
Study on High Availability and Fault Tolerance
Norman Kong Koon Kit

Khoury College of Computer Sciences
Northeastern University, Vancouver, BC, Canada

kong.ko@northeastern.edu

Michal Aibin
Khoury College of Computer Sciences

Northeastern University, Vancouver, BC, Canada
m.aibin@northeastern.edu

Abstract—Availability is one of the most important require-
ments for modern computing systems. It defines the maximum
acceptable outage time for any given period. In cloud computing,
it is common to use it as a key factor to adopt a cloud service.
This paper studies the breakdown in calculating the availability
and proposes a conceptual model as middleware in order to
speed up the time for detection during a system crash. Through
simulations tests, we verified that the proposed model is able to
detect the system crash in sub-seconds and improve the overall
availability of the system compared to currently used industry
solutions.

Index Terms—availability, cloud computing, docker

I. INTRODUCTION

Remote working and e-commerce have become the new
normal since the pandemic [3, 10], they have changed our
daily lives and the way how we consume services. With
the growth of these online services, there is a high demand
for non-functional requirements, especially in the domain of
Availability and Fault Tolerance.

Availability [11] is considered one of the main challenges
of modern IT, especially for cloud computing since it can
provide dynamic elasticity on computing resources. Therefore,
as more missing critical applications are shifting towards this
architectural pattern, availability has been considered one of
the major concerns.

High Availability defines the maximum allowed outage
time, which usually refers to ”5-nines” of up-time, i.e. less
than 6 minutes of downtime annually [2]. On the other hand,
we have Fault Tolerance. It means that the system will operate
continuously even if some of the components fail. Instead
of failing completely, applications are designed to operate at
downgraded service, while system recovery will take place and
try to resume the service automatically.

This paper will examine the current service availability and
fault tolerance in cloud providers’ practices, together with
other proposed solutions in other research papers and industry
best practices. Finally, we will try to propose a system design
that aims to improve service availability and fault tolerance
with a sample implementation.

The organization of this paper is as follows. In Section 2,
we will discuss the related works with various definitions of
availability and fault tolerance used. We will then introduce the
current challenges in Section 3. In Section 4, we will propose
and implement our novel solution using a sample application.
Evaluation and performance assessment is conducted in Sec-
tion 5, followed by a summary and conclusions.

II. RELATED WORKS

Understanding what availability is a prerequisite for the
evaluation. The term ”Availability” was defined as ”the degree
to which a system is functioning and is accessible to deliver
its services during a given time interval” [6]. This is the
percentage of time that allows outage time for a given period.
Some researchers further defined availability in the form of
Service Level Agreements [5], and considered availability as
the ”probability of providing service according to defined
requirements”.

This term has been extensively used by service providers,
especially cloud service providers [4]. In case any hiccups
cannot fulfill this commitment, service providers will even
issue credit for compensation [1]. Therefore, a lot of research
effort has been dedicated to guaranteeing availability in the
cloud [8].

In the domain of cloud computing, [13] has proposed the
cloud availability taxonomy using three criteria: availability
mechanisms, failures protected against, and metrics, which
categorized all the redundancy models accordingly Availability
Management Framework [9]. We define ”High Availability”
as a service that is available at least 99.999% of the time [6].
For example, the maximum downtime under this scenario for
service annually is only 5 minutes and 15 seconds.

In 2010, [14] proposed a middleware ”Low Latency Fault
Tolerance” that uses different protocols for membership, mes-
saging, and synchronization to achieve fault tolerance at the
application level. This middleware provides fault tolerance for
distributed applications using the leader/follower replication
approach. In 2011, [13] proposed a ”heartbeat” approach to
detect application failures. When there is no heartbeat received
within a grace period, it is assumed that the application has
failed and fail-over/recovery action will be triggered. For
instance, the AWS load balancer monitors [12] the applica-
tion status in such a way, but they do not protect against
application failures. Although this mechanism does not detect
all possible application failures, it is the most generic way
as the application team is only required to provide an HTTP
endpoint. However, this heartbeat technique is not an effective
solution since it is a passive pull-based mechanism that takes
more than 10 seconds to detect the failure. Finally, with the
rise of microservice architecture, some researchers have begun
to use Docker / Kubernetes to achieve better availability by
shortening the reaction time to detect fault events [14].

