ0tx1fBpSUFpYJgZ3kjNz2yiZioCF762sco\nzPF+o95cWsfnH9vM7U9tY9XtFxATFdjvaT9du5/YqAi+cunUgB7Xl4iwcFIGm0vrMMYMa7gM5T5a\nUlDKZu8dqWf57zaSEBPFqtsv6E0IAAsnZfCjz8zlg6MNPPB6cUDPu7O8kZc+rODzFxaQlWzvvMoL\nJ2VwvKmNsvqTtp5H2U+TglI22lRSy00PbyIjMYZVX7qAiWNOH2b6mrPGce3c8fz6zYMcrm0J2Lnv\nf2UvaQnRrLx4SsCOOZCe21w3aRVSyNOkoJRNXttTyc2PbSYnNY5Vt18waJ3+PdfMJDpC+N5f9wTk\n3G8fqOHvB2q447KppMZHB+SYg5menUxybBTvH6m3/VzKXpoUlAowj8fwyNulfPHJrUzLTua52y8Y\ncgiInNQ4vnLZVNburmRTyYADBvul22P4wSt7yE2LZ8X5E0d0LH9FRAhn56WyvawhKOdT9tGkoJSf\n2jq7aW7voqPL0+/6bo9hQ3ENy363ke++tJuPz8jm2ZXnk5nkX33+Fy6cxLjUOL6/Zs+IOoI99e4h\ndpY38W+LCwecUtMOcyeksbfiBG2d3UE7pwo8vftIqUG8d6Sepzcd4e0DNRz3uW00LSGazKRY0hOi\niYuOpLm9i5LqFhpPdpKZFMv3P3UWyxfmDetOnPiYSL55VSH/+vx2XtpRwXVzxw873mMNJ/nRq/u4\neHrWGe0/EnPz0ujyGHYda2LBxPSgnlsFjiYFpfrR1tnNf7y4k+e3lZEcF8VlhdlMzU4iPjqSk53d\n1DS3U32inYbWTprbu0iIiWTx7BwWTR3D1bNzzvgb+qfm5/Lo26X88JW9XD177LAGruvq9vD15z7A\nY+C/r58T9FtD5+WlAbD9aIMmhRCmSUGpPlrau7j50c1sPVzPly+dwh2XTSUxNjh/KpERwr9fM5MV\nj2ziyQ2H+eLFk/3azxjD99fsZXNpHT/73DzyMhJsjvR0Y1PiyEmJ03aFEKdtCkr58HgM//r8dt47\nUs8vl8/nrsUzgpYQelw0LZNLC7P45foDNLR2+LXPg28c5NF3SrllUQHXz8+1OcKBzctLY/tRTQqh\nTJOCUj7+sOkwL+88zreWzOTaINfJ+/rWkpk0t3fxy/WDd2jzeAz/++o+fvTqPpbOG8+9n5wVpAj7\nNzcvjUO1rX4nM+U+mhSUslQ1tfHDV/bxsWmZ3PaxSY7GUpiTzGeL8njy3UPsPd7U7zbN7V3887Pv\n86vXi/lcUR7/+5m5REQ4O8TE3LxUAD7Q0kLI0qSglOXHf9tPe7eH+5YGv5G2P9+8qpCMxBhufXwr\nh2pO7en89oEalvz8LdbsqOCuxTP4wQ1nER3p/J/z7HHepLC7ov9EptxPG5qVAo7WtfLH98pYcf5E\nJmWePhSFE7KSY3nk5nO56ZFNXPvLt/lMUR7pCdG8daCaLYfqyc9IYNXtF1BUELiZ1EYqNSGa3LR4\n9lSccDoUdYY0KSgF/Patg0SIcPsl/t3tEyxzclP581cv4vtr9vDUxkN0dhumZCXy7U/MZMX5E4Pa\nOc1fM8elsEdLCiFLk4IKe01tnfxxWznXzx/PuFR75hwYifwxCfzmpgV0dXvo8hhXJgJfs8Yls35v\nJW2d3a6PVZ3O+UpIpRz25/fLOdnZHbRxgs5UVGRESPyTnTkuBY/xTiqkQo9tSUFEHhWRKhHZOcB6\nEZFfiEixiHwoIufYFYtSg3l681Hm5KZw9oQ0p0MZFWaOSwHQKqQQZWdJ4XFg8SDrlwDTrMdK4Nc2\nxqJUvw5WN7OnoolPnzPB6VBGjfyMBBJjIjUphCjbkoIx5i1gsBk3lgJPGq+NQJqIjLMrHqX6s253\nJQBXzs5xOJLRIyJCmDEuRW9LDVFOtinkAkd9XpdZy5QKmnV7Kpk1LsW2Se3DVWFOMvsrmzHmzIcA\nV84IiYZmEVkpIltFZGt1dbXT4ahRora5nW2H67ly1linQxl1pmYl0Xiyk9oWHe4i1DiZFMqBPJ/X\nE6xlpzHGPGSMKTLGFGVlZQUlODX6rd9bhcegScEGU7KTACiuanY4EjVcTiaF1cA/WXchnQ80GmMq\nHIxHhZl1eyoZlxrH7PEpTocy6kzVpBCybOu8JiLPAJcCmSJSBvwnEA1gjPkNsAa4BigGWoHP2xWL\nUn21dXbz1v4aPr1ggivGORptxqfGkRATqUkhBNmWFIwxy4dYb4Cv2nV+pQbz7sFaTnZ2c4VWHdlC\nRJiSlcTBak0KoSYkGpqVCrS/7a4kMSaS8ye7ZzC50WZqdhIHtaQQcjQpqLDj8Rhe21PJJYVZw5oD\nWQ3P1OwkjjW20dLe5XQoahg0Kaiws6O8kaoT7XrXkc2mZHkbm0uqW4bYUrmJJgUVdtburiQyQris\nMNvpUEa1qdneeSmKq3VgvFCiSUGFnXV7KimamE5aQozToYxqE9ITEIEjtSedDkUNgyYFFVaO1rWy\n9/gJrToKgrjoSHJS4jhcp9VHoUSTggor6/ZYA+BpUgiK/IwEjta1Oh2GGgZNCiqsrN1dybTsJCaO\nccc8zKNdfkYCh2s1KYQSnY5TuVJZfSsPvnGQDcU1GODCqZn888enkZMad8bHbGztZFNpHSsvdtc8\nzKPZxDEJVJ1o52RHN/ExevtvKNCSgnKdZzcf4fIfv8mf3itj+thkZuak8MK2Mq766ZtsPTTYFB2D\ne2N/Fd0eo1VHQZSXkQDA0XotLYQKLSko1zDG8KNX9/HgGwf52LRM7r/hbMZb8xwcqmnhC49v4ZbH\ntvDiVy/sHXBtONburiQzKYZ5Ou1m0PRU0x2pbWX62GSHo1H+0JKCco2frjvAg28cZPnCfB675dze\nhABQkJnI7287j9ioCFY+tZXWjuH1km3r7Ob1vVVcMXMsERE6AF6w5FslhcPa2BwyNCkoV3jk7VJ+\n8doBPleUx39fP4eoyNM/muPT4vnl8vmUVLfw07X7h3X8vx+ooaWjmyVn6YyvwZSeEE1ybJTegRRC\nNCkox63fW8n3/rqbJXNy+P4/nDXoN/lFUzNZvjCPR985xM7yRr/P8fLOClLjo1k0ZUwgQlZ+EhHy\nMhI4XKt9FUKFJgXlqL3Hm/ja0+8zZ3wqP/nsPCL9qNq5e/FM0hNiuOfFnXg8Q88B3NHlYe3uSq6Y\nOZbofkogyl75GQlafRRC9C9EOabxZCe3PbGVpLgofvdPRX7fspiaEM09n5jB9qMNPL/t6JDbv7W/\nmhNtXSyZkzPSkNUZmJAez7GGk3inUFFup0lBOcIYw7+9sJ3jjW38ZsWCYfc/uH5eLucWpHP/K/to\naB18cvhntxwlMymWSwp1fm8njEuLp63TQ0Nrp9OhKD9oUlCOeGLDIV7dVcndS2YwPz992PuLCP91\n3RwaWjv4ySCNzscb21i/t5LPFE3QqiOHjLcS/rFGHRgvFOhfiQq6A5Un+P6avVw+I5tbL5p0xseZ\nNT6Fm86fyO83HmbXsf4bnZ/edBiPgWXn5p3xedTIjLNuLa5oaHM4EuUPTQoqqLo9hrv++CGJsZHc\n/+mzERlZn4E7ryokPSGGe/+867RG54bWDh575xCLZ+foWEcOGp+mJYVQoklBBdWT7x7ivSMN/Oe1\ns8lMih3x8VLjo7lr8Qy2Ha7nkbdLT1l3/yt7ae7o4utXThvxedSZy0yMJTpSOKYlhZCgw1yooKlp\nbufHf9vPpYVZLJ03PmDH/fSCCby+r4r/eXkPsdERrDhvIn/YfIRnNh/lS5dMYUZOSsDOpYYvIkLI\nSY2jQksKIUGTggqan687wMnObv7jk7NGXG3kKyJC+PFn59L+tId7/7yL7720h45uD5dMz+LOK6cH\n7DzqzI1Ljdc2hRBha1IQkcXAz4FI4GFjzA/6rM8HngDSrG3uNsassTMm5YyD1c08vfkIN56X3zuh\neyAlxHj7Orz04TE+ONrAnPGpLJ03vt/hMlTw5abFs2UEI9yq4LEtKYhIJPAAcCVQBmwRkdXGmN0+\nm30bWGWM+bWIzALWAAV2xaSc8+O/7SM+OpJ/udy++v3ICGHpvFyWzsu17RzqzIxLjeN4YxvdHuNX\nr3XlHDu/Ri0Eio0xJcaYDuBZYGmfbQzQU+GbChyzMR7lkOKqZl7eeZzPX1jAmAA0LqvQMy4tni6P\noaa53elQ1BDsTAq5gO8YBGXWMl/fAVaISBneUsLX+juQiKwUka0isrW6utqOWJWNfvPmQWKjIrhl\nUYHToSiH9HZga9DGZrdzusJ1OfC4MWYCcA3wlIicFpMx5iFjTJExpigrS4cqCCXlDSd58f1ylp2b\nr6WEMNYzN0ZFozY2u52dSaEc8O1GOsFa5utWYBWAMeZdIA7ItDEmFWRPbDgEwBd1XuSwNs4qKWhS\ncD87k8IWYJqITBKRGGAZsLrPNkeAywFEZCbepKD1Q6NEW2c3q7Ye5erZOeT6zKKmwk9qfDQxURFU\nndCk4Ha2JQVjTBdwB/AqsAfvXUa7ROQ+EbnO2uybwBdFZDvwDHCL0fF1R42XPqygobWTG8/LdzoU\n5TARITs5lqombWh2O1v7KVh9Dtb0WXavz/PdwIV2xqCc8/uNh5mclcgFOtuZAm9S0JKC6znd0KxG\nqZ3ljXxwtIEbz5sY0N7LKnRlJ8dRqSUF19OkoGzxwrYyYiIjuOEc7UimvMamxFLVpCUFt9OkoAKu\ns9vDX7Yf4/KZ2aQlxDgdjnKJ7JQ4mtq6aOvsdjoUNQhNCirg/n6gmtqWDj41X0sJ6iNZyd5+KtrY\n7G6aFFTA/em9ctITorm0MNvpUJSLjE3x9lXQxmZ306SgAqqprZO1uyv55NnjiYnSj5f6SLZVUtDG\nZnfz669WRP4kIp/obwgKpXy9svM47V0ePqUNzKoPLSmEBn//yT8I/CNwQER+ICKFNsakQtiaHRXk\nZcQzPy/N6VCUy6QnRBMdKVpScDm/koIxZp0x5kbgHOAQsE5ENojI50Uk2s4AVehoPNnJO8U1LJkz\nTvsmqNOICFlJ2oHN7fyuDhKRMcAtwG3A+3hnVDsHWGtLZCrkvLanks5uw5I5OU6HolwqOyVO7z5y\nOb+GuRCR/wMKgaeAa40xFdaq50Rkq13BqdCyZsdxxqXGMXeCVh2p/mUnx3KotsXpMNQg/B376Hd9\n504WkVhjTLsxpsiGuFSIaW7v4q0D1dx4Xj4ROt2iGkB2SiybSnWuZjfzt/roe/0sezeQgajQtn5v\nFR1dHpbMGed0KMrFMpNiaTzZSUeXx+lQ1AAGLSmISA7eKTTjRWQ+0PMVMAVIsDk2FUJe2VlBVnIs\nCyamOx2KcrFMa/a9upYOcqyJd5S7DFV9dDXexuUJwE98lp8A/t2mmFSIaevs5o191Xxqfi6RWnWk\nBtGTFGqa2zUpuNSgScEY8wTwhIjcYIz5Y5BiUiFmU2kdrR3dXD5Th7VQg8tK9g6QWN2sdyC51VDV\nRyuMMb8HCkTkzr7rjTE/6Wc3FWZe31tFbFQEF0zW6bXV4HpLCic0KbjVUNVHidbPJLsDUaHJGMP6\nvVUsmjKG+JhIp8NRLjfGSgq1LR0OR6IGMlT10W+tn/8VnHBUqDlY3cKRula+ePFkp0NRISAxJpK4\n6AgtKbiYvwPi/VBEUkQkWkReE5FqEVlhd3DK/V7fWwXAx2doe4IamoiQmRRLjbYpuJa//RSuMsY0\nAZ/EO/bRVOD/2RWUCh3r91ZRODaZ3LR4p0NRIcKbFLT6yK38TQo91UyfAJ43xjTaFI8KIc3tXWw5\nVMelM7KcDkWFEC0puJu/SeElEdkLLABeE5EsQIc6DHNbSuvo8hgunqZJQfkvMylGSwou5u/Q2XcD\ni4AiY0wn0AIsHWo/EVksIvtEpFhE7h5gm8+KyG4R2SUiTw8neOWsDQdriImK0F7Malgyk2Kpa2mn\n22OcDkX1w98B8QBm4O2v4LvPkwNtLCKRwAPAlUAZsEVEVhtjdvtsMw34FnChMaZeRLS1MoS8U1zL\ngvx04qL1VlTlv8ykGDwG6ls7evstKPfw9+6jp4D/BS4CzrUeQ42OuhAoNsaUGGM6gGc5vXTxReAB\nY0w9gDGmahixKwfVt3Swu6KJRVPGOB2KCjGZyR8NdaHcx9+SQhEwyxgznPJeLnDU53UZcF6fbaYD\niMg7QCTwHWPMK30PJCIrgZUA+fn5wwhB2eXdkloAFk3VXsxqeD7q1dwBOh+T6/jb0LwTe96+KGAa\ncCmwHPidiJw2Q4sx5iFjTJExpigrSxs13WDDwRoSYyI5e0Kq06GoEOM7KJ5yH39LCpnAbhHZDPS+\nk8aY6wbZpxzI83k9wVrmqwzYZDVel4rIfrxJYoufcSmHvHuwloWTMoiO9HtGV6UAb5sCaFJwK3+T\nwnfO4NhbgGkiMglvMlgG/GOfbV7EW0J4TEQy8VYnlZzBuVQQ1bV0cLC6hRsWTHA6FBWCUuOjiY4U\nvS3VpfxKCsaYN0VkIjDNGLNORBLwtgEMtk+XiNwBvGpt+6gxZpeI3AdsNcasttZdJSK7gW7g/xlj\nakfyCyn7vX+kHoAF+Xorqho+EWFMonZgcyu/koKIfBFvQ28GMAVvI/JvgMsH28+a13lNn2X3+jw3\nwJ3WQ4WIbYfriYoQzp5wWvOPUn7JTI7RpOBS/lYIfxW4EGgCMMYcALRPQZjadrie2eNTdKhsdcZ0\nqAv38jcptFt9DQCwOrBpd8Qw1NntYXtZA+doL2Y1AmMSY6nVNgVX8jcpvCki/w7Ei8iVwPPAX+wL\nS7nVnoom2jo9OrSFGpHM5BhqmzsYXtcnFQz+JoW7gWpgB3A73naCb9sVlHKv9480ADBfG5nVCGQl\nxdLR7aHpZJfToag+/L37yCMiLwIvGmOqbY5JudiO8kbGJMYwPjXO6VBUCOvpwFbd3E5qQrTD0Shf\ng5YUxOs7IlID7AP2WbOu3TvYfmr02lneyJzcVETE6VBUCNNeze41VPXRN/DedXSuMSbDGJOBd/yi\nC0XkG7ZHp1ylrbObA1XNnJWrQ1uokclM1l7NbjVUUrgJWG6MKe1ZYIwpAVYA/2RnYMp99lQ00e0x\nzMlNcToUFeLGJHpLCnoHkvsMlRSijTE1fRda7QpaERhmdh5rAmCOlhTUCGUkxhAhWlJwo6GSwmBp\nXFN8mNlZ1kh6QjS5afFOh6JCXGSEkJEYS/UJTQpuM9TdR3NFpKmf5QLo7SdhZoc2MqsA8s7VrEnB\nbQZNCsYYHcdAAd6ezMVVzXxsWoHToahRIis5lmptU3AdHQxf+eVwbQsd3R4Kc5KdDkWNEplJsdRo\n9ZHraFJQftl3vBmA6WM1KajA6Kk+0qEu3EWTgvLLvsoTRAhMzU5yOhQ1SmQmxdLe5aG5XYe6cBNN\nCsov+4+foGBMInHR2sykAuOjXs3aruAmmhSUX/ZXntCqIxVQmck61IUbaVJQQ2rr7OZQbQvTtZFZ\nBVBmkjXUhTY2u4omBTWk4qpmPAYKtaSgAihLB8VzJU0Kakj7K08AUJijjcwqcDISYxBB+yq4jCYF\nNaT9lc3EREYwcUyi06GoUSQqMoL0BO3V7DaaFNSQ9leeYHJWItGR+nFRgZWZFKNtCi6jf+VqSAer\nm5mi/ROUDTKTYrWk4DK2JgURWSwi+0SkWETuHmS7G0TEiEiRnfGo4evo8nC0rpUpmVp1pALPmxS0\nTcFNbEsKIhIJPAAsAWYBy0VkVj/bJQP/AmyyKxZ15o7UteAxMClLk4IKPC0puI+dJYWFQLExpsQY\n0wE8CyztZ7vvAvcDbTbGos7QweoWACZnavWRCrzM5BhaO7pp7dChLtzCzqSQCxz1eV1mLeslIucA\necaYvw52IBFZKSJbRWRrdXV14CNVAyqt8SYFLSkoO/QOdXFCq5DcwrGGZhGJAH4CfHOobY0xDxlj\niowxRVlZWfYHp3qVVDeTmRRLSpzOvqoCL8sa6qJaq5Bcw86kUA7k+byeYC3rkQzMAd4QkUPA+cBq\nbWx2l9KaFiZrKUHZRHs1u4+dSWELME1EJolIDLAMWN2z0hjTaIzJNMYUGGMKgI3AdcaYrTbGpIap\npLqFyXrnkbJJpiYF17EtKRhjuoA7gFeBPcAqY8wuEblPRK6z67wqcBpbO6lt6dCSgrLNmN5B8bRN\nwS0GnaN5pIwxa4A1fZbdO8C2l9oZixq+khrvbGuT9M4jZZPoyAjSEqK1pOAi2qNZDaik53ZULSko\nG2lfBXfRpKAGVFLTTGSEkJ+R4HQoahTrmatZuYMmBTWg0poW8jMSdCA8ZSsd6sJd9K9dDUjvPFLB\nkJkUqyOluogmBdUvj8dQWtPCJE0KymZZybGcaO+irbPb6VAUmhTUAI41nqS9y8PkLL3zSNmrpwNb\ntZYWXEGTgupXz51HWlJQdstO8SaFyiYdE9MNNCmofvUMhDdFb0dVNstJjQPguCYFV9CkoPpVUt1M\nUmxU74BlStklJ8WbFCqbtPrIDTQpqH6VWI3MIuJ0KGqUS42PJjYqQquPXEKTguqX3nmkgkVEGJsS\nx/FGTQpuoElBnaats5vyhpM6vIUKmpyUOG1TcAlNCuo0h2tbMUbvPFLBMzY1jipNCq6gSUGdptQa\nHXWK9lFQQZKTEsvxpjaMMU6HEvY0KajTHLT6KBRoSUEFydiUONo6PTSd7HI6lLCnSUGdprSmhezk\nWJJibZ1uQ6leY1O0r4JbaFJQp9F5mVWw9XRg09tSnadJQZ2mpLpZZ1tTQZWjJQXX0KSgTlHf0kF9\na6cOb6GCqnf8I+2r4DhNCuoUJTU6EJ4KvtioSNITorWk4AKaFNQpSjUpKIeMT4unQksKjtOkoE5R\nWtNMVISQp/MyqyDLTYunrL7V6TDCnq1JQUQWi8g+ESkWkbv7WX+niOwWkQ9F5DURmWhnPGpoJdU6\nL7NyxoT0BMrqT2oHNofZ9pcvIpHAA8ASYBawXERm9dnsfaDIGHM28ALwQ7viUf7RgfCUUyakx9Pa\n0U19a6fToYQ1O78OLgSKjTElxpgO4Flgqe8GxpjXjTE95cWNwAQb41FD6PYYSmpamJKtt6Oq4MtN\njwegvP6kw5GENzuTQi5w1Od1mbVsILcCL9sYjxrC4doWOro8TNOkoBwwwUoK2q7gLFeMYyAiK4Ai\n4JIB1q8EVgLk5+cHMbLwsr/SOxDe9LHJDkeiwtGEdO/NDWVaUnCUnSWFciDP5/UEa9kpROQK4B7g\nOmNMv/PxGWMeMsYUGWOKsrKybAlWwYHKEwBM1ZKCckBqfDTJsVFaUnCYnUlhCzBNRCaJSAywDFjt\nu4GIzAfIOwLXAAAMJUlEQVR+izchVNkYi/LD/qpmJqTHk6gD4SmH5KbHa0nBYbYlBWNMF3AH8Cqw\nB1hljNklIveJyHXWZj8CkoDnReQDEVk9wOFUEByoPKFVR8pRPbelKufY+pXQGLMGWNNn2b0+z6+w\n8/zKf13dHkqqW7ikUKvnlHMKxiTwdnE1Ho8hIkKcDicsaQ8lBcCh2lY6uj1Mz9aSgnLOpKxE2jo9\nHGvU0oJTNCko4KNGZq0+Uk6abA3ZXmLN/qeCT5OCAmDP8RNEiN55pJzVM2R7z8CMKvg0KSgAdpY3\nMjU7ifiYSKdDUWEsy5oGtqS62elQwpYmBQV4k8Kc8alOh6HCnIgwOSuxd14PFXyaFBRVTW1UnWhn\ndq4mBeW8SZmJ2qbgIE0Kil3HmgCYMz7F4UiU8jY2lzec5GRHt9OhhCVNCood5Y0AWlJQrlCY473Z\nYb91R5wKLk0Kig/LGpicmUiSDm+hXGDWOO+Xk90VTQ5HEp40KYQ5j8ew9XA9RQXpToeiFOAdQjs5\nNordxzQpOEGTQpgrrm6mobWTooIMp0NRCoCICGHmuBQtKThEk0KY23KoDoCFmhSUi8wan8Keiia6\nuj1OhxJ2NCmEuS2ldWQmxTJxTILToSjVa35+Gq0d3ew9ro3NwaZJIYwZY9hUWsfCSemI6IiUyj0W\nTPS2cW07XO9wJOFHk0IY21/ZTEVjGx+bpsNlK3fJTYsnJyWut3pTBY8mhTD2+j7vZHeXFWY7HIlS\npxIRigrS2XKoDmOM0+GEFU0KYWz9nipm5CSTkxrndChKnebiaVlUNrWzp0LbFYJJk0KYOtZwks2H\n6lgyZ5zToSjVr0tneKs11++tdDiS8KJJIUyt3n4MgKXzxjsciVL9y06O4+wJqazdU+V0KGFFk0IY\n8ngMq7Yc5Zz8NAoyE50OR6kBXXv2eLYfbaC4SquQgkWTQhh6fV8VJTUt3HLhJKdDUWpQ18/PJSpC\neG7LUadDCRuaFMKMx2P42boD5KbFs2ROjtPhKDWorORYrp6dwzObj1Lf0uF0OGFBk0KYeXbLUXaU\nN/JviwuJjtS3X7nfP18+jZaOLn71erHToYQFW/8riMhiEdknIsUicnc/62NF5Dlr/SYRKbAznnC3\ns7yR+17axaIpY7hurjYwq9BQmJPMsnPzefSdUjYcrHE6nFHPtqQgIpHAA8ASYBawXERm9dnsVqDe\nGDMV+Clwv13xhLu3D9Rw48ObSE+I4WfL5umwFiqkfPsTM5mcmcjKJ7fx9gFNDHays6SwECg2xpQY\nYzqAZ4GlfbZZCjxhPX8BuFz0v1VAtHV2c6imhT+9V8Ytj21mxSObyEyKYdXtF5CdrJ3VVGhJjI3i\nD7edT05qHCse2cTKJ7fy1w8rKG84qSOpBpidU23lAr63DJQB5w20jTGmS0QagTFAwL8KvLm/mu++\ntBvrXN6fvhuYU36c0rX+o2W+m5vTl/XTG7+/c5nec/VzjH6PNdh2p8fZ7TGcaOvqXZ6VHMu/XjWd\nWy+aTHxM5OlBKhUCclLj+MsdF/HrN4p5auNh/rbb26lNBFLjo4mNiiAqIoKoSCEyQgjUt8tAfE8N\nVCyfOzeP2z42OUBH619IzL8oIiuBlQD5+flndIyk2CgKxyb7HPSUH6e88R8tO/W173bSd2Og52PY\n/36nbnPKsn4O1vcY4vd5vK8yk2IYmxLHnNxUCscmExGhBTAV+uJjIrnzqkK+dvk0dh1rYmd5I9Un\n2qlr6aCz20Nnt6Hb46HTE6DxkgJwGBOIg1gyk2IDdqyB2JkUyoE8n9cTrGX9bVMmIlFAKlDb90DG\nmIeAhwCKiorO6AovmJjeOxyvUiq0RUdGMC8vjXl5aU6HMurY2aawBZgmIpNEJAZYBqzus81q4Gbr\n+aeB9UaHRFRKKcfYVlKw2gjuAF4FIoFHjTG7ROQ+YKsxZjXwCPCUiBQDdXgTh1JKKYfY2qZgjFkD\nrOmz7F6f523AZ+yMQSmllP+0S6tSSqlemhSUUkr10qSglFKqlyYFpZRSvTQpKKWU6iWh1i1ARKqB\nw2e4eyY2DKERAG6NC9wbm8Y1PBrX8IzGuCYaY7KG2ijkksJIiMhWY0yR03H05da4wL2xaVzDo3EN\nTzjHpdVHSimlemlSUEop1SvcksJDTgcwALfGBe6NTeMaHo1reMI2rrBqU1BKKTW4cCspKKWUGsSo\nSwoikiEia0XkgPWz30kURKRbRD6wHqt9lk8SkU0iUiwiz1nDfgclLhGZJyLvisguEflQRD7ns+5x\nESn1iXneCONZLCL7rN/z7n7Wx1q/f7F1PQp81n3LWr5PRK4eSRxnENedIrLbuj6vichEn3X9vqdB\niusWEan2Of9tPututt73AyJyc999bY7rpz4x7ReRBp91dl6vR0WkSkR2DrBeROQXVtwfisg5Puvs\nvF5DxXWjFc8OEdkgInN91h2yln8gIluDHNelItLo837d67Nu0M/AsBljRtUD+CFwt/X8buD+AbZr\nHmD5KmCZ9fw3wJeDFRcwHZhmPR8PVABp1uvHgU8HKJZI4CAwGYgBtgOz+mzzFeA31vNlwHPW81nW\n9rHAJOs4kUGM6zIgwXr+5Z64BntPgxTXLcCv+tk3AyixfqZbz9ODFVef7b+Gdwh7W6+XdeyLgXOA\nnQOsvwZ4Ge/EgecDm+y+Xn7GtajnfMCSnris14eATIeu16XASyP9DPjzGHUlBWAp8IT1/Angen93\nFBEBPg68cCb7jzQuY8x+Y8wB6/kxoAoYsrPJGVgIFBtjSowxHcCzVnwDxfsCcLl1fZYCzxpj2o0x\npUCxdbygxGWMed0Y02q93Ih3Rj+7+XO9BnI1sNYYU2eMqQfWAosdims58EyAzj0oY8xbeOdIGchS\n4EnjtRFIE5Fx2Hu9hozLGLPBOi8E7/Plz/UayEg+m/0ajUlhrDGmwnp+HBg7wHZxIrJVRDaKSM8/\n6DFAgzGmZ9b7MiA3yHEBICIL8Wb+gz6L/9sq2v5UREYyWWsucNTndX+/Z+821vVoxHt9/NnXzrh8\n3Yr322aP/t7TYMZ1g/X+vCAiPVPRuuJ6WdVsk4D1Povtul7+GCh2O6/XcPX9fBngbyKyTbzzxgfb\nBSKyXUReFpHZ1rKAXy9bJ9mxi4isA3L6WXWP7wtjjBGRgW6vmmiMKReRycB6EdmB9x+f03FhfWN6\nCrjZGOOxFn8LbzKJwXtb2l3AfSOJN5SJyAqgCLjEZ/Fp76kx5mD/Rwi4vwDPGGPaReR2vKWsjwfp\n3P5YBrxgjOn2Webk9XI1EbkMb1K4yGfxRdb1ygbWishe6xt+MLyH9/1qFpFrgBeBaXacKCRLCsaY\nK4wxc/p5/BmotP6p9vxzrRrgGOXWzxLgDWA+UIu3GNuTLCcA5cGMS0RSgL8C91jF6p5jV1hF7Xbg\nMUZWZVMO5Pm87u/37N3Guh6peK+PP/vaGRcicgXeRHuddT2AAd/ToMRljKn1ieVhYIG/+9oZl49l\n9Kk6svF6+WOg2O28Xn4RkbPxvodLjTG1Pct9rlcV8H8Ertp0SMaYJmNMs/V8DRAtIpnYcb1G0iDh\nxgfwI05t0P1hP9ukA7HW80zgAFbjDPA8pzY0fyWIccUArwFf72fdOOunAD8DfjCCWKLwNuBN4qPG\nqdl9tvkqpzY0r7Kez+bUhuYSAtfQ7E9c8/FWqU3z9z0NUlzjfJ5/CthoPc8ASq340q3nGcGKy9pu\nBt5GUgnG9fI5RwEDN5x+glMbmjfbfb38jCsfbzvZoj7LE4Fkn+cbgMVBjCun5/3Dm4yOWNfOr8/A\nsOII5C/lhgfeeu/XrA/5up4PFN6qhoet54uAHdYF3AHc6rP/ZGCz9cF4vucPJ0hxrQA6gQ98HvOs\ndeutWHcCvweSRhjPNcB+vP9g77GW3Yf32zdAnPX7F1vXY7LPvvdY++0DlgT4/RsqrnVApc/1WT3U\nexqkuP4H2GWd/3Vghs++X7CuYzHw+WDGZb3+Dn2+RAThej2D9+65Trz13LcCXwK+ZK0X4AEr7h1A\nUZCu11BxPQzU+3y+tlrLJ1vXarv1Pt8T5Lju8Pl8bcQnafX3GRjJQ3s0K6WU6hWSbQpKKaXsoUlB\nKaVUL00KSimlemlSUEop1UuTglJKqV6aFJRSSvXSpKCUUqqXJgWllFK9/j9HoS3DBFE22wAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df['Date'].plot.kde()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we see a hexbin plot where the x axis is the the date and the y axis is the normalized time of day. We can see an increase in the overall number of reports buy no real affinity for a certain time of day." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAADuCAYAAAAZZe3jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmsJMl95/eJyKPuqndffXfPdM8M5ySHnCGHpChRWlEX\nKS0WtLSwLcmSBdjSQlgvrJVgwzLWNrC2sX9oIV9caFfUYi2REmCspIUOrlbCiqJIzQyHw7l7umf6\nev3uo+48I/xHZlW/elWVmcN53dPTqm/jdferFy8iMiLzlxG/3ze+P6G1ZoIJJphggvcP5HvdgQkm\nmGCCCd4ZJoZ7ggkmmOB9honhnmCCCSZ4n2FiuCeYYIIJ3meYGO4JJphggvcZJoZ7ggkmmOB9honh\nnmCCCSZ4n2FiuCeYYIIJ3meYGO4JJphggvcZzPe6A+8Uc3Nz+vTp0+91NyaYYIL3AZ5//vltrfX8\nu6lDzOU1nspWuOn/idb6MyPrEeIC8KUDH50F/gfgt+LPTwNXgM9rrfcS+/R+O/L+5JNP6ueee+69\n7sYEE0zwPoAQ4nmt9ZPvqo6qrXl6MVvhr9zI1J4QwgBWgaeAnwd2tdb/VAjxy8C01vofJ/3+xFUy\nwQQTTJAEQWQps3xlx6eBy1rrq8DngC/Gn38R+NG0X37fuUommGCCCe44hMhack4IcdAl8AWt9RdG\nlPtx4Lfj/y9qrdfi/68Dqcv7e9pw+0oRKE3ekIgxA6+1Joy9RYYgsZwTaiwpMOX4SQy1xg0VeUMi\nEybbVwpfaQopffOVRggwhRhbTmlN0/cpGAa2YYxtM1AaJwwpmkZi37xQEej0vm06bSwpmckVx9YV\nakXdcymZNrmUvrlKUUgZt3bg4StFzcolj5vWSJLnKlCKPa9L1cqRM8Y/Ck4Y0PRdZnIFDDF+WVX3\nHAKlmMkVEvvW9H0sKSmY49sMlaLhe5QtC0uOHzcnDOgEPlN2fuy4aa1p+C5Ka6bsfGLfWkGALWXK\nXCnqvkvVymHJ8ePRDjxavsd8vogcM25aa+q+C5A6p6EGKUi8P24bsje5neYqEULYwGeBXzn8M621\nFkKk+q/vScPtK0XDC/GURgB1QsqWpGQa/RujdyO4oaI3SgLIGXLAgGut6QSKdhAFJzRgS0HZMrAO\nGIVQaZp+SDeMytUJKZqSsmVgHLjRvFBR9wN8peNyULGMob55StP2Q3ohEUNAyYza7JULtWbfddl1\nnf41lEyTuXxh4MGLHrSAdhAigD3Pp2waVG1roG9OGFL3fLy4bwKo2SZl0+y3qbTmZqfBG/VtfBXG\nbdo8ODXPbK7YLxcoxZbTYcvpABpN9GAuFcvkDxjJQGkafkA3VPFcQdk0KFu3Xi6RQfFZ6zTphgEC\ngSEEy8Uy0wcMUTRuCifU/fEwBBQMY2BOfRWy1mmx3m3Fc6qZzRU4XqoN9K0b+FxvN9jzuggEb7f2\nWSlUWCqUMWODpbVmz3N4u7lHJ/ABsKTkTGWahXxpYNz2PZctp4uK40oFw2ShUKBoWgNzteV02HGd\n/mc1O8divjjwUu4GPmvdFk3fQyC40WmymC8yly/2Xy5aa/Y9h2vtOm4Y9vt2slxjxi4M9K3heex6\nHr2YV94wmM3nyR9o01chG902O263/9mMXWCxWMI+8HJp+i5vN/eoey4IuNTY5WSpxkqxgnFo3K61\n63hx32zD4GSpNjSngdL4B0yZRGMb4s4ZcCGiG+no8APAN7XWG/H3G0KIZa31mhBiGdhM7dK9FJz0\nQkXDD/tG8TAEUDIlOUPiq1sP96hylgQ31HTD8eUsKSgagm4YGYtxKBiSnCFoBiHBiHZ7t0TZkFiG\npBsoxsWwpYC8IWn7HntetFIZVV/BNJm2czihphM/GKOus2Qa5KSk4QcEenTfBJEx3ffavNnYIdSK\n8NB9YwhBwbA4X5tDadhxO+gxfatYNgv5Em4ocNToKxVA0ZRAyHq3jRcGQ2MiEUgBi4UyZTOHlzCn\nEjClZrPbYtPpoBl9rdN2gblcgU23Q91zhsrIeLYW8kUKpsW1Vh0nDFCHShoIDCk5WaqSkzbbnoMe\nM745w2DWztMKPfbc8XNatWyqdo5tp0078MfMlWAuV8CSkhudBr5SQ32LdiKS48UKpjDZ97yxc5Uz\nDKqWyb7nsOc5Y/s2ZecpmRY32nWavjeyTSHgeLFK0bRZ7TTwteq/xA6Ws6TkRKlG1coTJJgnCViG\nGFh8HMaRBCencppPLmcr/AdXU9sTQvwO8Cda638Vf/+/AzsHgpMzWutfSqzjdhluIcS/BH4Y2NRa\nPzzi5wL4NeAHgQ7wU1rrb6bVO85wh1qz2fVT+2XGhm/clqwHN1SJN00Ph2+8URhlJEZBQuLWs4eG\n7/RXu0nIG3bqdWbFjtNkvbM/9EAexmy+RN6wEssAzOVqqX3zVcC+10qtq2blmbKLqfVdae3ghsMG\n7ztBtLpPn4OSmaNo5lLLhTqdbqa1Zvwr/RaUVtn6ZuQoZOhbO3BS7+DIXeckloHYMCe4YXo4Xpxi\n2h7vcjqIgjHejXhkhvu7Mhru30823EKIEnANOKu1rsefzQJfBk4CV4nogLtJzdxOV8lvAr9OxFEc\nhR8A7o+/ngL+r/jf7whaR2/+9IcymyG7m/ch78UuSWmdarQhWmkeFTTZ5lQk+P8PQuksV5ANCp3x\nfrvzyNqn7K6GI7zKjE0aGecUbt0ntw2CaKt7BNBat4HZQ5/tELFMMuO20QG11v8RSHprfA74LR3h\n68BU7N+ZYIIJJri7IDJ+3SG8lzzuY8D1A9/fiD8bghDi54QQzwkhntva2rojnZtgggkm6EOIbF93\nCO+LAzha6y9orZ/UWj85Pz/+9GqWDZ2vAjqBl+hu0FrjhgFBip9QacWu20r1N/sqoO51Ul0cTujR\n8p3Uvq22d2l43bFlem2+vr+KE3gpbfpsdRupvvpO4OGpILGM1prNbpN2TO8a27cw6psbJsck6l6H\nq83t1L7tOC02u43UvnUDn3BMMLQHJ3B5efsSXkrfdjp7vLHzVmrfvDBIvc5Qhby68zZ1N9mf3wkc\nXtl5Cz9Mnoc9t8X11nbqffR2Y5219k5iXX7o8/W3n2Ovs5/cN9/h8v5q6jPT9Lpsdhupfbtc32Ct\nk3jq+85BELFKsnzdIbyXdMBV4MSB74/Hn31HMERE0/PGMEo8FdD0O3gqeohMaTCfK1M27QHqUSf0\n2XW7hLE/1BYmJSs/wKUNtWKju8+Nzl7/BpzPV1kpTmPLW0PqhQFr3T123Xa0kxKCpcIUs/nyAK+1\nE7hsdut0Qx8B2IbJSmGKqnWLFqW05mJ9nb9cf4NuEEXtjxWneWLuNNO5Ur8uN/T55tZbfGPzzeia\n0Hx4/j4+tvQAJSvfL9cNPC43Ntno1hEiisyfqyywUpoe6Nue2+ZSY4OG10WjMYWkbOWx5SB9ccdt\nsdre7Y/bcqHGA9MrVA606YY+L25f48Xdq33/8FML9/OxxQsUTLtfbsdp8hc3X+H1/VWEENjS5KmF\n+7h/ammA6rbjtnljf42m7yCA2XyZjy6cY6U4NTBu6906V1o7BDHDIm+YlM18n9IH0Pa7/OX1b/JX\nN7+FQICATx7/IB8/9gT5AwG8jdY2f3TpL3hl6xJSCIpWge8/9108uvjgANUt1Dpmwmj2vQ45aTKd\nK5MfoP4FfGP9Vf7k6tfxw4AQxRPz5/nekx9hJl/tl2t5Hf78xvP89drLCCIa3Hcdf4KPLT9C7sC4\nbXUbfG3tVa40t5BCUDBzPL14gbO1pQFq5eX6Tf7jjW9R99qA5lRlic+c+ggnK7fOfbiByx+8/Kd8\n8dnfwQ99QhXy6QvfxY9/6O8yV77lom16Hb568yVe2HwTIaK+fXjxQR6duw/rALWy7nZ4be8m224T\niaBg2jwye2JgrqKXyQZfX3+DdhAFOs/XlvncmSc5WZ5jFCR3yEPxHlDHk3Bb6YBCiNPAH45hlfwQ\n8AtErJKngH+utf5IWp1pWiUHOdwQGYtm0Bm5WhSAKSSzuRJSSPY8Z2wAyxIGecNm221ys7sHmoFg\nnYj/nstVmM9V2Hab7Hu3OMw99GhR87kaJTvHttPACYOhqH1EizJYKlS52d7jrzbexFXBwOo+iplI\nFgtVPjB9nMv1dZ7fvhyPw61ypohu78fnTvPh+ftZ79bZcppDbBdDCCSS0+U5SlaOy81N2oE7tKqM\nFiCSomnT9LqsdfZRDFIEey+qhXyFM5V5Ljc2eHk38owFBxgUpojCmR+aP8uFqWN8Y+MilxrrhHqw\nd5Y0MITkybmzzBeqvNnYoBN4Q2wMU0hqdpGn5s9iSYMr7R00eoi+CJCXJloHfPXGC/zN+suAHhg3\nK34Jf3TlMc5PneA/vP01Lu1eJdQKdaBd27DIGTbfd/YTPLb8AUI1OpArAFualEybFzbf4CvX/4ZQ\nqf5ignhcBYIPzJ7lY8uP8MLWRZ7bfC0atwN96y0Qnjn2GBemT/Pc5iVutndHjpstLT6yeD+g+MvV\nF2n7Dv6B50EApjRZKc3yqZXH+NaVb/Jvnv89QqVwAudAXSYIwSfOPc2PPP7DvFFf5aXtt+PxVQNt\nguBDCxc4XTvGpfom+14bdYgOaQqJbZg8PH0cN3T5xsZFnNAbusdNaXC6Ms+PnfkwZ6vRy0VCJi73\nkbBKZvKav3M8W+EvXX7X7WXB7aQD/jbwKWAO2AB+FbAAtNb/d0wH/HXgM0R0wJ/WWqeqR2UVmfKV\nYrvrctNJ3uIBGEiMhNNpPay293BVMp2sZ9REyitaIjAz0KLebmxyrbWTShfb7daHHqDDsKTBhxbO\nYwiZeg1Z7op9t0XLdxOpYgLY6OyjGeZ+H4RExEwNkVhf2cwzW6iO/XkPx0rTTOdKqdfxGy/+Ll2/\nS6DHb/GlFnSdRmrfHlt8iB88/72p99Ifv/1VrjRWE11sUkiUVhhCJs6pbdhMFebivo1HGHq4oTPw\nwhmFi5