
Specification of ‘normal’ wind turbine operating behaviour for
rapid anomaly detection:

through the use of machine learning algorithms

Nithiya Mangala Streethran

25th August 2017

Last updated: 15th August 2021

ii

© 2017-2021 Nithiya Mangala Streethran

Email: nmstreethran@gmail.com

The contents of this document are licenced under a Creative Commons Attribution 4.0 Inter-
national (CC-BY-4.0) License.
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Abstract

Maximising the economic effectiveness of a wind farm is essential in making wind a more

economic source of energy. This effectiveness can be increased through the reduction of op-

eration and maintenance costs, which can be achieved through continuously monitoring the

condition of wind turbines. An alternative to expensive condition monitoring systems, which

can be uneconomical especially for older wind turbines, is to implement classification algo-

rithms on supervisory control and data acquisition (SCADA) signals, which are collected in

most wind turbines. Several publications were reviewed, which were all found to use separate

algorithms to predict specific faults in advance. In reality, wind turbines tend to have multiple

faults which may happen simultaneously and have correlations with one another. This project

focusses on developing a methodology to predict multiple wind turbine faults in advance si-

multaneously by implementing classification algorithms on SCADA signals for a wind farm

with 25 turbines rated at 2,500 kW, spanning a period of 30 months. The data, which included

measurements of wind speed, active power and pitch angle, was labelled using corresponding

downtime data to detect normal behaviour, faults and varying timescales before a fault occurs.

Three different classification algorithms, namely decision trees, random forests and k nearest

neighbours were tested using imbalanced and balanced training data, initially to optimise a

number of hyperparameters. The random forest classifier produced the best results. Upon

conducting a more detailed analysis on the performance of specific faults, it was found that

the classifier was unable to detect the varying timescales before a fault with accuracy com-

parable to that of normal or faulty behaviour. This could have been due to the SCADA data,

which are used as features, being unsuitable for detecting the faults, and there is potential to

improve this by balancing only these classes.

Keywords: wind turbine, classification algorithm, SCADA, fault detection, condition moni-

toring

iii

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

Background 1

Objectives 3

Outline 4

2 Methodology 5

Tools and datasets 5

Data processing 5

Classification 8

3 Results 12

Overall results 12

Performance of each turbine and label 14

Performance of each class 14

Feature importance 16

4 Discussion 17

Future work 19

5 Conclusion 21

Acknowledgements 22

References 23

A Pitch angle threshold 26

B Power before cut-in threshold 28

iv

v

C Results for random forest classifier 29

D Confusion matrices 32

E Python code 36

List of Figures

1 Changes to the power curve of turbine 2 with the fault points corresponding

to when the turbine category is 16 (‘tower’) through the two stages of filtering

out anomalous and curtailment points labelled as ‘normal’. The original power

curve is shown in 1a. The first stage involves a filter based on a pitch angle

threshold, which produces 1b. The second stage involves several additional

filters to produce the final power curve 1c. 9

2 Illustration of traditional cross-validation and time series split cross-validation,

both five-folds. In time series split, shown on the right, the order of data is

taken into account. 11

3 Number of neighbours, or k value for each turbine optimised based on the

average F1 score through five-fold cross-validation. The optimal k is 13 or less

for 17 turbines, and more than 100 for 5 turbines. 13

4 Bar chart showing the various turbine categories quantified by the downtime

frequency per turbine per year on the left, and downtime period, in hours, per

turbine per year on the right. This was plot using the downtime data. 15

5 Labelled power curve for turbine 1 with turbine category 10 (‘electrical sys-

tem’) through the two stages of filtering out anomalous and curtailment points

labelled as ‘normal’. The original power curve is shown in 5a. The first stage

involves a filter based on a pitch angle threshold, which produces 5b. The sec-

ond stage involves several additional filters to produce the final power curve

5c. 18

vi

List of Tables

1 Summary of SCADA fields for the SCADA data used in this project. The fields

include timestamps with a resolution of 10 minutes, average active power,

wind speed, pitch and runtime. The fields that contain measurements aver-

aged over the 10-minute period are highlighted in green. These measurements

can be used as features in machine learning as they are turbine properties. 6

2 Summary of fields for the downtime data used in this project. The fields in-

clude start and end timestamps for the downtime event, downtime categories,

workorders and alarms. 6

3 List of turbine categories in the wind farm downtime data. The categories used

as the different faults for labelling are highlighted in green. The others do not

indicate a fault. 7

4 Overall precision, recall and F1 scores for optimising hyperparameters for de-

cision trees and random forests, and k nearest neighbours. The mean and stan-

dard deviation are obtained by averaging all scores output by all turbines for

the optimal hyperparameter. The values are colour-coded to show better per-

formances (i.e., higher mean and lower standard deviation) in darker shades

and worse performances in lighter shades. 13

5 Time taken to run each classifier using imbalanced and balanced datasets for

the 30-month period. These timings are approximate as the RAM was not

utilised fully by the Python application due to other processes running in the

background, and the application had to be restarted a number of time due to

system crashes. 14

6 Feature importance for turbine categories 10 and 5 using random forests and

either imbalanced (I) or balanced (B) training data. The values are normalised

and colour-coded, transitioning from red (lower importance) to yellow (inter-

mediate) to green (higher importance). 16

vii

viii

chapter 1

Introduction

Background
There is a need to increase the economic effectiveness of wind turbines, which refers to the cost

to run them relative to the electricity generation, or revenue [1, 2]. Increasing this effective-

ness lowers the payback period of new wind turbines or farms, thus making wind a more eco-

nomic clean energy source, attracting governments and private organisations to make more

investments in wind projects [1]. It can, however, be decreased due to major component fail-

ure, frequent downtime, turbine degradation and age, which in turn increase the operation

and maintenance cost and decrease the energy generation efficiency of wind turbines [1, 3].

There are difficulties and high costs involved in carrying out maintenance on wind turbines,

especially for ones that operate in extreme and remote conditions, such as offshorewind farms,

where the turbines tend to also exist in larger numbers [3, 4].

Condition-based monitoring systems that continuously monitor wind turbine states in-

crease this effectiveness by significantly reducing the maintenance costs, reportedly by 20 %

to 25%̇, as it prevents unscheduled maintenance [2]. According to the Electric Power Research

Institute, reactive maintenance, which refers to running the turbine until it reaches failure,

has the highest cost, followed by preventive or scheduled maintenance, which is reported to

cost 24 % less [5]. Meanwhile, condition-based or predictive maintenance, which prevents

catastrophic failure, [1] is reported to save 47 % of the cost of reactive maintenance, [5] which

makes it the most cost-effective and preferred approach. Condition-based monitoring tech-

nologies include sensor-based oil and vibration analysis, which are useful for checking the oil

for properties such as temperature, and rotating equipment respectively [6]. These technolo-

gies, however, tend to put emphasis on the more expensive parts of a wind turbine such as

the gearbox [7] due to the high costs involved in the installation of these sensors [2, 6]. These

systems, which can be purchased from the turbine manufacturer, are usually pre-installed in

offshore wind turbines due to the harsh environments in which they operate. However, they

can be expensive [4] and uneconomical, especially for older wind turbines in onshore wind

1

2

farms, whose outputs are often less than that of an offshore wind farm.

An alternative would be to use SCADA-based analysis, where the only cost involved would

be computational and expensive sensors are not required [2, 4]. A SCADA system, which

stands for supervisory control and data acquisition, found pre-installed in most utility-scale

wind turbines, collects data using numerous sensors at the controllers with usually 10-minute

resolution [4, 8], of various parameters of the wind turbine, such as wind speed, active power,

bearing temperature and voltage [2]. Power curve analysis can be done using this data, but this

analysis only detects wind turbine underperformance [9]. Meanwhile, implementing machine

learning algorithms on SCADA signals to classify them as having either normal or anomalous

behaviour, has the ability to predict faults in advance. This has been demonstrated in a number

of publications.

Kusiak and Li [10] investigated predicting a specific fault, which is diverter malfunction. 3

months’ worth of SCADA data of four wind turbines were used and the corresponding status

and fault codeswere integrated into this data to be labelled to differentiate between normal and

fault points. To prevent bias in prediction in machine learning, the labelled data is sampled

at random, ensuring the number of samples with a fault code is comparable to the number

of normal samples. Four classification algorithms, namely neural networks, boosting tree,

support vector machines, and classification and regression trees were trained using two-thirds

of this data which was randomly selected. The boosting tree, which was found to have the

highest accuracy of 70 % for predicting specific faults, was investigated further. The accuracy

of predicting a specific fault at the time of fault was 70 %, which decreased to 49 % for predicting

it 1 hour in advance. Only one specific fault was the focus of this methodology and in reality,

wind turbines could have many faults in different components and structures, which may all

have some form of correlation between one other.

Godwin and Matthews [7] focussed on wind turbine pitch control faults using a classifier

called the RIPPER algorithm. They used 28 months’ worth of SCADA data containing wind

speeds, pitch motor torques and pitch angles, of eight wind turbines known to have had pitch

problems in the past. The classes used were normal, potential fault and recognised fault. Using

maintenance logs, data up to 48 hours in advance was classed as recognised fault, data in

advance of this with corresponding SCADA alarm logs indicating pitch problems was classed

as potential fault, and the remaining unclassed data was classed as normal. Random sampling

was performed here as well to balance the classes and prevent bias. The data of four turbines

were used to train the RIPPER algorithm, and the remaining four used for testing. The analysis

was done using the entire 28 months of data as well as 24, 20, 16, 12, 8 and 4 months of data

to find out how the amount of data affects the accuracy of classification. Using the entire

28 months of data was found to produce the most accurate classifier, with a mean accuracy

of 85 %. Looking at the results in more depth, it was found that the classifier had F1 scores,

which is an accuracy measure that accounts for true and false positives and negatives, of 79 %,

introduction 3

100% and 78% in classifying normal, potential fault and recognised fault data respectively.