As mentioned before, we will explore all the available

mechanisms in this paper and propose our own novel solution
that allows for the higher availability of cloud resources.

III. PROBLEM STATEMENT

In layman’s definition, the availability can be expressed by
a mathematical equation :

Availability =
uptime

uptime+ downtime
∗ 100%

The higher number will have better availability, which
provides better service level agreement.

To further understand the problem, we can further define
Reliability as the probability that a system continues to work as
expected over a specified time duration. Thus, the terminology
MTBF (Mean Time Between Failures) is used to represent the
average time to the next failure, and is calculated as:

MTBF =
Service Running Duration

Number of Incidents

This MTBF is not only used in Computer Science, but
it is also widely used as an important maintenance metric
to measure performance, safety, and equipment design for
mission-critical systems [7]. Another point to note is that
MTBF only considers unplanned maintenance time, while
planned maintenance events like scheduled software updates
are not included.

Another term related to availability is MTTR (Mean Time
To Recovery) which is the total duration starting from system
malfunction, system detection and system recovery, which is
denoted as

MTTR =
Mean Time to Recovery

Number of Incidents

Based on MTBF and MTTR definition, the availability of
a system can be used to measure the impact of failures on an
application, and the availability can be defined as:

Availability =
MTBF

MTBF + MTTR
∗ 100%

where we can further break down MTTR as:

MTTR = MTD +MTF

where:

• MTD = Mean Time to Detect
• MTF = Mean Time to Fix

Hence, we can express availability as a function of:

Availability =
MTBF

MTBF + MTD + MTF
∗ 100%

The relation between all of those above is presented in
Figure below.

Therefore, using the formula above, we can improve the
Availability by either increasing the Service Up-time (maxi-
mize MTBF) or decreasing the Mean Time to Detect (mini-
mize MTD) or decreasing the Mean Time to Fix (minimize
MTF), which we will discuss in the subsection below.

Fig. 1. Illustration on the relationship between various status

A. Optimization problem

The primary objective is to maximize the Availability of a
system in order to achieve higher Service Level Agreements
(which means more ninth). Thus, we can either perform:

1) Maximize the MTBF: There are a number of ways to
increase the MTBF. For example, keeping track of the MTBF
for each sub-system, especially those long-run operation pro-
cesses. Perform machine learning/data mining techniques to
identify any usage pattern that will lead to system failure,
then arrange corresponding fixes during planned maintenance.
While this can improve the MTBF and result in better
availability, this paper will focus on how to minimize the
denominator, i.e. to minimize MTTF in order to improve the
overall availability.

2) Minimize Time to Detect (MTD): By Murphy’s Law:
”Anything that can go wrong will go wrong”. While we could
not completely eliminate the chances for system failures, we
should try to minimize the time to detect the error such that
we can discover the problem earlier in order to shorten the
total time of the outage. Then the overall availability will be
increased.

3) Minimize Mean Time to Fix (MTF): By standardizing the
procedure to restart/repair or replace the faulty component, the
time to fix the problem can be reduced. On the other hand,
by reserving additional spare components as redundancy, the
time to repair can be minimal, providing that the failure cause
is not due to logical fault. In this paper, the application we
implemented will make use of Docker and Publish/Subscribe
mechanism to speed up the recovery.

IV. THE ALGORITHM

As we have discussed in the previous section, we will
focus on minimizing the ”Time to Detect” and ”Time to
Fix”. The industry practice is to use pull-based health checks,
i.e. load balancer that keeps sending probe requests to each
worker node every interval (th). In case the worker node
is unavailable immediately after the last health check, then
the particular worker node will become unavailable until the
load balancer detects it in the next health check 2th. To
make things even worse, the system will send additional retry
health checks which means that the outage time can be up
to 3th. Therefore, in this section, we propose a push-based
health-check mechanism such that the system can detect node
availability as earlier as possible.

