# # # Nim's Runtime Library # (c) Copyright 2011 Alexander Mitchell-Robinson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## :Author: Alexander Mitchell-Robinson (Amrykid) ## ## This module implements operations for the built-in `seq`:idx: type which ## were inspired by functional programming languages. ## ## For functional style programming you may want to pass `anonymous procs ## `_ to procs like ``filter`` to ## reduce typing. Anonymous procs can use `the special do notation ## `_ ## which is more convenient in certain situations. include "system/inclrtl" import macros when not defined(nimhygiene): {.pragma: dirty.} macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped = ## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple ## substitution in macro arguments such as ## https://github.com/nim-lang/Nim/issues/7187 ## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp`` ## except when ``letAssigneable`` is false (eg to handle openArray) where ## it just forwards ``exp`` unchanged expectKind(expAlias, nnkIdent) var val = exp result = newStmtList() # If `exp` is not a symbol we evaluate it once here and then use the temporary # symbol as alias if exp.kind != nnkSym and letAssigneable: val = genSym() result.add(newLetStmt(val, exp)) result.add( newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)], body = val, procType = nnkTemplateDef)) proc concat*[T](seqs: varargs[seq[T]]): seq[T] = ## Takes several sequences' items and returns them inside a new sequence. ## ## Example: ## ## .. code-block:: ## let ## s1 = @[1, 2, 3] ## s2 = @[4, 5] ## s3 = @[6, 7] ## total = concat(s1, s2, s3) ## assert total == @[1, 2, 3, 4, 5, 6, 7] var L = 0 for seqitm in items(seqs): inc(L, len(seqitm)) newSeq(result, L) var i = 0 for s in items(seqs): for itm in items(s): result[i] = itm inc(i) proc count*[T](s: openArray[T], x: T): int = ## Returns the number of occurrences of the item `x` in the container `s`. ## ## Example: ## ## .. code-block:: ## let ## s = @[1, 2, 2, 3, 2, 4, 2] ## c = count(s, 2) ## assert c == 4 for itm in items(s): if itm == x: inc result proc cycle*[T](s: openArray[T], n: Natural): seq[T] = ## Returns a new sequence with the items of the container `s` repeated ## `n` times. ## ## Example: ## ## .. code-block:: ## ## let ## s = @[1, 2, 3] ## total = s.cycle(3) ## assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] result = newSeq[T](n * s.len) var o = 0 for x in 0 ..< n: for e in s: result[o] = e inc o proc repeat*[T](x: T, n: Natural): seq[T] = ## Returns a new sequence with the item `x` repeated `n` times. ## ## Example: ## ## .. code-block:: ## ## let ## total = repeat(5, 3) ## assert total == @[5, 5, 5] result = newSeq[T](n) for i in 0 ..< n: result[i] = x proc deduplicate*[T](s: openArray[T]): seq[T] = ## Returns a new sequence without duplicates. ## ## Example: ## ## .. code-block:: ## let ## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] ## dup2 = @["a", "a", "c", "d", "d"] ## unique1 = deduplicate(dup1) ## unique2 = deduplicate(dup2) ## assert unique1 == @[1, 3, 4, 2, 8] ## assert unique2 == @["a", "c", "d"] result = @[] for itm in items(s): if not result.contains(itm): result.add(itm) proc zip*[S, T](s1: openArray[S], s2: openArray[T]): seq[tuple[a: S, b: T]] = ## Returns a new sequence with a combination of the two input containers. ## ## For convenience you can access the returned tuples through the named ## fields `a` and `b`. If one container is shorter, the remaining items in ## the longer container are discarded. ## ## Example: ## ## .. code-block:: ## let ## short = @[1, 2, 3] ## long = @[6, 5, 4, 3, 2, 1] ## words = @["one", "two", "three"] ## zip1 = zip(short, long) ## zip2 = zip(short, words) ## assert zip1 == @[(1, 6), (2, 5), (3, 4)] ## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] ## assert zip1[2].b == 4 ## assert zip2[2].b == "three" var m = min(s1.len, s2.len) newSeq(result, m) for i in 0 ..