Although the results are an improvement to Kusiak and Li [10], this methodology similarly

focussed on only one fault.

Leahy et al. [2] used a specific fault prediction approach, implementing a support vector

machine classifier from scikit-learn’s LibSVM. They used SCADA data from a single 3 MW

wind turbine spanning 11 months with status and warning codes. The labelling was done such

that data with codes corresponding to the turbine in operation, low and storm wind speeds

represent normal conditions and codes corresponding to each specific fault to represent faulty

conditions. Data preceding these fault points by 10 minutes and 60 minutes were also labelled

as faults in separate sets and the effects of using these different time scales to predict faults

were investigated. For data identified as normal, filters were applied to remove curtailment

and anomalous points. The classifier’s hyperparameters were optimised using randomised

grid search and validated using ten-fold cross-validation, and the classes were balanced using

class weights. Separate binary classifiers were trained to detect each specific type of fault,

which were faults in air cooling, excitation, generator heating, feeding and mains failure. The

prediction of generator heating faults 10minutes in advance had the best results, with F1 scores

of 71 % and 100 % using balanced and imbalanced training data respectively. This increase in

score using imbalanced data was attributed to the test set having very few instances with the

fault class relative to normal data. The same fault, when predicted 60 minutes in advance,

had F1 scores of 17 % and 100 % using imbalanced and balanced training data respectively.

Although the score is perfect and it demonstrates the effects of using balanced datasets, the

classification again is done separately for each specific fault and it performed poorly on other

faults. For instance, detecting excitation faults 10 and 60 minutes in advance using balanced

training data only yielded F1 scores of 8 % and 27% respectively.

This project will therefore focus on integrating the ability to predict multiple faults at

different time scales simultaneously.

Objectives
The first objective of this project is to implement a classification algorithm on wind tur-

bine SCADA signals to identify underperforming turbines. This involves setting-up the ma-

chine learning environment, processing operational data and reporting initial results obtained

through implementing a classification algorithm on the data.

The second objective is to create an effective methodology for the integration of failures

and to present and interpret results. This includes labelling the data such that each specific

fault can be differentiated, evaluating the performances of several classification algorithms to

find the most suitable classifier, identifying limitations and suggesting improvements to the

4

method and how it can be adapted for use in industry.

Outline
Chapter 2 will describe in detail the tools and datasets used, how the data was processed and

labelled and the classification methods and performance metrics used. In Chapter 3, a detailed

description of the results obtained is presented, followed by a discussion of these results and

limitations of this methodology in Chapter 4. In Chapter 5, conclusions are drawn and possible

areas for future work are recommended.

chapter 2

Methodology

Tools and datasets
This project requires a computer with Python Programming Language [11] and essential li-

braries installed for data processing. The computer used has a dual core processor with 2.8

GHz maximum clock speed and 4 GB RAM. Additionally, the open source scikit-learn library

[12] is used for machine learning. The datasets used are that of a wind farm comprised of 25

turbines with a rated power of 2,500 kW covering a period of 30 months starting 1st November

2014, downloaded from Natural Power’s database in CSV format. The first dataset is wind tur-

bine SCADA signals timestamped with a resolution of 10 minutes, with a total file size of 452

MB, and the other dataset is corresponding downtime data for the same period, with a total

file size of 4 MB. In the interests of Natural Power, the location of the wind farm and turbine

model will not be disclosed in this report.

Data processing
The SCADA data has 17 fields, summarised in Table 1. Fields highlighted in green are aver-

age measurements recorded over each 10-minute period. Since these highlighted fields are

properties of the turbines or describe its performance, they can be used as features in machine

learning. Each turbine has two nacelle anemometers and wind vanes; one is used to control

the turbine, and the other to monitor the first. The measurements from the anemometer and

wind vane used to control the turbine are recorded again as ws_av and wd_av, with the latter

taking into account the nacelle position. Using only ws_av and wd_av for wind speed and

wind direction, the number of features that are available for machine learning is 10.

The downtime data consists of fields summarised in Table 2. Each row of downtime data

consists of the start and end timestamps of the downtime event, downtime categories, worko-

rders and alarms. Downtime categories, which are turbine, environmental, grid, infrastructure

5

6

Table 1: Summary of SCADA fields for the SCADA data used in this project. The fields include times-
tamps with a resolution of 10 minutes, average active power, wind speed, pitch and runtime. The fields
that contain measurements averaged over the 10-minute period are highlighted in green. These mea-
surements can be used as features in machine learning as they are turbine properties.

SCADA Description Unit

timestamp In the format dd/mm/YYYY HH:MM:SS, every 10 minutes
turbine_id Turbine identif er (1 to 25)
ap_av Average active power kW
ap_dev Active power deviation kW
ap_max Maximum active power kW
reactive_power Reactive power kVAr
ws_1 Wind speed measured by nacelle anemometer 1 m/s
ws_2 Wind speed measured by nacelle anemometer 2 m/s
ws_av Anemometer wind speed (either ws_1 or ws_2) m/s
wd_1 Wind direction measured by wind vane 1 °
wd_2 Wind direction measured by wind vane 2 °
gen_sp Generator speed rpm
rs_av Rotor shaft speed rpm
nac_pos Nacelle position °
wd_av Corrected wind direction (nac_pos + (either wd_1 or wd_2)) °
pitch Pitch angle °
runtime Number of seconds the turbine has operated in the 10-minute period s

 �eld

i

and availability categories, describes the turbine’s condition or cause of downtime when the

maintenance work was undertaken. Each condition within each downtime category is repre-

sented by a unique identifier in the dataset. A separate spreadsheet accompanying the dataset

list what each identifier stands for. All quantities in the downtime data, except the alarms, are

supervised (i.e., the data recordings are input and monitored by maintenance professionals).

Table 2: Summary of fields for the downtime data used in this project. The fields include start and end
timestamps for the downtime event, downtime categories, workorders and alarms.

Downtime f eld Description

timestamp_start Start time of event, in the format dd/mm/YYYY HH:MM:SS
timestamp_end End time of event, in the format dd/mm/YYYY HH:MM:SS
turbine_id Turbine identif er (1 to 25)
alarm_id Ranging from 1 to 480, each corresponding to a turbine status
GridCategory_id Identif er (0 to 3); describes the grid status (e.g., planned outage, unplanned outage, …)
InfrastructureCategory_id Identif er (0 to 3); describes the infrastructure status (e.g., planned outage, unplanned outage,

…)
EnvironmentalCategory_id Identif er (0 to 14); describes the condition of the operating environment (e.g., icing,

turbulence, …)
TurbineCategory_id Identif er (0 to 22); describes the turbine’s condition or problem (e.g., yaw system, electrical

controls, …)
AvailabilityCategory_id Identif er (0 to 2); describes the availability status (e.g., available, not available)
comment Elaborates the condition or maintenance work undertaken
workorder_id Recorded when maintenance work is undertaken

i

i

i
i

i

i

i

Each row of SCADA data requires a class which describes the state of the turbine. The

methodology 7

chosen classes are ‘normal’ for normal behaviour, and ‘faulty’ to signify a fault. As the aim

is to predict faults in advance, a category of classes, called ‘before fault’ will also be used. To

automate the labelling process, the SCADA data can bemergedwith the downtime data, which

has turbine categories, listed in Table 3, that can be used to label faults. Some of these turbine

categories, such as ‘OK’ and ‘scheduledmaintenance’, do not indicate a fault in the turbine, and

‘other’ does not specify the condition. Therefore, only the turbine categories which indicate

faults, highlighted in green, are used to class the SCADA data. Prior to merging the two

datasets, the downtime data is restructured such that it has the same 10-minute resolution

as the SCADA data. The SCADA data was also found to have missing rows of data. Empty

data rows with only the timestamp corresponding to the missing rows were added to rectify

this. Once they are merged, 14 separate labels, or columns, are added for each specific fault,

which will allow for the different faults to be distinguished. The rows with a fault category

are classed as ‘faulty’ in the corresponding column.

Table 3: List of turbine categories in the wind farm downtime data. The categories used as the different
faults for labelling are highlighted in green. The others do not indicate a fault.

Turbine category
id Name id Name id Name id Name

0 Unknown 6 Generator 12 Unlogged manual stop 18 Cable unwind
1 OK 7 Yaw system 13 Customer stop 19 Hub
2 Anemometry 8 Electrical controls 14 Noise constraints 20 Rotor blades
3 Rotor brake 9 Hydraulics 15 Scheduled maintenance 21 Delayed startup
4 Main shaft 10 Electrical system 16 Tower 22 Other
5 Gearbox 11 Pitch control 17 Retrof ti

To summarise the machine learning terminology used, features refer to SCADA fields

which are turbine properties, labels refer to turbine categories or type of fault, and classes

refer to the state of the turbine (e.g., ‘normal’ or ‘faulty’) for each row of data at each label.

The features and labels will be fit to a classifier for training as arrays X of size [rows, 10] and

Y of size [rows, 14] respectively, where rows refer to the number of rows in the training data.

To predict faults for each label, rowswith timestamps up to 48 hours in advance of a ‘faulty’

row are classed at 6-hour intervals (i.e., up to X hours before a fault, where X = 6, 12, …, 48).

