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Abstract
Explanations are the fuel of progress, the funda-
mental tool through which humans have increased
their agency, earning more and more control over
their future throughout history. So far, the pro-
duction of these special symbolic sequences has
been a unique prerogative of humans, who greatly
improved the process over the last centuries with
the emergence of the scientific method. In this
work, we try to formalize this epistemological
breakthrough to make it digestible by a machine,
with the ultimate goal of building an artificial sci-
entist and breaking the monopoly of humans in
producing new explanations. Our Explanatory
Learning (EL) construction stands over the Ma-
chine Learning field. Unlike traditional AI meth-
ods based on human-coded interpreters–such as
program synthesis–EL builds upon the notion that
a true artificial scientist can only emerge when
a machine is capable of autonomously interpret-
ing symbols. Consequently, EL necessitates a
learned interpreter, trained on a limited set of raw
strings hiding explanations, paired with observa-
tions of the corresponding phenomena–akin to
a science book written in hieroglyphic. To ex-
emplify the challenges of EL, we present Odeen,
a basic environment that simulates a small uni-
verse full of phenomena to explain. Finally, we
introduce Critical Rationalist Networks, a deep
learning approach to EL aligned with the Poppe-
rian view of knowledge acquisition. Using Odeen
as a testbed, we show how CRNs outperform stan-
dard empiricist end-to-end approaches of similar
size and architecture (Transformers) in discover-
ing explanations for unseen phenomena.
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Explanation1: Explanation:

Figure 1. The Odeen universe. A convenient setting to study and
test the process of knowledge discovery in machines. Like the
night sky was for humans. *Galileo did not sketch negative examples.

1. Introduction
Making accurate predictions about the future is a key abil-
ity to survive and thrive in a habitat. Living beings have
evolved many systems to this end, such as memory (Mc-
Connell, 1962), and several can predict the course of com-
plex phenomena (Taylor et al., 2012). However, no animal
comes even close to the prediction ability of humans, which
stems from a unique-in-nature system.

At the core of this system lies an object called explana-
tion, formed by the proposition of a language, which has
a remarkable property: it can be installed with ease into
another human speaking the same language, allowing to
make predictions on new phenomena without ever having
experienced them. When the installation is successful, we
say that the human has understood the explanation.

This process is key to the success of human beings. An
individual can provide accurate predictions for a multitude
of phenomena without going through a painful discovery
process for all of them, but only needs an operating system
– mastering a language – and someone who communicates
the relevant explanations; this way, the individual can focus
on unexplained phenomena. When an explanation is found
for them, it is added to the existing shared collection, which
we call knowledge.

How can we make machines take part in this orchestra?
With this work, we try to shed new light on this problem.
Specifically, we propose a learning procedure to allow ma-
chines (i) to understand existing explanations, in the sense
described above, and (ii) create new explanations for unex-
plained phenomena, much like human scientists do.

1The explanation Four wandering stars having their period
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Our contribution in this sense is threefold:

i) We formulate the challenge of creating a machine that
masters a language as the problem of learning an inter-
preter from a collection of examples in the form explana-
tion-observations. The only assumption we make is this
dual structure of data; explanations are free strings, and are
not required to fit any formal grammar. This results in the
Explanatory Learning (EL) framework described in Sec. 2.

ii) We present Odeen, a basic environment to test EL ap-
proaches, which draws inspiration from the board game
Zendo (Heath, 2001). Odeen simulates the work of a sci-
entist in a small universe of simple geometric figures, see
Figure 1. We present it in Sec. 3, and will release it upon
publication.

iii) We argue that the dominating empiricist ML approaches
are not suitable for EL problems. We propose Critical Ra-
tionalist Networks (CRNs), a family of models designed
according to the epistemological philosophy pushed for-
ward by Popper (1935). Although a CRN is implemented
using two neural networks, the working hypothesis of such
a model does not coincide with the adjustable network pa-
rameters, but rather with a language proposition that can
only be accepted or refused in toto. We will present CRNs
in Sec. 4, and test their performance on Odeen in Sec. 5.

2. Explanatory Learning
Humans do not master a language from birth. A baby can
not use the message “this soap stings” to predict the burning
sensation caused by contact with the substance. Instead, the
baby gradually learns to interpret such messages and make
predictions for an entire universe of phenomena (Schulz
et al., 2007). We refer to this state of affairs as mastering
a language, and we aim to replicate it in a machine as the
result of an analogous learning process.

Using a batch of explanations paired with observations of
several phenomena, we want to learn an interpreter to make
predictions about novel phenomena for which we are given
explanations in the same language. Going a step further, we
also want to discover these explanations, when all we have
is a handful of observations of the novel phenomena. We
first describe the problem setup in the sequel, comparing
it to existing ML problems; then we detail our approach in
Sec. 4.

Problem setup. Formally, let phenomena P1, P2, P3, . . .
be subsets of a universe U , which is a large set with no
special structure (i.e., all the possible observations U =

around a principal star is adapted from the English translation
of the Sidereus Nuncius (Galilei, 2016, page 9). First sketch on
the left is compatible with the rule since the fourth moon can be
hidden by one of the other moons or by Jupyter itself.

{x1, . . . , xz}). Over a universe U , one can define a lan-
guage L as a pair (ΣL, IL), where ΣL is a finite collection
of short strings over some alphabet A, with |ΣL| ≫ |A|,
and IL is a binary function IL : U × ΣL → {0, 1}, which
we call interpreter. We say that a phenomenon Pi is explain- Explainability

definitionable in a language L if there exists a string e ∈ ΣL such
that, for any x ∈ U , it occurs IL(x, e) = 1Pi

(x), where
1Pi(x) is the indicator function of Pi. We call the string e
an explanation, in the language L, for the phenomenon Pi.

Our first contribution is the introduction of a new class of
machine learning problems, which we refer to as Explana-
tory Learning (EL).