Before we describe the algorithm, we introduce its compo-
nents in Figure ??

Fig. 2. High-level overview for each individual component

A. Resource Agent

This is an embedded agent running on the worker load.
When the worker node startup, it will register an ”Alive”
signal to the Load Agent. Once connected, it repeat-
edly sends a ”Status Update” event which includes the
CPU/Memory/Storage/Active thread count to the Load Agent
and expects to receive an acknowledgement with ”Time To
Repost” (TTR). Then the agent will wait for this TTR and
send the updated resource information again.

B. Load Agent

This is a standalone agent running independently from the
service application. This daemon starts a socket and waits
for connections from Resource Agent. Then it will keep a
persistent session which expects to receive a ”Status Update”
from Resource Agent. Then, it will update the status of
the Resource Agent into a distributed cache such that the
Load Balancer will use this information for client request
dispatching. Since the connection is a socket connection, in
case the connection is lost, this persistent connection will be
terminated and the Load Agent will be notified immediately,
then it will detach this worker node from the cache, such
that the Load Balancer will not dispatch the client request
to this crashed node accordingly. In order to enhance the fast
recovery, this agent will also publish a recovery message such
that Recovery Agent will perform recovery action accordingly.

C. Load Balancer

This is the client-facing endpoint that accepts external
requests. Then we implement a Resource Awareness routing
algorithm to select a worker node, then dispatch the request
to this node to handle. In case there is no node available, we
will report an outage and advise the client to retry later.

D. Recovery Agent

This is another standalone agent that works like Kubernetes
master node to perform worker node life cycle management,
including node creation and eviction. This agent subscribes to
the topic that Load Agent will publish recovery requests in
case any worker node was crashed.

E. Resource Aware Routing Algorithm

Our approach is a greedy algorithm that will select nodes
that match several criteria. We named it Resource Aware
Routing Algorithm (RARA). The highest priority will be
finding a worker node that has available resources that are
”Just Fit”, which means after servicing this new request,
this node will be saturated. The rationale is that we would
like to reduce resource fragmentation across different worker
nodes. In case we can fill up the capacity for one particular
node, then we can keep other resourceful nodes for future
demanding requests. In the meanwhile, we proposed a thread
level checking to ensure that the number of concurrent thread
cannot be greater than the average, such that no worker node
will be too heavily overloaded while some node is deep under-
loaded. However, this is subject to the programming language
and the system’s capability. The pseudocode is available in
Figure 3. Furthermore, the entire flow of the system is shown
in Figure ?? - when Worker Node A disconnects, Load Agent
will receive a ”Session Disconnection” signal, then it will
immediately update the system cache, so the subsequent client
request will not route to this faulty node accordingly. In the
meanwhile, the Load Agent will also trigger a ”Recovery”
message to Recovery Agent to perform the worker node
eviction and re-provision.

The proposed methodology considerably enhances Avail-
ability since it uses the persistent connection with push-based
health checks. In the traditional pull-based health check by

Fig. 3. Resource awareness routing algorithm (RARA)

Load Balancer, each probe requires a new TCP connection
such that it will spend extra time on TCP handshaking. By
using the persistent connection, the Load Agent will receive a
”Session Disconnect” signal immediately when any worker
node crashes. Therefore, the ”Time to Detect” is expected
to be much shorter than the pull-based mechanism. How-
ever, the drawback is persistence push-based mechanism will
consume much more system resources than the pull-based,
so this methodology should be used on mission-critical or
computing/networking resources in abundance applications.

In the next section, we will discuss our sample application
that uses this stack and compare it with the Amazon Applica-
tion Load Balancer accordingly.

V. SIMULATION PLAN

The proposed architecture was constructed, as shown in
Figure 5, and we compared it with the standard, out-of-box
Amazon Load Balancer.