The reasons for having classes of 6-hour intervals for fault detection rather than a single class

is to allow action to be taken appropriate to the time before fault. For example, if it is predicted

that the wind turbine could have a fault in six hours or less, it could be switched off to prevent

further damage from occurring. 48 hours is enough time for maintenance professionals to

travel to site and carry out inspection, and decide on what action to take. Depending on the

nature of the site, this value can be modified (i.e., for an offshore wind farm which operates in

harsh environments, it is more likely to take a longer time to travel to the site and complete

works relative to an onshore wind farm).

Power curves are used to help with labelling as they are easier to visualise due to the

8

distinct power curve shape which represents wind turbine performance. Figure 1a shows the

labelled power curve for turbine 2 with turbine category 16, where many curtailment and

anomalous points are classed as ‘normal’. These should be removed as they deviate from the

typical power curve shape which indicates normal behaviour. To filter out the curtailment,

the pitch angle should be within a typical threshold for ‘normal’ data points between 10 % and

90% power. Data points with power below 10% and above 90 % are not included, pitch angles

often deviate from 0 ° in these operating regions, due to the control of the turbine. To find

this threshold, the most frequent pitch angles are quantified, with 0 ° being the most frequent.

Filtering out points with a pitch angle exceeding 0 ° , however, distorts the power curve shape,

removing a large portion of points in the regionwhere it transitions to rated power. To prevent

this, pitch angles between 0 ° and 10 ° were tested as the threshold, with 3.5 ° producing the

best result (see Appendix A for full results). The effects of applying this filter can be seen

in Figure 1b, which still has anomalous points below 10% and above 90 % power. To remove

these, additional filters are applied to ‘normal’ data points at operating wind speeds, including

removing zero power, and turbine categories and other downtime categories that are not faults

or ‘OK’, and runtime of less than 600 s. There is a vertical line of data points at zero wind speed

which is removed using a power threshold of 100 kW before the cut-in speed of 3 m/s. It is

necessary to use this threshold because the nacelle anemometer wind speed, which is used to

plot these power curves, is not an accurate measure of the wind speed incident on the turbine

blades, and removing all data points exceeding 0 kW power before cut-in results in a distorted

power curve shape (see Appendix B). The threshold is based on the minimum power before

cut-in that does not distort the power curve shape for all 25 turbines. The result of applying

these filters is shown in Figure 1c.

Rows of data with missing features and labels are removed, as all fields must be complete

for classification. Instead of deleting the rows of data corresponding to the data points removed

from the ‘normal’ class, they are classed as ‘curtailment’. This is because the data points

removed are specific to one label, which means they are not necessarily classed as ‘normal’

for other labels, and it is important for the classifier to learn the different states of the turbine

for each fault. To summarise, the classes used are ‘normal’, ‘faulty’, ‘curtailment’ and ‘up to X

hours before fault’ (where X = 6, 12, …, 48).

Classification
Since there are numerous classifiers offered in scikit-learn, this is narrowed down to a man-

ageable number for comparison. As explained above, each row of SCADA data, or sample, has

multiple labels that require classification into multiple classes, which makes this a multiclass-

multilabel problem. There are presently three classification algorithms on scikit-learn with the

ability to classify multiclass-multilabel problems, namely decision trees (DT), random forests

methodology 9

(a) All data points. (b) Without curtailment (i.e., pitch angle is between
0 ° and 3.5 ° for ‘normal’ data points between 10 % power
and 90 % power).

(c) Additional filters (applied to ‘normal’ data points):
power > 100 kW before cut-in (3 m/s), and at operating
wind speeds (3 m/s to 25 m/s): (i) power ≤ 0 kW; (ii)
runtime < 600 s; (iii) availability categories ̸= available
/ non-penalising; (iv) environmental, grid or infrastruc-
ture categories ̸= OK; (v) turbine categories not high-
lighted in Table 3, or ̸= OK.

Figure 1: Changes to the power curve of turbine 2 with the fault points corresponding to when the
turbine category is 16 (‘tower’) through the two stages of filtering out anomalous and curtailment points
labelled as ‘normal’. The original power curve is shown in 1a. The first stage involves a filter based
on a pitch angle threshold, which produces 1b. The second stage involves several additional filters to
produce the final power curve 1c.

(RF) and k nearest neighbours (kNN) [13]. Therefore, only these three classifiers are evaluated

in this project.

DT is a simple technique which uses a tree structure to ask a series of questions with condi-

tions to split data with different attributes [14]. While DT only uses a single tree, RF constructs

multiple trees which perform the classification to determine the class, with the majority class

among all trees being selected, therefore producing a classifier better than DT [15]. Mean-

while, for kNN, the class of a test sample is determined by comparing the sample to a number

of closest neighbouring training samples [16, 17]. Each classifier consists of hyperparameters

which can be optimised for specific data for better performance. An example is the number of

neighbours, or k, for kNN, which is a user-defined positive integer.

10

The data used in this project is highly imbalanced (i.e., the number of samples for ‘normal’

class is in thousands for each turbine, while the ‘faulty’ and ‘X hours before fault’ classes only

range from tens to a few hundreds). This can cause the classifier to be biased towards the

majority class and perform poorly on minority classes [18]. The effect of balancing data is

investigated by doing classification with and without class balancing. The balancing is done

by oversampling all classes using the imbalanced-learn library’s random over sampler [19]

prior to feeding the training data into the classifiers. Oversampling is done instead of random

sampling, because it will not reduce the amount of data, which causes loss of information.

This oversampling does not support multilabel classification (i.e., it only accepts array Y of

size [rows, 1]), therefore separate estimators will be used for each fault. This means that

for each turbine, using the imbalanced multilabel approach would only require one estimator

which trains on all labels simultaneously, while using the balanced dataset approach requires

separate estimators for each of the 14 faults which cannot run in parallel. Oversampling also

results in increased number of samples, which in turn increases the time taken to train a

classifier.

To increase reliability of the results, a five-fold cross-validation is performed. Tradition-

ally, the dataset would be split into five sets for a five-fold cross-validation, with four being

used for training the classifier and the remaining one for testing. In each fold, the training and

testing set combinations would be different. The performance is measured for each fold and

averaged to give the final score. Since SCADA data is a time series, it is likely that the data

points collected over time have some form of correlation, which must be considered when be-

ing analysed [20]. Therefore, this makes the traditional cross-validation unsuitable, as it does

not take the order of the data into account. The data is divided using scikit-learn’s time series

split, which includes the preceding set of data in successive splits [21]. Figure 2 illustrates the

difference between traditional and time series split cross-validations. Optimising the hyperpa-

rameters of a classifier based on the average performance over cross-validation folds prevents

the training data from overfitting to the classifier, which happens when the classifier performs

well during training but poorly on testing or unseen future data [22, 23].

Prior to cross-validation, the features are normalised [24] to a scale of 0 to 1. This is

important as the features used in classification have vastly different scales. For example, the

turbine data sheet gives generator operating speeds of between 740 rpm and 1,300 rpm, while

the wind speeds recorded by the anemometers range from 0 m/s up to 34 m/s. Normalisation

preserves the characteristics and distribution of the features and prevents potential problems

that could arise due to features with drastically different scales when classification is done

[25].

A number of performance metrics are available on scikit-learn to assess classifier perfor-

mance [26]. Precision is the ratio of true positives, tp to the sum of tp and false positives,

fp, as shown in (1). (2) describes recall, which is the ratio of tp to the sum of tp and false

methodology 11

Figure 2: Illustration of traditional cross-validation and time series split cross-validation, both five-
folds. In time series split, shown on the right, the order of data is taken into account.

negatives, fn [27]. The F1 score, shown in (3), is the harmonic average of precision and recall

[28]. The reason for not using accuracy is because it does not distinguish between tp and true

negatives, tn [28, 29]. The metrics compute the scores for each class individually which are

averaged, taking into account the support, which is the number of data points belonging to

each class in the test set, to produce the final weighted score. The higher the scores, the better

the performance of the classifier. fp and fn both have costs [28]. However, it is unknown at

the moment which is more important for this wind farm. Therefore, the optimisations will use

the F1 score as the main performance metric. As these metrics are not supported for multilabel

classification, the execution is performed in a loop for each label. This means for each turbine,

each cross-validation fold will output one score for each label, producing 70 scores in total.

These can then be averaged for each turbine or fault to produce a final score.

precision =
tp

tp+ fp
(1)

recall =
tp

tp+ fn
(2)

F1 score = 2× precision× recall

precision+ recall
(3)

The classification is carried out as a process. The first step is to use cross-validation to

optimise some initial hyperparameters of the classifiers, namely criterion for DT and RF, and

weights for kNN. The criterion is either ‘entropy’ or the default ‘gini’, while weights is either

‘distance’ or the default ‘uniform’. The classification is done once using imbalanced data as it is,

and once using balanced training data. After evaluating whether balancing the data improves

the classifier’s performance, further hyperparameters can be tuned.

chapter 3

Results

Overall results
Table 4 shows the overall results obtained when the criterion hyperparameter is optimised

for DT and RF, and the weights hyperparameter is optimised for kNN through five-fold cross-

validation, using both imbalanced and balanced training data. The optimal hyperparameter

is the one that produces the highest average F1 score. For each classification performed, the

optimal hyperparameters were found to be the non-default values. The mean and standard

deviation were obtained by averaging all scores output by all turbines for the optimal hyper-

parameter. From these results, all three classifiers performed better, with higher mean and

lower standard deviation scores, when trained on imbalanced datasets using the multilabel

classification approach compared to balanced datasets with separate estimators for each label.