Consider the general problem of making a new prediction
for a phenomenon P0 ⊂ U . In our setting, this is phrased as
a binary classification task: given a sample x′ ∈ U , establish
whether x′ ∈ P0 or not. We are interested in two instances
of this problem, with different underlying assumptions:

• The communication problem: we have an expla-
nation. We are given an explanation e0 for P0, in
an unknown language L. This means that we do
not have access to an interpreter IL; e0 looks like
Japanese to a non-Japanese speaker. Instead, we are
also given other explanations {e1, . . . , en}, in the same
language, for other phenomena P1, . . . , Pn, as well as
observations of them, i.e., datasets {D1, . . . , Dn} in
the form Di = {(x1,1Pi

(x1)), . . . , (xm,1Pi
(xm))},

with m ≪ |U |. Intuitively, here we expect the learner
to use the explanations paired with the observations
to build an approximated interpreter ÎL, and then use
it to make the proper prediction for x′ by evaluating
ÎL(x′, e0).

• The scientist problem: we do not have an explana-
tion. We are given explanations {e1, . . . , en} in an
unknown language L for other phenomena P1, . . . , Pn

and observations of them {D1, . . . , Dn}. However,
we do not have an explanation for P0; instead, we
are given just a small set of observations D0 =
{(x1,1P0

(x1)), . . . , (xk,1P0
(xk))} and two guaran-

tees, namely that P0 is explainable in L, and that D0

is representative for P0 in L. That is, for every phe- Representati-
vity definitionnomenon P ̸= P0 explainable in L there should exist

at least a xi ∈ D0 such that 1P0
(xi) ̸= 1P (xi). Again,

we expect the learner to build the interpreter ÎL, which
should first guide the search for the missing explana-
tion e0 based on the clues D0, and then provide the
final prediction through ÎL(x′, e0).

Several existing works fall within the formalization above.
The seminal work of (Angluin, 1987) on learning regular
sets is an instance of the scientist problem, where finite
automata take the role of explanations, while regular sets
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are the phenomena. More recently, CLEVR (Johnson et al.,
2017) posed a communication problem in a universe of
images of simple solids, where explanations are textual and
read like “There is a sphere with the same size as the metal
cube”. Another recent example is CLIP (Radford et al.,
2021), where 400,000,000 captioned internet images are
arranged in a communication problem to train an interpreter,
thereby elevating captions to the status of explanations rather
than treating them as simple labels2. With EL, we aim to
offer a unified perspective on these works, making explicit
the core problem of learning an interpreter purely from
observations.

Relationship with other ML problems. We briefly discuss
the relationship between EL and other problems in ML,
pointing to Sec. 6 for additional discussion on the related
work.

EL can be framed in the general meta-learning framework.
The learner gains experience over multiple tasks to improve
its general learning algorithm, thus requiring fewer data and
less computation on new tasks. However, differently from
current meta-learning approaches (Finn et al., 2017; Lee
et al., 2019), we are not optimizing for any meta-objective
(Hospedales et al., 2020). Instead, we expect the sought
generality to be a consequence of implicitly defining an
interpreter through a limited set of examples rather than an
explicit goal to optimize for.

To many, the concept of explanation may sound close to the
concept of program; similarly, the scientist problem may
seem a rephrasing of the fundamental problem of Induc-
tive Logic Programming (ILP) (Shapiro, 1981) or Program
Synthesis (PS) (Balog et al., 2017). This is not the case.
ILP has the analogous goal of producing a hypothesis from
positive/negative examples accompanied by background
knowledge. Yet, ILP requires observations to be expressed
as logic formulas, a task requiring a human; only then the
ILP solver outputs an explanation in the form of a logic
proposition, which in turn is interpreted by a human ex-
pert. With EL, data can be fed as-is without being translated
into logic propositions, and a learned interpreter plays the
expert’s role. PS also admits raw data as input, it yields
a program as output, and replaces the expert with a hand-
crafted interpreter; still, the sequence of symbols produced
by a PS system only makes sense to a human (who designed
the interpreter), not to the system itself. Instead, in EL, the
interpreter is learned from data rather than hardcoded. An
empirical comparison demonstrating the benefits of EL over
PS is given in Sec. 5.

Next we introduce Odeen, an environment and benchmark
to experiment with the EL paradigm.

2This shift greatly improved the performance of their model,
as discussed in (Radford et al., 2021, Sec. 2.3).

3. Odeen: a puzzle game as Explanatory
Learning environment

Single game. The in-
set shows a typical sit-
uation in a game of
Odeen. The players
look at a set of struc-
tures made of simple geometric figures. Each structure is
tagged red or green according to a secret rule, and the play-
ers’ goal is to guess this rule. In the example, the rule can
not possibly be “A structure must contain at least one red
square” since the fifth structure on the left does not contain
a red square, but respects the rule (green tag). To win the
game, a player must prove to know the rule by correctly
tagging a large set of new structures3.

Odeen challenge. We can see each game of Odeen as a
different phenomenon of a universe, where each element is
a sequence of geometric figures. In this universe, players
are scientists like Galileo, trying to explain the new phe-
nomenon; see Figure 1. We can phrase the challenge for an
Odeen scientist in this way: make correct predictions for a
new phenomenon given few observations of it in addition
to explanations and observations of some other phenom-
ena. This is the essence of the Odeen Explanatory Learning
problem, see Figure 2 (A and B).

- Why do we need explanations and observations from
phenomena different from the one of interest? Indeed, we
are able to play Odeen from the very first game.

- We are able to do
so only because we
are–already–fluent in
the Odeen language,
which is a subset of En-
glish in the above case.
We already have and
understand all neces-
sary concepts, such as
being “at the right of”
something, but also be-
ing a “square” or “at least”. Otherwise, we would need
past explanations and observations to first build this un-
derstanding. Before explaining the dynamic of the Jupiter
moons, Galileo learned what “Jupiter” is and what does
it mean to “have a period around” something from past
explanations and examples provided to him by books and
teachers.

3The solution of the inset game is at the end of this footnote.
Odeen is inspired by the board game Zendo, where players must
explicitly guess the rule, known only to a master. In Zendo, players
can also experiment by submitting new structures to the master.
Solution: At least one square at the right of a red pyramid.
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In Odeen, consider the point of view of someone who does
not speak the language in which the rules are written; an
example of this is in the inset, where the secret explanations
are given in hieroglyphics rather than English. Such a player
would not be able to tag any structure according to the secret
rule, even if the latter is given. However, assume the player
has been watching several games together with their secret
rules. Reasonably, the player will grow an idea of what
those strange symbols mean. If the player then wins several
Odeen games, it would be strong evidence of mastering the
Odeen language.