< m: result[i] = (s1[i], s2[i]) proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = ## Splits and distributes a sequence `s` into `num` sub sequences. ## ## Returns a sequence of `num` sequences. For some input values this is the ## inverse of the `concat <#concat>`_ proc. The proc will assert in debug ## builds if `s` is nil or `num` is less than one, and will likely crash on ## release builds. The input sequence `s` can be empty, which will produce ## `num` empty sequences. ## ## If `spread` is false and the length of `s` is not a multiple of `num`, the ## proc will max out the first sub sequences with ``1 + len(s) div num`` ## entries, leaving the remainder of elements to the last sequence. ## ## On the other hand, if `spread` is true, the proc will distribute evenly ## the remainder of the division across all sequences, which makes the result ## more suited to multithreading where you are passing equal sized work units ## to a thread pool and want to maximize core usage. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 2, 3, 4, 5, 6, 7] ## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] ## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] ## assert numbers.distribute(6)[0] == @[1, 2] ## assert numbers.distribute(6)[5] == @[7] if num < 2: result = @[s] return let num = int(num) # XXX probably only needed because of .. bug # Create the result and calculate the stride size and the remainder if any. result = newSeq[seq[T]](num) var stride = s.len div num first = 0 last = 0 extra = s.len mod num if extra == 0 or spread == false: # Use an algorithm which overcounts the stride and minimizes reading limits. if extra > 0: inc(stride) for i in 0 ..< num: result[i] = newSeq[T]() for g in first ..< min(s.len, first + stride): result[i].add(s[g]) first += stride else: # Use an undercounting algorithm which *adds* the remainder each iteration. for i in 0 ..< num: last = first + stride if extra > 0: extra -= 1 inc(last) result[i] = newSeq[T]() for g in first ..< last: result[i].add(s[g]) first = last proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}): seq[S]{.inline.} = ## Returns a new sequence with the results of `op` applied to every item in ## the container `s`. ## ## Since the input is not modified you can use this version of ``map`` to ## transform the type of the elements in the input container. ## ## Example: ## ## .. code-block:: nim ## let ## a = @[1, 2, 3, 4] ## b = map(a, proc(x: int): string = $x) ## assert b == @["1", "2", "3", "4"] newSeq(result, s.len) for i in 0 ..< s.len: result[i] = op(s[i]) proc map*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) {.deprecated.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that this version of ``map`` requires your input and output types to ## be the same, since they are modified in-place. ## ## Example: ## ## .. code-block:: nim ## var a = @["1", "2", "3", "4"] ## echo repr(a) ## # --> ["1", "2", "3", "4"] ## map(a, proc(x: var string) = x &= "42") ## echo repr(a) ## # --> ["142", "242", "342", "442"] ## **Deprecated since version 0.12.0:** Use the ``apply`` proc instead. for i in 0 ..< s.len: op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) {.inline.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that this requires your input and output types to ## be the same, since they are modified in-place. ## The parameter function takes a ``var T`` type parameter. ## ## Example: ## ## .. code-block:: nim ## var a = @["1", "2", "3", "4"] ## echo repr(a) ## # --> ["1", "2", "3", "4"] ## apply(a, proc(x: var string) = x &= "42") ## echo repr(a) ## # --> ["142", "242", "342", "442"] ## for i in 0 ..< s.len: op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.}) {.inline.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that this requires your input and output types to ## be the same, since they are modified in-place. ## The parameter function takes and returns a ``T`` type variable. ## ## Example: ## ## .. code-block:: nim ## var a = @["1", "2", "3", "4"] ## echo repr(a) ## # --> ["1", "2", "3", "4"] ## apply(a, proc(x: string): string = x & "42") ## echo repr(a) ## # --> ["142", "242", "342", "442"] ## for i in 0 ..< s.len: s[i] = op(s[i]) iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T = ## Iterates through a container and yields every item that fulfills the ## predicate. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 4, 5, 8, 9, 7, 4] ## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): ## echo($n) ## # echoes 4, 8, 4 in separate lines for i in 0 ..