The F1 scores for DT, RF and kNN is higher by 0.6 %, 0.5 % and 1.9 % respectively using im-

balanced data compared to balanced data. The best performance was by RF using imbalanced

data, which had the highest mean and lowest deviation scores. The kNN classifier meanwhile

produced the results with the lowest mean and highest deviations. An attempt was made to

further improve the performance of RF by optimising the number of estimators hyperparam-

eter, but this was not possible as the process was found to exceed the available RAM. Hence,

the only hyperparameter considered for further tuning is the k value for kNN using imbal-

anced dataset. The default value of k is 5 on scikit-learn, and values between 1 and 200 were

tested. Figure 3 shows the optimal k values found for each turbine, which are the values that

produce the highest average F1 score. The optimal k is 13 or less for 17 turbines, and more

than 100 for 5 turbines. Based on the overall scores in Table 4, the optimisation did increase

the F1 score of kNN by 0.6 % compared to using the imbalanced data without k optimisation,

but compared to the F1 scores of DT and RF using imbalanced data, this is still lower by 5.1 %

and 6.1 % respectively.

The time taken to execute the Python code using the optimal hyperparameters to produce

the results for all 25 turbines, which includes reading the merged CSV file, processing and la-

12

results 13

Table 4: Overall precision, recall and F1 scores for optimising hyperparameters for decision trees and
random forests, and k nearest neighbours. The mean and standard deviation are obtained by averaging
all scores output by all turbines for the optimal hyperparameter. The values are colour-coded to show
better performances (i.e., higher mean and lower standard deviation) in darker shades and worse per-
formances in lighter shades.

Classif er Optimal
hyperparameter

Balancing
Precision Recall F1 score

Mean St. dev. Mean St. dev. Mean St. dev.

Decision
trees

criterion = ‘entropy’
Imbalanced .9234 .0892 .9131 .0914 .9161 .0911

Balanced .9179 .0909 .9071 .0957 .9100 .0948

Random
forests

criterion = ‘entropy’
Imbalanced .9235 .0887 .9340 .0748 .9261 .0848

Balanced .9215 .0900 .9262 .0826 .9212 .0889

k nearest
neighbours

weights = ‘distance’
Imbalanced .8664 .0986 .8723 .0973 .8589 .1073

Balanced .8653 .0975 .8267 .1200 .8399 .1116

see Figure 3 Imbalanced .8685 .0965 .8784 .0888 .8653 .0997

i

Figure 3: Number of neighbours, or k value for each turbine optimised based on the average F1 score
through five-fold cross-validation. The optimal k is 13 or less for 17 turbines, and more than 100 for 5
turbines.

belling samples, classification using cross-validation, and calculation of performance metrics,

for each classifier is listed in Table 5. As other processes running in the background at the

time of execution and some runs were interrupted due to computer crashes, the time taken

could not be measured accurately and these values are only approximate. Overall, balancing

the training data is shown to increase the training time, which is expected as the size of train-

ing data will be larger and separate estimators are used for each label compared to just one

when using imbalanced data. DT and RF only took 8 hours with imbalanced data. Despite

balancing the training data, DT and RF took only 18 hours compared to kNN with imbalanced

data, which took 20 hours. The relatively long timings make kNN an inefficient classifier com-

pared to DT and RF. As a result, the following results will only focus on the classifier with the

best performance, which is RF. The other classifiers, however, can be tested more efficiently

if better computing resources are available.

14

Table 5: Time taken to run each classifier using imbalanced and balanced datasets for the 30-month
period. These timings are approximate as the RAM was not utilised fully by the Python application
due to other processes running in the background, and the application had to be restarted a number of
time due to system crashes.

Classi�er Balancing Computational time

Decision trees
Imbalanced ~8 hours
Balanced ~18 hours

Random forests
Imbalanced ~8 hours
Balanced ~18 hours

k nearest neighbours
Imbalanced ~20 hours
Balanced ~72 hours

Performance of each turbine and label
The classification results using random forests for each turbine and label in full can be found in

Appendix C. The scores of each performancemetric from cross-validationwere grouped based

on turbine or label which were then averaged to produce the mean scores. Additionally, the

maximum and minimum values were also found. The turbine with the worst performance is

turbine 1, with a mean and minimum F1 scores of 87 % and 44% respectively using imbalanced

data, and 86 % and 41% respectively using balanced data, for turbine 1. Four other turbines

had minimum scores less than 70 %, namely turbines 7, 9 ,15 and 16. Looking at the labels,

turbine category 10, which is ‘electrical system’ had the worst performance, with mean and

minimum F1 scores of 84 % and 44% respectively using imbalanced data, and 82% and 41%

respectively using balanced data. These minimum scores correspond to the scores for turbine

1. Therefore, it can be deduced that the classifier’s ability to predict faults in the electrical

system is relatively low. This is followed closely by turbine category 11, ‘pitch control’, which

has mean and minimum F1 scores of 84 % and 57% respectively using imbalanced data and

83% and 55% respectively using balanced data. For all other turbine categories, the minimum

score did not drop below 75%.

Figure 4 shows the various turbine categories quantified by downtime frequency on the

left and period on the right, both per turbine per year. Looking at only turbine categories

used as labels, ‘pitch control’ and ‘electrical system’ are the two categories causing the most

downtime events and are in the top three in terms of the downtime period. These two labels

also had the worst performance scores.

Performance of each class
Since turbine category 10 was found to have the worst performance, the performance of each

class for this label is looked at in more detail, which is done by obtaining confusion matrices.

A confusion matrix displays, for each class, the number of samples predicted correctly and

results 15

Figure 4: Bar chart showing the various turbine categories quantified by the downtime frequency per
turbine per year on the left, and downtime period, in hours, per turbine per year on the right. This was
plot using the downtime data.

what the wrongly predicted samples were classified as [26]. This will allow the decision to be

made whether the number of classes and intervals used for fault prediction can be tweaked for

better classifier performance. The matrices were first obtained for all turbines with only this

label using both imbalanced and balanced training data. Through five-fold cross-validation, a

total of 125 matrices were produced, which were then combined and normalised, which will

produce the classification accuracy. The confusionmatrices are shown in Appendix D. 93-95 %

of ‘normal’ and 73-75 % of ‘curtailment’ samples were classed correctly. In comparison, only

21-24 % of ‘faulty’ samples were classified correctly, with 47-48 % misclassified as ‘curtailment’

and 21-26 % misclassified as ‘normal’.

Due to this misclassification percentage being higher than the accuracy of the ‘faulty’ class,

the classification was repeated by dropping all rows with ‘curtailment’, effectively removing

the class. There is a significant improvement in the accuracy of ‘faulty’ samples, from 21-

24 % to 41-44 %. However, the majority of samples belonging to this class (44-49 %) were still

misclassified as ‘normal’. In fact, this is the case for the ‘X hours before fault’ classes, with

or without the use of the ‘curtailment’ class. As X increases, the accuracy is seen to decrease,

and the percentage of misclassification as ‘normal’ increases.

To make a comparison, the same analysis was repeated for turbine category 5, which is

‘gearbox’. This category was chosen as its mean F1 score was relatively high (92 % compared

to 84 % for turbine category 10), it causes the second longest downtime period based on Fig-

ure 4, and it indicates a problem in the mechanical system, rather than electrical. 96-97 % of

16

‘normal’ and 83 % of ‘curtailment’ samples were classed correctly. In comparison, 43-44 % of

‘faulty’ samples were classified correctly, with 16-21 % misclassified as ‘curtailment’ and 34-

40 % misclassified as ‘normal’. The performance was better compared to turbine category 10,

but the misclassification of the ‘faulty’ class as ‘normal’ is higher. Removing the ‘curtailment’

increased the accuracy of ‘faulty’ samples, from 43-44 % to 48-55 %. However, the misclassifi-

cation of this class as ‘normal’ was still high (41-48 %).

Using a balanced dataset overall decreased the misclassification rate of ‘X hours before

fault’ classes as ‘normal’, but increased the misclassification of the ‘faulty’ class as ‘normal’.

Feature importance
The importance of each feature used, which are a set of normalised scores [30], were also ob-

tained similar to the confusion matrix. The higher the feature importance, the more influence

the feature had in determining the class of the samples. The feature importance for turbine

categories 10 and 5 are shown in Table 6. For both turbine categories, the wind speed and

nacelle position were found to be the most important features, and the maximum, average

and deviations of the active power were found to be the least important, regardless of training

data balancing. The wind direction was the third most important feature for turbine category

10 regardless of balancing, and for turbine category 5 using imbalanced data. In the case of

balanced data for turbine category 5, the third most important feature was the pitch angle.

Table 6: Feature importance for turbine categories 10 and 5 using random forests and either imbalanced
(I) or balanced (B) training data. The values are normalised and colour-coded, transitioning from red
(lower importance) to yellow (intermediate) to green (higher importance).

ap_av ws_av wd_av pitch ap_max ap_dev reactive_power rs_av gen_sp nac_pos

Turbine category 10 (electrical system)

I .0674 .1337 .1237 .0801 .0648 .0675 .1201 .0942 .1200 .1284

B .0644 .1306 .1301 .0974 .0591 .0625 .1124 .0901 .1183 .1350

Turbine category 5 (gearbox)

I .0700 .1379 .1213 .0899 .0700 .0666 .1089 .0898 .1166 .1291

B .0751 .1453 .1204 .1250 .0638 .0587 .0968 .0769 .1094 .1285

chapter 4

Discussion

As mentioned earlier, kNN compares the test sample to k neighbouring training samples to

determine the class. This means all training samples have to be stored in memory [31] which

in turn could slow down the computer, causing the classifier to take a longer time to produce

results. Being a non-parametric technique [17] unlike DT and RF, kNN is prone to the curse

of dimensionality [31], which happens when the dimensions or number of features increases

[32]. This might explain the lower performance metric scores in comparison. There are big

differences between the optimal k values for some turbines as shown in Figure 3 which could

be due to the data for each turbine having different distributions and characteristics.

