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Text classification

The first attempt to propose the task[1]:

⟨d⟩ → c

d – document
c – related class positive, negative

“The picture quality of this camera at night time is amazing”

⟨d⟩ → positive

[1] Peter Turney. “Thumbs Up or Thumbs Down? Semantic Orientation Applied to
Unsupervised Classification of Reviews”. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. 2002, pp. 417–424.
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Targeted sentiment analysis

Considering entity as an input parameter[2]:

⟨d , ej⟩ → c

ej – object, or entity

“The picture quality of this camerae
at night time is amazing, especially with tripode ”

⟨d , camera⟩ → positive ⟨d , tripod⟩ →?

[2] Long Jiang et al. “Target-dependent twitter sentiment classification”. In: Proceedings
of the 49th annual meeting of the association for computational linguistics: human lan-
guage technologies. 2011, pp. 151–160.
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Aspect Based Sentiment Analysis

Focusing on two core tasks[3]:
1 Aspect extraction;
2 Aspect sentiment analysis:

⟨d , ej , ak⟩ → c

ak – aspect, object characteristics

“The picture quality of this camerae is amazing . . . ” [3]

⟨d , camera, picture quality⟩ → positive

[3] Bing Liu and Lei Zhang. “A survey of opinion mining and sentiment analysis”. In:
Mining text data. Springer, 2012, pp. 415–463.
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Attitude Definition

Opinions between mentioned named entities (ej , em):

⟨d , em, ej , ak⟩ → c

ak – aspect
em – subject
ej – object

“ ... Moscowe dissatisfied with the Warsaw’se decision ... ”
⟨d , em, ej⟩ → neg
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10 / 58



Sentiment Analysis Task Evolution
Evolution of Models

Data and Finetunning Advances
Applications

Rule-Based
Conventional Classifiers
Neural Networks and Embeddings
Attention
Language Models

Evolution of Models

11 / 58



Sentiment Analysis Task Evolution
Evolution of Models

Data and Finetunning Advances
Applications

Rule-Based
Conventional Classifiers
Neural Networks and Embeddings
Attention
Language Models

Approach in Large Document Sentiment Analysis

Contexts as the main idea1

Retrieval of attitudes – pos and neg labeling among a set neutrally
labeled contexts

Prediction:
Structured output: Text Classification
Non-structured output: Text Generation

1 Assumption: a relatively short distance between entities in the text
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Rule-Based Annotation

Patterns for classification:
Emoticons[1], matching words or phrases.

Any algorithm which allows you to perform this annotation.

PROS: fast2, minimal amount of RAM to launch
CONS: data dynamics

2 Relatively in comparison with further methods
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Conventional Classifiers

Documents as vectors
NB, SVM, Random Forest,
kNN.
We can adopt different kernels
(for the non-linear
transformations)
Every word has a scalar value:
Bag-Of-Words

PROS: all text as vector, update.
CONS: no connection between
words, vectors sparsity
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Neural Networks (NN) (I)

Words as vectors, or embeddings:
One-hot vector model

[0 · · · 0, 1, 0 · · · 0]

Classification: o = W · s + b

Views of input:
Windowed (Convolutional NN)
Sequential (Recurrent NN)

PROS: non-linear transformations
CONS: How to establish
connection?
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Embeddings

Raw documents could be a source
of words in contexts[4]

PROS: attempt of domain/general
knowledge sharing for AI models,
replacement of BoW
CONS: time and resources for
training on large data

[d] Tomas Mikolov et al. “Efficient esti-
mation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781
(2013).

16 / 58



Sentiment Analysis Task Evolution
Evolution of Models

Data and Finetunning Advances
Applications

Rule-Based
Conventional Classifiers
Neural Networks and Embeddings
Attention
Language Models

Neural Networks with Embeddings

Figure: CNN, Convolution
Figure: RNN/LSTM Cell

CONS: limit of window, forgetting information, limit of input in
words/tokens
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Attention mechanism for Machine Translation (MT)

Mechanism for assessing weights of input information, originally for MT[5]

PROS: widely distributed in other NLP domains, including sentiment
analysis

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation
by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).
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Attention for Text Classification[6]

Figure: Weight calculation

[6] Nicolay Rusnachenko and Natalia Loukachevitch. “Studying Attention Models in Sen-
timent Attitude Extraction Task”. In: Proceedings of the 25th International Conference
on Natural Language and Information Systems. 2020. url: https://doi.org/10.1007/
978-3-030-51310-8_15.
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Self-Attention

Proposed for the Machine Translation problem[7]

PROS: Affect on other NLP tasks with different conception of models
training, knowledge about language
CONS: Computation cost O(N2), where N is an input sequence length