efo9Xaw09w7xjC4IlHvwfbzCX2rWDkWawcS2WHOIFD22+nup1MYfArH/ws56pzmRkxR2K4\nZ/Oa7z+RXhDgty/dEcN921wlWuufSPm5JlLFui2wpKRsS6Qj0mlsGbdBYQZCnO79lVJn1telr4Js\nHN8Uow0RZTJL21lpeEqnM9Q10c4k7aHsjWyW+rLAFEamsl7oJRptgEAHqUYbwMzAXwdwQzc1LtIz\nsGlzqrQGDTrlfgu1Qme4j8LATzTaUV0hUprpfROQ5WEIVZjpPIQlDUIV3O1H3u8I7skj7xNMMMEE\nR4oj4nEfFSaGe4IJJpggCUd4AOeocE8b7lBlPWx+9+K96v3Rtnvnr+Ko5z1rbWmxDbjlsjoqHOXJ\nwbv5adFkO717W3B32e33B4/7ncJTIdfbDa609tOPS5PtQVJaUzTsDOUUgQ5Tg0Aancrr1lozbZci\nCljCnRPRq3KI+M8oRNepUjnFvXaz9M2SBlrrxHtaa01OJvt+e302hEy9Tl/5qW1KIWh6yXx4iPy+\np2vHkQnB5Ih+Z2AaJlKMDzra0mKzuYUmuW+hUpysrsT1jn/8JBJDGIlzKhEoFSIEieMWsTdsDGkk\nSsRKIZmdXsaQBqYcvaYTCKQ0aLeTg/5SyNgfnSzTKxHkDBspZKJkri3N6B4XeXZdj3AM7fe24S47\ngHNPrbjdMGSj22Kvp+omBDKe38Nv6h59r2zmKZoR19gJPZzQGyiptCZQITtui044/jCL0ppO4LLe\nqeOGPkXTZqU4TdG0hx5QGSvHJelrK63Z6kaUwvnCFB3foR1EfOXetQgEtjSYyVc4Yy7ihj43Wlts\nd+v9axZxuel8mRPlhbGiQoJbwcYe+0NoMaQZEXGUFZvdOvtuG4CcNLEMEyluMRu01iitaPkOSmts\nEQWzQlQ/8Nmbg6pdZL4whS1NOoHDZmcfJ7ylMCeFQGuo2EUqsfDQqMdWCtGnR9YSRKeUVnQCj2vN\nbWbKx3g0N82N/avsOrsQa7LImKVRzU8xXVzEMmxazj6b+1dx/E7/xWxLCyEEnzz1FM+c/BA5I4ev\nQnwVDvQxVCGeCnhl7wY3uy1WaqdpOvs03X2EECit+uNRMAvMFBcoWEXcwGG3u0Xba9HbR0gh0Voz\nU5xlsbSEZdi4oUfDbRKosL/bMIWBEPDg9Enum4peFhf3rvLNzTdQWvUpgVJITGEwV5rnvpn76Z77\nOK+8/SwXb7yEIOKbCxEtH6qVaY4tn6dcmurfNweD2T3G0qnqChdmzpA3czS8DmvtPTwV9IOQPWM+\nk6tQyxXRGjY6O9xobg4E2m1pUrWLfP+JD3Jh+jhSCFpBSCsIKZkGNcsc4OPfNtxlS9x7RtY1UIpX\n9rfGrrB716ljylnJLFA0h4Xbo1OTPq0g4rruuC26CavUyDi5bHTqI7niecPieHGGsp1PNdhhfEBk\ns9ukPuJkZKQN7tD2HWzDZCZfoTBCAdALfW60ttns7jObr3C8PJ+oAqfjF8W4bWjP+Cut2OjWaXid\nkeXs2IArHdL23ZGn6HoGPUQzZZeYK9SwR7AxIgO+RzfwqMYGe9wKtTeui4Ua1QRFuVAp2oHLteY2\n7WD4dKcTOKzuX2Wru00tP810cQFrxC6r7dTZaVzHDxw+deqjPH3iCexD5bTWBFrR9l2c0OfVveus\njTh9qFRI040MeMEsMlOcJ28Whsp5octeZ5uW32SuMMdCeQnr0LhprfFCj7bfQSnFQzMnOVtbxjy0\nyg6V4tL+dZ7deBUQzJXmKVmloXFzvC6vXXmeV699k1pllmPL91MsjqZi9nYtZ2rHOD9zZuBgUK9v\nTb/LzdYevgqYyZWp5kpDq3GlFZvtXdba29TsEt9/8oPcV1ser/4HHCuOTyJxJHTA+YLmc6ezFf6N\n19/fPO7bhXGG2wtDXq9vp4pe5gybipkuF/lmYy0+QJOM1/ZWU6lMecPiA9PH+yfrxmHXabPZbaRe\nQ9G0ErfZ7wQqNqRpd8Gu02THaabWFxxYVSXhXG0ldQ5CFcY7oOT65gtVFjJwu1/avpa4a4LIwOy6\n6de5UpzmE8sPDBnFw3h28zIX62uJZYBUd1IPJWt8BpseZnNlLkwtp94jF/fX2HSSpQIALu9eIkiR\nO8ibOb7v9DOp4+GrED8MUu+3D82eZrFYS+2bAJYL+bGZjo7McP/YmWyF/8Vr728e9wQTTDDBPYO7\nzFUyMdwTTDDBBEmI9Bve614M4C57j7w7ZHH69IJraTBSouE95A0rlSnUD/ylnR5MYUv04KsMrJVY\n5CiVWaEU7QyZS6KofjqrJgu01rT9dLVEgSCX4TRiFGhLz/iShSKotcbJ0LcoT2O6K60XsEuDLc1U\nKmHPh53Wt0AFNOLAcRIanX2clGvQWmOI9PVdusjDrfqyPKd1r00nRWXyjkJk/LpDuGdW3KaUWNLo\nK8CNgkAQakXD72AKg6KZG/LJBbFfdcYuMW2XaHgddrz2kLHvaZLcV11CacV6t86O0xowDhLBTL7E\nXKGKpwOCUPTFkg76KQMV0vC6dEKPvGmjYlnZw9cRqJBu4BLoKOlv2cpTsYoDvvMogOlR99oRU0EI\nqlaR8iHfaKBC1ts7rLZ3IqqjaXOsvED1EBvDlgbLxSo1ewWtYb2zz0u7N0amqeqJFfXohIePkkeG\nx6UTtNlzdjClyfHyEnPFmYGXpEQwZReYykVBOif0udneozUioGhJg6bv0vJdylaemVwJ+4Aqndaa\nlu/EQliRgYwom4PzqbRiq7XB9fo1AuVjSpPZ0hKV/PRIn/J6d58/uVFnNlfh8blTLBQG/bHdwONG\new+E5HR1ibbfZdtpDAVsy1aBpeI0lrQAzZ7TYt8dvI+01jhBl24QGVlDGkzlahSt4qE5Ddjv7nPZ\nbfAtIZgvTPHBhQssFKcH2lzdX+XfffsPeH39dRSaM4sP8OCpD1PMVwba9FVAN3Cp5Kcpo+l4Lbp+\npCjYnyshOVM7xgOz5xJ96kprgjDET5EXaPsOq60tnt98A4nkibkzfGL5ISr2cMA2egbFnTkbc5cd\nwLlngpMQ3Wx132Wt0xpIkip7vIgRD6ApJAUzjyCiAx420L0VQtPvsuO2CLWOKHKHXq89ZsZGt86u\n22I6V2auUI5YuIfa7anEKa1pek4/YKZH1OeEPp4KcIJhTQ0Z62eUzDxlK48b+jT8bpybcPAFAlCx\nC+QMi/X2Lmudnf6LrAdDSGxpcqw8z2JxipVixNKQ0N8q9vq15TR4cfs6Db87UtfkIL3QDwOcwMEJ\nOiAGdUt6L7Fj5SWWS3PM5spRm6JXSwSlFV4YstrZpeU78Qt39NiWzBzTuRKu8llr7/flVQ/3LXpB\nemy21rnRuAaHXjaGkCAks8VFqoWZvmE6fL2mkFTtIo/PnaZi5Vlt79PwHQ6v8ZXWdAOHrW6DvGGz\nVJzGlMaQwVNaUXfb7DoNOn6HbtAZoIHCLRbHVL5Gzsix7+zTcJtD5UxhMJ2v8KGFCzjdBv/upT/k\nre23CNSt3ZghDLSAk/P38eDpp7DtIt1YFVIPjZui67fx/S5np45z/8wZDCnHGm2lo/kPtBp5n/TQ\n9DqstrZp+92B/keCbfDwzCm+a+UDTOVKfYM9ZVsUUvLHHklwcqGg+U/uy1b411+esEpGIYs6YEQ9\n8ljtNPGVTo3CRydak7ezOtZ1dlIOsBxczSW1G6qQfS/dRdFwOzT8TiY1v57C3lhouNHaRAoSlfqW\nitP84MknElkwWmte3rnBG/W11L5tdrZQangHcRB5w+ZzZz+eykpoel2upwjsC8ANfAKtUpULv3Hj\n67iBS5iwErSlzcnZC6mqilWrwGJpJrFv0Dtck56w+oXNVwhG7LwOQmjwlJ869/X9da7c+DZKjWd0\nSCF56NzHWZxLZlAI4MOL57GEgUy4R5RWdIP0A19bnX2uNTcS+y+JJFx//gOf4f7abKaE33BEhnux\nqMWPZzPc+p+/NGGVfKcQQlC1o5OE19rp9LoszikhRCbf+KgV9iiEWqcbWugnJkhC7+epdaEATZhS\nYcGwUv3BQgi6hw4rjeub0um6ilkV37KMmyY+mZpBadALvUSjDaB7u42UvomMFM3owEj69fojdNoP\no3fIKm18Ha+DTrmXlFYUM9AqNbFPPmXOtM6mMukpP7X/Ck1OmuQMRcFMl0M+aryTxMV3Avek4e7h\nLgsET3BUyGINspSZYIKMuNtsyT1tuCeYYIIJ3i0iV2rGHeHt7Uof9xQd8DDufvf9e6Gadw8gE+/z\ntvfiO8Zd3LW7vHOkUiFvC0TkKsnylVqVEFNCiN8TQrwuhHhNCPFRIcSMEOIrQog343+n0+q5Jw13\nxLH12fX8DP7tSDUvixpeboxi2kFkpXQKRKa+9dTckurLuouzhIElTcwElTuBoOl3M3GKp3ORcmFa\n3yxppdYXKpWaIVzrKFlxFGtICsJGnuG0jC9aa0pWOf1aVZiqSCigz5tPK5eWab5XrmQVUzngWqs4\nC05yEDafL/cFqsbBNmzqzc3UOUVrWn6XMGW+emJgSXVprckbNqSMmyUMQq1ZczqsdZqZ4k1HB4GU\nMtNXBvwa8Mda6weAx4DXgF8G/kxrfT/wZ/H3ibinXCVKa5p+QMOPdBWEkFStIm7o443IFam17gex\nQq0wkEgGo9W9Mu3ABREF7jwVDLEyetupopXDFBJPhzR9d0gHJKKEeWw7LTwVkDeskUJRWmsCpaJr\nsEu4gYer/AHX7S1ltkjFT8e/dzjQYwhBwbA5W13g40vnudra4oWtt3BV0DeWMg6qnq7M8/TieYqm\nTaDVGHqkZsdpEwLnaktsd+vU44McerAwvg4p21X80KMbdCIa2iG6V80u88j8WaSUBFoN0S17wlQ3\n2zt8e+cK3cBlrjDNXHEqojoOUBUV6+0t1ltbGNJgqTRPyS4NGCytFYFSbLQ3scwCVWHQ8ZsEoX+I\n/ibIWwWmiwuAJlQhUhoDc9BTEZzLV1gpzWIbFk7g4Sifg+nObjF/5FhaYe8zENiGwYcXH2LXbXB5\n/zrdwBmYC60Vrtdhq34D1+tSLk4zXVmMpGeF6NeltMZTLtqWnDj9CI29Der1TSSiH5S1DRspDT71\nwKd56twzeErxVmONXafVD/T25lPpkJbb4N9f+SuWSvM8Mn8/BTM/lGdTIjClQc42cUO/z8bSB/qv\ntOZ6Y5XXdy/hhQG13DSFeK565SLmiuCJubM8OH0MUxpcb9e50WmwXKiwXCinagAdBY7Cxy2EqAGf\nBH4KQGvtAZ4Q4nNE+XkBvgj8BfCPE+u6V+iASmtWOxG9btQVRYc/fJxYzzmJdRDpQsu+wR5FAQy1\nwg9DAq0w44znphw2+q4KaPoOQaxMt+20Rp7yy0mLgmkjiE5GeiPKKK1wYgMe9VOMZLEcVPurWgXO\nVReYyhWHylxvbfPNrbdo+g7np5Z5auE+arnSULlAR6thhWbbabHrdIZeDn4YsN1tsue14tOpo/MI\n+srH8Tt4ymO+MMUjc+eYKwyLCfVMtwCuNjZ5efcKnUMHcKQQzOanmC9Oo4G15gYbne2hU6WWtFgs\nzVHNVfGVz0Zri4Y3LCTlhy4dr4UXupSsMlPFBfLWqIMfIjZUgoVCjZXSzJDCYY8j3lOWzEIBlLHB\nPlxOa82+2+TS/jXqbgvHbbJZX8XzhxUky4UppivLSGnghw4dv40+tLcLw4DG3gbN+hY5M8enH/o7\nPHnm6SG1wbbv8FZjnc3OPqEOabl1/HD4ENR8cYZH589TzVVi2t7wqWMdHyrrBNFi5u39a1zcewvv\nkOiXFJJKbopKrkbesPjQ/DnOT62MNM7RYgM+OLM81ngfBR3QWCrp/E8+mKls5397/iqwfeCjL2it\nvxD35XHgC8CrRKvt54FfBFa11lNxGQHs9b4fh3vGcAdKsdZ1U110TuDSDdPLdXwXP8N2zBLpW6S2\n7/Lt3RtDp/UOQxKd/kzrW9d3otOTKcuAp+bPYhnJmypJRO3KmclHy9c7DW520hNTXNy9karAB/DJ\nlQeGDMVhbHXrPLv+eip33g88Qp1OnctCvwQo2dXUTO01u8T56eNYKe4zx/fw4xOsSSgaVqqf1A1c\n/vVzv5V+/DopAAAgAElEQVSq1GdaOcqlqdQr/cSxD3P/zNnUa/23b/4HnBEG+yAKZp4fOPuJ1PG4\ntHeVv1l7ETflHvn8+U/zwMzp1PMVEsFjM4vkxtznR2K4l0u68JMPZSrb/l+fG9ueEOJJ4OvAM1rr\nbwghfg1oAP/goKEWQuxprRP93PekjzsJWfmYR1nfOOH/d9NmlnazbCGFEANHxJOQ5Rqyju+4DCuH\nkTXDfSYdkoyzkEUyVwiRSYPkHQStMpXLkqk9K0zDTDXa7wTZ1EoY2hGNQqQVdPeYJ5HxTwpuADe0\n1t+Iv/894IPAhhBiGSD+dzOtortnZCaYYIIJ7lIcBatEa70OXBdCXIg/+jSR2+T3gZ+MP/tJ4N+m\n9eeeCk6+F1BaI0leaWZ1R/XzUB7RrsANffIjAp+H+xaoMNWlkvUaeiqIaTexF/pDWVK+0zZ7q520\nFbUpzX66riQorTASmDe9vgUqxDaS1z49P33alfgqwEo5jai1RkqDMMx2gjdtPII4OJ0mM+B6Dlqm\n3+Ndv0slV06sS2VgcEXlokDz3bDqjmIaR7ZT/wfAvxFC2MBbwE8TLaC/LIT4GeAq8PnUPt0rPm6l\nNTc7ThwFH4/e9UaBo/HZVXriUhEjZThQGCrVZ5cYQlA0bSxpDAeVvC5rnXqk9qcVTph+vNeImQej\nHhRLyvihjNJ7jUr+64UBLa+LpwJqdpFHZk+wWKgN9a3hO2w5TQKlmLKLnChHOTIHrlMr9twOu24n\nEgyKcycehhN4rLZ32HYaEcNmRDAuYrwoAhUQasWUXeKBmePM5asD5ZTW3Gzv8vreKm7oo7XCHzFX\nUkimchWqsbHY6eyy3d0d2ooXzTz3TZ1itjiFHwZc2r/KRntn5Nz3jKwpTWwzjymH04NFxidqY7E4\nzcnq0lBquCg9nh2Pp2bP7bDvOUNtOoHLRmeXutcmZ1icrCwOjYfWmh2nzqW9a7T8Tp9N4njtoTan\nygvM104gpYHjt2m4u0NH+nVMH1RaYxkmH1x8hIfnLwzFHK5sXuFLX/0S37ryIqVCmYce+CArSyeH\nA/B+h1ZnjyD0OVE7xsdOPc1SZXGgLl8FvLp1kWfXXsRXPqa0MKQxJBOQM2zOTJ1mpbKMJQ1OlGdY\nLtZGuqV6+iVPzC6NdVsdhY/bXC7r6s88kqns3v/y9YnI1CgkiUwprWnFdMA0Aw4aHQv0dAM3wZhG\n5ZwwiAy1Urgj0nNFKytB0bKxhGTf77LWafTzSPZr66n+KW+gjlE0v54Bl0JEjJURDJKIXujSDVw8\nFdDynJhydwuRAqLNwzMnWC5OUfcdtp3WQJ7JXv+rdp4TpWlyhsWu24nTtw2u3nqrTU8FtAOX1dY2\ne24k93nrGqLfMZH9/wcq4LDoriEkRTPHgzPHmc1XudHa4VJ9fVCsK75OtMILPaQQTOerlA/R/CAa\n273uPludHQpmjvunT1HLVeMVUzR2SikCHfLW/jVWW5tD439rTiKGRM4sIIWBRsVJfQ/S/CLP5myh\nxqnqMhWrQNnKUYiDjQfHTAN1r8Oe16Xld9lo79LyuwPjZsTZzk+U55kr1Nhx6lzev457SLlSa4Xn\nO7EB7zBTXmS2dizaKRw2rEGHurtLEPqgI+rrwUBtL6D42MJDPLrwENc2r/I7X/0d3ly7RBD6/fvU\nMi0s0+bBC09wbPkUXtCl1dmLtGj6cxUxbhZKczxz6qPMl+d4afN1vrXxChp9K0Fx3L4pTaQ0KVpF\nzk2fYb44F6sying8onk7XppmpViL1BRjg32sWGGxUE481XgkhnulrGs/82imsrv/819PDPcoZFUH\nbAUB+156bjvQuIFPO0xX6tt12omJg+PGWes2UOiRdLgeQhXSCb3UbbQpjChZQ4rr4Vpjk5Y/vKI7\nCEtIzk2tYEkzcdVvChllU0/p29XmJm/V1xNDg4I4S3hKXdHqPDJaSewbSxjMFmqpR5CLhk05IcEw\nRNv259dfoem1EvsmELHxlmOvVCBYLEzxiWMPp27vX965yqX6WuIcGELS8dsIkhN/aK0wpD3AZx+F\njtdiu72W6EIxpcEbb7zM5vpN/MAfW84yLT7w8KMUC6XEQKMlLYxcAUMaY5kwAsFieZHHlx6Lg+mj\nr0GK6AX5kbkz3F+bZT4/nGh4ZP1HZLinfjab4d75n+6M4b4nfdxCCCqWhSkE2+7wwZtDpTOfwsqW\nZYVU2l+vXBZ6mplB/hOiZAPpSnLRoaS0Nnvtpb302r6TWpc+9O84hFqlGm2ImBBZHticaadTyYSk\n43czsmWSWSkaTXmE2P8o7HvtTKqQKkW1MOrXsJ73KASHDgSNLhPSbNTxgmSqnh/45HL5VHZIgMKI\nd1rjoNFUcpVUdovSGlsanCxXWSwk+9GPGoKjZ6O9W9yThruHu22wJ7hzOPqZ/1tyL93Fl/leGtC7\nzZbc04Z7ggkmmOBdQ4isOiR3DLe1N0KIzwgh3hBCXBJCDAmnCCFOCiH+XAjxghDi20KIHzzK9t9v\n/vsJjg6Tmf8OcZcP3Hv1TAuR7etO4bYZbiGEAfwfwA8ADwE/IYQ4fG70vwe+rLV+Avhx4P88ira1\n1jihoulnOeCczjnuoZf/Lq2+LBmvhRD97CVJCHrqbwmQgG2YmCm+ToGI1etSWs34bOQNm7QRyXov\nC0hV1gMIQg+lwlTNXj8cZv6MajM/ImH0UDkRjVvatbYDp89jHwetNSUzl35/xH+nldM6zGTMegqN\nSTUKBLlCATOF028aJp7npY5HT4AryQcvEDh+N9VfLhH4WtHwQ1q+f0cNeM9FcxSyrkeF2+kq+Qhw\nSWv9FoAQ4neAzxGdFOpBA71cSTXg5rtpMDLYmlYQojVoBLYwIuM3ZI0imp+vgn6S4CgyP/y4aK3x\nVBBxqIWJGw6zVXp0r5bvIoVA6SjwMk4BzpYmliVxwmBI9e/WtfjsO01MabBUnCZ/KODWSxY8lSvy\nvcc+wHqnzku71/FCfyDI16OYnakusFis4AQ+7WA4QbFEkDcsjpenKBgWe263n1l9uG8eeTPHSnmW\nnW5jKDjao/A5QRfH72BKi7xVGJneq5f9PdQhtpHDMnLIQzIBSgV0ug0u33iBMPR47PTTrMyeHkl/\nC7VivbNP3rSYz9ewDgU0RTzaJdPmB89+jKv1m3x7+zKBCgYC0DI+dj1bmKFgFel4HVp+ByEY8VLQ\nXG9u8Edukyfm7mO5NDvAxe/RQG92dtlymtE46GE+Tm/c3MDBDz2kuMWHH5wDRRD6bO5do+M0WZg6\nwXRlKd7S31IHBEHJKnBu6gSBOsfF7YtsdbbpUSd7867QWIbNhx7/ONtb67x+8UW63TZBeCuw2DPo\nx46dwDTNA1TSwaCnIQwsM8ex6bOUclV2OhvsdLaQ4hYRoEdtreVqTBXnaHpdSlZ+iPvfeyZPl+Y4\nX1sib9hsdLsYQjCbz1M201OoHQXuNh/3baMDCiH+HvAZrfXPxt//Z8BTWutfOFBmGfhTYBooAd+r\ntX5+RF0/B/wcwMmTJz909erVofa01mw7wViN657KXU9m1VM+7UNSmT0cXEm4Koh0lg/VFcZZx8P4\npdDy3SGq4EGVPujxgsVQkCVS/bulXOgEHntua0ifOm9YLJWmKZl5pJDM5IrM5EoDmiRaa9Y6e7y0\nc52272IZJudqiywWpwaMl9KaTuDR9j0iI5bjeGmKip0faDNQIbtuh4bvRqfjAo89rz00bk7gseM0\n6ARuJDnqd+kGEUf5IExpUbCK9JjTfhgJRB1Gz4BrrWl1drl04wWa7Z2BMsVchUdPf4ST8+eRQhIq\nNZJdkzcs5gs18qYVH4zJUbTsQ+OhuNpY58XNN+kELpY0mSnOULJKQ3PV9jo0vVuqexFrYrDNslXg\nsblznCgvAILrrW3eqN8cEszSMT+9pzHuBg7eCEEnIQSmMCIudOCxuXeVVnd/oIwhTeZqx5itHseQ\nBhW7yEJpduhwUMtr8ebOm6w1IypnzshhmrlD0rea7Z0N3rj4beqNPUzD4NjxEywsLI319woEBbvE\nsemzVAszA+MWKJ/t9gY7nU201swUZjleO0nRHlSj7PH6LcPEEJKzlXnury6NFJESRDzvk+XxXO6j\noAPaxyp68eezVXHjv/uL9zePO6Ph/m/iPvwzIcRHgd8AHtYJSjrjeNyh0my76ceZ24FDw2sTpvgD\n3MBPVQfUWnOttYeflmw2HuO0t/ZWt85Ge58gpb5PLF9grlBNFDnSWrPa2aNo5hLbNYWkZheGTkwe\nxpXGNlfbO4nZ4QFe3XqTlt9OLANgSRtEcl3N9i43198YMlCH8dDJj3Bu5ZFUD88T86cjN0XCeIRK\n8bX11yPXQiIvusOus5tKJY0O/9gjT5seRNPZJ1DJZwRCFbC2+SZuMCznehAnps/w5OmnR0rSHsSr\nm6+x1d0ZuQs6iNW1S1i2lRigM6XN+aVHKdjlxHETaCxpYB96mRzGdy0+wMnqHHaKGJkATpXLcQLm\nET8/AsOdO17VS7+QrYprv/Ln73se9ypw4sD3x+PPDuJngM8AaK3/WgiRB+bIoI71bpDN850OITJm\nfn8H26ysymlpynRCCEpWPrFMr1w+RV61Vy7NZxwhqy6LyuLBHTrWPQrBiCQZoyAz+CEjtcTkl1iv\nXBY4oY+VIZSUVfXPC9IPioEe0gcfBdOwUo02QKFQTOWUCyHIW8XUcTGkSc60U+fLNsxUo30nkVX5\n8E7hdrJKngXuF0KciQVVfpxIBesgrhEpZCGEeBDIA1u3sU8TTDDBBO8Yf2uCk1rrQAjxC8CfAAbw\nL7XWrwgh/gnwnNb694F/BPwLIcQ/JFqq/ZSecPgmmGCCuwx/a4KTtwtJ6oBbTsLRWq1Z79Z5df8m\nnvJZLFSZyx8WKYrQE1xSMbMj6Ri21ppu6Mc5JIe3k4EK6QYevg7JS4u8aY2lR6lYkGqtvceu0xwK\nsimtaLtNOn6TWq7MMyuPcrq6NHRTOYHPtdYOW06DipXvB+YOwwsD2r6Lp0IWChWWi7V+cuJbbWo2\nuw0u1jdSx8FXIW7o4YUe661N2n5nqJwUkrxZwJAWWod4oTvyGHbBzDOXn8YyLC6uvshrN17AO5S6\nTAjJ4sxp7jvxQUzDImfYmMIYGg/Xd7h07VtcvvltVqaO8cOPf5b7Fu4bKndjd5Uv//Xv8ezl53jg\n5CM8/fCnmKrMDF1nx++y09nGU35fY+VwXVpr2l6TlttACslceZlKbmqESJjC9Ts4QTdRzyVv5lgp\nLVKyi6zuXuGVtRfpjHAjVYuznFp4ENvMM1uoMZWvDLnVQq3YbG1xtX4dTZSWbtQceJ7DzZtvsbZx\nhWKhzMzcIoVCcaicCgNC3yMIfZamT3Fy4QI5a7hczS6yUp7FFAZ7bou61xlqV2sdUzkVZSvPM0sX\nOFddHGs4BXC6UonFqEb8/Ih83Md/8alMZd/6pX///g5O3i4kiUyFWtP2Q7rhrWuKKFh7vFFfw1Nh\n3yfdoxkt5CvM56OEoz2DPazqpnHCIFGrJMox6LPttnGCyNh3A3fA2PUezFxswMf5qftJbzv77HQb\nBDqg5TZoec3Y1xzVaUmTkpXnmZVHOVc7Rjf0udbcYcdt0VPWuEUJs1koRHn8PBVGKoIHEhn3OLfz\n+RLLxRqmlKx16rzd3CbUqh+UHEVb9MMAX4cDtDClI/nWtdYmLa+FFJKCWUQe0JzuUd+0VrEBV5Ss\nIvPF2Ug1Lh4frRShDrm8/iqvXnsON3BZnjvH6ZVHMKWJiF82PXqkLS0saeJ6HS5e/yZv3Xy1L3YF\nYJs28+V5fvjxz/LA8oNc3b7Kl772u7x0/RVUfI8YwgApOLt8Px975HuYqc7T9jvsdnei/JsH7iOF\nxkAiZCRC1XGbtLxGfxwgosgJIZgpLlErTMfsoS5u0B3SrDk4jgUzz7HKEkXrgGBWj/JYv8HLqy/Q\ncptMlRY4NncfZpz4N2pTRgyOfJXpfAWA9dYGq831aDxiv3VvTnuJnB23w83Vy2xu3YjiOCrsPxf5\nfIGZuUWKxTJhGBB6DkF4i85qxIl+F6aOc2LhQQp2ialciZXSLKaUA9eg0Oy5bfbdNkor/FiB8+D1\nWzISWXtm6QL315b7rCyAqmUxncuNDUzC0Rju/ImqPv6LT2cqe/m//crEcI9CFnVAFRvwXc/jL9ff\nGJmtvAeJoGLlOVedSxWKd8Zocx9EqBSv7t+MaWmj0XtB1OzkYI7WmrXWJt/afG0MdziCJU1OVI8x\nU5ghSQpJIJjKlfoP17i+hVrhxDkBx7FIBNGK3UtR/tNasd2t0w3cIW72QH1as1CajTXNx73QFG7g\ns+3sR4ZkzMEZieD6+uu89vY3ousZM2c5M0e92abtOAPypQN1CYll2XzPxz5HLlcYGzyWCNzQpd7d\nGeArH4YhDHJmgVKumioydqZ2gkquPP4AS3y+4EZjIzozMG48hMALPNpevT+/oyCAKzde59r1i8D4\nQLkUkrm5eWw7x7iZl0JStIv8xEd+kpyZTxQGq7ttrjQ2IEEEy5IGtjT5+/c9w0qpwrRtZ03NdwSG\nu6ZP/sOPZSr75j/64/c9q+Q9gxSCim3S8KM3eRLzQ6EpWclZYiDycQUqC4OEVOlXDUMZ4ce1uefU\n0fFhoXHwVUDJLiUqv/XrJDn/pSYy1kon16a5xc5JlEQVEl8FQwdIDkNKIzUDTE/Z0JRWosFTaLb3\nVqMTlglwA5f9djPxFJ7SCsu0kYaRyPhR6Hjlmcw0CnVIzsz3fycJiUYbQESGTkojeTy0JlAeWqux\n5xwgmse9vc1UZpPSCsuySJp5pRXVfA1TGKlqjp3ATb2TfBUihSBvaOby6Wypo4a4y7RK7knD3YPs\nCQi8vzYVdwmS1tG3SrwnSO/a0VeVdWd6hH3LjPeizfcA0QG296JhkYk2eSdxTxvuCSaYYIJ3i/dS\nTnYcJoZ7ggkmmCAFd9uK++7qzREiUBovFIQZ/NKBypZ5OttbV2RTB8xQE4BtjGef3KpL4KelVAOy\n7qeNjHvvd5qFPa2ubKcfZaYTnLadH0p+O6ouIUVqhnulFMh0ZUjLMDPNa1JGmH7fiNgc6Qp82cZD\nJASkD8I0c5gpJxalkOieKFsCQhX0GS5JsOI8kkkQgKcCrrbrNLxhLZfbi2yHb+7kqvyeM9y+Uuy7\nUb7JkpXnE0v3M5+vDNCIepAIbGlgCEEn8OLs3eNZFBUzT8GwY1bIMHoiTCvFSAhqVDlDSCxpcLo8\ny7nqHGXTHmnUegJVxyrHOD9zHwUzH1HUBvoU/ZnKVweCWIdr69WfN+zEAKYhBJaUnKvO88HZU0zZ\nhZGBJa01QcwB7wbe2DHrJRUuWSVy8THyUQ+o0ordzibPrf4NW62NOKg4XGdvTApGbuzLzBCS6VyJ\n//zp/5S/9+TnqRVq5A7pYhjCwJAGpxbP8/e/7+d44vxHsUx76Ki7KQ2klJRKea5cfzFKjDtiIWBL\nk5pd4u/e9yl+9pEf43h5AftQdnjRr9Mk1AF+6I6Use0rOdZWOFNdYDpfiny7Y8at5TsY4hZ1cqTp\n0BqJQd4sRbTEQ6V6LKe8WeCTT/wQj114hpyVxzqkX9NrwzINGvV9XLc7UibYNixyZp77Fx9MDHQK\nIq2cc9VFHps7RckcnteeMNt8ocYnlh9EIXl2e5Vnt1fZ97Ic/z8CiCh4nuXrTuGeoQNqral7IcGY\n62l4XV6vr7PRbcRcX5PZfGkoG7cpZHRIpveWJV5DH+J2u6FPN/T67ItO4NEOvAFzEypFw+/Q8p2+\nutvZyhxLxcFkt93AY63ToOnf0nN2VTBAxdNas9Pd4+36VZzAjfm5UyxVlsgnCPYIIoOdN3Njo/uS\nKIv8ifIMc7lBNbyG1+VSY5NdtxNzs0MaXmeI024KSc60+4/wKKW+aNw83LD3klTsd7fZd3YHtDpy\nRo4z02dZKC30V4pu6A+pJYZxpvlQhwghmM6VuTC1wlTuluKcUopvXXuBP3zx92k6LZQOObP8EA+d\n/jClmNsM0SGdb138Bs++9tWYPqiZnZllqlYbEFeyzBxz0ycol2awDYuKVeS7TzzOhanjA+N2ef86\nf3j5L7ne3CDQIZa0sMwcxqHVrBQGtrSRMtqnnZs6zsOzZylYt+Y0VIodp8mO0yLUCo1m323TOpQv\nM1Ia1NzijkQv2MNz0HtxhDFnOm8WqORqWAdeXKEKeXv1NV669Ne4noPSipxlYVqDLJGI213Einc4\nlmHz9JmP8eDKw2NX7pGqn6Ri5bHlrQNTkcJnk4v7azHTRLNYmOKB6RUqI/J5SiGomDZPzh27reqA\nxVMz+r5f/t5MZV/6r393wuMehbHqgFqzl0Ed8GZ7j/Vug5yZvB0sm/mYU5zMs367uY2rkrPJSwRV\nO8fsIaN4GNeae9zs7KeeUNzu7GAYZqoYUtkqYKdQ7IqGxYnSNFO5ZE75C9tXeWN/LTVhsiFkXzo3\n6Rpe33qZrt9O3AFM52c5N3s+dYu/UKiyXJqmmpCsV2nFVy7+FblClUKuNLac43X5/a//a4qFQqIa\n3iNLD/Gjj/4I52orieP226//KS/tvJ2aDPe7T3yElfI8+QSVRjfw+Nr6RbphcjLfUAWEYUAy+Q8s\nYWIZdqJLSSnFH33tNwmVn3idlUKVzz75eU7Nnkm8VlualC07UUBKa03Ld8ibVqpQmkTwzOJJ8mPc\nXUdluO//le/LVPbb/9WXE9sTQlwBmkAIBFrrJ4UQM8CXgNPAFeDzWuu9pHbuOVdJGgqmPfL49yhk\n4Vl7Kk0gFgwpmUkx2hBxu1OztghBJVfJpGCXZrR79VXtQmo5SxpDK95RSDPavTY7fiuVd+4rnzBD\npvO8aScabYi2+SuzpxKNNoBl2pRL5dQcgwLN8XLyoS2Aaq6carQBFuJEGUmQQuJmimVAlhhFmtEG\nkFJiZzjnAHBi+mTqtUoh0qVahWA6X8qkbnmnOKmiL22Q/JUR3621fvyAgf9l4M+01vcDfxZ/n4i/\ndYZ7ggkmmOAdQQiQGb++M3wO+GL8/y8CP5r2CxM64AQTTDBBCt5B4HFOCHHQl/sFrfUXDnyvgT8V\nQmjg/4l/tqi1Xot/vg4spjVyzxjuLO86J/Rp+F1MGaW5Grept6SRmkC2p10ymyvihgGtwBtbX6BC\nrrX2mLLzVMcwNXwVYhsmpyuzbDpNWv5oypMUgrJVINQhncAdnXpNCJYKNRaLU7R9l32vM1JzJFAh\nG506N9t7nK8tcrIyO5Kt0fQdfKU5U11ko1un7Q9H87XWNL06O51t8maemcL8EJsDouPXXuhxavo8\nLbfOXnd7pEh/2SrxyMJDzBZmaXgd2iMSCESKhD6v71zhrf1VHp49xVyhNkKBT7PrtAjj7CvBGPeW\nF3hc332LQrFKGHh4nsMol8NcaY4nTn2E1U6Tubymag1n1dGxqmIoclyYPc+NxirtMZmBilaZr29c\nYr5Q5f7aMkVreNzc0OfS/lrqMXlTGMwUoqPye06dtj86W07FLrFcmgNgz23hhePjQ594/MfY2rvO\n61efH5nYwrbyHF9+kOe3LnKsNM9KeW6ky0RrTSeImEg1uzBEDOiVWW1v8/LOVYpmjicWzjGbrw7V\ndbB82pH6d4tIYCuzc2I7xaf+ca31qhBiAfiKEOL1gz/UWuvYqCf36V4JTkLE3W77If6ha+oGHjtu\nC/dQppRbeSijT21pUozpeeN8eipOlOuEgwl+e4a8GXhj/dQ9wtZUrsCUnUcgYhXBQelYFdPoNrpN\nmrGRlEJgimF2S6DCfu5MU0iWilMsFmt9VkyvvpbnsOt1CGNmSMvvDlxDr+4LtSVOV+YxhKDhO9xs\n7+OEQd9g9Jgl6519Wn7ENmg4++x0owS0ob6V2aZklZgpzpM38yit8AIPR3kD4kpKK1rOPrudLUId\nUM1VeHj+A8wV52IRIRGp4aGp95gUWuMpn06c+7LnKzeEpGTleXj2NIvFaTSanW6L9W497ltEv4vm\nJ5Kh1YAbOFzfuczN+vVYayTiT4daEfoenhflzlysLPI95z/N8ekTmLEYVjTOMJsrUbMLCGCtU+fV\nvdUBSWClVdROY5Wm10QgKNoVyrkew0j0FSsXC1PcP7VM2crTDTwu19e40d7tz+Xh5LwQCY3V7OKA\n3ktPZXLH2aflRRK7tVyZpdJcRHXsqS/Gkrx7TnPIh96/x7Um1CEbO1d57crf0HGa5OwiZ44/wtzM\niaguIfov/hOVBY6V5zGlGeVd1YOJkXs0v5qdp2hEGXGuNTd5aedtvDAg0CGCWNAqX+Xx+XMsFKf6\nfRIIZnIF7qvOUBnxouu3cwTBydLpOf3gr/5IprLP/xe/mbk9IcT/CLSA/xL4lNZ6Lc7D+xda6wuJ\nv3svGe4eAqXpBCHdMORmZw8vhfXRo8wlGWyIEuJ2Qi/xeIpSij2vm5ivUsY1TOWGNYsH6oqj61tO\nK7Gc1pqqlWeuUE68hlApXtm7QdN3xl6DGWc2XynNoNFjX0JKa9aam3xz82V6BvswRPx3LT+NbRYS\n1fCUVpwsL1DLVW4Z7OErpeu7XNy/SqjUkPE6eA3VXJmZ/BRCjFc4RGve2HiVa3tvMU41ryf2+2MP\n/RBL1eVIRnbE+EoErvK50YpkX8cxg5RWNL12TBEdn3RXiCjJsRNEhnTUuPV6MZuvJgt0xZTVnhb8\nOOEqrTUNt03d64x8OfTqCnXIXnsHw7QGssofhBG38/j8+cQDTgJo+V1e371CqNTYfKumkNRyJb7v\nxAc5VqpxrjJD2cqUYu7dG+4zc/qhX/1sprLP/fS/GtueEKIESK11M/7/V4B/QpQFbEdr/U+FEL8M\nzGitfympnXvGVXIQphRUbZPQDfqrquTy5tib+SCcOJlrshqeSE0yrNBYMtJKTnpRSCFwE7awB9uc\nHpMU4nC7rXgFP+4aAq0oSDPiMqf0bb2zmcj66Cm+mdLutz8OOcMeOkg0DEE7cFAJRrt3DbZhR+0l\nTzj/mWYAACAASURBVBY39q+mqv5NF2osVZeTaXNomp6De4g3fRhSSAKlE7fePTXITpBM+9NEbr00\nVUVEdNAs7USkEKIv5zv2GoTAECaWncz4CLWiaOVTpVc1sNOtp7JlAq1oel2OFYo8NrOUWPbocWQi\nU4vA/xfPlQn8v1rrPxZCPAt8WQjxM8BV4PNpFd2ThrsHGYsDHp2S3NHKsGWhWGX13mX38mW8hgwV\nZm7ziF2QQohUtb73KrlrltG9y/SKDuHu7ZwhJLkUeYLbhaM4zq61fgt4bMTnO8S5d7PinjbcE0ww\nwQTvFkK8I1bJHcHEcE8wwQQTJELcdYkU7q7eHCFCpWkHKvUkIhAFb+5wkDaSlcjSZrYt2tgA3FBN\n2a4zS9ekSFd1i+pKryyap/S6JCLTnGY5cQlgyGHRpaG6VJjJxxm5SbIqJmZDarmMt23kNz/avqU3\nmlGNUshMlL5Ah4RaZLrXjxoTdcDbjEBpdl2fdcdDaclMrhpl/k74nSgZbjj2xg61oht4bHWbNNxu\nn052GD1KoI5VBkc/xBFTY7vb5K3GJm7ojwyOKa3wVUjD79LxnbF9kwgKhoUtDawU42JKg4dnTlCz\nCiMNrhQRRWsmX2I6V4wymI9UpdP4KqCWn6GWm0YwmqkgEPz/7L15kGVZXt/3OXd9+8uXa1Vl1l5d\nvfc0TM8wzAyjEYJhRIwAhY0BYwWyCWOHQXYEFsaEIyQsa3OELQkpkOUxYONQKABLsjRGaEFIA8bA\n9Gya3tfaMisr17e/d/dz/Me99+XLzHfvez2dVV3dkd+OjOp8ed4555577++ee8739/0amhm7sysJ\nE9TwBIn4VOjyyt4b9BOK31EoJYlkRN/vj5T1JkEXWkLrLFBINkWzArOG4NsufZJz9dWJbIt0jAbB\nkN98/V+wN9gjiMJjASmlZXa8AYOEIpkFAcwXqlTNmDqY9eCzEiPoND08a9yc0GGzv4WfCHcdg1JE\nMuJef5eN3lZsCDxxfONjGLe2y7pnNCGo2/WR4uPRcqnC4VplgeVCFStDtlVLKJBPzl/g2cVrWJqB\nKY4vSViawXKxzp+5/sdYLs7T8kJ6fkgkH1wAP+GU93ffnw8KHVApRcsPcaLJF6UbBXT8PqE6YJlo\nCZd0/EmpoY24qBKFGwasD5p0x5JOdCFoWKVY4yP5zIkC2r5zzNV9PPiphIvc8geHZo1zVonzlQWs\nRM85lJKNQZN9t3co9Bd0k2JivKohKBomZ0t1ysaBlkSc4BJOZbb0A5fbvT26vpNslglWy3OcLTVG\nyUdKqfi4vGHycJOEUrI52KftHSRiSCXpeR06Xmvk3m1qJgWjjHGEiWFoRjweQsRKdTLACRzUmCBS\nxSpzpX6esllGiLj+je4W9wbbh4K6LnRMPU5+0RK53NXKCnN29RCX2Yv8MbYEI477+Cxv6A94c+c1\n7nbWSR+uuqbHOtxj5c5WVvjE+W9jsbyAIHZ1v9PbZWvYOnROLT0OvClHO+UkCxg7V5Ku79D1hzG/\nPFGtLBr2oQSwWGnRw02YF/G4+Xihe2hyUDQKLJcWMXVzxFffc5p0vd6hcvOFOc5VlkdvG5GMaHp9\n3AwWS7rhqifBaXzcQhniBA5u5CXXOjw2f55nFi5RTBKwlFIMkomPJ0MgtiBrWGVqVmE0HpGUvN3Z\n5Bt7N0b5AEvFGp+7+BzXM8S8bE1QMbPF4E6CDli9uqKe/as/NFPZ3//hv3OqDjgJWYE7lIptN58+\nBdDxBwxC99ANNAl7Tp+279APs0XbNQR1q4grw1yD2DCKE156gZv7Kl0zixiaRtObnGGX4tH6WRp2\niXJO4oFMbpZpGAYevcBlsVDNpG4ppXi7u83dfpNOksgxuU1Jy9kHEc+08xDKgPCI7OtRlM0iZbPE\n3rCZSyVcKS+xXFqgZlUyz2msOBf3Pe+8D70+X7zxO8kMKrvcpcZlri08yr6bL5ZVt0ojudvspC5J\nyx2ga1puxm4gQ3YGe4QyIG+NpKDbmLpJz8/n/58pLaNpxlQqXsrJzhsPQwguVxe5Uj+DnUObjLNw\nI8rG8WzTFFJJ3MDlbGmOK7Xp1L+GbaDf58D9LX/tR2Yq+//+0C+cury/U8xCxTK1+CRPK9cL3Nyg\nDQkvOvSmrm2phD89bf2zGzgzrS9WTCs3aAMzpwGXTHtiivU4RDI77uYE7bhNjYJRIlTTuefBFGlS\ngEG6TDRl3GzdpG5Xc8sIITA0PfcBC1AwizMxCPadFnWnM/X1WDE9JVsTGkXDmprOHnPAp4+bG3n4\ns4xv6GLp+eceyEmIOoChGVyfW53K2y4Z1kjDPgua0Hhy/gJzVn6C2oODOGWVnOIUpzjF+w4Pmefk\naeA+xSlOcYo8iJNJwDlJPFyPkXcBIaYvk7ihz5udLd7u7uWmEwsEq+UGFyvzmBmvSEophoHH3UGT\ntjvIpKjFm2Mhtm4d84wcRyxC5DMM/dzX+Z7X4wtv/x6/fft5+hnKb0op2p7D1rBDz89mpERScm/Y\n4c3ONl3fyfXbvFRd5JNnH801LNCFxlyhRs2q5C4P1KwK1xqXmS/OTaXiTVsmEQi63pAb7Q3cjKWt\nWIOjz63OJnvDVmJNNrlcICXPnHuO5crZzL5Zus31+UdYrSxRyDG0EIAfRfR9N9O0OvXR1DVtojLj\nOAyhcb56jqpVySwTyYi+16bp7BJE2Ut9g2Gbr736b/jGG7/L0O1llpsvVHisscaZ0lzuOQ2ikD/Y\nfpPNQSvzOvKigDc7W7zcvDsST5tYl4x4tX2PlxKhrmm43yE1VQc8ZZW8C+SJTDlRRNePiI6soQ1D\nj7e622wNO6QkPYGglLAyKskar0CMWCDpuq5Cse8OuDtsx2JViTRlxx/GNx1qRHWas8vU7dLIidwL\nA5woGBPsUQnrIxiJ6UglCaKIIFFDS/ttCC1ej080Tbpej/XuBsPQQSZKgCB4ZvEqn1h9hppVRipF\n2xuy6/ZjRbaxvtWsApWE5RDKiB2ny14iXiWTdVhT0zlbmqNuxo44GgJb1xM2QcICUZJdp8vX927T\nSjZRdaFRSP0mx9gcTuDQ8fvIhCFQsyssFedGG10qYaps9XfZd1rHgvS40NHR/QuBwNZtGLEc4nbr\ndoVz5SWKZiHxIe2z2dvBkzHtUhMCpaBRqNIo1DE0faSOFySMB4VCyohIRdxuvs12bxOFomAUeGL5\nCS7OXUqOQUu+G7LrdHCSB4cg3ktJBmTU95gxYo3OqeKwY1DKBJFKHRJbSul1WrI3oxKhp71hk64f\nB91IhjhBn2EwGIl5CQSmblIya5h6zDzq9Zus332F7qCJksl4CMG5hcs8cvHDVIp1ABYLNS7VVrB0\nPXF1j/u1NWyxNWwfm1ykx2gk7J7HGudYLc+jCYET+tzq7bLj9A6uNwQV0+ZidWk0GfCjkH7ojfSF\nUj7O2WKda7VlSkccgnQBZUPH0rMD5klsTtaunVUf/Z/+7Exlf+dP//VTVskkTFMHjI12FV0/xI0i\nXmits5sYBE86Ug1BzSxwtb58SAr1aJ0KxZvtLV7pbIKaLJiUBoU5O54R5W2WRlLS9nsEMsot54ce\n6911/Giy9nb6oHnuzJOsVs+iMvqW8n4jJekm6oBZx1DQDJ6aX820PkvrudPb48Xm3dwpj1IKpSRl\nsxDPKLPqkxFvtW/hht6hgH3sGJKArWXUld7sBcMmTIJvluqfAhaKc9iGnXkOUv64gWKpvJTJrpBK\n4Yc+u24n81ymbdi6OaJ+TiqbBnCVBF8tYzM95l6HvLL7Mj2/h0bWuRfIMGT73g2GThc54Y0jHc+P\nXv0k3/vM5zD1A9nXo21KpXizvTnaTM9SmdSFxkKhyiAx/p14/wlB1SiwUpojSzosPafLhSrPNNaw\ndI2yoWNq05NeTipwf+x//vGZyv72D/yVU1bJNwMhBAVdUCha3O532HN7ubv1EkXZtHNfU2O3d8Ht\nwX5u1l76t1T1L++RGKiQMHl9ziu3N9zDCScvicCBFGnNrudmlClAAp1keSVTllYpSoada5ScOta3\n/OHU91QhBGWzlPuaLUQ8Q/TCfGW6mEus5+7wq+T7Tujmjmt6TaSKf5nBVmjYhsFi4bhBwzg0IQim\nZGumbaTXWlabioNrLr9vAi9yGQR9OMSEP1qfot3ZYTBoZ46tVBIUPHfxW7FzPFmFEIlWe/51FCZv\nEr0JBhiH21Vomk6ehmd6Tne9PqHyWLGzjRXuB6bJPb8XuK+LMkKIzwohXhdCvJXozE4q8x8IIV4R\nQrwshPgHJ9m+pYmZaXGz4KRP3Sz1vVcqd7Ng1r7NnN4947mapd33Th1wlr6dLLQZb+NZhvdhC1Dj\n0IgNtd8LiFGeZ/7Pg8J9m3ELIXTgF4HvBjaALwshvqCUemWszCPAzwGfUEq1EjufU5ziFKd4ePAQ\nskru51LJR4G3Eg1ahBC/Ruxm/MpYmf8U+EWlVAtAKbVzH/tzilOc4hTfBMRMRisPEvezN6vA+tjv\nG8ln47gOXBdC/H9CiD8SQnx2UkVCiJ8QQnxFCPGV3d3dmRqPpGTXGWbSsI5ilk3ak3z9nllJTszW\naiwwdDIbzbMq3M1e33TEm6eznCs1U7lpWYij2k50cz7D7usIZlKsfAdtzqKEOG3PJUUQBTPeC9OR\nMmCml5tNuTBSimEQnvD4TUe6OTrLfw8K7/VjxAAeAT4N/Ajwvwkh5o4WUkp9Xin1nFLquaWlpdwK\nQym51W/zh7vrtH2Xhl0arUAdRfr5tOsgkhI/CpkvVBIa3mQIYpdtIfIvbKXUoWg2qWwqTXW5fp61\n6lk0MZnnm5AX+cbOa7TdXuaDSkNQNiyu1ZYp6OZEbYeUVBfKiEHgJzfT8cGJZKxcKGU05UZPzGqd\nDl6UbaIsZYQXeomq4uT+p4G9P2zS7N2LmRET6kvPs61ZWIleyqTxTbf9dof7+JGfeQxSRrSdFi9t\nv4gbuERycjq/UrGD/IGaX7ZmStsf4IbZCoezQkqJlFFMi8xoMx2PxflVlhYuxNfRhM1dS7ewzQJv\n793GDbPHww999vu73L77Av1hi2iCtV7aC42DwD1xNFI20f4N3mzeJJThRIVDXcRG2Rcri4DBnf6Q\nlpd9Pd0PaJo+08+Dwv1cKrkLnB/7fS35bBwbwJeUUgFwUwjxBnEg//I7bUwpxa1+m41h94CuJ6Bh\nl5izinR9l6Y/OHSvnynVOVeaGyXZpLzs0f8nfNo3OttsDuMdeduwMJUkiMKREqAglkytmMURhS6t\nKza1PeijFwX0guEhito4jzeV1axaRapWLK26Up7n+vxVbrRvc7t7d0QXE0Jg6TaGZuLKkK/uvErF\nLPHI3AXqhWrM/eVARTDlq58vN9hz+7zd3U34zXEP6maRxUIVSzfwZUTTG1LQY+5x2makJC/s3eal\n1h2ChFamCUHFLGEnXGGSsesFQ7xEM6MXDLF1k4VCHXukXifpBwNutG7R8w+SQAzNpGAUk3XFmO89\ncDo0e9tEie/nbmeDRvUMC7Vz6EIfJT9YuoWlHwgY2Urihx6eHDd5jml0CkVIwL3+FrZu0Sg0sHRr\n1Lee1+Hm/pv0k769sfc6a/XzPH3mmTihSjNGjvNO6KNQWIaJqQz8KMSX4ajNWKHSG42HEzroQmfO\nrlDMEVxKMd53qRQ9r8vtzh2GiXCWLsyYV3LoulKYuo2Z0CdLqzXOrFxhd+8O27u3EnVMDV03+Mgj\nn+Lx889i6Aa7Xg/D12nYpSTBSBFEIa3BPv/8xf+HN7ZeG7WxNLfKU5c/TqU4h57YihmJD+a4bsl4\niFUq1snf6m+y3l0nTB6GX9t+gaeWHuOxhWsJd11H1zQulBZYKdZHRAMFdPyAjh9Qs0walnmf16Af\n7Gx6Ftw3HrcQwgDeIPZSu0scjP9DpdTLY2U+C/yIUurHhBCLwNeBZxMPtonI4nG7Ucjzuxu5r4Px\nzROio7FSqmUqsSmlWB802XN7bDnZvFypJEIJCoaFleGFlyZ39AKHYejlajXbiaRn1Spmrqn5UcDz\nm/8OTwYYWvYFWzIK/KnLH2e+UD6WuDDet12nx5bTpWGXM7NEAdpen51hm9fadzMdzOOkJptARfg5\nGW+WZqCkz+5wj0GQo4QoFVEY0BvuZ850hRBcWnqCufJSHHRzFOe6XgepotzlDFMziEKP3f4Ww5y+\nPbr4OFcXHomTsrLoiyp2TXcjH19mj4cuNM6UF6auo4YyZKe/zc5wFzeDZqcSzXNd00cBexKiKEQN\nhyxWFrm++tTEWXjat5t3X+S1ey9zY/etzL6dW7jMx5/8XuzEST4LHbdD222x2bubucRjaiY/9uT3\nc7l2jqUxid4snC8XM9kmJ8HjnntkTX36b/+5mcr+0+/9b9/fPG6lVCiE+CngXwI68CtKqZeFEH8J\n+IpS6gvJ3z4jhHgFiICfyQva05DOdPP+PmeXqBqF3ItBCMGO02Xb7ea2pwmNijm9LgEMA3fququl\nm9Tt8vQyhRotLztNGWAYupzJeTilfWvYZdQMa7PbTodXWuv5D0YUwyn8aQBfhtzt3J5SCoLIYzBo\n5jvJK0UQutjGNLVEbaZ9BT/y2Wi9PbVve8NdztXP574ex+vKMjdoQ8zFV0rNtHC83t3IPYaYZ61T\nMAq5R6rrBo9cfJbF0sLUvn3x9d9h6OVLxLb7u5jaZEONcbihy73eZu45DWSALQTLhel87QcxDxZk\nG168V7ivCThKqd8CfuvIZ39h7P8V8NPJzylOcYpTPHwQ4oHqkMyCD1zm5ClOcYpTnCQEsb/qw4SH\n6zHyLjHLer0h9FgTYUrZ85V5LlUWczMvTU3H1o2pqm7xkkQlFh7KgC40VssNlgqV3Po0BFfr57lU\nO5fbt+Vig2EY4EfZXppSKTaHLW50t3Fy1BJjGymNldJCbt90oVExSxRmEOefKy5iG4XcMhV7jjML\nV7DNHEVCzaBgV/Gn0NikUhi6haFlq/kBVK0qz577VhZylhCUUgy8Pq9uvcjQz14H14RgpTTPWnkx\nd9yCyOdm+yZ7w738pT4ElxuXqeSoA2pC43xtlauNyyO2ySRIFXG7dZu3mm+PNgcnoe/3WVy6RLWa\nz+aqVhbZHe7j5KS4K6XQhM5ieSXXIalqlSkYRTp+turmqM7cv54cTtIsWAihCyG+LoT4zeT3y0KI\nLyUZ5r8uhMi/SPkAiUwppdgc9rjVbyOTnfcUgljYp6gfVrAb8TMnDrgiStgRN7o73OrvjTblTE2n\nZhUT6l/83dTrMU+SNWUgNN0+fnKzmJrOpcoiF6vxQyJllXR9h123P2pTE4KSbmEkGiJSSSIpeaN1\nm5vdzVG7Z8sLfGTlMepWGUNLyYKxEqI59t31fpPX21uxj6SSaAiqZoHV8vzIXSeSkpY/pOOnuhTx\neLTdHltOkzBhlehCp2qVMMdEqaSSDAJnpJg3fi7GWTaRDOm4+7gjPRZB2apQKzSS9VKBlJKh22az\neRM32TA0dJMzcxeZq6ygaTGxU6EwhRH7Wo6dF4kcjU/KGPFC95CbTM2uslZZwdRNtIQbPfSHvLT9\nIruDnVF/VULBSwXFhBAsV85wdflRKomGhi40alZpZM81UtYbNLk72Bsp//mhR89rjbwjdRELO63V\n1kaCVpMgpcQJHW53btP1uqNzcLF2niuNS+iJOa9E0XRa3GjfHgXUSEZ4oYMbOjGrRNNQCq40LnO5\ncXmk3dL1etxq36abqDsqKYmigO2dG3Q6O6OzuNBY5cK5JzEMCy3xsCwYNgvFeUrJAzdWyvRGk4NU\nFbHvddgZ3CNIzsOcXeXTax/hsYXLI0VEENTMIlXz8IZ9Sl2ds03qVo607glsTs5fv6C++xf//Exl\nf+Mz/9XU9oQQPw08B9SUUp8TQvwG8I+VUr8mhPh7wDeUUv9Lbh2zBm4hREkple9d9QAwTR0wlp7s\ncWvQJpIKWzcp6GYSqzNEk0g2H3IYCVIp3uxu0w3ckczpJMTO2z6pLGWeqtucVWK13IglVDMU57q+\nQz/0M9uUUiKR7AyarFUXqZjFiRuS6UNq3+3yZncn7kOGal7ZtKlbZYZhTKGb9CiSStJ2ewxCb/Qw\nmYSYutbHy9mgiwNbhBsMKY60vCcda4Tr9wlCn2ppfuLGYKosaAgDTYhM8aKU3mhpgnOVJQzNmBgo\no8QM9w9v/T49tzsKiEfbFEJwpnqWT17+JFWrnKmqKFHcat/llb3X8SJv4kajnkwIrjWuMVc8ltZw\nMB4qwgt9gtBjtXZ2olN9Sh/cGezyje0XGAbD0RiNwxA6CjhXO0ekFINgOJkBJWVsENxvszR/HkM3\nERPOg4bA0i3q9tzI+HfS5nz8UPB4dvESV+bWDk2GUqS/VYwiDauMrgnmLIuqOVm98tB3Tyhwf+YX\nf2amsr/+mf8ytz0hxBrwq8BfId7b+1PALnAmIXR8O/DzSqnvyWtn6hq3EOLjwC8BFeCCEOJDwH+m\nlPovZjqSBwxNCM6Va5wtVdkY9mj70733yAnacZ0amogDWB5LI4U68u+x1oRgzi6zVp7L3YXXRMyz\nzWtT0zQ0NB6fv5Dr96eIzWZfbd+bqprnRiHG2Oxoct+0hHKWfwlpQiQ619mImRAG5Smqb5qmUyrU\nc8ukAUkmqs/Z5eJ2z1fPZFLhIF6KUcDAO9Aun9SmUop6oUrFLOWqKuoI7vbu4kbZSwqRikBBdYqP\npiZ0KlaZankpJ4DFk4Ke18MJDt6cjiJ9C9h32rnjgaZhaBZnl6/lBk1JnAMRyChh10y+kjSh8fji\nNa43VrMnQ8m//dDhXKnCSjF7jO8H4jXumdtbFEKMzyw/r5T6/Njvfwv4b4D05C4AbaVGRq2TMsyP\nYZbNyb8JfA/wBQCl1DeEEJ+a4XvvKYQQNKwCXd/PlLt8xzjBVSXB5FnlN13fDFUd5LCdzIHMnJRw\nck0CTJz1HisjtNlS7WcaOJWYY0y7kqakzL5DzK6WOB2xtvf003CSapogZlMkZLZj1YSgYGS/3d0/\nCN6B8t9e1oxbCPE5YEcp9VUhxKffTY9mYpUopdaPDNZ0cYRTnOIUp/ggQHBS6eyfAL5PCPG9QAGo\nAb8AzAkhjGTWPSnD/BhmeYysJ8slSghhCiH+PPDqN9/3U5ziFKd4f+EkRKaUUj+nlFpTSl0Cfhj4\nN0qpHwX+LfDvJ8V+DPin0/ozS+D+z4GfJF53uQs8m/z+UCNmcJywzt0JvqHN2rNZ+z/7cZ7ciMw8\nuidMXJpF+W/6skaMWUlVs9Z3ksc6K3FgNvXF2dQBZz7OmTB7/2dVB2y6wxNWdJyOB2AW/LPATwsh\n3iJe8/7laV+Y2pJSak8p9aNKqRWl1LJS6j96N2np9xsxq0Oy54UEkcDOceEe+1buHSxVLBZlawZS\nylw3dF1o1MxCpiJh2seu77LjdA/SnTNQNiwsTc98ZqSfu4GfK+2qVGzQOm9XkhW7LIZNvJqXqiDm\nPauqVhFbMzNnGikZcaU8j6Vl893T7+vJ5ZjdNzCFjq1nq/5BLGI08Lp4oZMjARsbAr/VuoEXupnO\n76AoWWUuzl9FE3omY0cTGjv9PZpuNyf4xWqJa7W1WAgr4whMzYjZUFps4Jw1blJJnMBha7BDJKPM\nY5VKUi/MUTSLZAkmaYl3qalZmDnnVElJGAasb76JH3gT/SshZqmUDIulQhUtsTubWJ9SvNnaYL23\nQyizcw6UioWu3uju8W/v3eDuoPtg1QET5te0n1mhlPqiUupzyf/fUEp9VCl1TSn1g0opb9r3p9IB\nhRCXgT8HXGJsTVwp9X0z9/IEkUcHHAYRg1Ae24yUSjIMPYbRYYZJPo87oSopuNPf5/agOVLDM7X4\notRS4n1ST8WwKRpmwpVW9HyHpj8cqRUqFbtzd33nGI/7bHku06wYIJAR/cDHS76XbjTpyU2Rfk8X\nWhLoxagfUkn23QH9hFOtVOxU3w9iZkNqSlvQDRqFKsVElEoqiRMGeNGByh2jNg/oiV4U0EnElBQH\nRrx1qzQSzFJK0fJ63O3vEsgooYjFR2JqxogCl1IlAxWOaGuC2BuybBRHLJZIRgxDFyf0Rn2TSjLw\nOuwPd0aiVAWjxHLlHFbKA04UDpuDbdrOPqlT49nqWR5ffAxLt9AT53eFYhB4I1ZMGAXcbd/mTvMG\ngvhhjhBUC3WW6xcpJibRtm5yvrxIo1AZjYVCsTNss97fHdXnhQ49t42f0AKtZBw+sfohnl1+FFMz\nYiqf0+VGb4dQxnx0qWSsqdLdoJPwuA3N4GJtjfO1tVEQkUrR8brc7GwwTBgloQxx/R5O6JAaEUul\naBQXmSsvYWhm/LYaufS9DkEUqx4qKQmjgFu3X2dr5w5KSYTQWD1zmceufgumbqHpOkbC6X926Rpn\nSwsIIfCjkFvdHW739+Jzl0xW/NCh7bVGCUDzhRofP/s0F2tnRtdXKtLmH3lApFKvj9aXOF/JZhqd\nBB1w8dFL6vv+1784U9n//Y//Jw+Hy7sQ4hvEU/cXGaP0KqV+9/52bTKyAnekFHtuPu1sJDUqw9wg\nCbDv9ml6A9YHrcykGkPTWCxUKOoWBT3bEX3f7bPtdBmE7ij4H6tLaDzROBfPiHP6FcqItu+MgnZW\nWU0IIqnoBy6DjKxIpRRu6BOqiDm7QiHDJFYqxcB3kUqha9kcdj8K6foDLM2gYk02CFZK0fEHvN3Z\nxBBGJj89fcgJISiZhcys00hJdvo79Pwe7eFupniRbRRplJZwggFdp5m5zLNSXuHplWfwZZB5riIZ\nst68Rdtts1RbpWBNFgazNIOzpQahjNgc7I8od0fhhx51U+eRufM8vXhtIh1PJVmuX9p6nd3h7iEZ\n3HHoQudCbY2KVWajt5WZyRjJED/0sAybRmkJPWN8/dDlzY0X2N3bZGdvY+KMWAjB1bXH+RPPfpbH\n5i+yUmpMrCuQEV/feYuN/i5dr0OkJt+vdavM9135DspWkWCKEYoAvvPcVQoZtNSTCdyX1fd/1xy0\ngwAAIABJREFUfrbA/Suf/o8fGnVAVyn1t+93R941Znhr0kS8dBKp6auk64Mmu26+IlooJXWrONUh\nvmRa9LpOblZlmMyK5+3sdGaIeeQF3SCYshYplWLbyVc3FEJQtgqjGXYWNCGwDTMzkKWwdIOlYj13\nbGMOe2VqWrwQAkuzKJn55XShEUQu+4Ot3HJe6LDdXZ+6Lr8z2KEfOLkPT10zONe4SD1cyX1d92XI\nre7WdFVIw+ZPXv4YFTNbAkAIwYJd5nbnVu51FKmI290NbN3OVwfUDJYq85hTVBUto8DbN17C8bJT\n+5VSNJv3+NjK49g558vUdBp2kdea2UEboOMP2Bo2uWCcze0bkGSw3t8lEyEePq2SWQL3Lwgh/iLw\nr4DR2otS6mv3rVenOMUpTvHQYHYdkgeFWQL308CfAb6Tg6USlfx+ilOc4hQfeGgPmR7fLL35QeCK\nUuqPKaX+ePLzvgzaSil6gUMvcHNfcUMpGeao5aXQEMnmVf4SQiglNTN/SQXip2LLG+a/fkchr7c2\nuDdo5r4ihjOaJFdNm0U7X5EwbWcGnmrsRTmFKSOVpGaVpsoHGDmMinGsVla41ric2z+BRtEsYU5h\nGRWNbCXCFPHegIsb5LFWYhiamasKmeKN9iY7Tie3TNd3qFh1jJz6lFJ0e7ts794kynEhklKy27rD\nfmdz6lLDtYvPMF9fyS0TyYjfeuFfsN/PJpwppWh7AzSRPx4CwSAMaHqDqX17EMSSNLPzpNQBT6RP\nM2xO/hPgJ5RSOw+mS/nIUwfsBRFONEFLQina/pAtp52sb8dlKkaBilkYbaIFMooZJP3mIf/Jo9CE\noGRYI7U9Qbx+VzHskYVZzCOP6IdeTHMi2eQLXJpu75DAU1G3qFhFdMRIu2ShUGbeLo1+d0Ofl/Zv\n83LzDumCfsGweHLhEufKC6OLJpQR/cDDnWDiOo66VeRiuRFbTSXMh5Y3ZGesbyphpERj10iqdDc+\nNiqhS0ZjadWxfZZ2aBM4Srw6g2STTqnYg7Pl9g/pmZiaQTk5LymzQCk1+h7EN/ecXWapWEuYEbH4\n0dfuvcAbzRujdWBNaJStGnbiYZkKWvW9Dn50wLoqmWUuNS5TteujMT+aIh5TTR3abodIhiO2iKXZ\nmIZ9iMdraQbWmLVc/F33mBuOLvQkU15DF4KaVeLZxUucKdZH3226fV7aX2ff6yeMDIkbOuw7e4RJ\nfUoput1ddndvEoYH/prLC5dYXrqMkTKFZES7u0Wzszli9eiawdrKYyzUV48p8Km4ciIZ0e3t8/XX\nf5/d5uahYzB1I1Y31GJ1w49cfo4//dwPsFJbjttUiju9HV7cv4kfBQkzRhFEHv6YZosmNJZKiyyW\nFuNrR2gYQmet3Di2aa8l8gIXy3M8Ppet1XISm5PLj11RP/jLf3Wmsn/3kz/y0LBKvgg8Q+wZOb7G\n/dDRASENjhHDKL7Zm16fbbdzLNjAAQ/Y1gz23AEbw9aojknQROyUnqWGJ0g2DzUDJ7lAJ9UklWIY\nuAwCj5JpT1TDS7nMZcNkvbfN6+04C/boxpQhYqGnpxYuUTHLI7pgFuasIhcr81gTdMRjChy0vSEb\ngxZBQtnLUjhM3d7HA/akMREifqBkeVXG9LOAru9Q0M14PCYoxMXnRVG1SiwWaqPAPo5IRkQq4qv3\nXuRufzfxXZyQfJI+lGTAWv08ZbOcmdYsgL4/oO21R0qR40i1UyzdpmJWsfRsL9A0+KeqhZMSYwyh\nUTYLXKutcG/Qpu0PJ25IKiVxA4e37r3A1vZbSBke46PH1EZYnD+PXSjR7u0kjKPD5WIpXI3zK0+y\n3FjLVLeMooD+sMvzL/5rev3J7BxdaGiazofOP8Mnn/4u1p1Wcv4Pt5meU6lC5uwqC6WFifeCnoit\nnSs1WEke1JcqDa5U57H0/Le2kwjcK49dVT/0K39tprJ/5xM/9NCwSmbjwTwk0ISgahmUlWLbGbLp\ntDOZBOmndwYt9t3+VKZJxbRzX+9jBb5o6tKJJkTi7J29DJCG/Bf3b3FvsJ95DKGKCMOIUKmpQVsX\nguv1lcxEgREnXYiDWXdGXWmZNABllVPEPO88CCEwdZOSmaNlnpSrmEWWx2ajR6FrOjo6pl7ATnwX\nJ/ZNCDShc2X+Su7SA8TskD0newkgPVdGmhyU88ocv1JrkDO+oZJ0/CEv7q/nvn4LoREEHnc3X0Nm\nUA3TAN3ubWH5pfizCY2mXGrbKo76NKlvum5Sry7QH7Qyr8lISaJI8nbzDkvdzcwHYnpOFwrzNArZ\n5zRKqKHr/X0eqy/z3NJarrH1iUOctPjWu8fUwP1e8bXfLWLqn4YuIJwSkdOZ5jTMrIY3A2ZVa0sT\nQaZhmkkrpP1P51LT6hOHlkgm1jej6t9JigPGiUXTy802ajNuOiVZp1NJpIJEwnRasRO8jpRE13Rk\nlD9ZUGq28zDtIXZQ3ywnXiR7AFNnxTOtD5uaztlS9cEG7QTvQB3wgSDzLAkhfl8p9UkhRI/D51sA\nSik13YL5FKc4xSne50gzTB8m5D1eywBKqXw191Oc4hSn+IDj/RS4H6wE131AKCXyIT6KWbo2szrg\nzMc52wU4i4DPrG2e9ClQarpxxOzqiyenwDdruRPWrJxdCXGmMid9tk4u4MWuOiepXjg73k8JOMuJ\nqeVEKKX+xn3oz4nAiyTdIMSTGkXDYhh6uZfjvF1iGPr4Mpy4rpuKSOniQFUva71TJSJG03wpY85z\nONFjL4VUkjm7yq7TQmasdafrlvf6u1yonZ3ItEgRyIjNQYuzpbnMcpGUmEIb+QTmHYMQoKTKuahj\n6qATuFi6GSvQZbBxZllHFohYW0XK2Ag5p28XqmdpOl0iFU1kZKQCVl2vz1zCUMlizwjitdp0M21y\n38APfUIjQNeyvRCVUgjFSKRpEtJrrGRaeAmtc9KDVClJwa5QLFTpD9vJtXC8nKbpCBGnuUs1WYEv\nVvAzUF4Pq7yAVJODZMoEuXbxad5efxkNMdEl3jIsPHeIUGoUurPObN8fUjaLmb6f6VLFmeIchlZk\n1/WpmQa2/mDWnQXMlE/wIJEXuHVin8mH61GTAzeSdP2QMNls1ITGxcoSXhSw43bpB86hi8cQGkXD\nxLCKLBertH2HW719nDBAkl5wggW7xIXqPCXDil3OvSG7SXJAGmjipIwANwpG239Fw8LWDzuOR0qy\nM2zT8WPfZVPTmber2GMUstiFPGBr2GIYepTNCqEM8SIvTm4Z29i0NBPTsBkmiTmNQoXlYv1QkEz5\n48PQZdtpY+sGj9bOcLG6SGpUHCYKbK+07nJ30EIlfWtY5UP0tli9L6IbDEfsGT1hUxxQueKAvTds\ncrt7Fy/y0YTGcmmBc9UziTiWNqrPl+FEJs74VqoQGkXdwtQMeolhc9m0Dj0g0wSgbuCAZvChlSdo\num02uvcIZUiUuNlLFLZRwDaKSCFoej2Kuk3RsMbqipX4Nrsb7A63kUqiCZ2qVcMyiqNAn14jQugo\nBC2vg6EZVK3KSPHwoG8+Ha8zCnSGZib8ci0Zx9g5/kypwfnqIpZuEsqI7UGLe8MWAhFTTGVEKCPW\n915nq7OOXrCpmAsE7hDPG44U/zShYZg2tfkzFIrxllQYeHjDDmHox1K/icHwo8uP8NnHvpuztTNI\nJbnd2+Wl5vqIxpkGbC90cIIh588/ypkzl1i/+wbrm2/GLKMoxDIsdN3gw49+B4+efxpdNwiikL7f\nHwlejWUAEMmQUPrc6gwpGUWWSguY6UM+uYcvlBd4bukKc3Ys5uVLxb4XYAhB3XoAAVyImTb/HyQy\nedxCiK8ppb71AfdnKvLUAbec/GxHPwq5N2zhyYCiYWbuTnd8h9u9JgXD5EK5MVE1TylFJ3BZ77fw\nohA3g/ImAEvT0TSNfbdL13cmljOETt2K6Vo7ThtnQuZmqpjnhnHgso1CxgwF6naFpWIdL/Iz3zgs\nTeeR+gqLhSpvdLa4N5ycuWdoOnNWCQ2NXuBkqtzpiS9j1+tzp7tJMMHZXSBYKs1zvrYaUxlzqJPp\njVvQ7VGy06Q2C4aBUrES4qRZYpyx1+VWewNdM7DNUuaNWNBMQLI72GJvuDt5Bis0anYjCeAHErpH\nYWgGJaOIQtLzeoQZwkq6ZjJfaLBQqLFWXZiYaRlJyb3+Pm82b7HZusVuZ2Ni32QUEfgOSilqjTPY\nhclqk2HgUZaCM5Vlvuex72KpsnisjFKK9f4+f7T9Gl7g4obOxDbDMODuvbdpt7Z5+upHubb6BNoE\n4+pQhrScNl7kJyqOk2NP0Sjw+PwVzpTm+PDiFWpWfjbrmaKVqfd9Ejzuc088on78//xbM5X9yx/5\n3HvO437fzLRhNrpTrF5XoxcMcsvVrSLPLOQbLQshmLOKvBrcy6XNKWAQ+uy73dz1w1BF3Bu2CJIZ\ne1abhohnc3n9j5No+rnLJgC+jHi5tTl13EIZ0XT7uS7yEPN332zeYBBMfjjFfVPsDPdZLC1OXTfU\nE23naW12vGH+EosQNAp1emVvKqfciTxuNvOd+WKd8iElq0rebRLKkLbb4rhC/JFjkAFPzp+nmKMO\nqGsai8Uq//j2H2RK1wJouk65tkCl3Mht1TBtPnvtO3lq6XpmGSEEF6qL/N7GACfM1vY3DJMrF57k\n4jN/MndmamgGRbOAF7nkXXFO6PJMY5UnFy7lHEHSR5iV4fqu8H5a4/4TD6wXpzjFKU7xEON9wypR\nSjUfZEdOcYpTnOLhxHQj4AeNh2vF/V1iFiKTFwV4Uba3HaTaGeFMCnvLhSrWlGyzcWGrPNSsIouF\n6bT5klmY2qYhdJaKtalZZmXDZrU8nzujSDckgyicmjG3VGpQMfOXNwB6/iDH5zGGLrRM/8nxvnW8\nHl2vN7VvFbM4ddyUUpSt2tTNKEMzZ8qmO1teYLk42RFmHE23N3FfYxwCweMrsb1aHkpWhYo9N7XN\nfbfH9iB/fuaHPnvtu/jBZCed8b75M1wfEI/dNOy5/alqifBgOMuxBpE208+DwlSRqXdVuRCfBX6B\nmKHyS0qpv55R7t8D/iHwEaVUtoIU+eqA+16IlxFsB6HHjtM55ItYNMzYn3Fs59+XEU4YjFKmU+bJ\n0QCooaELbVRux+lys7d/aJMylBGDwMGJ/Nx15LpV4nJ1iaJuATHL4rXWJttHLtyqVWKhcBBUvMhn\nz+kcWre1NIOr9RUu15ZH6eG7Tpc7/ebI5xKgahZ4qrHGSrGOSlggr7U3udHbHdHnUmqjH4UjrrAm\nYorl0c3CilmgbpVjiqBSNN0OL+/doOsfdhGydAtNHNC+alaZeqF2SAPGEDo1q4iZ0OpUQk0bp8Sl\nbdzurOMl57SgW6zVzlK3a0eU5LQRnUsBw8Bhy2kdGjelVCw8hUz+VQy8Nm23eUgHxNJt5ovLWEYh\n0RxRhOq4Ue/5yhIfXr5GMXGY6foDvrz9OpuDvUPlTN3G0hMlRATzhSoXq8vHnH+MxMw3khEKxVfX\nv8qX7jyPO2ZNVinMcWX5CcqFOgiBlBFb/Q1aTpPxq8/SbUpmBV3T0IXOfLHGx84+xbnygcqeEzj8\n7pu/x79+7XeIkk3kudoyy4tXsMf2HTShUTIrGLo1evgXdRvbsA5NBqLkwR+qsfEN+ocUGgHKZolG\noTGS9F0q1Pj2leucK09++BU0jXk7m355EpuTq09cVz/5D/7uTGX/u2/57odDHfCbrlgIHXgD+G5g\ng1hd8EeUUq8cKVcF/hlgAT/1zQbuFIGUdP0INwng/cBlx+ngyfDYrDc91QXNAMFICnXSiKQBvKCb\naBznEKfUwH23z6ute+x7XdwoOBawx39vWGUuV5ewDfMYTzRV3nujs8kg8JnPUMOL5TFjs96L1QUu\nVJdGFL/xvqmkby1vwKP1sywm7tvj9aVym6+3Nnm1vYkT+RN1XNIHQsmwWShUqNvlRGZzvG+xemDH\n6/PS7lsMIx9N6Mf40qmkbNUqsVSap2FXMxkk6cx/Z9jkVneDIFFgHIcuNEzN5HztLAvFxiFK3uFx\nkzihz+ZgDy/0kRxXQhSkBsQ9hkGPueICpn5cHCzRgECqiPPVJb516Rq2bh4TJEsf5M9vvcaO25uo\nXJi+lM/ZFS7XVqhZxYmsFZkYLr+w+QIvbL3K2fkrlOzqMUGnlNa43bvLwO9RtMoT3yYMTaduVfjQ\n4lVev/sSX3zrd0GBP2awLZJzXK8scnblUeYry+jacSXElHKZ0jdDOZlLn56HYTDA1HTmCnPxfXCk\nPkNoNOwKH1+5zvnKAgAFXaNm6phTZrknEbjXnnxU/dSMgfvnnv2u95xV8m7xUeAtpdQNACHErwHf\nD7xypNz/APyPwM+cRKOmprFQ0Ail4p4zZH2wlznTTT93pqjqQazYZorYhXsShBDoxL6A94bNA353\nRpt1s8hjjXOZxH5d09A1jXOledo5r6mxH6TFtzXOZRoWi2Q2t1yo8lRjbfTZsTZFLMpVt0s4kZ+Z\nPalQKBW/KcxlmhsLdE1nvlhH002MJIHlaI3pODmhx1KxnrtEIYSg5XZ4o3UzM1swVqbzEAgMoWem\nWGqJdGogA1Kn90nnSgiNSqFO+cgs/mg5hOBq7RwfXr6WqSBpaDp1u0LJqmCHwcTxSN/gWl6PJ40L\nmeOhaToaOo+deQJXL2Ze40JoGEJjrtDIZV6EMmLf7fB//NGv4jidiTRNRfxW0unv8uTVT2Hq5sR2\n03PqRcHUDFxNaDQKDayMaxfie2/X7fKbd77Gj177GI/UFjC0B7vm/LCxSu7noswqsD72+0by2QhC\niG8Fziul/lleRUKInxBCfEUI8ZXd3d2ZGjc0QdnQMvmd3wxm21kWM61nT+K5TsKs70NGTqbmCKlB\nwJRyaebnNGTNjI/VJ6ebM8fZiVOrIlTR1HVviMX9Z5ERnFkZcoa6YiOBGcZjBrNqBVPplxDTYGc5\nVwcJZVPKyXxufdxmbJowyzHMAiFmG19T0yjo4oEHbYjv/Vl+8iCEKAghnhdCfEMI8bIQ4r9PPr8s\nhPiSEOItIcSvCyHyNzF4DzcnRfy++TeA/3paWaXU55VSzymlnltaWrr/nTvFKU5xigRpyvssP1Pg\nAd+plPoQ8CzwWSHEx4hXHP6mUuoa0AJ+fFpF9zNw3wXOj/2+lnyWogo8BXxRCHEL+BjwBSHEfV8f\nOsUpTnGK2SFG0gDTfvKgYqS79Wbyo4iN1/9h8vmvAj8wrUf3M3B/GXgkeQ2wgB8GvpD+USnVUUot\nKqUuKaUuAX8EfN+0zcl3gkhOy1m7P5h5u/cE94VPXoFvBnXA2WubqdSsq1qzLG7cR7LUu8ZJK/Cd\nZG33k2X2biGVwp9iGHE/kIrMzfIfsJgu6yY/P3GoLiF0IcS/A3aA3wbeBtpKjfQQji0pT8J9C9xJ\nR34K+JfAq8BvKKVeFkL8JSHEffWrDKRk1/Ho+olKX87qnhj7Ny9uSKXoBk5i1pqtDAiKpUIttz6B\nYBC4BCrK3byRSmLp+tSbSQB9351aTiqJJ8OpG0YLhSoF3cTImUFoiDjVfEpdkZQsFOujfk6CAPwo\noOflc7s1BHN2DVvP1pmB+LW26bYSZb9sSCUpm8WpfUNN2kY83rd9pztyuc9uU7Famkcje0001mgR\ntN1BbptSxSqJkQyQUzRfLN0m9nHJvxfqtRWE0NAz/Tdjeub2/m2iKMx8QqbtzMLFD0Z00+wx1oWG\npRlsDHq81t7FCfOlC04U4h2tce+ly7rJz+fHq1JKRUqpZ4lXID4KPPZNdelhfsJOQh4d0I8kLd/H\nCaPRJaCUwol89r0efuLMDQdP0YoRq8IBDEOfQegxLqAqk2ScLafLMPQxNZ2LlXlWS40R7S6l27W9\nIRvDFm4U4kUBTbfPMHRHdWnJxmVBt0Y814phs1KsY45tbEkVUwFv9fbYdbsAFA2bqlk8ZKYqAFs3\nWLDLo2PQhXaM5pfKyKYCTGYiGlWYYmq73t/nq7s3GYTe6LtpwKnbFUqGjRACWzcojSnrQRywe/6A\nN1rrdPzBqL+KA0nVVHFOymAkYFSzKjw6f4WaXR0Fj/TGn7OLIyGuW917PL/1Ck7ojakUxlTAtdrZ\nkYehjnZMTjamoHncG+6NNDjGlQhH/ybnNVXzE4jY2mucI578/5xVpWbH4lULdoW1ynxyTrXRdRTI\niG2nSz/wiKRk3+2y78Zc/XjzMKZZLhaqXJ87R80qJabMimgsqEkpiVTEy9uv8vzGVxgGDpXCHBfm\nr1EwS4cogbFqpYsv/YROGRCEbnKNH9QZt60BgkiG7O/fYbd5ByHi3wUiNkqOJAPHQUpJpVTniavf\nxvL8+fhcpcFLwVKxznKpgSE0BoHLjtPGS1Q3D5+HQaJdAhWzfIwSqAtB2Shwfe4MC2MMJoFgwS5y\nuTpHycjeyzsJOuCFpx5TP/t//cpMZX/qiU/M3J4Q4i8ADvCzwBmlVCiE+Hbg55VS35P73Q9K4I6k\n4s5gmPtdJ/TZ87qEKqJiFCYGLqUUbhTQ9AZ4UcC208OZIExkCI3z5XnWKg3a3pC7w/ahBJcUfhTS\n9HoMAo+CblI4EuBSlAyLZbuKEIJbvV32vf6xMgBF3WLOrlDQTRYKZQr65Cy0NICnUrKTYAidhj09\ngG8OW/zR9lu4UUDdqhySPx2HrRuYmkbPH/Jma4NekH0+VOKw7iVB5CgqZoknF68zX6wzZ5WoWcVj\nM1SlFHd62/zhvZcJZcRa7Rz1ZAyPIvWWHIYu9wb7eFF2lmJ8T8gcdoUY6YvP2VVqVmlimw2rzPnK\nwihBazAhM1IqSdPt0fJ6LNgVHmmcozJBbGqUHBa4vLT9Cl+5+3W8CcJPZbvGhYXrFK0ybuhOVGhM\nA7gfxmJgacA+egxRFLLf2uDezltEYcjQdZATnElKhSpPXf0Ya2eusVycY6lYn0iJHAQud/t7uKHP\nMBwcS74ZHYNZ4kx5mapZ4PrcWRqJnOskCODbl89nvoGdROC++NTjMwfun3zi45ntCSGWgEAp1RZC\nFIF/Rbwx+WPAP1JK/ZoQ4u8BLyilconj95PH/UCR0p3yHkNFw+KMNoc34WJOIYSgaFjsd3bYywie\nEHNLb/b32HG7uVQmSzdYKtSx9WFu34ahz2vuPZwppg9O5PNIoUxtBtW8SW7eh48houMPsYu1zOUk\nIQSr5XmeW7rK2718KqYXhbywe5N+jjpgioHfzf17Pxhyp7vB0wsXY2pfRt8u1s5g6QW23fz6JJKb\nnc2p6oBpUMuHwtR0VivLuee+5Q8Ytn3MjIcrxDzmxWKdDy1eyOR/Q3ysSob80pd/NVcdcOB1WW++\nxdnG5cxNAyEEZpKlO8kEIYWuGywvXuLG7VdyU96Hbo/XbjzPZx77NGbO7LdsFqhbBfaGu5nSwACD\nYMi12iKXamcyy4yOBTGTW9O7RdbS0TvEWeBXk+REjXj5+DeFEK8AvyaE