Problem formulation. Each game of Odeen is a different
phenomenon Pi of a universe U whose elements x are se-
quences of geometric figures. The specific task is to make
correct predictions for a new phenomenon P0 (a new game)
given: (i) a few observations D0 of P0 (tagged structures),
in conjunction with (ii) explanations {e1, . . . , en} and ob-
servations {D1, . . . , Dn} of other phenomena (other games
and their secret rules). More formally:

Let us be given s unexplained phenomena with k ob-
servations each, and n explained phenomena with m
observations each; let the n phenomena be explained in
an unknown language, i.e., e1, . . . en are plain strings
without any interpreter. The task is to make ℓ correct
predictions for each of the s unexplained phenomena.

We consider ℓ = 1176 (1% of structures); s = 1132; k =
32; n = 1438 or 500; m ranges from 10K to 50.

Why not explicitly ask for the rule? Instead of requiring
the player to reveal the secret explanation explicitly, we
follow the principle of zero-knowledge proofs (Blum et al.,
1988). In our setting, this is done by asking the player to
correctly tag many unseen structures according to the discov-
ered rule. This makes it possible for any binary classification
method to fit our EL environment without generating text.
A winning condition is then defined by counting the correct
predictions, instead of a textual similarity between predicted
and correct explanation, which would require the player to
guess word-by-word the secret rule. In fact, different phras-
ings with the same meaning should grant a victory, e.g.,
“at least one pyramid pointing up and at most one pyramid
pointing up” is a winning guess for the secret rule “exactly
one pyramid pointing up”4. A brute-force enumeration of
all equivalent phrasings, in turn, would not allow solutions
like “exactly one one pyramid pointing up”, where “one” is
mistakenly repeated twice; intuitively, we want to accept

4The intuitive notion of meaning adopted here coincides with
the pragmatic definition given by Peirce (1878, Sec. II), which
identifies the meaning of an expression with the set of all conceiv-
able practical consequences that derive from its acceptance. We
refer the reader to Kant and the Platypus for a readable discussion
of this view (Eco, 2000, Sec. 3.3), involving the first description
of horses given by Aztecs.

this as correct and dismiss the grammatical error. Similarly,
a solution like “exactly one pointing up”, where “pyramid”
is omitted, should be accepted in a universe where only
pyramids point up. We will reencounter these examples in
Sec. 5 when we discuss the key properties of our approach.

Dataset generation. Odeen structures are sequences of six
elements including spaces, blues or reds, squares or pyra-
mids, the latter pointing up or down. The size of the universe
is |U | = 76 = 117, 649 possible structures. We further cre-
ated a small language with objects, attributes, quantifiers,
logical conjunctions, and interactions (e.g., “touching”, see
Appendix A). The grammar generates ≈25k valid rules in
total. Each of the |U | structures is tagged according to all
the rules. The tagging is done by an interpreter implemented
via regular expressions.

Metrics. As described above, the task is to tag ℓ
new structures for each of s unexplained games. An
EL algorithm addressing this task encodes the pre-
dicted rule as an ℓ-dimensional binary vector v per
game (predicted vector), where vi = 1 means that

Predicted vector v

the i-th structure satis-
fies the predicted rule,
and vi = 0 otherwise
(see inset). Let w∗ be
the ground-truth vector,
obtained by tagging the
ℓ structures according
to the correct secret rule. Then, the Hamming distance
dH(v,w∗) measures the number of wrong tags assigned
by the EL algorithm; if dH(v,w∗) < dH(v,wi), where
wi ̸= w∗ ranges over all the possible ≈25k rules, then the
predicted rule v made by the algorithm is deemed correct.

According to this, the Nearest Rule Score (NRS) is the
number of correctly predicted rules over a total of s games.
A second score, the Tagging Accuracy (T-Acc), directly
counts the number of correct tags averaged over s games;
this is more permissive in the following sense. Consider two
different rules A and B sharing 99% of the taggings, and let
A be the correct one; if an EL model tags all the structures
according to the wrong rule B, it still reaches a T-Acc of
99%, but the NRS would be 0. An EL algorithm with these
scores would be good at making predictions, but would be
based on a wrong explanation.

4. Critical Rationalist Networks
In principle, an EL problem like Odeen can be approached
by training an end-to-end neural network to predict ŷ =
1Pi

(x′), given as input a set of observations Di and a sin-
gle sample x′ (see Figure 2 C, left). Such a model would
assume that all the information needed to solve the task is
embedded in the data, ignoring the explanations; we may
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Figure 2. Odeen Explanatory Learning problem. Given observations and explanations in an unknown language for some phenomena
(A), plus a few observations of a new phenomenon, explain the latter and prove this knowledge by correctly tagging a large set of new
samples (B). An empiricist approach attempts to extract this knowledge from data (C, left); a rationalist one conceives data as theory-laden
observations, used to find the true explanation among a set of conjectures (C, right).

call it a “radical empiricist” approach (Pearl, 2021). A vari-
ant that includes the explanations in the pipeline can be
done by adding a textual head to the network. This way,
we expect performance to improve because predicting the
explanation string can aid the classification task. As we
show in the experiments, the latter approach (called “con-
scious empiricist”) indeed improves upon the former; yet,
it treats the explanations as mere data, nothing more than
mute strings to match, in a Chinese room fashion (Searle,
1980; Bender & Koller, 2020).

In the following, we introduce a “rationalist” approach to
solve EL problems. This approach recognizes the given ex-
planations as existing knowledge, and focuses on interpret-
ing them. Here theory comes first, while the data become
theory-laden observations.

Learning model. Our Critical Rationalist Networks (CRNs)
tackle the EL scientist problem introduced in Sec. 2: to find
y = 1P0

(x′) given x′, D0, {D1, . . . , Dn}, {e1, . . . , en}.
They are formed by two independently trained models:

(i) A stochastic Conjecture Generator

CG : {(x,1P (x))j}kj=1 7→ e ,

taking k ≤ |D0| pairs (x,1P (x)) ∈ Di as input, and
returning an explanation string e ∈ Σ as output. CG is
trained to maximize the probability that CG(D̃i) = ei for
all i = 1, . . . , n, where D̃i ⊂ Di is a random sampling of
Di, and |D̃i| = k.