[7] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).
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BERT for text classification[8]

Pre-training on large amount of data
gives us a deep generalized
understanding of the language, or
language model.
Text classification: FC-layer
application towards the averaged
embedded vectors
Variations: RoBERTa, DistilBERT

PROS: Backbone with general knowledge
CONS: Input limitation of 512 tokens

[8] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).
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Long-Range Input Transformers

Main limitation for input X ∈ RN :
O(N2) original self-attention[7] computation complexity;

Solution:
1 Sparse self-attention[9][10]: ETC, Longformer
2 #1 with Global Attention

[9] Iz Beltagy, Matthew E Peters, and Arman Cohan. “Longformer: The long-document
transformer”. In: arXiv preprint arXiv:2004.05150 (2020).
[10] Joshua Ainslie et al. “ETC: Encoding long and structured inputs in transformers”.
In: arXiv preprint arXiv:2004.08483 (2020).
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Relative Position Encoding

BERT[8] exploits absolute position encoding
X ∈ RN . ETC proposes relative:
Now position is label li ,j of connection of
xi ∈ X with other X
Distance clipping: k – limit window

lk outside after i ,

l−k outside radius k before i .

Result in aKl – learnable vectors of relative
positions
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Local Attention + Global[10]

nl – main input components: now windowed (sparsed)
ng – global input components (ng << nl)
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Evolution of the Long-Input Transformers
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Supervised Learning

By default for AI methods, we consider a training based on manually
annotated data by experts

PROS: Correct annotated data
CONS: Few samples, low resource domain
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Supervised Learning Experiments

Trumpe accused Chinae and Russiae of “playing devaluation of currencies”

(Trumpsubj, Chinaobj) → negative
(Trumpsubj, Russiaobj) → negative
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Supervised Learning Experiments

RuSentRel3: articles about Russia’s international relations

Documents 73
Sentences per document 105.8
Entities per document 247
pos and neg pairs per document 11.47

3 https://github.com/nicolay-r/RuSentRel/tree/v1.1
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RuSentRel[12] Supervised Learning Results, 3-fold cv

Model F1(P,N)

SentRuBERT 33.4
AttPCNNends 29.9
PCNN 29.6
Experts agreement 55.0

For MPQA-3.0, F1 = 36.0[11]

[11] Eunsol Choi et al. “Document-level sentiment inference with social, faction, and
discourse context”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2016, pp. 333–343.
[12] Nicolay Rusnachenko. “Language Models Application in Sentiment Attitude Extrac-
tion Task”. Russian. In: Proceedings of the Institute for System Programming of the
RAS (Proceedings of ISP RAS), vol.33. 3. 2021, pp. 199–222.
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Unsupervised Learning / Distant Supervision

Using external knowledge with rule-based or AI pre-trained methods to
perform annotation.

PROS: Quick data annotation for further fine-tuning
CONS: Noisy labeling
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Distant Supervision Application

Main assumption: news title has a simple structure.

Distant supervision performed in two steps[13]:
1 Collect the list A of the most-sentiment attitudes (subject → object)

from news titles using frame A0→A1 polarity across all news titles
2 Filter news titles and sentences, which contains at least one pair with

A0→A1 score as in A

[13] Nicolay Rusnachenko, Natalia Loukachevitch, and Elena Tutubalina. “Distant super-
vision for sentiment attitude extraction”. In: Proceedings of the International Conference
on Recent Advances in Natural Language Processing (RANLP 2019). 2019, pp. 1022–
1030.
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Datasets

RuAttitudes – automatically marked up collection of texts using the
Distant Supervision approach over a large amount of mass-media short
news per 2017 year.

Documents 134442
Attitudes per document 2.26
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RuSentRel[12] distant-supervision results, 3-fold cv

Model F1(P,N)

SentRuBERT (pretrain + ft) 37.9
AttPCNNends 32.2
SentRuBERT 33.4
AttPCNNends 29.9
PCNN 29.6
Experts agreement 55.0
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Prompts, prompts, prompts!

Provide additional information that mimicking the expected class or region
of text to consider.