+MvA14FfnlbRByZwn+IU\npzjF/YCAmXIHpkEp9QLwLRM+v0G83j0zTgP3KU5xilNMwXuQ85OLD5Q64CyQSs5krmpp+lRlPSCX\nsTKOWbLb0p3zaYgS/Yk8xBZrg6nlIDZVnmWvY9p4xHXMJoEZsxzyIRD0w+lsmb4/HNli5fVt1v2c\nWfqvCz1OqZ+CaMZMxI43nFouUpKSXWOaa4CuGWgz9E3mMKTG+2aY2Xsg4+U2mnem3lvGDOYYAD3f\nYTBFkfCBIdnsn+XnQeEDM+PWRZwKG8rJLNlQRgxCBzdZv9SSDabxgJoKRflRwFpljtVKnaY7ZH1w\nfOPR0gxKpjm6yaWSmU44uqZRNYso1MiU+HDf47/buoEC3NBne9jGObKBVtBNGnaVfuDTDwPKhkXN\nLB6Sk5RKcm/Q5mZvl0hFCAQXq0usleePpVCnD6d+6KIhKBnHLcL8KKTjDxECzpcbeFHAnjvAGzsG\npRTD0KPpdtE1k6plEMoAZ8LGo6VZFIwCWDUUkp7boR/0Gd+dMDSDlfIyjWKD11r3KBgmFyuLNOzy\nob7tOW2e33qZjd4OSinmCnXWaquUxwKDUopB6LLvdIkg0ZrJ3rAVQmDoJiQ2cUcDkaUZnK+usFRq\njJgWg9A95pkZi4QlanhBvKkcG+IeZnwMApd9txvTIAWcr8RCYdbYun4oIzb6TW53d3jkzDNEMuRu\n8wb7/a1D42vpNquNKzQqy6QGx8PQObYmHsmQIHJH69vxxu1h5o1Sir7TotXZpNFYoD7XYNjv0e11\njikhmrpOKF3+0Zf+PkWzyKee+AxPrD1zaF04VeOcm1vlcv0sXX/Ay/s3RqyasTOAoRl8eedNvrr7\nNpdrK3zL0tWJezqaEBSTDfH7iZNaKjlJfGBYJZAyQiRNzyNIAngoI/qhk7khqSEwEzGiQIbHLLAO\nqH4O64mJbvGIZOV42aMsjuMbpnGZYegjlaRqxRrRk1T/vChge9hGKUWjUDnmCJ/WXdYtyqbFzrDL\nzf7uSI41RfpwulBZ4EJlkZIRK9cdbTOlSBYNCxR0AgdvgpVaSpHcdXvsu/1R4Bkfu5TqlwZwSzex\nE/nS4/VJ+l4HL3RZqSxTLxwXm9KFwNQMLlYWCSOf57deZnvYJFIHRLlURa9mVVitnUMIPembPNa3\nWDCJQ0Ftkjpg6vNpajoXq2di0awxSiYcnPdB6OImD+ajD4a0blszKZsFvChg3+kiOSxXqyfjc67c\nYK2ywPawzZ3ePsChOmNWTsRm6yZdt81q4xL14sIxdcDR9RYM8SKXIPKIjkwcUnqmJjSUgt6wRbt3\nD5XQDsfLSRkxHA7odlsYmoaWiKGNP+Asw8bQTb7jse/k2YsfoWoVJ15vkYzoBw4v7b3NvttB1wyO\nvk1oyTmNZXKvMmdXkkmGyZVqgzmrkDvTPQlWyeWnn1A//3///ZnK/tlHPvy+Vwd84IgZITqrRgk3\njNhyhuxPYS9IFJ4KM+koqbLevF1iGAUTqYHjZTU4xOY4Xm3Mda2ahYkXcwotYbecLTUVmjstAAAg\nAElEQVQIZDRZ5jT5dxD5vNa+S5Ahn5l+dnfQ5PHGaqbge5xmouj6Tu5xakJQMEwGgcPOsDXR7zFW\n1ovZC8aY9OekYdaERr3QoFGYTOWLj0ERRQFf3X2DW+3Jr+SxamFsDBx2BUWzPLG9+LOYM406CFwT\nlRyFoKDbPLN4NTOlWQiBLgS60I69JR1uEzwZ0BkMEuGt471L39o2+y02+k10ISa+yQmhYegaFxau\nxQzwzOCVJIegcIMhk85A2g+lJNvN27heP3N8haZRqdTw3f4BD/9IWT/08EOPl25/jU9d/1TMfZ8A\nPVFLPFdZouNPZl3JRJHwTm+H9f4uP3r9U3xk6QJ1K9uf86QhIDcZ7b3Aw9WbE0TB0GnY5smpAwox\n03rxO6hw5jWxmRT4Zlj3joPp9PbS5JhpCKLjbyiTMEv/Zx0LPwpn6puhGTOr101LQdfFdCU8iN8c\nZnqlVtPbTMc1z4gagFlUIYmvj+PvOse6hZyS+RmXU6O3jDyYhkU0Q4p6IKOp4ytRWJrBWqn6QIN2\njNM17lOc4hSneN/hYVvjPg3cpzjFKU6RA8HDZ6TwgQ7ciY3gKe4THuahPfHzngqYnFhlDyvux8Cd\nXF2zUHlPHGJWE5UHhw/kGnekFHuuw5YznHm9dhYUdXNqXRrxRlX+iY6ZCtG09USlEGK61GYkIyzN\nOEbTOoogihgE3lS+8CxpxFJJ5uxSUj4b6Svm1HOgDpfPQsEooMjnxQvADYfv4CbPP9YwOU/TzkNs\n5aWmKvClm5x5RypmHLdZ+Okx9TX2yswbNw2BbZVH4mmZbYYSgY7K0VQQQtAaNONN5bzrTSlqVhlB\nvnKhmTjurA/73O63CTNMwe8HBCSbz9N/HhQ+UDPuUEpankfLTxTfhEbdLOPJADcKJm4IGUIfJb34\nMpyooZAq69WtIkXDouM7SX0H0BAUdJO1coOybtEJHO70m7jRmCKailXe9oYt3k7cydcqKzzSuIAh\n9JGd2cjc1+mx7/UAwZxVomweFlqKZEQgA17bf5vN/jaWbrFUXqFgFA8xIFSy8z8MXf7JzS+xVl7g\nw0tXKZv2MV7xMPRpBy6RktiaQVE3D7WZsghu9/bYGDQxNSPhsB822xUJm6FiFSnoZkzLDFz8hK0y\nrphYNgucKTcoGTZO5CdysQcUvvF6S2aRxxcfo+k02RnsxOOQBOiY5SAZBkP2h7sYmsli5SwV+yi9\nUCWqeQ6RDNCEFgc2DlTp0iMu6BY1u8K+16Ogm1TN0iH1xfG+FXSTtcoiPd+Jue9w7BgUYBkmhtIJ\noohAhkfGLX4oFU17ZLTrhPHDdryMTMyJh6GDVBJTMymmzvNjY6uARqHCI8VVlLrC7c5dbnc3EIjR\ntZ6W0zSDM/OXWaidZb9zl+6wOeKqA8gwwh+4bHz9LXpbTQqNEvOPrGCUTIQej0c6znP1Fc6duc4/\nv/UHXKyd5anFq5iaMeJ2p9f4ntNl1+2xUl5i4A/oB3HOQDpxMLU40enDy9e4Nhd7tN7pd7gz6LBa\nqnK+XJ8pUe7dYbot2YPGB4bHHSnJ292Y+jeRAqYUvgxj53IUptAxJ/CnlVIEMkx2uuOAPWn2GciI\nju8wjAIqhs1qqUHFtI/V1Q1cbvZ2GYQe24M93u7cPaZMJxCcqyzx6PwlDKGz53Zpuv1jDxoNQT0J\n4F7k8er+m2wNjgs/mZrFcnmZkllJArYzkXFyttTgI8tXqVtlBqFHJ3AnshhsTcfW4tnkze4Om8PW\nsTFRSsVyo0gMoVGxitgTVAcDGTFIHnw1qzQK2EfrcqOAtjfIFSOSStIcNrnX3yJSEU4wwJuQQalr\nBoulFWrFBRQSL3SOcZkhVqu2DRshdEqGTc2qTBS4snWTmlnMFR6SStH3h7T9Qe58XipFGIX4MsTQ\ndIoTkqAgnvUPAxc/ColUiBO6E98oDM2gbJYQaCwWa8wXqhPc5kPWu5u83b4TZ0bqJpo43mYQejQ7\nmzS727jtPhtff4v+bvv4eNSLLDx65v9v701jZMmy+77fjT1yz6y93t6v+/Uy3dPbLCSH5FDiUBx/\noShDtoaGbQq2QRgGARvWB1MyYAiyARE2bMAAbcCEtXoRIYmSOJao4QxnJ9mz9EwPe/p193vdr/vt\n9WqvrNxiv/4QEVmVlZkR0dP11s5/o9Cvqk7duPdG5Lk3zv2f/0Gvmsy3TrCy/ATWEUU/geBkdZGP\nz1/AUHU2B202nPbYcxTJiJ7Xp+f3sTSDTy4+wbna0kQqZvz2IviphVNTKa7HweN+/OPPyv/5X/+z\nQra/euaZGY/7gyBVm5z2IYl1o+NMyVBGUw8bhIgzKr0owMt4xdMVlXmrQsuoTC3qKoSgbticLNX5\nB2/90Ui24WFIJLe6G+x7fVp2a/oYkex6PV5bfyPJNpwMP/K41bnJQnk181Blrb/L129d5IWF85lO\nyI1Crne3uZMkIE2CEAJVVWnq8XxMu66uqDSsCotWfWrB5FShEWDb2Z96TUUozJfn2XfaXN+/NrX/\nYRSw3o2r5qlTlAaBoVM/3ziXWczZDX3aUtKyKkwLZihCUDPL+FFINyMdXxECQ9OpKKO75aPQFJWy\nbrM9uJW5EARRgIrgQvPEhGSctC2Nc43TeGHInf7W9HulmSzNneOV3/tDBt3O1Gu67QG7b27yy//J\nX0czJksZSCQ3OuvsuT2WKktT21KEQtWs8HOrz7Bk1zOfX0l8lhHKCO0uRn3TBeJBwiPjuIsiTag5\nzvaK4OF6r/nJUZTPWtQmTY75sG19EBxne8fJ1S9+zQ8wv4WI/QU1Xo4xSeVoMZD7jRkdcIYZZpjh\nIcODtIjAI8oqyUJRlbii+3I39AsprOVVgE7tMk/gE2iKVqi9LGH+FKk+SR6KitWnWXWZNlLGBSMK\nMFe8jEo1BxCF1PCC0M9l3qTXLdK3PEVCyM+QHNpFxeatKCcxLMC6KMq6Mcul3JRbCfT708N3KQ7V\nZsxEGOVnAt8riETOoMjXvcIjs+NOKXiRnPxRiUWbvKE6oCYU9AkOMNYlUJkzq0ig4w/oHaobCYnj\nGZY3CzAUjdOV1khNvPiaEe/tb/Da9jUWy0t4oceOszvVGXX9Hj2/R0WvULNqYxoPilAoaybPLj5N\nJEOut29yu3tn7APYtOo81jhLSS8RRAEb/b2xMmIKgpPVeZ5unkyYIRJnQiHhIArZdvbZc7toCSVr\nEp1QETGrJp7/CEWKibUvu36Pjd42buhS0mzON04xbzdG7MIo5Gr7Fpd2ruBHAXWzxkp1hZI+qhAX\nyYiB71GzWjxtNdnrb7Heuz1W1SWKQmTgcXtwJdbHKC9SLTXH7r2pWtTNGv3AiyV2VS0uNn2kb2vd\nNW7ux3opK+Ulnll4irpZG2krlBFOUqqsrJkEUTj1jEMAngxBMnQAR+fNCwMGgUvVqE5V/RMIKkYJ\nU7O41d+hrJnUzTL6kefICTxuddbZdbtoQkcSjbUFcbzcD10+84W/gtsf8Paffpdbl95BHl0Uyhpu\nS+HLX/195pqLfOzZTzI/vzwyBlWonK6ucKa+iiIUBoHL7oTDZ0XEKpU3+nvcGrRZtuss2/WJh4+K\nEGhCuSc6Ig9ajPuRYZVAomvseWy5ztCBR1LihB5u5E9Q6jvQwFaFii7GC8vKpJ1u4ND1BnQDl223\nh39EJCheOOI6lC2jzJXOOq9vXyeU0bDQbtpeEPlsD3ZxQ3fYp8Ox3HQHXNZL1MwalmZS0swxUSqZ\nMF5udm5zc/82davG+cZZTNUYKxgbypCN/h49f8Dp6gIXGifQhDJyCJfqT7hRgBP6bA867Lq9MVpb\n6tz9KEwctjHmpNNxKcloun6P9f7WkBM9Ov865xunaFk13m/f5PLu+yDl8EMdZ64pVPQyq9VVLM3G\nCVyc0B+LgUcyoj3YYb17C9d3iAIvKXZ7cO9T7ZFGeYFqqUXJKFMzaiNFag+uGx9WIyPudG9zc/8m\ncKAqmNIeF0rzfGzhaWpGDSdM+zZK84uSMXlhMMznOfo8pj9Lq6P7UUA/cONkstHtA5GUDIIBYRRS\nNcqUjdLIYpSOxNZM6kaZUIbc7KyzPTgoUJyOQRINn81QhkMVwcNXjIKQwPO49J3vc/3iW0hbhZaF\noiojmjWaplEp13n22U9ycuUsZ+snOFldTp6R0efNCT123S6hlJQnPONp8eFFu8ZKKab+pYJeZysN\nluxKplM9DlbJk88/J//3L/1BIdvPrZ6fsUo+KIQQNEyTumHQ8X3uDHq0/d7w95OWqDBxfiV1nBqY\ntimAqmZxo7vDjtubKKwUJs7xameTr+2/ATDisA+3p6sGTavBnd76ob7JsX/3/B6WZrCYVJQfb0tB\nFXC6dpJTtRMAk2lTQqAJjdXyHOdqC8nr6mQ7VQjCIOTdvTvDvoy6i4N4n6VOlodN7dK/v7YfUyAn\nvZqHMmIQury1fYW220YVytguLGYPROx7Hfz2DRbLK8MP6xhlUig0S/P0nDa93u7w94etUqfb7m1y\nonGGqlmbGAqIryvpeT3e3PwxAsZ2phJJKCXrvQ2CKOLZxWcnKiGm86YLjTCKF/OJtNXk/5GM2Pec\niWOMkfDk9TIlfbK0afpXg8BlZ9BmJ9G+PtqeTJYRRQi80MVPKLNHoWgqhmbz7M9/ho1gG3cwIIpd\n/ohdEATstbd5560/5997+VfRpxSjjtlDJqpQcUJvok26SdgY7LMx2OeluTM83ZxnwSpPtL9bOE5C\nw3HgkXLcKWJNZgMpI9penzztsaOvptPa7AderhpekCTr5CGU0ZCaOA0SkqSK/L4VebAUJX6jyHvt\n85KddF6MMYv2l0ICfujnxlN9mfLms2P8arJQ5L0nev4gN74cyhBbz4/fpkkyWUV6JcQc8Jx+FUWc\nrFPgLKYA+0ISz29ei+kCmcvi0VQGgwF5XKmqXUFGEULL65/MHUOExFRUztcaLNqVTNu7gQetdNkj\n6biHEEx+H53hgUTRWzW7pR9d3A92h0Dc04PHIni0HfcMM8www4eFePAOJx9tx52KQ8zwUKDorZrd\n0o8u7heZ4kGLcT9Y+/9jQiyWFLIfxEJFeVMeMx2yebSRjCgladg5F49Pz3PMUgpeHh+75/cTbncB\njm8Blbgiaom6iGsIZtkpCKSUuQ+0IgSGauRWRFeFWuiV1C/IxTZ0u0DfFAZ+P1/1T9ETpsf0MQjA\nCZz8ikDJcxYV4OsXchZJe1mWAtCFluQmTLeM6zuquc+kJlTK5QqmPjm9PUV30EvYTTkxc/IdsioE\ngZS4kUI/CO+pA09T3ot8ZbYjxCkhxNeFEG8KIS4KIf7L5OctIcRXhBDvJP9v5vXpkdpxxxW9Qzp+\nfBypCJWV0hwdr083GMQ2R+zdKGDT76I5+yxZNSq6PaSBAcPagO/ur/N+dxMklHRzWMT0cFuhjFjv\n7+EEPkpCWTpaHFcAhqKzZDc4VVngVvcOt3tbyeHXaDHYgdvhxuZl3tFtnlt5nvnK4hhlLVa583BC\nD01RKWnWGDVPFQq6onKhvsyiVaPrO+wm4keHD6JCGdHzYlEsNwzQFGVId0ut0tTflVKD8/Ulwijk\nvc4me25/hIGiIEDAkl3nmcYJ7vR3+PHWuwwCb+QAUhEKqlCZL7U4Vz/N9mCbte4dYunbA9W/1HFK\nJJv9DapGLVFBHJ3fSEZ0vTa+CCmVmnheDz/wRkiDilCQQMVustFfZxAMaJXmUMVkZpGqaDyz8Dxb\n/XU2endGDirTAsUNs8Gp+hlCKUl7NE7djLi2dYW31n6MZZR4avV5KlY9KZI7OoaeP2AQuKhCxVCm\nsDIQKIqCF8YCVanzOExBFAiaZpnTc2eJZMTF7avc7G3Fi0diqQpBJKFlN7jQOkPP73N17xpdf1Qa\nNy5WrXCmfoq/9R//97x26ft8+Tv/H67v4vru0E7XdOq1OV588ee5uHud5VKLhVJ97DMTM2f63Opt\nE0nJgl3DTp7f4dwni8iT9RWebqxiqjp7XkAbqOoqZW163dbjw7Gl3wfA35BS/lAIUQV+IIT4CvDX\nga9KKX9bCPFbwG8B/01mjx4VHnckJesDb2p0JJIRHX/AfrLDcsKAbjCuhmcoKotWnZpuEUrJ5fYa\n73U2x5giWpIMowiFIApZH+yx7w3GrhsnCaggYonQhlnGVPURGz8KuNVZ50bnDpEM6Q3a7HQ3CI9U\npq+YVZ5d+TjLtVVADLnMR6EpKmXNRFVUSprBhfoyS1ZtbKHZ9wfsuD2C5AP0/v4G3UMfwMNjjRkp\ngpPlFo/VFrGOjKHrO7zf2WLb6aAIhSW7zrxdGZOXvdPf4fXNd2l7PUzVYM5uxWp2Rz7QW/0tbnfW\nCGWIJjSUCclSilCo6FVs3UYCHWeX7cHWGPsjDH08t48XOChCpWI3KFnVMW2Nkl6iZc+PFDc+ikiG\nbPc3We/eJpIRc/YcpxtnKOnlMVtNKEhi1cT3Ni9x6c5FvHB0fmt2kydXPk6zvIAkVhR0JiRoxXx3\nY6iVrQhluGiM2omYeQPMW1VOV+aHgl0per7DmzvXuLof01HnS03m7caY0Ni+2+Hq3jXabgdD1Tnb\nOM1iaWH0XkURf/7uD/nSn/0Be909luZX+cSLv8DK0umRthShsGTVE2ortN0et3rbeEeSkjRFZd6q\nUTVKaELl6cYqT9ZXMCaIg6XcgyXbmLrbPQ4e99MvPC//8R//20K2n1o4Ufh6Qog/AH4n+foFKeWa\nEGIF+IaU8snMv31UHHcQSTYcLzf+uTFoc7O3Q0j26/bWoMO+P8gt1ro96OBPyYhLoSsaq+VmnMiR\ngYvrb/L67R/lpnl/4vTPULEbmTYAv3L6Jcq6mblb2Bzs8/Xbb9IPsq/5WHWBC43JH6DD2Ha6kPPa\nKKXk1Y0raBNkdQ+j6/a4vn8zl57mBS5+5OZSDk3FQMm5JsDZxvl8CiZgqCqGmh0+e+vWa7y/9S5B\nNL7AHsZzZ38OLScUJ4CqXslULgSYN6tcaCxj5bR3rbPJfuDmhqecwMVUjcw5cUOft+5coVyuZrYl\niLMd/Rza57977tM83TiRK9sggCXLQJ3C1zsOx/3MC8/L//urXypk+/L86jVg69CPfldK+bsT+nUW\n+BbwLHBdStlIfi6A3fT7aXikQiVFEHOA8xcrPwrzK2wzOf17EorohsQp+/ntRTmLTgpby/6wQTwf\nRcagJOGWPBiqlstjj5OQshex1E4RSiZ/GuIdehHdDVXRcjnbRREXX8g/8wijMNdpA4Xi9lBc9S9v\ngYV4Q6GK/L5ZWnYsG5K3n3It97MlD4XAsmAoaqHPzL1D4edmK2+hEEJUgN8H/isp5f6RN2EphMh1\nPHf1cFII8XkhxCUhxLtJ7Obo7//rJFD/uhDiq0KIM3ezPzPMMMMMPwnSRKe8rwLt6MRO+/+RUv6L\n5MfrSYiE5P8bee3cNccthFCB/w34d4BngF8TQjxzxOw14BNSyo8D/xz4H+9Wf+4WjluntyjtqEiI\nq8jOJo+R8EERRsVO/I/LBg5infl2xUZaZPf+wVQm869bdMdddN6KqEwWHUNRFO1bEbs8lte9hij4\nldlG7Nn/HvCWlPJ/OfSrLwK/nvz714FcYZS7FuMWQvw08LellL+cfP83AaSUf3eK/YvA70gpP5PV\nbtbh5J3B9Bh3yvrwkhqQ206HLbc7Rt8SgKlomKqGH0Xc7O2w7fbG2itpBhdqyyzaNbYG+7y69T4b\ng/0JdibLpcbwQHJSGOGgbwGRDHlr/SKXNy+Nqdxpis7J5llWGmeHB1STBOfTGpOhlKyUGrw0f5YF\nuzZmMwg9Np0OXhSy0W9zrbM1dlikCMGT9RU+tXgeXVHp+i6D0B2b547b5Y8vf51vv/8dGnadzz35\nOZ5cenIs1r3v9bm8t8bGoD2s4Xi0PJiUMq4y4/UIohA/cOj7feSREJEiFM7UVniydQYpJa9vvs2V\n3WtjC5ahGpyunWKpsogXetzYv82+O36v/MCl29/F8fvMlRc52TpP2RyN2aa1ElO2ka0aWLoxUWWy\noltUNAsv9PjutVd4e/3tiaGwNIRjGxWWm2ep2JO1aVL2iS5U9KSa02jfIm5tvcfbV7+H6/f57IVf\n4Bef+kXK5miKuB8GvNO+xZs71xFCsFSao3nk8BriakWLVpWabuOEPuvO/sSzkI7b5cb+Gl2/h6la\nmLo9xpSRUuIGA/peBykjbL2CZZQnzputmpR1i5Jm8tNLT/BEfXkqRVEAy3f5cPJjL7wg/9+vfbmQ\n7QtzS1OvJ4T4WeDbwI9h+DD/LeC7wD8FTgPXgH9fSrmTdZ276bj/KvB5KeV/lnz/HwGfllL+5hT7\n3wHuSCn/hwm/+w3gNwBOnz798rVr1yZeM5SSrh/QCw7ccax4Fo4LFyUfwG23GztwGWGpOuaRw6u0\nEO6N3i7bTpeyZnKhvsycVRnSm1LH2/b6vLr5Pmv9PSq6xVKpga6oY8wKiB14+ndhsusdCgwlCnqX\nNt/m7Y23ADjVOs9CdXWEDpj2MnXgkjTeO9qeKhRaZpmXF86xZNfpBx7bbjcROpIj87E16HCtE6v4\nPdM8wYvzZ1GFMow3pmqJvcChH7jsDPb48qWv8b3rPwAYHtQaqkHJsPnck7/Ix1Y+xr434PLebXbc\n7rCNdAyGolM1bHRFwwk9Ol4/Loab0uqIF2Y/dOn7PRQEj9VP8HjzNGqivwLxbj+UERc3L3N59z1U\noXG2cZr50nzywRbDe+qHPjc7t9lz2ni+Q3ewi+c7w/lIGRs1q8mpucepmLVhgV4Oza2CIEJiJQ5c\nEypV3aZqHCnsHAb4UcCr17/HxTtvxCXGksX8sMKhIlQMzWSpeZZaaS4WEjsS603vra6o6IqOkJIb\nm+/w9tXv4YceQcI0Ss8Rfub8Z/ilp/8SpmFzefcml/duDp/B9PkAwWKpRcuuYak6i1aNij5KzYtk\nXI91fbBPx3fYd7vc7NxmEBwcDKd9M1UTUy+hCBXH7zPwO3DonioJBbGkl7CMCqrQsDVjqDSZzq8u\n4lj3pxcf5+nGiVgfJ/ldWVOo6FpmdfVjcdwvviD/SUHH/XxruuM+TjwQjlsI8R8Cvwl8Vko5zkc7\nhCxZ1xSRlHT9kH0/mEitOox057njdjNjVJGMsFUTS9PH+KiH4YcBb+zdxg39zESGMIoYhJOlZg/6\nFtHxBuy4nRHHcxRFtTt0ofDS4mOYqj79EElKdEXlTGUBBTG1nqaUkq9e+RP+wQ9+LxaHmvJqbqgG\nj514gWZtObcYQ8o7zkpiKWsmH58/N1XhEOKFb9/rs+f1M+ctkhHfv/YKW72Nqa/lAlAVnWdPfhpd\n1af2TBC/XZ1vrOTc94Af3vwhP7j5gxGHfRSqUDm/8gJluz61LQDPd/ju619ERiH+lGddV3SqlXme\neeJnk8PeyWEZVSh8rHWaJ5unMscQScm/ef/P2HM7U9tKF9tIhomTnmynoGDrJU7UToxx8kfGIFRU\nReHXzv8My3aZiq4WSkM/Lsf9e1/740K2H28tPPSyrreAU4e+P5n8bARCiM8B/y0FnHZRKEJQMzRU\nIbkzyHZqQgj8KMw9WFCEgpUI62dBVZREpzrbLs1gzO5bLHGa31YxSEBTlOyTfxHra6sZjjE2E7y9\n+U4uFdILPUp2o1AFnSKKeGXdznTaAIqiEsgod94UobDb38mMpUpIqqArucp6tmbmnnmoisZ6Zz35\nm+kthjLENvNV8By3RxQFw132JPiRj21X4ze8DEZSKCOWSq0C8ybYcdq580HyjGedGUREWIksbVZ7\nvgzjjYTwqRn3ngz3YCW8313H/X3gCSHEOWKH/QXgPzhskMS1/w/inXnuSeoHxf1QEvsgKLJTvn8a\nCQ/u3B1rsedja+luNVjkkg/uvTpOpKnn9+XaD5gvuWusEillQBz++CPgLeCfSikvCiH+jhDiVxKz\n/wmoAP9MCPEjIcQX71Z/ZphhhhkeFdzVdw4p5R8Cf3jkZ//doX9/7m5ef4YZZpjhwyI9e3mQ8Eiq\nAwL0g4CNQb9QbLUoFztMajJmQh7UWcxCfAiXj1iTIq+t0f9nGRY5i44PnLJ5tFJK6lYtUzEP4v57\ngVNohotwyr20BFruQWexwRqJ3kx2v8JCGZehDAvNb8kojRWCPopYA8fPnQ9TMwkLnKkEoV8oY7jn\nD8ZoqEcRRSGGquff04SWmoeoAPdfAG4Y8ubeBlvOOD337qKYMuC9DOM8Uo5bSknP97na2edmr4sb\nxbKu00j/Kd9ZV1SqujX14DFW4PO52t3izqA9VvD2cFttv0/TtLESbvK0W6kqCramDytUj9vFfbY1\ng7pZiZXZjlil3+mKRkkz0BVt4u4gLq4qWLIbuGEQc5CnfFAiKdl2e7y5t8a+PyCSo7ZxxXGfd3ev\ncd3ZwShVUCfU61SFiiJUTs8/zmp5gapeitXsJo1URgy8Hm1nBzdwJjpwKUM83+HPb/2Af3nxD7i9\nvxY7mCPjCGXEntPl6v4d1vu7BFEwYazxvdrqbdOsrlC2Gkn9ztH7n46hWpqn43biWowT+qYKhZJm\nsFxuYWtG5nPkhwEvnv40L5/5KUpGecyBq4kCX6OyFGuwhP7EayYSUzQrc/zyJ3+N04tPoCrq2EKq\nKiplu0ajtkQYBUw7VZEywvF7/MvLf8SXr/4pXa+HH4468DAK8UOfV9deZ7N9g67TRk6Q/5VRRBC4\nXL/9Jpff/Q77+xsTZWwVFCzNomxMP4RNn+eWWeG5uVP4UvLK5nW+vvYeG4PuPUvSEQX/u1d4ZESm\nIim53u3gRdPJZIedhkTiR+EY9cyPQgaBO+RZO6FPJ/DGdtp13WbRrqImCnB7Xp+2N1rnMEoc/iDj\nxD+2i/DCcHhNgCCpwTjsr5R4UUDXcw640kqciHF4pZcJ19YLw/ihF4LVcovFUn3MoWiHdgkScMNg\nLEHIUnVOlZrUdJtQhryze41/funL3OjcGblmGHh4gx5RFCIQnFu8wBMrz2EZpX63QCYAACAASURB\nVBG7nu/QDQZESQLLwO/hBs7INQUCWy9jaBZSRvihy9ru+3QGuyN2c6UWP33606zWTyCEYM/p8l57\njd6R9kqayZxVH1Ibt/pbrHU3RnaWUkb0nX26g71EElihVV2hVpo7UjldYGsWmhInwJR0kzPVRRrm\naPHaNKEqlGn19JBe6I48R1JKbu3d4Me3XqPn9QBJq7JMs7aCdkTLRVM0VEVPtN7jIrvmkSK8fafD\nW9de5f31mPtftmqcWH2aWmX+yMIq0BQtWfMkjt9jd7A9oqkiEFxoneOzpz5JSbOQSL5/+0d87/af\n4x6iHQoEZbNGyWqAlIShz621t9nZW+PwImHoFitLj1OvLaEoKrZuMVdaoKQfPB8HbcZ/KRDMWxVW\nK60xNUqINyRlzeCzy+emLpbHQQd89sUX5e9/4+uFbJ9qNB9uHvfdwjTH7UcR73f2c18G06ruea+N\nN7u7dAM3Vxi/ppt4UZBNZQpD9n0nwyLGIJFpzRtDzxsQkX3CLqXkRHmOqmHlcnIjotwQ0JWtd7m4\n8RZ3+luZdk/NPc18dRlTtzL7dmnnSrIDnA7Pd+gNdulNyHI8jLPzF2hVlnM5+0EwoO/3s4v+Shkn\ngxiVTCbBvFXnqdYZ6ua4nOth7DpdejnPkZSS127/GEXTxzIOD0MgmC+14jerjL5t97bY6tzBOpIt\nexRdp03P6xLK7PuwYrdY723hZ4hlRUFAt71Ft7c71Qbg7MozPHfup7GNcYd9GGcq87SsSq5YliIE\nv7TyOLY2WbTsuBz3v/jmNwrZPllvPPQ87gcWRWJ9EplfzQRwQr9gFfYC1L+CMTIt4SnntXU0e28a\niizeHb/PRn87165WbmY67bRveU477leE4+XHM3ten1KO0wYYBINcpUGRpJ4XuaeVnHGmyHuOhBCU\nrRpeARXBPKcNYBklyqVGrlZNKINcpw1wq3OnkOpfr9/ObUtGEWYBtUFL1QspHN6L4MSDeDj5kXTc\nM8wwwwwfBA+W25457hlmmGGGbBSUbL2XeGQcd5Fp3fcH3Ojt4Echy3adplEauyGp2NKiXaUZ2Ww6\nvYmHiwKwVA1L1eODqClx7ij5naaoQ8W+o0hFl1ShUtLM5JBw/JX+QDAr+xVYQVAzbPqBmyjJaRND\nJunhjqYo9AKPQTBdXfGp+QucbZzme7d+wNW96xPmQ2GhsoxEY+C7GKo+UeckiELazj6WViKSAV7o\nMymIJKVEU3XmGifoDfboOZ2JdlW7xVx1FUWoCdNnUlsRA7/HIHBi2hbKlA+iwFB1QumjyJjdMa3W\nYz/weOXO25ytLbFaHk8Tjw+JYxphWTNxQn9i6EIAVd3msyefZ8fpcGn3Ol1/vAReJCP8wOHdnXdp\nWg2admtMfApgr7/DO3feoOd1aVWXqZVbYyXaZKIhYqgWmqXT87oTiz2oQuVk/RQnqifYG+zw7vZl\nBn5/zM7UbM7MP8Onz/4C791+g0s3f4g/QUWwXllgZekCO26Hsm5jZVTVubK/jtU3OFWZo2bYE20E\nMakoT4biOPCghUoemcNJiHme245DNzg44JNS0vYH3Ozt4iSSrhA7N0UIlu0aLbOSxKDHDy2jhM2x\nOejST0ShbFXHPEKBG0qzRuGwykfKFDkMmXDBU7ZBqug3RlhLGC2BDIdOIGVBHLY9HDtXhEJdtykn\n2g+HoQkVQ1WT4ryCkmagjTgmSSShF7j0Mxx4EAY4ocN3b/6A93beRwjBYuUEq40zqEIZcRKaUDBU\nDVVRCaKAPadDx+vF+hVDHQsZU/1CL579xPkepVtGMood+KCNRFIvzbPSPIem6mOOKdaijttwvB49\nv4NIhI7S+UoV8dLajbpqIA6pLKaqfyoqJPMkkqo3AjHkdWtJO2dri5wsxwwULwpxAu/I0xTfdzf0\nCWSEQFAbqgge3Mkwkuy4+7y9c419r08UhfiRix96pKJUihBICQ2rkRQ5Vtntb3Fl/U26zv4wjq8K\nFYSgWV2mXplHEJ8thMPnSKYPWzy/Xhc/8tAUjTP1M6zWTiaywUrSt4i9wTbvbF2i53Wx9RLnWk/Q\nsFtJOTWBjCJCGfLe7Td46/qruL5Ds7bM46dfxrYqKMnha1pMuqTZ2Npoeb2RZxqBrRmcrMxRN+zh\neZFAsFKq8lR9gWpGtfnjOJx87qWX5Be/+e1Cto/VKjNWySQUUQf0otiB77gOb7bXYp3rKa5IId51\nnqm0ctQBJV3fwQmDbLsoYtcfxLutDIRRhFuAQeL4Lnt+P/dws6bb1Ca8QRzFkl3FyDngCsKQ7aQK\n/FSbKGB70OFWdzvebWa01/N6DIIBMFkNTxDPhxN0MxM24g+sQs1uoSramMM+bNf3erSd7aHDngZT\ns9ETmt2k8abzXtKrQ+c0CapQsFSDC41slTtICk0fkUwdRezA//TWa6z1NqbeewVBGIVst2/hBc7U\n4gmqUNE0k8VE9W/6YamkaTZZrY3KBx9FGIU4voOiqChTyotJGRGEAZv97cRu8st9rECp0jCrmfOm\nCIGpaHysdYpz1SZP1hco59TUhONx3B9/6SX5xW8Vc9znqvfGcT8yoZLDMBSVlVKZUIZxskzGxyhC\nUipQm1ERIt4pFWAb5DltKMZsAfCO6D9Pw6Rd9lEoiFynDRAUyOnUFA0n9Kd+cA/DGRZemJL8ASDy\nK89I4kxHLafWowTcoJ/s4LNnTk8quk93ZSQhk+lOG2Kaqa2ZhdhDtjZd+D+GQFUE6wn1clp7ERI/\n9HCTRKnpfQsp6RaIbMlcEMyX5yaGYA5DVdT8wsZCQQqBnnDApyFCYqvZ9wDijVMgIz7WWOCpxlLm\nte8OHqxQySPpuFNoynFHpop8LO8PjvuxepCVC+/HXSg80mOckuJNHed9eHA/MaoQmAUogncDD5bb\nfsQd9wwzzDDDh0e2/vv9wMxxzzDDDDPk4EHbcT9Yy8gxIogkbshE+t1RFK0ofbwvpNkxvRSpmFAe\nwilUuMMoGlcv3DdRPFiSp3FYtJ3ir96TBa2OIq1ElAVFFr1mVFh9scjzpirjwmJHIRATCxBPts2H\nP1GU6yeDEPlZo0AxyUpi0sGtXodBkJ9hevwQBb/uDR45xx1Ekj03YNsNsFSLF+fOUNWsiQVFFURM\nWStwwAZQN2zsYYHXcaS0PUPRpjqN9KeKEJiqPtUu7dvj9UUery2gK+pEvqqUkjAKudK+w9Zgf6Lk\naXoFQ9HoBS7hFBnN9NFr6BYny03MKeOIrxlR0i0qus001T+IC9qeqi5TNysT7QQHyoqq0IavpEdb\n04Qa09SqyzxWW8aaUOU8/juBJlTONE6xUllBFeOKeamSW0krUdGrmGqcun60b0qybNbMKi2zgqlM\nljLVhIKuqCzYdWpG/KxNsotkxCBw+NHGO1zevTFRZTK123N7nK6foWJMnrdY0Cng1tpVrl27yqDf\nJ4rG29IVHVOzeHLuAk80H8NUjclSvFISRSFvbrzB9fY1wihIqJkjRoRRyFZ3nTfv/Ijt7nqi+jdB\nfTEK2e1vs9NbT1QVx/umJvM2Z9VoGhVUoUx8jlQhqBs2L8+fJQRe3brNxd0NehO44ncDsVhbsa97\nhUeGDiilZM8L8aLJ49l1e7yzv85+ktygKgrLdpW6bn/grKhISgaBxyCh88XKfSGDwB/ZYaQOKcwR\nGEqrZ4dSxg5bUViwqlT1A35rJCV3+nu839mKVQ1lRBiFdH1nJLFDFQqLdoP5Um3o2CxVw9JGHZ1A\nYCSLQcqNLakGtnagOCelpBu4rA/2ccJgyD/v+APcMBgZQz9w6fnOkJtuKPE1tUOLYhCF7DptdpNk\nmriYbIB3RGckfiajxJnHfXyidZZT1ZUh4yG+3z1udrZwwph3rikKVb00opoXy7dusdZdG0r8lvQy\ndauJoR7wfyMZ4gQDBsFgyJNuWnUaVmNkDH4Y0PH7w2LQmlB4orHCycqBiqCUEjcM6PqxymQoI5zA\n5Wp7jbbXHblXZ6qLPN6IaXpCQNvtc6O7hXMo6SuIAtqDXTrePmEUEkUR125c5sq1t0YSXWy7xImV\nk9h2CV3TMVSD50++zLnW+YTKGPdta7DN+3vXcQM3EV0Lx5JwVKFysnaSU40zw13/Vm+dK9vvjCTh\nmJrF2eZ55sqLIARSSjZ662z01kcWJUM1aVhzaKqBqihoQuNkZZ6WVRt53vqBy57bjUXPBNSNEhfq\nyzQniHkpCJqmxTONxaksneOgAz7/0svy3/7JK4VsT5TNGY97EqY57jCSbLn5gjnrgzZ7fo/qEdL/\nTwIpJde6u7nqgFEUFaLYGYpKRTMpZ9ATpZR8a+1tdpxupoiQIgQ/tXwh3tVnjNNQVJpGGWuCpvZh\nvLu/we3eHm6GOJSUkr7vxEk+U6rDQ8wDfnPrnVzBp5pR5kxthZXK4tTDISkla70d+qGXSXWMZMRa\nZx1V0dEz6ISRjDAUhYpRzqTFGYpK0yyzVGpMnV8pJW/v3OBmb4uON55xmEIRgsfrp+gFHl7G/Pbc\nLl/53r/izuYNgnC63XOPvcDPP/cXONU6mzlv37/9Knd6G5mCX4pQaJlN9hKt9GkwVZOF2gnabjuT\nmniyeoLzzbM0zGrmM17WdBpmiXqOiqAAPr1wcirb5Lgc95cKOu7Ve+S4H7lQSR6qukW9AOe5CFLO\n9nGp/hmKRkXPXlDS3XGe8lskJcaUVPejMFU1t4+qUDKdSto3c0qq+0hbiprrtFO75fJCbrX5km6N\naVMfhSIUKkYt02mndjWzmstlNlWdpVI9c36FEHiRn+m0IS1e0cmdX1WorG1cz3TacYOwWj+ZO2+a\nouaqNEYyYqO7lum0Ia5MtDvYyeXiC2QcNsuZt5ZZyXXacXv3Jj5xXKESIcTfF0JsCCHeOPSzlhDi\nK0KId5L/N/Pa+cg57hlmmGGG+4h/CHz+yM9+C/iqlPIJ4KvJ95mYOe4ZZphhhhwcV+kyKeW3gJ0j\nP/7LwD9K/v2PgF/Na+fRcdwFXlOCKMQJPUTGsKWUDAKftX6bTaczNX1dJoJBTdOOY9JT2gujiG2n\nw1pvZ3h4NwmGojJnlrEyYtJSStreAEM1mLOqObUNfb596yLv7t0mmDIGRQjqup1b8LfjDbjR3cYP\ng6mvwlJKdgd7vLl1ievtm4nq3zgiGbE92EVTtOxXeQShFLyxc5UdZ3/qvO25+/x44y3e3blCf4Jy\n3UF7UDdL1PTpxSXSebvT36bj9TLulcZquUlJNTOV6XaS+54HTdEIoljbY9o1BYLFcpO/8au/xU89\n+ZmpoZySXWFl5TGutG+y706vybjV3eTmzjUCz5nIRkkxX1rg+ROf5Ezz/NQCx0IoVO0WtSMHvkdR\nNco8M/84Nd0e1lqdBEuND7X9AkWEJfJBk1ydF0K8eujrNwr8zZKUci359x0gN6f/kTmcBPDCiI4f\nERwZUxCFdAPnSAxRIiVEyaGhlJJB6LPr9QkOxa0FYKsGDbOEoahJsdxgeEiX2kVS0g88eomyXhCF\n7Lld2l6fVFxJIdb1rRklKkmc3VQ0luwqJc0YqsSlTBMvYZrEDIo+N3u7uIcEs+Iixi67Tm+oIhhE\nAYEMhtfUhIIEztdjGp2uaqhCoWmUqOp2QnU6ONU/rJC45/a5tLfGTuLEDiu2KYqCIhSklOwMdrm+\nfxM/kS5VEh74nN1kubIUVyKXEbuDPTYHO8MY/WEqYBqzj+tNlob1FVMlP13ROF1dZC5hIewM9nhz\n+x12nYPDMCEUKnqZ1eoqZaM8bE87EnOP582j4w+GHP4gCvBlgDh0ryA+IC0bpSF980xljjkrpuiJ\nhEUhIblXcT+2Bm0ubl9lz+0djJNxDrqu6NiaNRTLSn+vCiVhmcQKlk2jQsMqJwuOwA98vMDjSz/8\nN7zy9p/ghz6VUp3nn/opVhZPx05dxNl+pqKzWl2knhTk3eiu8/rt19hz9giT+qCSWEJXaDpKwh1f\nKC9yunEWNV1gE0bReucWN3bfx49iVk3NblG2Gknt1fSzEI3UEq2bVT6x9Byr1aUhiyl9xvuBN5Qw\ntlWdeauCpqgji6tCXOxaHPlZWdM5V23SNCfLvsbPxIc/nHzh5Zfll//0O4Vsl2wj93pCiLPAv5ZS\nPpt8vyelbBz6/a6UMjPO/Ug57hReGNENItwwYt/r42WWZ5I4QcC6044TI6ZYCaCkGTFzgQzhnyji\ncvsO2243To6YYBlT/lQ+sXCWSoZKXLrDvrh7e2Jh48