(ii) A learned Interpreter

I : (e, x) 7→ ŷ ,

which takes as input a string e ∈ Σ and a sample x ∈ U , to
output a prediction ŷ ∈ {0, 1}. I is trained to maximize the
probability that I(ei, x) = 1Pi(x), with i = 1, . . . , n and
(x,1Pi(x)) ∈ Di.

At test time, we are given a trained CG and a trained I, and
we must predict whether some x′ /∈ D0 belongs to P0 or not.

The idea is to first generate t conjectures by applying CG
t times to the dataset D0; then, each conjecture is verified
by counting how many times the interpreter I outputs a
correct prediction over D0. The conjecture with the highest
hit rate is our candidate explanation ê0 for P0. Finally, we
obtain the prediction ŷ′ as I(ê0, x′). See Figure 3 (left) for
a step-by-step pseudo code.

Remarks. The interpreter I is a crucial component of our
approach. A poor I may fail to identify e0 among the
generated conjectures, or yield a wrong prediction y′ when
given the correct e0. On the other hand, we can work with a
CG of any quality and safely return as output an unknown
token, rather than a wrong prediction, whenever e0 does
not appear among the generated conjectures. The role of
CG is to trade-off performance for computational cost, and
is controlled by the parameter t. Larger values for t imply
more generated conjectures, corresponding to exhaustive
search if taken to the limit (as done, e.g., in Radford et al.
(2021)). This potential asymmetry in quality between CG
and I is tolerated, since the learning problem solved by CG
is generally harder.

Secondly, although a CRN is implemented using neural
networks, as we shall see shortly, its working hypothesis
does not coincide with a snapshot of the countless network’s
parameters; rather, the working hypothesis is but the small
conjecture analyzed at a given moment. This way, the CRN
hypothesis is detached from the model and can only be ac-
cepted or refused in its entirety, rather than being slightly
adjusted at each new data sample (Figure 2 C, the hypothe-
ses are in orange).

Implementation. Figure 3 (right) illustrates the architecture
of CRNs, which we implement using encoder-decoder trans-
formers (Vaswani et al., 2017). The figure also shows the
architecture of the baseline methods EMP-R and EMP-C,
corresponding to the end-to-end NN model and its variant
with a textual head, respectively. We refer to the Appendix
for further details.
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I

CG
EMP-R

Figure 3. Left: Test-time algorithm of CRNs. Right: CRNs are implemented using encoder-decoder transformers blocks, details of the
parameters in Appendix B. Right-top: I denotes the interpreter model (rule encoder and label decoder). Right-bottom: The conjecture
generator CG is composed by blue blocks. The “radical empiricist” (EMP-R) is composed by orange blocks. The “conscious empiricist”
(EMP-C) baseline model consists of all the transformer blocks in the right-bottom figure, board encoder with rule and label decoders.

5. Experiments
We extensively compared CRNs to the radical (EMP-R) and
conscious (EMP-C) empiricist models over the Odeen EL
problem, and analyzed several fundamental aspects.

Generalization power and data scaling laws. Seeing the
generalization power of a learning algorithm as its ability
in discovering new knowledge from little data, the Odeen
challenge asks to explain 1132 unknown phenomena for
which only 32 observations are available. We measure the
performance on this task through a proof of knowledge
based on the successful tagging of 1176 new structures per
phenomenon (NRS). The information available at training
time consists of symbolic explanations from 1438 known
phenomena paired with m observations each (see Fig. 2A),
we evaluated several settings with m ranging from 10K
to 50. No test explanation is equivalent to the ones seen
at training. An important example is the bigram “exactly
two”, which appears in the test set, but was deliberately
excluded from training; the training rules only contain “at
least/most two” and “exactly one”. With m = 1K, the CRN
guessed 40% of the 72 test rules with “exactly two”, while
the empiricist models only 4% (EMP-C) and 0% (EMP-R).
Some example games can be found in Appendix D.

The plot in the inset shows the NRS trends for the CRN
and EMP-C over different sizes of the training dataset.
Despite the EMP-C and CRN have approximately the
same number of learnable parameters (≈ 6M ), the CRN
performance grows faster and earlier as data scales. The
EMP-C barely improves before training at least on 1 million

samples, e.g. it achieves a 20% score with a delay of two
orders of magnitude with respect to the CRN (m = 50
vs 5K). The table reports the full results for m = 1K.

105 106 107

Dataset Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NR

S
CRN
EMP-C

MODEL NRS T-ACC R-ACC

CRN 0.777 0.980 0.737
EMP-C 0.225 0.905 0.035
EMP-R 0.156 0.898 -

Here R-Acc
measures how
frequently an output
explanation is equiv-
alent to the correct
one; two rules A and
B are equivalent if
the tags assigned
by the hard-coded
interpreter to all the
∼117k structures in
U are the same for
A and B.

As expected, the explanation predicted by the conscious em-
piricist model is rarely correct (R-Acc 3.5%), even when it
tags some structures properly (NRS 22.5%); indeed, EMP-C
gives no guarantee for the predicted explanation to be con-
sistent with the tags prediction. Conversely, the CRN con-
sistently provides the correct explanation when it is able to
properly tag the new structures (NRS 77.7%, R-Acc 73.7%).
The 4% gap between the two scores is clarified in the next
paragraph.

Handling ambiguity and contradiction. One may rea-
sonably expect that a CRN equipped with the ground-truth
interpreter used to generate the dataset, would perform bet-
ter than a CRN with a learned interpreter. Remarkably, this
is not always the case, as reported in Table 1.
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Table 1. Explanatory Learning vs Program Synthesis paradigm. Performance comparison of a data-driven vs ground-truth interpreter
in a CRN. The last column shows the tag prediction accuracy of the learned I, when provided with the correct rule.