Predefined template: QA, NLI
Sequence of words mimicking the class[14]

With abstract tokens serializing a particular task[15]

[14] Taylor Shin et al. “Autoprompt: Eliciting knowledge from language models with
automatically generated prompts”. In: arXiv preprint arXiv:2010.15980 (2020).
[15] Xiang Lisa Li and Percy Liang. “Prefix-tuning: Optimizing continuous prompts for
generation”. In: arXiv preprint arXiv:2101.00190 (2021).
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BERT with prompts[16]

Input sequences:
TextA: Input context terms
TextB: (Optional), as prompt:
E subj towards E obj in « E subj ... E obj » is NEG

Context labeling: FC-layer application
towards the averaged embedded vectors

[16] Chi Sun, Luyao Huang, and Xipeng Qiu. “Utilizing BERT for aspect-based sentiment
analysis via constructing auxiliary sentence”. In: arXiv preprint arXiv:1903.09588 (2019).
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RuSentRel[12] distant-supervision results, 3-fold cv

Model F1(P,N)

SentRuBERT (pretrain + ft) + NLIprompt 39.0
SentRuBERT (pretrain + ft) 37.9
AttPCNNends 32.2
SentRuBERT 33.4
AttPCNNends 29.9
PCNN 29.6
Experts agreement 55.0

Official RuSentRel leaderboard
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Large Language Models

38 / 58



Sentiment Analysis Task Evolution
Evolution of Models

Data and Finetunning Advances
Applications

Supervised Learning
Distant Supervision
Prompting for fine

39 / 58



Sentiment Analysis Task Evolution
Evolution of Models

Data and Finetunning Advances
Applications

Supervised Learning
Distant Supervision
Prompting for fine

Targeted Sentiment Analysis Task[17]

RuSentNE-20234.
Texts in Russian
Texts represent sentences with mentioned objects in it.
Volume: ≈ 6 × 103 Train, 3 × 103 Validation, 2 × 103 Test

4 https://codalab.lisn.upsaclay.fr/competitions/9538#results
[17] Anton Golubev, Nicolay Rusnachenko, and Natalia Loukachevitch. “RuSentNE-2023:
Evaluating Entity-Oriented Sentiment Analysis on Russian News Texts”. In: Computa-
tional Linguistics and Intellectual Technologies: papers from the Annual conference “Di-
alogue” (arxiv:2305.17679. 2023.
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Zero-Shot[18]

Providing no information except the instruction to the model in a form of
the textual prompt:

What is the attitude of the sentence s to the target t?
Select one from: positive, negative, neutral

PROS: No need training
CONS: Lack of context / Misunderstanding / Hallucinations

[18] Bowen Zhang, Daijun Ding, and Liwen Jing. “How would Stance Detection Tech-
niques Evolve after the Launch of ChatGPT?”. In: arXiv preprint arXiv:2212.14548 (2022).
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Translate text in English!5

Model Language F1(P,N)-m
Mistral-Instruct-7B-v0.1 en 49.56
GPT-3.5-turbo-0613-en en 49.36
GPT-3.5-turbo-1106-en en 48.00
Mistral-Instruct-7B-v0.2 ru 46.98
GPT-3.5-turbo-0613-ru ru 45.97
Mistral-Instruct-7B-v0.2 en 45.62
GPT-4-1106-preview ru 45.42
Mixtral-8x-7B-Q2-offload en 42.78
DeciLM-7B en 42.61
FLAN-T5-xxl en 42.47
LLaMA2-13B en 41.39
GPT-3.5-turbo-1106 ru 38.88
Microsoft/Phi-2 en 37.26
Mistral-Instruct-7B-v0.1-Saiga ru 37.14

5 googletrans Python package as an example.
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Result Analysis

Example 1.
One of Sweden’s most famous actors died in a fire.

Example 2.
The famous musician lost consciousness at a concert.

Example 3.
The legendary Chuck Berry passed out at a concert.

Common mistakes: models classify these cases as negative, while author
sympathies and therefore is likely has a positive opinion!
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Zero-Shot Chain-of-Thoughts[19]

PROS: No need training
CONS: Increase of inference time

[19] Takeshi Kojima et al. Large Language Models are Zero-Shot Reasoners. 2023. arXiv:
2205.11916 [cs.CL].
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Zero-Shot Chain-of-Thoughts

Results on RuSentNE-20236:

Model F1(P,N)-m
Zero-Shot
Mistral-Instruct-7B-v0.1 49.56
Flan-T5-xl 35.35
Zero-Shot Chain-of-Thoughts
Mistral-Instruct-7B 46.70
FLAN-T5-xl 35.39

Conclusion: The straightaway application of the concept with Let’s think
step-by-step won’t be effective in Sentiment Analysis!