N2W4M9tp39oRzpUaQ7w7989lOcrMyNOOyj\ncAKPV7fep+31MxOYel6P9/Zizu9krem4/YpRiR2YEFPtpIzQVStxFJMTgFShxEV9vTY9vz/1gFYR\nCgv2HGcbZzJ3Y1JKtgdt9v3+1HlTEnb7z68+w2KpPnTYE1pj3x3wzds/puNN7xuAJjRKup2pbiiB\nRbvOnF2b+mYSBD5u6PGdaz/EsMtDhz02BqEQhR7ru1fp+/2RIskH14wd+EJ1hQtLz6Ip6uT+JQvt\n7c4tAhnFi/eUMQgELy89xWJpbuiwx5uTCARV3URVlOzDXsAQKjXD5Fy1Sd3ILx13XI77KwUd9+JP\n5rgvAb8gpVwTQqwA35BSPpnVxqMTKjkEQ1VomRq2Bn5uTT1BL63qnmElATWZrsylTsCW2yVmIk+2\njJDUDZuyZuayEtYHHdxouixtarefMBem2YUyQldUTlRaicby9OvuuD3a3iA363Szt4UXelOdVLp7\n95L+Z9kJoSRSrdOzNkMZ0fN7dL1epmOMZETDahRSckyLFmTdq7JuMp840OltCtb62+y72X0DMDVz\nqtOGg+cry2kDaJqOFIJypYGqalNpDZGM2O1v03E7E512fM34qqea59AnaJwPIQSKohISv+FkqSo2\nrBpLpblkEZjKs8bWdHRVLcSAOl9r8cLcSiGnfZy4y3mTXwR+Pfn3rwN/kPcHj6TjTqGJY05CvS+h\ntON9Iyr6hlVoqAVji0WnrbBdgesed9iz6F0o0rciqfgfBEUc3v1oC4736Y0LgEyu5v6wQAjxT4BX\ngCeFEDeFEP8p8NvALwkh3gE+l3yfiZnI1AwzzDBDDo5rPZNS/tqUX/3iB2ln5rhnmGGGGXLxQDFX\nHt1QScwUKKaHJwqGVIqFGYrdYClloVW8qAJfEatIFqNO5VUjOdy3ogp8+TbFEB+G5VvnxZlTFJkP\nKWWhEEJRzea87MKD6+bbxKXZ8g3zzjVSTCt/9pOg6LwVvfuhlHR8v5Di53HjLse4PzAeOcctpcQN\nQnpBLFDUMuypam0pFqwaC1YtprlNsFQQ6EKlZVYpq+bUtgRgqho/s/gEDaM0keMbU5sU6kaZkmol\n+nPT23u6vsrjtWXUpMjvUWhCoaQafP7UizxRW0GboLAmiFX6TldaGAIMJdvdnq3M8an5xzAVDX0C\nx1sTCrpQ+cWTL/OppWfQFXVEiCmFrmjUjDIvL17gRHk+ZhaM9S2ej9VSi4/Pn6U6heMbj1/hxYXH\n+eyJF7HUmOFzFIaiYakGZystTpabU++pJhQqmsVfOvkCpyvzceHkIzaCmI5X0s24cK+UTHIy6Yf2\nudYZPrP8NIaioU+YDy2hNa6UW8xbNaapKmqKSsssc6LUoKZbE20E8bN0przA509/grpRmjgfmlDR\nhMpnT3+Kz5//OUzVwFTH48SmalA1ypxP523KoqwKhYZR4vOnP8lKqTXxvqfKlot2jYZuTXwmU7uY\n1mdSVo2pzk8k120ZFbxQcrXTYctxCDP458eJok77Xjruu0oHFEJ8HvhfARX4P6WUv33k9ybwj4GX\ngW3gr0kpr2a1maUO6IUR/oThSCnpBT473mCkorqp6CMaF2EUseG0WR+0h3+rKyqnynO0jAN9BS8K\n2HY6dIPBkJ+rKxp1vYSRiN1IKdl0Ory+c509r5/oPgsery3x4lxMA0zt+qFL2+sd2kkKSqo5Uv3a\nDQMut9e43F4bXtNSdZ5rnmK11BzabTsdvnH7Dd5p30aSCBjVlviVsy9yujI3vOYgDNhy+klV+hhl\nzYglcBPecygjLu2t8b3N94aJSIpQeKZxgvO1pSE/uusP+ObNH/Fndy4O9a2rRolPrzzHmerysG+7\nTocfbr7Dre4mKbN5tTzPS4tP0LJqw76t9Xd5fesqXf9gfp9tneblhccoJRW9/SjgB+uX+frNHwwT\njHRF4y+ceomXFi+gJ07MDX3ebW9wvbedzKygops81zzFkl0f9m29v8e3197iendzyDBZshs82TxJ\n1TjgCauJDHDq1AEqmkXNsIcLtR8F/HDzCn+y9uZQe1sVKo81VlmtzA935l7oc7u7w9ZgH0TsyFpm\nhU8vPcGJ8sE97fgOVztbtL2D+Vi0azxeXaKczEckJW/v3uArN1+j6zvJ2xV8cvECn1p8AiupEekE\nLl+7+h3+8N1vJjreAlu3+JULf5GXV54b3vue7/L23m2udbdBxjv7plHiublTLNq14Xzc6m7zrds/\nZq23M7z3TzVP87Orz9I0K8N7uu87bAw6h3TjBfNWhXmrMpy3tCB395AuSpxzUKY8oRI8QM0wmDen\n6/scBx3wxZdfll9/5buFbJum/nCrAwohVOAy8EvATeD7wK9JKd88ZPNfAB+XUv7nQogvAH9FSvnX\nstqd5rhjMn9OsVkpafsugyDAyBAlCmXErtPFUg0aGZXT/Shky9nH0vSJu50UO06XXbfHhcYqpSlF\nVuPFxSGQEZY6XR3Qj0KutNep6BbLhxzPUey6Pa51bvP83GlWy42JNgA936fr+5R0Y2oWYCQj3tpd\nYxD6nKnOT7UbBC5fvfEadavCicri1L7tez3eb69xthbrdE+ClJIdp0Pfd3imdXLoeI4ijCJe33oX\nIQTPzZ2fKnDlhQFr/TZzZoV5a7oy3eZgn1fWL7FamaOsT6eclTWTum5T1a3pPOso5Ju3L9INPZZK\nralhAz8MUIFTlTmWS1n3yqXtDVgtNbEznqO3926y5bR5bu7sxN01xIvGt69/H1u3eX75qaljGAQe\n1zvbLJXqzFmT7xXAen+Xq/vrPDt3jtoUcSgp5VDqtmWWpl4zShKkdFWjlPFZSHG2UhlLskoxc9wf\ntGEhfhr421LKX06+/5sAUsq/e8jmjxKbV4QQGnG654LM6NSHcdwAbhjSCwso01GszlwvRzUN4p1U\nqYCMbCgjggLxz6KviMt2vgpiKCVumP8MDAKfwZQ09sO43d/NlH79INCFQt344Hrp02Aqeu49jaTk\n0v5apg3EjvtkqZnb3rXuNuvOfm57zzZWpzrZw7CUfEcWyjBXaRBi5x0WkBtOM37zEC/oOdx5ip0F\naEn2aB4EcOYeOO5vFHTcjXvkuO9mjPsEcOPQ9zeTn020kVIGQBuYO9qQEOI30tz/zc3Nu9TdGWaY\nYYaHAw/F4aSU8nellJ+QUn5iYWHhfndnhhlm+EghfuMo8nWvcDcd9y3g1KHvTyY/m2iThErqxIeU\njxTulxrM8ZEX7w/ux7x9kPkoQsEs2t7DpRj04OBezNuDyCq5m477+8ATQohzQggD+AJxTv5hHM7R\n/6vA17Li21lQhMBQ8j9KtqpQ1dRM6pEAbE3BVKa3FsfqYN60Mul1AjAUga2J3JtbUhXKSd+yrlvX\ndWw1+5pqosCWNx8KYBWYt6quU9MnF8tNr6kA56tztAx7Kr9bFQJb1ThXaVJS9YkUx7hfgppuMmfG\ndM5JD2o6n03domlYU+dXSa5b1w1sdfr8CsBQVZ5vrlDSJvctvu+CsqZR03WmRXXTvjxZX+CxSjMZ\nw2Raoqmo2KqCrWrZVFNFpWZomfRWAVRUnZZh5vZt0SrTSOZtEpSkf4tWiVJG3xTAVjXmDRttyr0a\n9k3TaejZ1D9B/LyVtez5UIVg0bKmxrcfZdy1zEkpZSCE+E3gj4jpgH9fSnlRCPF3gFellF8E/h7w\nfwkh3iUWF//Ch7mmoSroiiSQEi8cTdPQRPx7RQhKQN2QdPyAfT8YUqwAarpGVT8o+RVEsZ2THOCl\nDruqq1hqLDrUMA0GQcCW4+BF0SG6nsqcaWJpBxRBJ5R0/ZiCl/bPVgVlTUVNFopG0reOP3rAVNc1\nKof65kURu67HIAiH11SFoGUalDT1QD4zGcfh+YgpjAcHsLaUuGHE4Mi8mYrA1uJ5q6ExZ5rseh5t\n76BIrRCClmFQMwwUIThRrtD1Pd7t7LDt9ImQqEJgqRpP1OaYN2Omzvlqk223zzv7OwxCf1gsuWXa\nPF5rUT1Eddt2+9wZ9JDyIKFn3rJZtCroyQd3NaqwPuix7Q6SMQoUAct2hZZ5oMPthCFbzoB+cHDv\nDUVhwbIpabHQ1dlKgzuDLhf31hmE/jB5admq8HRjcaRve67LtueOJGg1DZOWGSvena7UeDHw+PHu\nOlc620gZO39dUXi+ucJjtdaQqTMIAjac/kjfTFVlySoN+xYX1Q3Zcb1Y9jexK2kqTdMYzseiXWLH\nddhynJGkpTnTYs48oH16YcjtQYedQ/OmKoITpSqtQ4fDvcDjdr9LP/CH17RVndVShYoes1yWZZm2\n73Fn0COMYtFkAdQNkyWrhKHGvO8lKdlxHLbdwYiE8pxp07Ks4aLpRxE7jkP30HyoQjBnWVS07Dqp\nx4kH7c30kZR1hdhJhjJmYOjqdLnImDsaO8jDTvEowkjSC0IMRcFUp8eznCCg6/tUDQNTnSx2LxMm\nRyAltjY5seZw30TSt+kUwYiO52NparyjzGgvjCSqIqaOM65YLwmlxMqYt1BK2q6LKgQ1YzrToR/4\n3OztM2fZI07g6DV3PYctp8eJco1yBtVtx3Pww5B5qzR1pxVEEVtOH0NV4534lL65YUjb86joOiVt\n8h4m5uP32HB6nKs0KeuT+xZJSdvziKSkYZpT76kT+rzd3qKum5ypNKfOrxMG7LkuNcOYKqwU8/FD\nnCCkauhDhz2pb3uuS4SkaVpT++ZHIRuDHiVNj3fiGfd013VomlZm3zq+G8pbgQAAAT1JREFURz8I\nmLOsiQlJad923ZiZ1TSnSxwHUUTb8zBVNd6JFxU4OwZWyUsvf0J++7vFWCUVXXu46YB3C0Ud9wwz\nzDDDo+q4ZyJTM8wwwww5uFfV5Iti5rhnmGGGGbIgOHZ99w+Lj95x7AwzzDDDQ46HLsYthNgErn2A\nPzkNXL9L3blXmI3h/uNh7z98NMdwRkr5obL2hBBfAuYLmm9JKT//Ya5XBA+d4/6gEEJsftgbd78x\nG8P9x8Pef5iN4VHCRyFUsne/O3AMmI3h/uNh7z/MxvDI4KPguNv5Jg88ZmO4/3jY+w+zMTwy+Cg4\n7t+93x04BszGcP/xsPcfZmN4ZPDIx7hnmGGGGR41fBR23DPMMMMMjxRmjnuGGWaY4SHDzHHPMMMM\nMzxkmDnuGWaYYYaHDDPHPcMMM8zwkOH/BxgkscA0WaS5AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot.hexbin(x='Date', y='Time', gridsize=25)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we look at a hexbin plot of dates compared to the magnitude of reported earthquakes." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAADxCAYAAADbaUyMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcJFd17/k9EbnU0lW9t9TqhRaSkNiEljY7PBYvGHsA\nj3keGPsZbMZ6eLAN9vOMwZ/5PGzeMGPPxzZjxmN4MtiGsY3Nw9joYeyH2GwWSVgrSAJtLbV6U3d1\nd+2VW0Sc+SMisqIyIzNvZGVkVaXutz/ZlRl548a9N2784uaNc+4RVcVisVgsWx9nowtgsVgslsFg\nBd1isVhGBCvoFovFMiJYQbdYLJYRwQq6xWKxjAhW0C0Wi2VEsIJusVgsI4IVdIvFYhkRrKBbLBbL\niFDY6AJkZc+ePXrkyJGNLobFYtkC3HXXXedVde968pA9Y0o9MEu82Phvqvq69RxvPWw5QT9y5Ah3\n3nnnRhfDYrFsAUTk+LozqQfwon1mab90as+6j7cOtpygWywWy9AR2egSGDHSgq6qKOAYnow4vQBi\nuE+gmil9vBhanunzrLNto61b56zpt3obDQwBXCvoG4aq4qviRQtJCkrBERzSO4OqEgBeEHZKgKKA\nI507T6BKI5HeFaUg0jW9F4THAXCjMnVKr1F6P/rsxHXoll4VP1HnYo/0gUIjvkiAgsPIt1Frv8i7\njQqiuFnq3KONWuts1EaJfpFLG7XUudiljeI6N9bTRj3qnAtbQ89HS9BbO2NzO9AItO2CTOuMMQ1V\n0HbRau2MMb6Cr9p2QbZ2xmZ6wA+0rXO2XrAxAVAPtO2CbL1gk3WuB9p2QebRRq0X5Ci0UVLIW9sI\n1opWtzbyFDzVdbeRRuk7tZET1WE9bdSpX8RtlBwUxXWO2yNJs40Mr524jdbbL/JD7JTLMOnUGdvS\nsSpajrRf4GnEouUSdqxeu8QXpBOl7PVsPHlBmqSPL0ghrEev9PEFCYobHa9X+mQbBdq7zs0Lcou3\nkaA4glm/iETL3SRtFAC1DHWO2wgUxyB9sl+40vtag+FdO7kLu7BlDLxHQ9DBqIMl05tctEl6CWEr\nhkZOfadXel8grWSpw9Oxjfqq8yZro376RZZjZL3WIP86+4AoFPIcRNsRusVisYwIW0PPraBbLBZL\nV6yVi8VisYwQdsrFYrFYRoStoef5PrsVkXeLyP0i8oCIvCflexGRD4vIoyLyHRG5Ic/yWCwWS2ZC\nky+z1waTm6CLyPOAXwBeCLwA+HERubIl2Y8CV0Wvm4CP9HWsdZTTYrFsfYZhim702mDyHKE/G7hD\nVVdU1QP+GfjvW9K8EfikhtwO7BCR/VkPJCKUHcnXbMlisWw6XKDsCG6eii4CrmP22mDyLMH9wCtE\nZLeITACvBw61pDkAnEh8Phlty4yIUHAcK+wWy9MAV0IhL7rOcJYA2CIj9Nweiqrq90Tkd4EvAsvA\nvWT3MQBARG4inJLh8OHDvdJSEMFVxQ8Ur58DWiyWTYkApWGv4wJbxsol198IqvpxVb1RVV8JzAIP\ntyQ5xdpR+8FoW2s+N6vqUVU9unev2Vr1IoKzCR5SWCyWwdFt4bJcGeAIXURcEblHRD4ffb5cRO6I\njEP+RkRK0fZy9PnR6PsjvfLO28plX/T3MOH8+V+1JLkF+NnI2uXFwLyqnsmzTBaLxZKJwVu5vBv4\nXuLz7wIfUtUrCQe+74i2vwOYjbZ/KErXlbxn8f9WRB4E/ivwLlWdE5F3isg7o++/ABwDHgX+BPif\ncy6PxWKxZGdAI3QROQj8GPCx6LMArwE+EyX5BPCm6P0bo89E379Wevw8ydWxSFVfkbLto4n3Crwr\nzzJYLBbLuhmc6///DfyvwFT0eTcwF1kCwlrDkKbRiKp6IjIfpT/fKfONt7PJE8267pzFYtnMtK+m\nPgREzF+wR0TuTLxuWs1Gfhw4p6p35VXUkXT9N10f3WKxbC08BfWDzRyx6LyqHu3w3cuAN4jI64Ex\nYBr4Q0L/m0I0Sk8ahsRGIydFpABsBy50O/hIjdDDqC4BtcCKucUyqviEwTwaftCMM5o75iP0jqjq\n+1T1oKoeAd4CfEVVfxr4KvDmKNnbgM9F72+JPhN9/xXtUeGREPSkkGcNOGCxWLYmQxV2x/DVH78B\n/JqIPEo4R/7xaPvHgd3R9l8D3tsro5GYcukn0ozFYhkNco9YFJstDhBV/Rrwtej9McI1r1rTVIF/\nmyXfkRB0i8ViyZUt4qRoBd1isVh6sUVc/62gWywWSzc2ycJbJlhBt1gslq6Ym0hu9KM8K+gWi8XS\nAyvoQ2SL/BqyWCw5keczSwFcwwME+RXDiNEQdBHKDgQKDevub7E8bXBlCEvqivkIfaMZCUGHsMFd\nAUetsFsso85QhDyBFfQNIinsdj0Xi2W02JiIRRsUVKMPRk7QY0Qk9MS1I3WLZWTYqIhFW0TPR1fQ\nLRaLZRAIdsrFYrFYRgMBR7bGOoZW0C0Wi6UHdoS+GbDz5xbLSBFGLLJz6J3I9XeEiPyqiDwgIveL\nyKdEZKzl+7eLyIyI3Bu9/qdBHDdeH71u9dxiGSk8ZbiBLQBBcMTstdHkNkIXkQPArwDPUdWKiHya\nMErHn7ck/RtV/aVBHFNV8dQGubBYRhkf8APFQSkOyYRxq0y55D3TXwDGo3h4E8DpPA5iIxZZLE8/\nAsKIRfW8R+wCjiNGr67ZiIyJyLdF5L5o5uK3o+1/LiKPJ2Yqrou2i4h8WEQeFZHviMgNvYqa2whd\nVU+JyO8BTwIV4Iuq+sWUpD8pIq8EHgZ+VVVPtCaIImffBHD48OH2Y2EjFlksT1cCwus/r4hFAzRb\nrAGvUdUlESkC3xCRf4y++19U9TMt6X8UuCp6vQj4SPS3I7mN0EVkJ/BG4HLgMmBSRH6mJdl/BY6o\n6rXArcAn0vJS1ZtV9aiqHt27d29eRbZYLJZUJHJo6vXqhoYsRR+L0avbUPSNwCej/W4HdojI/m7H\nyHPK5QeBx1V1RlUbwGeBlyYTqOoFVa1FHz8G3JhjeSwWi6UPzMTcZBQvIq6I3AucA25V1Tuirz4Y\nTat8SETK0bYDQHLG4mS0rSN5CvqTwItFZELCmr4W+F4yQcvd5g2t31ssFsuGI5lG6HtE5M7E66Zk\nVqrqq+p1wEHghSLyPOB9wDXADwC7gN/ot6h5zqHfISKfAe4GPOAe4GYR+QBwp6reAvyKiLwh+v4i\n8Pa8ymOxWCz9kmEK/byqHu2VSFXnROSrwOtU9feizTUR+TPg16PPp4BDid0ORts6kqtjkaq+H3h/\ny+b/mPj+fYR3J4tlw0lOZm4NIzXLMBDAcdY/mSEie4FGJObjwA8Bvysi+1X1TDST8Sbg/miXW4Bf\nEpG/JnwYOq+qZ7odYyQ8Re3FZ1kPaU+l4m22b20N8oxYFOY/kAPsBz4hIi7hdPenVfXzIvKVSOwF\nuBd4Z5T+C8DrgUeBFeDneh1gNAQ9jlgENAJrv2gxw6SnWGHf3AwvYtH6s1HV7wDXp2x/TYf0Crwr\nyzFGQtAhCmwBOFbYLT3op2dszAoilk4MM2KR2AAXG0dS2G3EIotltHBgaO7+SWSL3M5HTtBjbMQi\ni2X0cDcsYpEVdIvFYhkJeq3Tslmwgm6xWCxdELEjdIvFYhkRBLEh6DYBdv7cYhkpNi5ikR2hbxg2\n0IXFspZRsaf3FAI/GLqliwzAU3QYjJSgWyG3mCBkt0XfqkLYWs9REPY4sIWDUnDyD/0mIjiOm+sx\nBsVICLqq4gWKv9EFsWwZYgnoJexbVfh61WtUhL0+pFB0dg59iChYMbf0RSdh36pCl/WXxyh4wOYd\nsQjrKWqxbC22xuVq2SjsCN1isVhGAWuHbrFYLKOBWDt0i8ViGR2slcvTmH4i32S1Oug3fZZ9sjCM\nOudN1jrknX5YbKbzsCnbSCT/CBoDItffESLyqyLygIjcLyKfEpGxlu/LIvI3IvKoiNwhIkf6Og6b\n4+Qr6Xa/3SwPWr/vN32nffopUxay5p9W3kGWpx/6rUNe6TeKjSzTetsob70VcYxe3fOQMRH5tojc\nF+nib0fbL4/079FID0vR9sz6mJugi8gB4FeAo6r6PMAF3tKS7B3ArKpeCXwI+N0+j0XJkdAWdT2F\n7hOTjjco4TY9Rj9lysJmK08/5F2HjaizsP4BzjDPw3rbqCBQHpJzkcmrBzXgNar6AuA64HUi8mJC\n3ftQpIOzhLoIfehj3jP9BWBcRArABHC65fs3Ap+I3n8GeK30+ThZRHA3QNj7sfvNsk8/F9copM9T\nUDZrmw66zoMQ9jxZTxvFQl5wnNwtUOKHousdoWvIUvSxGL0UeA2h/kGoh2+K3mfWx9wEXVVPAb8H\nPAmcIYxY/cWWZAeAE1F6D5gHdq/nuElhz8/RwJI3T8dTl1edR6ktXYYn5EkyCPoeEbkz8bppbT7i\nisi9wDngVuAxYC7SP4CThLoIfehjbg9FRWQn4R3mcmAO+C8i8jOq+hd95HUTcBPA4cOHTfexEYss\nlhHD2YiIRdnWcjmvqkc7famqPnCdiOwA/g64ZgAlbJLnlMsPAo+r6oyqNoDPAi9tSXMKOAQQTcts\nBy60ZqSqN6vqUVU9unfv3hyLbLFYLO0MaA69iarOAV8FXgLsiPQP4CChLoKhPibJU9CfBF4sIhPR\nvM9rge+1pLkFeFv0/s3AV1TtkNpisWwehIFZueyNRuaIyDjwQ4Sa+FVC/YNQDz8Xvc+sj7lNuajq\nHSLyGeBuwAPuAW4WkQ8Ad6rqLcDHgf9PRB4FLtJuBWOxWCwby+Bc//cDnxARl3Aw/WlV/byIPAj8\ntYj874Q6+fEofWZ9zNWxSFXfD7y/ZfN/THxfBf5tjgXILWuLxTJ8NiZikQwkwIWqfge4PmX7MeCF\nKdsz6+NIeoqqKo2W9dFH6Un/04GNuGw3ms1YZ9MyDcvD01NQPxhKYIsk1vV/A0gT8uZ30d9Bd4F+\not9sNrK2yTDqnPfyBFkZ1nkedD8dRJm7lSkt/6zps+IDfiKwxbCcirYCIyHo3YS8LW30d5CnxzT6\nTd601qlXedbTBv1G/MmzTJ1Yr5C3vt8Kwp5HGZNlMsk/a/qsJEPRlWzEImBUBJ3sEYvy+Hm7UcLe\nqR7DiMaT9RjDjBA0KCHv9N2whD1L2wzzZpNX+qwEhFMxxRwH0XaE/jRmWD/PTbvYMLpiP9M2m5Us\n7brRv8osw8Cuh26xWCyjgxV0i8Vi2fpINtf/DcUKusVisfRgmCaS6+FpLeh52dhuxnnV9dRhM6SH\nVT+xvK+tfvpFXsSe3pvloVzSV8+kSElP9c1Sh37YmEgL2TES9Ggtlp8GnqmqHxCRw8ClqvrtXEtn\nSLzucz8X2GazsR00g6jDRqaHUES05XO4vkaH9B3yycJGnufW5To02hbWOb3S+Zep87a0IqUtOZLn\nzckdQsSirYBpKf+YcFWwt0afF4H/N5cS9YGIUHbCNdDXY7erKe8HlX6QmAQuyKMOw0wPoWAEmr6f\nEn2na7cN+jwM8zyraqoQJssStKTJv0zpYt4pTa86mKYxpSAwlrNzURjgYrCrLeaF6ZTLi1T1BhG5\nB0BVZ+O4d5sFEcEFHCe0S20Euq4Re17p10Ne0wB51zlr+iDDDuHoNWqbHK+nYY/Ku6ZldcSe1/xT\nP3qbVaTXM2IvCrjDElEBR0broWgjWiFMIVwGklA3Nx2xsLuu4AUBjc04D5KRjb/vWzYlI9Axsgqy\nC2GIyaGOhgVnxKZcPkwYXWOfiHwQ+Abwf+RWqgGxVZ5MWwbA0/JUP/0qvRERi8IpTrN/G43RCF1V\n/1JE7iIMUiHAm1S1NViFxWKxjCQj8VBURHbFL8Kgpp8C/go4G22zWCyWkWcQD0VF5JCIfFVEHhSR\nB0Tk3dH23xKRUyJyb/R6fWKf94nIoyLykIj8SK9y9hqh38WqWe5hYDZ6v4MwxNzlvQ5gsVgsW5uB\nTad4wH9Q1btFZAq4S0Rujb77kKr+3pqjijyHMErRc4HLgC+JyLOiQNOpdB2hq+rlqvpM4EvAf6eq\ne1R1N/DjwBf7rtaQsOFJn0bYU/20oD/btfUhgCuu0asbqnpGVe+O3i8SxhM90GWXNwJ/rao1VX0c\neJSUyEZJTCeGXqyqX0gU7B+Bl3bbQUSuTvyEuFdEFkTkPS1pXiUi84k0/7FTfllQVep+QH2zXeSR\n/W14o8lmpmacMs7/aXYz20y1jZvf+BT0WfhMpo5xeYx20ZZXfmQddHkKNT8gGGb/FhlIkOi1WcoR\nwnB0d0SbfklEviMifyoiO6NtB4ATid1O0v0GYGy2eFpE/jfgL6LPPw2c7raDqj4EXBcV3gVOEVrK\ntPJ1Vf1xw3J0JUugi6Gi7eOKsD+a2xJ396bUVceOZPqcbZXzQiT7/WgzVDGrNyVrnKay+zqbWHu0\nlinqdh3s9rVDu/fy5SXxvXkd+rVWSQa2GEbEIshU1j0icmfi882qenNLXtuAvwXeo6oLIvIR4D8R\nNt5/An4f+Pl+ymkq6G8lDPYcC/K/sOo1asJrgcdU9XiGfYzZlEIeXRkm3pFZhLeZX7SPtm7vkH+Y\n/SZQPUPiovYS9g2vUgdP1rZksbCv7paCWeiMruex5cbeNVliUGEmwybC3rsOg+qHw4pYFJotGo++\nz6vq0Y55iRQJxfwvVfWzAKp6NvH9nwCfjz6eAg4ldj8YbeuIqdniReDdJmk78BZCC5k0XiIi9xGO\n+H9dVR/ImrmSPWJR3vTjTZk1Mk3mY6huKVGHzsK+WaqRj9dsuigajcgzlqe/fUx6a3sd8up7WyVi\nUbQm1seB76nqHyS271fVM9HHnwDuj97fAvyViPwB4UPRq4Cu62eZLs71VVLOu6q+xmDfEvAG4H0p\nX98NPENVlyJTnb+PCt2ax03ATQCHDx82KbJlxNgsAj5cwkpv7bqPRh0GZIf+MuDfAd8VkXujbb8J\nvFVEriPU2CeAfw+gqg+IyKeBBwktZN7VzcIFzKdcfj3xfgz4yegAJvwocHfyZ0WMqi4k3n9BRP5Y\nRPao6vmWdDcDNwMcPXp0Mz3/slgsI05o5bJ+QVfVb5D+0+YLKdvifT4IfND0GKZTLne1bPqmiJgu\nnftWOky3iMilwFlVVRF5IaHVzQXDfC0Wi2UISJY59A3FdMol6RXqADcC2w32mwR+iOgnRLTtnQCq\n+lHgzcAviogHVIC3qDUet1gsmwnZOgYFplMuSY9RD3gceEevnVR1Gdjdsu2jifd/BPyRaWE3iqxR\nV+w9aXMwKtFyVDfPHHRyJfYs3pObqQ79sFXWcjEV9GerajW5QUTKOZSnL9YTsagbWaOubFYhb5Z0\nK19RGRh2tJxhMKzwex2Pn7otalNDYc+zDrlHLNoEKymaYCro3wJuaNl2W8q2DUFEGHMFP7JHX6+s\nmghzUiDWK+T9iMyafVIcl2BVyCXFi2Rz3nrWR9bzNghaTkPndM3/zNJ3opcortluZCPfskPr8UzK\ntIHCXhTBzXlKRBBcZwQCXEQPLQ8A4yJyPatnfxqYyLlsmXFFcNcp7P1GXcnKQD04JbqUImHvJuRr\njs9oCHs/5yAPm/w0m/lukZRMnafSMBJFiQ5t6PyU7BX92bNnn4aB7JeBAIUhCPnaY47GlMuPAG8n\n9FD6g8T2RUL7yU1JU9iDTbieCzl2Qlm9nLbGD8TRJLNA9bHUQabjZJ6PzGMCs8ORMraVK+GofNgR\ni7bKVF1XQVfVTwCfEJGfVNW/HVKZBob0e6VscbZG19tYbBttTZwNENfwGd3W6DG9plx+RlX/Ajgi\nIr/W+n3SfdVisVhGEhkdK5fJ6O+2vAtisVgsm5PRmXL5z9Hf3x5OcSwWi2VzEbr+j4CVS4yI7AV+\nATiS3EdV+1qzd1hsVrvwvMm6cuPTEdtGWxPdoDM3jDXXB4GpHfrngK8ThqLbbCvVttHv+ujxDcC0\nyyRvF6anO9P65wn7cjMzxzBAQWyjYPQzMbF+tlHyNd6XzZKZpV/dqdsOmercPGd9mMAZmS5G5Yn7\nRFZP4Ux1iNP37E3aEqiidx3W0jv/ftE4aEuvfpHoeCb9KD4PDQU/8Cm5zhBFVnC2yO3fVNAnVPU3\nci3JAAhU8dYp5M1t0d+005juNdc5fVreCkgnYU+LcBRtT7+A10aaab7t6tWaUq4uopjWRs0ACWmO\nS1H6QNe2jUOHMmWsc1r+AE5GYe/oaBSVJ4iOEeNGgtWrTDEinc9z537XSRS1Yz/qVod2OvXWlhtR\nS9lM6VaH1hJp4r9UYU+pQwBU/QAHKLoObs7Cbnoj3wyYCvrnReT1ybiim4m+RuSJjtKt0ya7vpnX\n3Gp6k7zXXJAGx4hFziR9m7AjZnWORZHubaRr3uia7UHKDgr42iLsPcqymv3aVK1C3twe/e1X2JP5\npNXBj7a5snrekmVqz3f1109r+t7nTo37UfNgZLEi751qUMJuVn6z9DEBYXxRB/IdscvoTbm8G/hN\nEakBDaI+o6rTuZUsA0q2eSDtOHLpfoy80vf7A9d0v1VRXv1Rb0LQO8na/DuIbFp6X6MI5ZmmSFZv\ngr1oCnuGQ8T5m9Q7FnZTY7amsJOhQAynH5mwfmE3T5etl4bny1fNVXS3iqeoUSlVdUpVHVUdV9Xp\n6POmEHPL5mEYN8nMgpJxB9ObWJ/Z5yq6lnwQhILjGL265iNySES+KiIPisgDIvLuaPsuEblVRB6J\n/u6MtouIfFhEHhWR74hIz7WzTK1c0jKaB46rqmnkIovFYtmSDGgO3QP+g6reLSJTwF0icivh8ipf\nVtXfEZH3Au8FfoMw2ttV0etFwEeivx0xnXL5Y8KVFb8bfX4+YSDT7SLyi6r6xUzVslgsli1C+Mxn\n/YIeBYI+E71fFJHvES5++EbgVVGyTwBfIxT0NwKfjIL+3C4iO1oCSrdhOjF0GrheVW9U1RuB64Bj\nhNGI/q+sFbNYLJathEQLgvV6AXtE5M7E66YO+R0BrgfuAC5JiPRTwCXR+wPAicRuJ6NtHTEdoT9L\nVR+IP6jqgyJyjaoe2yrmPEmSD+/MbK9X35vaascPdrK0T5aHQZnLlHhnstBQ8sFx1jbKQtYHYFnz\njg1wsrVR9uNk8lswLE+/dDJKTE07pL5tStbyDAURHPO1XM6r6tHu2ck24G+B96jqQrIdo/jKfT9q\nMRX0B0TkI8BfR5//B+DBKGpRo9+DD4rYLrin+Ztqm7lb7IiTbnvdnmf39Npusqeaad3m5K6pNvDa\n/uBOupUp9RirZozt+Wtb/lnbyIRkVt0EqNVe3tjMMSJpxtitDoFBvibHNPFbULq36aDo1a6Z+pEq\nfsu5FlWcDH27a1lTLJgksoTqlb1ArrboYf6DsXIRkSKhmP+lqn422nw2nkoRkf3AuWj7KeBQYveD\n0baOmJby7cCjwHui17FoWwN4dYeCXy0i9yZeCyLynpY0mZ/idjgWY65D2Uk3LlJV/KC9Qza/J7Jr\njsVDO9s5p6dfzb+T7bIXaPbgGaw1CfRTLsJmeVrLhInwaVPcwwu2XczXHCNDG3UinI+M7LJbfUhY\nW99OZopNx56UMnYqT0Bo2uq31MHXcHs/9ehVhl7noLVN82Jd/Shy1vPSBjdE7ddH327mEfWjtBuq\nEp4br0MbCVByHMaG4DXqiBi9uiHhne/jwPdaVqq9BXhb9P5thJ758fafjXTyxcB8t/lzMByhq2oF\n+P3o1cpSh30eIpxrR0RcwjvL37Uky/wUtxuOCGVXCGJHo5QReTfikZMpStiZTfGjA2QasXe4+DqV\nR4lGWsYONRBkkLOsbRSz6l3ZO61pk8ZZZTE1jEWi3+G48ZRYhjyHMWLP2o8CVePzHAu7o4rjZPBz\nyHBtxufMBRyBouMMMWKRDGo99JcB/w74rojcG237TeB3gE+LyDuA48BPRd99AXg94WB6Bfi5Xgcw\nNVu8Cvg/gecAY/F2VX2mUTXgtcBjqnq8ZXvmp7gmxMLuBQEVv88rNycG9RN1K5H31IK5Z+T6j5Nn\n3lu9W2Qtfz/nzI2u7WFeQ8JgPEVV9Rt07kavTUmvwLuyHMN0yuXPCEfPHuEUyyeBv8hwnLcAn0rZ\nnvkpbha2irvuoHl61trydMBxNmZANIgpl6GU0zDduKp+GRBVPa6qvwX8mMmOIlIC3gD8l/6KCCJy\nU2wGNDMz0282FovF0hfheou9XxuNqZVLTcIYTI+IyC8RzoebRjH6UeBuVT2b8p3RU1xVvRm4GeDo\n0aObaw7FYrGMNCKC28Otf7NgWsp3AxPArwA3Ek7sv63rHqu8lfTpFujjKa7FYrEMm60y5WJq5fKv\n0dslDJ60xojIJKE36b9PbHtnlOdH6eMpbhYCG7HIYhkpMhiVDYxBuf4Pg66CLiK3dPteVd/Q4/tl\nYHfLto8m3md+imtCbLbobcTZ70FoW20QKWeE0Oi/LB6nm+mmpLq6Rnde5y1LG/Wdf86EdTDr28lI\nU1na1AuUioYRi/IObJFkq1yvvUboLyG0QvkU4ZoDm7pWq/bn4WcRwSXd+3FQuCJND9FeF83qmtJi\nbHccBkYI35vUIav5m0hk9pfBJrgfM8FettaaUsdY1HtVJ83rdBAknWV0dWN4zF5OJH2UJQ979L49\neUXioAdG+0v0f3xjCvNIK0+7N3XHqFEJ4rlhkbURi4Yj7Jlc/zeUXoJ+KeGUyVuB/xH4B+BTyXVd\nNgOqSj0h5K3kIezJLtTa+dM8G+N0SdZcwK2ZJj9Gb5wuwr5eETARdkl5vy7RSuzfzUPVRNhbv+tH\nxJIj8Y5pVhOHx21p9IG3UdZzmviFM4ibWy9hF9L7ddqbViFvJU3Yk0LeSlLYyzl6i4Z9b1OPZZt0\nve2oqq+q/6SqbwNeTDjX/bXI0mXTEEYs6Z1ORHBlfaemm7BI/HAkkS7u8N1GH60XX6djxO7yrfk7\nMrgRnUiUn0F5en3XDSVyM8fsl0ecvhfNNumjTPFxTNPFUwzJ43YrUz9lyfoYKG6nQU+xxH17bb8z\n69eB0nFZjE57OkRh/gz6dhyxKDeEgQS4GAY9H4pGC3D9GOEo/QjwYdpd+LcU/XoWml6U/c63meff\nV/aZkIyKMtPZAAAgAElEQVSN1O8UQ570e577OY5pus33VCcb/fTtrHUe5JTTIJDBuf7nTq+Hop8E\nnkdojfLbqnr/UEplsVgsm4jNYJJoQq8R+s8Ay4R26L+SuDtH02o2rqjFYhl9ZBQeiqrq1qiFxWKx\n5MTI2KGPKrG1S9oT+m7p3QzpPQ0fLpr+VEs+AMsjckw/6QPNlt7X+KGqeZtmLT8Z9gmiOpiucBmX\nyclQJp9s/aKfOscPIE3wo31M6xAvk5uljXzFeOnasB9p5n6Es4mmOURwMywLvJGMhKA70auXFURr\nEIfYSqFT5487V5zeJ1zzudChM4dCrjRi5VFwUIqOmVtwMroOdDDVSlnjvVvkmLQoTVnSm7SRpwmT\n0ajOboc6xyK1xiqpyxrxq+nDHfxoe4HOohVEZqzN/qBQEA0tnDrVIZE+Ps/dypQMluKp4qIUnM75\nB7q2f/Y6B2vaSEFQCk4HM8Eo/3qw1rSwKJ2FOoiCsiTbyO3SRkHURnH7NxTcqG93bqO1psRi0KZx\neRq+4qCUXIPAEeQfsWirjNBHYkpFRBgrOIy5nSMWeUFAo4Mdemz2tOq9FnbehrbfJAKgrtAItLm0\ngKrSCAIqQULME+lrgVLzA2PTqtiUL47aA4kLKsVOPL74k5FjukVpypq+Uxs1goBaiv1/QNg+DT9Y\n00Z+FPkmzcS0NapTPLLzImFoxVOlHn0X7+OrUvUDqkH7efY0PA9eEDTTBxqWsZ6SPiAUrdYydYre\n4xPmX/eDtjb1UvpRfA7S69zeRgo0gvAVRHWO86/6Si1otxNvaLg9eZ4DDcvYSKmzH90UWtuo7kfn\nOaXO1ZQ6x22aVgevQ5t2utaqvlL10q8dAcqOw/gQIhbFpse9Xgb5/KmInBOR+xPbfktETiWiu70+\n8d37oohuD4nIj/TKfyRG6DGOCGMFaY7Q/KB7WLVWAiBIuTA6plXQIDDKPyC8WByUUodRTdo+qtkj\nx5jukDV9XCbfN69zENXZ1A4tDBFn7v7lRe2zGkyvV/pwHzE0povPs2S4GdeiOpua+IV1Nj9njehu\nb2pv3ggbyLjOftRGGLapTzg4cAzzj4XdtM4BUItG7OVoxF4aasSigU7//DnwR4QxJZJ8SFV/L7lB\nRJ5DGEviucBlwJdE5Fmq2npvXS3noEq5mXAkijHqSmbPUHNpC8maf6eftFuJvNs0KzqkY2wm+omD\nmpWs+eddnvD5hjDuOh2nt/IgnnIxefVCVf8FuGh46DcCf62qNVV9nNCx84XddhhJQY/Z6sJpsVjW\n4gxRyFcxm25ZZ7l+SUS+E03J7Iy2ZY7oNtKCbrFYLOslfOjqGL2APXF0teh1k8EhPgJcAVwHnAF+\nv9+yjtQcusVisQycDObHwHlVPZol+2Q0NxH5E+Dz0UejiG5J7AjdYrFYejCoOfQ0RGR/4uNPALEF\nzC3AW0SkLCKXA1cB3+6W10iP0E2folsslq2BH2joyTVEBrlYmIh8CngV4dTMSeD9wKtE5DrC58pP\nEEV4U9UHROTTwIOAB7yrm4ULjKig+xrafTcyRizqR/+zrqDnq+I2HYe695Lm+upK6nrpG8HaSDNm\n6ZXkuta96wxhm+b17Ct5nk3rsJre3PNXmn6evfOPj2DqTdnv6pamTdrvUMj0GAmfqUyrVfqqLHs+\nZSe0dBkOg4sXqqpvTdn88S7pPwh80DT/XAVdRHYAHyNcsVGBn1fV2xLfvwr4HPB4tOmzqvqBfo8X\nC7mXEMxoFbHuQQsSXzpkM4OLIxaZ2ATHotaIPC/jgUaa5x/Q5rEpzXoZFm6AxJ58Sccj0c6jl3Zv\nx9AzMu5wHeuMWf5RlpmEJ3meteVNtzokj+Fodzf20E0//L7XAKEZvYdknbt75UJ2s9G4XBL11a5l\nSqRPfjbK3yCdtvxNO2Za3klv60Ch4gc4fhjYIm979Pih6FYg7xH6HwL/pKpvFpESMJGS5uuq+uPr\nOYiqUkkIeSudhL1T3447ZzdhT3af1ohIrfuEF+jabaHDylphb37XQahMRGiQrHpgktq2cfs0hZdV\nAUzzBg0U6i3C3vyOdI9Wjd40R/iknxdp2a/5Rrr/8lrbporI6o0ibbfV5RnWCntSyJtlit6uPb42\n8+9UZ59VYU87dhZabz7x+1Zh79XPu33fr5B3SiOJv92WzQiIhB0YL+TrLbpVXP9zE3QR2Q68Eng7\ngKrWgXoexwo6CE5KmRBWFyTqmZ52Ael2WluF3WTuLSnsYujLZ1KWQdDJTb+VpPAaeZBGwh6PrEzq\nHOdrUuekCGXxso1vTlnKU6T3wlZJYU9bNqBTeXz6O8dNQexaplVhNylPq7CbCjn043wX/vI1FeiA\ncDmBkpvjKH2L+LTk+TvicmAG+DMRuUdEPiYikynpXiIi94nIP4rIc3MsT5Osp0bI1oFFJHNYuCzT\nPMPCRMyT9ONButnqnLU8pqsUQtgf+pn3zsoAnFw65022a6Efsoj5MJCoPCavjSZPQS8ANwAfUdXr\nCQNlvLclzd3AM1T1BcD/A/x9WkYiclNsqD8zM5NjkS0Wi6UdMfy30eQp6CeBk6p6R/T5M4QC30RV\nF1R1KXr/BaAoIntaM1LVm1X1qKoe3bt3b45Ftlgslnae9iN0VX0KOCEiV0ebXktoT9lERC6V6Leh\niLwwKs+FvMpksVgsWcno+r+h5G3l8svAX0YWLseAnxORdwKo6keBNwO/KCIeUAHeokPwBuonGk9D\n1XhuL17cXzK4DGvif5OfbgqJOhjkn2hV0/RZbJ3DNg3CH56mbUQUnMQwfVwW02g8vgYEar7CZdY2\nCo+h2SJZBYHxaG5NlCmDYyTNLLO0kacBRXGNIxx5QUDRMbMqyfzMQMMHnK6Tb9CKrGyRgEX5Crqq\n3gu0rmvw0cT3f0S4NvC6cAQK0tvSJQ4IkCViUT0IorWhoQHNtZg7RePxowAF8QHiSDPZOn+6sHcy\n6+tuD56yX4/0sTmdK6vH6OSjFdY5wE8YpomCi9MlGo+uWsVEbVtwnFTRikXKaylAQTo/kPQ1oO4H\nBFGZGgoFcShI5zK1BaAwvFnG66s7hBGLOvWLmu9TC1aP4iAUXbdj+jTTVZd0G/hmG8V3pOhvMbpx\npNXZCwIqfgM/Wnu+ikfZcSk5hY4Ri2q+hxelrwVQFIeyW0ivA9nEPHkz9RS8aP3zois9hd2BnJ2M\nNsf8uAkj4SkqIkwU3DbHopg4KkqnDhaEiZrC3irka9KqUvX9NcLeFoYteWzCgATdQoil7bP2Xe/0\nrcLey+kmNulLpm+zi47MPMOXrhH2sM6rotmat0ewRtjXCHkKXiR2sbA38+lwJ/GiCiaFvVXI16YP\nR6JJYU8T8m5t1I1kAJNY2NOEfDV9KJChsDs44nQU8pi4f8XCHpcxrZ9CHNhCKYg0f6V4gR8Jefs+\ntcCnFviUHJdyJOyBBtR8vynka/MPaHj1NcK+HiFvJRnYIk3YHYbnWLQZ5sdNGAlBj3FbhL0RdBfy\nVgKg4ftGoeKawg5gMHcWC3s4mjCLZrMq5/EP797pY2E3JQ511wtpirtSD/yOItJanljYTUc4XpDF\n4jyKWBQo6TKelj7bFAOs2tibJI+F3Q88ozYKhd3HIcB1zBYpCb11zU+yp2G4wEbgGbVSPfCpBz6O\noV9ELOzjbiGcRzZtV8MqJIW95AoFRygPM2JRhqnTjWakBD0mFvZGEDBf77qWTRumcT9jNOOPsSx2\ny5sRETESqmFiGn4uZhitn7WN8u4TAWp4y1slu02+uZj3QwAURJgsDHl1LswHJBvNSAp6zFZx1+3N\nqNTDYumfjZr6EATX2XgLFhNGWtAtFotlEGyVwaEVdIvFYumCfShqsVgsI8TWkPMRD0G32R7e9Uu2\nR379HcHSi6dfG222fheasQYbFIlMDF89chH5UxE5JyL3J7btEpFbReSR6O/OaLuIyIdF5FER+Y6I\n3NA555CRFPRGEHCx2uBizcNXNeoAGqXzA7/5vsceoQdp0CBQk04Wp/fxDTtl6JXn4wVB6IDTKzhB\nXIeMdY4vkp7BD6I0QpzWrM6e7xu2EQQa0PA9vMBvOh31LBNqnH9sP1/160b7xB6wy17N7BhRG6ma\ntWncRvXAy9xGjWifXvga4AU+Vc+sr8Z1rvuNcKnpHuc5TK8s1ivG+cfXQpCxry55ATPVBlV/uMI+\nwLVc/hx4Xcu29wJfVtWrgC+zuojhjxLGEb0KuAn4SK/MR2rKpREELNR96glnlCBymHFI9wiNO8WS\nV2WxUSWIDBHH3RLjbhna9gnXUq8FDZa8StPTbsItM1WcSHF9D9MHGlALPAIC8KHkuEy4xVRPviC6\noBYaVaq+B4TptxfHKThum3NSXId6oE2zSwFKjqS6vcfpV/wGVd+LrNyFcbdA2S201TlOX/UbVLxG\n0/ytIG5YHomPuLbOjcCjEgknQNkpMlEop7ZREKWfrS9RCxoAjLtldpa24UroeNNaB0Wp+nUaGraR\ng0PJKeCkeITGwnSxtsRiYwUFSk6BveVpthXH29o0iG5Y56uLzNQW8COnpEvGtrN7bFtbHeI2qvkN\nVvxa82ZUdAqUnWJbm8Zt5KlPxa81+9GYU2KyOI6TsoRCoAGNwOdCbYGKX4/aqMTu8jQFp72NfA3w\ng4Anl89zobbUTH/ZxA4mCqXUOijKfH2FZa8aeQs77ChOMlFovxZiD9WF+gpzjeVwGYQVh31jU+wZ\nmwLWilyyHy151Wadx90S2wpjqctGpEVp8hRmax6uwHSpQNnJb7lgWF1pcRCo6r+IyJGWzW8kjDMK\n8Anga8BvRNs/GS2HcruI7BCR/ap6plP+IyHogSqzNW+NkLenWSvsEI4vlxNCTnO7suLXqPg1xtwy\nE5GwA9T8Okv+ameMWfFrrPg1xt0y05Gwh8cNqAWNNhvg2Hmj6LhMRsKuUfr5epVa4LWln6ktUXJc\npovjlBJOKEkhX60D1IJwNB0Le7y9khDytXVuUPEbjLlFxtzVrlH1G6x4jbaRmqc+nu83hT2mVcib\nbRc0qNUba4RdaRfymIpfo1KpMeaW2FWawhUHQQhQqn4NryVebkBANajjIJScYuh9GQnnxfoiC41K\nS5t6nKpcpFhz2VfezrbiOPFEw/nqAjO1hTW/EjwNOFWZ5anqPJeMTTdFS4iE3Ku1nedGEI6kk8IO\n4AUelaDe1o+qQZ1qrU7ZKbGtONbsR61CvtpGdU6unGfcLbGrPEXRcaOpCZ8nly9wMRLyZPrHFs8x\n5ha5bGIHk4Uy8ao9SSGP8TXgQn2RucYy24sTTBbGmt/P15eZa6ysaSNfA85U5jlXXWRvJOyxHLYK\nebJMFb++RthXz2k6oYdsKOyOwK5ykWJe7v+Sq3k9wCUJkX4KuCR6fwA4kUh3Mto22oLuBWocEDrQ\n0HloyauEP7u7/JwMxa9G1a9RcAo0Aq+tM7ZSiW4E24thLI9ezhyNwGcu8KNIOdom5K3UA5/ztSXG\n3RITbrlnUIlY2FV9lIBa0N3RalXwGxQch7rv9/zJHQu7akBDe0+VxMIe1sej3qPOVb/O6coFpgrj\nlN1im5C3EqBUgzqNwKfmeyx51a7pG4HPqcpFClWHMbfMfH2563nzNeB0ZY6z1QWOTO4Opw56nudQ\n2B2RcMmEHv2oFtSp1eqgQkN9qn73YF8Vv86plQsIQiMImK0vd01f9RscW5xh0i2xozzRdqNoxdeA\ni/Ul5urLlNwSyy2DoLT0T1XmOVdd4NDELurq9ewXsbDvKm3DETPnISX0nK35AUVDT9v+MFb0PSJy\nZ+Lzzap6s+nOqqoiWXy91zISgt4PK37NOK1CzwuqlUbgGbtyQyhsWTz5PA2iFR3N3dd7iXlber+7\n0LZSD7wMNQjbNG2NkG75Z3Hw8DVguYeYJ2kEPhV/qXfCRP5Vv5Hp536vm1crFb+WqY1WvBrLnnlf\nrQUeK17NuA6+Biy2/NLpRqDKil/PZPYXqG661Q0zTLmcV9XWBQl7cTaeShGR/cC5aPsp4FAi3cFo\nW0dG8qGoxWKxDJLB2Lh05BbgbdH7twGfS2z/2cja5cXAfLf5c3gaj9AtFovFlEE9dBWRTxE+AN0j\nIieB9wO/A3xaRN4BHAd+Kkr+BeD1wKPACvBzvfK3gm6xWCxdCEffA7NyeWuHr16bklaBd2XJ/2k5\n5eJHkXWykHUtBy/w8Q3nrPuxp1WURuAZ7xvbB2c5VtYu7ERWKCYomjkOY1hn37gOqkohQ1iwOBqP\naf4O4Rrs5udAqfkNvAz9IotzT+gjIGssjkzKVInszU3wgoAVr906pxMCRrbpMarKslej5jd6Jx4a\noVmkyWujGYkRetERyo5Q7WHp4gc+K34tfLgWBRTQHsuKxgLlOA5OlL5XZxagoR4N38PxhZJbCk3u\nUiPNhE4ZIoJL70AQ4boSDqhSo0HNb1CSYsdIM74GNPwGfsIeJr7wO3XAeKtEbQS9rXUgtLmOy98I\n0q1jktuKToFClL4e+B3bVSJ75gClFjSoE9qQF1LWNI8jKMUPmcuFIiUN8290ENKwjVaDOPgKbrTC\nXlobOQiThSJlt4hPgK8BjgqupEcgCkWzvsaSpCAOY24xVXxjp5tGZM3jiITRnTqcg9ge3FfFdVwm\nxEHd8KFzvUOdm/ugeF7Aitdg3C0yXiim1qER+CzWa1QDDwGWvTpjboGJQik1lqYA426RsltAUTz1\nEZXU6yAuj6fhOagGDRa9FYpOge3FScbcUmod4uMUHGHMzXdsuvFSbcZICLqIsHOsiBcoiw2Pakvo\nIC8S8kaLhUEYtEGQFGGPhTzZ+ZrpI7vdVuuDtJMe20w7rAo7rDq6pNVFUoQ9FvJ2Jx6oa4O636Ak\nBUpOMRG9pxE6MqWgaJuwp5U//s7R1fp0Iy5/yZE1wt7pFhWnL0fpk8IeC3mbaBNaZ9TxKEqhaa6W\nFPLWY5TdAiXHXSPsYRt5qWvg+4Rew0lhd0SYdEuU3fabZ4ASqLdG2ANVKl6NStBoa1tPA5a8Gq44\njEfC3irkayux+isxHk0nhby9TWGiUGJMQxPFeuLXXKuPb/y+0vRDCIXaEVkj5K3pq75H1fcYcwpM\nFEtNP4EJt0AppY1WhR3c6GacFPK1aUOLoPO1eQrisqO0jXLUt6PmoOAI00WXcs5iHh5va0h6roIu\nIjuAjwHPIzxHP6+qtyW+F+APCSf+V4C3q+rd/R6v4Ag7y6vCXvEClrxKT1OxVmFXuj8ECb8TCoQh\nukx+FsfC7uJQdIs90yeFPfw5B73GCXX1qPteONLveYQQJYwB2uvnYlLYTUbrSWFvBF4i5mj39GVH\norisvlGovrjOQu+FCGJhL4rDxdqKkTlgLOy7ShOMF4o9yxQLe93zqEWj2bisqfnHwo7gGJpkxjeL\n3msVCY6Ewl4OXOYb1a5tlBTqFa/RLF+vo1QDj2rN47LxabYVy0bnzVOfIOg03FibtqF+U9j3lrcz\nViiwvehSGoKQbzXyHqH/IfBPqvpmESkBEy3fJ9cqeBHhWgUvWu9BY2Efcz1m6+Z2vyKmwd4S6TPO\nf0uGOd34GFnn5vr2SjBARMxjh0Xps9jXh20a5FpnX3tPm7ViIuZJ4kGEcbky1tdPiVPajSwL1cUp\ns9i/A0ZiniRL7vFNoOD47B0bz1Su9dKc5twC5FZKEdkOvBL4OICq1lV1riVZc60CVb0d2BEZ1g+E\nXtHCN4LNV6L8eTrWOSu2jXoTPvDdGGHN2Q59YOTZOpcDM8Cficg9IvIxEZlsSdNprYI1iMhNInKn\niNw5MzOTX4ktFoulFRHz1waTp6AXgBuAj6jq9cAyq8tCZkJVb1bVo6p6dO/evYMso8VisfTEjtDD\n0fZJVb0j+vwZQoFPknmtAovFYhk2Yvhvo8lN0FX1KeCEiFwdbXot8GBLssxrFWSh5mdbLGoY9FOe\nrA9e8480k41+3KbyZnO10HDKs9nqnBVFw2WchxjYAuKHogMLcJEreVu5/DLwl5GFyzHg50TknQCq\n+lH6WKvAhIrn8VRlmWUvm7dZ6JTipwZISEsboCw1apTdAq5I9yfhGq5ZvuwvM1EYo+QUeq4c6AcB\nNT9cS32iUE61yU4SaBjZqBH4jLul8Gdgj/QKLDUaTJXSAk+0VSIMyhD4oT29dLfPjaMnzdVWQnNB\nx+1a59gpaKFeQYHxQqmn12Mc9MEPlLFCoac1gh+EjkDLjSrjka11tx/LcUSdJ5cucGByZ3Thdq9D\nuMZ7gES24z1NHTX0vgzt0dsDVbQcAE8DlhthUIwxgzbyg4Ag8Kk0apQLxZ5tFEQreS7VK0wUyz3b\nSKN+9/DcaZ45fQmOOD3Ps6Is1auMRY5MJlYkCpytLjHXqHJ4YpodpbEhemduvFibkKugq+q9QOtS\nkh9NfJ95rYJurHgNzlZWomAM5qiG65DXg9X9Sk4h8r6E5MmMhfx8ZYlji+fD5VOBfeNTHNm2C7el\nM8fpF+pVHls4x2IjXLZ339gU1+y4jDG32Nb5/SCg4tf5/vwZzlfD5Vx3lCa4ZselTBcn2oQ9iITw\nbGWBufpKs/z7x6eZ6hCNR1U5U5lnprpIQOgif9nEDvaOTaWIUCjkVb/Oil9v/gIoO0XGIy++1kg2\nviqnly9y94XjLDQqCHBo226u3XWQorM2IEYs5BerS3x75hjnKgsA7J/YwQ17L2dbsdwmWoEG1AOf\nk0uzzNXD5VwnCiUOTu5gW7HcHr0nCPDU5/6LJzm+eAFFKbtFnrFtD7vHtoVOO2vaKBSpJxfP8+TS\neXwNKDsFnrfrINfsvKxNhGIhv1hb5mxlIRR0YKo4xq6xiY4RiBbrVU4uz1GNXN13lyc5PLWLouOu\nrUMk5Av1Cneff6LZRnvHprl292G2FcciC5DVY/hB6Gj18NwZzlbmARhzSxzatpttpbG2NorrfHxx\nhrMrcyhKySlwcNtudo1NtQl7nP6J+dM8Nn+SRuBRdovcuPcqbtx3Fa7ImiWkYyE/X1ni+NJs005/\n7/gUh7bt7D0oIl7K2uPRxVmKjsPhye3sHIKwbw05Bxn2z5f1cvToUb3zzjvXbPNVOb40T8UznGLR\n1UmJViFvJYw0U2g6HM1UFjm2eD51rXAB9o5NcfnUruYIdr5W4bGFGZa89PXX94xN8ewd+xmLRtQr\nfo3vzz3VDBnWynRxnGt27GdHaQKROJDAAvP19DWqS47LJWPb2V4aJ47ec6Yyx0x1KXVqpiAO+8e3\ns298ujkrGLutd5rKKTtFxtxSU9ROLl/gngvHWWykr0V+aHIX1+4+1Iy6dL6yyLdnjnG+upia/pLx\n7dy49whTpXHCAA4+J5ZnO9Z53C1yaNtOthXLzfVZ7r94kieXLqTWoeQUeMa2PewZn0KjQCPHF89z\nIhLytPTP3XWAZ+88EAk1XKyu8FRlIdV2uyns5YlIeMIb/Mnl2Y5rzu8qT/KMqV0UxEUJf+Xcff6J\njm20Z2yK5+86zHQpvIHXfI+H5880hb+VMbfIwW27mSqNo4TifHxxhnMr86ltVHRcDkzGbRSmODZ/\nkmPzp1LXpik5BW7YeyU/cMmzcMTBEeFcZYknly6mLkcgwJ6xbRzetgvXcYynLxyEouPwrOndTBTa\nHfZE5K4+1idfw7U33KCf//o3jdI+Y9vEuo+3HkZC0Fe8Bo8vzpt7R0Zra6S6WHfg1NI8F2vLPSMK\nxewsjbHi1Y2DDewqhxads9EIuxd7x6bYOz7VHPH3Il47ZK5eMZpjd8Xhqqm9NLR3xKKYh2af4vTK\nbMebVyt7ypMs1Csdb16tXDF9CTvHpjreKNpRfN/j1MqsUQ2K4jJRKDNTnTdarKrouLz00qtZapgH\noXCBJa9mHDxECJirrRi30b7xaSYL5eYvu14UHZeyW+BCddGojVwRHHzOLl/sGTkqzv8HD7+IxUat\n41o6rbxg90HGU8S5G4cnptk/MdW2fTCCfqP+g6GgH942vqGCPhJruUA4l5vlYWAWMQeYqS5m8py7\nUO0exqyVi7XlTD8bl7waY40ipj8Gw2g85s8U/CgWapYynVi+2DOUWZKTyxeNL3KA2doKBYNlE2JW\nvDoXDYUKQu/OxYp5NJ5G4HOxtpLpYdhcvZLJS/VcZTFThKDZ2jLVDM+Oan6DpR5LAiRpBD7nV8x9\nQRqBz7nKYsYVILN5qA6DrTLlMjKCbrFYLHnQy7hgM2EF3WKxWHowKBtzEXkCWAR8wFPVoyKyC/gb\n4AjwBPBTqjrbT/5bY8UZi8ViGR1erarXJeba3wt8WVWvAr5Mnx71MEKCnmX+fLFe5fGFGSqGDyxX\nvBpnV2apGD7s8wKPE4tnmK3OGTlBBBpwYuEkJxdOGc0fqirHzj7M7Y99i7phHc4uz3DvU/dTMZyP\nXaqvcMdTDzLbwaqilfnKAvceu42ZudNG6RtenYefvI/TM4+btVEQ8PDJ+7nnsX/FM3igqKqcOP84\nD524h4ZhG83MPcV9D9/OcsWsztX6Mnc+cQcXls8bpV+pLXP7Q//CkzOPG6X3A48TFx7jwuIZ4zZ6\n5JHvcs93b8fzzB66njjzOHfd/02qNbN+ceHsGR647TaWF+aN0tcbVe47/m0uLJ7rnRioe3X+5Yk7\n+P7MY0N3IOpGzq7/bwQ+Eb3/BPCmvsu5mRrNhDQrl0CVU8tLLDRqXWV9oV7h/tmTnK0sNN3m9o5P\nccX2fUwU2qOiLDdqfOfCcR5bONc01ZoolNk3sZOJQrktvRd4nFg4zYnF1dULym6Zy7cfYufYjlQ7\n5BMLJ3n44qME0cNB1ylw9e6rODh9oM0mV1V5YuYRbn/4q6zUlqK5PYdXPuvVvOSKl1EujrWV6czS\nWW47eSczKxeiC0S4Zs+VXH/p85kotq5mDIv1Zb534TFORyIlwBXTl/GyA89n99h0W/q5lXk+e+8t\nfPn7Xw3bSGDX1D6uv+oVXLLzYFv6hlfnwSfu4r5jdzQv2LHSBNde9VIO7H1mexsFPo+f/j73Pfwt\nPEQcyYMAABdQSURBVK+BCBTcIq+59ke44ZkvpOCunTUM2+hRvv69LzK/Mtus81UHr+PKQy+glHLe\nzl48zR33f4UzF0+upj/0XK67+qVMjrdbTlRqSzx59nucmz8ZXsTicHjnYV5yxSvYs619raHl6hL/\n/OCX+dZDX4dogeY90/t49bWv43BKnT3f4+Fz3+OB0/c2nb8KbpHDe69h99T+lDYKePTR73L7bbdS\nj4TZcVxe9uIf5gXPfzHFFosRVeX46cf452//IxfmzzfPw3XPeRE3PO9ljI+194uZp05x263/wInH\nHw3TCzzjmmt47stfzrbtO9rS1xtVzp4/xsX5p5r9dP/2A7zwyleyd+qStvQ1r8aDZ77L988+EJZf\nhL0Tu3jTc17Hs/de2XEO20GYKBS5cmonZbd9BnkQVi4vuOFG/W/fvK13QmD/RPk4kLzD36yqNyfK\n8zgwS9gR/rOq3iwic6q6I/pegNn4c1ZGQtBj6r7PueoK8/W1wj5XW+GB2ZOhE42uHcuHd1Zhz/gU\nV0zvZbJYZqlR5b7zx3l8cabpGMSafYSJQol94zuZKI7RCDxOzJ/kxNIZHNrXkXbFoeSWuHz7IXaN\n7SRAOTF/gkcuPkqgQZv5V8EJPR6v3nUVh7YfRBCOnX2IOx75GpX6Co0WS5KSWwKBV1z5Kl561csZ\nK45zevEpvnXyTi5UZvFaTC1dCS0OnrXrCm7Yfy2TpQkWaks8eOExnoqEP9lKDqHDx5HpS3j5Zdey\nZ3w7F5dn+dt7/p6vPfz10DOyxYKm4BbZMbmbG571Si7ddYh6o8YDT9zFd4+FS/u0pi+6RcqlcZ5/\n5Us5uO8KAg14/NSD3PfwbfiB1zbKLhfKOI7Lq5//w9x45YsoOAWOnXuYrz/4RRarC21tVHAKKHDV\ngRdw1aHrKBXHeOrCSW6//yucnT2D73tr6hw7xFxx8Dlcd/VLmZrYzkptkeNPPcj5hfBXSPLXlEgY\nqejAjoO89IpXsndqH0vVRb56/63c8ci3OtS5xK6p3bz62tdxZN+V+IHHw2cf5P4z94FCI1ib3nUK\nFJwCh/Zew57p/agqDz/8He64/Us06jXqLSaspWIZcYSXvvAHuf7al1IoFHn81CP887f/kdmFi21t\nWnSLKHDtNT/Ajde+nImxSc6ePsFtt36eU8cfD9sooReu6wLCoaufxfNe/gqmdu6kVq9w7vwxLi6c\nRVrbiNDR6JLt+3nhFa9k3/R+ao0qD5z5Lg+dC1cFae2rZbfEzvHt/MRzXsdz9z1rNdAKMFkocXhy\nO9uKXULUDV/Qux5PRA6o6ikR2QfcSuhNf0tSwEVkVlV39lPWkRL0mHrgM1NZ4WKtwjfPPsr5FCFv\nJRb2ql/jYm0pVchbcRDqfoW56iwCPc3RXHEIAp/lxhKgPYMFF8TFa9S4eO44Da/eJlKtlNwiIi6H\nDz2HmnptF0daeUDYP32Qhvodw+LFCGFMyNlzT/DIqQdBtS2sX1sd3CJFt8xKbQWhXdRaKbpFEBfP\na6BB0DN9qVDCdVx2bZ+mbtBGBacQeuJWA5YqS/h+d6/iUNiFZx6+AnHC89ttWiwWraDmc+biGSRF\nmNvq4JbYuXMPk1NTkeNU9/QFp8DKwjLHvvMwvue1CXlb/sUSKjC2Y4pavdpzmq7gFtBA2bZYYHlu\nDt/rHozccRzEcXjmy59HcXupTcg71WF6chcNQo/aXjbtZbfE9rFpfvnFb+PI9ks5PDnNZMqv6lYG\nJehf/ObtRmkvnSgZH09EfgtYAn4BeJWqnoniQXxNVa/uunMHRtLKpeS4HJicouQI56tLqTEjWwnj\nLCoz1XTPujQClIXavLHdrK8BVW+lp9DGeOqztDxLtb5idIy636BULrLsVYzWZvY1QMSh4teNzLLi\nmJAPnXoA39AxxvMb1Op14zZq+A0Cv2Yckafu1SkVC6zUlo2eo3iBR6PhsbC8ZOQ85Ad+FHWpgahh\nGwUeT104jW9oY1/360hBzPtF4HH+7DkqlWWz/Bt1cAW/smR0Hjzfg7rP/Pk5o+hUQRBAEOBOuahB\nyDoI61Dxa4hhwIqaX2e+Os9K5QLPPvw8o30GxaCWOo/iQTiquhi9/2HgA4SLFL4N+J3o7+f6PcZI\nCnpMMXIh9nP9EZL1TG8Ne9ZBEnm7Z9mjj2NkCweYNZRe3gxj6dXMPTXnJspq2+2IkzpPvoW4BPi7\nqN4F4K9U9Z9E5F+BT4vIO4DjwE/1e4At3ToWi8UyDAZxu1XVY8ALUrZfIFxefN1YQbdYLJYebJXf\n1VbQLRaLpQdbxPN/tAXdCzB68LU+8o8mlHUfRfOdk81YhaznoK82yrigU979ImsdhrEgVebzkPOl\no6qZ5tG9wGeuVsm832DYGoo+Mp6iSbxAWWx4uE6R5+86EAad6LFwfkEcCuLwgl2HKTthdJ1uuAgF\ncXje7iuZLk1Q7rEKYGwWOV3ezlihPbhAKqqMjU1RKJSNYhYKQr1eobqyiGrQswu64kamiOFfp2f+\noaPPnt0HEINgBHEgjonxSQpucU2wg075iwhj5TFKpfYgFZ2OoYESX3C92sgRh1KpxPS26ch2vPsx\n4uAjKyvLqGrPNnIiU9A9uy/FdQs96xy3UbVaicrfG1Vles92yuNlI2FzXZdSqcTktgmj81YoFChM\njrHryGU4rovb40Gk67qIKyw8NWvWRtH3XqMK2nvw4YhQcAoc2fkMimO7uPX0Y5xaXhiqJ2nOnqID\nY6RG6F6gVHy/adUiIvyb/VfzA3sv586ZJ/juxZMousaMsRCFm7t+92Fu2HOYsluk7nvcdu4Rvnzq\nwWZknBhXwu547e5n8OrLnsv20gR+EHDnzEP8/bFvsOLVqCVsp+POOlGcYOf4bspuGVVlsb7AmYUT\nVP1q++hMlSDwqVYW8f0GE1M78b0G9coS9UaN0GhE1xxD0chMTrkw8ySuW2THzv2MTU7hiLNmvBg7\nFu3ddhk7J/fhiBOGQasvsdJYQmTtaE4Izffm589yfu4UQeAxPb2Teq1GtbaCIGvq4IiDqjI+McXk\n1E4KhSKqysrKEvOzM/iBH5q6JdtIYKw8zrbpHZRKoTdntbLC3OxF6vVaWxtJFA1nfLxEsVBoWrnE\nZW1dTtkRB0QYn9xOqTzBThH2NRpcvHCOi3MXccRZY2boOmEdtk2MMzExjiMB1coixWIZt1AKfQpa\n8g9UKZUnKI1P4jguu/cdYG52hplzp9AgWJO/IxJ6Ho9vY9v2HRSLxaY3crwcb6tcqSpevc7F2fPU\n6zWmDm6nUWlQvbBCvVpvEzjXdSmWS1x6+X6mdm2Pbhw1Zs6cY25uPrIXT1wLhQKO43Lkqmdx6YFD\nOI5DbaXCybsf5NSDj+KIrFlSwC24BKpsO7yTyYPTOAWXpaUFyqUyxeiG3HoOAg0QJxxgqSr12gqO\nW6BQKIXnMFH+MDCGw5W7L+dVz3wFe7ftAaDiN7jn4mkemHN5zo59HJiY3jKrIeZNro5FaSuLtXz/\nKkKby3hxi8+q6ge65ZnmWKSqLHl+T/PEilfnrvPHue/CiaaI3LjnGVy3+3CqOVQj8Lj97GN86dQD\n+FG4rev3HOHf7H8O06XxtvSBBtw98wh/99g3WGis4AU+k8VJdo7vouS2u5yrKkv1RU4vnqDSWAlj\nMyaEPA3fa1CvLlNPROsJutg7h8J+CWOT23GdAoLD3qnL2DmxN3WkFmhApbHEcn0pihUZMDf/FBfm\nTqUeJ7woQ2GH0M5tcnKaiakdFFKCFKgqlZUl5mbPN70zx8rjTE3voFhqbyOAarXC/OwFqrUwsEXB\ndRkfK1MouKkX8hphF8ERl7HJaUrNiEFraTQaXLwww8W5C9ENWJnaNsHE+HjHtc5jYY9vluPjkxTH\nQiFvL0/A3Ox5zp09yf/f3rkGV1Wee/z3rstea1+SkJCESyBAAJGAtJAAWhE7tbZ40KmntdgzdTod\ndZSxHWc603bOp86c871zaj22Z3COOu0H8aitp85R8VJbxQKBcNFELoIESOQSyHWHfV3rOR/2BnPZ\nJCuQGBPe38ye3J6s9T5v1v7nXe96Lr7vISJEIzGKSgrP0SUMpS53UMqkU3R0nieTLpwUlEnmhT2R\nRhkKx3WYsWA2RaWFxS6VTNF+pp3Ozi4Mw8SyLBbcsITKWVUYBWLD04kkrfsO0tp8BCW5HIzieWVE\nq0owrMIr/lDIyd9p5YTaNCwYpi+uYZhYdi4D2FCKG8oXcXvNOsqj0684R6ZS2IbJzRVzKQkNLX0x\nFolFK+vq5K//2BXItsy1p27Horyg14tIwepFeUH/uYjcHfSYhQQ96+cEPShJL8OpeAfzYtMJBYhr\nzfgeH3a0UR2bTpE9VMgH44vw+6bX6cokc2n5Afjk7Eec7WnDD5iwk0z0kkrEhxXz/sSiZSxbuI7i\nSFmgrQxffPYf+xsXE92BziEiGIZNyAljWiPP6SVhV4bCHiZ1uz+9PZ1k0wmsAMcHMEwb141iBew5\nmU6l6LhwGtcJBV7xTa+sxrLdgiI4GBHh/LlWTMscVsj7E+/ppu9inEwmWIExC4toOEakJBrIB88D\nw3AoragM5EOyr48jjQ240yMYZrAd25KSUpQq/M+3EBuXbeSGysWURYJlvyugdloli4qHCv9YCfq7\nO4IJeqkzsYI+pbZcguKaNotLhhYIuhK2YbKsQKGpK2EoxfRwKRf9C4F/x1JWYDGH3GpmNDeZ4vsU\nuSXB9u7J3e7G+zoCH18pRTgShYDHz+2tR0Ysf9CfUCiEGqb/62AMw8BxwgR93GhZFpGwO6q9WTvk\nokbhczQaC1Qt8hLZbDawmAOEIg6xkqLAD2Ud16Fk2gwkoNjarkN0RtEok7iCizlAdemcwGL+RTFZ\nNnTG+6GoAG8qpRqVUo9cweYWpdQBpdTrSqll4zwejUajmbKM9wp9Xf/KYkqpQyLyXr+f7wXmiUhc\nKfVPwCvA4sEHyf8zeASgurp6nIes0Wg0/bnyvv+XjXFdoYtIW/7jOeDPwJpBP+8RkXj+89cAWylV\nXuA4W0SkXkTqKyqG1pvWaDQazTgKulIqqpQquvQ5ucpiTYNsZuYLuqOUWpMfT/CN5ynF6FcAo32g\nHXSv92oZ7fP1q3scP7p5Gu05xju2efSHH/9YaxntnI6zD1+2kt5BY9C/DGv48XyHzwC2K6UOAA3A\n/+Uri21WSm3O29wHNOVtfgv8QK7ir2kqCBmjm87h0z2GEjbUqP5od1TdSLkTJRQgmcY2TFZXraC2\nvAbXDI14jrDlUDN9HmvnfgUnXw98OCJ2mLBSLIwUYxsm1gjCHjJMHNPi3uV3EbXDuAW6/PTHNmwc\nM8TqyhuYHi4mPIJ9ruGHzaqZNzKveOaI9gpwrRArZt3IV2Ytwc0nWg1HxHaZFSmjbsYSQqaNpYaf\no7DlUBou5o5FX8O1HJwRopNcK0TEdqkvW0DMDuOOYG8bJiHDYt28VVRGykb0OVdZMMS6RfXcWFlD\npEA3qsFEbJeaktmsqFyMY4auGHJ52d5yKXeKWFVRQ8iwRpwj17QpcWJsXH4HYdsd8bpwrRBhy+Fr\ns2+ixImN6LNlmDimTXfvGVzTGjHpC/IBCE6EqsjQblrXI1OqwYUvQtLzSfuFfVKAYygc07iciJL0\nfFJXsKefvZG3T2R94lkvXz99KK6piFkWlpGzP9h1hldPfERXOjEgQUmRu4Dnx8rYWL2cubHcU/2m\n9mM8ueclms8fJ+1lBkQrhC2H2bFyHq/fxC1Vy1FK0dLZxn9sf463j+7A870BjQIidphYKMIv1j/I\nPUu/gWWY9KaTbGv7mO1njuVrd38eAxLKx/9+e04t62ctxjVtLmaSvNC0jS2NL+P53oC+qiHTRqG4\nr/abPFz3Xcoj08j6Hm+17OapvS8TTycG2JvKwDRMbpuzgs0r76W6eCYiws7PmvhNw1baetsH2CsU\njmmztHw+j6++nxWViwBoPnuUX29/lj1tTaS9zIDkmIjtMiM2nV+uf5hv1KxFKcVnvefZsv8V3mrZ\nje8P7BAVthzClsPmlf/M3YtuxTYtOhM9/Peel/jjvr/gI6T6NYQIWw5KGTxc/z1+vOpeYk6UlJfm\n1U938lzzG2R8j2S/Jhu2kcvC3TB/DT+qvZOK8DQ83+edlgaeaNhKZ7J3yBxZhsktVTfx09WbWFg6\nBxHhg5a9/Nubv+NIewsXM8kB11zYdllaWcOvvvUYt85fCcAnF07y24bn2dXaRMbPDkjMilgupeFi\nfnbzD7mjZg2GMmi/2MUfDr3Nmyf34g9qvuKaIUKmxY+X3snG+WsImTbdyThPN7zI07v+J/e+6+eD\na+UyWB9a/T0eXXs/08JFpL0Mrxx6l6caXiCZzZDIfu6DbVgYSnHX4lvZXP99ZhdVICKcScRp7jpL\n0ssO6WlgKEW5E6F2WmXB+PPL19AYhC2uqquX93cFC1uM2dbUjUMfD4J0LBos7IOFfDAiQsrzSfYT\n9v5CXsg+6fn0ZrzLIXFh0yBmmZgF7hREhMPdZ3n1RBMdqVwKeU1xBRurl1EVLdw68OD5Fv6z8SUO\nnPsEpRTVxTN4vH4Ta2bVFvThZNdpnvjgD7xx5H1Mw6DELeIX6x9i45LbC67g45kUb7Ud5O+nP8m3\nmFNsmLuM9TMXFYzNT2ZTvNj8Fv+150WyvocvPvcv/zYPrryXsnDJEHvP93nnxB6e2vsy3ak+PPH5\nevVKHv3qd5hTVFlwjnafPsgTu1+gpTvXFPmmyoU8Xr+JZRU1BefoUPtxfr39WXaeOoChDKqKK/nl\nbQ9x+4LVBefoTF8HT+//X974dCemMojaLo+t+i53LbwFyxjqc08yzjONf+K5vX8GcqvmR1Zv4oGV\n9xALDe27mfayvHZ8J880v0Hay+Ah3L3gZh5Y+s2C/Vh98Xm3pZHfNDzPhUQ3nvjcNver/KT++yyY\nNrugzztO7Off3/w9zWePAnDTrMX86s7HWFu9oqD9p52tPLlrKx+c2o+hDCqipfzs5gf4+vy6giGs\nFxI9/PHwO7zesvvyndSDtd9iw7zVBa+L3lQfz+75E7/bsTW/VSI8uvZ+Hl5zH8VubIh9xsvy6pH3\neHLX81zMpPDF454l63mk7j5mxobGkYsIZ5NxmjvPkch3l6pwotROq6B4GCG/xPUm6Ll040n0qqur\nk6B4vi9pzxPf9wPZ+74vqVHaJ7KeZEdhf7S7XT7r6wpkLyJy+MIJ2XfmcOAxtXadkb8d2yVZLxvI\nPp5Oyr7zpySVzQSyT2ZS8vaxXdKV6Alk7/me/KP1I2nrbQ9kLyKy/8wROXS+JbD9kfYW2XnyQOA5\nOhvvkPdO7pNMwDnqTcZl25Ht0pdOBLJPexl5v/VD6Qg4R77vy45TH0pL1+lA9iIijaeaZW/rx4Ht\nj3e2yY5TwefoQqJHtrc1BZ6jeOqivHboPelJxgPZZ7ysvHt8t5yLdwSy931fziXi0pNOBrK/BLBH\nrlFzVq6qk75MNtBrpPMBG4DDwFHgX691bINfU3KFrtFoNDB2K/TtuxoC2UZt84rnU0qZwBHgTqAV\n2A38i4h8fC3j68+UrLao0Wg0Y4b6vK/oSK8RWAMcFZFPRSQNbAW+M5ZD1YKu0Wg0wzCGYYtVwKl+\nX7fmvzdmTLpaLo2NjeeVUidG8SvVwMnxGs8XhPZh4pns44fr04d513rCvY2N28KWOSTh8Qq4Sqn+\ne8JbRGTLtY4hKJNO0EVkVKmiSqn2a91Dm2i0DxPPZB8/aB+uFhHZMEaHagPm9vt6Tv57Y8b1sOXS\nNdEDGAO0DxPPZB8/aB8mmt3AYqXUAqVUCPgB8JexPMGkW6FfBd0TPYAxQPsw8Uz28YP2YUIRkaxS\n6qfANnLJ6s+ISPNYnuN6EPQvbP9qHNE+TDyTffygfZhwJFeE8LXxOv6ki0PXaDQaTWGuhz10jUaj\nuS7Qgq7RaDRTBC3oGo1GM0XQgq7RaDRTBC3oGo1GM0XQgq7RaDRTBC3oGo1GM0X4f7EIZR8vY08o\nAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot.hexbin(x='Date', y='Magnitude', gridsize=20)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below is a histogram of the frequency of magnitudes. We can see a strong affinity for smaller earthquakes, which is good news :)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEzFJREFUeJzt3X+0ZWV93/H3R0aEoYafE2KAeMfK0mgayzhBjI0rdRJE\naRjbGEtXUkcXCc0KaTR2rTrarmBNaXEtG6JptaFAFthExQnVSSDqoMbV/uHAgCi/pEwEYUbQERDi\nj4CD3/5xnovX25m55xnuvudc7vu11ll37+d59j7f2XPW/dz94+ydqkKSpHE9bdIFSJKWF4NDktTF\n4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVKXVZMuYAjHHXdczczMTLoMSVpWbrjhhm9U\n1ZqFxj0lg2NmZoYdO3ZMugxJWlaSfGWccR6qkiR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5J\nUheDQ5LUxeCQJHV5Sn5z/Mma2Xz1QS9794VnLmIlkjR93OOQJHUxOCRJXQwOSVIXg0OS1MXgkCR1\nMTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUpdBgyPJ7ya5NcktST6Y5LAka5NsT7IzyYeTHNrG\nPqPN72z9M3PW87bWfkeSVw5ZsyTpwAYLjiQnAL8DrK+qnwIOAc4G3gVcVFXPBR4CzmmLnAM81Nov\nauNI8oK23AuBM4D3JTlkqLolSQc29KGqVcDhSVYBq4H7gFcAW1r/5cBr2vTGNk/r35Akrf1DVfVo\nVd0F7AROHbhuSdJ+DBYcVbUbeDdwD6PAeBi4AfhmVe1tw3YBJ7TpE4B727J72/hj57bvYxlJ0hIb\n8lDV0Yz2FtYCPw4cwehQ01Dvd26SHUl27NmzZ6i3kaQVb8hDVb8A3FVVe6rqe8BVwMuAo9qhK4AT\ngd1tejdwEkDrPxJ4YG77PpZ5QlVdXFXrq2r9mjVrhvj3SJIYNjjuAU5Lsrqdq9gA3AZ8BnhtG7MJ\n+Fib3trmaf2frqpq7We3q67WAicD1w1YtyTpAAZ7dGxVbU+yBbgR2At8HrgYuBr4UJL/2NoubYtc\nCnwgyU7gQUZXUlFVtya5klHo7AXOq6rHh6pbknRggz5zvKrOB86f1/xl9nFVVFX9HfAr+1nPBcAF\ni16gJKmb3xyXJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5J\nUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5J\nUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5J\nUheDQ5LUxeCQJHUxOCRJXQwOSVKXQYMjyVFJtiT5UpLbk7w0yTFJtiW5s/08uo1Nkvcm2Znki0nW\nzVnPpjb+ziSbhqxZknRgQ+9xvAf4eFU9H3gRcDuwGfhUVZ0MfKrNA7wKOLm9zgXeD5DkGOB84CXA\nqcD5s2EjSVp6gwVHkiOBlwOXAlTVY1X1TWAjcHkbdjnwmja9EbiiRj4HHJXkWcArgW1V9WBVPQRs\nA84Yqm5J0oENucexFtgD/EmSzye5JMkRwPFVdV8bcz9wfJs+Abh3zvK7Wtv+2n9IknOT7EiyY8+e\nPYv8T5EkzRoyOFYB64D3V9UpwLf5wWEpAKqqgFqMN6uqi6tqfVWtX7NmzWKsUpK0D0MGxy5gV1Vt\nb/NbGAXJ19ohKNrPr7f+3cBJc5Y/sbXtr12SNAGDBUdV3Q/cm+R5rWkDcBuwFZi9MmoT8LE2vRV4\nfbu66jTg4XZI6xPA6UmObifFT29tkqQJWDXw+v818KdJDgW+DLyRUVhdmeQc4CvA69rYa4BXAzuB\n77SxVNWDSX4fuL6Ne2dVPThw3ZKk/Rg0OKrqJmD9Pro27GNsAeftZz2XAZctbnWSpIPhN8clSV0M\nDklSF4NDktTF4JAkdTE4JEldxgqOJP9g6EIkScvDuHsc70tyXZLfajcvlCStUGMFR1X9HPCrjG79\ncUOSP0vyi4NWJkmaSmN/AbCq7kzy74EdwHuBU5IEeHtVXTVUgcvNzOarD3rZuy88cxErkaRhjHuO\n46eTXMToQUyvAH6pqn6yTV80YH2SpCkz7h7HHwGXMNq7+O5sY1V9te2FSJJWiHGD40zgu1X1OECS\npwGHVdV3quoDg1UnSZo6415VdS1w+Jz51a1NkrTCjBsch1XVt2Zn2vTqYUqSJE2zcYPj20nWzc4k\neTHw3QOMlyQ9RY17juPNwEeSfBUI8GPAPx+sKknS1BorOKrq+iTPB2YfA3tHVX1vuLIkSdOq5wmA\nPwPMtGXWJaGqrhikKknS1BorOJJ8APj7wE3A4625AINDklaYcfc41gMvaM8FlyStYONeVXULoxPi\nkqQVbtw9juOA25JcBzw621hVZw1SlSRpao0bHO8YsghJ0vIx7uW4n03ybODkqro2yWrgkGFLkyRN\no3Fvq/4bwBbgj1vTCcBHhypKkjS9xj05fh7wMuARGD3UCfjRoYqSJE2vcYPj0ap6bHYmySpG3+OQ\nJK0w4wbHZ5O8HTi8PWv8I8BfDFeWJGlajRscm4E9wM3AvwKuAXzynyStQONeVfV94H+0lyRpBRv3\nXlV3sY9zGlX1nEWvSJI01XruVTXrMOBXgGMWvxxJ0rQb6xxHVT0w57W7qv4QOHPg2iRJU2jcQ1Xr\n5sw+jdEeSM+zPCRJTxHj/vL/L3Om9wJ3A69b9GokSVNv3Kuq/vHQhUiSlodxD1W95UD9VfUHi1OO\nJGna9VxV9TPA1jb/S8B1wJ1DFCVJml7jBseJwLqq+luAJO8Arq6qXxuqMEnSdBr3liPHA4/NmX+s\ntS0oySFJPp/kL9v82iTbk+xM8uEkh7b2Z7T5na1/Zs463tba70jyyjFrliQNYNzguAK4Lsk72t7G\nduDyMZd9E3D7nPl3ARdV1XOBh4BzWvs5wEOt/aI2jiQvAM4GXgicAbwviQ+RkqQJGfcLgBcAb2T0\ni/4h4I1V9Z8WWi7JiYy+KHhJmw/wCkYPhYJR+LymTW/kB2G0BdjQxm8EPlRVj1bVXcBO4NRx6pYk\nLb5x9zgAVgOPVNV7gF1J1o6xzB8C/xb4fps/FvhmVe1t87sYPU2Q9vNegNb/cBv/RPs+lnlCknOT\n7EiyY8+ePR3/LElSj3EfHXs+8Fbgba3p6cD/XGCZfwJ8vapueFIVjqmqLq6q9VW1fs2aNUvxlpK0\nIo17VdU/BU4BbgSoqq8meeYCy7wMOCvJqxndGPFHgPcARyVZ1fYqTgR2t/G7gZMY7c2sAo4EHpjT\nPmvuMpKkJTbuoarHqqpot1ZPcsRCC1TV26rqxKqaYXRy+9NV9avAZ4DXtmGbgI+16a1tntb/6fae\nW4Gz21VXa4GTGX2HRJI0AeMGx5VJ/pjR3sJvANdy8A91eivwliQ7GZ3DuLS1Xwoc29rfwuipg1TV\nrcCVwG3Ax4Hzqurxg3xvSdKTNO69qt7dnjX+CPA84Peqatu4b1JVfw38dZv+Mvu4Kqqq/o7Rcz72\ntfwFwAXjvp8kaTgLBkf7zsS17UaHY4eFJOmpacFDVe2w0PeTHLkE9UiSpty4V1V9C7g5yTbg27ON\nVfU7g1QlSZpa4wbHVe0lSVrhDhgcSX6iqu6pqnHvSyVJeopbaI/jo8A6gCR/XlW/PHxJK9fM5qsP\netm7LzxzESuRpP1b6OR45kw/Z8hCJEnLw0LBUfuZliStUAsdqnpRkkcY7Xkc3qZp81VVPzJodZKk\nqXPA4KgqH5gkSfohPc/jkCTJ4JAk9TE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXg\nkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXg\nkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUpfBgiPJSUk+k+S2JLcmeVNrPybJtiR3tp9H\nt/YkeW+SnUm+mGTdnHVtauPvTLJpqJolSQtbNeC69wL/pqpuTPJM4IYk24A3AJ+qqguTbAY2A28F\nXgWc3F4vAd4PvCTJMcD5wHqg2nq2VtVDA9a+7Mxsvvqgl737wjMXsRJJT3WD7XFU1X1VdWOb/lvg\nduAEYCNweRt2OfCaNr0RuKJGPgccleRZwCuBbVX1YAuLbcAZQ9UtSTqwJTnHkWQGOAXYDhxfVfe1\nrvuB49v0CcC9cxbb1dr21y5JmoDBgyPJ3wP+HHhzVT0yt6+qitHhp8V4n3OT7EiyY8+ePYuxSknS\nPgwaHEmezig0/rSqrmrNX2uHoGg/v97adwMnzVn8xNa2v/YfUlUXV9X6qlq/Zs2axf2HSJKeMORV\nVQEuBW6vqj+Y07UVmL0yahPwsTntr29XV50GPNwOaX0COD3J0e0KrNNbmyRpAoa8quplwL8Ebk5y\nU2t7O3AhcGWSc4CvAK9rfdcArwZ2At8B3ghQVQ8m+X3g+jbunVX14IB1S5IOYLDgqKr/A2Q/3Rv2\nMb6A8/azrsuAyxavOknSwfKb45KkLgaHJKmLwSFJ6mJwSJK6GBySpC4GhySpi8EhSepicEiSuhgc\nkqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6mJwSJK6GBySpC4GhySpy5DPHNcKMbP56oNe\n9u4Lz1zESiQtBfc4JEldDA5JUheDQ5LUxeCQJHUxOCRJXbyqSk/qqihJK497HJKkLgaHJKmLh6o0\nUX55UFp+3OOQJHUxOCRJXQwOSVIXg0OS1MXgkCR18aoqLVtekSVNhnsckqQuBockqYuHqrQiPdn7\nc3moSyuZexySpC4GhySpy7IJjiRnJLkjyc4kmyddjyStVMviHEeSQ4D/BvwisAu4PsnWqrptspVp\npZrUM0w8t6JpsCyCAzgV2FlVXwZI8iFgI2BwaEUxsDQNlktwnADcO2d+F/CSCdUirThehaa5lktw\nLCjJucC5bfZbSe54Eqs7DvjGk69qcNa5uJZLnbB8aj0O+EbeNekyFrSstueA63/2OIOWS3DsBk6a\nM39ia3tCVV0MXLwYb5ZkR1WtX4x1Dck6F9dyqROWT63Wubimpc7lclXV9cDJSdYmORQ4G9g64Zok\naUVaFnscVbU3yW8DnwAOAS6rqlsnXJYkrUjLIjgAquoa4JolertFOeS1BKxzcS2XOmH51Gqdi2sq\n6kxVTboGSdIyslzOcUiSpsSKDY4kdye5OclNSXbso//nkzzc+m9K8nuTqLPVclSSLUm+lOT2JC+d\n158k7223Y/liknVTWufEt2mS5815/5uSPJLkzfPGTHx7jlnnxLfnnFp+N8mtSW5J8sEkh83rf0aS\nD7dtuj3JzJTW+YYke+Zs01+fUJ1vajXeOv//vfVP9jNaVSvyBdwNHHeA/p8H/nLSdbZaLgd+vU0f\nChw1r//VwF8BAU4Dtk9pnVOzTVs9hwD3A8+exu05Rp1TsT0ZfUH3LuDwNn8l8IZ5Y34L+O9t+mzg\nw1Na5xuA/zrh7flTwC3Aakbnoa8FnjtvzEQ/oyt2j2O5SHIk8HLgUoCqeqyqvjlv2Ebgihr5HHBU\nkmdNYZ3TZgPwN1X1lXntE9+e8+yvzmmyCjg8ySpGv/C+Oq9/I6M/LAC2ABuSZAnrm7VQndPgJxkF\nwXeqai/wWeCfzRsz0c/oSg6OAj6Z5Ib2rfN9eWmSLyT5qyQvXMri5lgL7AH+JMnnk1yS5Ih5Y/Z1\nS5YTlqrAZpw6YTq26ayzgQ/uo30atudc+6sTpmB7VtVu4N3APcB9wMNV9cl5w57Ypu2X4cPAsVNY\nJ8Avt8M/W5KctI/+od0C/FySY5OsZrR3Mb+OiX5GV3Jw/KOqWge8Cjgvycvn9d/I6NDAi4A/Aj66\n1AU2q4B1wPur6hTg28A03lZ+nDqnZZvSvkh6FvCRSdUwjgXqnIrtmeRoRn8BrwV+HDgiya9NopYD\nGbPOvwBmquqngW38YC9pyVTV7cC7gE8CHwduAh5f6joOZMUGR/vrg6r6OvC/GN2Bd27/I1X1rTZ9\nDfD0JMcteaGjvyR2VdX2Nr+F0S/ouRa8JcsSWLDOKdqmMPqD4caq+to++qZhe87ab51TtD1/Abir\nqvZU1feAq4CfnTfmiW3aDhMdCTywpFWOUWdVPVBVj7bZS4AXL3GNs3VcWlUvrqqXAw8B/3fekIl+\nRldkcCQ5IskzZ6eB0xntHs4d82Ozx2CTnMpoWy31B52quh+4N8nzWtMG/v/byW8FXt+utDiN0S74\nfdNW57Rs0+ZfsP/DPxPfnnPst84p2p73AKclWd3q2QDcPm/MVmBTm34t8OlqZ3mX0IJ1zjtPcNb8\n/qWS5Efbz59gdH7jz+YNmexndCnPxE/LC3gO8IX2uhX4d639N4HfbNO/3fq+AHwO+NkJ1vsPgR3A\nFxkdjjh6Xq1h9KCrvwFuBtZPaZ1TsU2BIxj9gj1yTts0bs+F6pyK7dlq+Q/Alxj9AfYB4BnAO4Gz\nWv9hjA637QSuA54zpXX+5znb9DPA8ydU5/9m9IfXF4AN0/YZ9ZvjkqQuK/JQlSTp4BkckqQuBock\nqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6vL/AAglPOo6EeQCAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.Magnitude.plot.hist(stacked=True, bins=20)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We all know that certain areas of the world experience a much higher frequency of earthquakes than the majority of the world. This can be seen by using a density graph below comparing density by Latitude/Longitude pair." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAADxCAYAAADFoHw/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXm8I2d55/t9qkrS2br79OnTm+1ud2M7AdvsjXGGTGBi\nwhaCuTcbkIXkkvHMXJhJJuQGsgzkkmFucnNvEpgQJk5wgGyEMEnwJGYIYf2wmNA2YbPBNMZ7t3vf\nziKpqp75o6p0Sjql0ls6Kh1J/X6N6KPSq3qXeutXpbeeRVQVi8VisUwuzmY3wGKxWCzlYoXeYrFY\nJhwr9BaLxTLhWKG3WCyWCccKvcVisUw4VugtFotlwrFCb7FYLBOOFXqLxWKZcKzQWywWy4TjbXYD\nirK4uKgHDhzY7GZYLJYx4K677jqpqjs3sg9ZnFIaoVnhC80Pq+qLNlJfGYyd0B84cIDDhw9vdjMs\nFssYICIPbngnjRCevcus7D8+urjh+kpg7ITeYrFYho7IZrdgQ0y00KsqCjiGBykpL4AYfKdoeYBQ\ntVD5JOhcmeXLHCMYzT4XLX8pjtG4nzsDQwDXCv3Ioar4qgRxYE5BqTjSddKqKqFCMzkZAM+JnlRn\nTSpVJQT8MJqsABUBR7pPwlCVZqq8K4onklveD6N6AFwUz+leXuPyQfzeicvn9TlQxR/iGHmiuEX6\n3GOMOvtsNEapeVHKGHX0uZIzRkmfmwXHqNkxLyoF50XP8gXPnfYx2vxzpxTGW+cny+pGVWmGIfVw\nbaICKNAIlXoQEqbCMkcnQVS+md4ONEOlEUaTOLkbSiZ1I2yfeBAJYD2M9pcO/RxqVG+jo3ygRPVm\nlG/E5dOPfwLi8kF7edVoWz11MgOEcZ8bGX1Oxsg3HKMg1K5jVC8wRn7c57wxautzlzHSeIw6+5yM\nUSNvjFINyhsjv8cYZfW5njUvkjEK1Whe+Dnzoh73oXNerPbqc6p8mBqjbvOi6LnTOUb9njumY9Rt\nXpSHREs3Jq9eexK5TUSOi8hXMz57vYioiCzG70VE3i4iR0TkyyLyjFTZV4vIN+PXq3vVOxF39J13\nIV3LEU1aUFxoOwG6lW+G0c9FR6I72l7TylfwVXGJTshe5QOFQBUnLtnr2X4ABKF5+UTMhKgfvcpr\nqrwj9BxTiMYIojutURijRMxM+5yMESiOQfnOeWE0RhoNTD99VoM2pedFkT5L3GeTc2FUx6j0O3xh\nkLfE7wZ+D3hvWxUi+4AXAA+lNr8YuCZ+PRt4J/BsEVkA3gwcIhqmu0TkdlU9063S0u7o865c8edd\nr1ZFCTETpDS9JnYajfdfpIqAYuVDep88GylvIhad5QuP6YiNUdE+J3UU2X8/867oGJU9L4qcC0kd\nhfZf9hhp8eNcmAHd0avqp4DTGR/9DvCLtHf9ZuC9GnEnMC8ie4EXAh9R1dOxuH8EyDXpLHPp5t09\nKk9frW4hulr1xzB+vVkslksXMXz1s2uRm4FHVfVLHR9dDjycev9IvK3b9q6UtnSjqp8SkQM5RVpX\nK+BOEZkXkb2qerSsNlksFkthilndLIpI2tHnVlW9teuuRWaAXyZatimNzVyj73ZVWif0InIL0V0/\n+/fvH0rjLBaLpYX5+v9JVT1UYM9XAQeBL8XPGK4A7haRG4BHgX2pslfE2x4Fntex/RN5lYyF1Y2q\n3qqqh1T10M6dG/JmtlgsluKUtHSjql9R1V2qekBVDxDd8D5DVY8BtwM/GT/PvBE4F694fBh4gYhs\nF5HtRL8GPpxXz2be0Xe7WlksmSSPYkzPp6LlL0XsGBkQmQ4NZlcif0F0N74oIo8Ab1bVd3Upfgfw\nEuAIsAz8NICqnhaRXwe+EJd7i6pmPeBtsZlCfzvwOhF5H5Hp0Ll+1+dFsA9kJ5jOQ9tLnIqWvxSZ\ntDEqvd0DqkBVX9nj8wOpvxV4bZdytwG3mdZbmtBnXbmACoCq/je6XK36wRGh5mBkS28ZH3odyk5x\nKlp+HEi3tVf/TPo1aWPkCuV7yYqAOxar3F0p0+qm15Wr69WqH0SEigieofOUZXQpeuj6LT8uYpbQ\n7YI2CIHvVn5Ux2goAp9mVAfCkInwjE3TJvgd7t8WyyQw5pqzIVzIjWdUGjZ65WgiIjhO5BZusXQy\n3qftcBjFMXI3Q+RhNAejABMr9BaLxTIQBmh1s1lYobdYLJZejLfOW6G3WCyWntjEIyPMUGJVWyyW\nYaGqw38wahiZcpSZSKE3jU9vmQyS63mRc1Ep79d4OhnGpjw4HBBljlG/NBXCMLQZpgoyUUJvBX68\nKWzrrdnvTc7/Ms7bVjal9o1RfZss+P04j4+qtg0t4UiaMb5gw4QIfWdeTMt4YSxAalY+T/AHf7pq\nq76sdrW2jYDgm3oQj4uktQS/R67ggTDejrGTIfQhxbPkWDaf0j1gU8u5Q7uD71Y21ahRuLuH/jxs\nR5GASIfdsiqw5pUjgl2qsXSh7NNznKfeeEvXkLFCb7FYLBOOXaO3WCyWCWYD+WBHBSv0FovFkov5\ng95RXcqzQm+AqrZsik0OePpgj/mNgMUyVEb13LFCPwKUlWFKVSOLntS+XRSH7AOfZ143SpN2MxnW\niTCs8TY1WUyXtaxno+dOmWMrRFEzTQhLbMdGmAihTzJMBar4A1ASVSXUbJPNIN7uquJIJPhFzOsu\n1ZN9EAKfvrZ2i26RFBmOD836BmU1a61Nl+rR785Gzx1PwC09w9T4H7uJEHqIDoQngqu6IcEPDB2v\nAiLRd1VxCpheXYqCX8ZdfHLetZyjOrYPG+loUDp8wLiLRFlsJOvVUAQ+xbgfw4kR+oS04Bf1llUt\n7l3bz/Ef7ykzWpTpENUPiSDISEaKGX9coDL05COblOxkgIy5Y293ogxT431wLOOMnXtlsFkZppIA\nlr1evfcjt4nIcRH5amrbb4nI10XkyyLyNyIyn/rsl0TkiIh8Q0RemNr+onjbERF5Y696J1boLRaL\nZRAk1nYmLwPeDbyoY9tHgOtV9SnAfcAvEdV5LfAK4Lr4O78vIq6IuMA7gBcD1wKvjMt2xQq9xWKx\n5CHgiGP06oWqfgo43bHtH1TVj9/eCVwR/30z8D5Vravqt4EjwA3x64iq3q+qDeB9cdmuWKG3WCyW\nHhS4o18UkcOp1y0Fq/o/gA/Ff18OPJz67JF4W7ftXZm4h7Ft2AxTFssI08cD683IMEWhKk+q6qH+\n6pBfAXzgz/r5fh4TKfSqSjOMTCxNze5U47jiiResyZFVJURw0KieAt5zl8qjunQo3zIfol1KYzoM\nipoBFy0fxuebiGGcfo3qqCt4Gg7V8kYQnJLrEpGfAl4K3KRrKcoeBfalil0RbyNneyYTJfRpgW9t\n6/ij83glY+qrshqEBBpFJK06TveQB/HFACInrVBjawA1F/xJt6dPxjVs3wiUI/iTOo7DpvM3cK95\nWrR8GPu5nG80aYSRYG+pVKg40Sryurmh6+vwFfxA8USHJvhl1iEiLwJ+EXiuqi6nProd+HMR+W3g\nMuAa4J+IhvcaETlIJPCvAF6VV8dECH2WwK8r0/bHWsG0wCeECqtBiCNQcZw45AGZky7Zmx9qy1X6\n0hX8tWxLWa7gJtmWOrdMSjakUadn1q7U3yYRR7LSKfqhcr4ZCXxCM1RO1xt4ImypVqgmgk9vj/Oh\nCb4wMFNtEfkL4HlEa/mPAG8msrKpAR+J+3Cnqv5bVf2aiLwfuIdoSee1qhrE+3kd8GEi14LbVPVr\nefVOhNAHirEnrBIJeaBKPQwJc74XKtSDEAeouQZP1FkTfM+RQiI0CUsPYZcLYSeti1tqvbVb3yct\nG9Ko0c9TrCLfUVVWg4AVP2gT+E58Vc7Egr9QqxU6wL6Co5G3bBmYBjM0QVVfmbH5XTnl3wq8NWP7\nHcAdpvVOhNAXRYGVwDz8UEg0Ycc9gl3Z9NNv09PHCvv4cq7RNC7rx4EES0sL2Cfj7hl7SQq9xWKx\nmGNDIOTSy01XRPaLyMdF5Iux++9LymyPxWKxFEYG6hm7KZQm9IZuur8KvF9Vn0705Pj3y2qPxWKx\n9MugYt1sFmXe0Zu46SqwNf57G/BYie1pEWjIsl9nzVy1N0WPYWQnXGzV+lJc2y+zz1pw/0qx7xQt\n3w9F55FquX6CGrfHtE2hhpxrLBfqgx+Ghc+dMhHAcRyj16hS5hp9lpvuszvK/BrwDyLy74FZ4Pn9\nVGRq+eSHIcdWzvPY8nmUyHRy19Q2tlSmuv7sqjrClOu0hN6P7eZ7EcSWPY5oobjZ42xumUxzE/FL\nTPTSpnqD6vNGbcF7fado+aIkiW8a4Zq/Ri8TQu2weFJNrEUG0CDW0mmuq5TsB5WBhnz7/Cm+evYY\nfhjiOg4HZhfZPb2tq/OREMWUuegHQMC06zDlukbOSmUHqi3bYapsNvth7CuBd6vq/y8i3wX8iYhc\nr6ptJjFxvIhbAPbv379uJ44I025k2tjMOAv9MOToynmOLp8HIIynbCMMeGz5DK447J5uF/y0wKcn\nsgcg5oIfanRX5qCFQqyOo+Cnk28kAt7NLDIvFWO/fTa17e5mstnrO0XLFyVL4BO62Yx3CnxnW3oJ\nvnSUz2pT3v5bjSA6pkEY8q0Lp7jn7DFCVfz4VA7DgPsvHueBiye5cm4He6a3tYKAJZ6nnb4nK0HI\nShDmCn5FYlPm0jNMlbf7YVCm0Oe57ya8hjhkp6p+TkSmgEXgeLqQqt4K3Apw6NChzHknIlRcwYsT\njjRjgX1k6SzHVi7EorP+qyFKqGuCf9XWRearta62s8m2RPCbGSdlFiEQhpeu4K/7LIeifS76I79s\n2/GkfJFjFqjSCHrPpUTw3VjwTWoxEXxovwDmCXzW/gHuO3uce849jqYEPk2gSkDAty+e4IGLJ7l2\n22XsmNoSt6l7wxLBn3IcZjw3OteHIfAxYq1ucvkCsZuuiFSJHrbe3lHmIeAmABF5EjAFnNhIpZHg\nO0y7wmrQ4NjKBUI0U+TThCghyny1Ft1d9DiwyVP2ogLgFHSkgvES+TRr1ghrfxt/t8R2jSImIp/G\nKXGEzC4f7az4Tb5y5ijNMMgU+TRBfCHYXpuL54RZbathiADTbnSOD1N8xfC/UaW0O3pV9bPcdEXk\nLcBhVb0deD3whyLyH4luDH5KB/QURkRwk59chnsc2mEa87uD4lxq/R0Wxca1zGmnaKFzDSg8LaKH\nopuVYWq853Cpa/RZbrqq+qbU3/cAzymzDRaLxbJRxj0t6WY/jLVYLJaRJll6HGes0FssFksughik\nCRxlJlroR8npwmLZdEoOkTqUs22Tzulxv6Mf78tUF1SVZhDiORVccYwtFFSVeuD3Lpii6ACGYTHP\nQrAeswPdb8qz0+gYFC0f10HB8g7FbkwCkv2XMY+KWQCFYYhqgPoNmn7D6DuuCOcby70LphAiM+Vm\nMHzPWXEco9eoMlF39Brb0Afx+6rr8swdl3OqvsyDF8/Q1JAwY4I4CFurNa6c2860VylUZ8V1oqw5\noWYm21hrWxwLn9jxxRFcunsWrvt+/O+43Fds9DQs0k8TY49EGJqhthySPBFqbpd447EdeZK7QIku\n6q7TPT55Om1i0h4nx3tU45C89VTimyRpTd6ccCV6IUk9caKbXqMmveaRtuapyfELwhA/9Lnzwbv5\n3c/8Md869SAHd17NC578UhZmd1DxqhltF7ZVpnnqwmXsmp7DD0MuNgOaOcLtAHMVj2pscRMAQai4\n6FBs6UUExxm1wMnFmAih7xT4NCLC4tQsO2oznK6v8ODFMzTCgBBFEOarU1w5N89MxqQ0xRHBcWW9\n4OecNH6o+DBxgj9Mgc/6Xlv9KaefRqjrnNt8VXxf2wQ/IdTo8zSJ05sAXiL4qTqz+p7MBSdjX/WO\nzGbJPpRswU8EvrtXcbbgZ2bDTD7ruDiZXDAVpRn4fPqBL/C2T/8xD5x5pPX5t08c4Q8+9rtcufgE\nXvDkl7I4t5OKV8UVYXt1mqcsXMbOqblWec9xmK85+GHIkh/QSLmbOwJz3prAdzJMwbdr9CNACJki\nn0ZE2DE1w0JtmjONFc7WV9gzs5WZgnfweaQF39QBJhH8qjv+Gak2IvKD6kta8CPHHNrEI4tE8Csi\neA7rxLcTJfplEAm+WcsTwQ9CxVc1qkOJTlBXItErKmQmxZN2mR67R88/zmcfOMx77/5rHjrbPQbh\ngyfv5w8//nYOLl7Fm1/8Rp6wZQc7pma7lvcch21VBz9UVoKAquN0FfhOAuJfW4Z9KM74e8ZOhNAX\nURgRYaE2w0JtprTmOIU9R+JnTOM9l/qirC4LtOLGmOKrQmguqEmogCIiUC/QHojv4gvacBfVpCIt\nOr96gd/99G1cNFxff/j0AzxzxxXGkR09R9jijJ4s2Tt6i8VimWSsHb3FYrFMNjIBdvTj3XqLxWIZ\nAo7jGr16ISK3ichxEflqatuCiHxERL4Z/7s93i4i8vY4FeuXReQZqe+8Oi7/TRF5dc/299lvSw+K\nhsYIVTNNP8eFfmzNC/sTaHF/maITPFl3L1besGx8jIv32bx82fOoGYbs3Ha5cfmqWxn/Z08SPw03\nefXm3cSh2VO8Efioql4DfDR+D1Ea1mvi1y3AO6PmyALwZqJETjcAb04uDt2YiKWbPp59lk7FESrE\n8cO7PIDTllFc9OCwGSiuRJmvxiWjTVbc8kSY8mzNW+/jbXm240WzJyVlPUfwHCFQqIdhbqKYtKmk\nkm//ni4P0jPeu2pku19PWWI5qj0taRwix6ggFBw0MunsUj5UxQ/XzCydOF69yTzKNE3tYMVv8s+n\nHuar507wfU/731ipL/GZb3yU+x//emb5Ka/GK576/fybZ//YUEzEyj5bBrV0o6qfEpEDHZtvBp4X\n//0e4BPAG+Lt740j+t4pIvMisjcu+xFVPR21TT5CdPH4i271ToTQOyLUnFgsR+SueC1BieK50ib4\naYHvJFAIgjBX8EfhEmCSmCIt+L3uSrMEv2j2pM6yyX5clBnXIYwFP23amAh25zB32r8n+1orn23L\nnm5TlsCn9x9qtuAnkpLeFgKNkHWC3y7wqf0r1IPegt/WD10/L5f9Bl88+TD3nD0GKIEqnlthy8w8\nz3/Ky1htPJ/P3vcxvnX0XhRlpjLFK5/2Mv71Da+g4npMebXMegdFRaQv09OiFNj/oogcTr2/NU6c\nlMduVT0a/30M2B3/nZWO9fKc7V2ZCKGHtfjzjo624DfCyLa7F2nBrzkOyOikNSi6NFB8KcTcLSwt\nrt2KJ8fAQZl2HYJQW2aOvc7fRPBdVaOENEmb6n6YmRIwa/+J4Ffin/55dSSCLzk3C23lE8FHI1+N\nnH2nM4P5YchnH7+fr597HCV7OchzK8xNb+N7r38pz/nO57NLfH7ouu+j4njUNuCAaMKwBB4KP4w9\nqaqH+q1LVVVEBi5eEyP0CWnBN3FMGRbJhAx6ZN/pxE3dSY4Cw4sxUrDHBsVboiBa2NbcVOQTitrL\nF/XsLHoUijwzEhGOrpzjG+ceN5qvnlthW22Wn7j6BtyS4724EoWuGLa5Y8lWN4+LyF5VPRovzSSp\nVLulY32UtaWeZPsn8iqY2IexImbrk8OmnxaNuw3v6DF64zl6LaLw+RMO4UGZuwkiTxzrZhBWN124\nHUgsZ14NfDC1/Sdj65sbgXPxEs+HgReIyPb4IewL4m1dmbg7eovFYhk0g7q4iMhfEN2NL4rII0TW\nM78BvF9EXgM8CPxIXPwO4CXAEWAZ+GkAVT0tIr9OlJcb4C3Jg9luWKG3WCyWHKKH6wOzunlll49u\nyiirwGu77Oc24DbTeq3QWywWSx42BMKIMyKWNxZLL0Yxpl3R02cY7VfV4lHbNoyMdFIREyZS6PPi\n0282rkgh88RAFa+H884wGd6ls6D0FSjuSHsc+UGjGjm+FbH4CmPzTeM64n9NvxFofLIbCGWoyvbq\nNJ7jEITZyXrSCEIj9LnQrDNfnY62lTRXmwphEA4l4Ugam3hkhFCNkksUM2AcLlXXoaJKIwx72tML\n0XlZDyPhSA7WZgh+S1hazkzlyKSk/jKtIc+GPgtHJLKnV+1p6544riUXhjyrycSJLNDoO258w5E3\nHx2g5jpRxqj4u3ntWeeFHP+b1/0kYUni9ZskNekU/DBOKnJy5SJHVy5w/cLlnKkv8/DF0zQ1WCf4\niePY5TPbuX5hH756nGv4zFbcUudqknDEIfI9GIaz1CjcZG2EiRD6cRD4NCJCzXWpdhH8LO/LQKO7\n+2EJfnKD3E10TATfJARCq2zGd5ILXdc2sP7mtNfFoVVcBE8EVyJfi0bYbhyY5ZksRL8GtM0/Yy39\nXucdvCNCNU5E0yn4aYFP99lL7b8t7EOPfmUJfreMVGnBX3uvHF+5yOMrF/Bj23kRYWFqlu21Gc42\nlnn44hkaod+Kwb9vdgfXbb+CucpUa99NVc42fDwR5jwXL17xKGOuhkQ3QcMQ/HGPXjkRQh/C2Ih8\nmrTgrwZhS1zzJmwi+BWJxKJsse9FluCbeF+2wiP0+I7IesHPEnhSn2W1vVuLRARPwBUHXyHUEK9H\nrKHkO2Go0VJCj4FKC76q4jlObmaqZP8aZ8gq8tspuRh1SzmYRoGLfp0LjVWOry51dY4SEbbXZpmv\nzrDkN/AD5Zpte5itdA9v4KtythkJ/ny1XJlJzv8yF1fsHf0oMObPXCNvXil0sQoZLW+34mnuinn8\nJoJvvP9CrVkT1yJyIQJhgYPmiBRaW5YoYI55BUQib5reEKDu+zy+ctHI2SnKzjbLnuntOIZ3uJ15\nd8eT8Y9HPxlCb7FYLGVihd5isVgmF4lDIIwzVugtFoulB6MYN6sI4/17ZEj0kw2p6P6L0gxDGqG5\np0DR7EaR5Ue5GaMmgaKZxIrKhVPw2QQUDwtdKXC36opDtaDzUJF5NKqI4X+jykTc0ZeVYapb9qRe\nljFF9g9R012JHgOG5DvaNMOQpWaDpoYIkQngfLVGzc0+WSOBbx8eh+59yHI2c0W7Rg3cyBiN7mlh\nTjVW+maYHxLbE1rx5mEtDn031qxnou8kiWvyprlD9Ow2IPojz/LGD0OWfB/FZXFqG34YcLaxRD1s\nZpaviMPema0sTs0B0XxabgbUc55GeyJUHIlDNiuV+H0ZFixlzyX7MDYHEXkR8DYiDfsjVf2NjDI/\nAvwa0dz5kqq+qmg9rQxTRCfcRumVPSlJjtGv4KcFPmEtG1IkxJ2C3wwDlppNmikTOCWy/z6xukLF\ncdhWrTEVC36WwCckQ5QW/Dxv4jUb/jXB38gYjarAd7arp01+ql8VByqsF/y0wLdlkYozS3UKfiLw\nneWTxDWBRnW0X7izTU6D6CC0CX4i8I2UQEfmnx6LU1sJNBL81aAZ98vlsukt7JiaW3cs5youM7gs\n+wH1YG1/icB39qGpSjMYrOBXHCndzDhKPDKqs9aM0oReRFzgHcD3EaW6+oKI3K6q96TKXAP8EvAc\nVT0jIrs2UF8kkhsQfJP0eG3lKS74JnW0+kLkUHW20Wg5sXRrRyMMObm6QkUcFqamjH5Ghpq0x8zZ\nLC34pmuWyRiVfTKWQTeb/Myycd8SwQ9U8WS92HWWTwt+nk9BOi2i60rkgKXJZ/ltCxTCMGTZb+Zm\nXnNEcMRjR20roQZMuw7ztZmu8zuZp3Oey4zrsOwHrXmRd6wTwa85gtdHDBkhMiEd2pwScMQ+jO3G\nDcARVb0fQETeR5Ts9p5UmX8NvENVzwCo6vF1eylIWvCHkWGq6F19IecXEVYCP1fkO/ftOk7hMDFF\nnc0KrzMzfiLfL2upI836nBZ8k2Bda/ssliWrEQbG6TUdEabcKtuqVbPk4hLdVhTNLuX2MSc2J8OU\nGPsNjCpltt4kge13AN8hIp8RkTvjpZ51iMgtInJYRA6fOHHCqPJRzTBluUQoOvfsXDViMzJMCfZh\n7CDqv4Yo48oVwKdE5MmqejZdKM6ifivAoUOHxvvxvcViGTvG/WGsUevjnIU/LiJvit/vF5Ebenyt\nW2LbNI8At6tqU1W/DdxHJPwWi8UyMiQRLHu9RhXTy9TvA98FJGmwLhA9aM3jC8A1InJQRKrAK4iS\n3ab5W+Js5iKySLSUc79hmywWi2UImC7cjK7Qmy7dPFtVnyEiXwSILWSqeV9QVV9EXkeUndwFblPV\nr4nIW4DDqno7a9nM7yEy//2/VPVU371Z34iB7WqcKPgs1mIZGzYjw5QA7iViddOMzSUVQER2YmCs\noap3EGUyT297U+pvBX4+fg2MrPjfZZLE5y6DmuOyjB/VY9COetDEd11ccQpbQZhS5EKimkTazE52\nMfpo8j/AzJLGNGRz3y2KTXrDAvPOEweJvSR6zaNQlXoQUA98Ko7b0wRSVSHl/Ro1qXe7AlVcio1R\nUyEIwqEkHGkhl070yrcDfwPsEpG3Aj8E/GppreqTjQp8YiZmak/fj8OUY+BsBGsn45Tnscd1WfKb\nXGg22z5rlVUlRDldv8i5xgqKsrM2y8EtO6iImyv4IoKHtrIn5bUrurMxFbu1fiT7diQyIxwPwV9L\nKNI2JjlpHZPjmnbhcHO8kNOYOHcn+28EYctsOLHDz9u/K1D1XGY8lxXf56LvZ54jSYapx1fOc2zl\nHIGG7Jqa49r53Uy5lXWCnwj7ih9E+4zTIU65bjxPkp614xBlWuvHvBLaE454znCs6wZ1URGR/wj8\nDNHh/grw08Be4H3ADuAu4CdUtSEiNeC9wDOBU8CPquoD/dRrJPSq+mcichdwE9GRe7mq3ttPhWUw\n6AxTvQS/X49Yk/1n1ifCXKXKrFdhyW9ysdkkpFPgl9u+e6K+xIn6Eou1WQ7O7aDqujgdHn5rf0rL\nIzPM8Kg1FvjU97p55IaMruCn78TXCXxqe1x43fYsH71EkE0EP8tBK+1FnRb4hMSztiX4SGtHUYap\n9mM+U6kw7XmsBgEX4nkUahSN/tjyOR5fPd+WgOT46kWOH7vIzqlZnrRtNzNetSXQaYFvtUeVZd/v\nEHxptafaI6lLEUKgMYQMU5F55cbv6EXkcuA/ANeq6oqIvJ/o2eVLgN9R1feJyH8DXgO8M/73jKpe\nLSKvAH5fI/LDAAAgAElEQVQT+NF+6s4VehFZSL09DvxF+jNVPd1PpYMmEZBB0ynIGxX4vP2btD8t\n+I8snedUfYnzzZXcO8GT9SVO1pe4cnY7++bmY3fu7uUj78g1wTe9g4fu4thJcrw8ybrf21xM+xBH\nF4iSjxh8IRFoj97LLWnB98MouFwvx79E8CtO9EDMzRE+EWHa85hyXR5dvsDR5Qscr5/PTQJ+YnWJ\nE6v3c/n0Nq7aupNVP8ids2nBn69UqLiDE/h1dTFWGaY8YFpEmsAMcBT4XiAJ/fIeopAw7yRyMP21\nePsHgN8TEdE+IsT1uqO/i7Ul2f3AmfjveeAh4GDRCseRRJDL3H+RB8cighJyrrli/J0LzTooxvkT\nEsEvwiQ8+i7ahwGEVuqKQOGlSAE81+wgJ/PoRA+RT3OmscKFZhPXcCKFqlRdZ6RND3tTaI1+UUQO\np97fGvsBoaqPisj/R6SdK8A/EGnsWVX14/Jpx9KW02ls3HKOaHnnZNEe5Aq9qh4EEJE/BP4mfriK\niLwYeHnRyiwWi2XciJYujYX+pKoeytyPyHaiu/SDwFngr4DMaACDxrT1NyYiD6CqHwL+RTlNslgs\nllFCEByjVw+eD3xbVU+oahP4a+A5wLyIJDfdacfSltNp/Pk2ooeyhTEV+sdE5FdF5ED8+hXgsX4q\ntFgslrFCBuYZ+xBwo4jMSFT4JqIgjx8nsmQEeDXwwfjv2+P3xJ9/rJ/1eTAX+lcCO4lMLP8G2MWa\nl6xlE6g6LlsrU8blHYTV0C8100+RVdiiGa9GlaIrz0nYZlOKZpha8Zus+NnJQ7ox69aMy6pqZOFl\n2IcsS6JxRMQxeuWhqp8neqh6N5FppUMUw+sNwM+LyBGiNfh3xV95F7Aj3v7zwBv7bb+peeVp4Gf7\nraRsHAHpYQM+6iRTxNTqY8/0VnZNbWE5aPCtC6c428h+MFsRl4XaDDNejTP1Vc5JnfnqFNOu190q\ng3Zx6dWmVvn4S3nZk9Lmgn5supLYQ2/WA7tOU9LObVkk5qgJvSy/0mOaiL2JFVctfrDqq9IIss19\nVZV66HOmvoSvkVPUtFth1/QcM14lc7+NIOBco4HgcXDLIo0w4NHls5zPecDvIDTU5+GlUzy6fJq9\n0/Ms1LZkWtMIMON5zFa8ljWHpj4bJEL5OVEHZY6hqm8G3tyx+X6isO6dZVeBHx5EvUZCLyIfJ2Pu\nq+r3DqIRG0VEqMYJR3qlWxtVkhM+MbeE7sKR2Eq7Imxxpnjy/F5WgibfunCSM7HgVxyXhdos0241\nFiRBibwRT9dXcETYVp1iJiX4iRitc3SJRalT8LuVz8qelOcklraHHqbgr2tP2roqIwsY5PSZKLlK\np+C3l19ffy/BT7Z7gOcJgSr1WPBVldWgydnGMr4GbW1dDpo8ePEMU67H7uk5ZrwoYkki8PVUvmFH\nHKZch4NzO2jGgp+26HI6THJDol9jjy6f4bGVs+ydnmdHLPgCzFY8Zjyva78GJfjCcBKQCIJbIK/u\nKGLqGfsLqb+ngB8E/C5lNwWR9gxT4yr4sDZpnVgc106M7MnsOg5zTo3rt+9l2W9wbOUiFcdrCXwn\nieCfqa9wVoQ9U7NUHKerJ2PrJEoJfuYFIaP9jqxPfdeNRPBdNNcOfKMYeT0nF7/UBcqozynBh2yB\nz2qPqeC7wIwnLPkNjq5cIIidnbrtdyXwefDiWWqux6xbw8+54DriUHMdDsztoB743H/hBHnW8iEK\nqjy2fIajK2d5xsIV7JiaaWtvr35DccEflsC313kJhEBQ1bs6Nn1GRP6phPZsmLTgDyPDVJmISOSU\nY1jelejJf83N/rneiRIlffYcMzvn9J2/CUn5opdcZxOXcdaRuss3adHaGBXrs8kyTnr/p+srhTKP\nhUqcb7h3HY44+BrQ/RLSTogy5bgsTE0XPm5Fj/JmZZgamfnYJ6ZLN2kPWYco9sK2Ulo0IESia3Aw\n5g/7+iG9HmqZTPqTnWLfcoRCN0qa/NQrkc3MMDXOmC7dpD1kfeDbRHEYLBaLZbIRLpnolU+KnwC3\niCOrWSwWy4Qz/ks3ppepz2Zs+9wgG2KxWCyjSBQCwTV6jSq9olfuIQqsMy0iT2dtBW4rUeS1kWbc\nnXH65dLstaU3xRbRTQOd9U0f2aKSmPfDZjPqHCS9lm5eCPwUUfyF305tvwD8cklt2jDDzjBVFi3n\nopapXq/JptRcF08ie2uT07QZBgQatszHyviJ6hZ4qKfxsas45bWnX8p61rimp2Yx+lWVrZUaS34T\nNbRpaoYBVae7bXtb2cBHFJYay1TcCpUeVlxhGHDBb/CNkw9ycPteam4VJyfZTctPRKM4/Ri0Kelj\nUyEMwqElHImIItmMM