NRS T-ACC
TRAIN DATA FULLY-LEARNED CRN HARDCODED I CRN LEARNED I
10K STRUCT. 1438 RULES 0.813 0.801 0.997
1K STRUCT. 1438 RULES 0.777 0.754 1.000
100 STRUCT. 1438 RULES 0.402 0.406 0.987

10K STRUCT. 500 RULES 0.354 0.377 0.923
1K STRUCT. 500 RULES 0.319 0.336 0.924
100 STRUCT. 500 RULES 0.109 0.101 0.920

The better performance of the fully learned interpreter over
the ground-truth one is due to its ability to process ill-formed
conjectures generated by the CG. The conjecture “at least
one pointing up” makes the hard-coded interpreter fail, since
“pointing up” must always follow the word “pyramid” by the
grammar. Yet, in Odeen, pyramids are the only objects that
point, and the learned I interprets the conjecture correctly.
Other examples include: “exactly one red block touching
pyramid blue” (“pyramid” and “blue” are swapped), or the
contradictory “at least one two pyramid pointing up and
exactly one red pyramid”, which was interpreted correctly
by ignoring the first “one”. When the learned interpreter is
not very accurate, the effect of errors in tagging prevails.

Making sense out of ambiguous or contradictory messages5

is a crucial difference between a learned interpreter vs a
hardcoded one. As Rota (1991) reminds us, a concept does
not need to be precisely defined in order to be meaningful.
Our everyday reasoning is not precise, yet it is effective.
“After the small tower, turn right”; we will probably reach
our destination, even when our best attempts at defining
“tower”, as found, e.g., in the Cambridge dictionary, begin
with “a tall, narrow structure...”.

Explainability. The predictions of a CRN are directly
caused by a human-understandable explanation that is avail-
able in the output; this makes CRNs explainable by con-
struction. Further, CRNs allow counterfactuals; one may
deliberately change the output explanation with a new one
to obtain a new prediction. The bank ML algorithm spoke:
“Loan denied”; explanation: “Two not paid loan in the past
and resident in a district with a high rate of insolvents”.
With a CRN, we can easily discard this explanation and
compute a new prediction for just “Two not paid loan in the
past”.

Importantly, by choosing a training set, we control the lan-
guage used for explanations; i.e., we explicit the biases that
will steer the learning of generalizations (Mitchell, 1980).
This allows a CRN to ignore undesirable patterns in the
data (e.g., skin color) if these can not be expressed in the

5This is one of seven essential abilities for intelligence as found
in GEB (Hofstadter, 1979, Introduction).

chosen language. If the Odeen training set had no rule with
“pointing up/down”, the learned interpreter would see all
equal pyramids, even with unbalanced training data where
90% of pyramids point up.

On the contrary, current explainability approaches for NNs
(end-to-end empiricist models) either require some form of
reverse engineering, e.g., by making sense out of neuron
activations (Goh et al., 2021), or introduce an ad-hoc block
to generate an explanation given the prediction, without es-
tablishing a cause-effect link between the two (Hendricks
et al., 2016; Hind et al., 2019). This practice produces expla-
nations that are not reliable and can be misleading (Rudin,
2019), on the contrary CRNs’ explanations are faithful to
what the model actually computes.

Adjustable thinking time. End-to-end models do
not exhibit a parameter to adjust their process-
ing to the complexity of the incoming prediction.
By contrast, CRNs
have a test-time
parameter t, cor-
responding to the
number of gener-
ated conjectures,
which trades off
computational cost
for performance. In
the inset, we plot the cumulative R-Acc score (y axis)
against the number t of generated conjectures (x axis). The
curves show that > 60% of correct explanations are found
within the first 50 candidates, and > 80% are within the
first 300. As a reference, a brute force exhaustive search
would reach 100% over a search space of 24, 794 possible
explanations.

Prediction confidence. As explained in Sec. 4, at test time
the CRN selects the conjecture with the highest hit rate
among the ones generated by the CG. Alternatively, one may
keep only the conjectures coherent with all the structures in
the table, returning an “unknown explanation” signal if no
such conjectures are found. If the interpreter is sufficiently
accurate, this stricter condition barely deteriorates the CRN

7
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performance, and it will never return a prediction based on a
possibly wrong explanation. For example, tested in a setting
with n = 1438, m = 1000 (same as the Generalization
power paragraph), this stricter CRN discovers the correct
explanation for 861 out of 1132 new phenomena (76%),
and admits its ignorance on the other 271. Conversely,
evaluating the confidence of an end-to-end neural network
remains an open problem (Meinke & Hein, 2019).

6. Related Work
Epistemology. The deep learning model we propose in this
work, CRNs, is designed according to the epistemological
theory of critical rationalism advanced by Popper (1935),
where knowledge derives primarily from conjectures, crit-
icized at a later stage using data. Deutsch (2011) remarks
that to make this critique effective, conjectures should not
be adjustable but can only be kept or rejected at each new
data sample, as done in CRNs at test time. Only in this
way we can discover explanations with “reach”, namely that
maintain predictive power in novel situations.

Machine learning. Explanatory Learning enriches the fun-
damental problem of modern program synthesis (Balog
et al., 2017; Sun et al., 2018; Ellis et al., 2020) by including
the interpretation step among what should be learned. As
seen in the the Handling ambiguity paragraph, a learned I
can grant better performance by exploiting the ambiguity
of language to impose new meaning on arbitrary substrates,
which Santoro et al. (2021) recognize as a fundamental trait
of symbolic behavior.

Despite the similar underlying motivation, EL fundamen-
tally differs from current meta learning approaches (Weng,
2018), since it does not prescribe any parameter adapta-
tion at test time. In this sense, EL resembles more the
Domain Generalization setting, which involves designing a
specific model that is robust to domain shift (Li et al., 2018).
Unlike DG, EL requires labels to be symbolic sequences
rather than a single symbol, but makes no assumption of
identical labels between training and test domains6. EL re-
quires just that all symbols present in the test sequences are
seen at training. While current SOTA approaches in DG do
not significantly outperform Empirical Risk Minimization
(Gulrajani & Lopez-Paz, 2020), in the EL setting CRNs
overcome the performance of standard ERM (EMP-C) by
a large margin. Recent literature finds few yet remarkable
approaches that fit our EL paradigm, such as CLIP (Radford
et al., 2021) in the vision area, and Generate & Rank (Shen
et al., 2021) for Math Word Problems in NLP.