< s.len: if pred(s[i]): yield s[i] proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T] {.inline.} = ## Returns a new sequence with all the items that fulfilled the predicate. ## ## Example: ## ## .. code-block:: ## let ## colors = @["red", "yellow", "black"] ## f1 = filter(colors, proc(x: string): bool = x.len < 6) ## f2 = filter(colors) do (x: string) -> bool : x.len > 5 ## assert f1 == @["red", "black"] ## assert f2 == @["yellow"] result = newSeq[T]() for i in 0 ..< s.len: if pred(s[i]): result.add(s[i]) proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.}) {.inline.} = ## Keeps the items in the passed sequence if they fulfilled the predicate. ## Same as the ``filter`` proc, but modifies the sequence directly. ## ## Example: ## ## .. code-block:: ## var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] ## keepIf(floats, proc(x: float): bool = x > 10) ## assert floats == @[13.0, 12.5, 10.1] var pos = 0 for i in 0 ..< len(s): if pred(s[i]): if pos != i: shallowCopy(s[pos], s[i]) inc(pos) setLen(s, pos) proc delete*[T](s: var seq[T]; first, last: Natural) = ## Deletes in `s` the items at position `first` .. `last`. This modifies ## `s` itself, it does not return a copy. ## ## Example: ## ##.. code-block:: ## let outcome = @[1,1,1,1,1,1,1,1] ## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] ## dest.delete(3, 8) ## assert outcome == dest var i = first var j = last+1 var newLen = len(s)-j+i while i < newLen: s[i].shallowCopy(s[j]) inc(i) inc(j) setLen(s, newLen) proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) = ## Inserts items from `src` into `dest` at position `pos`. This modifies ## `dest` itself, it does not return a copy. ## ## Example: ## ##.. code-block:: ## var dest = @[1,1,1,1,1,1,1,1] ## let ## src = @[2,2,2,2,2,2] ## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] ## dest.insert(src, 3) ## assert dest == outcome var j = len(dest) - 1 var i = len(dest) + len(src) - 1 dest.setLen(i + 1) # Move items after `pos` to the end of the sequence. while j >= pos: dest[i].shallowCopy(dest[j]) dec(i) dec(j) # Insert items from `dest` into `dest` at `pos` inc(j) for item in src: dest[j] = item inc(j) template filterIt*(s, pred: untyped): untyped = ## Returns a new sequence with all the items that fulfilled the predicate. ## ## Unlike the `proc` version, the predicate needs to be an expression using ## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``. ## ## Example: ## ## .. code-block:: ## let ## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] ## acceptable = filterIt(temperatures, it < 50 and it > -10) ## notAcceptable = filterIt(temperatures, it > 50 or it < -10) ## assert acceptable == @[-2.0, 24.5, 44.31] ## assert notAcceptable == @[-272.15, 99.9, -113.44] var result = newSeq[type(s[0])]() for it {.inject.} in items(s): if pred: result.add(it) result template keepItIf*(varSeq: seq, pred: untyped) = ## Convenience template around the ``keepIf`` proc to reduce typing. ## ## Unlike the `proc` version, the predicate needs to be an expression using ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``. ## ## Example: ## ## .. code-block:: ## var candidates = @["foo", "bar", "baz", "foobar"] ## keepItIf(candidates, it.len == 3 and it[0] == 'b') ## assert candidates == @["bar", "baz"] var pos = 0 for i in 0 ..< len(varSeq): let it {.inject.} = varSeq[i] if pred: if pos != i: shallowCopy(varSeq[pos], varSeq[i]) inc(pos) setLen(varSeq, pos) proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool = ## Iterates through a container and checks if every item fulfills the ## predicate. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 4, 5, 8, 9, 7, 4] ## assert all(numbers, proc (x: int): bool = return x < 10) == true ## assert all(numbers, proc (x: int): bool = return x < 9) == false for i in s: if not pred(i): return false return true template allIt*(s, pred: untyped): bool = ## Checks if every item fulfills the predicate. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 4, 5, 8, 9, 7, 4] ## assert allIt(numbers, it < 10) == true ## assert allIt(numbers, it < 9) == false var result = true for it {.inject.} in items(s): if not pred: result = false break result proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool = ## Iterates through a container and checks if some item fulfills the ## predicate. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 4, 5, 8, 9, 7, 4] ## assert any(numbers, proc (x: int): bool = return x > 8) == true ## assert any(numbers, proc (x: int): bool = return x > 9) == false for i in s: if pred(i): return true return false template anyIt*(s, pred: untyped): bool = ## Checks if some item fulfills the predicate. ## ## Example: ## ## .. code-block:: ## let numbers = @[1, 4, 5, 8, 9, 7, 4] ## assert anyIt(numbers, it > 8) == true ## assert anyIt(numbers, it > 9) == false var result = false for it {.inject.} in items(s): if pred: result = true break result template toSeq*(iter: untyped): untyped = ## Transforms any iterator into a sequence. ## ## Example: ## ## .. code-block:: ## let ## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9] ## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool: ## if x mod 2 == 1: ## result = true) ## assert odd_numbers == @[1, 3, 5, 7, 9] # Note: see also `mapIt` for explanation of some of the implementation # subtleties. when compiles(iter.len): block: evalOnceAs(iter2, iter, true) var result = newSeq[type(iter)](iter2.len) var i = 0 for x in iter2: result[i] = x inc i result else: var result: seq[type(iter)] = @[] for x in iter: result.add(x) result template foldl*(sequence, operation: untyped): untyped = ## Template to fold a sequence from left to right, returning the accumulation. ## ## The sequence is required to have at least a single element. Debug versions ## of your program will assert in this situation but release versions will ## happily go ahead. If the sequence has a single element it will be returned ## without applying ``operation``. ## ## The ``operation`` parameter should be an expression which uses the ## variables ``a`` and ``b`` for each step of the fold. Since this is a left ## fold, for non associative binary operations like subtraction think that ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - ## 3). ## ## Example: ## ## .. code-block:: ## let ## numbers = @[5, 9, 11] ## addition = foldl(numbers, a + b) ## subtraction = foldl(numbers, a - b) ## multiplication = foldl(numbers, a * b) ## words = @["nim", "is", "cool"] ## concatenation = foldl(words, a & b) ## assert addition == 25, "Addition is (((5)+9)+11)" ## assert subtraction == -15, "Subtraction is (((5)-9)-11)" ## assert multiplication == 495, "Multiplication is (((5)*9)*11)" ## assert concatenation == "nimiscool" let s = sequence assert s.len > 0, "Can't fold empty sequences" var result: type(s[0]) result = s[0] for i in 1.. 0, "Can't fold empty sequences" var result: type(s[0]) result = sequence[s.len - 1] for i in countdown(s.len - 2, 0): let a {.inject.} = s[i] b {.inject.} = result result = operation result template mapIt*(s, typ, op: untyped): untyped = ## Convenience template around the ``map`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. You also need to pass as `typ` the type of the expression, ## since the new returned sequence can have a different type than the ## original. ## ## Example: ## ## .. code-block:: ## let ## nums = @[1, 2, 3, 4] ## strings = nums.mapIt(string, $(4 * it)) ## assert strings == @["4", "8", "12", "16"] ## **Deprecated since version 0.12.0:** Use the ``mapIt(seq1, op)`` ## template instead. var result: seq[typ] = @[] for it {.inject.} in items(s): result.add(op) result template mapIt*(s: typed, op: untyped): untyped = ## Convenience template around the ``map`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. ## ## Example: ## ## .. code-block:: ## let ## nums = @[1, 2, 3, 4] ## strings = nums.mapIt($(4 * it)) ## assert strings == @["4", "8", "12", "16"] when defined(nimHasTypeof): type outType = typeof(( block: var it{.inject.}: typeof(items(s), typeOfIter); op), typeOfProc) else: type outType = type(( block: var it{.inject.}: type(items(s)); op)) when compiles(s.len): block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580 # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors # (`error: use of undeclared identifier`) instead of Nim compile errors evalOnceAs(s2, s, compiles((let _ = s))) var i = 0 var result = newSeq[outType](s2.len) for it {.inject.} in s2: result[i] = op i += 1 result else: var result: seq[outType] = @[] for it {.inject.