
FileInsight-plugins:
Decoding Toolbox of McAfee FileInsight Hex Editor
for Malware Analysis

Nobutaka Mantani

#BHUSA @BLACKHATEVENTS

#BHUSA @BLACKHATEVENTS 1 / 98

About the presenter

Nobutaka Mantani

• Government official

• Assistant director of Cyber Force Center, National Police Agency of Japan

• Experiences in cyber threat intelligence, malware analysis and digital forensics

• Open source software developer

• Member of FreeBSD Project (ports committer) since 2001

• Developer of FileInsight-plugins

• I love open source software!

#BHUSA @BLACKHATEVENTS 2 / 98

FileInsight-plugins

• Large set of plugins for McAfee FileInsight hex editor

• 115 plugins as of July 2021

• Useful for surface analysis and manual deobfuscation in malware analysis

• Development started in 2012

• Private project and developed at home (not a product of the Japanese government)

• GitHub repository: https://github.com/nmantani/FileInsight-plugins

https://github.com/nmantani/FileInsight-plugins

#BHUSA @BLACKHATEVENTS 3 / 98

FileInsight

• Free hex editor developed by McAfee, LLC

• Useful built-in functions

• Decoders (XOR, BASE64 and so on)

• Bookmarks

• File structure parser (HTML, OLE and PE)

• Scripting of Python 2 and JavaScript

• Extendable with Python plugins!

• https://www.mcafee.com/enterprise/en-us/downloads/free-tools/fileInsight.html

https://www.mcafee.com/enterprise/en-us/downloads/free-tools/fileInsight.html

#BHUSA @BLACKHATEVENTS 4 / 98

Pre-requisites and plugin architecture

• FileInsight

• Python 3 (x64)

• About 20 Python 3 modules

• Compression libraries

• aPLib and QuickLZ

• External tool

• ExifTool (as metadata parser)

FileInsight

Python 2

interpreter

Core plugin

code

execute

Python 3

interpreter

create

sub-process

Plugin code

depending on

Python 3 modules
execute

exchange data via pipe

#BHUSA @BLACKHATEVENTS 5 / 98

Installation

• Please execute this one-liner command and clicking “Yes” on UAC dialog a few

times:

• FileInsight-plugins and all pre-requisites will be installed

powershell -exec bypass -command "IEX((New-Object

Net.WebClient).DownloadString('https://raw.githubusercontent.com/nmantani/

FileInsight-plugins/master/install.ps1'))"

#BHUSA @BLACKHATEVENTS 6 / 98

How to use

• Please click "Operations" in the "Plugins" tab then choose a plugin from the menu

• Plugins can also be used from the right-click menu

Click

here

#BHUSA @BLACKHATEVENTS 7 / 98

How to use

• Some plugins show setting dialogs after choice

#BHUSA @BLACKHATEVENTS 8 / 98

Operation categories

• Plugins are categorized into nine operation categories

• Basic

• Compression

• Crypto

• Encoding

• Misc

• Parsing

• Search

• Visualization

• XOR

#BHUSA @BLACKHATEVENTS 9 / 98

Basic operations category

• Enhancements of basic editing functionality

• Copying a selected region as a new file

• Filling with specified hex pattern

• Inverting bits

• Swapping bytes / nibbles

• Converting to uppercase / lowercase

• and more

#BHUSA @BLACKHATEVENTS 10 / 98

Compression operations category

• 13 compression algorithms and formats are supported

* Deflate without zlib header and footer (equivalent to gzdeflate() in PHP language)

• aPLib

• Bzip2

• Deflate (zlib)

• Gzip

• LZ4

• LZMA

• LZNT1

• LZO

• PPMd

• QuickLZ

• Raw deflate (*)

• XZ

• Zstandard

#BHUSA @BLACKHATEVENTS 11 / 98

Crypto operations category

• Ten crypto algorithms are supported

• Five block cipher modes of operation are supported

• ECB, CBC, CFB, OFB, and CTR

• AES

• ARC2 (Alleged RC2)

• ARC4 (Alleged RC4)

• Blowfish

• ChaCha20

• DES

• Salsa20

• TEA

• Triple DES

• XTEA

#BHUSA @BLACKHATEVENTS 12 / 98

Encoding operations category

• Supported data formats

• Hex, decimal, octal, and binary text <-> binary data

• BASE16, BASE32, BASE58, BASE64, and BASE85 with custom table

• Protobuf (decode only)