For evaluation purposes, we have implemented the entire
application using Nodejs. Socket.io was chosen as the per-
sistent connection middleware between Resource Agent and
Load agent. Redis was adopted as the cached layer and also
Redis pub/sub were adopted for the communication between
Load Agent and Recovery Agent.

In order to demonstrate the Resource Agent middleware,
various workload applications that embedded this agent were
built and further dockerized as a Docker image, such that the
Recovery Agent can perform recovery by using the docker
command. Since we are trying to measure the performance
of fault detection, we embedded a “Kill Switch” that will
trigger the application to “crash” after providing service for a
particular time.

Finally, the ELK stack was selected as the log management
layer such that we can capture all the status log centrally.

In this paper, we analyze the performance of the existing
cloud provider fault-detection method and the proposed fault-
detection method via experiments. Subsequently, we compared

how the performance varies depending on the change in
workload and resource usage. We set up 10 threads to run
1,000,000 iterations per scenario.

We will perform the simulation using a different workload
against kill switch frequency.

VI. ANALYSIS

A. Mean Time To Detect

We calculated that the average time to detect a system
crash is around 24.5 milliseconds. The data is consistent
across lightweight web service tasks and I/O-bound tasks. The
reason is that these jobs did not affect our proposed algorithm
since the Kill-Switch mechanism is running independently in
the NodeJS event loop. However, the CPU-bound jobs were
greatly affected since NodeJS is a single-thread programming
model, which means that only one task can be executed at a
time. Our implementation tried to compute the Fibonacci series
so the JavaScript engine would execute the computation solely
so our resource agent plugin was “paused” during execution.
Therefore, we have dropped out the CPU-bound jobs testing
after several trials runs.

Compared with the AWS application load balancer, the
theoretical “time to detect” is 14 seconds. This figure is
calculated based on the AWS Target Group Health Check
setting, the minimum. The minimum unhealthy threshold is
2, while each health check interval takes 5 seconds with 2
seconds timeout. As illustrated in Figure 6, the worst case
mean time to detect is (5+2)* 2 = 14 seconds. Therefore, our
proposed approach (24.5 ms) is 570 times faster.

B. Overall Service Level Agreement

Instead of focusing on the Mean time to detect, we focused
on the effectiveness of the overall service level agreement.

TABLE I
DETAIL BREAKDOWN OF THE SIMULATION

Duration(s) Up(s) Down(s) SLA(%) Fail
Count

AWS kill-
switch 5

2,105.901 2,020.234 85.667 95.93204% 2,080

AWS kill-
switch 10

2,203.670 2,131.404 72.266 96.72067% 1,518

AWS kill-
switch 20

2,089.374 2,048.838 40.536 98.05992% 1,021

RARA
kill-
switch 5

2,943.944 2,936.602 7.343 99.75058% 3,990

RARA
kill-
switch 10

2,970.906 2,970.883 0.023 99.99923% 600

RARA
kill-
switch 20

3,005.539 3,004.165 1.374 99.95429% 308

In our proposed solution, as we run in a local environment,
we created 10 threads that triggered 100,000 requests individ-
ually, so the total execution is 1 million requests for each kill
switch iteration. The total execution time for each iteration is
around 50 minutes.

Fig. 4. Overall flow diagram to illustrate the fault event handling, recovery agent was not in scope

Fig. 5. Evaluation Implementation

Fig. 6. AWS Load Balancer Worst Case scenario

We observed the number of fail counts was 3,990 when the
kill-switch is 5 minutes, although this fail count is the highest
amongst all scenarios, the downtime was only 7.343s so the
overall SLA was 99.750%. When the kill switches increased
to 10 minutes, the downtime became 0.023s so the overall
Availability was 99.999% (five-ninth). This indicates that we
can achieve “High Availability” even if our applications are
scheduled to crash every 10 minutes. When the kill switch
increased to 20 minutes, the SLA slightly dropped to 99.954%.
All proposed scenarios have outperformed the AWS Applica-
tion Load Balancer approach as shown in Table I.