Overall, using a single multiclass-multilabel classifier with imbalanced training data pro-

duced better scores, which could be due to presence of correlations between the different

turbine categories used as labels that are generalised better using this approach [18].

As the labels ‘gearbox’ and ‘electrical system’ are in the top three out of 14 labels used

causing longest downtimes, they should have more samples classed as ‘faulty’ and ‘X hours

before fault’ compared to other categories, which therefore should result in better perfor-

mance as the classifier would have learned the characteristics of different samples belonging

to the same classes. This was not the case, however, looking at the confusion matrices in

Appendix D. The classifier tends to misclassify ‘faulty’ and ‘X hours before fault’ classes as

‘normal’ at a higher rate than the accuracy for these classes. This is still the case after remov-

ing the ‘curtailment’ class, which saw an improvement in the accuracy of the ‘faulty’ class.

The accuracies of ‘X hours before fault’ classes could potentially be increased by reducing the

6-hour intervals used and the maximum of 48 hours before a fault. The analysis should be

repeated by reducing 48 hours to a smaller timescale, such as 12 hours, or by combining all

samples that fall under this with ‘faulty’ points to make the classification binary. Although

this is likely to improve the performance, the classifier will not be able to give an indication

of the timescale before a potential fault, therefore making it more difficult to decide on the

appropriate action to be taken to avoid catastrophic failure in the turbine.

17

18

Based on the feature importance in Table 6, active power SCADA fields were least influ-

ential in predicting faults for both labels. The labelled power curves for ‘electrical system’ in

Figure 5 below shows no clear relationship between fault points and the power curve shape.

There are also many overlapping ‘normal’, ‘faulty’ and ‘X hours before fault’ points even after

filtration of curtailment and anomalies, which could explain why this feature was less impor-

tant.

(a) (b)

(c)

Figure 5: Labelled power curve for turbine 1 with turbine category 10 (‘electrical system’) through the
two stages of filtering out anomalous and curtailment points labelled as ‘normal’. The original power
curve is shown in 5a. The first stage involves a filter based on a pitch angle threshold, which produces
5b. The second stage involves several additional filters to produce the final power curve 5c.

The reactive power and generator speed played a bigger role in the classification for ‘elec-

trical system’, which makes sense considering the reactive power is produced as a result of

impedance in the current due to electromagnetic fields produced by generators and trans-

formers [33]. It is likely that the features used in classification for this label are unsuitable.

A fault in the electrical system would be reflected in voltages, currents, frequencies [34] and

temperature of power switchboards and cables. Electrical system faults could also be caused

by environmental conditions such as lightning strikes and contact of wires with wildlife [34].

If there are such conditions recorded as environmental downtime categories, these should be

accounted for when analysing faults in the electrical system.

The ‘gearbox’ label was also found to perform poorly for these classes, despite having a

discussion 19

higher mean F1 score than ‘electrical faults’, which could be due to feature selection as well.

Statistics from the National Renewable Energy Laboratory’s gearbox failure database indicate

that most faults are caused by bearings, gears and other components including filtration and

lubrication systems [35]. These are mostly due to wear, fatigue and cracks [36] and may be

detected with higher accuracy if the features include quantities such as torque, oil pressure

and gearbox temperature.

The SCADA data provided for this project only had 17 SCADA fields, of which 10 are

used as features. This did not include voltages, currents, frequencies, torques or temperature

readings, but the SCADA system for the turbine model used does measure these parameters.

When a more complete SCADA data is available, the evaluation should be done by increasing

the number of features to include these fields. The role of environmental conditions on failures

could explain why wind speed and direction were very influential in detecting faults in the

two labels analysed, although further in-depth analysis is required to verify this.

Balancing the training dataset improved the classification accuracy of ‘X hours before fault’

classes slightly. An overall improved model may be developed by oversampling only these

classes for training, but there is a trade-off between this and the training time and computa-

tional resources required.

The dataset could have incorrect readings in the SCADA fields caused by broken or un-

responsive sensors which are not detected as unusual when the downtime data is used in

labelling. This was why a power threshold before cut-in speed was applied to remove redun-

dant data points, by visually inspecting the power curve of the turbine as seen in Figure 1. The

dataset should be manually inspected for all other features using curves such as pitch versus

power and power versus rotor speed, to see if there are any other incorrect values previously

undetected which may affect the classifier’s accuracy in detecting faults. The rows of data

corresponding to these values should then be excluded from the training data.

Future work
In addition to possible areas for future work discussed above, the following were identified.

When more data is available, the analysis should be repeated using historic datasets span-

ning the life of the turbine. Historic data would have recorded the different states a turbine

has experienced over its life, and therefore when a classifier is trained on this, it could detect

future turbine states easier. However, this will mean the training data will be bigger, which

in turn causes longer training time and more computing resources to be used. Another area

of work is to test the performance of a classifier using different lengths of datasets for train-

ing while keeping the testing set and hyperparameter settings constant. This will allow for

the most appropriate length of dataset for training to be determined based on the resources

20

available to produce satisfactory results in terms of training time and classification accuracy.

After a classifier has been trained and used in practice, its performance over time should

be monitored. If the performance is found to diminish over time or after a major component

replacement, the classifier should be retrained using recent data. As the classification makes a

distinction between the different faults, the ability to alert relevant maintenance professionals

for a specific fault automatically is possible.

Instead of using turbine categories in the downtime data, which is supervised, for labelling,

the alarm logs, which are unsupervised, can instead be used to compare the results. The num-

ber of alarm logs for the turbines used, however, is 480, compared to 23 turbine categories.

This will mean the number of labels will be much higher, which will cause longer compu-

tational time. A solution to reduce this is to group similar alarms into one class. Another

approach would be to use a single label with each alarm as a separate class, but there is likely

to be overlap between classes when fault prediction is also included. If actual failure records

are available, a comparison can be made between the predicted classes, actual classes, and

actual failures that have occurred and their costs.

Further optimisation of hyperparameters is possible, such as finding the optimal number

of estimators for RF. Each optimisation takes time and is limited by the specifications of the

computer used, which is why this was not carried out in this project. Detailed analysis done

on the results using RF for two labels above should be repeated for each label and classifier

used for fair comparisons to be made.

The methodology could also be tested for wind turbines of different models in different

sites. Provided these turbines have similar SCADA data with downtime records, only slight

modifications to the codes, such as the data source, field names, and number of features, would

be required in order to be used on other turbine models.

In industry, a cost function analysis needs to be done prior to implementing this fault

detection method. It is defined as the cost of a false alarm (false positive) or failing to de-

tect a fault in advance (false negative). False positives and false negatives both incur charges.

The first is due to transporting labour and equipment to site, which could be expensive espe-

cially for sites in harsh environments, such as offshore wind farms. The second would cause

unscheduled downtime, the loss of revenue due to no power generation and replacement of

turbine components due to irreversible damage. This cost should then be compared to the cost

of alternatively using a condition monitoring system, and the overall cost of running the wind

farm or wind turbine. The analysis should give an indication on which performance metric

is more important; if the cost of false negatives is more, attention should be paid to the recall

score, while the precision is more important if false positives cost more [27].

chapter 5

Conclusion

A methodology for predicting multiple wind turbine faults in advance by implementing clas-

sification algorithms on wind turbine SCADA signals was proposed. 30 months’ worth of

SCADA data for a wind farm with 25 turbines was processed and labelled using correspond-

ing downtime data containing turbine categories that describe the condition of the turbine.

Since the multiple faults are treated as separate labels, multiclass-multilabel classification al-

gorithms, namely DT, RF and kNN, offered in scikit-learn, the machine learning library for

Python, were analysed. In order to predict faults in advance, three types of classes were used:

‘normal’ to indicate normal behaviour, ‘faulty’ to indicate a fault, and ‘X hours before fault’

(where X= 6, 12, …, 48) to detect faults in advance at varying time scales. This will allow pre-

dictive maintenance to be done appropriate to the time scale to prevent catastrophic failure

to the turbine. Each of these classifiers have hyperparameters which were tuned for optimal

performance on the data using five-fold cross-validation. The effects of balancing training

data were also investigated.

The use of multilabel-multiclass algorithms allowed for the classification of each turbine

to be done using a single estimator which produces the results of all labels simultaneously and

has a shorter training time. Of the three classifiers, RF was found to have the best performance

overall. A detailed analysis was done on the results for two labels, namely ‘electrical system’,

which had the worst performance, and ‘gearbox’ which had relatively better performance. The

performance of the ‘X hours before fault’ classes was found to be relatively poor compared

to the other two classes. The performance of these classes was slightly better using balanced

training data. This has drawbacks, including using separate estimators for each label, and

increased training time and use of resources due to the use of larger training data. After eval-

uating feature importance, it was concluded that the poor performance of these classes could

be attributed to the features used or errors in the data. Further work should be done using

additional SCADA fields relevant to each label to verify this. After additional improvements

to the model and conducting a cost function analysis, the method could be tested in industry.

21

Acknowledgements

I would like to thank my academic supervisor, Dr Nick Bennett, Assistant Professor at Heriot-

Watt University, and my industrial supervisor, Dr Iain Dinwoodie, Senior Asset Performance

Engineer at Natural Power, for their endless guidance and feedback, and making this project

possible. Special thanks to the Technical team of Natural Power for giving me the opportu-

nity to work on this project with them. Thanks to everyone else at Natural Power’s Stirling

office and my course mates, Raphaela Hein and Inés Ontillera, for making this placement an

enjoyable experience. Last but not least, a big thank you to my parents for supporting me

throughout my studies.