6 Texts were automatically translated in English
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THoR: CoT for Implicit Sentiments[20]

Three-Hop Reasoning for Sentiment:

t denotes target, while a is the aspect

[20] Fei Hao et al. “Reasoning Implicit Sentiment with Chain-of-Thought Prompting”.
In: Proceedings of the Annual Meeting of the Association for Computational Linguistics.
2023, pp. 1171–1182.
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CoT for Implicit Sentiments

Experiment: Fine tuning Flan-T5 on RuSentNE-2023 training data.
Results on RuSentNE-20237:

Model F1(P,N)-m
THoR Tuning
Flan-T5-large 62.29
Flan-T5-base 59.75
Fine-Tuning
Flan-T5-large 60.80
Flan-T5-base 57.01
Zero-shot
Mistral-Instruct-7B-v0.1 49.56
GPT-3.5-turbo-0613-en 49.36
GPT-3.5-turbo-1106-en
Mistral-Instruct-7B-v0.2 46.98
Flan-T5-xl 35.35

7 Expriemnts with texts, automatically translated in English
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Conclusion

The informative analysis of the large Mass-media texts is a granular
analysis:

Text Classification → Targeted Sentiment Analysis → Aspect-based
Analysis → Attitude Extraction

Attitude extraction is considered as text classification problem of small
text parts8

The latest advances is self-attention which lead us to transformers that
can memorize information from massive amount of the pretrained texts

8 Generative transformers with the largest input of 16K tokens.
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Conclusion

Rule-based
Linear classifiers + features
Neural Networks + embedding + attention + features
Language Models9 prompting

BERT / Long input Language Models
Large Language Models

Zero-Shot Language Models

Chain-of-Thoughts for Language Models

The crucial part of optimizations are prompts[21] ...
early in a form of features and later closer to

output clarification
9 Even fine-tuned Transformer classifier may outperform LLM
[21] Shuofei Qiao et al. “Reasoning with Language Model Prompting: A Survey”. In:
arXiv preprint arXiv:2212.09597 (2022).
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Not mentioned but Recommended

Parameterized fine-tunning (PEFT)
Lost in the Middle10

10 https://arxiv.org/pdf/2307.03172.pdf
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Application #1: Pipelines for large collection processing

AREkit – Document level Attitude and Relation
Extraction toolkit for sampling mass-media news into
datasets for your ML-model training and evaluation

github.com/AREkit
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Application #2: Granular View of Sentiment Relations

AREkit – granular viewer for sentiments in large texts and
mass-media collections

github.com/ARElight
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Sentiment Attitude Extraction

Input:
1 Collection of analytical articles ⟨Di ,Ei ⟩ (in Russian)

Each article includes: document Di , list of mentioned named entities Ei

2 For synonymous mentions: given a collection of synonyms:
Russiae , RFe , Russian Federatione

Task: For each Di complete the list of sentiment attitudes (pairs
⟨ei , ej , li ,j⟩)[22], with label li ,j ∈ {pos, neg}

[22] Natalia Loukachevitch and Nicolay Rusnachenko. “Extracting sentiment attitudes
from analytical texts”. In: Proceedings of International Conference on Computational Lin-
guistics and Intellectual Technologies Dialogue-2018 (arXiv:1808.08932) (2018), pp. 459–
468.
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Distant Supervision Experiments

1 News collection: Russian articles from mass-media sources (8.8M);
2 Knowledge Base RuSentiFrames11: describes sentiment association,

conveyed by predicate in a form of a verb on noun (311 frames)
roles: A0 (agent), A1 (theme);
dimensions: authors attitude towards the participants mentioned in
text; polarity – score between participants;

Frame (bragging) Description
entries bragging, boasting
roles A0: those who bragging

A1: the object of bragging
polarity A0→A1, pos

author→A0, neg

11 https://github.com/nicolay-r/RuSentiFrames
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Example of the Distant-Supervision Technique

Title
Tillersone : USAe won’t remove sanctionsneg from Russiae before the return
of Crimeae

↓ USA→Russianeg , USA→Crimeaneg
Most sentiment attitudes

Query Search results
USA→Russianegpair found, scores match; pos: 32%,

neg: 68%
USA→Crimeanegpair not found

↓ USA→Russianeg
Sentence

Secretary of State USAe Rex Tillersone , speaking in Brusselse at a meeting
Foreigne heads of NATOe affiliates stated that the sanctions from Russianse
will only be removed after the return of Crimeae , according to CNNe .
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Zero-Shot

Illustrates state-of-the art results in zero-short learning![18]

We use the following prompt template (NLI format)12:

Input
What’s the attitude of the sentence “[S]” from “[X]” to the target “[Y]”.
positive or negative.

12
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ChatGPT Results

Model F1(P,N)

ChatGPT13 37.7
SentRuBERT (pretrain + ft) + NLIprompt 39.0
SentRuBERT (pretrain + ft) 37.9
AttPCNNends 32.2
SentRuBERT 33.4
· · ·

Official RuSentRel leaderboard

13 We did not examine RuSentRel with the provided ChatGPT explanations
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