{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
Peter Norvig, Oct 2017
Data update: Dec 2025
\n", "\n", "# Bicycling Statistics\n", "\n", "Bicycling is a great way to get some exercise, enjoy the outside, and see new places. This notebook tracks my stats:\n", "\n", "\n", "| | |\n", "|--|--|\n", "|**Distance**| I do about 6,000 miles a year, and in 2025 I reached 71,600 total logged miles.|\n", "|**Climbing**| In 2022, I climbed to ***space*** (100 km of total elevation gain) and all time climbed 2.5 million feet.|\n", "|**Explorer Tiles**| In 2022, I started tracking the unique roughly-1-mile-square [**explorer tiles**](https://rideeverytile.com/) I have visited; now over 3600.|\n", "|**Wandering**| In 2020, I started using [**Wandrer.earth**](https://wandrer.earth/athletes/3534/) to track new roads; I'm now over 10,000 unique miles.|\n", "|**Eddington Number**| I've done 70 miles or more on 70 different days. So 70 is my Eddington Number.|\n", "|**Speed**| I'm not going fast, but I am interested in understanding how my speed varies with the steepness of the hill.|\n", "|**Perseverance**| I've logged 5,765 hours of riding on [**my Strava account**](https://www.strava.com/athletes/575579).|\n", "\n", "This notebook is mostly for my own benefit, but if you're a cyclist you're welcome to adapt it to your own data, and if you're a data scientist, you might find it an interesting example of exploratory data analysis. The companion notebook [**BikeCode.ipynb**](BikeCode.ipynb) has the implementation details." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%run BikeCode.ipynb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Yearly Totals\n", "\n", "Here are my overall stats for each year since I started keeping track in mid-2014. I have done 6,000 miles per year since 2016, except for 2020 when an injury kept me sidelined for two months (also, Covid). The columns keep track of the total **hours** on the bike, distance traveled in **miles**, and total **feet** climbed. Then there are some columns that are derived from these: **mph** is **miles / hour**; **vam** is vertical meters ascended per hour (or **feet × 0.3048 / hours**); **ftpmi** is **feet / miles**; **pct** is the grade in percent (or **feet × 100 / miles / 5280**), and finally **kms** and **meters** are the metric equivalents of **miles** and **feet**.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearhoursmilesfeetridesmphvamftpmipctkmsmeters
2025508.35613626766739012.07160.044.00.839872.8281585.0
2024511.68634426483839312.40158.042.00.7910207.5080723.0
2023541.68631624310037211.66137.038.00.7310162.4474097.0
2022532.93602836232334911.31207.060.01.149699.05110436.0
2021490.53606419663431912.36122.032.00.619756.9859934.0
2020438.8853419477726612.1766.018.00.348593.6728888.0
2019476.32601614979743812.6396.025.00.479679.7445658.0
2018475.93610115864244012.82102.026.00.499816.5148354.0
2017567.33735620209636712.97109.027.00.5211835.8061599.0
2016486.38633920145332713.03126.032.00.6010199.4561403.0
2015419.95545220985924412.98152.038.00.738772.2763965.0
2014191.03246911848110012.92189.048.00.913972.6236113.0
\n", "
" ], "text/plain": [ " year hours miles feet rides mph vam ftpmi pct kms \\\n", " 2025 508.35 6136 267667 390 12.07 160.0 44.0 0.83 9872.82 \n", " 2024 511.68 6344 264838 393 12.40 158.0 42.0 0.79 10207.50 \n", " 2023 541.68 6316 243100 372 11.66 137.0 38.0 0.73 10162.44 \n", " 2022 532.93 6028 362323 349 11.31 207.0 60.0 1.14 9699.05 \n", " 2021 490.53 6064 196634 319 12.36 122.0 32.0 0.61 9756.98 \n", " 2020 438.88 5341 94777 266 12.17 66.0 18.0 0.34 8593.67 \n", " 2019 476.32 6016 149797 438 12.63 96.0 25.0 0.47 9679.74 \n", " 2018 475.93 6101 158642 440 12.82 102.0 26.0 0.49 9816.51 \n", " 2017 567.33 7356 202096 367 12.97 109.0 27.0 0.52 11835.80 \n", " 2016 486.38 6339 201453 327 13.03 126.0 32.0 0.60 10199.45 \n", " 2015 419.95 5452 209859 244 12.98 152.0 38.0 0.73 8772.27 \n", " 2014 191.03 2469 118481 100 12.92 189.0 48.0 0.91 3972.62 \n", "\n", " meters \n", " 81585.0 \n", " 80723.0 \n", " 74097.0 \n", " 110436.0 \n", " 59934.0 \n", " 28888.0 \n", " 45658.0 \n", " 48354.0 \n", " 61599.0 \n", " 61403.0 \n", " 63965.0 \n", " 36113.0 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here's the same data on a per day basis, assuming I ride 6 days a week, 50 weeks a year:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearhoursmilesfeetridesmphvamftpmipctkmsmeters
20251.720.5892.21.312.07160.044.00.8332.9272.0
20241.721.1882.81.312.40158.042.00.7934.0269.1
20231.821.1810.31.211.66137.038.00.7333.9247.0
20221.820.11207.71.211.31207.060.01.1432.3368.1
20211.620.2655.41.112.36122.032.00.6132.5199.8
20201.517.8315.90.912.1766.018.00.3428.696.3
20191.620.1499.31.512.6396.025.00.4732.3152.2
20181.620.3528.81.512.82102.026.00.4932.7161.2
20171.924.5673.71.212.97109.027.00.5239.5205.3
20161.621.1671.51.113.03126.032.00.6034.0204.7
20151.418.2699.50.812.98152.038.00.7329.2213.2
20140.68.2394.90.312.92189.048.00.9113.2120.4
\n", "
" ], "text/plain": [ " year hours miles feet rides mph vam ftpmi pct kms meters\n", " 2025 1.7 20.5 892.2 1.3 12.07 160.0 44.0 0.83 32.9 272.0\n", " 2024 1.7 21.1 882.8 1.3 12.40 158.0 42.0 0.79 34.0 269.1\n", " 2023 1.8 21.1 810.3 1.2 11.66 137.0 38.0 0.73 33.9 247.0\n", " 2022 1.8 20.1 1207.7 1.2 11.31 207.0 60.0 1.14 32.3 368.1\n", " 2021 1.6 20.2 655.4 1.1 12.36 122.0 32.0 0.61 32.5 199.8\n", " 2020 1.5 17.8 315.9 0.9 12.17 66.0 18.0 0.34 28.6 96.3\n", " 2019 1.6 20.1 499.3 1.5 12.63 96.0 25.0 0.47 32.3 152.2\n", " 2018 1.6 20.3 528.8 1.5 12.82 102.0 26.0 0.49 32.7 161.2\n", " 2017 1.9 24.5 673.7 1.2 12.97 109.0 27.0 0.52 39.5 205.3\n", " 2016 1.6 21.1 671.5 1.1 13.03 126.0 32.0 0.60 34.0 204.7\n", " 2015 1.4 18.2 699.5 0.8 12.98 152.0 38.0 0.73 29.2 213.2\n", " 2014 0.6 8.2 394.9 0.3 12.92 189.0 48.0 0.91 13.2 120.4" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "daily" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Climbing \n", "\n", "In 2022 my friend [A. J. Jacobs](https://ajjacobs.com/) set a goal of **walking to space**: climbing a total elevation equal to the distance from the Earth's surface to the top of the atmoshere. [A group](https://www.facebook.com/groups/260966686136038) of about 40 of us joined the quest. The boundary of \"space\" is vague, but the [Kármán line](https://en.wikipedia.org/wiki/K%C3%A1rm%C3%A1n_line) is 100 kilometers high; in 2022 I surpassed 100 kilometers of climbing (over 1,000 feet per day). But since then I've been in the range of 75–80 kilometers of elevation per year (about 800 feet per day)." ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "# Explorer Tiles\n", "\n", "\n", "The [OpenStreetMap](https://www.openstreetmap.org/) world map is divided into **[explorer tiles](https://www.statshunters.com/faq-10-what-are-explorer-tiles)** of approximately 1 mile square. Sites like [Veloviewer](https://veloviewer.com), [Statshunter](https://www.statshunters.com/), [RideEveryTile](https://rideeverytile.com/), and [SquadRats](https://squadrats.com/map) challenge bicyclist/hikers to record which tiles they have passed through. The process is gamified to highlight the following statistics:\n", "- The largest **square** (an *n* × *n* array of visited tiles). \n", "- The maximum **cluster** (a set of contiguous visited tiles, each one bounded on all four sides by visited tiles).\n", "- The **total** number of visited tiles.\n", " \n", "\n", "Since I live on a penninsula, it is not easy for me to form a large square, and I sometimes have to work hard to connect different parts of my map into my main cluster (such as [connecting San Francisco and Marin](https://www.strava.com/activities/8891171008) across the Golden Gate Bridge). But I have been able to cobble together a cluster that extends from Cloverdale to Carmel. Here are a few key points along the way:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 datesquareclustertotalcomment
01/01/20261414463634Start of 2026
08/29/20251414243594Mt Madonna
01/01/20251413953520Start of 2025
09/21/20241413943496Michael J. Fox ride in Sonoma
04/28/20241412753382Livermore
02/25/20241411963279Expanding through Santa Cruz and to the South
01/01/20241410563105Start of 2024
12/08/20231410423084Benicia ride connects East Bay and Napa clusters
11/05/2023149322914Alum Rock ride gets 14x14 max square
06/30/2023136892640Rides in east Bay fill in holes
04/14/2023136302595Black Sands Beach low-tide hike connects Marin to max cluster
03/04/2023135832574Almaden rides connects Gilroy to max cluster
10/22/2022133962495Alviso levees to get to 13x13 max square
10/16/2022123932492Milpitas ride connects East Bay to max cluster
09/08/2022113002487First started tracking tiles
\n" ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tiles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's my map (as of the end of 2025), with pink being the largest square, orange the largest cluster, and yellow the visited tiles outside of the cluster. It is difficult to go above Cloverdale or below Carmel, so for 2026 I'll probably concentrate on filling in holes in the East Bay, Pescadero area, and Marin.\n", "\n", "![](statshunter.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Wandering \n", "\n", "The website [**Wandrer.earth**](https://wandrer.earth) tracks the distinct roads a user has biked on. It provides a fun incentive to get out and explore new roads. The site is gamified in a way that there is a reward for first reaching 25% of the road-miles in each city, and further rewards for higher percentages. (You get no credit for repeating a road you've already been on.) \n", "\n", "I'm proud of several accomplishments on Wandrer.earth:\n", "- Got the \"accomplishment\" (25%) for every city in Santa Clara and San Mateo counties (but I'm still missing a few small state parks).\n", "- Got the accomplishment for every city ringing the Bay below the Bay Bridge (i.e. San Francisco, down the Peninsula to San Jose, and up to Oakland).\n", "- Completed (99%+) every city within 10 miles me, from San Carlos to Los Altos.\n", "- Got to 90% of every city in the 40-mile range between Daly City and Los Gatos.\n", "- Twice got over 2000 miles of credit in one day (via bonuses, not by 2000 miles of riding) in [**December 2024**](https://www.strava.com/activities/13171266724) and [**November 2025**](https://www.strava.com/activities/16614891420).\n", "- Accumulated points and ranking in the following places:\n", "\n", "\n", "\n", "|Place|Points|Miles|%|Point Rank|% Rank|\n", "|-----|------:|-----:|-:|----------:|------:|\n", "|San Mateo County|8,226|2,570|90.0%|2|2|\n", "|Santa Clara County|8,804|3,152|41.1%|6|6|\n", "|Alameda County|4,910|1,656|28.56%|4|6|\n", "|San Francisco County|934|310|25.29%|87|148|\n", "|Bay Trail|569|393|90.0%|1|1|\n", "|California|25,504|9,754|2.488%|6|18|\n", "|USA|25,971|10,201|0.157%|72|290|\n", "|Earth|26,369 |10,502|0.022%|542|2049|\n", "\n", "\n", "Here is my map (yellow: 99%, peach: 90%, pink: 50%, purple: 25%):\n", "\n", "![](wandrer.jpg)\n", "\n", "\n", "I live at the border of San Mateo County (SMC) and Santa Clara County (SCC), so I ride in both, as do several other Wandrers. Megan Gardner is 600 miles ahead of me in SMC and Jason Molenda is a whopping 1,300 miles ahead of me in SCC. Megan is the leader in mean percent between the two counties, but I lead (barely) in total miles. Kudos to all of the riders below, each of whom is in the top 7 wandrers in at least one of the two counties." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameSMC %SCC %SMC RankSCC RankSMC milesSCC milesTotal milesMean %
Megan Gardner100.0030.2611128562321517765.13
Peter Norvig78.8038.832522512978522958.81
Barry Mann78.0632.3331222302479470955.20
Matthew Ring86.214.944-2462379284145.57
Brian Feinberg38.1048.2214410883698478643.16
Chris Okeefe32.9551.321829413936487742.14
Greogory P. Smith53.0123.477-15141800331438.24
Catherine Kircos54.5216.426-15571259281635.47
David Deggeller28.9539.762568273049387634.35
Jason Molenda7.6056.16-32174307452431.88
Elliot Hoff52.898.345-1511640215130.62
Jim Brooks6.1753.52-11764104428029.85
François-Xavier (FX) Bucher14.2545.01-74073452385929.63
\n", "
" ], "text/plain": [ " Name SMC % SCC % SMC Rank SCC Rank SMC miles \\\n", " Megan Gardner 100.00 30.26 1 11 2856 \n", " Peter Norvig 78.80 38.83 2 5 2251 \n", " Barry Mann 78.06 32.33 3 12 2230 \n", " Matthew Ring 86.21 4.94 4 - 2462 \n", " Brian Feinberg 38.10 48.22 14 4 1088 \n", " Chris Okeefe 32.95 51.32 18 2 941 \n", " Greogory P. Smith 53.01 23.47 7 - 1514 \n", " Catherine Kircos 54.52 16.42 6 - 1557 \n", " David Deggeller 28.95 39.76 25 6 827 \n", " Jason Molenda 7.60 56.16 - 3 217 \n", " Elliot Hoff 52.89 8.34 5 - 1511 \n", " Jim Brooks 6.17 53.52 - 1 176 \n", " François-Xavier (FX) Bucher 14.25 45.01 - 7 407 \n", "\n", " SCC miles Total miles Mean % \n", " 2321 5177 65.13 \n", " 2978 5229 58.81 \n", " 2479 4709 55.20 \n", " 379 2841 45.57 \n", " 3698 4786 43.16 \n", " 3936 4877 42.14 \n", " 1800 3314 38.24 \n", " 1259 2816 35.47 \n", " 3049 3876 34.35 \n", " 4307 4524 31.88 \n", " 640 2151 30.62 \n", " 4104 4280 29.85 \n", " 3452 3859 29.63 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "leaders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Eddington Number\n", "\n", "The physicist/bicyclist [Sir Arthur Eddington](https://en.wikipedia.org/wiki/Arthur_Eddington) (a contemporary of Einstein) defined the [**Eddington Number**](https://www.triathlete.com/2011/04/training/measuring-bike-miles-eddington-number_301789) as the largest integer **E** such that you have cycled at least **E** miles on at least **E** days.\n", "\n", "My Eddington number progress over the years, in both kilometers and miles:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearEd_kmEd_mi
202510670
202410469
202310167
20229666
20219365
20208762
20198056
20187754
20177351
20166747
20156142
20144635
\n", "
" ], "text/plain": [ " year Ed_km Ed_mi\n", " 2025 106 70\n", " 2024 104 69\n", " 2023 101 67\n", " 2022 96 66\n", " 2021 93 65\n", " 2020 87 62\n", " 2019 80 56\n", " 2018 77 54\n", " 2017 73 51\n", " 2016 67 47\n", " 2015 61 42\n", " 2014 46 35" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ed_progress(rides)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "My current Eddington Number is **106** in kilometers and **70** in miles (I've ridden at least 70 miles on at least 70 different days, but not 71 miles on 71 different days). My number is above [the median for Strava](https://swinny.net/Cycling/-4687-Calculate-your-Eddington-Number), but not nearly as good as Eddington himself: his number was **84** (in miles) when he died at age 62, and his roads, weather, bicycles, and navigation aids were not nearly as nice as mine, so hip hip and bravo zulu to him. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How many more rides will I need to reach higher Eddington numbers? I call that the *Eddington Gap*:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
kmskms gapmilesmiles gap
10727111
10867217
109137325
110217430
111307541
112417644
113477749
114537855
115597959
\n", "
" ], "text/plain": [ " kms kms gap miles miles gap\n", " 107 2 71 11\n", " 108 6 72 17\n", " 109 13 73 25\n", " 110 21 74 30\n", " 111 30 75 41\n", " 112 41 76 44\n", " 113 47 77 49\n", " 114 53 78 55\n", " 115 59 79 59" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ed_gaps(rides)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I need 2 rides of 107 km to increase my metric Eddington number to 107 kms, and I need 11 rides of 71 miles to increase my Imperial number. \n", "\n", "A 71 mile ride is getting somewhat long for me, so I might switch from counting Eddington numbers to counting metric centuries; I'm at 141 and I could aim for 150 this year:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "141" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "count(rides.kms >= 100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are some properties of Eddington numbers:\n", "- Your Eddington number is monotonic: it can never decrease over time. \n", "- To improve from an Eddington number of *n* to *n* + 1 can take as few as 1 ride, or as many as *n* + 1 rides.\n", " + *Suppose you have done 9 rides, each of exactly 10 miles. Your Eddington number is 9.*\n", " + *You would need 1 ride of 10 miles to improve from a number of 9 to 10.*\n", " + *You would then need 11 rides of 11 miles to improve from a number 10 to 11.*\n", "- Your metric Eddington number will always be greater than or equal to your imperial Eddington number.\n", "- Your metric Eddington number will never be more than 1.61 times your imperial Eddington number.\n", "- Of two riders, it is possible that one has a higher metric number and the other a higher imperial number.\n", "\n", "**Note:** the definition of Eddington Number seems precise, but what exactly does ***day*** mean? The New Oxford dictionary has three senses:\n", "\n", "1. *a period of 24 hours;*\n", "2. *a unit of time, reckoned from one midnight to the next;*\n", "3. *the part of a day when it is light.* \n", "\n", "I originally assumed sense 2, but I wanted to accept sense 1 for what [bikepackers](https://bikepacking.com/) call a [sub-24-hour overnight](https://oneofsevenproject.com/s24o-bikepacking-guide/) (S24O): a ride to a camping site in the afternoon, pitching a tent for the night, and returning back home the next morning. And then COVID struck, the camping sites closed, so why not allow an S24O where I sleep in my own home? I realize Eddington had a lot more hardships than we have (World War I, the 1918 pandemic, and World War II, for example), but I hope he would approve of this modest accomodation on my part." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Hill-Index: Speed versus Grade on Short Climbs\n", "\n", "The Eddington number reminds me of the [**h-index**](https://en.wikipedia.org/wiki/H-index) metric for scientific publications. I invented another metric:\n", "\n", "> *Your **hill-index** is the maximum integer **h** where you can regularly climb an **h** percent grade at **h** miles per hour.*\n", "\n", "I'll plot grade versus speed for segments (not rides) with two best-fit curves: a blue quadratic and an orange cubic. I'll also superimpose a red dotted line where grade = speed." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAIjCAYAAACKx9GpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQeYFMXWPZtY0rLkKDmoICpKEsTwDJhzzuGZEyoGfp8ihocBs5ieOeeAOaKiAoKKASXDknNaYHdhd+f/Tq01NsPshJ2Zqpmue76vmaJ3pqvOPfdWd4WuygoEAgEIBAKBQCAQCAQCgUAgMIpss9kJBAKBQCAQCAQCgUAgIKRBLhAIBAKBQCAQCAQCgQVIg1wgEAgEAoFAIBAIBAILkAa5QCAQCAQCgUAgEAgEFiANcoFAIBAIBAKBQCAQCCxAGuQCgUAgEAgEAoFAIBBYgDTIBQKBQCAQCAQCgUAgsABpkAsEAoFAIBAIBAKBQGAB0iAXCAQCgUAgEAgEAoHAAqRBLhAIBAkiKysLN998c/D/zz77rDo3b948p2y7zz77YKeddrJdDIHAd2D9wjolWXC1jhIIBIJ0hDTIBQKBwPOAyuO7777bxiaBQABt27ZVfz/ssMPEZgJBhuLll1/G/fffb7sYggzEf//7X7z77ru2iyEQCHwGaZALBAKBB7Vr11YP7KH45ptvsHDhQuTn52/zt5KSEvznP/8ROwoEGQBpkAOnn366qrfat29vW46MgjTIBQJBKiANcoFAIPDgkEMOwRtvvIHy8vJtHuJ33313tGzZMmwjPjc31/d25CwBPsRnCjZu3Oh0/gL7SFcfyMnJUfVWMqfBu2xPgUAgSATSIBcIBAIPTj75ZKxatQqff/558NzmzZvx5ptv4pRTTonpHfLq8PHHH2PQoEGoV68eCgoKcOihh2Lq1KlbfWfp0qU4++yzsd1226nR+FatWuHII4+M+q7nWWedhfr162POnDkYPHiwyqN169a45ZZbVEPai8rKSjVlt0ePHuqhvEWLFrjggguwZs2arb7XoUMHNT3/008/Re/evVGnTh08/vjjUXn++eef2HfffVG3bl20adMGd9111zbfWb58Oc4991yVN8uwyy674LnnntvqO19//bWyLT+9oC14nq8ZhPKfPXu26lShfU899dSw5aOW/D1nPYSC/Pi3P/74I3hu2rRpOO6449C4cWNVVtpizJgxYV954DUvvvhiNG/eXGlIFBcXY8iQIcqe1JR/O+CAA/Dzzz9vZWtyCPdePg8vHnroIaUd7duoUSNVnnCzOkIRy+8WLVqEc845R+nCsvL7Tz/99DbXKioqwhFHHKH8jHyuvPJK5Seheul1BX777TfsvffeKu8uXbooDQjaq1+/fsq3tt9+e3zxxRfb5BVLmbSvvP7667j99tuV7anVfvvth1mzZm1Vng8//FCVX7+iQttHAjuhLr/8cjRt2lT5FXmzTKFxr9/zpv+zrqCN99xzT/U38qe+nTp1UuVixx45sa4JBV+Z6dOnj/pe586dI8bciy++qDoKaT/650knnYQFCxagJu+Q63hn/n379lX5s7zPP/981OvpmBw1ahTuu+8+NfLOMlFzbywlK6Z0fcrrU5MGDRoom4X688SJE3HQQQehsLBQ+R6///3332/1Ha0b/YQaNWzYUH2f9fCmTZuC3+N32CHAekr7TriYFQgEgnjh/yEdgUAgiAN8KN1jjz3wyiuv4OCDDw4++K1bt0497D744IM1sucLL7yAM888UzWW77zzTvWg9+ijj6oH9l9++SXYKDj22GNVI/2yyy5T59hwZefA/PnzozYcKioq1MNn//79VSP4k08+wfDhw9VoPxvmGmx882GXD5xsaMydOxcPP/ywKgcfVvPy8oLfnT59uuqk4G/OO+881WiKBDbqWYZjjjkGJ5xwgmp4XXfddejZs2fQnmzgsGHEB+BLL70UHTt2VLMS+HC7du1aXHHFFTWyMXnSvrQpGwZ8AA8HdoSw8c7GGx/QvXjttddUg08vTkctBg4cqDoWrr/+etUA5e+OOuoovPXWWzj66KO3+j0bDs2aNcNNN90UHM278MILlR3ItXv37qoRxkbPX3/9hd122y0ujv/73/+UZmzM0E6lpaWqsceGR3UdRrH+btmyZcp32NBgWcmDvs+Ok/Xr16tOBYK8/vWvf2HJkiXqWmxcsiE0duzYan2CDT3Gz/HHH6/8numXXnpJXZP2YRnuvvtuVT42KNnIiqdMGnfccQeys7MxdOhQFbOMA3bMkCdxww03qPN8/YQNR4K+EAn0S2rOad4sCxuI9KHqQI5du3ZV05t1ZxhjmJ1ljDnai371xBNPqM8JEyYER6p///13HHjggYonG4r0acYwOyNCwY6HG2+8UcXZv//9b6xYsUJ1uuy1114qltmwjBeMSWpA+7K+YscH+bPRz7iIBjbe2QF1ySWXKB974IEHlK+Ql+aQjJhi/cUODZZp2LBhiis5s87T/vzVV1+pOodlpw3pF88884wqz7hx41Sngxe0I+uikSNHqs6yJ598UnUCsL7WdTjtzN+df/756hw7TAQCgSBhBAQCgUAQeOaZZ/jkHJg0aVLg4YcfDhQUFAQ2bdqkLHP88ccH9t13X5Vu37594NBDD93KYvzd8OHDt7nW3Llz1f+Li4sDDRs2DJx33nlb/W7p0qWBwsLC4Pk1a9ao3919991xK3LmmWeq31522WXBc5WVlaqstWrVCqxYsUKdGzdunPreSy+9tNXvP/nkk23OkyvP8W+xYO+991bff/7554PnysrKAi1btgwce+yxwXP333+/+t6LL74YPLd58+bAHnvsEahfv35g/fr16tzYsWPV9/jpBe3K87RzKP/rr78+prKefPLJgebNmwfKy8uD55YsWRLIzs4O3HLLLcFz++23X6Bnz56B0tLSrew6YMCAQNeuXbfRfM8999zqmgQ1vuSSSyKWh7Ymh3A25aFx5JFHBnr06BGIF7H87txzzw20atUqsHLlyq3On3TSSYqDjod77rlHcX333XeD3ykpKQnssMMO2+ilfeLll18Onps2bZo6R1tPmDAheP7TTz/dRtdYy6R9Zccdd1Q+p/HAAw+o87///nvwHGOC9o4FP/30k/r9kCFDtjp/1llnbRP3TPMcfSsUupxevPLKK+r73377bfDcUUcdFahdu3agqKgoeO7PP/8M5OTkqO9qzJs3T527/fbbt7omeebm5m5zPhShdZQ33r3lWb58eSA/Pz9w9dVXR7yejsk6deoEFi5cGDw/ceJEdf7KK69MWkytXbtW1c/9+vVTfucFr6M/ea3BgwcHz2kdOnbsGDjggAO20e2cc87Z6lpHH310oEmTJludq1evXtg4FQgEgkQgU9YFAoEgBBwp4SjuBx98oEZ7+Blp9DEaODrGkV+ONK9cuTJ48D1OTtfVI4uc4lmrVi01/TZ0+nis4Ciihh5V5JR7PRWYI9Gcjskp096ycBSJI4Who5wcMeKoc6zgNU477bTg/8mHI0ocHdT46KOP1Cgh7aHBUXmO4G7YsCHsVPJYcdFFF8X0vRNPPFHNPvBOr+YoNqfz82/E6tWr1Sgb/YF+oG3FEW7aZObMmWrqshecRUBdveDoHUdoFy9eXGNe3mtxdHfSpElJ/R37lTg6efjhh6u01zfIlaPKeoo9RyE5usmp2xqcdkzu1fkER8Q1OMuC5dlxxx2V/2votPaVeMqkwRFo+pwGXxHxXjNekKsepfWCM1iqA0f8Q8HY1uDIMTlwtJ3QHDjDhdP+OVLcrl274Pdpp9AYfPvtt5Wv0je9dmFccXS+utkK0cAZHNpmBEemqVes9mPZ6RsajH3qyphPVkyxPuVvObpOv/NCzzSYMmWKuhbrbV5b58MRdr7G8O233yr7RdKNduBvORNDIBAIUgmZsi4QCAQh4EPo/vvvr6bhcmo5H5Q5jbOm4IMhwamS4cD3Hwm+H8vpkVdffbWa3skHdk71PeOMM8IuJhcKTsnkO59edOvWTX3qd0VZFjZkOBUzHNhIDW2QxwO+4xm6UBTfpeX0aA2+v8tGA8vrBRse+u81ARfW875jGgn6vVJOUecDOsH0rrvuGrQZp++yIchpwTyqs5e3ARLOXpw2zem/3DaPHR98x52ahmoVCzj9n50rbOjwXWxOb2ajg1OAE/kdpzuz04jTqHlUx1Xrw6m6oTrzurH6BG1Pe4SeI3RnVDxl0vA2ZLXvea8ZL8iVfhqqa3Vcq/MBNkRHjBiBV199dZsyMx41X3YEMjZCwUaxbtTqOKZvhvsu4X3tJB6E2k/bMFb7hSsP44lT0pMVU1wngtCvlUSqcxl31YF21/4RzXd0HS0QCASpgDTIBQKBIAzYWOHIDBdZ43uINXkfU0OPxPAdxHANa+8K7XwnliOC3OuWo2V8aOU7jRxV6tWrV8JasSxsjPP93eo6I6ob2YsFoaPDGqELy8WC6laAZgdJOLBDI7SRXx34XY7mvfPOO3jkkUfUu8p8f57v/YbqxveRq5slENowC2cvjgZytI15ffbZZ+pdaXa8cJRTv1cfiavXpuy04Hv9nLXB0VuOILP8fL+WDb7qEO13mitnN1TXiNl5551RE1TnE9F8pSZlSqb/1RTV+cAPP/yAa665RnX6cNYA+bFjKHSkNhbwN/QZvk8fjnO09+KrQ6rtl6yYijUfxhrtHQ6hNkoH3xEIBG5CGuQCgUAQBlxYiAuZccEljpwmAr3wDxvCHHmP5fscJefBkR4+UN5zzz1qReVoD6GcWqpHeIkZM2aoT70gHK/NkVKOjNbkQTcZ4ArMHDFneb0NaK68rP/uHaHiKKkXNR1BDwWnpnPF5C+//FItsMYHbz1dndAj2BxtjEW3SOBq+Zz2zIMjgFzMjYty6QY5uYby1FxDR9K5CBbLyYOvI3ABPV6Li1uFTuGN9XfsiOFCauwAiMaV+nAlcdrL25HgXc08GYinTPEgnq2+yJV+yoUPvaO/8XDlCCt9jB0f7AAJHcX18mVMhp4n2JniBeOY9ufosTfebSNc2VkH6fonGTGl61Ou3l7dTAX9HY5s2/IdgUAgiBXyDrlAIBBUM3rC1aC50jFHrBMBR4L4YMjR1y1btmzzd05VJTg9nu+Xhj5YslFSVlYWU15cLV2DD+z8Px9+9bRsjtSxgXPrrbdu81uu6ByuUZhscMo2Zx54OzqYN1eIpt31yudsDHHUiu97esGR3WSAD+rcdonl4MHp3N7psexA4Wrw3HaKK4pXp1sk0NZ6SrL3utySzqspdWbnDxvKGhzNDt3CKnSbLL4vzfd+qXU434r1d7QzV/jnyHm4baq8XOnPfM/Xu00V/ZYruScT8ZQpHrBjIlST6qBHcUN9jr4aK/TIa+hIK7ceDP0e8+PsGO6qoMHOIs6W8YKdKfw+G/mh1+X/w22nZgIsu/cd8B9//FGtn6A7npIRU3zdgnUiZw6F1pfaFnw1hDHF3Ra4LkVN8qnOd0zUkQKBwC3ICLlAIBBUg0jvH8YDNsbZuOe2SRwZ5QJXHA3jQzf3ROZoNRvOHEliw5mNZjaWOJWd05w5ndq7KFZ14OgopyOz3FxIidNZef3/+7//C05FZ2OXI/98mOXCR3y4ZYOdI1tc8I3bFCXyvnws4JZBfCDndko//fSTGj3jgmqcMs5Git7yiu8UcwspNn44MsUHbDZSQ9/BrSnImw0bvtfLxZ748B6K0aNHq23UuG0bX2HgCB/1GD9+vFok7ddff42YBxef4jvUtCn3WmeHA2cocHE1znrQ4HZKtAGnMFN/vifLGRGh2ypRL772QJ/hOgNsrNF3uA2Xtls4xPI7bhnGxcDoO+RKH+S7z1x0jGVmmqD/8LdclI/bnnH0n69A6NH5ZI4ixlqmeMDGGjtgrrrqKrV3NTWprtON32WnAP2SjVy97ZmeeRILV8Y/tyLjWgLs/OD70Xx1gaPuoWADmzHMVxw4m0J3VHF7L+86DPSL2267Tc1u4PoQfP2COvKarDMYY5wWbhocsWa8cHFFdjjRbk2aNMG1116btJiiPbllHWOG+uk93/k7dmpy1gtn3nDbMnYE0HZc7I92Z2cB/YnXeP/99+PmR3+g3917772qU40deN6FCQUCgaBGSGiNdoFAIPDhtmeRUJNtzzS4NRO34eF2TdzaqHPnzmr7pMmTJ6u/c2snbo/F7aO4vQ6/x619Xn/99ajl51Y8/M3s2bMDBx54YKBu3bqBFi1aqHJVVFRs8/0nnngisPvuu6ttiriFELchuvbaawOLFy+OyDUSuMVVuK21WLbQbaaWLVsWOPvsswNNmzZV27Ixf+92Vxrcro1bppFPo0aNAhdccEHgjz/+CLvtGfnHi88//1xdKysrK7BgwYKw36FNzzjjDLV9W15eXqBNmzaBww47LPDmm29G9R9uwXXNNdcEdtllF2VnlpHpRx55ZJt8uJ0Yr81tpgYOHKj8InTbs8cffzyw1157qe2Y+D36EK+/bt26iDxj/R11oQ+2bdtWcSVnblNFf/Fizpw5yjfoP82aNVPbYr311lvKBt6tzKrziep8i78P3SIuljLpbc/eeOONqFvkbdiwIXDKKaeorQj5t2hboG3cuFHl37hxY7UtH7cmmz59uvrtHXfcsc32WXqLQS+4FRi30WKejGtupchYC607iG+++UbFJuOiU6dOgcceeyx47VDQ5twWjH7Fg3UHy8ry1WTbs3CahPpgOGg7c8tG+jG1op8NGjQo8OuvvyY1pjTGjBmjtkqjDzZo0CDQt29ftZWcF7/88kvgmGOOCfo9OZ5wwgmBL7/8Mqpu4WzELfsYR8yTf5Mt0AQCQTKQxX9q1pQXCAQCQbqAo80cYQ03PVMgMAGOhl555ZVqlNO7SrYfwdklXGSRsxhOPfVU28WxDo7Sc7SYi6jZGJkXCASCTIa8Qy4QCAQCgSAucHsuL/guL19D4MJnfmuMh3LVnQ+cFs2p6AKBQCAQJAJ5h1wgEAgEAkFc4Lv33LeZOwBwgTSOFHOV/Oq208tk8N1vrnWw7777qnUduDYDD76nHbqXukAgEAgE8UIa5AKBQCAQCOICVwPnollsgHMleS62xsXxvNvG+QUDBgzA559/rnYm4Csh7Ijg7gs33HCD7aIJBAKBwAeQd8gFAoFAIBAIBAKBQCCwAHmHXCAQCAQCgUAgEAgEAguQBrlAIBAIBAKBQCAQCAQW4Pt3yCsrK7F48WIUFBQgKyvLdnEEAoFAIBAIBAKBQOBzBAIBFBcXo3Xr1mpnDuca5KNHj1bH5s2bMXv2bNvFEQgEAoFAIBAIBAKBY1iwYAG22247dxd143YsDRs2RFFRkfrkiDnBXopIaY6m86guzVVl+d3q0gS/703n5OSonpJw6S1btmDy5Mno06dP8G/8LT91Otaypwsnb9mrS7vGqby8HD///DN22203tX2OHzj5UadEObHckyZNQu/evZGXl+cLTn7UKRFOoXW2Hzj5UadEOcVSZ2caJz/qlCin0DrbD5z8qFOinDhIx3imzjznB05+1KkyAU68N1Pj3XffXf3dNie9M8fatWtRWFgI50bINWgQgo3xBg0aRP0+jccR9c6dOyshTYE3/fr166sy8qZvErY4u5av1rlevXrKH03qbJOzqzoznln5is6phdTZbsSUTZ1t1Nku1p1SZ7sRU6KzG7a2XWcXGn7+qo6z/tTt0eogi7qFGiQ7G+3btw/2zLgAW5xdy9cmbHIWnf1va5t5Szy7YWvR2f+2Fo3NQnQWW/vRv2wiEc6+HyGPF+zByM/Ph0uwxdm1fG3CJmfR2f+2tpm3xLMbthad/W9r0dgNe4vObthadI4P7nRbxDHdYNq0aerTFdji7Fq+NmGTs+jsf1vbzFvi2Q1bi87+t7VobBais9jaj/5lE4lwlgZ5qEGys9Xcf9emWNjg7Fq+NmGTs+jsf1vbzFvi2Q1bi87+t7VobBais9jaj/5lE4lwdsdKccAl57HN2bV8bcImZ9HZ/7a2mbfEsxu2Fp39b2vR2A17i85u2Fp0jh3utUqigMvYz5w5M7jkvQuwxdm1fG3CJmfR2f+2tpm3xLMbthad/W9r0dgsRGextR/9yyYS4SwN8lCDZGeja9euTvXq2OLsWr42YZOz6Ox/W9vMW+LZDVuLzv63tWhsFqKz2NqP/mUTiXB2x0pxwKXeHNucXcvXJmxyFp39b2ubeUs8u2Fr0dn/thaN3bC36OyGrUXn2CEN8jDOw03dXXIiW5xdy9cmbHIWnf1va5t5Szy7YWvR2f+2Fo3NQnQWW/vRv2wiEc6yD3kIcnJysMMOO8Al2OLsWr42YZOz6Ox/W9vMW+LZDVuLzv63tWjshr1FZzdsLTrHBxkhD0EgEEBZWZn6dAW2OLuWr03Y5Cw6+9/WNvOWeHbD1qKz/20tGpuF6Cy29qN/2UQinK02yL/99lscfvjhaN26NbKysvDuu+9W+90LL7xQfef+++9PaZk4zaCoqMi5KRY2OLuWr03Y5Cw6+9/WNvOWeHbD1qKz/20tGpuF6Cy29qN/2UQinK02yDdu3IhddtkFo0ePjvi9d955BxMmTFANdxNTLLp166Y+XYEtzq7laxM2OYvO/re1zbwlnt2wtejsf1uLxmYhOout/ehfNpEIZ6sN8oMPPhi33XYbjj766Gq/s2jRIlx22WV46aWXkJeXl/IycZpBSUmJc1MsbHB2LV+bsMlZdPa/rW3mLfHshq1FZ//bWjQ2C9FZbO1H/7KJRDin9aJuHPI//fTTcc0116BHjx4x/YZz93lorF+/Xn2Wl5erI5Y8FyxYgA4dOhjdO6+iokIJWFpainvvvVedI28TnRC2OLuWr1dnfpqETc6is/9tbTNv23W26Vh20dY28xad3fAvuTeLzqmE1Nnu1tnlMbQ9iaxAmnRd8P1wTk0/6qijgudGjhyJsWPH4tNPP1V/J8EhQ4aoozrcfPPNGDFixDbneY169eohXUERi4uLUb9+fcyfP1+da9++vfGbksCMzgUFBaKtjyE6+x+isRsQnd2A6OwGRGf/ozLNnrP5evbgwYOxbt06NGjQIPNGyH/66Sc88MAD+Pnnn1VjPFYMGzYMV1111VYj5G3btkXv3r0jGkKD/RObNm1C3bp148o3UXBknFx79uyJr7/+Wp074ogjgiPkqRwpt8XZtXwJ9thNmjQJffr0MfpejU3OorPo7Ef/shXLrsaU6Ox/neXe7EZMic5u2Frq7KytZmpHQ9o2yMeNG4fly5ejXbt2Wz0AXX311Wql9Xnz5oX9XX5+vjpCkZubq45YelZWrVplvGeF09Q7deqkGuN60sJ9990X/Pvw4cNTlrctzq7lq8FKkQ/wsfijHziLzqKzH/3LViy7GlOis/91lnuzGzElOrtha6mzs5UdYn0+SNsGOd8d33///bc6xyF/nj/77LNTli8dlg1jl2CLs2v52oRNzqKz/21tM2+JZzdsLTr739aisRv2Fp3dsLXoHB+sNsg3bNiAWbNmBf8/d+5cTJkyBY0bN1Yj402aNNnq+5y23bJlS2y//fYpKxNHp/W7Byand3ABt8mTJ6tp6npkfOjQocZWlrfB2bV8bcImZ9HZ/7a2mbfEsxu2Fp39r7No7EZMic5u2Fp0zorLXlbfdmcDtFevXuog+O430zfddJO1MtGB1qxZY3yZfja82ZvkbYAzXatWLXX4kbNr+dqETc6is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwtnqCPk+++wTV6Gre288mWCjmKubuwRbnF3L1yZschad/W9rm3lLPLtha9HZ/7YWjd2wt+jshq1F5/hgfz34NAM7CNauXWutR4ej4lzAjUeqR8Ztc3YtX5uwyVl09r+tbeYt8eyGrUVn/9taNDYL0Vls7Uf/solEOEuDvJr3LVxzIBucXcvXJmxyFp39b2ubeUs8u2Fr0dn/thaNzUJ0Flv70b9sIhHOabvKui1wigX3LXcJtji7lq9N2OQsOvvf1jbzlnh2w9ais/9tLRq7YW/R2Q1bi87xQUbIw+ybt3r1avXpCmxxdi1fm7DJWXT2v61t5i3x7IatRWf/21o0NgvRWWztR/+yiUQ4S4M8DEpKSuAabHF2LV+bsMlZdPa/rW3mLfHshq1FZ//bWjR2w96isxu2Fp1jh0xZDzPFok2bNnAJtji7lq9N2OQsOvvf1jbzlnh2w9ais/9tLRq7YW/R2Q1bi87xQUbIQ8BpBitXrnRuioUNzq7laxM2OYvO/re1zbwlnt2wtejsf1uLxmYhOout/ehfNpEIZ2mQh8GWLVvgGmxxdi1fm7DJWXT2v61t5i3x7IatRWf/21o0dsPeorMbthadY4dMWQ8zxaJVq1ZwCbY4u5avTdjkLDr739Y285Z4dsPWorP/bS0au2Fv0dkNW4vO8UFGyEPAaQbLly93boqFDc6u5WsTNjmLzv63tc28JZ7dsLXo7H9bi8ZmITqLrf3oXzaRCGdnGuTaOPyMJa03da8uXVFRETHNIzRNRErra/BTl8WbjrXs6cKprKwMt9xyC0aMGKHS4Tglyq+mnPR3aqJTKnjY9j3hlHydvDEtOvnT97xa+4WTH3XKZE6h9ypTnLzldUUnb0z7hVO66pSoT6YjJz/qJJwQt07VnXe2QT569Gh0794dffr0Uf9njwXBl+15EMuWLVP7xRFLlizB2rVr1RQLvvNQXFyszi9YsCCYnjdvHjZu3KjSc+fORWlpqUrPnj0bmzdvVumZM2eivLxcCcI0P/l/pgl+j98n+Hteh9i0aVPwesyP+RLr1q3DokWLVJrlYzkJlpvlj4UTwWvwWuE4cVuC5s2bo6ioKOmcmjRpotIbNmzYhhNtnZeXF+SRTE6RdGK+vIauaOLhxOvy+jXVadWqVSq9YsWKpHKKphM5N2zYMMgjmZyi6cR0fn6+KoOpeOJ158+fr/yaaZPxpDmxPMnmFE2n9evXqxsAbW0qnjQn8mjatKk6byqeeJArb3hef0t1PGlOeksXk/HEa/C69G2dNhFPvD5tXadOnSAPk/HE+1ODBg1UGUzFE8u3dOlSlV6zZo3ReCIHXQbCVDzp+1NOTo6ytcl44m/p1zptKp40Jw4c8FnFVDzpNPOlrU3GE8vC8tHeOm0inlhOcqV/0c9MxhO56LKbjCee4/doa502EU/8Pm3NepP1p+l4Ypr3C5bBVDwVFxdj4cKFwechk/HEMpEr89X1t7cuj4asQKxN9wwFDVNYWKhupmyQ6F4fGi1cWgvRsmVLVWHwfFZWljq8af3QW12a4Pe9aV5P90KFptkJMHHiRPTv3z/4N/2gqdPRyh4tHY6H7slhhwUfpnNzcxPmRKdkmsFz7733qnNXX321urZuhGu348MOKyn+LZmcIunEvLXG+jqx6uTVo7p0pPIyMCdNmqQ6irQ9ksEpmk78O23drFmzoP2TxSlampzpX7Q3YSKedI8wb/j0L17LVDzpck+YMAH9+vVT9k4Wp2g60da8qXjfGUt1POk0wbzpY/RtE/HkrbNbtGgRth5JRTyFq7NNxZO3zqatmaeJeApXZ5uKJx60N+OZ9YjOM9XxFGudnYp40tegvb33qlTHU7g620Q8sXzMlw/H9C/CVDyFq7NNxBO/z2tQY9bZvKapeNJ1dnXPfqmKJ42aPPslw/f4XMp4ps48ZyKemObB+ot1Ns+ZiKfqnv1MxBOP6p79UhlPgUBA3Suocd++fYMdiybiSefvbUPyPDv52P5ko56dI3B9UTctrP6sLk0DczSPBo70fRq6Jmlet7q0zrO6dLSy1zRNzgxU/WCXKKe77roLobjnnnuC6eHDhweduVatWjFrU5N0uPIyYLTG3rKb0MnLtaa8a+J72ta2fI95J5tTOB7eNK9Pv9bpZHOKlvbmZbKOoG+nilOsPhbKO5X1nq6zTcZTuPKajCddZ+sHmWRyiqRTaJ1tMp5YFl2PmIynZNTZNfU9liPcvcrEc0S0OjtVdXmkOjvVz0bVXTPVz3u6zjYdTzV59kuG76Xq2S9WbWzEE6Hr7Hh4J+p74Z79TLY1wtUjqY6nbE/dkWwfi6aTt32hz+t0NDjTII8VNDB7C12CLc6u5WsTNjmLzv63tc28JZ7dsLXo7H9bi8Zu2Ft0dsPWonN8+Kd5L1BgbxLfF/BOrfE7ks152LBh6hg6dGjwHNP6fKryjRWisVmIzv63tc28JZ7dsLXo7H9bi8ZmITqLrf3oXzaRCGcZIQ8DLkLgGpLJWU9R8YJTdcKdt2Vr0dgNe4vObthbdHbD1qKz/20tGrthb9HZDVuLzrFDGuRhplg0btwYLsEWZ9fytQmbnEVn/9vaZt4Sz27YWnT2v61FYzfsLTq7YWvROT7IlPUQcJoBl7V3bYpFKjhzRJwLuPEINzpuy9aisVmIzv63tc28JZ7dsLXo7H9bi8ZmITqLrf3oXzaRCGcZIQ8BV8MrKCiIeVU8P8AW50Ty5dYVI0eOVGm+lx6uwZ+KfDMVNjlnon9lKkRnN+BiTEk8+9/WorFZiM5iaz/6l00kwlka5GGMyf3iXIItzq7laxM2OYvO/re1zbwlnt2wtejsf1uLxm7YW3R2w9aic3yQKesh4DSDoqIi56ZY2OBck3w5Ms5jy5YtwXNM6/OpyjfTYZNzJvlXpkN0dgMuxpTEs/9tLRqbhegstvajf9lEIpxlhDxMj06jRo2cm2Jhg3NN8tXT1L0YNWpUMM331VORb6bDJudM8q9Mh+jsBlyMKYln/9taNDYL0Vls7Uf/solEOEuDPIwxGzRoAJdgi7Nr+dqETc6is/9tbTNviWc3bC06+9/WorEb9had3bC16BwfZMp6CDjNYM6cOc5NsbDBuSb5cgE3HkOHDg2eY1qfT1W+mQ6bnDPJvzIdorMbcDGmJJ79b2vR2CxEZ7G1H/3LJhLhLCPkYXp0mjdv7twUCxuca5JvuNXU8/Ly4l5lXTQ2h0zyr0yHTc6is9jaj/5lE67FlGhsFqKz2NqP/mUTiXCWBnkYY9avXx8uwRZn1/K1CZucRWf/29pm3hLPbthadPa/rUVjN+wtOrtha9E5PjgzZV1PH+BnpHRFRQVmzJiB8vLy4PlAILBNmt+LlOYRmiYipfU1+KnL5U1HK3u0dDgeTJPrrFmz1CrlyeYUjodO83szZ84MrpgeDyeOiN9444246aabVDoenbwaJ5tTKnVKxPe0rfVK9CY5UV/mzfxMxhPzpV9TZxs6eWPaRDyFs7VJ36OdtY+ZjKdo9Ugq4ilUX9N1hK6zydlUPIWztcl4ol9p3zYVT7brcuoceq8ywSlSPZLKeKLGus62oZM3pk3EE6E11r836XuRnv1SGU81ffZLpe+luo7QzyP8NMkp3LOfqXiq7tkvnXWqTND3QtuQXn7ONshHjx6N7t27o0+fPur/y5cvV58rV65UB7Fs2TKsXr1apZcsWYK1a9ciOzsbOTk5KC4uVucXLFgQTM+bNw8bN25U6blz56K0tFSlZ8+eHXR2Op9uADDNT/2gSvB7/D7B3/M6xKZNm4LXY37Ml1i3bh0WLVqk0iwfy0mw3Cx/LJwIXoPXCseppKQEbdq0wfz585PKibbi9avjRFuz507zSCanSDox37KysmDAJZNTNJ1WrVql0itWrEgqp2g6kXOzZs2CZU8mp2g6Mc1FRVgGU/HE6zIv+rVOm4onzYnlMRlPxPr165Gbm6tsbSqeNCfyaN26tTpvKp54kCs75bz+lup40pxYd5qOJ16D16Vv67SJeOL1aWvuaat5mIwn3p+aNm2qymAqnli+pUuXqvSaNWuMxpN+oOO9ijAVTzpdt25dZWuT8cTr0K+ZNhlPmhNtvWHDBmPxpNMcSaStTcYTy8Ly0d48byqeWE5ypX95/c1EPJGLLrvJeOI5fo+21mkT8cTv09asN1l/mo4npnm/YBlMxVNxcTEWLlwYfB4yGU8sE7myI0LX3966PBqyArE23TMUFKSwsFDdTOkYuseDRouUZgXJo7o0ez343erSBL/vTbOhr3tsQtMUcOLEidh9991x1113qWtdf/316v1ofi9aedORk+7d4verS7vGiYE5adIk1VGkG06ZzsmPOiXKieWeMGEC+vXrp2LYD5z8qFMinHSd3b9/f/V/P3Dyo06Jcoqlzs40Tn7UKVFOoXW2Hzj5UadEObFRx3imzjznB05+1KkyAU68N1Pjvn37qr/b5sROPrY/2aiPtOK9b0fIQ6GF5WekNI3HaSVeMWjU0DRFjpTmEZomIqX1NQjdT8JzsZY9WjocD+1snGKh80smJ51/uLS2teaaTE6ReDBfPYqXbE6p1CkR39PTljRMcqK+etqSyXhivvRrb8VuUidvTJuIJ21rxpS2tUnfo521j5mMp2j1SCriKVRf03WErrPJ2VQ8aVtTY5P3J+99UdcjpuLJdl1OnUPvVSY4RapHUhlPhK6zbejkjWkT8USQq7a1ad+L9OyXyniq6bNfKn0v1XWEfh7RDUdTnMI9+5mKp+qe/dJZp+wEfc/bvgjlFw2yqFsIaOD27dsHhTAF/V6JfqdGn9OIZxXxTOHsWr42YZOz6Ox/W9vMW+LZDVuLzv63tWhsFqKz2NqP/mUTiXCWBnkI2JORn58P07j77rvRqVMnjB07Nnhu1KhRwfTw4cN9x9m1fG3CJmfR2f+2tpm3xLMbthad/W9r0dgNe4vObthadI4P7nRbxAhON5g2bVpw9T4XYIuza/nahE3OorP/bW0zb4lnN2wtOvvf1qKxWYjOYms/+pdNJMJZRshDwGkGnTt3Nj7F4pprrsHkyZNxxBFH4L777lPnhg4dqhYX8Stn1/K1CZucRWf/29pm3hLPbthadPa/rUVjsxCdxdZ+9C+bSISzNMirMahpsOHNfL0NcKZT+e64F7YCxrV8bcImZ9HZ/7a2mbfEsxu2Fp39b2vR2A17i85u2Fp0jh3utUqiQK8UrFfI8yu4DP+IESPUwT31bHC2ZWtXNE4XzqKz/21tM2+JZzdsLTr739aisVmIzmJrP/qXTSTCWUbIw/TmdO3a1VqvDkfFU7mAW3ULL9jgbMvWtjW2AZucRWf/29pm3hLPbthadPa/rUVjsxCdxdZ+9C+bSISzNMjDwLtvsR9HxolNmzYFzzHNBQjI+6GHHlLnhg0bZmS6vC1b+1njdOQsOvvf1jbzlnh2w9ais/9tLRq7YW/R2Q1bi86xw60WSYzO493U3W+455571PHoo48Gzz3++ON47bXX8PDDDztha79rnG6cRWf/29pm3hLPbthadPa/rUVjsxCdxdZ+9C+bSISzjJCHICcnBzvssANcQiAQwNKlS7c6t2XLlmA6VSPltmztosY2OYvO/re1zbwlnt2wtejsf1uLxm7YW3R2w9aic3yQBnmYxunmzZtVI5TvVvsNV199dXCauneUPDc3F+Xl5cH/jxo1KphO1Tvttmztd43TjbPo7H9b28xb4tkNW4vO/tdZNHYjpkRnN2wtOmfFZS+Zsh4CTjMoKiry7RSL+vXrq6Nu3brBcwzSxo0bGw9WW7b2u8bpxll09r+tbeYt8eyGrUVn/9taNDYL0Vls7Uf/solEOMsIeZgpFt26dYNVLPoJaLETkJtvJLvLLrsM9erVU9PU9cj40KFDt9oT3U+2TguNHeIsOvvf1jbzlnh2w9ais/9tLRq7YW/R2Q1bi87xQUbIw0yxKCkpUZ82kDVhNPDk/sBXt6Y0H46Scyo6j4YNG6pV1jltXYONcU5xSeVK67ZsbVtjG7DJWXT2v61t5i3x7IatRWf/21o0NgvRWWztR/+yiUQ4O9Mg19MH+BkpzWPBggWqgarPa8N60/x7pDSP0DQRKa2u0agjEKhE4IeHgTnfqHOxlj1aOhwPplmGRYsWbfUOebI46fzDpXksXLgwmG8yOUXSxqtxsjmlUqdEfE/bWi/WZ5IT9WXe+pypeGK+9GvN37ROwZg2FE/hbG3S93hoHzMZT9HqkVTEU6i+pusIb51tKp7C2dpkPNGvtG+biifbdTk/Q+9VJjhFqkdSGU/UWNfZNnTyxrSJeNLXoMY6P5O+p+sRXWebiqdodXaq4slmHaGfR/hpklO4Zz9T8VTds18661SZoO+FtiG9/JxtkI8ePRrdu3dHnz591P+XL1+uPleuXKkOYtmyZVi9erVKL1myBGvXrlVTLOrUqRPcr5uGLS4uVul58+Zh48aNKj137lyUlpaqNJe456IJxMyZM4MBx7QORKYJfo/fJ/h7Xkcvssb/B7Y/BJt7noIsBIB3LsT6ZUUqiAmWj+UkWG6WPxZOBK+xbt26sJyYb5cuXdT3r732WjVqzu8kyom24vUJ5sdrEiwHy0NbN2nSJKhNMjlF0on5em9+yeQUTadVq1ap9IoVK5LKKZpO5NyuXbtg2ZPJKZpOXMG/WbNmqgym4onXZV70a8ZWsjnFohPLk2xO0XTiea4PQVubiifNifHUqVMnzJkzx1g88SBXzvjRZTcRT5oTe8JNxxOvwfsTfXvx4sXG4onXp61btGih8jUdT/Pnz8d2222nymAqnlg+vQPJmjVrjMYTOXBdF/Lhp6l40ulGjRopW5uMJ16Hfs3Gg8l40pzKysqCz34m4ong/Sk/P1/Z2mQ8sSy0M+3N86biieUkV/qX199MxBO56LKbjCee429oaz7vmoonfp+2Zr3J+tN0PPE+wfsFy2AqnoqLi1UnALF+/Xqj8cQykSuhG+SaUyzICsTadM9QUJDCwkJ1M+XUbN3jkZ2dHTbNGx+NzQc8fZ7nvDdGHjQ2/15dmuD3vWkKpRuBoWlWjBMnTkT//v2RU1EKPLE3slbNQqD7UQgc+zSy/25ERip7tHQ4Hvo7vCnUrl1blSVZnHTvFr8fLq1tzffXdSM5WZwi6URojfX3k8UpWnkZmJMmTVIdRXxFIFmcounENB802NnEfJPJKVqa5aJ/0d5a91THk06zwaQXMEwmp2g6sdwTJkxAv3791OsfJuJJ25o3iIKCgmCvbKrjSaf5ybzpY/qmlOp48tbZ1dUjqYinbersv/M1EU/eOpu21uVNdTzp2GU9ojt9TMWTbpAynlmP6LKnOp5irbNTEU+6LLS3916V6niKVo+kKp70iBcfaulf/L+peApXZ5uIJ50/NaatCVPxpOvs6p79UhVPsdTZqYon3ahjPFNnnjMRT0zz+6y/WGezTCbiqbpnPxPxpMsY7tkvlfEU+HumDTXu27ev+rupeNLl9bYheZ72Z/uTjfoGDRrAuRHyUGhD8TNSmmLq3hJ9nsYOTevKq7o0j9A0ESmtr5GVXx9Zx/wPyM5F1p/vIvv