22

References

[1] K. Kim, G. Parthasarathy, O. Uluyol,W. Foslien, S. Sheng, and P. Fleming. “Use of SCADA

Data for Failure Detection inWind Turbines”. In:ASME 2011 5th International Conference
on Energy Sustainability. 2012, pp. 2071–2079. doi: 10.1115/ES2011-54243.

[2] K. Leahy, R. L. Hu, I. C. Konstantakopoulos, C. J. Spanos, andA.M.Agogino. “Diagnosing

Wind Turbine Faults UsingMachine Learning Techniques Applied to Operational Data”.

In: 2016 IEEE International Conference on Prognostics and Health Management (ICPHM).
2016, pp. 1–8. doi: 10.1109/ICPHM.2016.7542860.

[3] S. Dienst and J. Beseler. “Automatic Anomaly Detection in Offshore Wind SCADA

Data”. In: WindEurope Summit 2016. 2016. url: https://windeurope.org/summit2016/

conference/submit-an-abstract/pdf/626738292593.pdf.

[4] J. Tautz-Weinert and S. J. Watson. “Using SCADA Data for Wind Turbine Condition

Monitoring - a Review”. In: IET Renewable Power Generation 11.4 (2017), pp. 382–394.

doi: 10.1049/iet-rpg.2016.0248.

[5] National Instruments.Wind Turbine Condition Monitoring. White Paper. 2015. url: http:

//www.ni.com/white-paper/9231/en/ (visited on 19th August 2017).

[6] F. P. García Márquez, A. M. Tobias, J. M. Pinar Pérez, and M. Papaelias. “Condition Mon-

itoring of Wind Turbines: Techniques and Methods”. In: Renewable Energy 46 (2012),

pp. 169–178. doi: 10.1016/j.renene.2012.03.003.

[7] J. L. Godwin and P. Matthews. “Classification and Detection of Wind Turbine Pitch

Faults Through SCADA Data Analysis”. In: International Journal of Prognostics and
Health Management 4 (2013). url: https://www.phmsociety.org/sites/phmsociety.org/

files/phm_submission/2013/ijphm_13_016.pdf.

[8] W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu. “Wind Turbine Condition Mon-

itoring: Technical and Commercial Challenges”. In: Wind Energy 17.5 (2014), pp. 673–

693. doi: 10.1002/we.1508.

[9] S. Gill, B. Stephen, and S. Galloway. “Wind Turbine Condition Assessment through

Power Curve Copula Modeling”. In: IEEE Transactions on Sustainable Energy 3 (2012),

pp. 94–101. doi: 10.1109/TSTE.2011.2167164.

[10] A. Kusiak andW. Li. “The Prediction and Diagnosis of Wind Turbine Faults”. In: Renew-
able Energy 36.1 (2011), pp. 16–23. doi: 10.1016/j.renene.2010.05.014.

23

https://doi.org/10.1115/ES2011-54243
https://doi.org/10.1109/ICPHM.2016.7542860
https://windeurope.org/summit2016/conference/submit-an-abstract/pdf/626738292593.pdf
https://windeurope.org/summit2016/conference/submit-an-abstract/pdf/626738292593.pdf
https://doi.org/10.1049/iet-rpg.2016.0248
http://www.ni.com/white-paper/9231/en/
http://www.ni.com/white-paper/9231/en/
https://doi.org/10.1016/j.renene.2012.03.003
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2013/ijphm_13_016.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2013/ijphm_13_016.pdf
https://doi.org/10.1002/we.1508
https://doi.org/10.1109/TSTE.2011.2167164
https://doi.org/10.1016/j.renene.2010.05.014

24

[11] Python Software Foundation. Welcome to Python.org. url: https:/ /www.python.org/

(visited on 1st May 2018).

[12] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830. url: https:// jmlr .org/papers/volume12/

pedregosa11a/pedregosa11a.pdf.

[13] scikit-learn developers. 1.12. Multiclass and Multilabel Algorithms - Scikit-Learn 0.18.2
Documentation. url: https://scikit-learn.org/0.18/modules/multiclass.html (visited on

18th July 2017).

[14] L. Guo. Decision Tree Classifier. 2010. url: http://mines.humanoriented.com/classes/

2010/fall /csci568/portfolio_exports/ lguo/decisionTree.html (visited on 19th August

2017).

[15] L. Breiman and A. Cutler. Random Forests - Classification Description. url: https://www.

stat . berkeley . edu /~breiman/RandomForests / cc_home .htm (visited on 19th August

2017).

[16] O. Sutton. Introduction to k Nearest Neighbour Classification and Condensed Nearest
Neighbour Data Reduction. 2012. url: http : / / www .math . le . ac . uk / people / ag153 /

homepage/KNN/OliverKNN_Talk.pdf (visited on 22nd August 2017).

[17] scikit-learn developers. 1.6. Nearest Neighbors - Scikit-Learn 0.19.0 Documentation. url:
https://scikit-learn.org/0.19/modules/neighbors.html (visited on 19th August 2017).

[18] scikit-learn developers. 1.10. Decision Trees - Scikit-Learn 0.18.2 Documentation. url:
https://scikit-learn.org/0.18/modules/tree.html (visited on 29th June 2017).

[19] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas. Imblearn.Over_sampling.
RandomOverSampler - Imbalanced-Learn 0.3.0.Dev0. url: https : / / imbalanced -

learn.readthedocs.io/en/stable/.

[20] National Institute of Standards and Technology. 6.4. Introduction to Time Series Analysis.
url: https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm (visited on

2nd August 2017).

[21] scikit-learn developers. 3.1. Cross-Validation: Evaluating Estimator Performance - Scikit-
Learn 0.18.2 Documentation. url: https : / / scikit - learn . org / 0 . 18 / modules / cross _

validation.html (visited on 18th July 2017).

[22] J. F. Puget. Overfitting In Machine Learning (IT Best Kept Secret Is Optimization). 2016.
url: www. ibm . com/developerworks / community / blogs / jfp / entry /overfitting_ in_

machine_learning (visited on 19th August 2017).

[23] Y. Liang. Machine Learning Basics - Lecture 6: Overfitting. 2016. url: https://www.cs.

princeton . edu / courses / archive / spring16 / cos495 / slides /ML_basics _ lectu%20re6 _

overfitting.pdf (visited on 19th August 2017).

[24] scikit-learn developers. 4.3. Preprocessing Data - Scikit-Learn 0.19.0 Documentation. url:
https://scikit-learn.org/0.19/modules/preprocessing.html (visited on 24th August 2017).

https://www.python.org/
https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://scikit-learn.org/0.18/modules/multiclass.html
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/decisionTree.html
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/decisionTree.html
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.math.le.ac.uk/people/ag153/homepage/KNN/OliverKNN_Talk.pdf
http://www.math.le.ac.uk/people/ag153/homepage/KNN/OliverKNN_Talk.pdf
https://scikit-learn.org/0.19/modules/neighbors.html
https://scikit-learn.org/0.18/modules/tree.html
https://imbalanced-learn.readthedocs.io/en/stable/
https://imbalanced-learn.readthedocs.io/en/stable/
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
https://scikit-learn.org/0.18/modules/cross_validation.html
https://scikit-learn.org/0.18/modules/cross_validation.html
www.ibm.com/developerworks/community/blogs/jfp/entry/overfitting_in_machine_learning
www.ibm.com/developerworks/community/blogs/jfp/entry/overfitting_in_machine_learning
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lectu%20re6_overfitting.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lectu%20re6_overfitting.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lectu%20re6_overfitting.pdf
https://scikit-learn.org/0.19/modules/preprocessing.html

references 25

[25] Microsoft. Normalize Data - ML Studio (Classic) - Azure. 2017. url: https : / / docs .

microsoft.com/en-us/azure/machine- learning/studio-module- reference/normalize-

data.

[26] scikit-learn developers. 3.3. Model Evaluation: Quantifying the Quality of Predictions -
Scikit-Learn 0.19.2 Documentation. url: https://scikit- learn.org/0.19/modules/model_

evaluation.html (visited on 20th August 2017).

[27] A. de Ruiter. Performance Measures in Azure ML: Accuracy, Precision, Recall and F1
Score. - Andreas De Ruiter’s BI Blog. 2015. url: https : / / blogs .msdn .microsoft . com /

andreasderuiter/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-

recall-and-f1-score/ (visited on 20th August 2017).

[28] R. Caruana. Performance Measures for Machine Learning. url: https://www.cs.cornell.

edu/courses/cs578/2003fa/performance_measures.pdf (visited on 22nd August 2017).

[29] SAS. SAS Help Center: Precision, Recall, and the F1 Score. url: https://documentation.

sas.com/?docsetId=casml&docsetTarget=viyaml_boolrule_details05.htm%3Flocale%

3Den&docsetVersion=8.1&locale=en#d0e5704.

[30] J. Rudy. Plotting Feature Importance - Py-Earth 0.1.0 Documentation. 2013. url: https :
/ /contrib .scikit - learn.org/py- earth/auto_examples/plot_feature_importance .html

(visited on 21st August 2017).

[31] R. Gutierrez-Osuna. L8: Nearest Neighbors | CSCE 666 Pattern Analysis. url: http : / /

research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf (visited on 22nd August 2017).

[32] R. Maitra. Distribution-Free Predictive Approaches. url: https://maitra.public.iastate.edu/

stat501/lectures/kNN.pdf.

[33] Npower. Reactive Power | Npower Business. url: https://www.npower.com/business/

save-energy/reactive-power/.

[34] T. Overbye and R. Baldick. EE369 POWER SYSTEMANALYSIS | Lecture 18: Fault Analysis.
url: https : / /users .ece .utexas .edu/~baldick/classes /369/Lecture_18 .ppt (visited on

23rd August 2017).