• Quoted printable

• ROT13 (with variable shift amount)

• Unicode escape (formats of JavaScript, C, Python, PHP, PowerShell, and so on)

• URL encode

#BHUSA @BLACKHATEVENTS 13 / 98

Misc operations category

• Code emulation (explained in the next page)

• File comparison

• Bookmarking diffs and computing ssdeep similarity score

• Calculating hash values

• MD5, SHA1, SHA256, ssdeep, imphash, and impfuzzy

• Opening / processing data with external GUI / CUI tools

• The external tool menu is customizable with JSON config files

• Data can be processed with locally saved CyberChef (up to 12KB)

#BHUSA @BLACKHATEVENTS 14 / 98

“Emulate code” plugin

• Simple GUI front end of Qiling Framework (https://qiling.io/)

• Emulation of executable file and shellcode

• Tracing APIs and system calls

• Showing memory dumps with bookmarks

• Suitable for analyzing self-modifying shellcodes

• Supported OS and CPU architecture

• Windows (x64 and x86)

• Linux (x64, x86, ARM, ARM64, and MIPS)

IP address 10.0.0.1 is

deobfuscated

https://qiling.io/

#BHUSA @BLACKHATEVENTS 15 / 98

Parsing operations category

• Finding and bookmarking embedded files with binwalk

(https://github.com/ReFirmLabs/binwalk)

• Code disassembly with Capstone Engine (https://www.capstone-engine.org/)

• x64, x86, ARM, ARM64, MIPS, PowerPC, PowerPC64, and SPARC

• File type detection with python-magic (https://github.com/ahupp/python-magic)

• Parsing file structure (explained in the next page)

• Showing metadata with ExifTool (https://exiftool.org/)

• Strings with auto hex / BASE64 string decode

https://github.com/ReFirmLabs/binwalk
https://www.capstone-engine.org/
https://github.com/ahupp/python-magic
https://exiftool.org/

#BHUSA @BLACKHATEVENTS 16 / 98

“Parse file structure” plugin

• Attributes will be shown and bookmarked

• File parser Python modules are generated

with Kaitai Struct (https://kaitai.io/)

• Supported file formats

• Gzip, RAR, ZIP, ELF, Mach-O

• PE, MBR partition table

• BMP, GIF, JPEG, PNG

• Windows shortcut

https://kaitai.io/

#BHUSA @BLACKHATEVENTS 17 / 98

Search operations category

• Searching, replacing, and extracting with Python regular expression

• Bookmarking search hits

• Searching XORed and bit-rotated data

• Search keyword can be specified

with text or hex

• Scanning with YARA rule

• Bookmarking matched strings

#BHUSA @BLACKHATEVENTS 18 / 98

Visualization operations category

• Bitmap view

• Byte histogram

• Entropy graph

Bitmap view

Byte histogram

Entropy graph

#BHUSA @BLACKHATEVENTS 19 / 98

XOR operations category

• Guessing multibyte XOR keys based on revealed keys that are XORed with 0x00

• Rolling XOR (incrementing / decrementing XOR key)

• Null-preserving XOR

• XOR with next byte

• Visual encrypt / decrypt

(used by Zeus malware)

#BHUSA @BLACKHATEVENTS 20 / 98

Demo

#BHUSA @BLACKHATEVENTS 21 / 98

Demo 1

• Deobfuscation of PHP webshell

• Plugins used in this demo

• Encoding -> Custom base64 decode

• Encoding -> ROT13

• Compression -> Raw inflate

• Basic -> Copy to new file

• Misc -> Send to (CLI)

• Misc -> Send to (GUI)

#BHUSA @BLACKHATEVENTS 22 / 98

Method 1:

Using three plugins (Custom base64 decode, ROT13, Raw inflate)

#BHUSA @BLACKHATEVENTS 23 / 98

#BHUSA @BLACKHATEVENTS 24 / 98

If you do not modify this table,

the plugin works as normal BASE64 decode

#BHUSA @BLACKHATEVENTS 25 / 98

Modified region is bookmarked.

You can easily jump and select this

region by clicking the bookmark.