The Odeen challenge continues the tradition of AI bench-
marks set in idealized domains (Mitchell, 2021). Unlike

6The DG version of the Odeen test set would contain the same
rules of the training set, changing just the accompanying structures.

CLEVR (Johnson et al., 2017) and ShapeWorld (Kuhnle
& Copestake, 2017), Odeen focuses on abduction rather
than deduction. Unlike ARC (Chollet, 2019), Odeen is a
closed environment providing all it takes to learn the lan-
guage needed to solve it. Unlike the ShapeWorld adaptation
of Andreas et al. (2017), its score is measured in terms
of discovered explanations rather than sparse guessed pre-
dictions; further, the test and training set do not share any
phenomenon.

Learning theory. Finally, we point out that the expression
Explanatory Learning was previously used by Aaronson
(2013, Sec. 7) to argue about the necessity of a learning
theory that models “predictions about phenomena different
in kind from anything observed”. The author pointed to the
work of Angluin (1987), who generalized the PAC learning
model by moving the goal from successful predictions to
comprehensive explanations.

7. Conclusions
Recently, the attention on the epistemological foundations
of deep learning has been growing. The century-old de-
bate between empiricists and rationalists about the source
of knowledge persists, with two Turing prizes on oppo-
site sides; LeCun (2019) argues that empiricism still offers
a fruitful research agenda for deep learning, while Pearl
(2021) supports a rationalist steering to embrace model-
based science principles. This new debate is relevant, since
as Pearl notes, today we can submit the balance between
empiricism and innateness to experimental evaluation on
digital machines.

Limitations and future directions. EL models the essen-
tial part of the knowledge acquisition process, namely the
interval that turns a mute sequence of symbols into an expla-
nation with reach. However, our modeling assumes a rep-
resentative set of observations D0 to be given (the k = 32
structures of the new phenomenon). A more comprehensive
explanatory model would allow the player to do without
these observations, including an interaction phase with the
environment where the D0 itself is actively discovered. We
see this as an exciting direction for follow-ups.

Finally, we expect CRNs to be more resilient than end-to-
end models to adversarial attacks. For a given data point
x′ ∈ P0 classified correctly by an empiricist model, a small
adversarial change on D0 can flip the prediction for x′ while
remaining unnoticed. Conversely, suppose that a CRN made
the prediction for x′, and assume that the correct explanation
was ranked as the 5th most likely by the CG. The same attack
on D0 will have the effect of moving the correct explanation
lower in the ranking; however, as long as it stays within the
first t conjectures (300 in this paper), it will always be found
by the interpreter as the correct solution.

8



Explanatory Learning: Towards Artificial Scientific Discovery

Acknowledgments
This work has been funded by the ERC Starting Grant no.
802554 (SPECGEO).

We want to thank the whole GLADIA group for the precious
feedback at the beginning of the project, and especially:
Luca Cosmo, Marco Fumero (for having played the role
of the devil’s advocate), Michele Mancusi (for the early
philosophical discussion), and Arianna Rampini (for the
design of the first version of Odeen).

We would also like to thank Dario Abbondanza, Marco
Esposito, Giacomo Nazzaro, and Angela Norelli for the
frequent and helpful discussions throughout the work, such
as those about Zero-Knowledge proofs and the semiotic
theory of Charles S. Peirce, which sometimes lasted until 5
AM.

Finally, we would like to express a special thank you to
Paolo Scattini. With his usual enthusiasm, he introduced
Antonio to Zendo one night at the Rome Go club, providing
the spark that lit this long journey.

References
Aaronson, S. Why philosophers should care about computa-

tional complexity. Computability: Turing, Gödel, Church,
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Appendix

A. Further details on the Odeen6 dataset
Training set. The total number of rules produced by the
Odeen grammar is 24,794. We consider training sets vary-
ing from 500 to 1438 rules. We choose these rules such
that each token and each syntactic construct appears at least
once; then, we uniformly select the others from the dis-
tribution. We removed from the training set any rule con-
taining the bigram exactly 2, as well as any rule of the
form at least 2 X and at most 2 X, equivalent
to exactly 2 X. Each rule is associated with a set of
100, 1,000, or 10,0000 labelled structures that unambigu-
ously identify a rule equivalence class.

Test set. We generate the 1,132 games that compose the
test set the same way, with the additional constraint of ex-
cluding the rules belonging to an equivalence class that is
already in the training set. In the test set 72 rules contain the
bigram exactly 2. Rules in the test set are associated
with just 32 labelled structures. The first 10 structures are
chosen by searching pairs of similar structures with different
labels, following a common human strategy in Zendo. The
remaining 22 structures are selected to ensure the lack of
ambiguity on the board.

Formal definition of the Odeen grammar. The context-
free grammar in Figure 4 defines all the acceptable rules
in Odeen. This grammar only formalizes which rules
are syntactically correct. Token names (e.g. red, 1 or
touching) do not imply any rule meaning.

The hard-coded interpreter formalizes how to interpret the
rules. Similarly to compilers, it tokenizes and transforms
the rule into an abstract syntax tree (AST). The interpreter
then adds semantic information to the AST, establishing
the truth value of each node based on the truth value of its
children and the structure under evaluation.

The Odeen binary semantic representations. By simu-
lating the process of scientific discovery, Odeen offers a
convenient simulation of a world described by a language.
Besides the computational tractability, the simplicity and
adjustable size of the Odeen world allows us to explicit the
whole semantics of its language.

This semantics can be encoded in a binary semantic matrix
S with the 24,794 rules ei on the rows and the 117,649
structures xj on the columns. The sij element of this matrix
is equal to 1 if the structure xj complies with the rule ei and
0 otherwise, see inset in Section 3, Metrics paragraph. Si∗,

6Odeen is the Rational alien in The Gods Themselves (1972),
a novel by Isaac Asimov about a conspiracy against Earth by the
inhabitants of a parallel universe with different physical laws.

the 117,649-dimensional binary vector coinciding with the
i-th row of S, fully represents the meaning of rule ei in the
Odeen world. Similarly, each structure xj is represented by
the 24,794-dimensional binary vector coinciding with the
column S∗j of S.