[35] Wind Energy Technologies Office. Statistics Show Bearing Problems Cause the Majority of
Wind Turbine Gearbox Failures. 2015. url: https://www.energy.gov/eere/wind/articles/

statistics - show- bearing - problems- cause -majority -wind- turbine - gearbox- failures

(visited on 25th August 2017).

[36] S. Sheng, M. McDade, and R. Errichello. “Wind Turbine Gearbox Failure Modes - A

Brief”. In: ASME/STLE 2011 International Joint Tribology Conference. 2011. url: https :
//www.nrel.gov/docs/fy12osti/53084.pdf.

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data
https://scikit-learn.org/0.19/modules/model_evaluation.html
https://scikit-learn.org/0.19/modules/model_evaluation.html
https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-recall-and-f1-score/
https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-recall-and-f1-score/
https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-recall-and-f1-score/
https://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf
https://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf
https://documentation.sas.com/?docsetId=casml&docsetTarget=viyaml_boolrule_details05.htm%3Flocale%3Den&docsetVersion=8.1&locale=en#d0e5704
https://documentation.sas.com/?docsetId=casml&docsetTarget=viyaml_boolrule_details05.htm%3Flocale%3Den&docsetVersion=8.1&locale=en#d0e5704
https://documentation.sas.com/?docsetId=casml&docsetTarget=viyaml_boolrule_details05.htm%3Flocale%3Den&docsetVersion=8.1&locale=en#d0e5704
https://contrib.scikit-learn.org/py-earth/auto_examples/plot_feature_importance.html
https://contrib.scikit-learn.org/py-earth/auto_examples/plot_feature_importance.html
http://research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf
http://research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf
https://maitra.public.iastate.edu/stat501/lectures/kNN.pdf
https://maitra.public.iastate.edu/stat501/lectures/kNN.pdf
https://www.npower.com/business/save-energy/reactive-power/
https://www.npower.com/business/save-energy/reactive-power/
https://users.ece.utexas.edu/~baldick/classes/369/Lecture_18.ppt
https://www.energy.gov/eere/wind/articles/statistics-show-bearing-problems-cause-majority-wind-turbine-gearbox-failures
https://www.energy.gov/eere/wind/articles/statistics-show-bearing-problems-cause-majority-wind-turbine-gearbox-failures
https://www.nrel.gov/docs/fy12osti/53084.pdf
https://www.nrel.gov/docs/fy12osti/53084.pdf

appendix a

Pitch angle threshold

26

pitch angle threshold 27

(a)

(b) (c)

(d)

Power curves for turbine 1 used in selecting the pitch angle threshold. a is the original power curve. In
b, data points with a pitch angle not equal to 0 °between 90 % and 10% power were filtered out, which
distorts the power curve shape. In c, all data points have a pitch angle between 0 °and 3.5 °, which
removes most curtailment and anomalous points while maintaining the typical power curve shape. In
d, all data points have a pitch angle between 0 °and 7 °, which allows some curtailment points to appear.
Therefore, it was decided that the filter used in c is the most suitable.

appendix b

Power before cut-in threshold

(a)

(b)

Power curves for turbine 24 used in selecting the power threshold before cut-in speed. a is the original
power curve. b is the power curve with a filter applied to remove all data points with power > 0 kW
before the cut-in speed of 3m/s. Anemometer wind speeds, whichwere used to plot these power curves,
are not an accurate measure of the wind speed incident on the turbine blades. Therefore, a threshold
of 100 kW before cut-in is applied, which maintains the power curve shape for all 25 turbines while
removing anomalous points, such as the ones in turbine 2’s power curve.

28

appendix c

Results for random forest classifier

29

30Precision, recall and F1 scores for each turbine using random forest classifier for both imbalanced and balanced training data. The table lists the minimum,
mean and maximum values for each score, which are also colour-coded to show higher scores in darker shades and lower scores in lighter shades.

Balancing
Turbine

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Precision score

Min
Imbalanced .46 .78 .82 .81 .75 .85 .61 .84 .62 .84 .79 .83 .82 .88 .57 .66 .73 .86 .86 .87 .90 .90 .88 .82 .88

Balanced .45 .77 .81 .80 .75 .85 .61 .84 .62 .84 .79 .82 .82 .87 .57 .66 .72 .86 .86 .85 .90 .90 .88 .80 .88

Mean
Imbalanced .87 .91 .93 .93 .93 .93 .88 .93 .92 .94 .92 .93 .91 .95 .87 .91 .90 .94 .93 .93 .95 .96 .95 .92 .95

Balanced .86 .91 .93 .93 .93 .93 .88 .93 .92 .94 .92 .93 .91 .95 .87 .91 .90 .94 .93 .92 .95 .96 .95 .91 .95

Max
Imbalanced .97 .98 .98 .98 .98 .97 .95 .96 .97 .98 .97 .96 .97 .98 .96 .96 .96 .98 .97 .96 .98 .99 .98 .97 .98

Balanced .97 .98 .98 .98 .99 .97 .95 .97 .98 .98 .97 .96 .97 .98 .96 .96 .97 .98 .98 .97 .98 .99 .98 .97 .98

Recall score

Min
Imbalanced .45 .80 .76 .82 .82 .88 .64 .86 .60 .86 .79 .84 .84 .92 .64 .68 .72 .90 .91 .87 .92 .91 .88 .81 .92

Balanced .38 .77 .74 .81 .80 .86 .58 .85 .57 .83 .78 .81 .83 .90 .60 .64 .67 .89 .89 .84 .90 .89 .88 .81 .89

Mean
Imbalanced .88 .93 .94 .94 .94 .94 .88 .93 .93 .95 .94 .94 .93 .96 .90 .92 .91 .95 .95 .94 .96 .96 .96 .92 .96

Balanced .86 .92 .93 .93 .94 .93 .87 .93 .92 .93 .93 .93 .92 .95 .89 .92 .90 .94 .94 .92 .96 .95 .96 .91 .95

Max
Imbalanced .97 .98 .98 .98 .98 .97 .94 .96 .97 .98 .97 .96 .97 .98 .96 .96 .96 .98 .98 .96 .98 .99 .98 .97 .98

Balanced .97 .98 .98 .98 .99 .97 .93 .97 .98 .98 .97 .96 .97 .98 .96 .96 .96 .98 .98 .97 .98 .99 .98 .97 .98

F1 score

Min
Imbalanced .44 .78 .77 .78 .77 .86 .61 .85 .57 .85 .76 .82 .82 .90 .59 .63 .70 .88 .88 .85 .91 .90 .87 .79 .90

Balanced .41 .77 .75 .78 .77 .86 .58 .84 .55 .83 .76 .81 .82 .88 .57 .61 .68 .87 .88 .82 .90 .89 .87 .79 .89

Mean
Imbalanced .87 .91 .93 .93 .93 .94 .88 .93 .92 .94 .93 .93 .92 .95 .88 .91 .90 .94 .94 .93 .96 .96 .95 .92 .95

Balanced .86 .91 .93 .93 .93 .93 .87 .92 .92 .93 .92 .93 .92 .95 .88 .91 .90 .94 .93 .91 .96 .95 .95 .91 .95

Max
Imbalanced .97 .98 .98 .98 .98 .97 .94 .96 .97 .98 .97 .96 .96 .97 .96 .96 .96 .98 .97 .96 .98 .99 .98 .96 .98

Balanced .97 .98 .98 .98 .99 .97 .94 .96 .98 .98 .97 .96 .97 .98 .96 .96 .96 .98 .98 .97 .98 .99 .98 .97 .98

results for random forest classifier 31

Precision, recall and F1 scores for each turbine category using random forest classifier for both imbal-
anced and balanced training data. The table lists the minimum, mean and maximum values for each
score, which are also colour-coded to show higher scores in darker shades and lower scores in lighter
shades.

Balancing
Turbine category

2 3 4 5 6 7 8 9 10 11 16 18 19 20

Precision score

Min
Imbalanced .84 .88 .95 .78 .74 .87 .77 .90 .46 .62 .88 .85 .93 .82

Balanced .84 .87 .95 .77 .73 .87 .76 .90 .45 .62 .88 .84 .93 .82

Mean
Imbalanced .94 .95 .97 .92 .93 .95 .87 .96 .84 .84 .95 .89 .97 .95

Balanced .94 .94 .97 .92 .92 .95 .87 .96 .83 .84 .95 .88 .97 .95

Max
Imbalanced .98 .98 .99 .97 .98 .98 .95 .99 .94 .93 .98 .93 .99 .98

Balanced .98 .98 .99 .97 .99 .99 .95 .99 .94 .93 .98 .92 .99 .98

Recall score

Min
Imbalanced .86 .91 .94 .80 .79 .91 .79 .93 .45 .60 .92 .89 .93 .86

Balanced .85 .89 .93 .77 .77 .91 .76 .90 .38 .57 .89 .87 .93 .86

Mean
Imbalanced .95 .95 .97 .93 .94 .96 .90 .96 .85 .85 .96 .92 .97 .96

Balanced .94 .95 .97 .92 .93 .96 .89 .96 .83 .84 .96 .90 .97 .96

Max
Imbalanced .98 .98 .99 .97 .98 .98 .96 .99 .95 .95 .98 .95 .99 .98

Balanced .98 .98 .99 .96 .98 .99 .96 .99 .93 .94 .98 .94 .99 .98

F1 score

Min
Imbalanced .85 .89 .94 .78 .77 .89 .77 .91 .44 .57 .90 .87 .93 .84

Balanced .84 .88 .94 .77 .76 .89 .75 .90 .41 .55 .88 .85 .93 .84

Mean
Imbalanced .94 .95 .97 .92 .93 .95 .89 .96 .84 .84 .96 .90 .97 .96

Balanced .94 .94 .97 .91 .92 .95 .88 .95 .82 .83 .95 .89 .97 .96

Max
Imbalanced .98 .98 .99 .97 .98 .98 .95 .99 .94 .94 .98 .94 .99 .98

Balanced .98 .98 .99 .96 .99 .99 .95 .99 .93 .93 .98 .93 .99 .98

appendix d

Confusion matrices

Normalised confusion matrices for turbine category 10 (‘electrical system’) with all classes used in the
classification process using random forests and either imbalanced or balanced training data. Thematrix
is colour-coded; it transitions from red (lower scores) to yellow (intermediate) to green (higher scores).