In contrast, we have set up the AWS Application Load
Balancer with the fastest fault recovery. Since the stress test
is running on a remote environment, we created 10 threads
that only triggered 10,000 requests individually, so the total
execution was 100,000 requests. The total execution time
for each iteration was around 35 minutes. As expected, we
observed that the downtime decreased while the kill switch
increased. The SLA was initially 95.93% when the kill switch
was 5 minutes, then kept increasing to 96.72% and finally
reached 98.06% when the kill switch was 20 minutes. The
number of failed requests decreased by half from 2080 to 1021
during the 100,000 iterations.

VII. CONCLUSION

High availability has been one of the biggest challenges in
application design. There are various techniques that can be
used to improve the availability of a service which depends on
various use cases. This research paper proposes to use a push-
based mechanism with persistent connection in order to reduce
the “Mean Time to Detect” such that the overall Service Level
Agreement can be improved.

VIII. ACKNOWLEDGMENT

The authors would like to express very great appreciation
to Peter Smith for his valuable and constructive suggestions
during the planning and development of this research work.

His willingness to give his time so generously has been very
much appreciated.

REFERENCES

[1] Amazon Compute Service Level Agreement. en-US.
URL: https : / / aws . amazon . com / compute / sla/ (visited
on 08/15/2022).

[2] AWS Application Migration Service (MGN) Service
Level Agreement. en-US. URL: https : / / aws . amazon .
com / application - migration - service / sla/ (visited on
08/15/2022).

[3] E-commerce in the time of COVID-19. en. URL: https:
/ / www . oecd . org / coronavirus / policy - responses / e -
commerce-in-the-time-of-covid-19-3a2b78e8/ (visited
on 08/15/2022).

[4] Google Cloud Platform Service Level Agreements. en.
URL: https : / / cloud .google .com/ terms/sla (visited on
08/15/2022).

[5] D Davide Lamanna, James Skene, and Wolfgang Em-
merich. “Slang: A language for defining service level
agreements”. In: Ninth IEEE Workshop on Future
Trends of Distributed Computing Systems, Proceedings.
IEEE Computer Soc. 2003, pp. 100–106.

[6] Mina Nabi, Maria Toeroe, and Ferhat Khendek. “Avail-
ability in the cloud: State of the art”. In: Journal of
Network and Computer Applications 60 (2016), pp. 54–
67.

[7] Duane Pettit, Andrew Turnbull, and Henk A Roelant.
General aviation aircraft reliability study. Tech. rep.
2001.

[8] Alan Robertson. “{Linux-HA} Heartbeat System De-
sign”. In: 4th Annual Linux Showcase & Conference
(ALS 2000). 2000.

[9] Pejman Salehi. “A model based framework for service
availability management”. PhD thesis. Concordia Uni-
versity, 2012.

[10] The Remote Work Report by GitLab: The Future of Work
is Remote. en. URL: https://about.gitlab.com/company/
culture / all - remote / remote - work - report/ (visited on
08/15/2022).

[11] Astrid Undheim, Ameen Chilwan, and Poul Heegaard.
“Differentiated availability in cloud computing SLAs”.
In: 2011 IEEE/ACM 12th International Conference on
Grid Computing. IEEE. 2011, pp. 129–136.

[12] Jinesh Varia, Sajee Mathew, et al. “Overview of amazon
web services”. In: Amazon Web Services 105 (2014).

[13] Hyunsik Yang and Younghan Kim. “Design and im-
plementation of fast fault detection in cloud infrastruc-
ture for containerized IoT services”. In: Sensors 20.16
(2020), p. 4592.

[14] Wenbing Zhao, PM Melliar-Smith, and Louise E Moser.
“Fault tolerance middleware for cloud computing”. In:
2010 IEEE 3rd International Conference on Cloud
Computing. IEEE. 2010, pp. 67–74.