} in s: result.add(op) result template applyIt*(varSeq, op: untyped) = ## Convenience template around the mutable ``apply`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. The expression has to return the same type as the sequence you ## are mutating. ## ## Example: ## ## .. code-block:: ## var nums = @[1, 2, 3, 4] ## nums.applyIt(it * 3) ## assert nums[0] + nums[3] == 15 for i in low(varSeq) .. high(varSeq): let it {.inject.} = varSeq[i] varSeq[i] = op template newSeqWith*(len: int, init: untyped): untyped = ## creates a new sequence, calling `init` to initialize each value. ## ## Example: ## ## .. code-block:: ## var seq2D = newSeqWith(20, newSeq[bool](10)) ## seq2D[0][0] = true ## seq2D[1][0] = true ## seq2D[0][1] = true ## ## import random ## var seqRand = newSeqWith(20, random(10)) ## echo seqRand var result = newSeq[type(init)](len) for i in 0 ..< len: result[i] = init result proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool; filter = nnkLiterals): NimNode = if constructor.kind in filter: result = newNimNode(nnkCall, lineInfoFrom=constructor) result.add op result.add constructor else: result = copyNimNode(constructor) for v in constructor: if nested or v.kind in filter: result.add mapLitsImpl(v, op, nested, filter) else: result.add v macro mapLiterals*(constructor, op: untyped; nested = true): untyped = ## applies ``op`` to each of the **atomic** literals like ``3`` ## or ``"abc"`` in the specified ``constructor`` AST. This can ## be used to map every array element to some target type: ## ## Example: ## ## .. code-block:: ## let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) ## doAssert x is array[4, int] ## ## Short notation for: ## ## .. code-block:: ## let x = [int(0.1), int(1.2), int(2.3), int(3.4)] ## ## If ``nested`` is true, the literals are replaced everywhere ## in the ``constructor`` AST, otherwise only the first level ## is considered: ## ## .. code-block:: ## mapLiterals((1, ("abc"), 2), float, nested=false) ## ## Produces:: ## ## (float(1), ("abc"), float(2)) ## ## There are no constraints for the ``constructor`` AST, it ## works for nested tuples of arrays of sets etc. result = mapLitsImpl(constructor, op, nested.boolVal) when isMainModule: import strutils # helper for testing double substitution side effects which are handled # by `evalOnceAs` var counter = 0 proc identity[T](a:T):auto= counter.inc a block: # concat test let s1 = @[1, 2, 3] s2 = @[4, 5] s3 = @[6, 7] total = concat(s1, s2, s3) assert total == @[1, 2, 3, 4, 5, 6, 7] block: # count test let s1 = @[1, 2, 3, 2] s2 = @['a', 'b', 'x', 'a'] a1 = [1, 2, 3, 2] a2 = ['a', 'b', 'x', 'a'] r0 = count(s1, 0) r1 = count(s1, 1) r2 = count(s1, 2) r3 = count(s2, 'y') r4 = count(s2, 'x') r5 = count(s2, 'a') ar0 = count(a1, 0) ar1 = count(a1, 1) ar2 = count(a1, 2) ar3 = count(a2, 'y') ar4 = count(a2, 'x') ar5 = count(a2, 'a') assert r0 == 0 assert r1 == 1 assert r2 == 2 assert r3 == 0 assert r4 == 1 assert r5 == 2 assert ar0 == 0 assert ar1 == 1 assert ar2 == 2 assert ar3 == 0 assert ar4 == 1 assert ar5 == 2 block: # cycle tests let a = @[1, 2, 3] b: seq[int] = @[] c = [1, 2, 3] doAssert a.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3] doAssert a.cycle(0) == @[] #doAssert a.cycle(-1) == @[] # will not compile! doAssert b.cycle(3) == @[] doAssert c.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3] doAssert c.cycle(0) == @[] block: # repeat tests assert repeat(10, 5) == @[10, 10, 10, 10, 10] assert repeat(@[1,2,3], 2) == @[@[1,2,3], @[1,2,3]] assert repeat([1,2,3], 2) == @[[1,2,3], [1,2,3]] block: # deduplicates test let dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] dup2 = @["a", "a", "c", "d", "d"] dup3 = [1, 1, 3, 4, 2, 2, 8, 1, 4] dup4 = ["a", "a", "c", "d", "d"] unique1 = deduplicate(dup1) unique2 = deduplicate(dup2) unique3 = deduplicate(dup3) unique4 = deduplicate(dup4) assert unique1 == @[1, 3, 4, 2, 8] assert unique2 == @["a", "c", "d"] assert unique3 == @[1, 3, 4, 2, 8] assert unique4 == @["a", "c", "d"] block: # zip test let short = @[1, 2, 3] long = @[6, 5, 4, 3, 2, 1] words = @["one", "two", "three"] ashort = [1, 2, 3] along = [6, 5, 4, 3, 2, 1] awords = ["one", "two", "three"] zip1 = zip(short, long) zip2 = zip(short, words) zip3 = zip(ashort, along) zip4 = zip(ashort, awords) zip5 = zip(ashort, words) assert zip1 == @[(1, 6), (2, 5), (3, 4)] assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] assert zip3 == @[(1, 6), (2, 5), (3, 4)] assert zip4 == @[(1, "one"), (2, "two"), (3, "three")] assert zip5 == @[(1, "one"), (2, "two"), (3, "three")] assert zip1[2].b == 4 assert zip2[2].b == "three" assert zip3[2].b == 4 assert zip4[2].b == "three" assert zip5[2].b == "three" block: # distribute tests let numbers = @[1, 2, 3, 4, 5, 6, 7] doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] doAssert numbers.distribute(6)[0] == @[1, 2] doAssert numbers.distribute(6)[5] == @[7] let a = @[1, 2, 3, 4, 5, 6, 7] doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]] doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]] doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]] doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]] doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]] doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]] doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]] doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]] doAssert a.distribute(6, false) == @[ @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]] doAssert a.distribute(8, false) == a.distribute(8, true) doAssert a.distribute(90, false) == a.distribute(90, true) var b = @[0] for f in 1 .. 25: b.add(f) doAssert b.distribute(5, true)[4].len == 5 doAssert b.distribute(5, false)[4].len == 2 block: # map test let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] m1 = map(numbers, proc(x: int): int = 2*x) m2 = map(anumbers, proc(x: int): int = 2*x) assert m1 == @[2, 8, 10, 16, 18, 14, 8] assert m2 == @[2, 8, 10, 16, 18, 14, 8] block: # apply test var a = @["1", "2", "3", "4"] apply(a, proc(x: var string) = x &= "42") assert a == @["142", "242", "342", "442"] block: # filter proc test let colors = @["red", "yellow", "black"] acolors = ["red", "yellow", "black"] f1 = filter(colors, proc(x: string): bool = x.len < 6) f2 = filter(colors) do (x: string) -> bool : x.len > 5 f3 = filter(acolors, proc(x: string): bool = x.len < 6) f4 = filter(acolors) do (x: string) -> bool : x.len > 5 assert f1 == @["red", "black"] assert f2 == @["yellow"] assert f3 == @["red", "black"] assert f4 == @["yellow"] block: # filter iterator test let numbers = @[1, 4, 5, 8, 9, 7, 4] let anumbers = [1, 4, 5, 8, 9, 7, 4] assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) == @[4, 8, 4] assert toSeq(filter(anumbers, proc (x: int): bool = x mod 2 == 0)) == @[4, 8, 4] block: # keepIf test var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] keepIf(floats, proc(x: float): bool = x > 10) assert floats == @[13.0, 12.5, 10.1] block: # delete tests let outcome = @[1,1,1,1,1,1,1,1] var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.delete(3, 8) assert outcome == dest, """\ Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1] is [1,1,1,1,1,1,1,1]""" block: # insert tests var dest = @[1,1,1,1,1,1,1,1] let src = @[2,2,2,2,2,2] outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.insert(src, 3) assert dest == outcome, """\ Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1] at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]""" block: # filterIt test let temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] acceptable = filterIt(temperatures, it < 50 and it > -10) notAcceptable = filterIt(temperatures, it > 50 or it < -10) assert acceptable == @[-2.0, 24.5, 44.31] assert notAcceptable == @[-272.15, 99.9, -113.44] block: # keepItIf test var candidates = @["foo", "bar", "baz", "foobar"] keepItIf(candidates, it.len == 3 and it[0] == 'b') assert candidates == @["bar", "baz"] block: # all let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert all(numbers, proc (x: int): bool = return x < 10) == true assert all(numbers, proc (x: int): bool = return x < 9) == false assert all(len0seq, proc (x: int): bool = return false) == true assert all(anumbers, proc (x: int): bool = return x < 10) == true assert all(anumbers, proc (x: int): bool = return x < 9) == false block: # allIt let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert allIt(numbers, it < 10) == true assert allIt(numbers, it < 9) == false assert allIt(len0seq, false) == true assert allIt(anumbers, it < 