Class

Predicted

faulty 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h normal curtailment

Imbalanced

A
ct

ua
l

faulty .21 .02 .01 .01 .01 .00 .00 .00 .00 .26 .48

6 h .04 .13 .04 .03 .02 .01 .01 .01 .00 .61 .10

12 h .02 .09 .04 .02 .02 .01 .01 .01 .00 .69 .09

18 h .01 .07 .03 .02 .02 .01 .01 .01 .01 .74 .08

24 h .02 .05 .03 .02 .01 .01 .01 .01 .01 .76 .08

30 h .01 .04 .03 .02 .02 .01 .01 .01 .01 .76 .09

36 h .02 .03 .02 .02 .02 .01 .01 .01 .01 .79 .08

42 h .01 .03 .02 .02 .01 .01 .01 .01 .01 .79 .09

48 h .01 .03 .02 .02 .01 .01 .01 .01 .01 .79 .09

normal .00 .01 .01 .00 .00 .00 .00 .00 .00 .95 .01

curtailment .09 .01 .00 .01 .01 .00 .00 .00 .00 .12 .75

Balanced

faulty .24 .03 .01 .01 .01 .00 .00 .00 .00 .21 .47

6 h .05 .13 .05 .03 .02 .01 .01 .01 .01 .57 .09

12 h .03 .09 .05 .03 .02 .02 .01 .01 .01 .65 .09

18 h .02 .07 .04 .03 .02 .02 .01 .01 .01 .70 .08

24 h .02 .05 .04 .03 .02 .01 .01 .01 .01 .72 .09

30 h .02 .05 .03 .02 .02 .02 .01 .01 .01 .73 .09

36 h .02 .04 .03 .02 .02 .02 .01 .01 .01 .75 .08

42 h .02 .03 .02 .02 .02 .01 .01 .01 .01 .76 .09

48 h .02 .03 .02 .02 .02 .02 .01 .01 .01 .76 .09

normal .01 .01 .01 .01 .01 .00 .00 .00 .00 .93 .01

curtailment .08 .01 .00 .01 .01 .01 .00 .00 .00 .14 .73

32

confusion matrices 33

Normalised confusion matrices for turbine category 10 (‘electrical system’) when classification is done
using random forests and either imbalanced or balanced training data without the ‘curtailment’ class
(i.e., rows of data with curtailment or anomalies in any label are dropped). The matrix is colour-coded,
transitioning from red (lower scores) to yellow (intermediate) to green (higher scores).

Class

Predicted

faulty 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h normal

Imbalanced

A
ct

ua
l

faulty .41 .04 .02 .01 .01 .01 .01 .01 .01 .49

6 h .06 .16 .06 .03 .02 .01 .01 .01 .00 .66

12 h .04 .11 .05 .03 .02 .01 .01 .01 .00 .74

18 h .03 .08 .04 .02 .01 .01 .01 .01 .01 .77

24 h .04 .06 .04 .02 .01 .01 .01 .01 .01 .80

30 h .04 .06 .03 .02 .02 .01 .01 .01 .01 .81

36 h .03 .04 .03 .02 .02 .01 .01 .00 .01 .84

42 h .03 .03 .02 .02 .01 .01 .01 .01 .01 .85

48 h .03 .04 .02 .02 .02 .01 .01 .01 .00 .85

normal .00 .01 .01 .00 .00 .00 .00 .00 .00 .96

Balanced

faulty .44 .05 .02 .01 .01 .01 .01 .01 .01 .44

6 h .07 .15 .06 .04 .02 .01 .01 .01 .01 .62

12 h .04 .10 .05 .04 .02 .02 .01 .01 .01 .69

18 h .04 .08 .05 .03 .02 .02 .01 .01 .01 .73

24 h .04 .06 .04 .03 .02 .01 .01 .01 .01 .76

30 h .03 .06 .04 .02 .02 .02 .01 .01 .01 .77

36 h .03 .04 .03 .02 .02 .01 .01 .01 .01 .81

42 h .03 .04 .03 .02 .02 .01 .01 .01 .01 .82

48 h .01 .01 .01 .01 .01 .00 .00 .00 .00 .94

normal .01 .01 .01 .01 .01 .00 .00 .00 .00 .94

34

Normalised confusion matrices for turbine category 5 (‘gearbox’) with all classes used in the classifi-
cation process using random forests and either imbalanced or balanced training data. The matrix is
colour-coded; it transitions from red (lower scores) to yellow (intermediate) to green (higher scores).

Class

Predicted

faulty 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h normal curtailment

Imbalanced

A
ct

ua
l

faulty .44 .00 .00 .00 .00 .00 .00 .00 .00 .16 .40

6 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .85 .11

12 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .86 .10

18 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .86 .10

24 h .02 .00 .00 .00 .00 .00 .00 .00 .00 .83 .14

30 h .03 .00 .00 .00 .00 .00 .00 .00 .00 .86 .10

36 h .03 .00 .00 .00 .00 .00 .00 .00 .00 .86 .09

42 h .03 .00 .00 .00 .00 .00 .00 .00 .00 .87 .09

48 h .03 .00 .00 .00 .00 .00 .00 .00 .00 .87 .09

normal .01 .00 .00 .00 .00 .00 .00 .00 .00 .97 .01

curtailment .04 .00 .00 .00 .00 .00 .00 .00 .00 .12 .83

Balanced

faulty .43 .00 .00 .00 .00 .00 .00 .01 .00 .21 .34

6 h .03 .01 .00 .00 .00 .00 .00 .00 .00 .84 .11

12 h .03 .01 .00 .00 .00 .00 .00 .00 .00 .85 .11

18 h .03 .00 .01 .00 .00 .00 .00 .00 .00 .84 .11

24 h .03 .01 .00 .00 .00 .00 .00 .00 .00 .81 .14

30 h .02 .01 .01 .00 .00 .00 .00 .00 .00 .84 .11

36 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .85 .10

42 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .86 .10

48 h .02 .01 .00 .00 .00 .00 .00 .00 .00 .85 .10

normal .01 .00 .00 .00 .00 .00 .00 .00 .00 .96 .01

curtailment .03 .00 .00 .00 .00 .00 .00 .00 .00 .13 .83

confusion matrices 35

Normalised confusion matrices for turbine category 5 (‘gearbox’) when classification is done using
random forests and either imbalanced or balanced training data without the ‘curtailment’ class (i.e.,
rows of data with curtailment or anomalies in any label are dropped). The matrix is colour-coded,
transitioning from red (lower scores) to yellow (intermediate) to green (higher scores).

Class

Predicted

faulty 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h normal

Imbalanced

A
ct

ua
l

faulty .55 .00 .00 .00 .01 .00 .00 .00 .01 .41

6 h .04 .01 .00 .00 .00 .00 .00 .00 .01 .92

12 h .06 .01 .01 .00 .00 .00 .00 .00 .00 .92

18 h .05 .01 .00 .00 .00 .00 .00 .01 .01 .91

24 h .06 .01 .00 .00 .00 .00 .00 .00 .01 .91

30 h .05 .01 .00 .00 .01 .00 .00 .00 .00 .91

36 h .04 .01 .00 .00 .00 .00 .00 .00 .00 .93

42 h .04 .01 .00 .00 .00 .00 .00 .00 .00 .94

48 h .04 .01 .01 .00 .00 .00 .00 .00 .00 .93

normal .01 .00 .00 .00 .00 .00 .00 .00 .00 .98

Balanced

faulty .48 .00 .02 .00 .01 .00 .00 .00 .00 .48

6 h .05 .02 .00 .00 .00 .00 .00 .00 .01 .91

12 h .05 .01 .00 .01 .01 .00 .00 .00 .00 .91

18 h .06 .01 .01 .00 .01 .00 .00 .00 .00 .90

24 h .06 .01 .01 .00 .00 .00 .00 .00 .00 .90

30 h .04 .02 .01 .00 .01 .00 .00 .00 .00 .91

36 h .04 .01 .01 .00 .01 .00 .00 .00 .00 .93

42 h .04 .01 .01 .00 .01 .00 .00 .00 .00 .92

48 h .04 .01 .00 .00 .01 .00 .00 .00 .00 .93

normal .01 .00 .00 .00 .00 .00 .00 .00 .00 .97

appendix e

Python code

Python code used in this project can be found in its GitHub repository, which can be accessed

through the following link: https://github.com/nmstreethran/WindTurbineClassification.

36

https://github.com/nmstreethran/WindTurbineClassification

	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Outline

	Methodology
	Tools and datasets
	Data processing
	Classification

	Results
	Overall results
	Performance of each turbine and label
	Performance of each class
	Feature importance

	Discussion
	Future work

	Conclusion
	Acknowledgements
	References
	Pitch angle threshold
	Power before cut-in threshold
	Results for random forest classifier
	Confusion matrices
	Python code