In Figure 5, we analyze the distribution of the Hamming
weights (i.e., the number of ones) in {Si∗}117,649i=1 (5a) and
{S∗j}24,794j=1 (5b). We observe an asymmetry between the
rule and structure distributions. On one hand, the seman-
tic representation of a rule can be quite unbalanced, with
populated extremes of rules evaluating all structures with
1 (or 0) as shown in Figure 5a. On the other hand, Figure
5b shows that the semantic representations of structures are
very balanced; most of them have around half zeros and half
ones, with no structure with less than 10k or more than 14k
ones.

This balanced trend, along with the well separable PCA of
{S∗j}24,794j=1 (Figure 6a) suggests that the chosen language
produce representations that are effective in separating struc-
tures. Conversely, the PCA of {Si∗}117,649i=1 is much less ho-
mogeneous (Figure 6b). Here we can recognize two poles,
corresponding respectively to rules with all ones and all
zeros. We believe that this analysis of the binary semantic
representations is only partial, and we leave further explo-
ration for follow-up work.

B. Implementation Details
In this paragraph, we give the implementation details of the
models proposed and depicted in Figure 3 (right). All the
models are based on a Transformer block composed of 4
layers and 8 heads. We used a hidden dimension of 256
for all the models except for the interpreter, where we used
a hidden dimension of 128. The models differ primarily
by the type of transformer block used (encoder/decoder),
inputs and embeddings. In detail:

• TRANSFORMER LABEL DECODER. This is a trans-
former block used to predict a label given a structure.
The input structure is a sequence of six learned embed-
dings, one per piece. We add a sinusoidal positional
encoding to each embedding as in the original trans-
former implementation. The embedding size is 128 in
the I and 256 in the Empiricist models (EMP-C, EMP-
R). We used the standard transformer encoder block
and added a special token [CLS] at the beginning of
the structure like in (Devlin et al., 2019) to perform the
classification task.

• TRANSFORMER RULE DECODER. This is a trans-
former decoder block with embedding size of 128 and
sinusoidal positional encoding. This decoder block is
used to generate the rule by the EMP-C and CG models.
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⟨RULE⟩ |= ⟨PROP S⟩ | ⟨PROP⟩ | ⟨PROP S⟩ ⟨CONJ⟩ ⟨PROP S⟩
⟨PROP⟩ |= ⟨QTY⟩ ⟨OBJ⟩ ⟨REL⟩ ⟨OBJ⟩

⟨PROP S⟩ |= ⟨QTY⟩ ⟨OBJ⟩
⟨OBJ⟩ |= ⟨COL⟩ | ⟨SHAPE⟩ | ⟨COL⟩ ⟨SHAPE⟩
⟨QTY⟩ |= at least ⟨NUM⟩ | exactly ⟨NUM⟩ | at most ⟨NUM⟩ | zero

⟨SHAPE⟩ |= pyramid ⟨ORIEN⟩ | pyramid | block
⟨REL⟩ |= touching | surrounded by | at the right of

⟨ORIEN⟩ |= pointing up | pointing down

⟨NUM⟩ |= 1 | 2
⟨CONJ⟩ |= and | or
⟨COL⟩ |= red | blue

Figure 4: Grammar productions for the Odeen Language.

(a)

(b)

Figure 5: Hamming weight of the binary semantic repre-
sentation of each rule (a) and each structure (b). We sort
them in descending order for visualization purposes.

• TRANSFORMER BOARD ENCODER. This is a trans-
former encoder block used to encode the (structure,
label) pairs. The input is encoded a sequence of
32 learned embeddings, one per structure-label pair.

The size of each embedding is 256. We did not add
positional encodings, since the specific position of
structure-label pairs among the 32 is not relevant. This
block is used in all the models.

• TRANSFORMER RULE ENCODER. This transformer
encoder block is used in I to encode the rule. Its
implementation is analogous to the TRANSFORMER
RULE DECODER, with the only difference that it does
not use causal attention since it is an encoder layer.

Table 2: Number of training epochs for each training regi-
men.

TRAINING REGIMEN NUMBER OF EPOCHS

10K STRUCT. 1438 RULES 2
1K STRUCT. 1438 RULES 20
100 STRUCT. 1438 RULES 200
10K STRUCT. 500 RULES 6
1K STRUCT. 500 RULES 58
100 STRUCT. 500 RULES 576

Training Procedure. All the models are trained with a
learning rate of 3 · 10−4 using Adam (Kingma & Ba, 2017),
a batch size of 512 and early-stop and dropout set to 0.1 to
prevent overfitting. We train all the models on randomly
sampled sets of 32 (structure, label) pairs to prevent over-
fitting on specific boards. Table 2 describes the number of
epochs for each training regimen. Models are trained to: pre-
dict the label of a structure give the board (EMP-R); predict
the label of a structure given the 32 pairs (structure, label)
and the associated rule (EMP-C); predict the rule given the
32 pairs (CG); predict the label of a structure given a rule
(I).
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(a)
(b)

Figure 6: PCA applied to the binary semantic representation of structures (a) and rules (b). We highlight in red the structures
that have two touching pyramids pointing down. To ease the visualization, we pair every structure with a different string of
characters. Each character replaces an element of Odeen according to a well-defined mapping. The rules distribution reflect
what can be observed in Figure 5a.

C. Efficiency
Data efficiency In the Odeen challenge, CRNs require
less training data to match the performance of empiricist
models. For instance, in the case of 1438 rules at training,
we see in Table 3 that the CRN trained on 100 structures
per rule (NRS= 40, 2%) still overcomes the performance
of empiricist models trained on a dataset 100 times bigger
(NRS= 35.2% on 10k structures per rule).

Computational cost. In this section, we discuss the com-
putational cost at test time of the rationalist and empiricists
approaches. Table 4 reports the costs of tagging s new struc-
tures, while 5 reports the costs of explicitly predicting the
textual rule. We evaluate the cost per game in two ways:
i) by counting the number of calls of each trained neural
network and ii) by measuring the absolute time in seconds
of each method with the same hardware configuration.