10) == true assert allIt(anumbers, it < 9) == false block: # any let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert any(numbers, proc (x: int): bool = return x > 8) == true assert any(numbers, proc (x: int): bool = return x > 9) == false assert any(len0seq, proc (x: int): bool = return true) == false assert any(anumbers, proc (x: int): bool = return x > 8) == true assert any(anumbers, proc (x: int): bool = return x > 9) == false block: # anyIt let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert anyIt(numbers, it > 8) == true assert anyIt(numbers, it > 9) == false assert anyIt(len0seq, true) == false assert anyIt(anumbers, it > 8) == true assert anyIt(anumbers, it > 9) == false block: # toSeq test let numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9] odd_numbers = toSeq(filter(numeric) do (x: int) -> bool: if x mod 2 == 1: result = true) assert odd_numbers == @[1, 3, 5, 7, 9] block: # tests https://github.com/nim-lang/Nim/issues/7187 counter = 0 let ret = toSeq(@[1, 2, 3].identity().filter(proc (x: int): bool = x < 3)) doAssert ret == @[1, 2] doAssert counter == 1 block: # foldl tests let numbers = @[5, 9, 11] addition = foldl(numbers, a + b) subtraction = foldl(numbers, a - b) multiplication = foldl(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldl(words, a & b) assert addition == 25, "Addition is (((5)+9)+11)" assert subtraction == -15, "Subtraction is (((5)-9)-11)" assert multiplication == 495, "Multiplication is (((5)*9)*11)" assert concatenation == "nimiscool" block: # foldr tests let numbers = @[5, 9, 11] addition = foldr(numbers, a + b) subtraction = foldr(numbers, a - b) multiplication = foldr(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldr(words, a & b) assert addition == 25, "Addition is (5+(9+(11)))" assert subtraction == 7, "Subtraction is (5-(9-(11)))" assert multiplication == 495, "Multiplication is (5*(9*(11)))" assert concatenation == "nimiscool" block: # mapIt + applyIt test counter = 0 var nums = @[1, 2, 3, 4] strings = nums.identity.mapIt($(4 * it)) doAssert counter == 1 nums.applyIt(it * 3) assert nums[0] + nums[3] == 15 assert strings[2] == "12" block: # newSeqWith tests var seq2D = newSeqWith(4, newSeq[bool](2)) seq2D[0][0] = true seq2D[1][0] = true seq2D[0][1] = true doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]] block: # mapLiterals tests let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) doAssert x is array[4, int] doAssert mapLiterals((1, ("abc"), 2), float, nested=false) == (float(1), "abc", float(2)) doAssert mapLiterals(([1], ("abc"), 2), `$`, nested=true) == (["1"], "abc", "2") block: # mapIt with openArray counter = 0 proc foo(x: openArray[int]): seq[int] = x.mapIt(it * 10) doAssert foo([identity(1),identity(2)]) == @[10, 20] doAssert counter == 2 block: # mapIt with direct openArray proc foo1(x: openArray[int]): seq[int] = x.mapIt(it * 10) counter = 0 doAssert foo1(openArray[int]([identity(1),identity(2)])) == @[10,20] doAssert counter == 2 # Corner cases (openArray litterals should not be common) template foo2(x: openArray[int]): seq[int] = x.mapIt(it * 10) counter = 0 doAssert foo2(openArray[int]([identity(1),identity(2)])) == @[10,20] # TODO: this fails; not sure how to fix this case # doAssert counter == 2 counter = 0 doAssert openArray[int]([identity(1), identity(2)]).mapIt(it) == @[1,2] # ditto # doAssert counter == 2 block: # mapIt empty test, see https://github.com/nim-lang/Nim/pull/8584#pullrequestreview-144723468 # NOTE: `[].mapIt(it)` is illegal, just as `let a = @[]` is (lacks type # of elements) doAssert: not compiles(mapIt(@[], it)) doAssert: not compiles(mapIt([], it)) doAssert newSeq[int](0).mapIt(it) == @[] block: # mapIt redifinition check, see https://github.com/nim-lang/Nim/issues/8580 let s2 = [1,2].mapIt(it) doAssert s2 == @[1,2] block: counter = 0 doAssert [1,2].identity().mapIt(it*2).mapIt(it*10) == @[20, 40] # https://github.com/nim-lang/Nim/issues/7187 test case doAssert counter == 1 block: # mapIt with invalid RHS for `let` (#8566) type X = enum A, B doAssert mapIt(X, $it) == @["A", "B"] block: # bug #9093 let inp = "a:b,c:d" let outp = inp.split(",").mapIt(it.split(":")) doAssert outp == @[@["a", "b"], @["c", "d"]] when not defined(testing): echo "Finished doc tests"