New tab is created for the

output of the plugin

#BHUSA @BLACKHATEVENTS 26 / 98

Bookmark

#BHUSA @BLACKHATEVENTS 27 / 98

#BHUSA @BLACKHATEVENTS 28 / 98

#BHUSA @BLACKHATEVENTS 29 / 98

#BHUSA @BLACKHATEVENTS 30 / 98

#BHUSA @BLACKHATEVENTS 31 / 98

#BHUSA @BLACKHATEVENTS 32 / 98

The PHP code is deobfuscated

#BHUSA @BLACKHATEVENTS 33 / 98

Method 2:

Replacing “eval” with “print” and executing as PHP code

“eval” is replaced with “print”

#BHUSA @BLACKHATEVENTS 34 / 98

#BHUSA @BLACKHATEVENTS 35 / 98

Executing PHP interpreter

This menu is customizable

with the JSON config file.

The config file can be opened

with default text editor by

clicking “Customize menu”.

#BHUSA @BLACKHATEVENTS 36 / 98

The PHP code is deobfuscated

#BHUSA @BLACKHATEVENTS 37 / 98

Method 3:

Processing data with CyberChef

#BHUSA @BLACKHATEVENTS 38 / 98

#BHUSA @BLACKHATEVENTS 39 / 98

Sending selected region

to locally saved CyberChef

#BHUSA @BLACKHATEVENTS 40 / 98

Selected region is imported

to CyberChef as hex string

#BHUSA @BLACKHATEVENTS 41 / 98

The PHP code is deobfuscated

#BHUSA @BLACKHATEVENTS 42 / 98

Demo 2

• Deobfuscation of embedded PE file

• RTF file that PE file is embedded and obfuscated with 256 byte XOR key

• Plugins used in this demo

• Visualization -> Bitmap view

• XOR -> Guess multibyte XOR keys

• Encoding -> Hex text to binary data

• Basic -> Copy to new file

• Misc -> Hash values

• Misc -> File type

• Parsing -> Parse file structure

• Misc -> Send to (GUI)

#BHUSA @BLACKHATEVENTS 43 / 98

#BHUSA @BLACKHATEVENTS 44 / 98

Suspicious binary data is appended to

this rich text file

#BHUSA @BLACKHATEVENTS 45 / 98

#BHUSA @BLACKHATEVENTS 46 / 98

The rich text file is visualized

with bitmap representation

Start of the suspicious binary data

#BHUSA @BLACKHATEVENTS 47 / 98

Copying the offset of start of the suspicious

binary data with right-click menu

(Unfortunately FileInsight does not provide

plugin API to control cursor position)

#BHUSA @BLACKHATEVENTS 48 / 98

Pasting the offset to “Go to” dialog

(it can be opened by hitting Ctrl-g

key)

#BHUSA @BLACKHATEVENTS 49 / 98

The binary data is appended from here

#BHUSA @BLACKHATEVENTS 50 / 98

Guessing XOR keys to deobfuscate

embedded files

#BHUSA @BLACKHATEVENTS 51 / 98

Guessed XOR keys and found files

#BHUSA @BLACKHATEVENTS 52 / 98

Extracting this XOR key as binary data to

see what values are contained in the key

#BHUSA @BLACKHATEVENTS 53 / 98

Converting from hex text

to binary data

#BHUSA @BLACKHATEVENTS 54 / 98

XOR key (256 bytes)

#BHUSA @BLACKHATEVENTS 55 / 98

1. Selecting the whole file

(hitting Ctrl-a key)

2. Pasting the XOR key (text)

3. Click “Decode”

Note:

If you use XOR function with multibyte XOR key, the key has to be entered

as little endian (for example: 0x44332211 for an XOR key “11 22 33 44”).