We refer to the first quantity as the Computational Cost and
parametrize it in terms of the main blocks of the models.
This value is independent of the batch size and the hard-
ware adopted. As an example, the cost of tagging the new
structures for a CRN using 300 conjectures is given by:

300 · CG + 300 · b · I + s · I.

Table 3: T-Acc and NRS for different training regimens.

TRAIN DATA MODEL NRS T-ACC

10K STRUCT.
1438 RULES

CRN 0.813 0.984
EMP-C 0.352 0.930
EMP-R 0.179 0.895

1K STRUCT.
1438 RULES

CRN 0.777 0.980
EMP-C 0.225 0.905
EMP-R 0.156 0.898

100 STRUCT.
1438 RULES

CRN 0.402 0.939
EMP-C 0.125 0.865
EMP-R 0.163 0.896

10K STRUCT.
500 RULES

CRN 0.354 0.932
EMP-C 0.095 0.869
EMP-R 0.068 0.863

1K STRUCT.
500 RULES

CRN 0.319 0.930
EMP-C 0.088 0.874
EMP-R 0.084 0.876

100 STRUCT.
500 RULES

CRN 0.109 0.883
EMP-C 0.057 0.823
EMP-R 0.117 0.872
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Where 300 · CG stands for the 300 beams used to get 300
conjectures from the conjecture generator CG. Each con-
jecture (300) is then tested on all the board structures (b)
by the interpreter I. Finally I is called to apply the chosen
conjecture on each new structure (s). As an upper bound, an
exhaustive search algorithm (EXV SRC) uses no conjecture
generator, and thus has to evaluate with I all admissible
rules (r) on each structure of the board. Conversely, the em-
piricist approach provide label predictions through a single
end-to-end model which is simply called s times. Con-
cerning the problem of inferring explicitly the textual rule,
using more beams in the empiricists models does not pro-
vide any increase in performance, i.e. the true rule is not a
more probable proposition accessible through a larger beam
search.

We measured also the absolute time in seconds with the
following hardware configuration for all the experiments: 1
single core hyper threaded Xeon CPU Processor with 2.2
Ghz, 2 threads; 12.7 GiB. of RAM; a Tesla T4 GPU, with
320 Turing Tensor Core, 2,560 NVIDIA CUDA cores, and
15.7 GDDR6 GiB of VRAM.

Table 4: Computational cost of our models at test time to
tag s new structures. In Odeen r=24,794, b=32, s=1,176.
Notice how CRNs offer a good balance between computa-
tional efficiency and performance, this trade-off is regulated
by a single parameter, the number of beams.

MODEL COMPUTATIONAL COST T (S) NRS

EXV SRC r · b · I + s · I 47.9 0.99
CRN [300B] 300 · CG + 300 · b · I + s · I 0.79 0.81
CRN [10B] 10 · CG + 10 · b · I + s · I 0.43 0.35
EMP s· EMP-R 0.15 0.35

Table 5: Computational cost of our models at test time to
produce the textual rule in output

MODEL COMPUTATIONAL COST T (S) R-ACC

EXV SRC r · b · I 47.8 0.99
CRN [300B] 300 · CG + 300 · b · I 0.72 0.77
CRN [10B] 10 · CG + 10 · b · I 0.35 0.35
EMP [300B] 300· EMP-C 0.41 0.07
EMP [10B] 10· EMP-C 0.10 0.07
EMP [1B] 1· EMP-C 0.10 0.07

D. Odeen example games
In the following pages we propose a collection of qualitative
results showing a series of Odeen games from the test set
and how they are solved by the proposed models. For each
model, we report the predicted rule (only for EMP-C and
the CRN), the accuracy on the structures labeling (T-acc),
and a mark that indicates whether the nearest rule is the
correct one (NRS). All the models are trained on 1,438 rules
with 1,000 structures per rule.
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Board 01
Golden Rule: “at least 2 pyramid pointing down”
CRN: “at least 2 pyramid pointing down”; T-acc 1.0 ✓
EMP-C: “at least 1 pyramid touching touching”; T-acc: 0.76 ✗
EMP-R: T-acc 0.72 ✗

Board 04
Golden Rule: “at most 1 blue pyramid pointing up”
CRN: “zero blue or at most 1 blue pyramid pointing up”; T-acc 1.0 ✓
EMP-C: “zero 1 blue touching or or”; T-acc: 0.89 ✗
EMP-R: T-acc 0.92 ✓

Board 09
Golden rule: “exactly 1 pyramid pointing up touching red pyramid pointing down”
CRN: “exactly 1 red pyramid pointing down touching pyramid pointing up”, T-acc 0.95 ✗
EMP-C: “exactly 1 red at the right of and red”, T-acc: 0.80 ✗
EMP-R: T-acc 0.79 ✗
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Board 25
Golden rule: “at least 2 red touching blue pyramid pointing down”
CRN: “at least 2 red touching blue pyramid pointing down”, T-acc 1.0 ✓
EMP-C: “at least 2 red touching blue pyramid”, T-acc: 0.87 ✗
EMP-R: T-acc 0.69 ✗

Board 30
Golden rule: “exactly 1 blue pyramid touching blue block”
CRN: “exactly 1 blue pyramid touching blue block”, T-acc 1.0 ✓
EMP-C: “exactly 1 blue pyramid touching block block”, T-acc: 0.97 ✓
EMP-R: T-acc 0.79 ✗

Board 75
Golden rule: “zero blue touching red pyramid”
CRN: “zero blue touching red pyramid”, T-acc 1.0 ✓
EMP-C: “zero blue touching red”, T-acc: 0.85 ✗
EMP-R: T-acc 0.91 ✓
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Board 97
Golden rule: “at most 1 red block touching red”
CRN: “at most 1 red block touching red”, T-acc 1.0 ✓
EMP-C: “at most 1 red touching at the right of red”, T-acc: 0.98 ✓
EMP-R: T-acc 0.93 ✗

Board 103
Golden rule: “at most 1 blue pyramid pointing down touching red”
CRN: “at most 1 blue pyramid pointing down touching red”, T-acc 1.0 ✓
EMP-C: “at most 1 blue pyramid pointing down touching red”, T-acc: 0.98 ✓
EMP-R: T-acc 0.85 ✗