72iV74HeI+I/KCq/vchtalvJkngE1v3lj02a/G2158Ua6d6xXHYOz3HSuBz\ntrGaK/jTboUZr0YjFHyUqiM4hideETzHwe1xbNJOYoFCMwipiFCJ9WKgeQDo/1ePqe23SSaxzixc\naOLlnX0M0mM0V53iqkqNs/UVTtWXuwq+xlmjFDjXXKbieMy41TgvQfv+m0ETX0P+/psf50NHPsmK\nX+fK+X3cdPVz2T49T8Xx2i5CQRgQhAGfve+z/O3hD3Jm6SzX7bmaN73wddx48GnrBD9pfzNUloMg\nSpgCTHsOtS4X9qw+BUCQSjhStuCbmr6OMr2Wbn5cVf8UOCAi6/K6qupvZ3xt6Aw6w9RmkA4NEGT0\nJQoZoB2Cn70vEWHGqzDteqwGPmca9TbHmkTg0ydICKyGkbNPIvgmd5emiAgVV1p37En/0uLVeVI3\nVWkGihd7Pif7GUh7kvr7/L6J4GdmEkuF6siqO7mwO9EX2z/rKOuIsDA1w3xtmnONFU7Wl1t1pQU+\nTTP0ORf6VMRl2qshRILdDAP+x30f5cP3f5pVv94q/+DZh7nt8J+yf/4Kvveq72HHzAIOQqAhn7r3\nU9x+1//g3Mr5VvmvHTvCj77n53jirifwn174Wv7lVYeouhVEhEaorMQCn+7Tkh+yQsi067RCPpjM\nu3RKwWqZvhcy+Us3s/G/cxmfjcxScFkZpoZJktGpVz8SwTdJqhxlEqow5XosBz6rfsCUV82dtGnB\nn3IHbz2cFvzVIDSK7eOr4gfKlCN95xnt2p74340Ifq8WpQU/6FE2If1LrlcFjgjbazNsq07z8MUz\nLAfNnv1pakCzucy3Tz/E147fx8ceuJN60Oha/qGzj/Duu/6cnVMLbGWWT977KS6sXuha/uvH7+fH\n/uT1PHH3E/jQv3tvzxuxEFgKQpaDkPmqV2jeDSXD1CR7xqrqH8R//qOqfib9mYg8p7RWXYIUvVgV\nESYRYcr1cMTUmrb8q3iU3ahYPWWezMNwMiuaSQyKPRdwRKi5HkuBefTKx5dP9RT5NA+deYSHH/42\nQWB2yTpy4kGW/SA3QX2aZE6M0v2zIOsSo48bpq3/r4bbLBaLZeIYUDz6TaPXGv13EWWS2tmxRr+V\ncn8pWSwWy0ggMNlWN0CVaH3eA7aktp9nLSOKxWKxTDSjfLduQq81+k8CnxSRd6vqg0Nq0yVHP45d\nRadd8rC3iKlYZPKnpU3yxL6+SO/78LEptO+EMuoo+zirRnkIptwKq4br9FNejat3HOCe4/cZHYfd\nc4tc98Qr+cjXP0XDoA7Pq3L3iW9y3Y4DzHi9o6b4YcA3zp7kitntbKmaZ1ArFRGcSyTWzbKI/BZw\nHVE8emB0Eo+Ma4aplikcaynjkpCy3UhicacFIK/fSaKKtMNSYjrZTcArEolwsm/TbEhFqcYPuAJV\nGjkx6x0i/4BkfLR1wRpMOzRj7qw5qeV/16QJ6eNs+tBXaM9glffgOmlrCGyrzrC1OkM98DmxeoGV\nLmIchCH10OcJC09g3/x+lhpL3HHfR/nq41/PrGfP7CKvfsrN3Hj5U/EDn1///tfzu5+4jffdfTsN\nf/2D3EqlxtVXXscVl13FX37z4zhHHL7nsqfwr654GrMZKTD9MODes4/ypVMPoRoSAk+c382/2H0V\n26rTOSOVLK2URxQCYbyFXkzuMkTkH4C/JEpA8m+JEtaeUNU3lNu89Rw6dEgPHz68bruqjk3CkfSJ\nn/d5WvDTAt/NkSa9vyyB7yQRk8T8z2sJvHQVuDIEP2l/p+CnBT437WGfzckS+G501lFU4LvVv64e\n1gQ+z2Eq/f0sa62k7kbgc2L1IsuxVU0i8FnhuxtBk+XGCh/65kf58rF7UZTL5nbxU095Oc+67Ho8\nx227s11t1qn7Df7rJ/+YP7/rb1lt1qlWprj64PVcvudglJUp1YeKRO+/e+/13LTv6cxVpmmGPvee\neZQvnX4o8rFIxdh3Yqeu79i2i+fsvor5WnvUFYHIYSpjrFplRO5S1UOZHxpy2bXX6C1/+najsv/3\nM1+y4frKwFTo71LVZ4rIl1X1KfG2L6jqs0pvYQfdhD5h1AU/aZ9pWSWOwY2Bm3iccHulh8B3MuUK\nXg+B76QMB5K04CcRwE0vKkUEv4jAp/ePmC+lhIYhKJL25An8+vLRMpy5TX7IUrPOty6cMkpW0gia\nNP0Gs67Ddy4cwBM3N6RBIvi/9ul3sexKZEqZ0wfPcRGEQ7ueSEMFRXPbFQm5w9Vbd/KifddRddye\nAp8wGKH/Dv03hkL/a8988UgKvenvkeT331ER+f44wNlC3hc2C5HIqabmOrF4jRZFbOWTvjiGplsi\nQqDFkkU4Et3JR+Zhhu0y330hEhM1p0Cfk/YM41lZofXyIvuV1C8rw+NcZB454rDkN40zUlXdCrtn\nF7h28SqqbiVX5AGmKjVCR/BrVVzX7Xkw/DCgGfpcCHyaGvRsVxQWI+T+8yc4tXqeKdcZagKS6CIs\nRq+e+xKZF5EPiMjXReReEfkuEVkQkY+IyDfjf7fHZUVE3i4iR0TkyyLyjH77YCr0/1lEtgGvJ1q+\n+SPg5ww69SIR+Ubc0DfmlPtBEVERGeiVcNyflF+62OM2ChQ9CmWvYzvibFoogkEJPfA24H+q6hOB\npwL3Am8EPqqq1wAfjd8DvBi4Jn7dAryz7/abFFLVv1PVc6r6VVX9V6r6TOCqvO+IiAu8I27stcAr\nReTajHJbgJ8FPl+49RaLxTIEoviVvV+5+4hulr8HeBeAqjZU9SxwM/CeuNh7gJfHf98MvFcj7gTm\nRWRvP+3fyCV4XZCzDm4Ajqjq/araAN5H1PBOfh34TWA14zOLxWLZVESi5w4mrx4cBE4AfywiXxSR\nPxKRWWC3qh6NyxwDdsd/Xw48nPr+I/G2wmxE6Hv9TunZyHjNaZ+q/v0G2mGxWCylUmDpZlFEDqde\nt6R24wHPAN6pqk8HllhbpgFAI4uEgduRmEe5Ws+GGiNRtt3fJkps0qvsLURrVOzfv9+4jocff5TF\nhV147ka6abFYTCg7I1WIEuQ5mZREwRAIJ3Osbh4BHlHVZJn6A0RC/7iI7FXVo/HSzPH480eBfanv\nXxFvK0zuHb2IXBCR8xmvC8BlPfbdq5FbgOuBT4jIA8CNwO1ZD2RV9VZVPaSqh3bu3NmzU1/99td5\n2X/6KZ79H36Au7/5FZbrK4SGFgdlU/RRUuKwZIrnmAdUTWLD14MgMgccgdSL/bQgcaIqmzKrWDvO\nZrUU/Sm+rTpFzXGNHhg6QCP0C82HrdUZnrzjSiqO21MUhch49kL9onEdnjjsqM1Rc2c41/Dxhyz4\ngwhqpqrHgIdF5DvjTTcB9wC3E/kmEf/7wfjv24GfjK1vbgTOpZZ4CtErBMKWvM978AXgGhE5SCTw\nrwBeldr3OWAxeS8inwB+QVW7G8n34Evfuoc3vuu/8Mkv3UndbxCGIc/9uZu54YlP57/8zK/w9Gue\nzFSl1tNcrEzSmYd6TdXWtIlD+rZty9n/XMXBV1j1wxxnGuVCc4UlfxVFqTkeu6bmmPYqBg5KJdjQ\np+soEM03aUmRJknKPdVYLlKewul6u+HGx9nYZyJ+iYKgcX+61+I6gqORv0SvOlyBrZUqz9hxOacb\nKzx48QyNICDs6L0T+1FcMbON3TNbcMUhCJV6GOZ6a1cEZj2Pn3/aD/DY0mn+6shn+dKpBwg0bLvL\nl/j/56qzbJ9eoOJWWAkaVB0PN7ao6azGE4dd01u5cdfV7J7eCkQZqs42fCqOMOu5eM7g52M7Aw2B\n8O+BPxORKnA/8NNE19b3i8hrgAeBH4nL3gG8BDgCLMdl+6K0NQ1V9UXkdcCHiSJd3qaqXxORtwCH\nVfX2QdV18txpXvnW/5PPfO0w9WZj3d37P339izz/F36IZ1zzFP6fn/kVnvXEp1HbRMFPPFG7Cb6k\nynViIjQiQkXAqzgECiux4GcJfEI99Hl4+Sw1x2Pn1CwzXrVN1Ich8O19iD/vUqAfgc/av5DvQNVt\n/6bHwaWgkxzmgi8SObp1c6ByhXVORTtqMyxUpzkTC349jisvIuyb3cau6bk2M0nXEWYcN1PwKwI1\n12nb/2WzC/zsU1/KseUzfOBbn+PuE/dH6SxV2VKdY/v09nU5aBuhD9AS/ET098xs48adV7EzFvhO\nWoIvwpaq2a+Vfkh+gQwCVf1nIGtp56aMsgq8dhD1lrp4rap3EF2V0tve1KXs8/qt52P//Bk+e89d\nrDTyDXfu/uaXeeEbfpSbn/Ni3vtLv9eKtbJZdAp+ensvTJIzJEKwpepyvtHgbHOFZX819y62Hvo8\nsnyOGbfC/rntpebLNIr50iH4GxX4bnUIHSEnTL1sMTsO/Qq+YxDELXKsAyfevySv7mEBWKjNsL06\nzZnGKo3QZ+fUXK5QpgU/1ChXa9682DOzndc9+SUcXT7Db37x75mrzvZMMp4I/r/c8508YctOFqfM\nFhSacSrRmlvOPEUY+8QjE/OU0nXNw+N/4+Ej1Jt1ql7+xBsWw3DsElFW/LrxUkUjDABFRiSYU/oO\nvOw6ytt/gTWpPvdfJEmEiLC9lh8wrBPXEYok+ts1vY2F6flCzzeum7+c2UrvSJfDQuL/xpmJEXqL\nxWIpi0lPDm6xWCyXPKPyy7ZfrNBbLBZLDgXt6EeS8b5MpTDNSg+wddsCDy2foxmaf6cISbhgUxvh\npHyZDicOwpZK1bi8qnK2sUowIv4HCZtv6d8//bZ9nPsM8NQd+5ju8SA2wRHhbGOZumGGrKEgguuY\nvUaVibij/+7rnsV37ruK+x75FkurK13L7dq5l5t/4FVcd90zOHzqUe4+/RhPWbiMa7fvoeJsPNd5\np7mkRhu7xs1OzOL8NltjjWykB7wmOONVmPa2sVtDjq8uca6xkikgyTYf5djKBY6tXGRHbYbF2oxJ\nLI+h0GahNOD9FcWk/vT+HTrmh+G+Te33Rw0H4fv3Xc9L9l3P4RMP8unHj7CckZHKFYfLZ7ezb24H\nR1fPcWz1PPPVaS6f2c5Uj4uEJ0KlRJGdhDv6iRD6yxb3cPc7/yef/NLn+MU/fCtffeAbLNfXBH/3\n7st5+ct+jCc98al4roc4DgFKoMqXTj/Gl04/xpO37+W67Xuo9hEuoZcDVBgVagm+alR3Vtx4JUqa\n0k3w+51uiSmnIy57pufYNTXHidWLnI0Fv7voK6fqS5yqL8WCPzswwc8SsqJsRACHKfBrX0zsN9aM\n97P8KCQu222fg5Kdzv3kjUk/dUYmvtFN1A07D3Bo55V88eRDfOrYEZb8Oq447Jtd4Iq5Ha1cBFE7\nlLONZc42VthWmeaK2fWC74kwW3GoDOEGZNxDnk+E0Cc896nfxed/7+/49Ff/iTf84Vu55+Fv8apX\n/TuuueZ6Kl4k8J0kSQ++fOYxvnLmKC/Z9yQWp+aM6yySSSgEwiDbW7WTtOD3slkuShTXG3ZPb2Gx\nNsv9F0/nJn9I+neqvsyp+jJXzm5ntsAykAlJ7zYi+KYjVLbAm9WRJHpp99bqJvDd9j9o+ck6DoOq\nw3UcXOCZi1fy9MX9/NPxB1gNw65JZpIbjbPNZc6dXWFbZYqDW3ZSc9yhCXyCtboZQb77+hv4zNs+\nyD/ee5j7wjoYTIhAlZrjstCRl7IXRUWj6Ip3kUxLRXFEqGtovA6fiOlMif4HqegEhb9XNmX5Xfbt\n3TvYhgxt34ngB4jxr0NFOe+vIvjM14ZrYz8JSzejsehaEk/af01hp6gRiOs1dMbdGcRyaeAgm+Sh\nahbQbJSXdybyjt5isVgGhVB+msSysUJvsVgseYhdo7dYLJaJZ9zX6Cda6M81VnOtSTIZ7+PZF+Z2\nQxbL5hGihJuUYWrMb+gnU+hPrFzkcyce4rGl8+uSK3TDFcHXkLP1FXZMzRrXVdRKxMHc8iaxt3fE\nKSVccBCGrbVHVe25/+TT5aDJrDdY88qEfkI2QzHzynLRtvj2vRKIbKymUelzf+ybnefhpbNA7/DN\nDsKcV0PE42LTZ8odRsKRhME7MA6biRL6x1cu8LnjD/H4ykVjk0FXIveUJ83v5ikLe3t64XWSZIwy\nqc0BXNfJdZiCtdSBQSwYTT/EE6HqDiYBSKhRAomHLp7h0ZXzhKq4Isx6VSqOu27/ybvt1Wl2Ts3i\nDcCLuJNE4MNOm/JYMk0vQib0Y7NvYtmeCLy2bwaDjFFFbxjGW3YiDm5Z4PLZbTx08QyPLZ+Px659\nFARha2WK/XPbmfUis0pf4aIf4AlDEXz7MHZEWPYbfPiR+zixutRzqSY5oVyJYkxfO7+HJy/spbaB\nBOLpxBJZXqadIRAib0HB7RD8ToFP46vi+4qbZPWhmOBHF6Mo/s4DF89wdPlC26+dQJXzzTquCDNe\nlWos+AIs1KZZrM0N3LQt6W+nwLc+JzJ3zRP8jZziJoKft/90LKN872K6Cn56/xttzzhSdVyu3rrI\nlXPbeWjpLI8un2v5kG2rTrF/doGZLr8eE8F3BWa98jJMgV2jHwkeWz5vJPIQTaAtXo1rt+/h6q2L\nGxL4TjozRvUS47TgrwbRXXavu7pAYdkPqTmC55iL/flmncdXLvD4ysXc5axAlQvNOlOOx1VbdzBf\nnS7Ndtmkv7Am+Okbt0GedhvxBs0LfdFZDkDiiZG3/zK9U0eViuNy1ZYd7J+d59HlC2ytTHUV+E6C\nOF5UtUShH2UbeRMmQughyd5jVtZ1HL5j286BBDLr1pZCSwmSvmc1o6iHrR8HMzN9ZqEo26vTpQYy\nGzUP2GHFyzGtZ7ylpT8qjsueLjliN4t0DJ5xZWKE3mKxWMpi3L3Hx/sJg8VisQwBJ76r7/UyQURc\nEfmiiPxd/P6giHxeRI6IyF+KSDXeXovfH4k/P9B3+/v9osVisVwKJFY3Ji9Dfha4N/X+N4HfUdWr\ngTPAa+LtrwHOxNt/Jy7XFxMj9KbZnAC2VGoj9xTdFaGolViRLFaCsL02Y/wTtOZ6FHjs0Rf9romP\nintX2e1QVYKw3Mxjo0bR7GzDwhGzVy9E5Arg+4E/it8L8L3AB+Ii7wFeHv99c/ye+PObpM+nwhOx\nRn/ZzFYWp2Y4ubqca3kzX53mWYv72DuzbeQerlQcoYIQKjTCsKuNfXR3EZ0QPgKqePEky5oDgSqN\nQKm5VfbPLnDFzHYeWz7LidWLmR6x026Fg3MLbJ+apt2wcfAPB5MTo5t5ZUKWZ+JmZlwy9ZtII2T3\no9v+2/wsNMo85pWQeWxUUFUaQUgz7Ueh2nVep3ElSkJSHjLINfrfBX4R2BK/3wGcVVU/fv8IcHn8\n9+XAwwCq6ovIubj8yaKVToTQz3hV/vcDT+bYygXufPwhjq9ebBP8hdoMz1rcx+7prYXW0oZJMpld\ngSlxCIFGsCb4icCnyyb4sadOWvATgV8bhWQdEa6Y3c5lM/McXT7HidXInn7GiwR+vjaNQ14iiAFm\nN4rriEQw22FKuvS5rDblsXGBz29lr8xjzTgRzSQJfpbAtz4jMp3sJviuwPSQHKYKjPeiiBxOvb9V\nVW8FEJGXAsdV9S4Red5gW5nPRAh9wp7pLbz8wHUcX7nI544/yKn6Ms/bezW7prZEDlJjcnIkDlhT\nrkOgih+aeYf6qmgYxQTJ++GbZJi6PBZ8CJipVLoKfCdluN4nJqnC6IVAKFvgAfycX3FtbSESfCcW\n/HGZ01nUg5CmQeyaRPDRyGGw4shwQyBIIaE/qaqHunz2HOBlIvISYArYCrwNmBcRL76rvwJ4NC7/\nKLAPeEREPGAbcKqfLkzMGn2aXdNz3Hzldbz8yuvZM70Vz3HG8oSI8stSKKlBkTVsR4SK4zBXqeLK\naIxRv4kcNr/l7aw5y5m1zETk05SZeWxYmIh8J9Ouy1zFG2Kcmwgx/C8PVf0lVb1CVQ8ArwA+pqo/\nBnwc+KG42KuBD8Z/3x6/J/78Y9rnw4uJuqPvZFt1qq/JZLFYRg8B3E24NRXMUx72yRuA94nIfwa+\nCLwr3v4u4E9E5Ahwmuji0BcTLfQWi8UyCAZtpaeqnwA+Ef99P3BDRplV4IcHUZ8VeovFYsmh4MPY\nkcQKvcVisfRgvGW+5IexIvIiEflG7ML7xozPf15E7hGRL4vIR0XkykHWP2pOFxaLpX96+VuUixi+\nRpPShF5EXOAdwIuBa4FXisi1HcW+CBxS1acQeX79v4OoO1SlHoT4Y67zGtsPF6HodAuJwwWPyEVR\nY7MhLWI+VKxowfb0l2hRKTambsHjnHiPmtShqbJGbYrHP3mZUKR80o6ifXZl7dwetrfwIGPdbAZl\nLt3cAByJHzQgIu8jcum9Jymgqh9Plb8T+PGNVBiq0gzHPwNqcjKGACK4Gc5EWXgiOE43h6n1uKwJ\nTBh7X7YuFHlx9E07UoDkvE13Mc7VgYkp+qDblE6KUnQ+dSaaMcFznHWJaLKI1ovjzGZrjY0+66iz\nbR6l29elfJLwY131idNeRpfSaRN7lU8n1vHj1JUu2jMvQZJsJxFSBRqx81hlCM5jJqaTo06ZQt9y\n3415BHh2TvnXAB/K+kBEbgFuAdi/f/+6z1WVxpgLfPpOq/PE7HQm6hR8z5F14uKKMO1lC34i8OuF\nIaNKxK8AAA1ASURBVHY8ksgbcZDZnLJI35TlHbs8wR9km0wyRuXRj8Cn6ZZ5DNY8o/M8ljtvp7td\n5JPtTqt8e6iL7vvvsj23/FqpRODTiEgrpEen4HcKfFY9ieBXy3QeE7PQFaPMSDyMFZEfBw4Bz836\nPHYhvhXg0KFD6+aXaaaiUcbE8zIt+NF7enqzJoKfeF6aiFEi+C4KBZOoFKHfY1bmOVdU4Nc8YAfX\nqk7BN91/0bYnc04M/YqLHq/YmZWQ/F8p0C74rkihMA9K1Jdy0gi1Wljq3sumTKFP3HcT0q69LUTk\n+cCvAM9V1XqJ7ZkYEsF3DN3roX/zsFGb3mW3p6iYDVrk2/YtMhGu60W8fkWEygiGdhj3pZsy59EX\ngGvioPpVIq+u29MFROTpwB8AL1PV4yW2xWKxWPpmvG1uSryjj8Nqvg74MNGvqttU9Wsi8hbgsKre\nDvwWMAf8VXwFf0hVX1ZWmywWi6UfRu0XRlFKXaNX1TuAOzq2vSn19/PLrN9isVg2SnS3boV+4mkL\nm2tSPrYC8kRwDQzhE4uDpGSJxgN9PVAz6nNHPb0IwpBT9WWmvSqzXtVg/+32l70fKK9ZYRV5mDnu\n9HOMi5C2bTMRv8hmPi4/tlo5es8MijIRQu8ISAmWN1n7azdIaydx5miEa6VdieLKZ4VV1diELmyV\njnByToz2tUDzySep/fWyUhJpt6XP63PRMfLDkOOrFzm+kmS4Ema8CpdNb2W2UsvYV7bJYzdb8ETg\nO01Q87IVbSzefLkC4LDW517zWzr+7WWFs/aALt+8Mvps/afJtizBD+M8CulxVW2fh514seVNUYTy\n462Pt8xPiNCLCDVXBuYwZfL9tJitF/g1AoUlP2wT/E6B72TNzjmuQ9oFvh9xSX/HiVvfKfjJtcgk\nm1PRMfLDkMdXLnBidQntkO8lv8GRC6eYdj0um9nGXKXWI3VKli14vou80p6tqHM/pgxL4NcqTMlo\nyokrq00ZHkqtY9V2nFu77vCTyHCYMjmb0oKfJfDtZdcLflrgi+YgGIbDVFTXeEv9RAh9gpMS/LzJ\n1o1+LhArfkjDIABHIvgVJ/KCNCEkdpSJ3w9KXJL9JIKvHdt7UXScjq1c4OjyBfJkQ1GWgyb3XzjF\nQm2Gy2a2GrUnxMztfq2eWPCh0G3a0AU+qw1J3akOZwp8RnnJ2r7uC3EftXeWsk40vskyPeeUSOC9\nPgTegYlKpzgMJkroExwRqm7kJFR2vBsTkU9TNK61SXLkfhExdZXZGGvLNL0JUbZVp0ZuTXSzRT5N\n0XYUbnefS6FFb6y8Pua2J+Y3SoNCiNJvjjMTKfQJIlLsds9y6TAamm0pyGbdxY/7dJloobdYLJYN\nIzLOJkOAFXqLxWLpyXjLvBV6i8Vi6Ym1uhlhhp2cwDIYhhJwehhPoS0DJ1Ad+jp99DB2vCfLeD9K\nzkDj0K6rcYYp89CtCm1ZeMy+VSuYAqroxWeUsj+Bxl68pmMUlds7vSXKwGNQgwDnG/VUHSUx3uft\nSFJETJJY8sZZsuKXr7AahARDPyfE8JWzB5F9IvLxOH3q10TkZ+PtCyLyERH5Zvzv9ni7iMjb41Ss\nXxaRZ/Tb+okR+kTg62F2EpKusqTaCkGg7ZuNxKzmOWypOD0F3xOYqzjMVFwq0jt1nMTfKTtka+/p\nCWsC3+6l2X2MkhM4+mRhapbr5vewZ3orrkimiakAc16NA3OL7Jzaih9G9u69hCCxqXYFTK65Tjz2\nboELz0YTiowjUXx48zDJIkLFFapOvqikZ4uvsBzETo5djnP27IouEongD+NGaOMyD4APvF5VrwVu\nBF4bp1d9I/BRVb0G+Gj8HqI0rNfEr1uAd/bb/olYutFY4I29NTu8KfP3HZWSHA8bEaHmCdU4m1M9\nZVtfkehi4KaEIkqhFjkshZCZSWgzfp5CajxSsWK6Ozm1iiIdpTq/44iwc3qOHVOznK4vcWzlYhyu\nQJnzauyc2krNbZ+OodKKAeQ57SEPOsU3HaM/8Txur3+9LXxyHLJCIIyCg9QokDdG3cpX3Ki8H64P\n75FFU6EZKJ5Adc1tt2ddieALUHPKPVaD2LeqHgWOxn9fEJF7iTLx3Qw8Ly72HuATwBvi7e/V6Ep2\np4jMi8jeeD+FmAihDwo6d/Rz/VftPffSgu+H2tN7Ly34SZs2ey0wLfhljKkjwuLUHAu1WU6vrjDl\nVqi6+dNQgWYYu7vT+6ST2OMyiXvTS7DTYpbeZlkjGaNQzW6oEsEPQ6VhODl8BT9Qpt1ijz6VsjNM\nDT5nrIgcAJ4OfB7YnRLvY8Du+O+sdKyXE18sijARQj9qJD9jTadGcjd6KeGIsLU6Xfh7hWKhFBxX\nK+69EYrdAEjRLzCaz8kLtGdRRA6n3t8ap0Jd25fIHPDfgZ9T1fPpeaeqKiIDX4uyQm+xWCw5FFzC\nO6mqh7ruS6RCJPJ/pqp/HW9+PFmSEZG9QJJtzygdqwkT8zDWYrFYykIM/8vdR3S1eBdwr6r+duqj\n24FXx3+/GvhgavtPxtY3NwLn+lmfB3tHb7FYLMPiOcBPAF8RkX+Ot/0y8BvA+0XkNcCDwI/En90B\nvAQ4AiwDP91vxVboLV0pvB5bsLwnsWVNgf1bNp+ix7kitHxaTPc/agyiTar66Zxd3ZRRXoHXDqDq\nyRB6V8hN5NFJYjrXy3wwKQtrIX1NGcXJWpT0OPUaI0n9bVreiQ3fI6sa7Zo0xI39CSyjQZF54cRJ\nRSpE52iWj0tStuKsxacvgsMQMkyN+fSbCKHvzDCVJ/iRObys/c3arYZ2lqPD7pr15TL3PwG093vN\n+alzjKIHVcm7te2JqWJoWL7qrBf8KPa4rGuPZfMoNi/aj5lLZDqZFvxOgV+XGjKnLQ7DyzA17kyE\n0Cc4OYKfY0UdC0/7b8tcu+v436wLw2QicTpDTfua9bRNh/ZUf72cztKCn3WhtYwaxeZFsj0RfJPj\nnHWubYbAj7sB9EQJfUIi+MUyTEnhn2fjfej7oY8x6iMb0qU3ruNOsXkhbb+oTWuI2JQMUzL+SzcT\nbV5p7wYtlsnCLtP0x0Te0VssFssgGffLixV6i8Vi6YEVeovFYplwxn3FaGKFPkmQYbFYJodAdZPC\nR4+30k+c0Cdxs33D+PQWi2V8CDQKlew5w00IM94yP0FCbwXeYrk0SBzrBIYu+ONKqeaVIvIiEflG\nnPPwjRmf10TkL+PPPx8H4y+MapQ+sGlF3mK5ZEgEP8k9WxZS4DWqlCb0IuIC7yDKe3gt8Mo4P2Ka\n1wBnVPVq4HeA3+ynrs58rxaL5dIhyTBVJonTVK/XqFLmHf0NwBFVvV9VG8D7iHIgprmZKEciwAeA\nm8T+BrNYLCOGvaPvTrd8h5llVNUHzgE7SmyTxWKxXHKMxcNYEbkFuAVg//79m9wai8VyaSFj/7C3\nzDt6k3yHrTIi4gHbgFOdO1LVW1X1kKoe2rlzZ0nNtVgslsmkTKH/AnCNiBwUkSrwCqIciGnSuRJ/\nCPiYlvn43GKxWAoyCVY3pS3dqKovIq8DPgy4wG2q+jUReQtwWFVvJ0qU+ycicgQ4TXQxKIwj4BTI\nMAVrGXJGqTxDqGOcyw+jjnEvP4w6Rq38MDJMjTulrtGr6h1ECW7T296U+nsV+OGN1iMiVOOEI36P\nDFMVERyJvqNx+SCnvCvgiayVVyXImYUuUVakpHyo0Mz5keLE5Z2kPPlOX0lGniRca5JkJa+850jL\nqcRkjDwBN93ngmMUqObmAdiMMeo5L1JjZNLndWNUcF70GqMkuYaM0LwY9rljMkbekBKQjHsmy7F4\nGGuKkyP46UmaICJUXMHLmLTpSdpWXuLyHZM2PUnT5d3k10aHmGVNUhHBBRyHdSd254mc7nMto8+d\nJ3LnGGlGFq60eGWOUWefu4yRJ4KbcaL2HCMiBxiTMXJTmcRMxihrXnQbo7x50XWMus2LQY0R2fOi\nm9h1ZltLj1HevBjEuVN4jLr0ORkjk3PHks9ECX1CWsxCertIpyetcXkpVj4tZkJ+AoVOMaNH+eTz\n5ERVwzYVHqOCfW6dqIbl02LWa4ygXcwwLF90jMqeF3aMip07mxXuYFA1isiLgLcRXd/+SFV/Y0C7\nzmUihT4hOTHGtTwUz6hTtPyo9dmO0eDLw6U3RoNn41KfihbwfUR+RV8QkdtV9Z4N77wH9hmGxWKx\n5CEMKgSCSbSAUrBCb7FYLDmYmFUmrx6YRAsohbFburnrrrtOisiDBb6yH3iorPYMCduHzWfc2w+X\nZh+u3GiFd99114enPXfRsPiUiBxOvb9VVW/daBs2ytgJvaoWco0VkROqeqis9gwD24fNZ9zbD7YP\n/aKqLxrQrkyiBZTCpbB0c3azGzAAbB82n3FvP9g+bDYm0QJKYezu6Pvg3GY3YADYPmw+495+sH3Y\nVLpFCxhG3ZeC0G/6+tgAsH3YfMa9/WD7sOlkRQsYBmJjiFksFstkcyms0VssFssljRV6i8VimXCs\n0FssFsuEY4XeYrFYJhwr9BaLxTLhWKG3WCyWCccKvcVisUw4/wtv3WpdK8h+xQAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot.hexbin(x='Longitude', y='Latitude', gridsize=20)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "[[ 0.69352291 0.73488049 0.47142288 0.775683 1. ]\n", " [ 0.89478673 0.84099774 0.53792807 0.26332866 1. ]\n", " [ 0.9478673 0.16456971 0.14460741 0.52422673 1. ]\n", " ..., \n", " [ 0.7509742 0.30754095 0.99061839 0.79226656 1. ]\n", " [ 0.99815692 0.30998322 0.80659288 0.94598703 1. ]\n", " [ 0.10942601 0.04456276 0.16478523 0.18294976 1. ]]\n", "[[ 0.02777778]\n", " [ 0. ]\n", " [ 0.36111111]\n", " ..., \n", " [ 0.02777778]\n", " [ 0.02777778]\n", " [ 0.11111111]]\n" ] } ], "source": [ "# Step 1 Collect Data\n", "train, test = train_test_split(df, test_size = 0.2)\n", "\n", "x = train.as_matrix(['Date', 'Time', 'Latitude', 'Longitude', 'Bias'])\n", "print type(x)\n", "\n", "print x\n", "\n", "y = train.as_matrix(['NormMagnitude'])\n", "print y\n", "\n", "x_validate = test.as_matrix(['Date', 'Time', 'Latitude', 'Longitude', 'Bias'])\n", "y_validate = test.as_matrix(['NormMagnitude'])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Step 2 build model\n", "\n", "num_epochs = 60000\n", "\n", "#initialize weights\n", "syn0 = np.random.random((5,6))/10.0\n", "syn1 = np.random.random((7,1))/10.0\n", "\n", "syn0_delta = 0\n", "syn1_delta = 0" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.00079852 0.09433342 0.0550699 0.05168439 0.09490577 0.0923032 ]\n", " [ 0.07541252 0.01891907 0.04921835 0.03347656 0.02177854 0.01855908]\n", " [ 0.04921063 0.0077805 0.06171159 0.06936206 0.02926289 0.06401498]\n", " [ 0.04705061 0.00076792 0.04764971 0.07193956 0.00776755 0.05310323]\n", " [ 0.02991194 0.00427668 0.04925772 0.01711232 0.02307999 0.04420323]]\n" ] } ], "source": [ "print syn0" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.00330521]\n", " [ 0.08682529]\n", " [ 0.04867791]\n", " [ 0.02379302]\n", " [ 0.04050973]\n", " [ 0.07689468]\n", " [ 0.03106333]]\n" ] } ], "source": [ "print syn1" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def nonlin(x,deriv=False):\n", " if(deriv==True):\n", " return x*(1-x)\n", "\n", " return 1/(1+np.exp(-x))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error:0.440108603758\n", "Error:0.106329559495\n", "Error:0.106323348961\n", "Error:0.106309150074\n", "Error:0.1062439026\n", "Error:0.0868639593186\n", "Error:0.0868591546486\n", "Error:0.0868544199725\n", "Error:0.0868496639383\n", "Error:0.0868448041216\n", "Error:0.0868397660571\n", "Error:0.0868344829819\n", "Error:0.0868288962161\n", "Error:0.0868229560953\n", "Error:0.0868166233489\n", "Error:0.0868098707715\n", "Error:0.0868026849903\n", "Error:0.0867950680772\n", "Error:0.0867871094563\n", "Error:0.0867790815863\n", "Error:0.0867713194465\n", "Error:0.0867641458604\n", "Error:0.0867577404263\n", "Error:0.0867521721528\n", "Error:0.0867473323081\n", "Error:0.086743230521\n", "Error:0.086739842211\n", "Error:0.0867371497563\n", "Error:0.0867348706996\n", "Error:0.0867329958125\n", "Error:0.0867314143376\n", "Error:0.0867301093812\n", "Error:0.0867289968418\n", "Error:0.0867280967875\n", "Error:0.0867273518098\n", "Error:0.0867267530818\n", "Error:0.0867262649372\n", "Error:0.0867258771252\n", "Error:0.0867255493617\n", "Error:0.0867252610115\n", "Error:0.0867250089614\n", "Error:0.0867247825281\n", "Error:0.0867245740969\n", "Error:0.0867243883793\n", "Error:0.0867242160961\n", "Error:0.0867240520491\n", "Error:0.0867239009475\n", "Error:0.0867237608239\n", "Error:0.0867236237432\n", "Error:0.0867234839555\n", "Error:0.0867233527115\n", "Error:0.0867232315312\n", "Error:0.0867231114193\n", "Error:0.0867229896635\n", "Error:0.0867228715969\n", "Error:0.0867227661065\n", "Error:0.0867226719375\n", "Error:0.0867225897701\n", "Error:0.0867225198123\n", "Error:0.0867224604505\n" ] } ], "source": [ "#Step 3 Train Model\n", "learning_rate = 0.002\n", "\n", "for j in xrange(num_epochs):\n", " #feed forward through layers 0,1, and 2\n", " l0 = x\n", " l1 = nonlin(np.dot(l0, syn0))\n", " l1 = np.append(l1, np.ones((18727,1)), axis=1)\n", " l2 = nonlin(np.dot(l1, syn1))\n", " \n", " #how much did we miss the target value?\n", " l2_error = y - l2\n", " \n", " #in what direction is the target value?\n", " l2_delta = learning_rate * l2_error * nonlin(l2, deriv=True)\n", " \n", " #how much did each l1 value contribute to l2 error\n", " l1_error = l2_delta.dot(syn1.T)\n", " \n", " l1_delta = learning_rate * l1_error * nonlin(l1,deriv=True)\n", " \n", " if (j% 1000) == 0:\n", " print \"Error:\" + str(np.mean(np.abs(l2_error)))\n", " \n", " syn1_delta = l1.T.dot(l2_delta) + (learning_rate * syn1_delta)\n", " syn0_delta = l0.T.dot(l1_delta)[:, 0:6] + (learning_rate * syn0_delta)\n", " \n", " syn1 += l1.T.dot(l2_delta)\n", " syn0 += l0.T.dot(l1_delta)[:, 0:6]\n", " \n", " " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Let's evaluate our results" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error:0.0885013015451\n" ] } ], "source": [ "l0 = x_validate\n", "l1 = nonlin(np.dot(l0, syn0))\n", "l1 = np.append(l1, np.ones((4682,1)), axis=1)\n", "l2 = nonlin(np.dot(l1, syn1))\n", "\n", "l2_error = y_validate - l2\n", "print \"Error:\" + str(np.mean(np.abs(l2_error)))" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average Error in Magnitude: 0.277777777778\n" ] } ], "source": [ "error = str(np.mean(np.abs(l2_error)))\n", "\n", "max = df['Magnitude'].max()\n", "min = df['Magnitude'].min()\n", "\n", "print \"Average Error in Magnitude: {}\".format((float(error)/(float(error) * (max-min))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [neural]", "language": "python", "name": "Python [neural]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 0 }