#BHUSA @BLACKHATEVENTS 56 / 98

Malware executable file is deobfuscated

#BHUSA @BLACKHATEVENTS 57 / 98

#BHUSA @BLACKHATEVENTS 58 / 98

Hash values of the file

#BHUSA @BLACKHATEVENTS 59 / 98

Parsing file structure

of the file

#BHUSA @BLACKHATEVENTS 60 / 98

#BHUSA @BLACKHATEVENTS 61 / 98

#BHUSA @BLACKHATEVENTS 62 / 98

List of attributes of the file

Attributes are bookmarked

#BHUSA @BLACKHATEVENTS 63 / 98

#BHUSA @BLACKHATEVENTS 64 / 98

Opening the file with PE-bear

#BHUSA @BLACKHATEVENTS 65 / 98

#BHUSA @BLACKHATEVENTS 66 / 98

Demo 3

• Deobfuscation with emulation of shellcode

• Powershell script that contains a self-modifying shellcode

• Plugins used in this demo

• Basic -> Copy to new file

• Encoding -> Custom base64 decode

• Parsing -> Disassemble

• Misc -> Emulate code

• Parsing -> Find PE file

• Searching -> YARA scan

#BHUSA @BLACKHATEVENTS 67 / 98

This BASE64 string will be decoded

and executed as PowerShell script

#BHUSA @BLACKHATEVENTS 68 / 98

Extracting the BASE64 string

#BHUSA @BLACKHATEVENTS 69 / 98

#BHUSA @BLACKHATEVENTS 70 / 98

#BHUSA @BLACKHATEVENTS 71 / 98

#BHUSA @BLACKHATEVENTS 72 / 98

This BASE64 string (shellcode) will be

decoded and executed on memory

#BHUSA @BLACKHATEVENTS 73 / 98

Extracting the BASE64 string

#BHUSA @BLACKHATEVENTS 74 / 98

#BHUSA @BLACKHATEVENTS 75 / 98

#BHUSA @BLACKHATEVENTS 76 / 98

#BHUSA @BLACKHATEVENTS 77 / 98

Shellcode

#BHUSA @BLACKHATEVENTS 78 / 98

#BHUSA @BLACKHATEVENTS 79 / 98

#BHUSA @BLACKHATEVENTS 80 / 98

End of disassembly

Disassembly code

#BHUSA @BLACKHATEVENTS 81 / 98

Deobfuscating malware executable file

in the shellcode with code emulation

#BHUSA @BLACKHATEVENTS 82 / 98

#BHUSA @BLACKHATEVENTS 83 / 98

Emulation trace

#BHUSA @BLACKHATEVENTS 84 / 98

Emulation is finished prematurelly due to

unimplemented API (GetModuleFileNameA)

of Qiling Framework

#BHUSA @BLACKHATEVENTS 85 / 98

Three memory regions are extracted

as memory dumps

#BHUSA @BLACKHATEVENTS 86 / 98

“This program cannot be run in DOS

mode.” is visible in Memory dump 0.

So malware executable file seems to be

deobfuscated.

However, “MZ” that should be at the

beginning of the file is missing.

#BHUSA @BLACKHATEVENTS 87 / 98

Manually adding “MZ”

#BHUSA @BLACKHATEVENTS 88 / 98

Using “Find PE file” plugin to find

the end of the executable file

#BHUSA @BLACKHATEVENTS 89 / 98

The file is Win32 DLL file and the

region of the file is bookmarked

based on PE header information

#BHUSA @BLACKHATEVENTS 90 / 98

Extracting the DLL file

#BHUSA @BLACKHATEVENTS 91 / 98

Opening a YARA rule file that

can detect Cobalt Strike beacon

#BHUSA @BLACKHATEVENTS 92 / 98

Extracted DLL file

#BHUSA @BLACKHATEVENTS 93 / 98

Scanning the DLL file

(New file 2) with the

YARA rule file

#BHUSA @BLACKHATEVENTS 94 / 98

List of the strings matched

with the YARA rules

#BHUSA @BLACKHATEVENTS 95 / 98

#BHUSA @BLACKHATEVENTS 96 / 98

The matched strings are

bookmarked

#BHUSA @BLACKHATEVENTS 97 / 98

Wrap-up

• FileInsight-plugins makes FileInsight hex editor super powerful!

• Useful for surface analysis and manual deobfuscation in malware analysis

• If you like it, please try it!

#BHUSA @BLACKHATEVENTS 98 / 98

Thank you!

This slide deck uses Twemoji licensed by Twitter, Inc. under the CC-BY 4.0.

https://twemoji.twitter.com/

https://github.com/nmantani/FileInsight-plugins

https://twemoji.twitter.com/
https://github.com/nmantani/FileInsight-plugins