312Iqe7R0OB767+y1i8avJpz09cOlta29ZUkWp0g8vBonm1MqdUrE98iZo/Le8prixOswb11hmownPfvChk7emDYRTzpN39a2Nul7hPYxk/EUrR5JRTyF6mu6jiDo294ypDqetK2psZe3qXhiWtcjpuLJdl1OhN6rTHCKVI+kMp54HV1n29DJdDxpaFub9r1Iz36pjKeaPvul0vdSXUfwN7rONskp3LOfyXgK9+yXzjplJ+h7oW1IL79ocKZBHitoYE679FaWVtBmN2CfYVXpj64BVs/xHWfX8rUJm5xFZ//b2mbeEs9u2Fp09r+tRWOzEJ3F1n70L5tIhLM7VooR7N3gNHc9Tcsq9rwSaDcA2LwBePsCoCK29xAyhbNr+dqETc6is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwlka5GGMyffN08KBsnOAYx4H8hsAC38ExlXtEe4XzumeL981GjFihDr0ohOZCpt+ne46+wmisxtwMaYknv1va9HYLERnsbUf/csmEuEsDfJQg2Rno3379ukzxaJhO+DQe6vS39wFLJjkG86u5WsTNjmLzv63tc28JZ7dsLXo7H9bi8ZmITqLrf3oXzaRCGd3rBQj2KvBpe7Tqkdn5+OBnscDgQrg7X8DZVVL7mc653TNl6PhPPS+jQTT+nwmwqZfp6vOfoTo7AZcjCmJZ//bWjQ2C9FZbO1H/7KJRDhLgzyMMblkfdo50CGjgMK2wJp5wMfX+4KzXv3x1ltvVdPC9f6fJvKNxHfkyJHqGDXqn1cEmNbnMxE2/dqmf6VlLKcQorMbcDGmJJ79b2vR2CxEZ7G1H/3LJhLhLA3yUINkZ6Nt27bpN8WiTkPg6Me5kD8w5UXgz/cynjPza9WqlfFgTVuNfcrZpn+Jzv63t+jshq1FZ//bWjQ2C9FZbO1H/7KJRDi7Y6UYwY3eV69eHdwUPq3QYSAw6Kqq9JjLgXULM5YzR8O5EuGyZcuC5zZt2qTOp3qkPBrfYcOGqWPo0KHBc0zr85kIm35tK++0juUUQXR2Ay7GlMSz/20tGpuF6Cy29qN/2UQinKVBHgYlJSVIW3Bv8ta9gNK1wNvnA5UVGcn5nnvuwX333YcPPvggeO7RRx9V53mkGpH41qpVSx15eXnBc0zr85kKm35tK++0juUUQXR2Ay7GlMSz/20tGrthb9HZDVuLzrFDGuShBsnORps2bdJ3ikVOHnDsU0Ct+kDR98C3ozKaMxc/MI2019hnnG3lLTqbhegstvajf9mEazElGpuF6Cy29qN/2UQinK1a6dtvv8Xhhx+O1q1bIysrC+++++5Wq1pfd9116NmzJ+rVq6e+c8YZZ2Dx4sUpLROnGaxcuTK9p1g06Qwcdl9V+ps7gKIfMo7z1VdfjSuvvBKnnHJK8NxFF12kzvNIJWLly9Hw4cOHqyOTR8Zt+7WtvDMilpMM0dkNuBhTEs/+t7VobBais9jaj/5lE4lwttog37hxI3bZZReMHj16m7/xfeKff/4ZN954o/p8++23MX36dBxxxBEpL5d3u6u0xc4nALucDAQqgbfOAzatzijO9evXV0dubm7wXN26dYPnU42M0NhHnG3lLTq7YW/R2Q1bi87+t7Vo7Ia9RWc3bC06x45/WkMWcPDBB6sjHAoLC/H5559vde7hhx9G3759MX/+fLRr1y6lK39nBLgV2oIfgdWzgTGXASe+CGRlZQxn5tusWTMr+WaMxj7gbNO/RGf/21t0dsPWorP/bS0au2Fv0dkNW4vOGdQgjxfr1q1TU9sbNmxY7XfKysrUocGVvIny8nJ1RAOnGaxatQpNmjQx+t5DRUWF2v6LnzEjpzZw9P+Q88xgZE37ABU//g+B3c+JO29bnJkv9+vjyuU631g0Ska+NvjWWOcM52zTv0Rnc3BNZ1ux7KKtbeYtOrvhX3JvFp1TCamz3a2zy2Ns12QF0mTHdja033nnHRx11FFh/15aWoqBAwdihx12wEsvvVTtdW6++WaMGDFim/Offvqpehc9GmgOTrHgqtosk+nGaUFBQdw3olZF76LTjCdQmZ2HX/vej00FHeP6vS3OruWbqM6Zyll0Fp396F+2YtnVmBKd/a+z3JvdiCnR2Q1bS52dFXw9e/DgwWpQuUGDBpndIKczHXvssVi4cCG+/vrriITCjZBzk3b2WET6nW2wJ2fSpEno06cPcnJy4vtxIIDs105G9qzPEWjaDRXnfgnk1U1VUQW2dBZkDERn/0M0dgOisxsQnd2A6Ox/VKTZczbboRwxj9YgT/sp62yMn3DCCSgqKsJXX30VtVGdn5+vjlBw8TDvAmKRRj2WLVuGFi1aGB/1YKcEnSeWcm6Dox8DHh2IrJUzkPvFjcDhD8T8U1ucXcs3KTpnIGfRWXT2o3/ZimVXY0p09r/Ocm92I6ZEZzdsLXV2trJDrM8H2ZnQGJ85cya++OIL1cNgApzakXGo1xQ45gk+IgI/PQtMfScjOLuWr03Y5Cw6+9/WNvOWeHbD1qKz/20tGrthb9HZDVuLzrHD6gj5hg0bMGvWrOD/586diylTpqBx48ZqVcDjjjtObXn2wQcfqCkIS5cuVd/j31O1LzR7kJo2bYqMRKe9gUFXAePuAcZcAbTeDWjUPm05u5avTdjkLDr739Y285Z4dsPWorP/bS0au2Fv0dkNW4vO8cHqCPnkyZPRq1cvdRBXXXWVSt90001YtGgRxowZo94b33XXXVUDXR8//PBDSqdYMO+M3ch+n2HAdn2AsnXAW+cC5ZvTlrNr+dqETc6is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwtnqCPk+++yjVuGrDrbWm6tTpw4yFjl5wLFPAY8PAhZOAr4cAQy+PW05u5avTdjkLDr739Y285Z4dsPWorP/bS0au2Fv0dkNW4vOsSOt3yG3NcWCU+JtLPaVNHCa+lGPVqXHPwxM+zAtObuWr03Y5Cw6+9/WNvOWeHbD1qKz/20tGpuF6Cy29qN/2UQinN2xUozgNIMFCxZk/hSLHQ4F9ri0Kv3uRcCaorTj7Fq+NmGTs+jsf1vbzFvi2Q1bi87+t7VobBais9jaj/5lE4lwlgZ5mG1sCgoK1GfGY7/hQJveQOk64M2zq32f3BZn1/K1CZucRWf/29pm3hLPbthadPa/rUVjsxCdxdZ+9C+bSISzNMjDGLNhw4b+cKDcWsDxzwC1GwKLfgK+GJ5WnF3L1yZschad/W9rm3lLPLtha9HZ/7YWjc1CdBZb+9G/bCIRztIgDwGnGRQVFflnikXDdsDRj1WlJzwC/PV+2nB2LV+bsMlZdPa/rW3mLfHshq1FZ//bWjQ2C9FZbO1H/7KJRDhLgzwE7NVo1KiR1R6disokry6//cHAgMuq0u9eAqyemxacXcvXJmxyFp39b2ubeUs8u2Fr0dn/thaNzUJ0Flv70b9sIhHO0iAPY8wGDRpYc6DFa0tw0P3f4ofZK5P/Pvl2fav2J1fvk5dZ5+xavjZhk7Po7H9b28xb4tkNW4vO/re1aGwWorPY2o/+ZROJcJYGeQg4zWDOnDnWplg8PHY2Zi7fgDOf/hHv/rIoufuT833yOo2Axb8An91onbNr+dqETc6is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwlka5CFgr0bz5s2t9egMP2xHHNqzFbZUBDDktSkYPXYWAoEkTWEv3A44+vGq9I+PA3++Z5Wza/nahE3OorP/bW0zb4lnN2wtOvvf1qKxWYjOYms/+pdNJMJZGuRhjFm/fn1rDpSfl4OHTu6F8/fqpP5/96fT8X/v/IHyiiT1MHUbDAy8oir93qXAqtnWOLuWr03Y5Cw6+9/WNvOWeHbD1qKz/20tGpuF6Cy29qN/2UQinJ1pkOvpA/yMlK6oqMCMGTNQXl4ePK9HqL1pfi9SmkdomoiU1tegjtcftD1GHNFDpV/5cT7Oe34yiks2x8wjXDrIY58bEGi3B1C2HoHXT0d5yXrMmjULmzdvTjonnX+4NL83c+ZMbNmyJW5OLOstt9yCESNGqHQ8Onk1TjanmmoTVqck+p62NW1lmhP1Zd7Mz2Q8MV/6NXW2oZM3pk3EUzhbm/Q92ln7mMl4ilaPpCKeQvU1XUfQ1vRtcjYVT+FsbTKe6Ffat03Fk+26nDqH3qtMcIpUj6QynqixrrNt6OSNaRPxRGiN9e9N+p6uR8I9+6Uynmr67JdK30t1HaGfR/hpklO4Zz9T8VTds18661SZoO+FtiG9/JxtkI8ePRrdu3dHnz591P+XL1+uPleuXKkOYtmyZVi9erVKL1myBGvXrkV2djZycnJQXFyszi9YsCCYnjdvHjZu3KjSc+fORWlpqUrPnj076Ox0Pt0AYJqf+kGV4Pf4fYK/53WITZs2Ba/H/JjvmQM64N6jd0B+bhbGTl+B4x/7AX/Mmq++w3Kz/LFwIhYtWoR169ZVcVq8FBsOehCo1xxZy6Yi8P4QtGndGvPnz08qJ9qKNvNyIlgOloe2Zk+S5hEvJ+71V6dOnbh1Yr5lZWXBgEsmJ4LlYznDcVq1apVKr1ixIrpOSfQ9cm7WrFmw7MnkFE0nprnIBctgKp54XebVpk2bYDqZnGLRieUxGU/E+vXrkZubq2ydCk6RdCKP1q1bq/Om4okHudaqVWsrf0t1PGlOJSUlxuOJ1+B16ds6bSKeeH3amvWu5mEynnh/atq0qSqDqXhi+ZYuXarSa9asMRpP+oGO9yrCVDzpdN26dZWtTcYTr0O/ZtpkPGlOtPWGDRuMxZNOczSNtjYZTywLy0d787ypeGI5yZX+5fU3E/FELrrsJuOJ5/g92lqnTcQTv09bs95k/Wk6npjm/YJlMBVPxcXFWLhwYfB5yGQ8sUzkyo4IXX976/JoyArE2nTPUFCQwsJCdTOlY+geDxotUpoVJI/q0uz14HerSxP8vjfNhr7usQlNU8CJEyeif//+wb/xt/z8Zf4anPf8T1i1cTPaNKyD587pg05N68XEIyKnou8ReO4IZAUqgEPvRcVuZyWVk+7d0jzCpWMtu07rIGaZ7rnnHnWdoUOHqvxY1vz8/JTqlCgnBuakSZNUR5FuONn2vVTo5DonlnvChAno168f8vLyfMHJjzolwim0zvYDJz/qlCinWOrsTOPkR50S5RRaZ/uBkx91SpQTG3WMZ+rMc37g5EedKhPgxHszNe7bt6/6u21O7ORj+5ONeg5OOTdCHgotLD8jpWk8TivxikGjhqZ1A7C6NI/QNBEpra/BT10upndr3xhvXzwAHZvWw6K1JTj20fGYNG9NzJyq5dFhT2Ttf7M6V/nxdcCin5LOycsjNK1tzQCKlcedd96pjlGjRgV/xzTP3XHHHTHpxHz1KF6yOcWjR8w6JcH39LQlDZOcqJOetmQynpgvpw55K3aTOnlj2kQ8aVszprStTfoe7ax9zGQ8RatHUhFPofqariNoa/o2OZuKJ21raqxtbTKeCF2PmIon23U5dQ69V5ngFKkeSWU8EbrOtqGTN6ZNxBNBrtrWpn1P1yNe+5uIp5o8+6Xa91JdR+jnEd1wNMUp3LOfqXiq7tkvnXXKTtD3vO2LUH7R4EyDPFbQwO3btw8KkS5o36Qe3rpoAHZr1xDrSrbg9Kd+xHtTkrAt2oDLENjxcGRXbkE29yffWDWl2s+2TleN/cpZdPa/rW3mLfHshq1FZ//bWjQ2C9FZbO1H/7KJRDjnpqREGQw97Tkd0bheLbx8Xn9c+doUfPzHUlzx6hQsWL0Jl+zbJeYemG3AHqgjHwGW/4WsVbOAt84FTnsLyK7qeUo3Ww8bNkx9ckoKR8YJTlnnFLNU5pvpsMnZVt6isxv2Fp3dsLXo7H9bi8Zu2Ft0dsPWonN8cKfbIkZwusG0adOCq/elG2rn5WD0KbvhvEEd1f9HfTYD1731G7YksC1aRV49zOl7KwJ5dYE5Y4GvRyaxxMm1NRdv4uFtgDOtz6cq30yHTc628hadzUJ0Flv70b9swrWYEo3NQnQWW/vRv2wiEc7SIA81SHY2OnfunNZTLLKzs3DDod1x65E9kJ0FvD55Ic55dhLWl26p4fWy0Xa3A4DDH6w68e3dwPRPklvoNLJ1JmjsJ86is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwtkdK8WBTHGe0/fogCfP7I26tXIwbuZKHP/oeLXoW4059zwO6HtB1Yl3zgdWV20pkI625mj48OHD1RHryHgy8s1k2ORsK2/R2Q17i85u2Fp09r+tRWM37C06u2Fr0Tl2uNcqiQK9UrBeIS/d8a8dWuD1C/ZA84J8TF9WjKNGf4/fF1btl1cjzgfeBmzXFyhdB7x+OrClZg18vb3EiBEj1KH3Gaw2X4PINI0znbPo7H9b28xb4tkNW4vO/re1aGwWorPY2o/+ZROJcJYGeahBsrPRtWvXjOrV2alNId69ZCB2aFmAFcVlOOHx8fjiz6pN7+PmnFsLOP5ZoG5TYOnvwAdXce8CX9k6EzXOZM6is/9tbTNviWc3bC06+9/WorFZiM5iaz/6l00kwtkdK8WBTOzNad2wDt64cA8M6toUJVsqcP4Lk/HcD/NqxrmwDXD8M0BWNvDry8CPT8RVFo6G8+BK6BpM6/PV5msQmahxJnMWnf1va5t5Szy7YWvR2f+2Fo3dsLfo7IatRefYIQ3yMM7j3dQ9k1BQOw9Pn9UHJ/Vpi8oAMHzMVNw8Zioq+J94OXfcCzjg1qr0J8OAed/FXI6RI0eqQ29LRjCtz0fM1wAyWeNM5Cw6+9/WNvOWeHbD1qKz/20tGpuF6Cy29qN/2UQinKVBHoKcnBzssMMO6jMTkZeTjZHH9MR1B+2g/v/sD/Nw3vOTsaGsPH7Oe1wC9DwBCFQAr58JrF3gC1tnusaZxll09r+tbeYt8eyGrUVn/9taNDYL0Vls7Uf/solEOOempEQZjEAgoKZVc+VubmqfiWC5L9qnM9o3qYsrX5uCr6Ytx/GPjcfTZ/VGq8I6sXNm+vAHgBXTgKW/Aa+dBpzzCZC37TW8GDZsWHCauh4lHzp06FZ7h0fMN8Xwg8aZxFl09r+tbeYt8eyGrUVn/+ssGrsRU6KzG7YWnbPispeMkIeA0wyKiop8McXikJ6t8Or5/dG0fi38tWQ9jnw4/ArsETnXqguc9BJQtwmwZArwwZVRF3lj4PPwNsCZ1udjyjeF8JPGmcBZdPa/rW3mLfHshq1FZ//bWjQ2C9FZbO1H/7KJRDhLgzwEnGbQrVs330yx6NWuEd65eCC6taiP5X+vwP7Z1KXxcW7Yrmrl9awc4NdXgImPZbSt/aZxunMWnf1va5t5Szy7YWvR2f+2Fo3NQnQWW/vRv2wiEc7SIA8zxaKkpER9+gVtG9fFmxcNCK7AfsGLP+HJcXOCHGPizEXeuEc58ekNwNxvo+bL0fDhw4erwzsybtvWftQ4nTmLzv63tc28JZ7dsLXo7H9bi8ZmITqLrf3oXzaRCGdnGuR6+gA/I6V5LFiwABUVFcHz2rDeNP8eKc0jNE1ESnsbyLpc3nS0skdK16+Vg6fP7I1T+7VTM85v+/Av/OfdP1C2pVyVYdGiReqd74ic+l2Iyr8XeQu8cRYqVs2LyikcD53msXDhQpSXl9eYXzhtounk1bgmOkXilKhONeUUzfe0rfVWdCY5UV/mrc+ZiifmS7/W/E3r5I3pZHGKplOorU36Hg/tYybjKVo9kop4CtXXdB2h62xyNhVP4WxtMp7oV9q3TcWT7bqcn6H3KhOcItUjqYwnaqzrbBs6eWPaRDzpa1BjnZ9J34v07JfKeIpWZ6cqnmzWEfp5hJ8mOYV79jMVT9U9+6WzTpUJ+l5oG9LLz9kG+ejRo9G9e3f06dNH/X/58uXqc+XKleogli1bhtWrV6v0kiVLsHbtWjXNoE6dOtiwYYM6T8MWFxer9Lx587Bx40aVnjt3LkpLS1WaS9zr/bVnzpwZDDimdSAyTfB7/D7B3/M6xKZNm4LXY37Ml1i3bp0KYoLlYzkJlpvlj4UTwWts3FCM247aCRcPaAkuNfDSxPk45bHvsHztBnTp0gXz58+PzCkQwMztL0Gg5S7I2rQKW148Adi8qVpOtBVtVh0n2rpJkyZBbWrCideKVyfm6735xaNTNE7RdFq1apVKr1ixIqmcovkeObdr1y5Y9mRyiqbT0qVL0axZM1UGU/HE6zIv+jVjKxXxFE0nlifZnKLpxPN169ZVtjYVT5oT46lTp06YM2eOsXjiQa7169cPlt1EPGlO7Ak3HU+8Bu9P9O3Fixcbiyden7Zu0aKFytd0PPH+tN1226kymIonlo/1F7FmzRqj8UQOXISJfPhpKp50ulGjRsrWJuOJ16Ffs/FgMp40p7KysuCzn4l4Inh/ys/PV7Y2GU8sC+1Me/O8qXhiOcmV/uX1NxPxRC667Cbjief4G9qaz7um4onfp61Zb7L+NB1PvE/wfsEymIqn4uJi1QlArF+/3mg8sUx6qrpukGtOsSArEGvTPUNBQQoLC9XNtGHDhsEej+zs7LBp3vhobD7g6fM8570x8qCx+ffq0gS/701TKN0IDE2zYpw4cSL69+8f/Bt/q3uIqitvPGkvj8//Wo4hr05RU9g7N6uHh47vgW6tq27AUTkVLwKe2Ec1yrktWuDox1VjPRy/cDx0Wtu6Xr16wUZyIpxi1YnQGuvvx6pTNE7RysvAnDRpkuooys3NTRqnaL7HNB802NnEfJPJKVqa5eJDB+2tdU91POk0G0xsoOqypCqeQtMs94QJE9CvXz+1oGGyOEXTidfmDaKgoCDYK5vqeNJpfjJv+pi+KaU6nrx1dnX1SCriKVydbSqedJoxRVvr8qY6nnTssh7RnT6m4kk3SBnPrEd02VMdT7HW2amIJ10W2tt7r0p1PEWrR1IVT3rEiw+19C/+31Q8hauzTcSTzp8a09aEqXjSdTbrkdq1a2/z7JeqeIqlzk5VPOlGHeOZOvOciXhimt9n/cU6m2UyEU/VPfuZiCddxnDPfqmMp8DfM22ocd++fdXfTcWTLq+3DcnztD/bn2zUN2jQAM6NkIdCG4qfkdIUU/eW6PM0dmhaV17VpXmEpolIaX0NHayh6Whlj5b28hjcoyXeuHAPtCqsjdkrNuKkp37C5KK1sXFq2A5Zxz9Xtcjb768ja/zD1XIKx0Onta35f1aSt956qzqYrgmnWHXyalwTnSJxSrZOyfI9cuaovLe8pjjxOsxbV5gm40nPvrChkzemk8Upmk5M07e1rU36HqF9zGQ8eesRU/EUqq/pOoKgb3vLkOp40ramxuHuVamOJ6Z1PWIqnmzX5UTovcoEp0j1SCrjidfRdbYNnUzHk4a2tWnfI2jvcFxTGU/R6uxUxZPNOoK/0XW2SU7hnv1MxlO4Z7901ik7Qd8LbUN6+UWDMw3yWEEDc9qlt7L0K3ZqU4j3LhmIXbYrxPqyCpz+9I94Y3LV9JWo6DgIOOiOqvTnNwEzPs0YW7ukcTpwFp39b2ubeUs8u2Fr0dn/thaNzUJ0Flv70b9sIhHO7lgpRrB3g9Pc9TQtv6N5g9p45bz+OHCHpthSEcA1b/6GOz+ZhsrKGPj3PQ/Y/WxaDXjzXGD5X3HlTRvznWq+t6UXnCCY5ii5fq8k2XBNY9ucbeUtOpuF6Cy29qN/2YRrMSUam4XoLLb2o3/ZRCKcpUEexph839wlB6qdl41h+7TAZft2Vv9/9OvZuOiln7Bpc5SFCDgN45C7gQ6DgM3FwCsnARurFi2LBbTxyy+/jDvvvBOjRo0Knmd65MiR6kgFXNTYJmdbeYvOZiE6i6396F824VpMicZmITqLrf3oXzaRCGdpkIcaJDsb7du3d26KRccOHXD14B1w/4m7olZONj6dugzHPzYeS9ZVrSJcLXLygBOeBxp1ANbMA14/AyjfHHO+XNHQdLC6qrEtzrbyFp3NQnQWW/vRv2zCtZgSjc1CdBZb+9G/bCIRzu5YKUawccil7l3r0dGcj+rVBq+c3w9N6tXC1MXrceTD32PKgqql/6tF3cbAya8CtQqAou+Aj6/hRWPK9+KLL8b111+PoUOHBs8zPWzYMHWkAq5r7EreorNZiM5iaz/6l024FlOisVmIzmJrP/qXTSTCWRrkYYzJJetdcyAv593bN8a7lwzE9i0KsLy4DCc+Ph7vTanay69aNN8ROPZJzmMHfnoW+PF/MeXLLU64xQgPDaZr1aqljlRANDYLW/YWnc1CdBZb+9G/bMK1mBKNzUJ0Flv70b9sIhHO0iAPNUh2Ntq2bevcFItQzm0b18WbF+2B/XZojrLySlzx6hTc89n0yIu9bX8QcMCIqvQn1wOzx8adrwmIxmYhOvvf1jbzlnh2w9ais/9tLRqbhegstvajf9lEIpzdsVKM4EbvfK9ZbwrvMueC2nl44ozeuGCvTur/D301Cxe/9HPkxd4GXA7scjIQqADeOBNYNTumfDkaPnz4cHWkamQ8XL6uwCZnW3mLzmYhOout/ehfNuFaTInGZiE6i6396F82kQhnaZCHQUlJlIXMHOKck52FYYfsiLuP21kt9vbJ1KU47tHxWLy2pPqV1w+7H9iuL1C6Dnj5RKBkbdrZWjR2w96isxv2Fp3dsLXo7H9bi8Zu2Ft0dsPWonPskAZ5qEGys9GmTRvnplhE43x877Z4+byqxd7+XLIeRzz8PX6evyb8l/NqAye+CDTYDlg1E3jjLKBiS43yTQVEY7MQnf1va5t5Szy7YWvR2f+2Fo3NQnQWW/vRv2wiEc7uWClGcJrBypUrnZtiQc5cYG3EiBHq2Lx5263LendojPcuHYgdWhZg5YYynPTEBLzzy8LwFy1oAZz8CpBXF5gzFvho6DYrr9uytcsa25qyLjr729Y285Z4dsPWorP/bS0am4XoLLb2o3/ZRCKcpUEeBlu2bDua63fEynm7RlzsbQD237EFNpdX4srXfsUdH09DRbjF3lrtDBz71D8rr//wUI3zTTZEYzfsLTq7YW/R2Q1bi87+t7Vo7Ia9RWc3bC06xw5pkIcaJDsbrVq1cmqKRXl5OZo0aYKKioqtgoij5OFGyuvn5+KJ03fHRft0Vv9/7JvZOO/5ySguDRP0OxwCDP5vVfrzm4C/3rduaxc1tslZdPa/rW3mLfHshq1FZ//bWjQ2C9FZbO1H/7KJRDg7YyU9fYCfkdI8li5dGmyc8v96Pzlvmn+PlOYRmiYipfU1+KnL5U1HK3u0dDgeTI8cORIPP/ww7rnnnqC9mOZ5HuE4ce22oQd0xQMn7Yr83Gx8NW05jn7kB8xZsWErTir//hch0PvfPAO8dR4CC38Klm3ZsmWqQyDZnCJp49W4JjqF08aETon4nra17q00yYn6Mm99zlQ8Md/ly5cH+ZvWyRvTyeIUTSdypm976zNTvsdD+5jJeNLxXF09kop4CtXXdB3BvOjb5GwqnsLV2SbjiX6l6xFT8WS7Ludn6L3KBKfQOttUPFFjXWfb0Mkb0ybiSV9D19mmfU/XI7rONhVPofWIqXiyWUfo5xF+muQU7tnPVDxV9+yXzjpVJuh7oW1ILz9nG+SjR49G9+7d0adPH/V/BgLBuf08CDoKl6cnlixZgrVrq1YDX7VqFdatW6fSCxYsUJu8E/PmzcPGjRtVeu7cueqda2L27NnBkeSZM2cGA45pHYhME/wev0/w97wOsWnTpuD1mB/zJViORYsWqTTLx3ISLDfLHysnXqM6TnqbsaZNmyIvL0+lmzVrhtzc3Kicjty1DV48Z3c0qZuDWcs34KjR3+PNcX+o39FWvD5b78V73oCSNnsC5SUIvHwilk6frL6zYcMG5bzJ5hRNJ/62JjoFOdVQJ/oWsWLFiqRziuZ7TM+ZMyfpnGLRSZfdVDzxukVFRUEfMxlPmhPLk2xOseiky2synjQn3nhmzZplLJ40Jy9vU/HE7+kVZE3Hk+n7k5cTOdvgxLTmYTKe9P1pzZo1VnTidUzHE5+X1q9fb9z3bN2fNKeysjJ1vzAZT8yPzwOm48nLiXY3FU+aE/0rnufyZPmeLrvJePJyYn1iui5nWvMwfX/S90hT8VRcXIyFCxcGfcxGPPG3oZxiQVYg1qZ7hoKCFBYWqptpw4YNgz0enE4QKZ2VlaWO6tLs9eB3q0sT/L43nZOTE+xBCU2z92rixIno379/8G/8re4hilbeRDgxb6Z5M7r33nvVb6666irVUOd5licap6VrN+Gil6dgyoK1aqu0/xy6I87co30wf8WjdB2ynzkEWD4VgebdkXXOp6isVT8lnFKlk1eP6tKRysvAnDRpkuooYoeHHzj5UadEObHcEyZMQL9+/VQnlx84+VGnRDiF1tl+4ORHnRLlFEudnWmc/KhTopxC62w/cPKjTolyYkOJ8Uydec4PnPyoU2UCnHhvpsZ9+/YNtl9scmKnG9ufbNQ3aNAAzo2Qh0ILy89IaRqYvSS6n0IbNTRNkSOleYSmiUhpfQ1+6nJ509HKHi0djgfTvPlw5FaPjhP5+fnqYKM8Fk6tGtXDq+f3xzG7tVELvI14/08Me/sPbPl7sTfFo05D4JTXgPotkLX8TwTeOAvLllT1XiWbUyRtqDF7ZqlxTXQKp40JnRLxPXJmz6zXx0xxIvSUPJPxpHsqdUVtWidvTCeLUzSdCD1FzLTvqY65v33MZDzpOlvDRDyF6mu6jqCtdW+/qXjSttYjxjbiSdcjpuLJdl1OnUPvVSY4RapHUh1Pus62oZM3pk3EE0Gu2tamfU/XI+HuVamMp2h1dqriyWYdQeg62ySncM9+puKpume/dNYpO0Hf87YvQvlFgzMN8njgbZi6gmRwrp2Xg3uO30WNjmdnAa9NXoBT/jcRK4rL/vlSw7bAya8CuXWQNftLNJxwxzbboZmAaOyGvUVnN+wtOrtha9HZ/7YWjd2wt+jshq1F59hR9ZKwIAj2ePBdalc5Dx8+PKFrsSfo34M6oUvz+rjslV/wU9EaHPHwd3j89N2x83YNq77UZjfg2CeB105Dnd9fBFr3APa4GKbgusau5C06u2Fv0dkNW4vO/re1aOyGvUVnN2wtOscHGSEPgXcRFVeQCs77bN8c714yEJ2a1cOSdaU4/rHxePeXf6anY8fDUHnALSoZ+PT/ttoOLdUQjc3Clr1FZ7MQncXWfvQvm3AtpkRjsxCdxdZ+9C+bSISzNMjDoE6dOnANqeDcuVl91Sj/1w7NUVZeiSGvTcFtH/yJ8oq/HbX/JSjteSqy1HZo/wbmT4QpiMZmYcveorMb9had3bC16Ox/W4vGbthbdHbD1qJz7JAGeahBsrPRuHHjrRY38TtSyblB7Tz874zeuHTfLur/T343F2c/OwlrN21Gdk4Oah/1INDtYKC8FHjlRGBl1fYGqYRobBa27C06m4XoLLb2o3/ZhGsxJRqbhegstvajf9lEIpzdsVKM4DQD7jPn2hSLVHLmNmhDB2+PR07dDXXycjBu5koc8fD3+HPxOixYvASVx/wPaLM7ULIGePFYoPif1TdTAdHYLGzZW3Q2C9FZbO1H/7IJ12JKNDYL0Vls7Uf/solEOEuDPMyiZAUFBTEvU+8HmOJ8SM9WePviAdiuUR3MX70Jxz02Hj8u3oys/PrAya8BjToCa4uAl08AyjakrByisVnYsrfobBais9jaj/5lE67FlGhsFqKz2NqP/mUTiXCWBnkYY3IDd9ccyBTnHVs1wPuX7okBnZtg0+YKXP3ONNz3+QxU1m0KnPYWULcJsGQK8MZZQEV5SsogGpuFLXuLzmYhOout/ehfNuFaTInGZiE6i6396F82kQhnaZCHgNMMioqKnJtiYZJzo3q18Pw5fXH2wA7q/w9+NQvnPT8Z6+q2A055Xe1RjlmfAx8MScke5aKxWdiyt+hsFqKz2NqP/mUTrsWUaGwWorPY2o/+ZROJcJYGeQjYq9GoUSPnenRMc87NycZNh3XHbYd3Q63cbHw5bTmOGv09ZuZtDxz3NJCVDfzyAvDNXUnPWzQ2C1v2Fp3NQnQWW/vRv2zCtZgSjc1CdBZb+9G/bCIRztIgD2PMBg0aOOdANjgzv9MGdsVbFw5A68LamLtyo2qUf1LeCzhkVNWXvv4v8PMLSc9XNHbDv0Rn/9tbdHbD1qKz/20tGpuF6Cy29qN/2UQinK02yL/99lscfvjhaN26tSr8u+++u9XfA4EAbrrpJrRq1UrtZbf//vtj5szUbovFaQZz5sxxboqFDc463x6tC/D+ZXuif6fG2Li5Ahe++DNGrd4TlXteXfXF968AZn6e9HxFYzf8S3T2t71FZzdsLTr739aisVmIzmJrP/qXTSTC2WqDfOPGjdhll10wevTosH+/66678OCDD+Kxxx7DxIkTUa9ePQwePBilpaUpKxM7Bpo3b+5cj44Nzt58m9TPx4vn9sO5e3ZUf3t47CycM38wNvc4AQhUAK+fASycnPR8XYFNzungX65AdHYDLsaUxLP/bS0am4XoLLb2o3/ZRCKcc2ERBx98sDrCgaPj999/P/7zn//gyCOPVOeef/55tGjRQo2kn3TSSSkpE41Yv359uARbnEPz5XvlNx7WHT3bFOL6t3/D1zNW4uDGx2PMdstQb+E3wEvHAed8CjTbPqn5ugCbnNPFv1yA6OwGXIwpiWf/21o0dsPeorMbthadM6hBHglz587F0qVL1TR1jcLCQvTr1w/jx4+vtkFeVlamDo3169erz/LycnVEA6cZzJs3Dx06dEB2trkJBBUVFaoTgp+mYYtzdfke1rMFOjbph4tf/gWzV5di7w3n4PMmq9Foze8IPH8UKs76BChsk/R8/ayzTc7p5l8mIDr7X2eps92oR0Rn/8cyIXW26JxKuPgcJHV2trJDLG1PIivA1kEagD0p77zzDo466ij1/x9++AEDBw7E4sWL1TvkGieccIL67muvvRb2OjfffDNGjBixzflPP/1UTXmPBpqDTkTHNTnNgnkWFxerDeVNB40tztHyLS6rxEM/b8LUleVohPX4uP6taFm+CJvqtcXvve9Gea0GKcnXjzrb5Jyu/pVKiM7+11nqbDfqEdHZ/7FMSJ0tOqcSLj4HSZ2dFXw9m69br1u3Ti34lnEj5DXFsGHDcNVVV201Qt62bVv07t07oiFsg72zkyZNQp8+fZCTk2O7OGmDfQZW4t4vZuKJcfNw9Ibr8UHdEWiycQH6zrobFae+DdTKrCnJorMbEJ39D9HYDYjObkB0dgOis/9RkWbtKT1TOxrStkHesmVL9bls2bKtRsj5/1133bXa3+Xn56sjFLm5ueqIRcjZs2ejc+fOxoVk7xXzjKWcyYQtzrHkS1P836E90KtdYwx941ecUHId3s4fgcJFPyH3rbOBk18DcmslPV+/6WyTczr7VyohOpuB1NluxJTo7H+dpc52I6ZEZzdsLXV2jrJDrM/6absPeceOHVWj/Msvv9yql4Grre+xxx4py5fTOtq3b2982rhN2OIcT74H92yF9y4diEDTbjiz7FpsCuQDs79C4N0LOdcsJflu3rxZvf7Ag+lMhk2/zgT/8gtEZzfgYkxJPPvf1qKxWYjOYms/+pdNJMLZqpU2bNiAKVOmqEMv5Mb0/Pnz1ejSkCFDcNttt2HMmDH4/fffccYZZ6g9y/V75qkA8+UIu2vL9NvgHG++XZoX4L1LBqJF94G4cMsQbAnkIOuPt1D+0bV8WSVl+foBNjlnin/5AaKzG3AxpiSe/W9r0dgsRGextR/9yyYS4Wy1QT558mT06tVLHQTf/Wb6pptuUv+/9tprcdlll+H8889X7wKwAf/JJ5+gdu3aKZ1iMW3aNCurnduCLc41ybegdh4eO2137HHgiRhafpE6lzv5f1j36X+Tli9Hw3ls2bIleI5pfT4TYdOvM8m/Mh2isxtwMaYknv1va9HYLERnsbUf/csmEuGcNquspwqc5s7t0qKtbqdBc3CJes75N9mrwzw5HZ/bupl+h9wW50Tz/W7mSvzw8m24NvCM+v/M3sPR9bCrEs433Cr9XgwfPhyZprMtjW3mbZOz6Ox/naXOdqMeEZ39H8uE1Nmicyrh4nOQ1NlZcbVD3ZnYHwdcet/BNudE8t2za1OcesVIvFqnak/6rpNH4LOX7kNlZfQ+JtHYLDLRvzIVNjmLzmJrP/qXTbgWU6KxG/YWnd2wtegcO9y7u0UB9+ubOXOm+nQFtjgnI982DevgqCtH4/umx6v/7zdjBB555F6s2bi5xvly6zweQ4cODZ5jWp/PRNj060z2r0yD6OwGXIwpiWf/21o0NgvRWWztR/+yiUQ4S4M81CDZ2ejatatTvTq2OCcr39q1cjHw4icwt+3RyMkK4PwVt+PW+x/E7wvX1SjfWrVqqSMvLy94jml9PhNh068z3b8yCaKzG3AxpiSe/W9r0dgsRGextR/9yyYS4eyOleKAS705tjknLd/sbHQ8+yms63QYamVV4PbNd2LkY0/hlR/nq/dYUpZvBsEm54z3rwyC6OwGXIwpiWf/21o0dsPeorMbthadY4c0yMM4z+zZs51yIluck55vdg4KT3kGWzrtjzpZm/F4zl14+Z33cM2bv6F0S0Xc+XI0nAu48cjUkfF08Gvf+FcGQHR2Ay7GlMSz/20tGpuF6Cy29qN/2UQinGWV9TSBzZVcfYctJQi8eByyir7DmkB9nLj5RuS07IHHTtsN7ZvUs1o00dkNiM7+h2jsBkRnNyA6uwHR2f8oT7P2lKyyXkNwenNZWVnYac5+hS3OKcs3rw6yTnkVaLM7GmVtwMv5I7Fp6Qwc9tB3+HTqUtHYMHznX2kMm5xFZ7G1H/3LJlyLKdHYLERnsbUf/csmEuEsU9ZDwGkGRUVFzk2xsME5pfnmFwCnvgk074GmWIs36tyB+qXLcMELP+G2D//E7LnzRGND8KV/pSlschadxdZ+9C+bcC2mRGOzEJ3F1n70L5tIhLM0yEOQk5ODbt26qU9XYItzyvOt2xg4/R2gcWc0r1yODwrvQnOswVPfzcNNY1dhxYYtcAU2/dq3/pWGEJ3dgIsxJfHsf1uLxmYhOout/ehfNpEIZ2ca5Lq3gp+R0pxmsHHjxq3O66kH3nRFRUXENI/QNBEpra/BT52/Nx2t7NHS4Xjo75SUlKj3LpLNKRwPnda21t9PJqdg2es2ReCMd4HCdmhStgBfNbsHHfI3YHLRGhzywLf4dsbypHJKpU6J+B4/N23apDQ2zYn5MG+v7ibiiWn6tbcsJnXyxrSJeNLXZkzpcyZ9j9/TPmYynqLVI6mIp1B9TdcRus72ljfV8aSvT43DcU11PNGvdD1iKp5s1+X8rn4eMckpUj2SyniixrrOtqGTN6ZNxJPOR9vatO9FevZLZTxFq7NTFU826wj9PKLtbopTuGc/U/FU3bNfOutUmaDvad/21qX6O842yEePHo3u3bujT58+6v/Lly9XnytXrlQHsWzZMqxevVqllyxZgrVr1yoj/vXXXypNLFiwAMXFxSo9b948ZWhi7ty5KC0tVWmuqLd582aV5obwdHzv5vD8P9MEv8fvE/w9r0PQafX1mB/zJdatW4dFixapNMvEchIsN8sfCyeC1+C1wnHasGGD+nuyOdFWvH51nHgd/m7x4sVJ57SVTvnNgDPHYEvd5qhfPAefNRmFnQs2YvWmLTjzmUkY/sZEbCmvSAqnaDqtWrVKpVesWJEYpzh1Ynr+/Pkp4RRNp4ULFwZXnTQVT5oTy88FNUzGk+bE8piMJ2LNmjWYNm2aumbK4qkaTkxT6xkzZiSVUzSdmNf06dOD/EzEk+bEByzT8cRrMM1PxrTJeOL358yZo/I1HU8si54KaCqeWL6lS5cGY8tkPJEDj19//TWYNhFPBDnPmjVL2dJkPPH7zIPPQybjSXPiu598HjIVTwTvT3/++af6rel4op35XZPxxHLymvQvHVum4knXHYTJeOI5pvkbPu+ajCeeZ71pI554n+D9gmUwFU/FxcXqOUTHlsl4YplY5t9++y3IT3OKBc6sss6bacOGDYO9Fty0PVI6KytLHdWl2evB71aXJvh9b5pTGHSPTWh6y5YtalXA/v37B//G3+oel2jlTUdO3rJXlzbKacVMZD9/OLKKl6CiWQ/c3vROPP3LenW9Pbs0xf0n7oJGdfNSyomBOWnSJNVRxNUfRSd/+h7LPWHCBLXKZ15eni84+VGnRDiF1tl+4ORHnRLlFEudnWmc/KhTopxC62w/cPKjTolyYqOO8Uydec4PnPyoU2UCnHhvpsZ9+/ZVf7fNiZ18bH+yUd+gQQM4N0IeCi0sPyOlKSZ7Db2/o1FD0xQ5UppHaJqIlNbX4KculzcdrezR0uF46L/TYaLxqwmncDx0WtvaW5ZkcQrLo1lXZJ35PgL1WyBnxVTcuOb/8OCRHVA7LxvfzVqJwx76Hr8sWJcQp1TqlIjv6Wk03vKa4sTr6Cl5puNJj3bY0Mkb0ybiSaf1FDHTvkdoH0smp1jr7OrqkVTEU6i+pusIgr7tLUOq40nbmhqHu1elOp6Y1vWIqXiyXZcTehaGSU6R6pFUxhOvo+tsGzqZjicNbWvTvhfp2S+V8VTTZ79U+l6q6wj+RtfZJjmFe/YzGU/hnv3SWafsBH2PXHWdHcovGv6pEQQKNCant/PTFdjibCXfpl0ROP1dVNRuhKylv+GI3y/F+//eGZ2a1cPS9aU48YkJeOwbTvPxl/42/dop/7IM0dkNuBhTEs/+t7VobBais9jaj/5lE4lwlgZ5qEGys9GpU6etei/9DlucreXbojtyzv4IqNMYWPwzun5+JsactwuO3LU1KioDuOPjaTj3uUlYvbHqvRY/wKZfu+ZfNiE6uwEXY0ri2f+2Fo3NQnQWW/vRv2wiEc7uWClGsFeD75271qNjg7PVfOtsV7X6eu2GwMJJqP/mybj/6C4YeUxP1MrNxtjpK3Dog+MweV7VAg+ZDpt+7Zp/2YTo7AZcjCmJZ//bWjQ2C9FZbO1H/7KJRDhLgzyMMbkAnGsOZIOz9Xxb9ATYKM8vBOaPR9bLJ+HkXZvg3YsHolPTeliyzj9T2G36tXWdJZZ9bW/R2Q1bi87+t7VobBais9jaj/5lE4lwlgZ5qEGys9G+fXvnpljY4JwW+bbuBZz+DpDfACj6DnjpBHRvko0xl+2Jw3f5Zwr7v5+fjDUZPIXdpl+nhc6OQHR2Ay7GlMSz/20tGpuF6Cy29qN/2UQinN2xUoxgrwb3nnOtR8cG57TJd7vdgdPe9jTKj0N9lODBk3bFf4+umsL+1bTlagr7T0WZOYXdpl+njc4OQHR2Ay7GlMSz/20tGpuF6Cy29qN/2UQinKVBHsaY3PTdNQeywdmbL/eGHDFihDqYNpVvEG37AKf/M30dLxyDrLJinNKvHd65eAA6Nq2HxetKccLjE/Do15k3hd2mX6eDf7kC0dkNuBhTEs/+t7VobBais9jaj/5lE4lwlgZ5qEGys9G2bVvnpljY4Jx2+XKk/Mz3/l7o7UfghaOBkrXo0boQYy4dGJzCfucn03DWs5OwckMZMgU2/TrtdPYxRGc34GJMSTz739aisVmIzmJrP/qXTSTC2R0rxYjKykqsXr1afboCW5yZ37Jly1BaWootW7YEzzPNUfJUjZRH5Mt3ys8cA9RpBCyaDLxwFFCyBgW189QU9juO6Ynaedn4dsYKHPzAOPwwayUyATb92qZ/SSz7396isxu2Fp39b2vR2CxEZ7G1H/3LJhLhLA3yMCgpKYFrsMX51VdfxZ133olRo0YFzzE9cuRIdVjh22oX4Mz3gbpNgMW/AM8dAWxajaysLJzUtx3eu2RPdG1eHyuKy3DqUxNx72fTUV6R/hWOTb+2lbfEshv2Fp3dsLXo7H9bi8Zu2Ft0dsPWonPskAZ5qEGys9GmTRvnpljY4Mz8uPhBWvJt2RM48wOgblNg6W9VjfKNq9Sftm9ZgDGX7okTe7cFXxN58KtZOOXJiVi6rhTpCpt+bdO/JJb9b2/R2Q1bi87+t7VobBais9jaj/5lE4lwdsdKMYLTDFauXOncFAsbnJnf+eefj+uuuw5Dhw4Nnmd62LBh6rDKt0V34KwPgXrNgWW/A88dDmxYof5Up1YO7jxuZzxw0q6oVysHP85djYMf+BZfTVuGdIRNv7bpXxLL/re36OyGrUVn/9taNDYL0Vls7Uf/solEOEuDPAy87zO7Apuca9Wqhby8vOD/meY5Htb5Nt+hqlFevyWwfCrw7KHA+iXBPx+5axt8cPkg9GjdAGs2bcE5z07GrR/8ibLyCqQbbGpsK2+JZTfsLTq7YWvR2f+2Fo3dsLfo7IatRefYIQ3yUINkZ6NVq1bOTbGwwTlj8m3WrapRXtAaWDkdeOYgYE1R8M/cEu3tiwfgrAEd1P+f+m4ujn30B8xduRHpApt+nTE6+wCisxtwMaYknv1va9HYLERnsbUf/csmEuHsjJX09AF+RkrzWLp0KSoqqkY4+X+9n5w3zb9HSvMITROR0voa/NTl8qajlT1aOhwPplmG5cuXq56sZHMKx0On9Srr5eXlajT8xhtvVAfTiXKKxMOrccycGnUEzvkYgUYdgDXzgKcPQmDFjGBZauVk46bDdsT/zuiNhnXy8Mei9Tj0wXF4c/KCpOmUiO9pW+veynh0StT3qC/z1udMxRPzpV9r/qbiyRvHJuNJ25q+7a3PTPkeD+1jyeQUa51N7qbiKVRfk/HkrbPJ2VQ8hdbZpuOJfqXrEVPxlGpO0XTiZ+i9ygSn0DrbVDxRY11n29DJG9Mm4klfQ9fZpn0v0rNfKuMptB4xFU826wj9PMJPk5zCPfuZiqfqnv3SWafKBH0vtA3p5edsg3z06NHo3r07+vTpo/7PQCA4t58HQUfh8vTEkiVLgguMrVq1CuvWrVPpBQsWqE3eiXnz5mHjxqpRz7lz56rtuojZs2cHt+iaOXNmMOCY1oHINMHv8fsEf8/rEJs2bQpej/kxX4LlWLRokUqzfCwnwXKz/LFy4jWq48S8dTqZnGgrXjMSpw0bNijnTTanaDrxt3FzatQBm054E5sLOwLFixF45mAs/fWLrTgd0L0FXj2rJ3q1qYdNmysw9M3fcPHzE7GhrFzxoW8RK1asSDqnaDoxPWfOnBrplKjv6bKbiidet6ioKOhjJuNJc2J5TMcTy6fLazKeNCfeeGbNmpV0TtF08vI2FU/8nl5B1nQ8mb4/eTmRsw1OTGseJuNJ35/WrFljRSdex3Q88Xlp/fr1xn3P1v1JcyorK1P3C5PxxPz4PGA6nrycaHdT8aQ50b/ieS5Plu/pspuMJy8n1iem63KmNQ/T9yd9jzQVT8XFxVi4cGHQx2zEE38byikWZAVibbpnKChIYWGhupk2bNgw2OPB6QSR0tziikd1afZ68LvVpQl+35vOyckJ9qCEptl7NXHiRPTv3z/4N/5W9xBFK286cvKWvbp0RnLasALZLx2rVl8P1C5E1mlvI9Bm9604VVQG8Ng3c3D/lzNVun2TunjgxF3RvWU9TJo0SXUU5ebmpg8nP+pkkRPLPWHCBPTr10+tieAHTn7UKRFOoXW2Hzj5UadEOfFhKlqdnWmc/KhTopxC62w/cPKjTolyYkOJ8Uydec4PnPyoU2UCnHhvpsZ9+/ZVf7fNiZ1ubH+yUd+gQQM4N0IeCi0sPyOlaWD2kuh+Cm3U0DRFjpTmEZomIqX1Nfipy+VNRyt7tHQ4HtqB2aPjLUOyOIXjodPa1l6NksUpEg/my55Z8q4Rp4LmVfuUb9cXWaXrgOePRNa877YqV15uDi7bryteO78/2jSsg6JVm3D84+Px9A/zUfl3xZFMTtF0Imf2zHp9LFadEvU9Qk/JMxlPBP1aV9Sm4slrY5PxpKGniJmKJ52mnbWPJZNTrHW2hol4CtXXZDx562yvr6c6nrSt9YixjXjS9YipeEo1p2g6UefQe5UJTpHqkVTHk66zbejkjWkT8USQq7a1ad+L9OyXyniq6bNfKn0v1XUEoetsk5zCPfuZiqfqnv3SWafsBH3P274I5RcNzjTI44F3xW9XYItzxuZbpyFw+jtAx72AzRuAl44DZn6+zdd6d2iMjy4fhIN3aoktFQHc8cl03D1xI1YUl8Elv85YnTMQorMbcDGmJJ79b2vR2A17i85u2Fp0jh3SIA81SHY2mjZtulVPsd9hi3PG55tfHzjlDaDbwUB5KfDKycCf723ztcK6eXjk1N0w8pieqJ2Xjd9WlOPQh38wume5Tb/OeJ0zCKKzG3AxpiSe/W9r0dgsRGextR/9yyYS4eyOlWKEdxEVV2CLsy/yzasNnPgC0OMYoHIL8MZZwM8vbPM1Tlk5uW87vHPRHmjXIBurN25We5YPf+8PlG6p8LVf+0LnDIHo7AZcjCmJZ//bWjQ2C9FZbO1H/7KJRDhLgzwM6tSpA9dgi7Mv8s3JA459Euh1OhCoBMZcCnx3f9ivdm1eH7fsWYCzB7RX/39ufBGOfPh7TF9atWqjX/3aFzpnCERnN+BiTEk8+9/WorEb9had3bC16Bw7pEEeapDsbDRu3Ni5KRY2OPsq3+wc4IiHgIFXVP3/i+HAZ/9hd9k2X83LycINh+yAZ8/ug6b18zF9WTEOf/g7PPfDvOBCEH7ya1/pnOYQnd2AizEl8ex/W4vGZiE6i6396F82kQhnd6wUIzjNgPvMuTbFwgZn3+XLlRQPuAU44Naq///wEPDeJUDFlrBf32f75vhkyCDsu30zbC6vxPAxU3Huc5OxckOZr/zadzqnMURnN+BiTEk8+9/WorFZiM5iaz/6l00kwlka5GHe9S0oKIh5mXo/wBZn3+Y78HLgyEeArBzg15eB104DNm8K+1WOkD99Vh/cfHh31MrNxlfTluOg+8dh7PTlvvFr3+qchhCd3YCLMSXx7H9bi8ZmITqLrf3oXzaRCGdpkIcxJjdwd82BbHD2db69TgVOegnIrQ3M+AR48RigZG215TlrYEe8d8lA9Y45R8jPfmZSUhd8s+nXvtY5zSA6uwEXY0ri2f+2Fo3NQnQWW/vRv2wiEc7SIA8BpxkUFRU5N8XCBmff57v9wVV7lecXAvPHA88cAhQvrfbrO7ZqgPcv2xNnDegQXPDt8Ie+w9TF6zLar32vcxpBdHYDLsaUxLP/bS0am4XoLLb2o3/ZRCKcpUEeAvZqNGrUyLkeHRucnci3/QDg7A+B+i2A5VOR8+zBqL1pcbVfr52Xg5uP6KEWfGtWkI+ZyzfgqNHf44lvZ6OyMpCRfu2EzmkC0dkNuBhTEs/+t7VobBais9jaj/5lE4lwlgZ5GGM2aNDAOQeywdmZfFv2BM75FGjUEVnr5qPnj1cDi3+O+BO14NsVg3BA9xbYUhHAfz+ahlOfnIjFa0syzq+d0TkNIDq7ARdjSuLZ/7YWjc1CdBZb+9G/bCIRztIgDwGnGcyZM8e5KRY2OPsp382bN2PEiBHqYHobNO4InPsZAi13Rq0t65DzwpHA9E8iXrNJ/Xw8cfruuOOYnqiTl4Pxc1bhoPu/xQe/VT/Cno5+7Sed0x2isxtwMaYknv1va9HYLERnsbUf/csmEuEsDfIQsFejefPmzvXo2ODsWr6o3xwVp4/Bmia7I2vLJuDVk4HJT0f8Cct4Ut92+OiKQdhlu0KsLy3HpS//gqtem4L1peG3U0s3v3ZOZ4sQnd2AizEl8ex/W4vGZiE6i6396F82kQhnaZCHMWb9+vWdcyAbnP2QL0fDeWzZ8k/jmGl9fhvkF+CvXYejcpdTgEAl8MGVwJe3AoHI74d3bFoPb140AJf/qwuys4C3f1mEg+8fh/GzV6W9X/tB50yB6OwGXIwpiWf/21o0NgvRWWztR/+yiUQ4O9Mg19MH+BkpXVFRgRkzZqC8vDx4PvB3Y8mb5vcipXmEpolIaX0NfupyedPRyh4tHY4H0+Q6a9Ys1YBMNqdwPHSa35s5c2awMZtMTpF4eDVOlNMdd9yBkSNHYtSoUcEAZJrneIQreyA7F+WH3I/AXtdVOee4UQi8cyFQvjkip9zsLFx14PZ49bx+aNe4LhatLcEpT07AbR/+qbZHi6STtrXuJIhHp0R9j/oyb+ZnMp6YL/2aOpuMJ28cm4yncLY2EU86TTtrH0smp+rKW1paql4RueWWWzBt2rRq65FEOEXTyau1qXjy1tnkbCqewtXZJuOJfqV921Q8pZpTNJ2oc+i9ygSnSPVIKuOJGus624ZO3pg2EU+E1lj/3qTvRXr2S2U81fTZL5W+l+o6Qj+P8NMkp3DPfqbiqbpnv3TWqTJB3wttQ3r5OdsgHz16NLp3744+ffqo/y9fvlx9rly5Uh3EsmXLsHr1apVesmQJ1q5di+zsbOTk5KC4uFidX7BgQTA9b948bNy4UaXnzp2rHgiJ2bNnB52dzqcbAEzzUz+oEvwev0/w97wOsWnTpuD1mB/zJdatW4dFixapNMvHchIsN8sfCyeC1+C1wnEqKSlBmzZtMH/+/KRyoq14/eo40dbsSdI8kskpkk7Mt6ysLBhwiXDiaopEnTp11N6DRN26dYPpUE6rVlWNaK9geufzgSMeQiArB1m/vQq8fDwWz50elVPjyrV4+4LeOLlvWzWw/uS4uTjy4e/x6cQ/qtWJnJs1axYsezw6Jep7THORC5bBVDzxusyLfq3TpuJJc2J5TMYTsX79euTm5ipbm4onzYk8Wrdurc4nk1N1OjGWCgoK1M0uLy9vK39LFqdoOrHuNB1PvAavS9/WaRPxxOvTr1i3aR4m44n3p6ZNm6oymIonlm/p0qqtKtesWWM0nvQDHe9VRKrjycuJn7yP0dYm44nXoV8zbTKeNCfaesOGDcbiSafZmU9bm4wnloXlo7153lQ8sZzkSv/y+puJeCIXXXaT8cRz/B5trdMm4onfp61Zb7L+NB1PTPN+wTKYiqfi4mIsXLgw+DxkMp5YJnJlR4Suv711eTRkBWJtumcoKEhhYaG6mdIxdI8HjRYpzQqSR3Vp9nrwu9WlCX7fm2ZDX/fYhKYp4MSJE9G/f//g3/hb3UMUrbzpyMlb9urSmc6JN3CmWVHce++96txVV12lGgg8z8aRt7wMzEmTJqmOIt1wqpz+KbLePBtZWzYi0KIHcMobyCpsExOnz6cuwfXv/IFVGzYjLycLVx3QDecN6oQsBNJCJ3Y0abtcffXV6ibsgu+x3BMmTEC/fv2UL/iBU7ro5O1Uo28RkWIuVZxC62zRyZ++F7bOznBOftQpUU6hdbYfOPlRp0Q58f7BeKbOPOcHTn7UqTIBTrw3U+O+ffuqv9vmxE4+tj/ZqOfglHMj5KHQwvIzUprG47QSrxh6KrI3TZEjpXmEpolIaX0NfupyedPRyh4tHY6HdjZOsdD5JZNTOB46rW2t+4SSySkSD+arR/ES5VS7dm3UqlVLHZpHfn5+8HxMPLYfjCzuVV6vObKWTUXWUwcCy6bGxOmAHq3w2ZC9cODf26Pd+cl0nPy/CVi8rmwrTnrakkY8OiXqewQXudAVrKl4oh70a2/FbiKevHFsMp4IcmZM6RuCiXjSadpZ+1gyOYWW8c4771Svg+jGOL/74osv4q677lLnk8kpmk5erU3Fk7fOpt6m4knX2dRY13Um44nQ0x9NxVOqOUXTiTqH3qtMcIpUj6QynghdZ9vQyRvTJuKJIFdta9O+F+nZL5XxVNNnv1T6XqrrCP08ohuOpjiFe/YzFU/kquvsTNEpO0Hf87YvQvlFgzMN8lhBA7dv3z4ohAuwxdm1fCOidS/g358DTboC6xcCTw0GZn4R00+5Pdrjp++Ou47bGfXzczFp3hq1Pdprk+ZvdcMzyZk9gjw4Qs4ycBoQp/fq887q7GPOtvLW/uXzyV5wve6UePa/rUVjsxCdxdZ+9C+bSIRz1dw+QRDsyeAIp0uwxdlP+XI0fPjw4YldpFEHtVc5XjsdKPpOvVOOg+8C+p4XE6cTerfFHp2a4OrXf8WP81bjurd+x6dTl6l9zJs3qG3U1vfcc89W/+e0z8ceeyz4/4RtFQMkls3ClL2HDRumPjktjQsoEkOGDFHTTF2Bn+rOTMjbFlzTWTR2w96isxu2Fp3jgzvdFjGC0w24Yq9evc8F2OLsWr4xoW5j4PR3gF1PrdoW7aOhwMfXAZWxlbVt47p45fz++L9DdkCtnGx8NW05Drz/W4yZstAaZ1bKLVu2jHnajhM6+5Czqbz1KyK6AU6/4uIqnBrG8y7AxbpT4tn/thaNzUJ0Flv70b9sIhHOMkIeAk4z6Ny5s3NTLGxwdi3fmJFbCzhyNNCkC/DlCGDiY8DqucBxT6l9zKMhJzsL5+/VGfts3xxXvT4Ffyxaj8tf/RWH9myJW7crR+P6Ve/dpBJcwI3glPVHH31U7XJwwQUXoF69ejCFtNfZZ5xt5c2p6h06dBCdDcBF/7IJ1+6RorFZiM5iaz/6l00kwtkdK8UBl5zHNmfX8o0ZHE0edBVw/HNAbm1g5qfA0wcBa6u2qIgF3VoU4J2LB+Ly/bqqRvqHvy/F4AfGYey0qi0AUwluZ8eDq6rrRhPT+rwppL3OPuNsMm/9mshNN92kFlF0DS7WnRLP/re1aOyGvUVnN2wtOseOGqnEvdpOP/10tecstwHhVEHvkcnQKwXrFfJcgC3OruVbI/Q4CjjrI7UCO5b9ATy5H7Dop5h/npeTrbZCe/OC/mhbmIcVxWU4+9lJuP6t37ChLLa9ERMFpxS3aNHC+KJbGaWzDzhLPIut/ehfNuFaTInGZiE6i6396F82kQjnGu1DfvDBB6tN5i+99FK0atVqm3dDjzzySKTbPuTR9n/T0HvbeZezNwEuesU9bbk3ot5H1xRscXYt34R05sj4yycCy6cCuXWAYx4Huh8ZF+dNZVtw7xez8PT3c8Gob9OwDu4+bmcM6NK0ZmTiyFt09r9vu6az1Nlu+Jfo7P9Ytqmz1Nmis/hXcpFudXas7dAalfS7777DuHHjsOuuu8KP8O5b7ApscXYt3xqjYVvgnE+AN88BZn0OvH4GsM8wYK9rOScopkvUysnCfw7dEQd0b4Ghb/yKhWtKcMqTE3HGHu1x3UE7oF5+6iou0dkN3xadxdZ+9C+bcC2mRGM37C06u2Fr0Tl21Eihtm3b+nbPVzqPd1N3F2CLs2v5JozaDYCTXwX6XVT1/69HAm+cCZRtiItz/05N8OmQvXBa/3bqb8+PL8JBD3yLCXNWpaTYorMbvi06i6396F824VpMicZmITqLrf3oXzaRCOcaTVn/7LPP1D7Djz/+uFrdNp0R75R1W7A5xUKQgTr//ALwwZVA5RagxU7ASS8DjdrHfZnvZq7EdW/9hkVrS9T/zxrQAdcetD3q1hIfTAQSz/6HaOwGRGc3IDq7AdHZ/yhPs/ZUrO3QmEfIGzVqhMaNG6vjpJNOwtdff62Wdi8oKAie10eywH3cbrzxRnTs2BF16tRR+d16660pHZ3ntcvKynw7AyCdOLuWb1Kx2+nAWR/+s9jb//YF5n0XN+c9uzbFJ0MG4eS+bdX/n/1hHg55YBwmzVudtKKKzm74tugstvajf9mEazElGpuF6Cy29qN/2UQinGPuOrj//vthGnfeeafaw/i5555Djx49MHnyZJx99tmqp+Hyyy9PSZ6cZlBUVKQa/5m+Yny6c3Yt36SjXT/g/LHAq6cCS6YAzx8JHHwX0OfcuDgX1M7DyGN2xkE7tVKrr89btQknPD4e5wzsiKEHbo86tRKzkegMJ3xbdBZb+9G/bMK1mBKNpc72K1yMKYnnnNRPWTeFww47TG2X9NRTTwXPHXvssWq0/MUXX4zpGjJlXeD7qTSbNwFjLgX+eKvq/73PBQ6+E8jJi/tS60u34LYP/sTrkxeq/3doUhd3HbcL+nZM3swXF5BuU6YEyYdo7AZEZzcgOrsB0dn/KE+z56+UrrKup5O/8847+Ouvv9T/u3fvrrY7Syb5AQMG4IknnsCMGTPQrVs3/Prrr2qF93vvvbfa33CqAA+vIbRAPGKdbpCfn2902w3ak3nz0zRscXYt35TpnF0LOPJxZDXrjuyxtyFr8lMILJ+GimOfBuo1jYtz3dws/PeoHjhwx+a44b2parT8xCfG4/R+7TD0wK41erdcdIYTvu2azlJnu+FforP/Y9mmzlJni87iX8lFutXZsbQ9azxCPnXqVBxxxBFYunQptt9+e3WOjeZmzZrh/fffx0477YRkTXf4v//7P9x1111qqgWNe/vtt2PYsGHV/ubmm2/GiBEjtjn/6aefol69elHzpDlKSkrUKLzJGwK5FhcXq3fyTW9PYIuza/ma0LnRiono9vtdyK0oQVntZpi28w3YUNitRpw3bqnEy3+W4uv5m9X/m9XNxnm71EGPpvGNvIvO2U74tms6S53thn+Jzv6PZZs6S50tOot/JRfpVmdv3LgRgwcPjjpCXqMG+R577KEa33y3m4u9EWvWrMFZZ52FFStW4IcffkAy8Oqrr+Kaa67B3Xffrd4hnzJlCoYMGaJGyM8888yYR8i5TduqVavSepV1djZMmjQJffr0ceb9OBdhROcV05DzxhnIWj0bgZxaqBx8JwK7nVHjy42buRI3vDsVi9eVqv+f0rctrh3cDfVTuG95pkPi2f8Qjd2A6OwGRGc3IDr7HxVp1p5iO7RJkyapmbLOhjEXWNONcYJpjl7TAMkCG+PXX3+9WtWd6Nmzp1qcYOTIkdU2yDlNgEcoOJU+lun07J9gbwZH00330DI/Ok+4cm7evFnxJjhDoFatWknL1xZn1/KNReekoNVOVYu9vXMRsqZ/iJyPrkRgyS/YuPdw1CtsEjfnfXdsiU87NsEdH0/DSxPn4+UfF+CbGSsx8pie2Ktbs6i/F51znfBtF3VOeSxXAxdtLTr7X2ff35vDwMWYEp3dsLXU2VnKDrHWJzUay+f73MuWLdvm/PLly9GlSxckC5s2bdpmugEry1RuMk8HIo80XuvON5xdy9coahcCJ74I/OtGPmYg65fnkfvC4QisnV+jy3El9tuP7omX/90PbRvXUfuWn/H0j7juzd+wrmRLWuvMGTN8jYUHO7b8DJu+bVtnX8dzCFy0tejsf1uLxmYhOout/ehfNpEI5xo1yDlSy23H3nzzTSxcuFAdTHM6Obcq4/C8PhLB4YcfrkbdP/zwQ8ybN08tIsfp6kcffTRSBXYAdOrUyfh7B9WBDQgeW7b80+hhWp/PZM6u5Wsc5LfXUOC0t4A6jVB71Z/I5n7lc76u8SUHdGmKT67YC2cN6KD+/9rkBTjg3m/w2dSlEYohOrvg26Kz2NqP/mUTrsWUaGwWorPY2o/+ZROJcM6t6XZkxAknnBCcAqF7A9iI1v/n3xJZ5e6hhx7CjTfeiIsvvlj1OLRu3RoXXHABbrrpJqQKLLdeDMDGlKlQ6GnqXowaNSqYHj58eMZydi1fa+iyHwLnf43KV05FzvI/gBeOBva/GRhwOefoxX25evm5uPmIHjikZ9W+5XNWbsT5L/yEQ3duhZsP74FmBflpYW+OjG/YsGGrV1i8HVvJfO0jXWDTtyWexdZ+9C+bcC2mRGOps/0KF2NK4jkr9Q3ysWPHwgToQPfff786TDoQF6irX7++Uzd9G5xdy9cmAoXtsGjw02j7233I+vUV4PObgIWTgSMfrpreXgNwb/KPrhiEB7+cice/nYMPf1uC72etxE2HdcfRvdps1Vlnw96crcO1LZh3qjqz0g02fVviWWztR/+yCddiSjSWOtuvcDGmJJ6zUt8g33vvvVFaWorffvtNjVyHvtPNLdEyFZxm0L59e6QL9BZvHNnTjYmhQ4ciLy++rafSkbNr+doEObfrvD3Q6VFgu97Ax9cDf40Blv4OnPAc0GqXGl23dl4Orj1oBzVafu2bv+HPJetx1eu/4r0pi/HfY3qiTcM61uzNm8Hq1avhEmz6tsSz2NqP/mUTrsWUaOyGvUVnN2wtOiP1DfJPPvkEZ5xxBlauXLnN3xKdpm4bfIjn0vSFhYVp0QsfblotG+PJXmXdBmfX8rWJrTj3+TfQalfgjbOANXOBJw8ADr4D2P3sGk1hJ3ZqU4j3Lh2IJ76dgwe+nIlvZqzAgfd+g+sO3gGn9m2H4uL1xu3NHRq4jgX3g7znnntS0pmVbrDp2xLPYms/+pdNuBZTorHU2X6FizEl8ZwVl71q9Kb9ZZddhuOPPx5LlixRo+PeI5Mb4953HlxbFdAGZ9fytYltOHOU/IJvgW4HARVlwAdXAm+fB5RtqHEeeTnZuGTfLvjo8kHo3b4RNm6uwE3vTcUJT0zAb0UrjNubDW/O5PFuOaE7s/z4/rht3/bmzQUnTa1sL/Hsnn+5AtfukaKxWYjOYms/+pdNJMK5RiPk3PLsqquuQosWLeA3cIpF27ZtkW5gAyJV77za4uxavjYRlnPdxsBJrwA/PAh8eQvw+xvA4ilVU9hb9KhxXl2a18frF+yBFyYU4a5PpuGnojU4d+FaXLw8gIv37Yz83JzECcXBOR22OuPicnqU/uqrr1bvc/nNtyWexdZ+9C+bcC2mRGM37C06u2Fr0RmpHyE/7rjj8PXXNd86KZ3BUX6+d5rKvc7TDbY4u5avTVTLmVsz7DkEOOtDoKAVsGom8L/9gF9eSii/7OwsnDmgAz6/am/8a4dm2FIRUFPZD33wO0yet9ooZ46QszOLh19HxtPBt5knO2s5KyGV2zSGy1fi2Q3/Ep39bWvR2CxEZ7G1H/3LJhLhXKMR8ocfflhNWR83bhx69uy5zTuZ3KM8k1FSUoKGDRvCJdji7Fq+NhGRc/s9gAu/q5q2Pvsr4L2LgaLvgUPuBmrVq3GerRvWwf9O3x0vjfsLD4xbglnLN+C4x8bj1H7t1PvlDWrn+VrnjRs3IicnB5s2bQqe86ZTMVJuk/Orr76KtWvXbnXOxMr2tnW2ARfrTtHZ/7YWjd2wt+jshq1F5xQ3yF955RV89tlnqF27thop9y4UwHQmN8g5xaJNmzZwCbY4u5avTcTEuV5T4NS3gHH3AF//F5jyErBwEnDc00DLnjXOmw3SM/bZCUf07Yb/fvQXXp+8EC9NnI8v/lqGEUfshIN2agm/6vzAAw9s8y7Ro48+mrIGqk3OzDu0MW4qX9s6m4aLdafo7H9bi8Zu2Ft0dsPWorOBKes33HCDWqyHK/fNmzcPc+fODR5z5sxBJoPTDLh6vGtTLGxwdi1fm4iZM6ew730NcMZ7QP2WwMoZVVPYJz7B1SoSyrtB7VzcddwuePm8fujQpC6WrS/DhS/+hAtemIyl60prRiyGfEVnM6Cdzz//fFx33XVqNXsNprl9o97CMRX5is5mYNPWorP/bS0am4XoLLb2o3/ZRCKcazRCzncBTzzxRNX74Ud43390BbY4u5avTcTFueNewEXfA+9eDMz8FPj4mqqp7EeOBuo1SSjvAZ2b4pMhe+HBL2eqbdI+nboM389ahWsGb4/T+rdHTnaWb3S+4oorglPW9cj4RRddhLp166YsT9uc+Z5+eXl5yrZpTEfONuBi3Sk6+9/WorEb9had3bC16Bw7atSiPvPMM/Haa6/Bj2AnQ6tWrdKusyGV2wjZ4uxavjZRI86cwn7Ka8DBdwE5tYAZHwOPDQTmfptw3rXzcnDtQTvg/cv2RK92DbGhrBzDx0zFMY98j6mL18V1/XjyNY169eqp98S9DXCmeS4V74/b5CzxLLb2o3/ZhGsxJRqbhegstvajf9lEIpxrZCXuNX7XXXdh7733VnuScws075GO0NMH9H7p1aV5LF26NLifOv+v3wH1pvn3SGkeoWkiUlpfg5+6XN50KJ9YOUXiofeOX758uerJSjancDx0Wq/KrEfTkskpEg+vxsnmVFMeiXKKppO2te6tjJkTr93vAlSe+wUCTbsBxUsQeO4IBL64BajYEhMn6su89Tkvpx1aFuCtCwfgliO6oyA/F78uXIcjHv4et334JzaWlSfke8yXfq35m9bJG9PeGNbfSYXvkTN921ufmfI9HtrHOCp+00034T//+Y8aHU9lPOl4rq4eSUU8hepruo7QdTY5m7o/hauzTcYT/UrXIybuTyY4RdOJn6H3KhOcQutsU/FEjXWdbUOn0Do71fGkr6HrbNO+F+nZL5XxFFqPmIonm3WEfh7hp0lO4Z79TMVTdc9+6axTZYK+F9qG9PJLSYP8999/R69evVQPwB9//IFffvkleEyZMgXpgNGjR6N79+7o06eP+j8DgeDcfh4EHYXL0xNLliwJLki0atUq9X48sWDBArXJO8H35blqMsH35bm9DzF79uzgqPXMmTODAce0DkSmCX6P3yf4e16H4JRWfT3mx3x1eYuKilQwcWSNKyXqB5NFixbFzInfrY6TXvWZ6WRyoq14zVBOLIcuO/dnpvMSLDfLnwxO0XTib1PFieVjOcNxom8RK1as2IYT8+QOBnfffbdKJ9v3mNZrPMTNqXZbLDnsZWC3M5CFALK+uwd45hCsnjMlJp102cNx4hZpA5pX4INL+uHQnVuhojKAJ8fNxYH3fYsXv5pSY50YN9rH4tUpGb7H8mid6OPXX3+9WsRt8eLFKfU9XV6T8aR9jzeeWbNmGYsnzcnLO9mcIunEFWRTxSmVOiXie+RsgxPTmoep+xPLp+9Pa9assaITr2M6nvi8tH79euO+V+P7U5J8r6ysTN0vTMYT8+PzgOl48nKi3U3Fk+ZE/4rnuTxZvqfLbjKevJxYn5iuy5nWPEzfn/Q90lQ8FRcXY+HChUEfsxFP/G0op1iQFYi16Z6hoCCFhYXqZsrGrO7xYGdCpDRXi+dRXZq9HvxudWmC3/em+S6p7kEJTbORPXHiRPTv3z/4N/6WU9R53epk4gN+unLSvVv8fnXpWMvuF04MzEmTJqmOIu6P7f0O/3bHHXeo63ABLP49LTn9/hayPhiCrLL1COQXIHDQXcje9eSq0fQk6PTFn0sxfMyfWLS2qiI/eKeWuOmw7mheUCtjfI98JkyYgH79+qnR4nTwPT/Gk01OoXW2Hzj5UadEOUWqszOVkx91SpRTaJ3tB05+1ClRTmwoMZ6pM8/5gZMfdapMgBPvzdS4b9++6u+2ObHTje1PNuobNGiA6uDMxH4tLD8jpWlg9pLoBrA2amiaIkdK8whNE5HS+hr81OUiqmuMe7nFwi8cD+3A7NHxliFZnHT+4dLa1vHyiIVTJB7Mlz2z5J1sTjXhwQc+Ht5pY0zrc8nwPXJmz6zXxyJx4k3rlltuwa233qrSW5W957HI4p7lbfshq6wY2e9dBLxxJrJL14blR+gpebHotH/3lvj8qr1wwd6d1AJvH/+xFAfc9y2eGz9fjZ7HqhNBv9YVdaI6xet7puNJQ08RMxVPOk07ax8zGU/R6pFEOEXTKdZ4Srbv6Trb6+upvj9pW+sRYxvxpOsRU/GUak7RdKLOofcqE5wi1SOpjiddZ9vQyRvTJuKJIFdta9O+F+nZL5XxVNNnv1T6XqrrCELX2SY5hXv2MxVP1T37pbNO2Qn6nrd9EcovJaus+x3sHU0X6K2C2DAbNWpUcBuhZJfRFme/5MtG68iRI4OaxbOqtP6dF1rrZO5VnVTOjdoDZ30EfH8f8PUdwJ/vAfMnAkeNBrrsHzZv2ujOO++MyUZ1a+Vi2ME74shd2uCGd3/HL/PX4pYP/sSbPy3E7UfvhF7tGmVcLJuCTc5+iedMgIu2Fp39b2vR2A17i85u2Fp0jh3OjJDHCvZ4NG3adKueYptgo4WH16n1NkLJ2krIFmfX8rWJWDmz0czDu1UF0/r8VsjJBfa6Bvj3FwAXfNuwFHjxWOCja4DNm+LOOxy6t26gFn3779E9UVgnD38uWY9jHv0BN7zzO9ZtiryVh+hsFhLPYms/+pdNuBZTorFZiM5iaz/6l00kwllGyEPA6QacVuLSUv22OPshX91IDW3AasTSaZLILIhYR+Zj5Vyj0frWvYDzvwG+uBn48XHgxyeA2WOBY54A2uymFrrg9LTGjRvXyEZc9O2Ufu1wYI8WGPnRNLz180K8NHE+Pp26FDccuiOO2rVN2ClBEstm6y8/xHOmwEVbi87+11k0diOmRGc3bC06Z8dlL2mQh0GdOnWQbmCjJVlTl9OJc6bnm4zp5uEapHoWRMbYulZd4JC7gG4HAu9eAqyaCTx1ALD39bhr7AbUqVc/uJp/TafkN62fj3tO2AXH994O/3n3D8xavgFXvvYrXp+0ELcetRO6NK+fEbGcatjknOnxnElw0dais/9tLRq7YW/R2Q1bi86xQxrkIWAPknckzwXY4uxavslEvCPzsXJOeM0Cvj9+8XjggyuBP98Fxt6Gc9EC7248CJuymiAZ6N+pCT66fBCe/G4OHvxyJsbPWYWDH/gW/x7UCZf9q4t6/9wvOscLm5wlnsXWfvQvm3AtpkRjN+wtOrtha9E5PkiDPMwUC+4516ZNG6emP9rg7Id8k7noXjyzIOIdmY+Vc1JG6+s2Bo5/FvjtNeCja9GmbBkuyn4FWwZejTvHlSCQlZ3wwoS1crNx8T5dcPjOrXHzmKn4ctpyPPr1bLz3yyLceFh3HLRTS7XKpcSyOfghnjMFLtpadPa/zqKxGzElOrtha9E5Oy57ufH0Egf4LmpBQUHMy9T7AbY4+yFfE4vuZaStmc8uJwGXTECgywHIrtyM/HEjcQ5eRZPA6qTZqG3junjqrD548oze2K5RHSxeV4qLXvoZZz4zCfNWbZJYNgg/xHOmwEVbi87+t7VobBais9jaj/5lE4lwlhHyMMbkBu4uwRZn1/JNJuIdmY+Xc9LWLGjQGlmnvgFMeQmBT67HdmVLcSFeACa0B/a8Asiu2kcyUezfvQUGdmmKR7+ehce+mYNvZ6zAQfePU3uZX7xPAerUSk4+6Q6bvi3xLLb2o3/ZhGsxJRq7YW/R2Q1bi87xQUbIw0yxKCoqUp+uwBZnP+WrG7A8TIyMxzsyb9OvKwMBFDUehMBF49U75rmoQO5XI4CnDwJWzkxaPmx0X3Xg9vjsyr2wd7dm2FxRiYe+moX97/0Gn01dqqaw+x1WdfZRPKc7XLS16Ox/W4vGZiE6i6396F82kQhnaZCH6dFp1KiRc1MsbHB2Ld9YFmobMWKEOrbZ8zuDOQfzLtwOOPVN4IiHgfwGwMIfgcf2BL5/EKgoT1p+HZrWw7Nn98Fjp+2GVg3ysWhtCc5/4Sec/ewkzF25EX6GNZ0rKpD1zTdo9uWX6pP/dz2eUwkX607R2f+2Fo3NQnQWW/vRv2wiEc4yZT2MMRs0aACXYIuza/mmArFOLbfJeZu8dzsd6LwvMOYyYPZXwOc3AlPfBo54CGjZM2l5HrRTK+zVrRke/moW/jduDr6evgI/zPoW5w7qiEv37YJ6+f6r/qzo/PbbwBVXIGvhQtTV57bbDnjgAeCYY1KWLTut9OKGfIXDtZu+a3Wnn+rtWOGazqKxG/YWnd2wtegcH2SEPAScZjBnzhznpljY4OxavpEaFjxCtzDT5zOdc9i8OVp+2t+N8NqFwOJfgMf3Br4YAWwpSVq+SxfOx9ADu+HTIf9MY+dq7Pvd8w3G/LrYd9PYjevMxvhxxwELF259ftGiqvP8u4GbvovT4lyrO9Ot3jYB13QWjc1CdBZb+9G/bCIRzv4bIkrCw13z5s2dG22xwdm1fJO1hVmmca42b/5/tzOArgcCH18L/Pke8N29VZ9HPAh02DNp+XZqVl9NY//ir+W45YOpWLC6BJe/8gtemlCEEUf2wA4t/THyZlRnTku/4gogXKcGz7EMQ4YARx4J5CRvUT3dSaU7sNipwkVr+H/yTqfdDVIFF+vOdKu3TcA1nUVjsxCdxdZ+9C+bSISzMyPkureCn5HSNGLdusGJl+qcHkXzpisqKiKmeYSmiUhpfQ1+6nJ509HKHi0djof+e/369aPyqwmncDx0WtvaW5ZkcYrEg/nWqVNnq/Imi1NNeHjhDWJvOlHf47Xq1au3VXlTycmb5nWYN8sQVqeClqg49hkETnwRKGgFrJ4NPHsoMOZyVGxcnVA80a91Xsx//x2b47MrBuGqA7qhdl42Js5djUMf/A43v/cH1m4sS6rveWPaRDzpNGNK2zql8fT119uOjHvB7y1YAIwbl9R4YgcWD2+n1SOPPII77rhDnU9GHRGrTl6tTcWTt872liHV9ycdQ4zlcPeqVN2fvGldj5iKp1RziqYTEXqvMsEpUj2SynjidXSdbUMn0/GkoW1t2vciPfulMp5q+uyXSt9LdR3B3+g62ySncM9+JuMp3LNfOuuUqO952xeh/JxtkI8ePRrdu3dHnz591P+XL1+uPleuXKkOYtmyZVi9erVKL1myBGvXrlXG+/nnn7FmzRp1fsGCBSguLlbpefPmYePGqkWh5s6di9LSUpWePXt2cNRm5syZKC8vV0IxzU/+n2mC3+P3Cf6e1yE2bdoUvB7zY77EunXrsIjTPwFVPpaTYLlZ/lg4EbwGrxWOE9OzZs1S0yySyYm24vWr40Rb//HHH0F+yeQUSSfmO3HiRJSVlSWdUzSdVq1apdIrVqwIcjrrrLNw4YUXqm3LONLHYGb61FNPxaWXXpoU3yPn6dOnK52TzSmaTrwedWYZIurUYX/gkolY2+VYdQ4/P4fKh/qg4o93a6QT0+RLHl5OK5cvxeX7dcWb5+yKfToXoqIygGfHF2HfUV/jlR/nY9nyFUnxPZbHZDxpbX755Rdl61TH0/Jff0VMWLIkqfGk34fjXp96v8+2bdsGH+STUUfEqlNJSYnxeOI1eH+ib3Oqvon7k+ZEv5o6darKN9mcounE+9O0adNUGUzFE8u3dOlSlabNTdyfvJw464P3Kn6auD9pTvz777//rmxtMp7o0zx0/W0qnjQnPhNs2LDBWDxpHj/99JOytcl4YlmY1jY3FU8sJ7nSvzQ/U/FELrrsJuOJ5/jMRzvzd6biid+nrVlvsv40HU+8T/B+wTKYiqfi4mIs/HugYP369UbjiWUi1x9//DH4bKA5xYKsQKxN9wwFBSksLFQ3UzZ2dI9HdnZ22DQf7tg4ZqNIn+c53cOj0zQ6/15dmuD3vemcnJxgj01oWt94+/fvH/wbf6t7iKorbzzpcDz0d3gj4rZZzDtZnLxlD5fWtq5du7b6fjI5RdKJ0Brr7yeLU7TyMjAnTZqkOopyc3O3+g7/xlE+XoeLVPHvyfI9pllBcDovr5tMTtHSLBf9i/bWukfltGACst6/HFhV1YEQ6HYQKgffiezG7WPWiWlW4Pn5+cGyhOP0w+zVuHnMH5i1oqpi7dG6AW48dEf079y0xr5HDhMmTEC/fv1UXJmIJ21r3hS8ow8pi6e330bOsX93nkTC2LEI7L130uKJmjJNn7r33nvV3y6++GLVIOc16d+J1hGx6BRaZ5uKJ2+dzXjW5U3l/clbZ7MeYUyFck3V/UmnWT9Se9YjuuypjqdodXYq7k/eNMtBe3vvVam8P3nr7OrqkVTFkx7xYlzRv/h/U/EUrs42EU86f2qsZ2aaiic9elrds1+q4omo6bNfMnyPdQjjmTrznIl4YprfZ96ss1kmE/FU3bOfiXjSZQz37JfKeAoEAqoOocZ9+/ZVfzcVT7q83jYkz7OTj+1PNuojLbDnzDvk2lD6M1KaUyyifYci1yRN4apL84iUjqXsNU17p1iY5BSLrRNJV1d2b74mdfL6YTif9PaPJdv3vK9imPQ95qPz1teLyqnDQODC74Fv7wa+vx9ZMz5BzpxvgH2uA/pfgpzcWlF1YjrUr8Nx2rNrU3w8ZC+8ML4I930xA1MXr8dJ/5uIw3ZuhWGH7Ig2DevUiLc3L1PxxO9q367O1kmLJ74bzlHpv0eUtgHz52rrgwYlNZ74EBcKdrqGe3c8kToiFp285TVdl4f6tqn7U2g9YuL+RPBhUne2mLznRquzU3F/8pYx3L0q1c8RidQjifieV2MNk89G1V0zlfHEfLwam4onXZZ4n/2S5XupePaLVRtdJtPP5ZHq7FS2Naqrs1MdT9U9+6W6/ZT9dxm8aVPxRITW2V7ukfDP1QQK7M2YMWNG8N0EF2CLs2v5xrqFGY9kL0xlk3ON886rDex3Y1XDvP1AoLwE+OJm4PFBwLzvk5pvXk42ztmzI74eug9O6ddOtSU/+G0J9rvna9z/xQyUbE4vX7Gi81dfAQMGAIsXV/2fN6BnnqlqeIdbsI+4//6kLugWDrzZ6al5rsDFujNd6+1UwjWdRWOzEJ3F1n70L5tIhLM0yEMNkp2N9u3bb9Xz4XfY4uxavjZhk3PCeTffATjrQ+Cox4C6TYAV04BnDwHevRjYuDKp+Tapn4//Ht0TH1y2J/p2aIzSLZW4/4uZ2P/eb/DBb+m/TVrKdCbv//wHGD8euPXWf85za7M33wTatNn6+xwZ5/kU7kOuO7BuvPFGdOrUSeLZADK6HslAuHaPFI3NQnQWW/vRv2wiEc7uWCmO0Ra+vxTrFAM/wBZn1/K1CZuck5I3f7vrycClk4Hdz6o6N+Ul4KHdgZ+e5UtGSc23R+tCvHZBfzx8Si+0LqyNRWtLcOnLv+DExyfg94VVi3v4XmcuXKIXI+H1HngAuOwy4Pbbt/4eG91cUGXsWODll6s+udhKChvjXkg8m0PG1yMZBtfukaKxWYjOYms/+pdNJMJZGuQh0CsSujbFwgZn1/K1CZuck5p33cbA4Q8A534OtOgJlK4F3r8CePpAYNHPSc2XFephO7fGl1fvgyH7d1XbpP04bzWOGP0dhr7xK5atr1olNJ2QNFu//jqw/fbAk0/+c447Vjz4INC48bbfz8lBxaBBmNarl/pM9TR1LySezcE39UiGwLV7pGhsFqKz2NqP/mUTiXCWBnmoQbKz0blzZ+emWNjg7Fq+NmGTc0rybtsXOP9rYPB/gVr1gYWTgP/9CxhzWXAae7LyrVMrB0P274avrt4HR+3aWs3efvOnhWqbtIe+nInSLelzs0marblNJLcIefbZqunqJvOOExLPbthadPa/rUVjsxCdxdZ+9C+bSISzO1aKAy45j23OruVrEzY5pyTvnFxgj0uASycBPU/gi87Az88DD+4GTHgMqCxPar6tG9bB/Sf1wjsXD0Cvdg2xaXMF7vl8Bv416mu8N2VR2rxfXiPOXKjt770+FS68EHj0UeCbb7ZdsC3ZeScBEs9u2Fp09r+tRWM37C06u2Fr0Tl2uNcqiQLvhvSuwBZn1/K1CZucU553g9bAsf8Dzv4EaNkTKFsHfHId8NggLPrulaTn26tdI7x90QA8eHLV++WL15Xiilen4JhHf8DP89fAJmpk6zFjgG7dgHPO+Wc0nFsPsVH+9x7uKcs7CZB4dsPWorP/bS0am4XoLLb2o3/ZRCKcpUEeapDsbHTt2tWpXh1bnF3L1yZscjaWd/s9gPO/AQ67D6jTGFkr/kK7sZcg+61zgLULkpoV3y8/YpfW+GroPrj6gG6oWysHv8xfi2Me+QGXvfILFq4pgQ3UyNa77VbVEOc7T2tq3qEg8WwOLtpa6m3/21o0NgvRWWztR/+yiUQ4u2OlOOBSb45tzq7laxM2ORvLOzsH6H0OcNlPCPQ5D4GsbGT9+S7wcB9g7Ehg88akZlc7LweX7dcVY4fug+N2307N7n7/18U44P5xePnPEqwv2YK0s/Vvv229WBu3KPvxR+D778Mv2JbMvFMEiWc3bC06+9/WorEb9had3bC16Bw7pEEexnlmz57tlBPZ4uxavjZhk7OVvOs2RuVBd2Le4OcRaD8QKC8Bvrmj6v3yX14Ku01aImjRoDZGHb8L3r90Twzo3ARbKgL4cHYZ9rtvHJ79fi62VFSmh63//BPo1Qu4+GJgxox/zvfoEde74jXKO0WQeHbD1qKz/20tGpuF6Cy29qN/2UQinLMC6bISUYqwfv16FBYWYt26dWjQoAHSFeXl5Zg4cSL69euHXL6/KfAlRGcLYBX31xjg85uANfOqzrXcGRh8O9BxrxRkF8AXfy7F8HemYPGGqkq5U9N6uP7gHXBA9xb29+Q89FCgXj3gnnuAtm3tliWDIbHsBkRnNyA6uwHR2f8oT7P2VKztUBkhD/MwXVZWljYrJvuZs2v52oRNzrZ1Ltu8GSPemILb1hyB8v1GAPmFwNLfgOcOB145GVg5K6n5ssG97/bNcMfeBRhx+I5oUq8W5qzciPNf+AknPTEBvy1cC2O2/vzzqgZ4qWfP9LffrtpnPMmNcds6Szz729ais/9tLRqbhegstvajf9lEIpylQR4CTjMoKipyboqFDc6u5WsTNjmni84VWbmo7HcxcPkvQN/zgawcYPpHwCP9gI+vAzatTmr+OdlZOLVfO3x9zT64eJ/OyM/NxsS5q3HEw9+rhd/mr9qElHIuK6taOf2jj4AHH/znS3GsnF7jvA1C4tkNW4vO/re1aGwWorPY2o/+ZROJcJYGeQhycnLQrVs39ekKbHF2LV+bsMnZVt4VFRXo0KHDVhXjli1bsDmvAJv3vx24eALQ7SC1XzkmPgY8sCsw7l5gc3IbygW183DtQTuoFdmP6dUmuPDbfvd+jRHvT8XqjZuTllfO5s3/2JoN71GjgCFDgPPOS1oe1eYt8WwMLtpa6m3/21o0NgvRWWztR/+yiUQ4O9Mg1w/l/IyU5jSDjRs3bnVeTz3wpvmwHynNIzRNRErra/BT5+9NRyt7tHQ4Hvo7JSUl6r2LZHMKx0Onta3195PJKRoPrXGyOaVSp0R8j5+bNm1SGpvmxHyYt1d3E/F0xx13YNSoUerQ720zzfMjR45EZZMuqDzpFeD0dxFo0aNq//IvRyDw0G6onPwMUFGekE7emGa5uGf5vSfuijEXD8Cgrk3Vwm/PfD8Pe981Fo+MnYWNpZsT873nn0egY0eUfPhh8Fzl8ccD992HysLClPsev6d9zGQ8RatHUhFPofqariN0ne0tb6rjSV+fGofjmup6j36l6xET9ycTnKLpxO+G3qtMcOL1mG+wHjEUT9SYfs3r2dDJG9Mm4knno21t2vciPfulMp6i1dmpiiebdQSvqetsk5zCPfuZiqfqnv3SWafKBH1P+7a3LtXfcbZBPnr0aHTv3h19+vRR/1++fLn6XLlypTqIZcuWYfXqqmmqS5Yswdq1a5UR//rrL5UmFixYgOLiYpWeN2+eMjQxd+5clP79XiZX1Nu8uephmhvC0/G9m8Pz/0wT/B6/T/D3vA5Bp9XXY37Ml+AiAIsWLVJplonlJFhulj8WTgSvwWuF47Rhwwb192Rzoq14/eo48Tr83eLFi5POKZJOzPfXX38NppPJKZpOq1atUukVK1YklVM0nZieP39+SjhF02nhwoUqX+bJuLzrrrtUmVMZT7xukyZN0LBhQ9SuXRuNGjVS5+vUqaPObcWp875Ydew7WLvvnUBhO2QVL0H2B0OAR/pj3fgXsPpvzeLVieUJxylv4zI8dtJOGJw/A81rbUZxWTnu+nQ69r7rK7wxeQFKSstqptOkSchatgylo0YpO5mKJ60T09R6xowZxuKJB/OaPn16kJ+JeNKc+IBlOp54Dab5yZg2cX/SnPj9OXPmqHyTzSkWnfRUQBP3J81p6dKlKr1mzRqj8UQOPHiv0mkT8USQ86xZs5QtTcYTv888+DxkMp40J777yechU/GkF3z6888/1W9NxxPtzO+ajCeWk9ekf+nYMhVPuu4gTMYTzzHN3/B512Q88TzrTRvxxPsE7xcsg6l4Ki4uVs8hOrZMxhPLxDL/9ttvQX6aUyxwZpV13kz5IK57Lbhpe6Q0R9R4VJdmrwe/W12a4Pe9aU5h0D02oWlOpeWqgP379w/+jb/VPS7RypuOnLxlry7tGicG5qRJk1RHEVd/dEkn+jhHp3nNYcOGKf6p5MSHK36flfi9996rzl199dVBu+vVN7cqb+UWVE56Clnf3o2skqqKOdCmN7IOGIHKdgNi1onlnjBhglrlMy8vbxtO9APaAsjCjgefgfu/mo3Fa6sq8O1b1MfQA7th/+4tt+G6lTYLFiC7dm0EmjWrOs8OxeeeAy66SJ13IZ5scgqts/3AyY86Jcopljo70zj5UadEOYXW2X7g5EedEuXE5wHGM3XmOT9w8qNOlQlw4r2ZGvft21f93TYndvKx/SmrrP8NLSw/I6UpJnsNvb+jUUPTFDlSmkdomoiU1tfgpy6XNx2t7NHS4Xjov9NhovGrCadwPHRa29pblmRxisSD+eqRrWRzSqVOifienkbjLa8pTqwc2dPIG6Hu/+M5PujyM1XxlJ+fr/Lkw5XOt1atWmrEnJ9hy5ubj+w9LkbWFb8Ce10L5NVF1qLJwLOHIvvlE5C97I+YdfLGtC47y6Mb5FUI4NAezfDpZQNw3YFd0aB2LqYv24DzXvgZJzw+Hj/PXxNep+efR/aOOwLXX//P+caNkTVkCDb9Pf3QtO8R2sdMxlO0eiQV8RSqr+k6QtfZ3jKk+v6kbU2Nw92rUl3vMa2n9pq4P5ngFE0nIvReZYITv6+nmpqMJ15Hj1Db0Ml0PGloW5v2vUjPfqmMp5o++6XS91JdR/A3us42ySncs5/JeNJ1dqbolJ2g73nbF6H8ouGfGkGgQGNyert+gHcBtji7lq9N2OR855134uWXX1aj1Bp8l5vvcfNIS861GwD/ugG4fArQ+1wgOxeY9Tnw+CDgtdOB5X/VqEyaM/lrMH3vqLuwfNwrGHftv3DB3p3UiuyT5q3BsY+Ox7+fm4wZy6qmSAXRrRuf4oBZs9jlnxzOCULiWWztR/+yCddiSjQ2C9FZbO1H/7KJRDjb3zE9zcAej06dOsEl2OLsWr42YZMzKyb9jk6ywJFm3Zjn9HeOeEfiPHz48JplVNACOOxeYI9LgLH/Bf54C/hrDPDX+8BOxwL7DAOadkGyUFg3D8MO3hFnDeiAB76YidcnL8AXfy3Dkm/G45gWwEHX/RttGtYB9tgD+OEHoH9/dgOnhc4Sz2JrP/qXTbgWU6KxG/YWnd2wtegcH6RBHqbxwBf2CwoKYp5mkOmwxdm1fG3CJufrr79eTdXiFPJ77rlHnRs6dKiaSp4xnJt0Bo57Chh0NfD1yKpG+R9vAlPfBnY5Gdj7WqBRh6iXYecBwan6epQ8nC1aFdbBHcfujH8P6oT3730Blz87BGvqFGDwlpY4ep8euHjfLmjMRnkqOccJiWextR/9yyZciynRWOpsv8LFmJJ4zorLXjJlPYwDcQE416ZY2ODsWr42YZMzG5tskOtF1PQ5jmqHG9mONjLOQ797Htxb/O/zKefcojtw4gvABd8C3Q4GApXAlJeAh3YH3r8CWFe1umd10Jy9DfBItujSvD6uvPXf2NKpM6b36AOUbcaT383FXneNxX2fz0Bx6ZbUc44RrsQz/WzEiBH473//G1z4xTRcsXW65G0LruksGpuF6Cy29qN/2UQinGWEPMwUi/bt28Ml2OLsWr42YZOzzju0wVwThHvn3Ps+tndqeko5t9oFOOVVYOFkYOztwOyvgJ+eBaa8DOx6KrDH5TW/9scfA2++CTz5ZNV09Lw81P7lJwyoXx/3zlyJuz6ZhqmL1+OBL2fi+fHzcNE+nXHGHh1QOy8nLXSO9ZWCVOTrClysO0Vn/9taNHbD3qKzG7YWneODjJCHgL0aXBHatR4dG5xdyzeVo3U8IjV4bXLWeXMkmA1mHqlsoBnlvF1v4PR3gLM/BjoMAio2Az89g5xH+qDL1PuB1XPC/oz8w9pi+XLgmGOAp58G3nrrn/N/Tzfbu1szvH/pnhh9ym7o1Kwe1mzagv9+NA173z0WL04oQtmWCus6+zWew83O0FusJKOzKR743dbplrctuKazaGwWorPY2o/+ZROJcJYR8mret2jQoIFz76mZ5uxavjZhk3My8471Hexk5xsV7QcAZ30AFP0AfHMXsuaMRYvFnyHw6BdAz+OBQUOBZt3C/5ZboOnp/M2bA//5D7BmDXDAAWG/np2dhUN3boXBPVrg7V8WqcXfFq0twX/e/QNPfDsbZ+zWFGfu0wN5uVVbgpieqsVt5bi1m4a3AZuKjhhTOoebnTF//nx8/fXXqgw1XjiwBnCx7pR62/86i8ZuxJTo7IatReesuOwlDfIwUyzatm0Ll2CLs2v5JhN6RC70XerqGj7xck7mlONk2jtcOfQ72KnMN66G+RnvonzeeKz/4EY0XjkJ+O014LfXgR5HA3tdU/UeOsEe1KeeAm65BfjqK6DL36u133BDTFnl5mTjhN5tceSurfHqjwvw0FezMH91CW77YgFe+20NrjqgGwb3aKka8CZAez///PMxv1KQzHwzPZ7jhYt1p+jsf1uLxm7YW3R2w9aic3yQBnkIuEgPpxs0bNgwuCm832GLs2v5JhPxvEttm7OTOm/XB3/1GoF+7fKR+929wPQPq1Zk57H9IcCeV6rv4I03gAULgPvvBx5+uEZZ5efm4MwBHXB87+3wzPdz8djXszFz+QZc9NLP6N6qgWqY77dj85T3jtPedevWxSbuj24QpnQONzujXbt2OPbYY5GTY3Y2gosx5Yd6O164prNo7EZMic5u2Fp0zo7LXtIgD4OSkhLlvC7BFmfX8rWJWDjHO/KezLzjgX4H23S+caPVrsDJLwNL/wC+vRsY/w4w9UNg+kdAuwHAFccBBx8MXHJJwlnVrZWLi/bujP3a18KHM0vw9A/z8OeS9fj385Oxc5sGuHrwDtira9OUNsxPOOEEtGjRQk1Zj/ZKQTJhQudwvk9bkpt3BwFTcLHutB7PFuCazqKxG/YWnd2wtegcO6RBHgL2ILVp0wYuwRZn1/JNJuJ5lzoezvGOvMcC53SuqEDWN9+g6bhxyCotBfbZB2i5E7B0d+Cx14DjewFdZgLzf6g6mvcA/mwF7HQMkJOXMOcdOrXHDp2A0/pth3+PehV/lTfHb4vW48ynf0Tv9o1w1YHdMKBz06TRrW6V9WivFCQz30yP53jhXEyJzk7YWmLZDXuLzm7YWnSOD2k/72vRokU47bTT0KRJE9SpUwc9e/bE5MmTUzrFYuXKldb2l7UBW5xdyzeZiHc/a5ucndL57beBDh2Qs//+2H7ECPXJ/6vzjRoBpWXAmqbAFb8CAy4DatUHlk8F3jkfeLAXMPFxYPPG4OW4f7teRZ/paCDXJUuWoLS0FPXzstA7bxGOq/07zui3HfJzszG5aA1O+d9EnPzEBEyatzqp1F3RWc/O+L//+7+kTwGMddcEV2ydLnnbgms6+0HjWGPY5Zjyg87xwkVbi84+GiHnir0DBw7Evvvui48//hjNmjXDzJkz0YgPtimEd4quK7DF2bV8bSIWzvGOvCcz71TAaL5sdB93XNVibV4sWlR1/vXXgU8+AQ48sGp/8QNvAwZdDUx6Cpj4GLBuAfDxtcDXI4He5wJ9zwOy6sddjFdffRXr168P/r9OVjnw27s4KjcPvwZaYTZaYPycVTj+sfEY2KUJhuzfDX06NE6qvWN9pSBZkHiGE7YWnf1va9HYDXuLzm7YWnT2SYP8zjvvVKsDPvPMM8FzHTt2TGmeHPFo1aoVXIItzq7lmwrE2vCJlXM8q5jHCid05jZfV1yxbWOc4Dk2wK+6Cpg7tyqtUacRsNdQYI9LgCkvAT88BKyZB4wbhcD3DyCn62FoEaiHZVnNt1osrX79+tVy9jbGvaibtQV71JqPp644CQ9/NQtv/rQA389ahe9nJadh7oTOabRrgmu29oPO8cI1nTNZ45quv+JiTGWyzjWFi7YWnX3UIB8zZgwGDx6M448/Ht988416D+Liiy/GeeedV+1vysrK1KGhH07Ly8vVEcsUi1WrVqkp8iZXJOQiSNyzz7t/rynY4uxavjZ1jpczy6cX/2I6lthJVt7VgQ83d999t0pfc801UUftTerMd8ZzFi6s/gtslC9YgAruWb333mEukAf0OgvY5XRkTf8Qi966Ae0qF6PO9HdwIYC5gXb48tE5mIlOqkHP6dLVcT777LMVZ+p2P1dvBzBkyJCgvfh56xE74sJBHfDoN3Pw5s+L/mmYd26Cy/btjN4d4p+F5Fo8JzOW77jjjmBax90999wTPBeqt2u2tpm33Jvd8K9EdY43hl2OqUzWuaZw0dZSZ2crO8T6/JwVoGemKWrXrq0+r7rqKtUonzRpEq644go89thjOPPMM8P+5uabb1bv7oTi008/Rb169aLmSXPwwZ8PraneJijUcYuLi1FQUGA8aGxxdi1fmzrb5JysvGm7oqIilebiYdHsZ4xzIID2jzyC7V55JepXpw8fjpUHHBD1e3PnzkWT0rnYce1YtNvwC7JR9f7X+rzm+Kvhv1DZ8wRU5tSOyJnpWOy1YlMlxswsxTcLNqPi77vBTk1zcUy32ti+Sa7T8RzJ55IZy9Q7EkJnhvnR1umat9yb3fCvRHWON4ZdjqlM1rmmcNHWUmdnKTts3LhRDS6vW7cODRo0yMwGOaf49O7dGz/88EPw3OWXX64a5uPHj495hJzT3tlDFMkQtsHeOvLq06eP8T1tBeYgOscPPe2Pn9WN+FrF778jd7fdYvpqxRdfhB8hDwErcILT1F974h70DfyC/rWmIXtz1cJugdqFCOxyKip3Pwdo3DEpMwoWrSkJjpiXV1bdFvp3bIxL9u2kPk3fzNMBkWyYzFhOex93GFJnu4FEdZYYzgxIPPsfFWnWnmI7lDMUojXI03rKOt976N69+1bndtxxR7z11lvV/iY/P18doeA+sbHsFcves2XLlqm9dE2PVPOBl85jek9bW5xdy9emzjY5J5r37bffvs25++67L5iu7h36lHLW74UTvXoBZ5wBvPMOl0UP/x45v7vddsjhFmgx3CAKCwvVJ/1kHQrwedZe2PnCl1B/xjtqAbisNfOQNfERZE98FOh6AND3AqDzv9Q4uubMXSluuummmCm1b1aAO47bBZfu1xWjx85W75hPmLtaHdwu7bL9ukbcx9xP8azfB+W1dZ8103qlWv0+aLJiWf+e19L5cYZYde+d+snWmZC33JvNIJPvzfHGsMsxlck61xQu2lrq7Gxlh1j9LK0b5Fxhffr06VudmzFjRnCv21TBxdEIW5xdy9cmbHJOZd5sPFX30JP0fPne2ZNPAg8/DHz/PaB7O599FjjyyKrV1Nlg9TbKdQOWI5+J9NZyi7T+F1U1vmd9Afz4BDDrc2DmZ1VH405A73+jVvuDE6K4XaO6GHlMT1z6ry54/JvZeHXSArVdGvcx36VtQ1z+ry741w7NwzbM/RLPI0eO3Oac3nWAMLmCfHXwi60zJW9bcE1n0dgNe4vObthadI4daT1lnVMOBgwYoN4JP+GEE/Djjz+qBd2eeOIJnHrqqTFPFeBoU7SpArbBl/4nTpyIfv36GR8hF5iD6JzY6rW6UcRXVx588MHgVm2JrAIfZ2GAnj3ZM8hVfIDrrtt26zOutu5d4K1t26rG+DHHxJnV5mDDsFqOq2YDk54EfnkRKPt7dfW8esDOJwC9zwZa7YJEsWx9KZ74dg5emliE0i1VI8Q9WjfAZf/qggO7t0R2tv+msodbh8QLNsgllt2A6OwGRGc3IDr7H+Vp1p6KtR1qfq5IHOD8/3feeQevvPIKdtppJ9x6663q/bpYG+M1nWKxaNGi4NREF2CLs2v52oRNzonmzYYoj+p6WtlQZ+NVN9yTlW8Qixf/M+LNRvFDDwEPPFC1jVko2OieN0+9K84F3PiptjqLszEeM5p0Bg4aCVz1F3DYfQg02wHYshH46Rng8b2AJ/YFfn4e2Fz1TnpN0KJBbdx4WHd8d92/cMHenVC3Vg6mLl6PC1/8GQc98C3e/WURyisqfRXP7ADhMXTo0OA5pvV52/CTrTMhb1twTWfR2CxEZ7G1H/3LJhLhbL/rIAoOO+wwdZgE3710DbY4u5avTdjknOy89eh4tKnECed7221VB1dQP/roqnMHHlh1VAe+Q7j33lhZuzY69+sX9zT1Gu1nm18f6H0OAr3ORPHUT1Ew/XVk/fUBsPhnYMzPwKc3VI2a73420HIn1ARN6+dj2ME74sK9OuPp7+fi2e/nYcayDRjy2hTc8/l0XDCoE/brHH5/9Ezzr3A2ZoeQsZkYMcDFulPqbf/bWjR2w96isxu2Fp191CA3DS560LhxY7gEW5xdy9cmbHJOVt7xNoaSki93bODx/vv/NMiTgEjT0RN5fzk7JwcNdj4E4LFhBTDlJeCnZ4E1c6umtvPYrg+w+1lAj6OBWtG3ggxFo3q1cPWB2+O8vTrhhfFFePq7uViwugT/eW8qHizIx/l7dcLJfduhXr6Z24vEszn4oR7JJLh2jxSN3bC36OyGrUXn+JDWU9ZtgNMMFixY4NwUCxucXcvXJmxyTmbe8UwlrlG+kyYBf+87rXD99cB77wFPPYVUNMaTja04128G7DkEuOxn4Iz3gO5HAdm5wMJJwHuXAKO2B8ZcBiz4MfzK8FHQoHYeLtm3i5rKPvzw7mhVWBvLi8tw24d/YeCdX+GBL2Zi3aZ/RvYz0bfZUcIOEB7pNDruYt0p9bb/bS0am4XoLLb2o3/ZRCKcZYQ8BFw5uKCgwKk9d21xdi1fm7DJOZl5xzOVOO58ufDalVcCxx4LvPlm1bl69YAjjkCyEO5d99Dp6LpjwbuIHTsdYlmtNCxnbr3RaZ+qY8PyqgXgfn4OWDOv6v1yHk27AbueCuxyElDQMi5OdWrl4OyBHXFK33Z4+YdZeO7HxZi3ahPu+2IGnvh2Nk7p1w7n7tkJLQtrIxWQeDYHv9QjmQLX7pGisVmIzmJrP/qXTSTCWRrkYYzZsGFDuARbnF3L1yZscs4YnfffnxtGVjXC2UhO8lYh1Y2Mh05HT+T95aic6zcHBl0FDBwCzP+hqnH+53vAyhnAF8OBL28Buh4I9DoV6DoYyI19VDg/Lwdn7709zhjUDR/9vgSjx87CtKXF+N+4uXj2h3k4ulcbnL9XZ3Rpntz3zCWezcHFesQmMqbuzPB8bcLFmBKd3bC16BwfZMp6CDjNoKioyLkpFjY4u5avTdjknIq8Y5lKHDFfTtHmVHTuH66x007A7NnAc88lvTFOpGqaeo1szVHzDnsCRz8GXD0dOPxBYLu+QKACmPEx8NppwL07AB9dAyz8KaYp7TrvLARw+C6t8fEVg/DM2X3Qt2NjbKkI4PXJC3HAfd/g/Ocn4+f5a8xz9hFcrDtFZ//bWjQ2C9FZbO1H/7KJRDjLCHmYHp1GjRo5N8XCBmfX8rUJm5zTUuePPwaOOgooKAAOPhho0aLqfLt2sIXQd+B1p0NNOce0jzlRuwGw+5lVx4oZwJQXgV9fBTYsA358oupo0gXY+aSqldobtY+at/7/vts3Vwcb4I99PRuf/bksePTr2BgX7tMZ+3RrlpBvSDybg4v1iE2kZd3pw3xtwsWYEp3dsLXoHB+kQR7GgSJt3O5H2OLsWr42YZNz2ujMUV59UzroIGDPPYG99qqaom4A4d4NJ66++urgXuvWbd2sG3DALcC/bgLmjK1qmE/7EFg1Cxh7W9XRbg9g5xOBHkcBdRrFlPdu7RrhiTN6Y9byYjz+zRy8O2URJs5drY4dWhbgvEGd1Kh6rdz4J21JPJuDi/WITaRN3enzfG3CxZgSnd2wtegcH2TKegg4zWDOnDnOTbGwwdm1fG3CJmfrOnMRtdGjgcGDgYqKf6Zsf/MNcPvtQH0ze2frRnfo4mzJaoxrzjNnzkRpaek2+5iHW1CuWuTkAl0PAI57CrhmJnDUo0DHvXmLBeaPBz4YAozqBrx6KvDH28DmTTHp3KV5Ae4+fhd8e+2+OG9QR9SrlaPeM7/6jV8x6K6v8Ng3s7G+NL6V2SWezcHFesQmrNed/9/edUDJURztby+fLgfdKZ1OOSOJoEAU0WSMDcY4YnAkmJxNdAbbgAGBsY1xBH6wMTaYHEVSAOUsne6k0510Oeew//t6rk+r1V7cnZndmfre6ze9s7tTXVVdPV3d1d0uoWsn3GhTomd3yFr0PDTIDHmAEZ2cnBzXhUzZwbPb6NoJO3m2Xc91dcCPfgTw+vzzwMUXH3DKbUa/oeTD5Pmf//znIY73YM8xD4j4FGD+V41UVwJseB5Y/39A+WZg68tGik2CZ/qZGD3lbHi6xgBR/e+oPjotET86exauOmkq/rFyN/78URHK6tvwy1e34tF3duLiBXm47LiJGJOeOCiexZ6tgRvbETthe9vpErp2wo02JXp2h6xFz0OD/T1Si6BHh3jtL88KNGLEiIP+5+3Z0Mg339XV1W+eyT9P9JfXz+BVl8s3P1DZB8oH4kN/n5ycPCB/w+EpEB86r2XtW5ZQ8dQfH6SbmGh09EPNk5l6CqbukeekpKSDymsVT3wOabMMltlTdbX6zHqN7Gx033+/miX3XnCBZXrytWlfnqKjo3HXXXepxHwo6x7zA82CB1X3kkfBe+w1wOUfo+u7y+A97nogPR/oaIJn4z+R+OKlwK+nwvvi5fDueAtd7a398pSaGIMfnDAJH9xyEu6/4DBMzUlGY1sn/vhhIU64/11c++wabNxbO6g2u692JBT21NLSgnvvvVcl5v31a3UbQbBu+5bB7PeTljVtOdC7ymx7Yl63I1a8n6zgaSA9Ef7vKit44u9pU7rNNvv95FtG1Wb3/N5qPVltTxpa1lbXvf76fmba03D7fmbWPbPbCP5Ht9lW8hSo72elPQXq+4WznrqDrHu+/oU/f651yJcuXYpZs2ZhwYIF6nN5ebm6VlZWqkSUlZWhurpa5fft24fa2lolvNWrV6OmxtgFmAe8NzQ0qHxRURGamppUvrCwUIWFEgUFBb2dYIaLdnZ2KkUxzys/M0/wd/w9wf/zOURzc3Pv80iPdIm6ujqUlJSoPMvHchIsN8s/GJ4IPoPPCsQT8zt37lRhLaHkibLi8/viibLeuHFjL3+h5Kk/PZHuihUr0NbWFnKeBtJTVVWVyldUVISUp4H0RJ63bdum9BxqngbSE59HPbMMptsT87ffDuTloeSVVxS/5KOY4epXXIG6pibT7UnzxPJYaU+aj7POOgs333wzLrvsst61Y5deeim+853vqBn5kNiTx4OCpkS0H38rcM06FJ32J3Qu+D46E0fC01YPz9qn4fnHBfAyrP0/V6Fjy2so2L61T57iY6JxxvR0/OGL+XjqWwuwYHwaOru9eHFtKc559CNc+NgHeHtLGSqrqg7RE+vV2rVrlU2ZZU9sG/mijYqKUnmtJ+2cW2lPfAbfT6zb3M3ViveT5omy3rRpk6Ibap4G0hPlvnXrVlUGq+yJ5du/f7/KU+ZWvJ98eeJSE76reLXi/aR54vcbNmxQsrbi/aR5Yp1m4rOstCfNE/sEjY2NltmT5uOzzz5TsrbSnlgW5rXMrbInlpO8sn5p/qyyJ/Kiy26lPfEe30+UM/9nlT3x95Q120393rLSnvie4PuCZbDKnhoaGrB3716Vr6+vt9SeWCbyunLlyt6+geZpMPB4B+u6RyiokLS0NPUy5Vl8esSDHatAeXa66BxzhEPf5z09wqPzFDq/7ytP8Pe+eT0bFiivX7yLFy/u/Y7/1SNEfZV3KPlAfOjf8EXEta2kHSqefMseKK9lnZCQoH4fSp760xOhdax/HyqeBiovDXPVqlVqoCgmJiZkPA2kJ+bZQDA8mnRDydNAeZaL9Yvy1no31Z6+8hUVmt59881ou+cexMfH95bFCnvS5V6+fDkWLVqk7MoKe9Ky5kuBsw+U+X333aeefcsttyjdm2FPOs9ra0sz4vavRvSWF4HNL8LTbAxAEd6ENHimnwXvzHPRPfFERMcn9cvT+r21+OOHRepM865u4zU1MTsJlx6TjwuPykNCzwZwA7UjwfCkX6TsCDzwwAMqf/3116s6xe84eKvbbKvsybfN1jo1+/3k22azHSH//ryaaU9MlDf1wHZEl91sexpsm22GPemyUN6+7yoz30++bbZuR3QX0cz3ky47f8O+EOsXP1tlT4HabCvsSdOnjnVkplX2pNvsvvp+ZtnTYNpss+xJt+W0Z+qZ96ywJ+b5e9Jmm60Hd822p776flbYky5joL6fmfbk9XpVG0IdL1y4UH1vlT3p8vr6kLzPQT76n3Tq+9tgzzUO+UCCsBt86dMhZyNBoxE4E6JnE7BiBTBrlnGEGcHZu3XrgHPPPbCrugv1POhjz8xCVyew+0Ng83+NdeY8Rk0jLhmYdjow8zxj87i4vne6L6ltwV8+LsIzK/egodVwkNMSY/HVReNxydETMCqt//XqwYAh6n2BL+FTTjlF2myHIxxsWWA+RM/ugOjZ+egMszZ7sH6oY0PWhwuOZmzfvr13bYIbYBfPbqNrJ0LNM509vaZ2oDXLpsr7jjuAxYuBHsdTIT8fOO88dHV3u1rP+hxzJiuc8UP0zJ3aJ50InPMAcP0W4NJXgUWXA6ljgfZGYOO/gOcvAe6bCPzjIuCzPwMNPk57D8amJ+L2s2bik9tOwd3nzsL4zBGoa+nA4+8V4Lj73sE1z6zGyx+vd62e3UDXbtp2wW16Fh1bC9GzyNqJ9ctOBMOz/UMHYQaGGOTn5/eGHrgBdvHsNrp2wk6eTaW9aJFx5Z4PvueMi54RVnqOigbyjzHS6T8HSlcDm/8DbPkvUFME7HjdSLgWGHcUMP0sYMbZQPa0Xp0mx8fg0mMn4ptHT8BbW8rw5AeFWFlUjf+s24f/rAOOWteIbx07AafPHoXY6CjTzo6/8cYbe5chMGTdjqgEN7ad0m47X9aiY2shehZZO7F+2YlgeBaHPEAYol5z6hbYxbPb6NqJUPGsZ8P9z7jWCOSAhEzedLhffNE4N/y004x755wDbN4MzJxpHt0Igp08D5o2X1R0uplO+zFQvgXY9j9g6yuGo753lZHevhfInAxMP9MIbx9/NBAdi+goj3K6mTbsrcOTH+7C/zbsw6e7a1QanZaAry/Ox1cXjkdGUnAOcaD6TGec9we7UYsZcGPbKfbsfFmLjt0hb9GzO2Qteh4a3DNsMUjoHQndFmJhB89uo2snQsUzZ/+YfM+1Zl7fN5M2/vAH4ItfBC6/nDtaGfc4exrAGQ8p3QiCnTwPizb1lzsLOOEm4HvvGqHtZz8ATDkViI4DqguATx4F/nIucP8k4LlvAmv+ATQap2YcNi4Nv/nSXPz5gvH44UmTkZ0ch311rfjV69uw+Bdv49Z/rcfW/fVBL83wrdv63s9//vPejV94j8l/oErfDzXc2HaKPTtf1pGk46Es2+oPbrSpSNJzqOBGWYuehwaZIfcDwwwmT57suhALO3h2G107YSfPIaPN3dO5a/hXv8ptN62jG0GIeD2njgEWfNtIbQ3AzreA7QxnfxNorjTC3JmIMYcDU09H1NTTsHDOYTgmNg5XnTIVL63bh6c+KsSm0no8u6pYpaMnZeGSY/Jx6sxcxPQRzj5QuLm+F6jzHWgwynfQiuv4Qwk3tp1iz86XtejYWoieRdZOrF92IhiexSHvQ6Bug108u42unQgFz/2tqQ0pbc40Pv44sGkT8MQTxj3uor5lC+OIB/0Y0bO1CKm841OA2V8wEgdgStcY68zpoO9ba3wuXQPP+79EzIgsYNJJiJ98Mi6cejIuOOI4Fb7+54+K8Nqm/fhkV5VKDGf/2qLxuHjheGQnxw9paQbPG/WfBddHrNgBN7adYs/Ol3W463g4y7YGghttKtz1bAbcKGvR8+AhDrkfGILIg9ynTp2qzq9zA+zi2W107USoeO5vTW1IaW/fDlx3neGIXXqpsZO6UYBBl1X0bG3dNlXeat35kUY66XagYX/v7Lm34B3jvPON/zQSI+FzZmPB5JOwYPEpKDn9aDz9WRmeWVmswtl//cZ2PPz2Tpw9dzS+cXQ+ZueOUGvdfDvVv/nNbw4pwsMPP3zIvT179uC9997rHawa6kDVcOHGtlPs2fl6jgQdhzoaxo02FQl6DjXcKGvRc/SQ5CUOeYDRHFZcN43q2MWz2+jaCTt5HjTtpiYgqec86tmzgVtvBcaPBxYsMJeugxAReg4FUkYBh3/dSJ3t6Cpeiahd78JT8I4xc16+yUifPIqxMQm4Kf8YXLvkBHzQOQuPbk7E6r0N+PeaEpWyPE2YGVOOidHViAni2Hr/QamBBqqCgRvbTrFn58tadGwtRM8iayfWLzsRDM/ikPcxquOmCmQnz26jaydCybM+4zoktFtbOa0APPUUsHEjkJNj3P/Zz4Iup+jZWtgi7+hYdI9bhKgJxwKn3Ak0VQGF7wE73wHooDeUqmtswTs4GcDJCemom7EYb7fOwO/35mFr5yh82DERKzvyMDW6EtNjKpAW1bNpoA+uvvpq5WRzFlzPlo8fPx4XXHCBLbM8bmw7xZ6dL+tw1/Fwl231BzfaVLjr2Qy4Udai58HDXdYwyMpTUFDQu3uuG2AXz26jayfs5HlA2uzIvPkmUFEBPPOMdXQdiLDWs1V0k7KAORcA5y8Frt8MXLEcOOOXwLQzgbgUoLUWaUWv4Yv7H8JrMTdgY+q1+N2IJ/D56A/R0O3BC21zsGXUqTjivMtw9bXX9dJJSkpCcnKyumow1N13JlwPVDGZNTsekGeL4Mb6ZSfcpudI0DHtmsnXAddtwHBs3o02FQl6DjXcKGvR89AgM+R+4EzHjBkz4CbYxbPb6NoJO3kOSPuzz4DDDzfWBnN2kRu4VVYCZ51lLl2HI9z0PNDO5WbRPehYtZyZRlp8OdDVaYS0F75vpD0rkNxegTPwPs6IfV/9ZZ83Ayv2zsTHe2biL4lz0dExGtOiKxFOcGPbKfbsfFmLjt0hb9GzO2Qteh4axCH3A3fNZSeSHUfOfrgBdvHsNrp2wk6eD6HNc8R/9zsjRP1b3zJ+tGiR+XTDFKF0WsNKz+FINzoGyFtgpBNuBDpagOKVyjnvLvwA3r2fYrSnBudHf6wSOoHy6HSs7J6B555owbQFp+HIo45RM+CdnZ1YsWIF7EBEyNpBtO2C2/QcSToe6rKtvuBGm4okPYcKbpS16NkzJHlJyHqAEIvdu3e7LpTGDp7dRtdO2MnzIbSnTDFmLrdts5auCxAuemYHwP+IMOb1fbPoDhmxicCkJcApdyHqO2+i66ZC/AUX4n0sRlfeMeiKikOOpxbnRC/H16sexsLXzkXLT/NQ9Nsz0PjmL5FWvQ5ob4LVcGPbKfbsfFmLjq2F6Flk7cT6ZSeC4VlmyAOEWEybNg1ugl08u42unbCNZ68X0S+8gGmzZhmh6cQPfwiccgowf76r9WzGebZ28uxL+6c//WlIjwYaLN2gdYFYFHnGowjjcdTFNyLW04Xu0tWo3/4Barcuw6j69UhGM5JrPgFWfIJ0voBX3wnv6LnwjD8ayFsIjFsApI2FmXBj2xnu9mwG3KZn0bE75C16doesRc9Dg2sccj1aoa/ccTBQniEdzc3NSExM7L3Pe0y++a6uLvV9X3lNyzfPyskQjr7yTITO87+++YHKPlA+EB/6N21tbWpjEpYl1Dz586HzWtYJCQnq96HkqT89EVrH+veh4mmg8vrWQ003FDwNpCfmW1palJMXExMTUp76zd97L/DjH6NryRJEvfMOWMM9sbHwzJ9vuj3pmdr4+PjecllhTzoszNemA/HEMHV+1r9hXjutzN91111D1hOf3draihEjRvQ+12x70nleSdt3IMGfP195hKruDdSODIYnvWTAN6SPZ5Hr8t5xxx3IPPMO1U6+88kyFK15FyNrVuPIqO0Yg2qgdLWRli81dJ8yBp5xR8E7bgG8Y49E1Ngj4I1JCFnd0202Za11YMX7ic9gO0Kb8tefmfbExCUCtGe227rsZr6fhtJmm2FPuiyUt++7ysz3k873146Y8X7SZedvOCjJ+sXPpr+ffHjyb7OtsCdNnzqmrHUZrLAn3Wb31fczy54G02abZU/63aPL5PseMtOemPcP37bCnvrq+1lhT7qMrF9sv/T7w2x78vbc17Y01DY72LpH+PqQur65OmR96dKlmDVrFhb0nGFcXl6urpWVlSoRZWVlqK6uVvl9+/ahtrZWCXjLli0qTxQXF6OhoUHli4qK0MSzkgEUFhaqFxbBHQz1DMuOHTtUx4HPYZ5Xfmae4O/4e4L/53O0AvXzSI90ibq6OpSUlKg8y8RyEiw3yz8Yngg+g88KxFNjY6P6PtQ8UVZ8fl888Tn8X2lpach56k9PpLtu3brefCh5GkhPVVVVKl9RURFSngbSE/N79uwxhad+9XTJJehKS0PlzJno7uiwzJ40Tyx/fX29pfakeWJ5+uOJjXhubm7vy5l5gi/NkSNHDktPNTU12Lp1q5KTVfakeWJ+79692L59O26++WZ1FNC5557by9PnP/95tUb+2muvDWndI6/btm3r5W84POkdkyl3lpWgPnRHQdc9vvzHjB6Py67/BSZ+5++4J/cxnOl5DFe3X4m/dp6Gjd0T0IUoeHjU2pb/wvPmnYj681nAL8ah6/Hj0fT8FcDap1FfsAr7SvYOu+4xzytt2kp74u937dql6FptTyyLDgW04v2kedq/f3+vbVlpT+SBie8qnTf7/aR5Is87d+5UsrTi/eTLE2mwP2TJ+8mPJzoP7A9ZZU8E30+bN29W/7Xanihn/tZKe2I5+UzWL21bVtmTbjsIK+2J95jnf9jftdKeeJ/tph32xPcE3xcsg1X21NDQoPoh2rastCeWiWVev359L3+ap8HA4x2s6x6hoELS0tLUyzQ9Pd3SkbihjPBwVJgbBC1evLj3O7NGraziycqRuEjhiYa5atUqNVDEjr8TeOrNt7UBjz2GKA503HTTgfsNDfAkJ7uq7rHcy5cvx6JFi5SzF4gnPSDEz5yN5Xc33HCDqhe8r0eVw4Wn4eiJL64HH3xQ5a+77jqkpqaGJU96gIQd8gceeED9//rrr++d7efv77//fpXnYAN1o9vsw49aiHe2VeDpFXvwya5qJKIVh3kKcUxCIT6XugdT27cgtqXikHeTNy4ZntHz4WUaeziixh6J7rTxan+FcGr3dAQB/3/rrbeq+hwJdS9UbcRg2uxw4Yn197777lP3tK7coqdgefJvs53AkxP1FCxPfO/Snqln3nMCT07UU3cQPPHdTB0vXLhQfW83Txzko/9Jp559ILg9ZF0rVl/7ylOZHDXUZ8329XsqeTh5KqivPFN/+YHKPtw8eWaFIc+alhU8DVbWweQDlZd0GcKj+bVST771cLB1cjA8DZQnzxzJ07I2pe69/Ta9GCA+HlEXXwzk5xvPSU7upW2lPRG6XmtaVtiThi8t37KzgdZrrDlj7Fsvfc+0Ho6eeB1I1qG2p0B1TK+FJ6++fOuRcM1jKOpesO0Iy+7LiwbDZnU5fTei89dHfEwUzp03VqWd+2txw6PPY2PXZKxsmYmHWlQJcfKodnwrvwKLYnchvnwdsG8dPO2NwO4P4WHS5UrMBMbMB0bPQ9ToeeqKjImDarPNsietQ93p8W9HrLIn5jVtK9+5oWizh9vu9fWu6i+v51iYH267F0w7Ekzd43N0vbajb9TXM83s7xG6/bLSnnSbPdS+Xyj6Rmb1/QarG10mK/vlA7XZZvWN+muzrbCnQO2I2f5TlE+7F+o2eyA9+bbZ+r6vrfcH1zjkgwWFyfD2CRMmDFqIkQ67eHYbXTsRap71UV1RXV245Y47DMflzDMBOuLcsG3cONNoDxaiZ+uPONF61muyffHwww+bsqmbmXrub+M938EGjfGZI3BEbCnmx5TiuAu/i3+v24c3N5fhnf3xeGf/OMTHjMcZcy7GhReOxjFpVYjetwYo6Vl/vn8j0FINFLxjJI34NGD0XOWct2ZMx5OvfIpqTyYuvOjLmD59+pB5ZqeQERkEIzKSk5MHzTvvMcw0Ly9Prf+0EmLPHss2iJQ22x31WvQssnZi/bITwfAsDrkfOOIxadIkuAl28ew2unYi5Dw3NOBzr7+OyTt3MoaXPT7jKLNnnjGfdoTqua9OM2fFgz1/PBx4doKe/c8WvpebEvrBd+O9Uzj4FEC3UR7gmIlpWDItG9VN0/HyxnI892kxtpc14j9rS1UanZaALx5xFC5YdD4mjUwGOtuAso1q9rw3lW0C2uqAog9Uogt8Jel4oxH13juI2j4XGHUYkDsHyJ0NJHLf99Ag0KCKDucP9aBKJNpzOPEcSFfBnGrgBFuOFEib7Q640abEnocGccgDjG5w3WNKSoqrRnTs4NltdO1EqHjudTza23HY+vVIbmpC64svov2ii9T9QE6l6NmcTnO41W1f2hxg0A6q5pGbvOnN05xmz4PR7bePm4j1e+vwz8/24r/rSrGvrhVL3y1Q6cj8DFx45DicPXcuUsceeeAhXR1AxVa0Fq5EVPkGYN96YP96xKEDKKPDvu5golyDPqrHOc+ZCeTMBrImA9GxvZtVMVRUwzff10y5PzgzrjessRLhoGer4ba2U3RsX5stehZZO6V+2YlgeBaHPIAwuQEcOyduqkB28Ow2unYiJDxv24ZfPPts78cZ55yDzpgY7OSulz0OSSCnUvQMV9RtX9qBBmb818dHAs/9DSwwZH316tWDfhbLNi8vXaUfnT0Tb28pxz8/K8b72yvw2e4ale757yacPnsUvnDEWBw/JRsx0bFqBvy+J14AkAFgCYATkOWpw6SkZiQ3FiEX5Zie1gHUFQN1e4y07ZUDhKPjgOxp2FXWiXJkq5SGLNQhFY8//njvz/xtNxDv3OiO4Xhjx5p7znogSLvdd90O9QCYtNnua7OlDyaydkr9shPB8CwOeYAQi/yezajcArt4dhtdOxEUz9xt8hvfAJ5+GnmXXorinudsnTnTfNoO0rMVs8Z28uxEPfc3sOB7lMlQdZsQG42z545Wqby+FS+uLcHzn+7FjvJGNXvOlJ0cj/PmjcEXjxgL7tPV+273eFCFdFQ1pQOeMerW3dfdDbTUGCHuXItevgko32Ikbh5XthFz/crQjlhUeDNRgSxUIhPY9iowcjqQng9ERQfknRvdTZ48GXYg3Ow5nHgO9QCYE205XCFttjvgRpsSex4axCEPMLrBrel5VJqbRnTs4NltdO1EUDxzJ0nuGBkVhW9OnYruG24YklMpejZgxayxnXU7EG3/NdlW0Y0k3eakJuB7J0zGd4+fhA0ldXhhdQleWleKysY2/OmjQpUmZ5+Acw/LxSlTUvDC3/+k/veNb3xDnZvey3NiBjDhOCP5DqbVFaOjdAOWPf84RqISMzO7EVW9U4W9j0WZSgrPfGhcYxKArKnAyGlqZj0qfSJyveWoQoaSNc9mDZf65XS4re0UHbvDpkTP7pC16NkzJHmJQ95H/D/PinPTS98Ont1G104MiWdOxz33nLFbena2cY/HdF1xBWLmzx+y4yF6hivqthP0rE8PIHw32rNiYIFlnzsuXSWGtC/bXoEX1pSoXdoLKpvx0LuF+O27QG7UNEyOqUZtczsm+B0n44/G5mb85uE/9xBYqC6jLr4cTzz2KDJQh29//jgkNhQBFdvUWnVU7gA6W4GyDUbq6ST8oOd53sdeRHfyeGDsHMNhz5oCZE4GUscaA3cmQtrtget2qOqpE2zZDvTVfvQHabMjT8/DgRttKtLt2WqexSH3Azs3PNLFTbCLZ7fRtRND4vn73wf+8Afg8suBxx4z7uXkGMls2i7Qs5nOnZ08i55Dp9vY6CicMjNXpfrWDry6YZ+aOV9RWI393anY356Klc/swknTG/H5+WNxyswcFQbvD328mS/UunFPNKqQia6pZ3I3twNfdncBtbuB8q1A1Q6gcrvhpPPaUgNPXTESuVa95KODH8pZ9cxJxgZydNDpqOt8co5PvL3z7NlMuM2mRMfukLfo2R2yFj0PDeKQ+6G7u1uF5KWnp/c78+Ak2MWz2+jaiSHx/NWvAv/4B9BPIz4Ux0P0DFfU7UjWc6jPcQ4lUhNi8eUF41XaW9Os1pfz2LRt+xvwxuYylZLionH6nFHKOT92cha6uw6sb+8Ph+ysHhVtONZM/miqQnfFVjQXr0dS8154qnYCVQVATZExq16+2Uj+iE0CMif2pJ5nZ/TkhzCzLu12ZNlUJNENFsG0H9JmR46eg4EbbSpS7dkunsUhD4CWlhYlTDfBLp7dRtdOBOSZHYlHHgHGjQO+/GXj3oknAsXFQGamubQtgOjZHfIOlq4VR9KFAuMyRuCKE6fgBydMwocbduGT0g78d90+lNS2qBl0puzkOGS37MXE6GrkRgWenNab0A0JSVlA4tGoi52AEaNHw6M7G3T+ubN71S6ATnp1gXFlqtsLdDQZ56sz+YM7wHMTuYwJQIa+9iTeT0g96Odiz9YhUm3ZDgTbftjJs+hZZO3E+mUnhsuzOOR+4IiGHUe6uJFnt9G1E33yzND0G28ERo8Gzj77QPhqCJ1x0XPo1x2Gm6ztpO1Wez5h3hScMA+4+YwZWL2nRs2av7x+Hyob21GJHGztysEItGNCdA0mxVQj29PU65wHs/v2IbKOjjkw8z311IO/62wHavcA1buMVFPok98NdLUbofFMgTAiy3DM08cjKn08xtJpbzY+qxSbCCfDbTblVluWNtv5cKNNiT0PDeKQBwg3qK6uRmZmpqtCLOzg2W107cRBPPOG5vs73wGeeca4jhhhPm3Rs2PrdiTr2Yoj6czk+cj8TJXuPGcWPtxZif+u2Ys3t1SgsQ3Y3JWrUrKnDROiq3HXJWerjWeGs8nOkGUdwzPQpxjpkId1GTPoXLPOsHf/1Fx1IJX2cd57Uk6Pc54HpOUZeXXl53FAQhoiGZFsU5FEN1gE035Imx05eg4GbrSpSLVnu3gWhzwAfNf+uAV28ew2unais7ISnp/8BCgoAF56yYhljY8HPvggJJsu9QfRs3Xrlu2s25GqZyuOpLOCZ24Gd9L0HJVaO7rwzuZ9+PVz72BPVzoavfHY2DkaFz25GhOzk3DWYaNw5pzRmD1maLvBhkzHXK+uwtTzgYknHPJ1e0MV/vSbu5GOOlx46gJEN5SgrWwH4lv2w1Ozhz8AmsqNVPJpYBrxaQecdTroaWN98uOA5FHGDH8YI1JtKtLo2tl+SJvtDrjRpiLRnu3iObzfRCEetfC9cuSir3xubm5vB4X3mWfyzXd1danf9pXX//XNR0dHq5mJvvJMhM7zv775wZS9v3wgPnR+9OjRqux65iSUPPnz4ZunrP11FCqe+uKDKScnR93T5Q0lT/2V17cearqh4GkwesqNiQF+9zu1bty7YgW6FywweGKd6/m9GXWPGDVqlCk89acngvXaV8dW2ZOvHROBeGKYuq6DBPN6doX5u+66a8h1j6BNmcHTYPREPfP3miez7cm3ze6rHRkqTxq6Peyv7vm22aHmaSA9sW5rWQfiKT4mCqfOzMGn8UXo6PZgwee/hVc2luHdbRUorGzC0ncLVMrPHIEz5uTi7LljMGdMqnpef3qijgO9q0JtT4hPQXlUDsq8I9G98AfwREcjXuupsxNR7Q3w1O1BV1Uhour3qvPWUVtsXOuK4WmpAdrqgLK6wOvXWX5PFDwpY+Clo546Bp60cfCmjoU3ZQyi0sehO2UMuuMzBmyzzbIn5v3fVVbYU3/tiFnvJ11G3Wbz91bak3+bPRyefNvyQO1CID3xt1rWVr2ffMveV9+vPz2Fou4Np+8XirqnefWvY2bak87rNtu3HTHTnnRev5f922yzfY2++n5m+U9RPXz48jrUNjvYusek22zf+jYYODaGYOnSpZg1axYWLFigPpeXl6trZWWlSkRZWZkKLSD27dundsajgLds2YKamhp1v7i4WJ0pRxQVFaGpqUnlCwsL0draqvIFBQW9s107duxAZ2eneg7zvPIz8wR/x98T/D+fQzQ3N/c+j/RIl6irq0NJSYnKs3wsJ8Fys/yD4YngM/isQDw1NjYq+ezatSukPFFWfH5fPPE5/G1paWnIeepPT6S7du3a3nwoeRpIT1VVVSpfUVERUp761FNhYW++NDER5TffDLzxBlrnzQsZTwPpic8jLZbBKnvic5lnva6vr7fUnjRPLE9/POmOGK++HZSYmBiMHDlyWHWPZd26dauSk1X2pHlins/evn27ZfbERFqkqfkLhif+5tZbb1WbMO3evXvAusfNW8zgaSA98f3Eus0y9scTZ+guvvhi3HHbzTjv8DxcuyAZy289EQ9eNBfH5icpp313dTOeWFaI8x79CMff/y5ueWY51uypUbz580QZkCaTWfZEmvwNZxmysrIUD8xT7roMBbt2oT16BDB6HnbEzEDngu+j+3M/x7bD70L3d99D5/U7sO2Cd4ErlqPjS0+jbMFtwPE3oHP2hWjJOUKtS/dGxcDj7Qbq98JTvAKeTf8GPn4EntduRdTz3wT+cDKiHpiB2PvG4sgPLgWeOhNt//ga8MYdaHr712hY8Xdg76eo2LUe1ZUVIbcn1jUmvqt03gp7Ivbv36+eT1mb+n7y42nnzp2qXrM/ZKU9aZ7a2tpUf2i4PLHtvv3223HRRRepejsYPfH9tGnTJvUMK99PLAvlTHlT7mb393x5UjZcUKDqWah5GkhPuuxW2hPvMU9Zs79rlT1pG967d6/q31ttT/pdwTKY3d8r8uGJ/GrbstKeWCaWef369b38aZ4GA493sK57hIIKSUtLUx0Y7no30GgIQaNhh5gjL2aOWvnm2eFYsWIFFi9e3PudVSOmfD4dxYyMDPVCMWvUyj+vHVN2ukjXzFEr3zxpax3r55g1Cuyfp2GuWrVKDRSRZ9NmIBoaEPXtbwP/+x+6N22CJz9fyZrrWhhKZ+WMHnlm/dJOphX2pEe/2biyfmmn16oZCNJevnw5Fi1apOQdiCc9IMTPPC+a391www29tpCYmDhkPVHWfLlwhFbDbHvynVkmbdYx8mCFPfm22dnZ2QHbEbNmIPzbbKvsybfNpqxJc7g8tXR0473tFXhlwz68u7UCLR0HIgRGpyWoGfYzDxuNBfkZiI7yHNJmm2FPP/7xjw+aafTN85i2a6+99qDZxWG3EV2d8DaWIaphH7y1xfDW7TXyara9BJ76Ungb9xtO+wBQM+3Jo+BNGQ2kjoYndQy6U4yryiePMvLxyUPSE39Lefu+q6yY0fNvs62wJ5aPdNlXY/0irJwh92+zzX4/6bLzGdSxbySE2e8n3za7r75fMDwNpCf/dsSK95Pmg+9d9sGoZ96zaobcf22xFfakn+Pf97Nqhryvvp/ZM+QdHR1KxwsXLlTfW2VPmr6vD8n7HOSj/0mnPjX14JNDXOmQDyQIu8GKy84dGwndmRU4D5bpmWZ90knG+vA//hG49FLzaAmC0nMod1kXDB9D1YPT2uyW9i68v70cr2zYj7e3lKGp/YBznjEiFqfOzMXps0fhuKnZSIiNNq0c9957b7/fW3oEXVcHOmtLsHn5G5idl4noxv1AfSlQXwI07DPyvHYPbgZErWlPHQ2kjAJSxhjX1DEHPvM7blQX5uvanQin2bMgMETPzkdnmNnyYP1Q+0saZuCIB8MW9JoeN8Aunt1G11TQAX/hBeC887ibjLFJ2+OPs2UCDjvMVp5Fz86XtZ20HWnPNvCcGBeNM+aMVokbwn20sxKvb9qPNzeXoaa5A89/tlelxFhj47jT54zCidNzkJYYa8mO1Zxt4EyP78yJ6YiOVZu/NaTPhnfWIq4nCbxbfFOF4aTX7zvYUfe9195orGmvYNraD1EPkJwDpIyGN2UUmqPTkJg7GVHKkfdx5kdkmrYZp9iydZA2W9psqV/OQTD2LA55AITrUTdO5NltdE3DF74A/Oc/wEMPAddcY9ybOTNseBY99w3OxIZy1k/0HB673ZsNM/XMGfBTZuaq1NnVjVVFNco5Z9pX14pXNu5XKSbKg8WTslRo+6mzcjEuY4RpO1ZzpoPLOMIO3C1eOcmjgP6O+22tNxxz5ajzSqe9Z8Zd3d9vJG8X0FimkmcfkMT/bgnwvOg4Y5d4Tbt3pl077T0OfHzKsBx3abOtg7TZ7oAbbcpxfW0TeRaH3A8c0eBaRDfBLp7dRtdUnHMO8NZbfXa87ORZ9Ox8WdtJO1i6OkzdF3pm1vIQ6TCUdUx0FI6enKXS3efOwoaSOry2cT/e2FyGneWN6txzpnte2oyZo1Nx2swcnDZrFOaMHdpxao5vtxNSjTRyet+/UbPtlQcc915HXTvxPZ+bK4GudqBuj5H6Q2zSwY66/0y7/i42IeJtORIhbbY74EabEnseGsQhDxBuwN31eDyBm8If7eDZbXRDhrY2YyZ8yRJg8WLjHteIn302z9UIO55Fz86XtZ20I96eI4hnbjmT5WnCjZ+bhpvPmKGOT3trcxne3FKGT4uqsWVfvUoPv7MTo1ITcMrMHJw8IwfHTM5WIfHBRI64Qs9qtj3XSJjfN8+d7QDXs2tnvefaVVuC3Rs/QQqakB3fCU9bPdDRBFQXGKk/JGb0zqozVL7Bk4Lk0VMQlcoj4Xh/DJCUbZTRJLhCx36QNlv0LPXLOQjGnsUhD4CwDItzKM9uoxsS3HUXcP/9AI/0W76cw5DcjrZPZzwceBY9O1/WdtIOhm5fa5bDPdQuHGQ9MTsJ3z1hkkrVTe14d2u5WnO+bEcF9te34h8r9qjE49WOmZyFk2fmKgd9bHpiRLfb3DWXJyMQPBmBu7+bhYA8x8QB6eON5Lfs4m+beurw1Tci1ms47nGtVYFn2vUsfGcrwHPbmco3cxU71NZDa/zoenR4vrGbvLERXU9S93ryscPXU7jo2EpIm+0OhEOb7SbakcazOOR+4IgGjwdwE+zi2W10g960TYd/XnedsV78qqsigmfRs/NlbSftYOn2tWY5XNeOh6usM5PicMGR41TipnCfFFThna3lKpXUtuDdbRUq3Qlgem4KTu6ZPT88L12FxQdD26kYLM9BLbvgu6W11s9h1+vbffJc18717WqjuhLAON43MBLSATWzrh32AHmG7w+TXydB2mx3IBzbbCfTtgvB8CwOeYBwAx4CP3bsWFeFTNnBs9voDgvV1cA99xi7+z7wgHFv1Chg82ZjZjwCeBY9O1/WdtKOKHt2iay5KdxJM3JU+rHXi21lDYZzvqUcq/fUqM9Mj79XgNSEGBw/dSSWTB+JE6eNRE5qQlC0zZ4ZJ5qbm3vv+eZDPVNuCc8c6GW4OlPOzL7pdnUCTeUHnHTfq+8xcB3NhoPPVL6pb7pxKYZjnkYHfazazb47ZQwqO+KRPWkeotLzgDi1pZ2jIW22tNlSv5yDYOxZHHI/cBOalJSUkG5GE+6wi2e30R0W1q0DHnnECEm/9lpgvBGiOBRn3G6eRc/Ol7WdtENFN9S73ZuJSJI1fztjVKpKV5w4BTVN7Xh/e4Vy0Hmta+nA/zbsU4ngxnAn9jjnR+RnILZn9jwc2m0dpu6Lx3m8ZA9CXX8Gy3Ool10EpMuz0fUsN47sZ7a97uAj3/S57Sr15Pmb9gagcpuRekBN5/jPtKflAXTO08b5pJ7P3GU+jBw6Lh3Q0QrUyWCibKTNdgciqc12Am27EAzP4pAHEGZ6ejrcBLt4dhvdQaOyEtC7Yp50EnDzzcDnPnfAGY8wnkXPzpe1nbTD3p5NQCTLOiMpDucfPlYlHqm2bm8d3t9mOOfrS+p6N4bj7HlKfAyOmZKlZtCPn5qN/CzRsxXLLoatZzXbnm6kntn2gGhrNJz2ur2Gg15HZ31vz7XnMx12PdNetiHwc6JijQECvZ5eOe/M5x1w2nmWfBhD2mx3IJLb7EikbReC4Vkc8gDhBsXFxcjLy3NV+KMdPLuN7oCoqAC+/31g5Upg2zYgqSdc7777Ippn0bPzZW0n7bC1ZxPhFFlz7fiR+RkqXf+56ahqbMMHOyqVc75sewWqmtrx+qYylYgxqbE4ccYonDBtJI6enI20RGudLW7gpsPU9cz45ZdfjhEjgj9/3cl6PgTxyUD8VCB7at906ZDTMafTXlfcc/XJc7a9uwOo3W2kQPBEGZvNpecbjnoGr/kHrnTmQ7BrvO+mehq++f4GRqTNljbbTLixftmJYHgWhzzA6EZGRobrQizs4NltdAdESgqwZg2wfz/w3nvGMWYO4Fn07HxZ20k7bO3ZRDhV1lnJ8b2z593dXnXmOc84p3P+2e4alNZ34OmVxSpFeYB5eelq9vzYyVk4fHwG4mLM7fQFWiNOZ9ysXdaHKu9QLbsIi/qVkGak3FmBf8w17Tz6rZYOenGPY84rz2bntRjoajsQLr/n48Az7JxFz8hHVFo+xjZGwZNaBmRPBjImGPQHgWA21ZM22x0IC5uyGPJuhnMd8l/+8pdqXc4111yDh3gOs0kVKDX10N0/nQy7eHYb3UPQ3Q289ZYRjk4kJAB/+QuQlQXMnu0Ynl2vZxfI2k7aYWPPEcTzcNa6hoLuUNDZ2YEX//Rblf/bbbeh3RuFFbuq1Az6BzsqUFDRhDV7alV6+O0dSIyNxoKJmco557nns8akIppeewTDV97D1VmwdK3EkOhyTbteU46jA79fmyoMB13Potf4XOm0c4a9plAlDuVM4P92PHXgGYmZhmOeORHInHRwShp54OQTq3h2o54dAjfKWvTsUId81apVeOKJJzB37lzTww2KioowYcIEV4VY2MGz2+gehK4u4OSTgQ8+AP73P+Css4z7J5zgOJ5drWeLIXoWPTu1fo2IjcLE+CacdM5MREXNVkepfbijQjnoPGKN4e2cSWciGM5+9KQsHDslS4W3Tx6ZFLJZIs6IW7EBoK+8rYQj2mz+PyXXSHkLAhDjEW6lhsNeU4Tuql2o2vkpsqMb4akpAporgZZqI5WuDrxLfI+jfsfR+fBmTEJHaj4eeeZ1tCABN95006A21ZM2W9psM+HG+mUnguE5IhxyHjXyta99DX/4wx/w05/+1FRafGHn5OS4LvzRDp7dRvcgcNf0xYuNEPXyckfz7Go9WwzRszswXD0Hs9Y1GLqhKKPX6z0o9HJseiK+vGC8Sgxv317egI92VuHjnZVYUVitdm9/bdN+lYjs5HgsnpSJxZOyVAqlg252yCf57+zsHJbOhkvX8W02145z8zemCceiu7MT2xNXIGPRIsTwmNG2BmMmnTPo1cYsOqoKjDxn17nGff96laJ9OtQ3A2hBPOL/sQxRI6cBWZOBrClA1lQjH5toH89u1HOYwI2yFj3DeQ75lVdeibPPPhunnnrqgA55W1ubShr19fXqypeZ7wutPyQkJKCLM5gWgvTY4bCarp08u4puays8v/0tur785QN6vvVW4OqrjXPFB1k3I1HWdtK2i66d9ix6tgaR2GZz2ZeG7qD5HuV1++23m0LXijJOyR6h0iWL89Tu7RtK69XM+ccF1VhdXIvKxja8vH6fSkR2chwWTsjEookZWDgxE1P6cNDt1vMjPPYySJ0NB6HWMwcRfvWrX6n8Tf3MHodNmx2dCGTPMJI/OtuA2iJ4ehx1TzUd9V1A1U5E1ZcgEW1A6WdG8oEXHrW5nJfOefY0dfVmT0NC9lR0dSXADsi7WWQdSfWrqa0Ta4prsaqoRqXjpmThihMnh1Wb7c/zYH1Pj5elDmM8++yz+NnPfqZC1snkiSeeiPnz5/e5hvyee+7Bvffee8j9119/HUl61+p+QHG0tLQgMTHR0hElhjk0NDSo8+usDu2wi2c30Z12zz0Y+dZbKD/1VHx63XWW69kuWdtJ206e7bJn0bO02f2hsLCw3+8nTpxoe/3qq4ykRyduzJgxQ48M6PKioLYLW6o6saWyEztqOtHRffBvUuI8mJ4Zg+mZ0ZieFYMJqdFqDbrd7+bS0tLeCIHh6Gy4dEOtZ8px925jN/T8/PyAsnRCmx3V1YqE5n1IbC4xUtNeJPRcYzsb+/xfR2wqmpPy0JI0Hs3J+WhOHo/mpHx0xKWHZK16IMi72fnv5kjvEzS2d2NbdRe2VnViW3UnCuu60O3TFM7MisYdx6Qc9B+722x/npuamnD66aejrq6u3/X8Ye2Qc+v4o446Cm+++Wbv2vGBHPJAM+Tcfr6qqmpQGxtQHPx/fHy8pZWXoykcdFiwYAGiGc5sIezi2VV0V69G9IUXovMnP8GKyZMt17NdsraTtp0822XPomdps/uDDnXmVb9Dr7322t7ZyoHWvFpRv/oqI8OIW1tbVScrWNptnd1Yv7dOhbYzrd5Tq+75YkRcNOaPS8OR49OR3FqGi05ZiJRE8zZS60ve7FhyMoKzLMPR2XDphkrPQ6lzjm6z2dXmuvTK7fBU7oCnajvAKz/zDPa+/saN5UbOgHfkdHjVdSaQMwtIzAhBkeTdbBXcKOuh0vZ6vSipbVUnany2p1Zdt5UdOog1Nj0BCyZkYsGEDCyckIGJ2Ulh7U/RD83KyhrQIQ/rkPXPPvsM5eXlOOKIIw4S9LJly/Doo48qpv2FTSEw+YMvc7UuaBAw4wU3GFB55Gew5Qwl7OLZkXSrqoC77gLmzOEhtca9hQuBggKlY8+KFbbo2S5Z20nbTp7tsmfRs3WItDZbl5Nl1mPxdPaGsg7Z7PrVXxlDdd43SRw9ZaRKRHtntzpibVVRNT4tqlahkFyD/vGuapWIX618T+3cfsR449x0pjHpB68HNgOZmZlGGdvbh62z4SBUemaEoz8efPDB3rz/5niObrPTRhtp8pKD77c3KeccFduAiq1GKt+iNpvzcFO5PR/D439sG89Xz51tOOe8MmVPA2IO7f/2B3k3Wwc3yro/2h1d3dhcWo9P6YDvrlYOeFn9gQlVDe73sXBiFhZNzFQnaXD/kEh6Nw+2DGHtkJ9yyinYsGHDQfcuvfRSzJgxA7fccospIx90+AsKCjB58mTLR1bsgl08O5buv/4FPPYYkJEBfOMb3JLXuE8jtWCteLjVa8fqOQwhehY9S/0aOnh+uXaysWSy2iRuR3kjVhZVY+WuSny0vQzVrV41q87054+L1P9GpSao/xzR899Zo1NDeha6rz07tR3xPc7t5ptvVpGRrmuzi0owefJhiB4z/+AvO1rUjDrK6aRvMa7lm4yd4Rv2GWnnWwd+74k2nPJRh/mkuUBSVt+05d1sCdwoa3/aFQ1tWLOnRq0BX727Buv21qLVb+1QTJQHs8em4aj8DJXogHNDzkhBMPIO65D1QBgoZN0fDBVIS0sbMFRAg+LgC4Kjz1aGdzAcbcWKFVikd/i0EHbx7Ci6jY0HHG9u5nDJJcB3vwssWRIWerZL1nbStpNn0bPz9SxttjvaEa3nvOlzsa6kQc3irN5Tg02l9ejyXczY49jPHpOK+XnpKh2el4G8zOGvn3RC2+m7a/6vf/1rlb/xxhsPmkXSDvmt3Oi0Z+d4abP7QWu9MYtethEo2wyUbTIc9da6wL9PGXOwkz56LpAxEay9kV6/hgq3vZvtotvW2YVNJfX4tLASG0oblBO+t6blkN/xeEo9GHpkfgbmjUtHYly0o97Ng/VDw3qG3A5QgIFC3p0Mu3h2BN3iYh4DYBxd9vHHxtmnHBX7+98RTrCzXjtCzxEC0bM74EabstueGZ4+PjsF584boz43t3eq2XLloKs1jzWobe7Amj21KmlkJcVhXo+DzuvcsWnISIpzjZ4Dhdb7OuO+R7ixI83veM/skPxwwbBknZAK5C00kgbn1niuOp10dRzbBiNx9/eGUiPteN3nGWnwjJ6H+NHzAc7MjzlcOelmbSAXTrZsB5xgy32BEUUFFY1YpyKIatV1S2k92rsOnv1m1Zqak6wGKuePT1cz4JNHJiMqyjnH3wUj74hzyN977z3Tww127NiBqVOnuipkyg6eHUGXo2/vvquONePGbTjqKIQj7KzXjtBzhED0LHqW+mUNRsTF9J5prmdGdlc1Y21xrUqcEdpcWoeqpna8s7VcJQ3Oms8dm47DxqVh7rg0zBmbhtSEWFe1nXpW3Bc8zi03NxdlZWW4i/uwuAAhkzW9nbSxRpp2+oH7PE+dM+jKQV8P7FsPlG82ZtMLlxlJIz7NmD2ncz72SCOljQu5ky7v5si1ZbZznOle3+t812LD3jo0tR96xFjmiFhMzYzFsTPG4oj8TMzNC9zOOQldQcg74hxys8Et8hn7b/VW+W7kOSLpdncDn35qbNJGjB4NPPUUMHs2MHMmwhV21uuI1HOEQvTsDrjRpsLdnjkzMiE7SaXzDx/bG7bJTYu0k85ObGFlE4qrW1T63wbjTHRiUnaSctDnjElTYe+zx6QhNTHGMXrmjLf/Bm6BOvvcyDfCVlKGd72OTwHGLzaSRme7csq9pSLUUJsAAEUGSURBVGvRXbIaUWXr4aHT3lYHFH1gJI2knAPO+dgjjBTkDu/hbstmIBLbbM58765uxsaSOmwsrVMh6LwyEsgfibHRmDM2FXPHpatBRoaej89MVA4qw8atXppgF4KRtzjkfQjUbbCL54ii29AAnHwysHYtsH79AQf8wgsRCbCzXkeUniMcomd3wI02FWn2HB8TjcPHZ6ikwd3b2cGlc76hxHDSOeO0q7JJpf+sLe39LXcTnjU6Rc2gM9FJz0215vgis2V92223HbK2/IYbblCzSpGm52BhOb8xcUaY+uh5wOHfMJbadXUYG8eVrgVK1wClq42Z9aZyYPurRtLInAyMO8oImR+30NjpPXpo7oTbdBzubTZPmthZ3ogt++rV/hh0vDmY2Nh26EbEsdEezBiV2ut4c+Z7yshkxEQfTIcDa6LnwUMccj/wQHm3hbnaxXPE0U1JAcaMAbZtA7ZuDesZ8XCq1xGn5wiG6Fn0LPUrvMFNjI6dkq2SRnVTuzp2bX1xreoMb9pXp2bQS2qN9OaWA+HumUlxmDk6RXWIZ4xKwczRqZiSk4yE2OiIakcCrREnrd27dyu6bkHYtNl00umgMx15yYFd3hnqXvLZgcQ16dUFRlr/f8bvYpOMmfO8RT1O+gJgRObg6EqbbZ2Oe2TN9oaON9NmptJ6tQa8o+vQyJT4mCjVxnD2m9E7HBicmpusBhuHQ9vp6A6CZ3HI/cDRHArSTaM6dvEc9nRbWoClS4ErrgD0+bf8zA1pcnMRSbCzXoe9nh0E0XNkw/cIKM4g9rWxlRttysn2TCd7ybSRKmnUNXdgU2kdNpbUYvO+BtVx5gwWO9Mf7axSSSM6yqNC3tlxnjE6BdNzUzAtN0XNsA9nwyQ31i+7ENY2FZt46OZxzdVAyWpg7yqgeIXhpLfVHxrqnjW1J1T+aCD/6IM2jBM9W4OW9i7sKG/A1oYR+Odr27C9rBHb9tcHPOubSEmIUW0Ij280onJSA858Dxai56FBHPI+Rjjc9EKwk+ewpnvGGcCyZUBTE6DXvo0bh0iFnfU6rPXsMIie3QE32pRT7HkwAy9pI2Jx9OQsLMhP612DqTvYxuxWA7buN64Mg+e56Uz/XXfgGSPiotWuxnTOVRrFa7I6P32gsHerZO27tpwhrtxp3Qk6dqxNceZ76qlGUg/oAiq2Gc65ctJXAlU7DqQ1fzN+lzzKcMzpoI9fjO7M6YiKc9dO62bpubWjS+1NwQG7HWVsFxqwvaxBrf/uazuG/KwRmDkqVTngjLiZNSZVDeCFejmMU9psK3gWhzyAIHmou9tCLOzgOezp8jizwkJgzhxEOuys12GvZwdB9ByZevY9q1nDN+/vsLnRpsSeo9X5vMamSem9cqETu7++FVv3NWDL/np1ZWd8V0UTmtu71BFETL5IiY/BpJxkTB6ZpMLdefQQr+MzRyA2OsqV9csuRLxNRUUDubOMdNSlB2bR6Zjv+RjYs9yYUW/cD2z6t0p0+aIY5p5/DDDxeGDC8cCouUNehx5JCIWsuZ6bTveB1KCue6qb0d2H482dzvNSozFvYg5mjErD9FHJmD4qFcnx5sta7Dl6SPLyeB2+neVgD2S3G3YeZC8AUFEB3Hkn8IUvAKf3HBlC0+BxZomJIROR6NkdED07H6HU8b333tvv9wPtTi2IDD37DrzojcxuvPHG3nO5Q3n2dmdXN4qqmpVzzrSD4aplDWomrauP3js3a8rPSlKO+sTsZBUGz13jJ2YnITs5ztE7JUubbSK4Fp2h7Xs+AXZ/Yjjr7Q0H/yY+1XDQJxxnJDrodPZdpueOrm4UVzcrO2UqqOC1UeX7CjUnUhNi1KDa1JwUTB91IGUnuysKIRx1PFg/1P6Shhk4PsGXJl+MTn75hAPPYUWXnaMnnjBC1Dds4O4yxnqnEDrjbq3XYaVnh0P0LHqW+hW+CHT2tnbMAw28BGPPXPfJDjrTWYeN7r3Po9h4XnpBzywbN3PaWdGIgvImtHR09c6+AWUHPY8zahN9HPSJ2SPUjPr4zNA569JmO/TdzLXo2tEm3a4OdOxdi9iSFfAUfQjs/tg4cm37a0bSZ6LTQZ90opFGTg/5eeh2yZqbp+2taVYh5bsrm4xrVTOKKpvUbHdnX9PdAEamxKt13dxYTdk3o1tykzEyOfDpC27sE9iJoNps00oVoWCIBXf55DlybgqZsoNn2+mOG4dovVkbj2BZs8aYJXeg3u2s17brWWzZ0fJ2gp4DHQHlO3PqDzfK2gl6DgeeuTuyXlN+MC0j9N1Yh1qPdbv2oaYjBoVVzWqnd4bLcid4Jn8kxUUjTznnI9Ta1PFZSSqfl5GIMemJg94BXnTsDpvqRhSK2tIwedHliD7mKmMdOndzVxvD+TroPsetcQ26ds4nLQFSxyCcnTJuvsjjDItrmtWVjvfWkkpUMligtqXPEHMiITbKiFAZmaSiVDgANmlkMiZmJam9JYYCabOtRTDylpD1MEG4hVg4Gjt3AtdcA2RlAX/9q6WkRc/ugOjZ+TBDx4PdZV1gHSI1ZD3Um0YxjJbnpKtQ2grO6jVhT1Uz9tW39rlxlO+s3riMRLVp1LiMEUY+IxHj0hMxOj3RkvWsA0Ha7DCCctDXA7veBwrfNxz0ztaDfzNyRo9zfpKxDj0uyTI9c/CqorFNOdb7altR2nM8IW1EO+Dcv6E/0Ome0DNwxagTDmTlZ9LxTlKbLg7ndARBeNqyhKwHGLXwvXIHvEB5hhg0NzcjMTGx9z7vMfnmu7q61Pd95TUt3zxHSzhy1ldeL+fXef7XNz9Q2QfKB+JD/6atrU11CliWUPPkz4fOa1knJCSo34eSp/70hOpqeF55BV52fn72M3SPGRMyngYqr2891LIMBU8D6Yn5lpYW1eFjAxVKngbKs1ysX7QprXcr7Il5doDj4401VFbZkw5T8rVpK+xJy7q1tRUjRozopW22Pek8r6TNOqZHhs22J982u692xAx7CtRmh5KngdoI3WZT1rq8Vryf1E7fLS3Kpvx5NdOemNjJoj2zHdFlN9ueBttmD5Yn6ot5XW94j+0x75MPLWPNEz9T3uRZP8dsewrUjsRFezA1N0WtLffnqa2zG3vpnFdzNrAFRZWN2MOZweoDjklFQ5tKa/bUoq/jlkanJShHJDclDuMykzAqLR5j05OQmxqPkSlxSEs0BivM6hv5t9lW2JOmTx1T1r78mW1Pus3uq+9nlj0Nps0GPIgaczi6R80DjrkaUV3t6N6zHJ7C9+HZ9R68pWvgqdgKMK34HbzRcfCMPxrdk0+GZ+pp8OTMQlcfbYS2Mybm/fno6OxCeX0rKps6sL+uBfvqWlHe0KacbpXqWlFW3xrwzG5/sO7mZYxQg09j0xMwLi0ek3JSlCOem9Z3f8hoIxCSuheo72dmf8+/jgXq+5lpT96e+9qWhtpmB2NPury+PqSub4OBY/eiX7p0KWbNmoUFCxaoz+Xl5epaWVmpElFWVobq6mqV37dvH2pra5WAt2zZovJEcXExGhqMzSeKiorQxCOwwM23C9ULi+DOiXrkmwfCs+PA5zDPKz8zT/B3/D3B//M5WoH6eaRHugQ3ASgpKVF5lonlJFhuln8wPBF8Bp8ViKfGxkb1fah5oqz4/L544nP4v9LS0pDzdJCemN+ypZen7iOPxK5rr0X7p58qZzyUPA2kp6oq4+zYioqK4Hgaop6Y37Nnjyk8DaSnvXv3Krosg1X2pHli+Tk6aaU9aZ5YHivtiaipqcHWrVvVM02zpz54Yp663r59u2X2xERa27Zt6+XPCnvSPLGjE0qeWFcvv/xytZaYuuxLT8zzSpu20p74+127dim6VtsTy8JQQP3esMKeWL79+/f32laoeOL7nsjOzu5XT0zr1q3rzZthT7zPTQUfeuih3vvkeefOnUqWA/HEcPSopkoszEvCJcdMwNdmJeDRi+bgjeuW4N9fm4jlt5yAl646DnecmIvbzpiGbx49HovyRmDGqBTliKuytnaqM5KX7ajE86tL8eBbO3DLvzbi60+uwGkPLsP8H7+FWXe9jiX3v4MvPPI+fvjMGtz1wlr85uW1eHFNCV5fW4QPN+xCZWMbKiqrhq0nOg/sD1llT9rmN2/erP5rtT2xHvK3VtoTy8lnsn5p2xqQp9gElMRNRt1R1wDfexd7v7oMzef+HjjqMnQkj4Gnq13NpEe9dTc8jx8DPDALjU9fis71/wJaalXZm1raUFzVhP8t34TP9nfg6RW7cc/zK3DHixvwnb+swpkPvotFP38L0+98Dcfe/x4+v/QjfP/vq3HPS5vx2HsFeHFtKVYW1ahBJjrj0R6oiI/5Y1Nw2rR0/GDJZNx22gQ8dP4UvHPDEnxw9ZF46Ttz8c/Lj8GtS0bhksMzsXBkN8bGtSKuu1U5cWa/n3S/i+2mVf09X574nuD7gmWwyp4aGhpUP0TblpX2xDKxzOvXr+/lT/M0GLgmZJ0v0/T09JCPhoRqhIchbAyxWLx4ce93Vs7oWTFqZQtPu3cj6gtfgGf3bnRt3Yqo7GxbeaJhrlq1Sg0UcbRS9OTMusdyL1++XIVMcfbBCTw5UU/B8OTfZjuBJyfqKVieBtNmRxpPvmVkJ/e+++5T92655RY1a2klT/Ut7ahobEdJjTEDWdYzG7mPqb5NzVbWtw6uQ6vK6QEyk+LU7tLcbI7XrOR4pI+IVUdAqXxiLDKYT0lAanw0YmOiD2mzw01PTrGnkM28dnpR19qBqvpWtJRtR8Lud5Feugyjqj9FrPfAbuRdiMIaTMcbHfPxdvcRKPBy7Xn/4eDRUR61SRpnuHNTE4zojbQEjElLwLjMESqSY2RyHOJiY0RPYVj3Ojo6VJu9cOFC9b3d9sRBPvqfssu6bqR7FKuvfeWpTI4aJiUl9ft738X6Q8lTQX3lmfrLD1T24ebJMysMeda0rOBpsLIOJh89diyH1RinhOiNG4GTTlJ0ObOl+bVST771cLB1MhR1jzxzJE/L2sq6x2do2lbaE6HrtaZlhT358m2lPQ1W1kHZ0yDrmD/fZrZ7wbYjwdQ93/Ja2ZYHarOteD8FakessifmNW0r37mhaLOHW/f6eleFwp70rBQ7jBrM877u1A6nHRlq3UsbEa/SlJyUgG0I0dLehfIGhgq3qXBhJoYRq2t9m5oZZ6pp7lCbZVU2tqs0WPDIqLTEWER3t2PM5k+RkRSP1MRYdU+n1MQYtdads/rJ8bFIVlemKOXADbfuEbr9stKedJs91L5fKOoe6dY1NKI7Ol5tFsgIifrWDnU1ks53oLa5A7UtHahT1/bez+2dB5b3GDhMpXi0Y2HUVpwYtQ5LotZhSlQpjsIWHBW7BbfjGezFKKyIPhyF2SeiduQCZKYmqz0O6HjT6aazzUEb6nQwCFWbbVbfqL8222xfo6/+iNn+U5RPfy/UbfZAevJts/V9X1vvD/avdg8zUJgMb58wYcKghRjpsItnU+gyFPDvfwe++13jiAxu6PDss0BuLjBypHl0wxx28uyo+hXmED2LnqV+OQdm2nN/R7CR1te//vWwabMT46LV+ehMA53hzN2tuV7dcNLpmLehpqkdNc3tqG7qUFd+rm42nDuCM/B6Fr6ozghZHQpGxEUr55zXxDjjeiAd+Mzwfqb4mCgjxUar9fl11ZUYP3Z0z+codWQdz4SPZT7KuBrJoxxF5YxEeVQ0QBSdDp/P/vrSQbA6FpaXbq6f7vaq9dKFe/dh3Lg8dIMzfl50eb3o7PIqWTI0m45vu8ofSLzHvQM4UMIN/1o7u9WVx+a1dRzIN7V1obm9E03tXWhu61T7CdAB573BrMEeCOQ5Y0QcspLiVFREZnIcMkcwPxuxyV/B1qQ41HWXYXzVB0jf+y5i9nyIcV37Ma7rVaDsVaAmBZhyMpBzJjDxdGBEOsyCG/tB0gfzDEle4pD7gSMekyZNgptgF88hp8t1GkceCWzdCqSkAF/5inF/zhxz6UYA7OTZMfUrAiB6dgfcaFNiz9Z2pCOxftFp5Uwn02DQ2dWNuhY66R2obmzFyrUbMWr8JDS2daGupVN9pxNna+lMqsTZ27bO3llaOpoD7ao9MIy1rvZgu22UOVDBqIOUhNiDrqk9eUYncLlBemKcuvZ+HhGnjtsb2MlkiPrhAK4G2hrQteNtVH78D+TUrYWnqRzY/B8jeaKBCccCM84BZpwNpI0LKZ/SZrsDUUG0YeKQB3gRccF+SkqKq2bV7OA55HQ5G/61rwF//COQmmod3QiAnTw7pn5FAETPomepX86BmfbMY/X6OoKNdLn/jtPbbM5EMzyZqTMzAR37YrFo/phBH5XU1tmlnHMdds1ZYTrmLZwV5uwwZ4rbjZlhpjbOJndwdplroI2ZZF6b2zrQ0c3ndatBAs4ed3YbVz0rzVnrzv4Orw4BOMOuwu+jPGqmPi4m6qDZ+bgYY0afcuOxXQkxB2b91efYaCT65JN6ogaSGCUQb1yT4o3fdLe3YFRWulq/bxniU+CdcQ521o1E1sIFiCnfAGx7Ddj6P6B8E1C4zEiv3gyMng/MpHN+jnHEWpD10Y39IOmDeYYkL3HIA1QgbgCXnJzsqk68HTwHTZe7JN55J3DDDcD06ca9G280Picmmkc3AmEnzxFbvyIQomfRs9Qv58BMew505jmdcX00G3fAlja7f8THRCM+OVo59MMFZc2dm/Py8g5ak9pXfWCoOf1yhp0bCeqe73e+VUVnfetPtFpby++82Fdagvy8POUYW/WeNHiuQHRUBmyDJwoYe6SRTv4RUL3LcMyZ9iwH9q010js/BTInA7POA2Z/ARg1d1jOuRv7QdIH8wxJXuKQ+4ENYn5+PtwEu3gOmu7VVwPPPQfw2LSXXzbuJQwcqiY6thYRW78iEHbyLHoWWTuxftkJt9mU6Lh/0KGK4XlbIcTUSRNhNcJSz5mTgGN+aKTGcmDbq8DWl4Fd7wHVBcCHDxopYyIw+3xg1vnA6HmDds7daFNhqecw5rn/4TgXgiM6PHtOb4ThBtjF85Dp8nc+O8LiJz8Bjj6asXfm0nUA7OQ5YuqXAyB6dgfcaFNiz+aAM+I8955Jz5q7sX7ZBTfaVNjrOTkHOPIS4GvPAzfvAi54Eph5LhCTANQUGo7575cAD88H3rwbKF1zYNe8PuBGWYe9nsOMZ3HI+1hv4bYKZAfPQ6LLjdrOPJNbwx64N20a8PHHwLHHmkfXIbCT54ioXw6B6NkdcKNNiT07X9aiY2sheh4E4lOAwy4Evvx34KYC4MI/ATPPA2ISgZoi4KOHgN+faDjnb/8EKN8qsra5ftmJYHiWkPUA4QZcy+Mm2MXzkOiuWQO8/jqwciVw3XVAzxl/ptN1COzkOSLql0MgenYH3GhTYs/Ol7Xo2B3yjlg9xycDcy4wUnsTsP11YPOLwPY3DOf8g18bKfcw4LCe36WPd62sI1bPNvEsM+QBNpuorq5WV7fALp77pcvQ9OLiA58vvtgITadDHoQzPiBdh8JOnsOyfjkUomd3wI02JfbsfFmLjq2F6DkIxCUBc74IXPRX4OYCI6x92plAVCxQtgF46x7gocOAP50BrPwDuhvKXWdTYs9DgzjkAdDS0gK3wS6eA9JlePoRRxgh6jxbnODGGT//OTBlinl0HQ47eQ6r+uVwiJ7dATfalNiz82UtOnaHvB2lZzrnDGv/6rPAjduBc38LTDje2ON+zyfAKzfC88AMJL54qXHmeUerpcWTNhsRIW8JWQ8QbjB27Fi4CXbx3Cfd3FygpMSYJd+8GZg71xq6DoadPIdd/XIwRM/ugBttSuzZ+bIWHbtD3o7W84hM4MhvGam+FNj4ArDheXj2rUXinveAPe/Bm5AGD8PZ530FGLcg6DPO3dhmt7e34xc9e0rddtttAY9xjDSeZYY8QIhFZWWl68Jc7eC5l25DA/DCCwe+yMgwPu/YEXJn/CC6omN31C/Rs6PlLXp2h6xFz86XtejYWoieTUbqGOCYq4Dvv4+2736IFXHHog7J8LTWAZ/+CXjyNODRo4BlvwJq95hSBGmzrUUw8haHPAA6OjrgNtjFc2d1NTyzZwMXXACsWnXgixNOALKzTaMrOrYWdslb9OwOeYue3SFr0bPzZS06doe83aJnzuSqlDoBHyeeht/iO2i56P/QNecieGNHAFU7gXd+aqw3/8u5wPrnQx7S7qQ2u71Hnr7PZV7fDwcMl2fXhKzr0Qp9ZVhBX/nc3Fx4ekJIeJ95Jt98V1eX+m1fef1f33x0dLTaCr+vvN4mX+f5X9/8YMreXz4QHzo/evRoVXbSCjVP/nz45nO4JvzEE4EPPzRmynueHwqe+uJD0c3JUfd0eUPJU3/l9a2Hmm4oeBqMnkaNGtVLK5Q8DZQnSNsMnvrTE8F67atjq+zJ144Jq+yJYPtlBk+D0ZOuY5pvs+3Jt832b+vNtif/Ntsqe/Jts7WsrXo/aR0HeleZaU+6rdbtiFX2NNg22yx7Yt7/XWWFPfXXjphtT7rN5u+ttCf/Ntsqe+JztKyttCdd9r76fmbZ02DabLPsidC8+tcxs+xJh1X3whOF+59fAWAc4vFt3PL5mfCsewYo+gAoXKYSQ9px2EXwHPFNdOXMDrru+ff9rLAnbVOB+n7B2NMvf/nLXhvV7eKvf/3r3vxdd911EK9DbbODrXtMus32rW+uniFfunQpZs2ahQULFqjP5eXl6spQAiairKxM7T5I7Nu3Tx3mTgFv2bIFNTU16n5xcbE6U44oKipCU1OTyhcWFqK11RjFKigo6B2Z2bFjBzo7O9VzmOeVn5kn+Dv+nuD/+Ryiubm593mkR7pEXV0dSrieGlDlYzkJlpvlHwxPBJ/BZwXiqbGxUcln165dIeWJsuLzD+Jp3z60f+97KN28WT2Hvy29+Wa1Vrx67tyQ8dSfnkh37dq1vfmgeRqCnqqqqlS+oqIipDwNpCfmS0tLsXPnzpDzNJCe+DzSYhmssic+l3nW6/r6ekvtSfPE8phuT348saxbt25VzzSDp/70xDyfvX37dsvsSYeGkabmzwp70jzpzVustCc+g+8n1u3du3dbZk98Pn9PmkxW2xPfT3v37lVlsMqeWL79+/erPGVupT2RBya+q3TeCnsiyDOfT1laaU98P7Fesz9kpT1pntra2lR/yCp7Ivh+2rRpk/qvlfbEslDOlDflbpU9sZzahrVtWWVPmi5hpT2lpqYiOTkZKSkpSE9Px4gRI9T9ERk5qJt4NvCtl7H3S6+h9ejrgbQ8FdLuWfUH4Inj0bH0WHR88jugpXZYdY/32W6y/bTanvS7gmUIlT2NHDlS5WNjY5HdE0XL9eNZWVm9PJFfbVtW2hN5YpnXr1/fy5/maTDweAfrukcoqJC0tDT1MqUhDDQaQrCBotI5ImPGKHCgPEMcVqxYgcWLF/d+Z9WIKZ9PRzEjIwMxMTHmzkAccwywYgW8114L729+oxxTGhLpmjlq5ZtnObSO9XPMGgX2z9MwV61apQaKyLNVMxD8nrLOzMxUDZmVM3rkmfVLN6RWzZDzv2xcWb/4LCtnIEh7+fLlWLRokZK3VTN6lDVfLhyh1TDbnnSeIG3WMdZtK+zJt83myzlQO2LWjJ5/m22VPfm22ZQ1aVo1Q074ttlWzuhR3rRntiO+s4tmz+gNps02w570Myhv33eVFTPk/m22FfbE8pEu+2q6c23lDLl/m22FPfH3fAZ17BsJYYU96Ta7r76fWfakMZy+XyjqHp062jP1zHtm25N2MDnY8+STTypn7vrrr0d8fLy6z+tBfHi70V3wLjxr/gbP1v8B3T3hzzGJ6J55HjxHXQrP+MXo8tNNX3oK1Pezaoa8r75fMPbU2tqq8tTjAw88oO7dcMMNvW0zeeS7gjpeuHCh+q1V9qTl6OtD8j4H+eh/0qnn4AzcHrKuFauv/eUZYjHQbyjo4eSpuL7yOsShr/xgyj7cvG8HPqQ8MdMTCqX4uPde4K674Ln4Ynj8wpbM4K+v8vrq2Eo9+dbDodTJUNQ9X1lbWffYUPrSDiVP/emJdP3rtVX25E/LqjaCPPvW7VDzNJQ6FiqeQtVmm9GW+5bX6rbcv25b9X7yb0essid2tAK1I2a/c0PRZg+37ulw01DzFIo22wx7oo77a7PN7hv19Uwz7clfx1bZky7LUPt+oap7ZvT9fMtLR+inP/1p7y7cvjaly2SFPendv/lZz6zSCfffFbz3v55oRE09FWBqqgTW/x+w+q9AxVZEbfg/gClnNqKPuhSY+2UgIXVAPfXVZpttT321I8HYU2JiYu99PUhMWfrKU5eBvw91mz1Q3QvkX2i5DoQDTxMocMRDh9S4BabxvGkTcPrpwD//eeAePy9fDixaZJusRcfWQvTsfFnbSVvs2R2yFj07X9aiY2sherZW1v3NjgZEUjZw9JXAFcuBb78FzP+6milH+SZ1tjkemAm8dC2wf0O/dKXNtg7ByNs1M+RDAUdp3QZTeP7Xv4A33+RCEmMX9d4RQI/tshYdu0Peomd3yFv07A5Zi56dL2vRsTvkbRZdvR7ZfxfuQLOaVoIzuN/4xjdU6PiQy8A+c94CI53+U2Dds8axaZXbgc+eMtK4hcBRlwGzvwDEJji+zY6Li8Pdd9+NcMRweRaH3A80FL1RgFsQMp65cQE3PuhZ/4UbbwS4ucKttx5wxs2gO0SIjt0hb9GzO+QtenaHrEXPzpe16Ngd8jaT7iG7mgNqF26NH/3oR7ADXE/NzaZ1CL1/yPqgkZgBLL4cWPQDoOhD4NMngS0vAXtXGun124EjvwUs+DaQNk7a7Aiq2xKy7geGGXBHPbeFrAfN86efAvPnA5ddduAed5L8/e+BSZPMozsMiI6thejZ+bK2k7bYsztkLXp2vqxFx9ZC9GytrLmxV8jAWfOJxwNf+jNw3Wbg5DvVDu1oqQY+fAB4aC7w3CXoLvoIJT2nU1gNseehQWbIA8B30wC3IGiek5KAbdvUsWYoLQXGjLGG7jAhOnaHvEXP7pC36NkdshY9O1/WomN3yNssupx91mHqemb8xhtvtC1s2zeEPlA4/bBnyn2RkguccCNw3HXAtleBFb8zzjXf/CKiNr+I3JFzgGOuAOZccEg4u9kQex48xCEPEG7ANR5uwrB45m6Rq1cDS5YYn2fOBP7v/4ATTwQG+Sy7ZC06doe8Rc/ukLfo2R2yFj07X9aiY3fI20y6gRxcOuP6/mDPhLYqhD6k66CjooGZ5xhp/0Zg5RPA+ucQU7ER+M8VwJt3AdydfcF3gJRDT2MJNcSehwYJWQ8QYsGD390Wsj4knouKgOnTgbPPNmbDNb74xUE748OiGyKIjq2F6Nn5sraTttizO2Qtena+rEXH1kL0bB149BXPex/sEVhBY9Qc4LxH0H3tJtQedS28qWOA5kpg2a+Ahw4DXrwSKN9iahHEnocGmSH3A40lJSXFOqOJRJ7z84EJE4Dy8iGFpwdNN0QQHVsL0bPzZW0nbbFnd8ha9Ox8WYuOrYWT9Rwuu3DrEHqGqz/22GPq7GwrQ+g9SVlGKPuZdwBb/wcsfwwoXgGs/buRppwGHHMVMHHJQScghYS2+FNDgjjkASpQSDdecALPdLoffRT48Y+BmBjDaJ97Dhg5EoiPN4+uSRAdu0Peomd3yFv07A5Zi56dL2vRsTvk7SY9+4bQt7S0HBJCb6msZ59vpOKVwMePAFtfBna+aaRRhwHHXG0cmxYdmsECN+k5FDxLyHqAEIvdu3e7LmS9T5653uboo7kQBvjjHw/cHzcuKGd8QLomQnRsLUTPzpe1nbTFnt0ha9Gz82UtOrYWomdrZc1181ZHIwTUcd5C4Mt/A374GbDwe0DsCGD/BuCF7wK/nWc4620N5tB2OLqD4FlmyO1e5xHuPHNG/KabgKefBo46yjq6JkJ0bC1Ez86XtZ20xZ7dIWvRs/NlLTq2FqJn6xAfH49LLrnE8iUC/eo4cxJw1q+AE28zzjNf8XugvgR44w5g2a+BRd83zjsfMbwN+MSehwaZIQ9QgVJTU13nkPfyvH49cOqpxg7qGpdfDnz0kSkOuR2ydr2OLYbo2fmytpO22LM7ZC16dr6sRcfWQvQsslagw33CTcC1G9RGcMiaArTWAu/fBzw4B3jtdqC+NGLql50IhmdxyP3AMINdu3a5LsSil+df/Qp4+23gllsO/CA6OuSbPRxC10K4XscWQ/TsfFnbSVvs2R2yFj07X9aiY2shehZZHwSeUX7EN4ErVwJf+jMwai7Q0QQsXwo8NBf47w+BqoKwr192IhiexSH3A0c1cnJy3DOi09EBT0vLAZ65VvyrXwX+8AfHytp1OraZZ9Gz82VtJ22xZ3fIWvTsfFmLjq2F6Flk3ed55tzc7fvLgK//C8g/FujuAFb/FXj0KOD5S4GyTWFbv+xEMDy7xiHXoxW89penEEeMGHHQ/3hMgX++q6ur3zyTf57oL6+fwasul29+oLIPlD+Ejw8+gHf+fODuu5GcnGzcHzsW+Mc/0JWXFxKeAvGh81rWvuUKmqdB6Il0ExMTDypvqHgyRU8hqHvkOSkp6aDyWsUTn0PaLIPV9sR6rWlZrSdfmw4VTwPpiXnalJa1lXWP0HXMSnsaqB0xw5789Wt1G0GwbvuWwWx70rKmjgO9q8y2J+Z1O2KVPdndlhP+7yoreOqvHTHTnvgc3WbboSer7UlDy9rqukf09v0stKfh9v3MrHtmtxH8j26zreQpUN9v0DzR/iedjO5LXgYuex3eqZ8DvN3ApheAx4+B99mvq83g+rOnQH2/cNZTd5B1z9e/8OfPtQ750qVLMWvWLCxYsEB9LueZ2QAqKytVIsrKylBdXa3y+/btQ21trRLe6tWrUVNTo+4XFxejocHYbbCoqAhNTU0qX1hYiNbWVpUvKChQZwwSO3bsQGdnp1IU87zyM/MEf8ffE/w/n0M0Nzf3Po/0SJeoq6tDSUmJyrN8LCfBcrP8g+GJ4DP4rIN4amiAZ/NmeJ9+GgUbNqgwi1DyRFlRZn3xRFlv3Lixl7+Q8DQIPZHuihUr0NbWFnKeBtJTVVWVyldUVISUp4H0RJ63bduGnTt3hpyngfTE51HPLINV9sTnMk9+yYcl9uTHE8tjpT1pPtasWaNkbZU9aZ5oT7yynlllT0zkde3atcqmrLInzZM+xsZKe+Iz+H5i3eZurlbZE59PWW/atEnRtdqe+H7aunWrKoNV9sTy7d+/X+UpcyvtiTx0dHSodxWvVtmT5mPDhg1K1lbaE+s0k26/rbInzRPbsMbGRsvsSfPx2WefKVlbaU8sC/Na5lbZE8tJXlm/NH9W2RN50WW30p54j+8nypn/s8qe+HvKmu0m28+geBq/GBWnLUX1Rf8FZp0PLzzwbH0J+N1xaPvrl9Cw4+NDeOJ7gu8LlsEqe2poaMDevXtVvr6+3lJ7YpnI68qVK3v7BpqnwcDjHazrHqGgQtLS0tTLlGfD6RGPqKiogHmObtA55giHvs97eoRH5yl0ft9XnuDvffPR0dG9Izb+ef3iXbx4ce93/K8eIeqrvEPJe+iAFxWh+7DDDvD0+OPAl7+MtsREdTYiaYeKJ9+yB8prWSckJKjfD4unALoZSE+E1rH+fah4Gqi8NMxVq1apgaKYmJiQ8TSQnphnA8GzL0k3lDwNlGe52NGhvLXezbYnnWcDzt1NdVlCak/96InlXr58ORYtWqTsygp70rLmS8F39sFse9J5XkmbdYzltcKefNvsvtoRM+wpUJttlT3pPG2KstblNduetO2yHaFN+fNqpj0xse2kPbMd0WU3254G22abYU+6LJS377vKbHsaqB0xy570jBftivWLn62yp0BtthX2pOlTxzoy0yp70m0225FAfT+z7GkwbbZZ9kSwDaE9U8+8Z4U9Mc/fkzbbbJbJCnvqq+8XEp72b4Lng1/Bs+lF1lp1HzPOQffxN8EzZl5vGQP1/cy0J6/Xq9oQ6njhwoXqe6vsSZfX14fkfQ7y0f+kU88N3+B2h3wgQdgNvvTZuWMjQaMJObhr+llnMf4N2LIFSEgIPQ2B/XoWhAVEz86H6NgdED27A6Jnd0D0HGKUbwWW3Q9sfOGAYz79LGDJLcCY+bADnWHWzx6sH+rYkPXhgqMZ27dv712b4BhMnw7Exhppz56w4NltdO2EnTyLnp0vaztpiz27Q9aiZ+fLWnRsLUTPIuugkTMDuPBPwJUrgMO+xHleYNsrwO+XqDXmRatek772ICEOub9AoqKQn5/fG3oQseAait/+9sDnpCTgjTeAjRuBadPCgme30bUTdvIsena+rO2kLfbsDlmLnp0va9GxtRA9i6xDhpHTgQv+aByZ1uOYc415/itfQdR/rwBqjDXeTkdUEG2nezySQYJrAbh+ideIBTcimD0buPZa40xxjZkzgbi4sOHZbXTthJ08i56dL2s7aYs9u0PWomfny1p0bC1EzyLrkGPkNMMxv/xjtabc4+2GZ92zwCNHAS9fD9QbG6s5FZ4g2k5xyP2gdySM6HDm9HTgm98EjjsOGDkybHl2G107YSfPomfny9pO2mLP7pC16Nn5shYdWwvRs7tkzU3l7r33XpX0zuamIXcWur70VxSd9hS8k04yzjH/9Eng4fnAG3cATcaJQ05DVxB6FofcXyBRUZg8eXJkhTOvXQucfTbQczyLwq9/DSxbBsydG7Y8u42unbCTZ9Gz82VtJ22xZ3fIWvTsfFmLjq2F6FlkbXb9GrvwXOAb/wZ4lnneIqCzFfj4EeC384D37wfajWPDnIJgbMo9HskQEFGOGjfJv+IK4JVXgDvvPHCfRz0NIWTCLp7dRtdO2Mmz6Nn5sraTttizO2Qtena+rEXH7pC36Nk66CMjeRyYBvO8Z/ZMea+eJx4PXPY68NXngVGHAe0NwLs/Ax4+HPjsz0DX4M7qjgQMt267zysZAL4H0octaFQ6HIJO9wMPqLPED3LII4Bnt9G1E3byLHp2vqztpC327A5Zi56dL2vRsbVwsp4tDc8Oc1n/9a9/xX333YdfM3K2B8z/4he/UMkynumvTPsc8L1lwAVPAun5QGMZ8NI1wOPHAFtfMSYZIxjB6Fkccn+BREVh6tSp4Tt69+abwGGHAX/604F7ixcDzz4LjB8fUTy7ja6dsJNn0bPzZW0nbbFnd8ha9Ox8WYuOrYXo2R2yLisrg9cGR7dPnvn5sAuBq1YBZ/wSSMwAKrcBz34FeOosYO+ncKOe7T8xPQzBkY2wddY2bQK2bTOONPvOd4YUlh6OPLuNrp2wk2fRs/NlbSdtsWd3yFr07HxZi47dIW+z6OrZcP/wbA07+312yfqGG25ATEyMCl3Xs+Q33ngjYmNj7eU5Jh5YfDkw7yvARw8Byx8H9nwM/PEUYNb5wCl3AVmTEWkYrp7d5ZEMUpAFBQXWhpV0dcHz/vvIfvNNde0NRyfq6oAin/P7rrwS+NnPgI8+CqkzbjnPLqRrJ+zkWfTsfFnbSVvs2R2yFj07X9aiY2vhRD3rMGyrw7PDWdbFxcXKIfd1wJmPi4tTyXaeE9OBU+8BfvgZMP/r6gxzbH4RWLoIeP1HQEstIgXB6DmsHXIaz4IFC5CSkoKcnBycf/752MbZYRMRHR2NGTNmqKsleOEFYMIERJ96Kqbfe6+68rO6/847wNSpwCWXHFhXQYO6/XYgLS1yeXYpXTthJ8+iZ+fL2k7aYs/ukLXo2fmyFh1bC9GzyDqs6lfaOOD8pcAPPgSmnGoclfbJo8AjRwCrnoyIjd+CsamwDll///33ceWVVyqnnKEWt99+Oz73uc9h8+bNSEpKMoUm11kw5IWjRsM52H1IoNN94YWHbmJQUmLcf/xxoLERKCsDysuB3NzI59nFdO2EnTyLnp0vaztpiz27Q9aiZ+frWXTsDpsyk+5tt93WG6ZudXh2uMua6e677w5/nkfNAb7+L2DHW8Drtxvry/93PbDqj8DpPwcmn4RwRTB6DusZ8tdeew3f+ta3MHv2bMybNw9//vOfsWfPHnz22Wem0WSYwe7du80PK2FY+jXXBN5RUN9jaDo3cduwwTRn3FKeXU7XTtjJs+jZ+bK2k7bYsztkLXp2vqxFx9bCiXrWjqfV4dlulLXptKeeClz+EXDmr4yN38o3A387H3j6YqCqAOGIYHgO6xlyf9RxPTWAzMzMPn/T1tamkkZ9fb26coadaTCYNGmSGuUY7O+HA64Vj967t+8f0CkvLkZXayu8HGUxsSxW8Sx0OQ7TpeTMq9WwS8d20raLrujZ+Xq2U8dutCm7aIue3VG/pM12lp6pTz1Dybym40Y9R3ab7QGOvAyY9QVEffAreD59Ep7tr8K78y14F3wX3cffCCSkhXWbPVjePV479sIfBjjacN5556G2thYffvhhn7+755571LmD/nj99dcHFeZOcegd8swMK+EGblwzPhC23X03Kk87DWbCKp7dTpcg3YaGBrUvgpW7bdrJs+hZ9OzE+mWXLbvVpkTPztezvJvdYVOiZ3fI2gzaiU3FmLD9j8isXKU+NyXnY+3ixw7a5Drc3s1NTU04/fTT1aRyampq5Dvkl19+OV599VXljI8bN25IM+R5eXmoqqrqVxAaFGRRUREmTJhgqiLVDDk3cBsAXW+9Be+SJTATVvHsdroER+xWrVql9kWwcsMcO3kWPYuenVi/7LJlt9qU6Nn5epZ3sztsSvTsDlmbSdtT8Dai3rwD3YuuhPdw7swevu9m+qFZWVnOcMivuuoq/Oc//8GyZcswceLEIf2XgkhLSxtQEJaDoRTcTZ0buAVSAUdWOPBQWMht++woocAEMHRlxYoVWLRokTqGQuBMiJ6dD9GxOyB6dgdEz+6A6NlB6Oo0fKWo6LDW8WD90LDe1I1jBXTG//3vf+Odd94ZsjM+XJqNjY3qairoZP/2t0beP5RDf37oIUuccct4djldO2Enz6Jn58vaTtpiz+6QtejZ+bIWHVsL0bPIOqLrV3TMIc643QiG57B2yHnk2d///nc8/fTTai3A/v37VWppaTGNJoVYXl5uzYvoi18E/vlPYOzYg+9zZpz3+b0FsJRnF9O1E3byLHp2vqztpC327A5Zi56dL2vRsbUQPYusnVi/7EQwPId1yHpfmwA89dRT6ji0iA5Z90VXF7reew87P/gAU44/HtEnnihh6g5FuIXSCMyB6Nn5EB27A6Jnd0D07A6Inp2PzjDrZzsmZD1QGqwzPlyaFJ6l4xTR0WrjNu6mrjZws3jNuC08u5CunbCTZ9Gz82VtJ22xZ3fIWvTsfFmLjq2F6Flk7cT6ZSeC4TmsHXI7QCHW1NS4rgLZwbPb6NoJO3kWPTtf1nbSFnt2h6xFz86XtejYWoieRdZOrF92Ihie7Z/LDzNwm/r8/Hy4CXbx7Da6dsJOnkXPzpe1nbTFnt0ha9Gz82UtOnaHvEXP7pC16HlokBlyP3BUo7a21nUjOnbw7Da6dsJOnkXPzpe1nbTFnt0ha9Gz82UtOrYWomeRtRPrl50IhmdxyAMIs6GhwXUVyA6e3UbXTtjJs+jZ+bK2k7bYsztkLXp2vqxFx9ZC9CyydmL9shPB8Cwh6wFCLPLy8uAm2MWz2+jaCTt5Fj07X9Z20hZ7doesRc/Ol7Xo2B3yFj27Q9ai56FBZsj90N3djerqanV1C+zi2W107YSdPIuenS9rO2mLPbtD1qJn58tadGwtRM8iayfWLzsRDM/ikAdAS0tLKPQSUbCLZ7fRtRN28ix6dr6s7aQt9uwOWYuenS9r0bE75C16doesRc+Dh4SsBwixGDt2LNwEu3h2G107YSfPomfny9pO2mLP7pC16Nn5shYdu0Peomd3yFr0PDTIDLkfGGZQWVnpuhALO3h2G107YSfPomfny9pO2mLP7pC16Nn5shYdWwvRs8jaifXLTgTDszjkAdDR0QG3wS6e3UbXTtjJs+jZ+bK2k7bYsztkLXp2vqxFx+6Qt+jZHbIWPQ8ernHI9WgFr/3lGWKRm5sLj8fTe19vX++b7+rq6jfP5J8n+svrZ/Cqy+WbH6jsA+UD8cE8eR09evRBZQgVT4H40Hkta18dhYqn/vgg3ZycHMV3qHkyU0/B1D3yPGrUqIPqmFU8EaTNMlhpTwTrNfVsh56sticN2pSWtZV1j3LWdcxKexqoHTHDnvz1a3Ubodts37putj1pWVPHGlbbk25HrLInu9ty6tn/XWUFT/21I2bbk26z7dCTr01bYU8EedWytrru9df3M9Oehtv3M7Pumd1GELrNtpKnQH0/q+ypr75fOOupO8i65+tf+PPnWod86dKlmDVrFhYsWKA+l5eXqytDCZiIsrIytRsesW/fPnWYOwW8ZcsW1NTUqPvFxcXqTDmiqKgITU1NKl9YWIjW1laVLygoQHt7u8rv2LEDnZ2d6jnM88rPzBP8HX9P8P98DtHc3Nz7PNIjXaKurg4lJSUqz/KxnATLzfIPhieCz+CzAvHU2Nio5LNr166Q8kRZ8fl98cTn8LelpaUh56k/PZHu2rVre/Oh5GkgPVVVVal8RUVFSHkaSE/MU847d+4MOU8D6YnPIy2WwSp74nOZZ72ur6+31J40TyyPlfak+di6dat6plX2pHlins/evn27ZfakQ8NIU/NnhT1pnvSGNVbaE5/B9xPr9u7duy2zJz6fvydNJqvtie+nvXv3qjJYZU8s3/79+1WeMrfSnsgDE99VOm+FPRHkmc+nLK20J76fWK/ZH7LSnjRPbW1tqj9klT0RfD9t2rRJ/ddKe2JZKGfKm3K3yp5YTm3D2rassidNl7DSnniPecqa/TCr7EnbMNtNtp9W25N+V7AMVtlTQ0OD4lfblpX2xDKxzOvXr+/lT/M0GHi8g3XdIxRUSFpamnqZpqen94546BEb/zxBoxk5ciSio6PVfY506Fk2ndcjT33lCT0SqPN8nh6x8c8zrGPFihVYvHhx73d6xFTnByr7QPlAfOgRHjqKGRkZiImJCRlPvmUPlNeOaVZWlqIbSp760xNpax3r54SKp4HKS8NctWqVGigiz6HiaSA98XvKOjMzE7GxsSHlaaA8eWb9orwJK+xJj56ycWX94rOssidd7uXLl2PRokVK3lbYk5Y1Xy4codUw2558Z7NIm3WMddsKe/Jts7OzswO2I2bYU6A22yp78m2zKWvStMKeArXZVtkTE+VNe2Y7ommabU+DbbPNsCf9DMrb911ltj0FarOtsCeWj3TZV2P9Iqyyp0BtthX2xN/zGdSxbySEFfak2+y++n5m2ZPGcPp+oah7dOpoz9Qz71lhT8wzsf1im817VthTX30/K+yJqa++n5n25PV61buCOl64cKH63ip70vR9fUje5yAf/U869ampqYDbHfKBBGE3WHHZuWMjoTuzAudB9OwOiJ6dD9GxOyB6dgdEz+6A6Nn56Awzf2qwfqj9JTUZeryBAhkMOOLB0Q2OVurRGasqEEMfWE6rK5BdPLuNrp16tpNn0bPo2Yn1S9psd7Qjomd5N5sJeTdLH0zqV2gRbm229j8Hmv92vEOuY/3z8vLsLopAIBAIBAKBQCAQCFyEhoYGNVPu2pB1jlZwE4WUlJTeXe8GAteKcf2BleAICgcNuGGAHaH1dvDsRrp26tkunu2kLXp2h7ylzXa2rO2kLe9mayFttjvkLXp2vqztol0fZv4U3Ww642PGjOk3usvxM+Rkfty4cUP6Dxfi27XenHTtoG0Xz26ja6ee7eRZ9Ox8WdtJW9psd8ha9Ox8Wcu72R3yFj27Q9bSZhvob2bc8ceeBYMrr7wSboNdPLuNrp2wk2fRs/NlbSdtsWd3yFr07HxZi47dIW/RsztkLXoePBwfsh4piJTd4AXBQfTsDoienQ/RsTsgenYHRM/ugOjZ+aiPUH9KZsjDBPHx8bj77rvVVeBciJ7dAdGz8yE6dgdEz+6A6NkdED07H/ER6k/JDLlAIBAIBAKBQCAQCAQ2QGbIBQKBQCAQCAQCgUAgsAHikAsEAoFAIBAIBAKBQGADxCEXCAQCgUAgEAgEAoHABohDLhAIBAKBQCAQCAQCgQ0Qh9xm/OIXv8CCBQuQkpKCnJwcnH/++di2bZvdxRKYiF/+8pfweDy49tprRc4OQ0lJCb7+9a8jKysLiYmJOOyww/Dpp5/aXSxBCNHV1YU777wTEydOVDqePHkyfvKTn0BOEI1sLFu2DOeeey7GjBmj2ucXX3zxoO+p37vuugujR49Wej/11FOxY8cO28orCL2eOzo6cMstt6h2OykpSf3mm9/8JkpLS0XcDrJlX/zgBz9Qv3nooYcsLaPAGj1v2bIF5513njoGjTZNf2vPnj1hKX5xyG3G+++/jyuvvBLLly/Hm2++qV4In/vc59DU1GR30QQmYNWqVXjiiScwd+5cka/DUFNTg2OPPRaxsbF49dVXsXnzZvzmN79BRkaG3UUThBD33XcfHn/8cTz66KPqZc/P999/Px555BGRcwSD79x58+Zh6dKlAb+njh9++GH87ne/w4oVK1Tn7vTTT0dra6vlZRWYo+fm5masXr1aDbjx+sILL6gJEnboBc6xZY1///vfqu9Nh07gPD0XFBTguOOOw4wZM/Dee+9h/fr1yrYTEhIQjpBjz8IMFRUVaqacjvoJJ5xgd3EEIURjYyOOOOIIPPbYY/jpT3+K+fPny6isg3Drrbfio48+wgcffGB3UQQm4pxzzkFubi6efPLJ3nsXXHCBmjX9+9//LrJ3ADjbws46I9b07Dg77TfccANuvPFGda+urk7Vgz//+c+4+OKLbS6xIBR67msQfeHChdi9ezfGjx8vgnaIjhnNtmjRIrz++us4++yzVcSiRC06S88XX3yxmiD529/+hkiAzJCHGfiSJzIzM+0uiiDEYCQEG36GOgqch//+97846qij8KUvfUkNqh1++OH4wx/+YHexBCHGMcccg7fffhvbt29Xn9etW4cPP/wQZ555psjaoSgsLMT+/fsParsZAskO/SeffGJr2QTm98nY2U9PTxdROwTd3d34xje+gZtuugmzZ8+2uzgCk3T8v//9D9OmTVORTOyTsb3ub/mC3RCHPMwqEEfoGPY6Z84cu4sjCCGeffZZFQLHPQMEzsSuXbtUKPPUqVPVqPvll1+Oq6++Gn/5y1/sLpogxJEQHHlnGBxH3znwwnb7a1/7msjZoaAzTnBG3Bf8rL8TOA9cjsA15V/5yleQmppqd3EEIQKXGcXExKj3s8CZKC8vV1Gp3LPpjDPOwBtvvIEvfOEL+OIXv6gikMMRMXYXQHDwDOrGjRvVbIvAOSguLsY111yj9ggI17UrgtAMqHGG/Oc//7n6TEeN9sw1p5dccomI2CF47rnn8I9//ANPP/20ml1Zu3atcsgZ0ix6FgicAe7nc9FFF6nlChxoFTgDn332GX7729+qCRJGPgic2x8jPv/5z+O6665TeS4T/fjjj1WfbMmSJQg3yAx5mOCqq67Cyy+/jHfffRfjxo2zuziCEL8AOFrH9eMclWXiCB03CGKeuzYLIh/cfXnWrFkH3Zs5c2bY7ugpGB4Y5qhnybkbM0Mf+cKX6BfnYtSoUepaVlZ20H1+1t8JnOeMc904B9Jldtw54B4v7I9xPwDdH6OeuT/EhAkT7C6eIETIzs5Wuo2kPpnMkNsMjr7+8Ic/VJsRcBdAHqUjcBZOOeUUbNiw4aB7l156qQp5ZThcdHS0bWUThA5cauJ/ZCHXGefn54uYHQTuxBwVdfBYNm1Yj8gLnAe+l+l4c+8AzrIQ9fX1ard1Lk0ROM8Z55F2nCDhEZYC54ADqP77+HCNMe+zXyZwBuLi4tQRZ5HUJxOHPAzC1Bn6+J///EedRa7Xo3HDGO7aK4h8UK/+ewLwyBy+6GWvAOeAs6Tc8Ish6+zQrVy5Er///e9VEjgHPPf0Zz/7mZphYcj6mjVr8MADD+Cyyy6zu2iCIMD1hjt37jxoIzcuR+AGq9Q1lyXwdAzuEUEHncfncJlCfzt0CyJLz4xyuvDCC1U4MyMWGb2m+2T8np18QeTbsv8gC/cC4YDb9OnTbSitwCw933TTTfjyl7+sTqw66aST8Nprr+Gll15Sk59hCa/AVlAFgdJTTz0lmnEwlixZ4r3mmmvsLoYgxHjppZe8c+bM8cbHx3tnzJjh/f3vfy8ydhjq6+uV7Y4fP96bkJDgnTRpkvdHP/qRt62tze6iCYLAu+++G/BdfMkll6jvu7u7vXfeeac3NzdX2fcpp5zi3bZtm8jcQXouLCzss0/G/wmcYcv+yM/P9z744IOWl1Ngvp6ffPJJ75QpU9S7et68ed4XX3wxbMUu55ALBAKBQCAQCAQCgUBgA2RTN4FAIBAIBAKBQCAQCGyAOOQCgUAgEAgEAoFAIBDYAHHIBQKBQCAQCAQCgUAgsAHikAsEAoFAIBAIBAKBQGADxCEXCAQCgUAgEAgEAoHABohDLhAIBAKBQCAQCAQCgQ0Qh1wgEAgEAoFAIBAIBAIbIA65QCAQCAQCgUAgEAgENkAccoFAIBAIBAKBQCAQCGyAOOQCgUAgEAiGhPfeew8ejwe1tbUiOYFAIBAIgoA45AKBQCAQCAQCgUAgENgAccgFAoFAIHAhTjzxRFx11VUqpaWlITs7G3feeSe8Xq/6vq2tDbfccgvy8vIQHx+PKVOm4Mknn0RRURFOOukk9ZuMjAw1U/6tb33LZm4EAoFAIIhMxNhdAIFAIBAIBPbgL3/5C7797W9j5cqV+PTTT/G9730P48ePx3e/+11885vfxCeffIKHH34Y8+bNQ2FhISorK5WD/q9//QsXXHABtm3bhtTUVCQmJooKBQKBQCAYBsQhFwgEAoHApaBz/eCDD6pZ7unTp2PDhg3q85IlS/Dcc8/hzTffxKmnnqp+O2nSpN7/ZWZmqmtOTg7S09NtK79AIBAIBJEOCVkXCAQCgcClWLx4sXLGNY4++mjs2LEDa9asQXR0tHLMBQKBQCAQmAdxyAUCgUAgEByEhIQEkYhAIBAIBBZAHHKBQCAQCFyKFStWHPR5+fLlmDp1qloz3t3djffffz/g/+Li4tS1q6vLknIKBAKBQOBUiEMuEAgEAoFLsWfPHlx//fVqc7ZnnnkGjzzyCK655hpMmDABl1xyCS677DK8+OKLakM3nj3OdeVEfn6+CnV/+eWXUVFRgcbGRrtZEQgEAoEgIiEOuUAgEAgELgV3Um9pacHChQtx5ZVXKmecO60Tjz/+OC688EJcccUVmDFjhtp5vampSX03duxY3Hvvvbj11luRm5urjk4TCAQCgUAwdHi8+sBRgUAgEAgErjqHfP78+XjooYfsLopAIBAIBK6FzJALBAKBQCAQCAQCgUBgA8QhFwgEAoFAIBAIBAKBwAZIyLpAIBAIBAKBQCAQCAQ2QGbIBQKBQCAQCAQCgUAgsAHikAsEAoFAIBAIBAKBQGADxCEXCAQCgUAgEAgEAoHABohDLhAIBAKBQCAQCAQCgQ0Qh1wgEAgEAoFAIBAIBAIbIA65QCAQCAQCgUAgEAgENkAccoFAIBAIBAKBQCAQCGyAOOQCgUAgEAgEAoFAIBDAevw/J3nrAaNUG8kAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show('pct', 'mph', segments[segments.pct > 2], \n", " 'Miles per hour versus segment grade in percent')\n", "plt.plot((2, 6, 7), (2, 6, 7), 'ro:');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both best-fit curves are above the red circle at 6% and below the red circle for 7%, so **my hill-index is 6**. We also see that I can cruise at 14 mph on a 2% grade, but only about 7 mph at 6% grade, and around 5.5 mph on 8% grades." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " # Speed versus Grade on Long Rides\n", "\n", "The plot above tell me how fast I should expect to climb a particular hill, but what about average time on longer rides? Here's a plot of my speed versus steepness (measured in feet climbed per mile rather than in percent)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAIjCAYAAACd5UFgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfQeYZEXV9umemZ2wO2Fz3oUNhCXDJgyAEZEg5sAHqBhAgkiWKCBKElBcBEXFhPnHz/AJKgKCuAlYQGBzzmF2Z2Z38nT/z1szp6m5e2/HW7e7ztT7PHe7tuf2rXrPW1W3TsVYMplMkoODg4ODg4ODg4ODg4ODQ0kiXuwEODg4ODg4ODg4ODg4ODg4BMM57g4ODg4ODg4ODg4ODg4OJQznuDs4ODg4ODg4ODg4ODg4lDCc4+7g4ODg4ODg4ODg4ODgUMJwjruDg4ODg4ODg4ODg4ODQwnDOe4ODg4ODg4ODg4ODg4ODiUM57g7ODg4ODg4ODg4ODg4OJQwnOPu4ODg4ODg4ODg4ODg4FDCcI67g4ODg4ODg4ODg4ODg0MJwznuDg4ODjkiFovR1772tazuXbhwIQ0aNIjWrVsXmp0RN9Kg44ADDqBPf/rTNJDw9NNPKzv87ne/o1LC66+/TuXl5fTf//632EkRAb/8HkbZtA1r165V/B555JFQn7thwwaqqqqif//73/2+/9nPfkaHHHIIVVRUUENDQ6hxDmRAP+gIPRknnXSSunJFV1cXTZw4kR544IGQU+ng4FCKcI67g4NDUfDqq6/SRz7yEZo8ebJqNI4fP57e85730P333y9Kkeuuu44++clPKp4OAwMzZsygU089lW688cZiJ6WkHVC+4vE4DRs2jE455RT6z3/+Q6WGRCJBP/3pT1X9NGLECOXIjho1it773vfS97//fero6CCbccstt9CcOXPorW99a+q7pUuXqo7AqVOn0g9+8APF01QnFzpadCfWIXsgL1522WV02223UXt7uzOdg4NwOMfdwcEhcjz//PM0c+ZMevnll+nzn/88ffe736XPfe5zqgH/7W9/W4wiS5YsoX/84x90/vnnh/rc66+/ntra2kJ9pkO4gOaPPfYYrVq1ypk2AOjQwqjuj3/8Y7rgggto/vz59I53vEN16pVKfke873//++ncc8+l1tZWuuKKK5QTe/XVV6sOxy996UvqshU7duygn/zkJ/vVUZjNgg4L1Mdw4D/2sY8Zc9xvvvnmAeW4n3322SpfhdWZ+5nPfIZ27txJjz76aCjPc3BwKF2UFzsBDg4OAw8YHaivr6dFixbtNwVz+/btJAVwSCZNmkRz584N9bmYho1rIGDfvn00ePBgsgHd3d3K2cHSiHe/+900dOhQ5RRhRLPYKEU7HnvssfQ///M/qf+//e1vV6Pu3/ve9/pN/S1mfv/KV75CTzzxBN1333305S9/ud/fLr/8clqxYgX9/e9/zzpflBp+/vOfK9uefvrpvvXwQJwin0wm1eh1dXW1keeXlZWpKyxAI8z+wBT8z372s6E918HBofTgRtwdHBwiB0YhDzvsMN9GIaag6sBU2osuuoh+8Ytf0MEHH6xGuY477jj617/+td9vN23apBouo0ePpsrKShXHj370o/3uw9TWm266iaZNm6buwxrBq666ar8pr/g/Gu4jR46k2tpaOuOMM2jjxo1Z8/zDH/5A73znO33Xo5922mlqVAszD9BAPOKII9T/gf/3//6f+j9zfemll/Ja87tnzx669NJLFT/wBN877rhDORE6fvWrX6l4wLGurk7FnWnmA093vvvuu+nee+9Vo0fgceKJJ/qu7cbUWyyNwJRo8ALvP/7xj75rP5955hk1iom8MGHChIw8wQedQbgXz37Xu95FK1eu3O++3/72t4on0okpz3AakWd0BK01xagjdPPjD6cOU4phY4wg8hRWPOd///d/06Yd6/OZsxcPPfSQ+ptuz0Lt2NLSovIEuCC9+BumgL/44osZ90vwsw2WtqCc1dTUqI4KpCffkT847oB3loJffs+lbGZbL/it/X744Yfpfe97335OO2P69On9RtzT5YvOzk61fAJ5EB2X6EgB56eeesq37EID3Id6EiP++M4P2eSJdHUUpskPGTKkn/6oHwHY17tvwF//+leVbqQftseykNdeey3ndCGffvSjH1VhzLTgpRNcD/oBNkFaV69eTSeffLJKw7hx41TnGBxub70ADaA34of+X/ziF2n37t2+9TE6aLg+RtkLAsrA4YcfTq+88oqq75D3UbfyXhsod7ApnoN3FmZdZVrj7ods31MAyvBzzz1HjY2NaZ/p4OBgNwbGkI2Dg0NJAU4e1rLCIUEDKBPQEPr1r39Nl1xyiWrAYDQOjWls/Ma/37ZtmxrZZkcfDU40MM877zxqbm5Wzgo35tDIRyPnC1/4Ah166KFqai6cz+XLl6uGLAPT9zEi9alPfYre8pa30D//+U/VSM0GcBbWr1+vRhX9AMcSz0VDEg4kGvoY9XrwwQfp2muvTTkD3/zmN9U01WXLlqmlBNkC03rRqEQ6EAdG/rFE4atf/Spt2bJFNWgBjBZiyjKcXTj1wBtvvKE2qgpyVnRg7S+cwQsvvFCNUsHhR2cFbIqGMoBGPdbPYh+Da665RjW2f/Ob39CZZ55Jv//97+mDH/xgv2eCO/SDk4OR4ky4/fbblW0wjbmpqYnuvPNOOuuss2jBggX9GsuYUjpr1ixlU+QXpBU80TGS78giZlWAN/IS8iacFAYcNDjuyH/oEPED8hMcEdgDeulAnofTwXk8DDtiSjQcDJQRrMXftWuXKgvQPCivBgFrn1Em4Zwhr8AOcGZgd+TtXMGODDoAMiHbspltveAH3NfT09NvVkAh+QLxoSMA5Q1LhFBufvjDHyoHFHXZ0UcfrX4LB/QDH/iA0gV6oY7Csgs4717kmie8G5th1hOWKehA3YByjTgx+wH588gjj1R/w9IGpANpRn2Begb3vO1tb1PliDu3sknXCSecoPLPd77zHVXngSfAn0GAJqj/oSvK+uOPP64cXMxs0Ge3oN7jco941qxZo5ZlIZ0o9+hcY6B+hS74DbSBw50OcP7h7H/iE59QnQ+wAcLoYEaegm7Im3fddZcqH+gEQidHtsjlPcV1DfIN6niky8HBQSiSDg4ODhHjb3/7W7KsrExdxx9/fPKqq65KPvHEE8nOzs797kU1hWvx4sWp79atW5esqqpKfvCDH0x9d9555yXHjh2b3LlzZ7/ff+ITn0jW19cnW1tb1f9/9rOfJePxePLZZ5/td9+DDz6o4vn3v/+t/r9kyRL1/y996Uv97vvUpz6lvr/pppvScvzHP/6h7vvTn/60398mT56s/vb888+nvgN/fFddXa34MR566CH1/VNPPZX6DnF7q28889xzz039/9Zbb00OHjw4uXz58n73XXPNNcru69evV///8pe/nKyrq0t2d3cnc8GaNWtS6d24cWPq+wULFqjvv/KVr6S+e9e73pU84ogjku3t7anvEolE8i1veUty+vTpqe9+/OMfq9++7W1vyyo9sAnuP/TQQ5MdHR2p77/97W+r71999VX1f+SrUaNGJQ8//PBkW1tb6r4///nP6r4bb7wx9d2JJ56oLi9gW9jYyx+22759u2/6Hn30UXUPbJIOn/zkJ1X6dM5btmxR+fSWW24J1Y4oCxdeeGHa9HjzUpBtPvCBDyQPO+ywZK5g2918883JHTt2JLdu3arK46xZs9T3v/3tb/vd783vuZTNbOsFPyAP43mITwfyGtLNl/7sdPkCWuj5FNi9e3dy9OjRyc9+9rOp7/7whz+oZ9x55539fvv2t79dfQ99c80Tfli5cqV63v3337/f39jm4MdoaWlJNjQ0JD//+c/3uxf6wZb699mmC1p767d0QL7E/RdffHG/55566qnJQYMGpdKL/IT7fvGLX/T7/eOPP77f91wf42/ZAGUA96N8M5YuXaq+Q5mdP3/+fvW6rhmXT+SVoLKV7XuKsXnzZvX9HXfckRUHBwcHO+Gmyjs4OEQOTOvDiDtGFLBBHUZNMIKD0Rm/KZ7HH3+8GlFgYPQYI1KY2ojRF/j3GMXBiDXC2KiHLzwXo7A8FRjTpTF6gWOO9PswSgzwtNX/+7//U58YqdGRboROB0Yy040eYrQTvBiYWgkgHeDn/R5TQ3MBeGI6K+LXeWLtNWzGSw0w0ozR2EzrdIOAETToxpg9e7ZKM9sPUzcxGopZAxhh5HTAPtAGa4S909Ux4pXLGlCMqOnrh3nKNdts8eLFas0uRqAxZZaBEVrkg7/85S+ULz784Q+rUVw/sPbgmw4f//jHVfr0KcIYFceoG/4Wph2hN0bEN2/enDdn/VmYno5R23yAUVLYbsyYMUozjPp/61vfUiOU6ZBt2cylXvADRsgBfRo5x4908+W3yZhfvoAWnE+hLTTFKDGmZ+vpwPOx7lwfCcdvL7744n7PyydP5FJHeYE6AtP1MTKt2xJpQ5nnurPQdGUDzJ5g8GwKLEXgaemo/7DMAO8aPa14j0BP7/KEAw88UKUtW+AZGGFnYIQe5QHvFq6zC62/s3lP5VrXODg42A03Vd7BwaEowJRlrOVGYwvOO6ZlYhogGu3YjR2Orb6O1IuDDjpITdPErsiYJo0GJXZ7Djq2iDdbQqMRDkKQs8X34dx1PBdrVHVkmkLphXfdJUN3zgE0MgGsY/T73rsuMxPAE9OWM/GEM4sprNgUDA44NjlCgxtTUbNBkDZ4Ji8JgA1uuOEGdQWlRXf+0YjOBV5bciOWbQYtg7RDwxjTUfNFurSy9pn2I4CtoTOmxmPJAoAwpk7DlmHaEZ1kmOqMfAYnBjumn3POOTRlyhTKFdhZHY4SOmuwDhd5B9OD9WPF0gFTgDHNGFPK4ehhyjQ6lTIh27KJuiHbesEPPLV57969/b4HP+7owlRo7/nn6fIFNitE5wTWf2Oqut/94Dd27Nj9Ogy8/PLJE7nUUX51CsDOoxe8HCSsdAUB2nvzK5cTXm6BtKJjxrtnih6/jlzrHOwZ4S3XKMNh1t/ZvKdyrWscHBzshnPcHRwcigqMQMGJx4XGF0ZPMdrAmyNlA95sDWtR/daBArxGE/di87V77rnH9z5vwytfDB8+PG2DLWhEOej7bBvXDPDEaBM2M/IDN3TRsEVHCWYvYE0vLqzPhTMHJ6NQsDZYfx40ogWnT0euuzmHZTNu+Pr9LsihTJdW1h4b4aUD1kBj5gI6r7B/A9Zlwxn8xje+Ebod0SmD0W3E9be//U05nlirjE40dN6ka/zDBrqtMSKItcF//vOf1TpjjG4j/VhTjyO+sun0wQwQAOty8Wysh8ZGZRiFLhS51At+QKcOgL04jjrqqNT3cKY43Vhn7wc/2+NebK4Gra+88kpV9sAZey7kc2xgPnkilzoqKD6sc8csCS945/9C0xUGkAbYF2vO/eB1iMOqc8Ksv3N5T2Vb1zg4ONgN57g7ODiUDLixjs3T/EZ6dGCDHuzmyw0wjI7BseAGdRAwSocRfoxsphudwPRXNJ7QoNZHuuCoZANu9GNDpGIAPDFSmMke3HmC6cS4wBmj8NhVGaNlmRrYQdrwJlU8MoaNoLJJiwnwVGZo5x0txHf6VGeM1vtNa+VR+1wA7TE6yJ0k6YAp8egoefLJJ9VIGxr6PE0+bDtiNJfPH8fIHTalw6787LjDBn47mMMG3pFObDqGdOLC7JkPfehD6lnYBFFflpANrrvuOrXhHc5tR0dAoWWTd5zPpl7wA+wBRwzOHzY7LBRY/gD7oZNEr3u8nZTgh3yA8quPunv5FZonMFMFDmu2dRTPcIBDnC6+XNKVzwgxtEcZ1csV6hyA6x2kFbNBMDvC1LFuJpHte4rBGmba2M/BwcFuuDXuDg4OkQPr8/xGIHjtqndKKNbD62tAsUMvduvG1Fw+ExdrSjHi53cUGabM6iOOWF8JB8GLtra21O7b7MRg+q4O3o09EzANFKMiWF9dDIAn7IaRdC/glGFtrb7OlQFHk0ch/Y4d8gK7G+vrVbE7NtZQs/3QyMfxSegI8HbIeLUx2SGEdGDHfp0TZhfASdZ3I0eDGdOY9XShAe03HToTXnjhBbUrPE+XTQc4ONh5HFPkcWH6uT59Nww7woHF9GEdeC6O09LtAhvMnz9fOeIMjKqj3Onw5h10AGGJC8q2Pg08W2CNMHb1Rp7FLJAgZFs2c6kXghxbHCOHfILdyAsdSeXRWP03KCsopzqwfAHlEzuV69rh6D0dheYJONYoG9nWURg9x3R4zATx05fjyyVd6PgBgo66C4KuB+yJ/4MPLzVB/Qeb3Xrrrfv9FrbNNb6oke17Sq9r4ODr+6Y4ODjIgxtxd3BwiBzYZAnr03EkEEam4SDgGBs4LBgxwXR5HTgOC41G/Tg4QJ+OiyPB0CGAzYCwKRccCGySBIcfIy98vu3ZZ5+t1l/juB7cjxEZNPDgrOF7PssX64uxCRPigrODI6cwCuZ3PngQsIEepiSjYRn12kNMxcVGf5iCjOm5WM+Mxh6OFMLIH9aCYloljtWCbTASjXWbGFWFgwD+2YzeYEQeR0FhIy04f3CeMAVXn6I/b948dQ+mfkIbjMhhOjgcFmxuBsfYJNCgx3Rw5CscuQZd+Tg45DecB86Ao4bpqchvODIMI9Jw+OGA82Zl2QCODZ+jnm0aMVr9q1/9SumE4wG9KNSO2CgMGmMfCUz9xmguygY2l8O6awbyBPII1t7DgcDINqZ5e9eUo+MMU6ZRhnD0HzpB4EChIySXo6904Fg55CGUZ9jCD7mUzWzrhSAgLRjNRJ2F9GBWChxTbAKGzpw//elPWe97gbKI0XbUe7ARnou8hTTp6+gRB2yKZQMop/g7fuftdAkjT6COwkyHdEcWMvB3dCagDsUsDWzOhlkNOPYSGzwizexQZ5suaIkODZRP8EP9jrooaG06gJkcmJGB5Q/QFR0riB9HyvEMLJRzdAJhGQI6gZBXUcYwQwhLsVD2M22CWExk+55iYM8F3MPLHxwcHISi2NvaOzg4DDz89a9/VccfHXLIIckhQ4aoY3ymTZumjvjZtm1bv3tRTeH4qp///OfqGKHKysrkMccc43t8EH6LeydOnJisqKhIjhkzRh1L9P3vf7/ffTgeDMfm4CgrPG/o0KHJ4447Th1P1dTUlLoPR4ddcsklyeHDh6uj1U4//fTkhg0bsjoODnjxxRfVvd4jfXD8EI4v8oK56uDjpe66666cjoPj45u++tWvKtvCxiNGjFDHMd19992po/d+97vfJd/73veq48hwz6RJk5Jf/OIX1XFk6aCn61vf+payOWyJI6tefvnl/e5ftWpV8pxzzlGaQJvx48cnTzvtNBW/95ikRYsWJbMBHwfnPT6M06YfwQT8+te/VnkH6Rw2bFjyrLPO6neUHQN5bcqUKcoeRx99tDrSKeg4OF0Xbx7H31esWJHMFn//+9/Vb2KxmMpnfijEjjiK7Morr0weddRRydraWpWnEX7ggQf2iwea4tmw1Vvf+lZ1HKP3yCocVXjCCSeo8oH7pk6dqp6vlyE/ZLLdpz/9aXVkIY4rC8rvuZTNbOuFIOAoNtj0ne98p8o35eXlqizhGTieSz9iMB03HFv2jW98Q+UjrsdwJKE3bwG7du1Knn322epYORy1hvBLL73km6+zyRNBgG3AB8ePZToOTi93J598skoXjuWE7tBMP7Izl3T94Ac/UOUNmmc6Gg62gt54NuqtmpoadZwe0tvT07Pf/dAYdTuOrUSexxF1OH4Ux6dlqo+DgDLgdwxitvV6NsfB5fKe2rNnj6qrHn744aw5ODg42IkY/il254GDg4NDEDBSfeGFFwZOVS11YOompiJjQydJwEggpnJjczNsQuXQH9iADHkXMy4cHEoZmFmCNeLPPvsslTowewizQbw7/Q9kYFYITovAzBgb1/M7ODhkD7fG3cHBwcEgsB4USwDy2dzMwU5gyjjWhPutr3VwKDVgczwsl8hnHweH4gJLcrC0Bxs6OqfdwUE+3Bp3BwcHB4PAGkx9ky8H+cDeALz5n4NDqQOb8LW3txc7GQ55AOv2sceAg4PDwIAbcXdwcHBwcHBwcHBwcHBwKGG4Ne4ODg4ODg4ODg4ODg4ODiUMN+Lu4ODg4ODg4ODg4ODg4FDCcI67g4ODg4ODg4ODg4ODg0MJQ/zmdIlEgjZv3ky1tbXqaB4HBwcHBwcHBwcHBwcHB5PAqestLS3qWOB4vPDxcvGOO5z2iRMnFjsZDg4ODg4ODg4ODg4ODgMMGzZsoAkTJhT8HPGOO0ba2WB1dXVUCsAxQYsXL6aZM2dSebl4CUTBaWcvnHb2wmlnN5x+9sJpZy+cdvbCaSdHv9bWVjWAzP5ooRDvNfL0eDjtQY57T08PrVq1iqZOnUplZWWRCDp48GCVnigc9yj5RW1Lp5299nTa2W3PKOOTXGcOhPgk6+e0c/Ys1bwiudxJj89pJ6/sxUJaru02p4MR4nGaPHlyKGsPBjq/qG3ptLPXnk47u+0pWT/ptpSsnfR6zGlnrz2ddnbbU7J+0m0ZF6Sd+BH3bIBekMrKSpKKKPlFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsuYIO3s73oIaQrF0qVL1adERMkvals67ey1p9PObntK1k+6LSVrJ70ec9rZa0+nnd32lKyfdFv2CNLOOe59Uyiw7kHCFIpi84valk47e+3ptLPbnpL1k25LydpJr8ecdvba02lntz0l6yfdlnFB2tnPICRIELNU+EVtS6edvfZ02tltT8n6SbelZO2k12NOO3vt6bSz256S9ZNuy7gQ7WSwKBCJRIJWrFihPiUiSn5R29JpZ689nXZ221OyftJtKVk76fWY085eezrt7LanZP2k2zIhSDvnuPf1wkyfPl1Mb0wx+UVtS6edvfZ02tltT8n6SbelZO2k12NOO3vt6bSz256S9ZNuy7gg7exnkCW4lwWffmGcuad/n0wm04axwUG6MC5vGEgX5viDwkFpzyYMflFx6urqioQTp52/i0onfoZJTun4mc57yCumOXGY02Bbecq2jkjHzwQnbz1mglM6frbq5BdGPRYlJ/0yxUnn4eVnq05BeU9/D5nmxHWmaU56eYtSp0w8wn4/efmZznscl0lOHObnRlWeOE0mOelpT8fPRB2ht22jaEd4+ZVavVdIXR5Uj5nixGXPJKdEFvV0FDqFCbGO+7x582jGjBk0a9Ys9f/t27erz507d6oL2LZtGzU2Nirjv/zyy7R79271/aZNm6ipqUmFN2zYQC0tLSq8du1a2rdvnwqvWbOG2tvbVXjVqlXU2dmpwpiKwY1nnpaB/yMM4D78FsDvOYzn4vkA4kO8ANKB9AB79uyhLVu2qDDSjfQHcQJwL36DNCxZskSFTXHC/UBrayu9+OKL6h6TnFgnhBH3+vXrjXHSdQI/fp4pTnrea25uVukwyUnXCfG99NJL6remOOk6YZdPxGWSk64TKtHNmzcb5aTrtGzZMpVmk5xYJzzn9ddfT/EzxUnXafny5SkeJjixTlu3blVh1NGmOSGtSP/ixYtTYROc9LwHfngW3lOmOOl5Dxf4cdgEJ12nXbt2qfCOHTuMcdJ1wt/Aj8MmOLFO0O61115TcZnkxDohjHJnkpOe98CPG7ym20a4H9+j3oyibQRs3LhR1ZuI12TbiHXC//fu3Wu8bcQ6dXR0qPhMctJ1wt/QjjDdNoLdkDa0N5mf6XYE2pm4D2ky3TZCWxNYt25dJG0jpAl+Ap4TRdsI/JC+KNpG3HaAn4dnRtE2Yk4Ic/0ZFmLJsLsCSgyoQOrr65VoDQ0NqR4UTJdIF8aZf7iCwnAAcG9QGMD9erisrEz1vHCjYvbs2erv/D0u/D8onG3ai8EpKCyNE0ZxFixYQHPnzk39zXZOEnXy44G/zZ8/X5W7QYMGieAkUSc/TnjxLVq0SHXElpeXi+AkUaeg9Gajn22cJOrkF0Z7ZeHCheqdx+mznZNEnfw4IX14582ZM4cqKipEcJKokx8npBnlbubMmaq9IoGTRJ1iAZzwN9YPDj38Tzj/dXV1VCjKaYCAMwB/6mEIC4cMhSPoHm8YmSWfMEQNCuNKF84mXYXwC4MTgEaa/oI3wYnD4IYeZa7YbNYpW34mOQGcV0xxYuDZaBQirih04ko2XV0QdjgffvnmvXzqsVzDenpz4VdoedI1C1s/v/TClqjHuByYriMy1WNhcMqGn6l6Lwz9cilDzI/fQybrcr0eM8mJw+DG8Zni5A3n8ttC63I/fibfudnoF9b7Cc/kcs7PN92OCHqmiXcukI5f2O8k7zvPdDvCj5+ptgM7jkhLPm2/XOs9gG1pum3E5TzXtm0hdXmsgHo6n3oP/Dis2zgMvBnrAAYKCKajcEGRhij5RW1Lp5299nTa2W1PyfpJt6Vk7aTXY047e+3ptLPbnpL1k27LhCDtBsyIezqgR+Sggw4iqYiSX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2LBOknRtx75tu09bWlpraIA1R8ovalk47e+3ptLPbnpL1k25LydpJr8ecdvba02lntz0l6yfdlklB2jnHvW8KBe/KLBFR8is0LqxBufnmm9XFuzKajK/UETU/m/JKqUOydsWIL0pIt6Vk7aTXY047e+3ptLPbnpL1k27LhCDt3FT5vikU06ZNI6mIkl/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptiwTpJ0bce+bQoFzICVMoSg2v3zjwug6LuxqyUCYvw87PlsQNT8b8ootkKxdMeKLEtJtKVk76fWY085eezrt7LanZP2k2zIpSDvnuPcJun37dhGCFptfvnF985vfVNfdd9+d+g5h/j7s+GxB1PxsyCu2QLJ2xYgvSki3pWTtpNdjTjt77em0s9uekvWTbsukIO3cVPm+s/imTJlCUhElv6ht6bSz155OO7vtKVk/6baUrJ30esxpZ689nXZ221OyftJtGReknXPc+3piWlpaqLa2lmKxGElDlPzyjeurX/1qano8j7pfccUVVFFRYSQ+WxA1Pxvyii2QrF0x4osS0m0pWTvp9ZjTzl57Ou3stqdk/aTbMilIOzdVvk/Q3bt3i5hCUWx++cY1aNAgdemOOsL8fdjx2YKo+dmQV2yBZO2KEV+UkG5LydpJr8ecdvba02lntz0l6yfdlklB2rkR974pFJMnTyapiJJf1LZ02tlrT6ed3faUrJ90W0rWTno95rSz155OO7vtKVk/6baUpJ0bce/ridmzZ4+Inphi8ys0Loyu33TTTepKN9IeVnyljqj52ZRXSh2StStGfFFCui0laye9HnPa2WtPp53d9pSsn3RbJgVp5xx3be2DBEGLzS9qWzrt7LWn085ue0rWT7otJWsnvR5z2tlrT6ed3faUrJ90WyYFaeemyvdNoZg4cSJJRZT8oral085eezrt7LanZP2k21KydtLrMaedvfZ02tltT8n6SbdlXJB2A2bEPZFIpD69YVw7d+6k7u7u1PfcKxMU7unpSRvG5Q0D6cKcrqCwX9qzCTM/jsskJ3wiLn6uKU4cRnyNjY1Ku6h04meY4qTz8ONnMu8F6RcmJw6D065du1I8bSlP6TjpYZyQkI5f2JxwIT69Hgubk87Dj5+NOvlpo9eZUXCCZlzOTXHSw1zO9f/bqFNQefLWYyY56fWYSU4c5nKO8heVTpl4FMpJ5+HHz2Te8+pnghOHwQnlnHlGUZ44TaY46WGux4L4hV1H6PW0KU46Dz9+pVTvFVKX63VmFJy4bYsyYYpTUgtDu0L4FapTmBDruM+bN49mzJhBs2bNUv/fvn27+oRwuIBt27apjANs2bJFrX8ANm3aRE1NTSq8YcMGNb0CWLt2Le3bt0+F16xZQ+3t7Sq8atUq6uzsVOEVK1akGl8I4xP/RxjAffgtgN9zGM/F8wHEh3gBpAPpAZA+pBNAupH+bDlt3rzZKCfcz5zWrVsXCSfWqa2tzTgn1qm1tTX1PJOcWKe9e/cqfrCpKU66Tohv48aNRjmxTuDE95jkpOuEShRlwRQnPe8h3NzcbJyTrhPSvXXrVmOcdJ1Wr16dusckJ6SPOWFXWJOcdJ3AzyQnPe/h/YRyHuX7CfxMctJ1gmME7NixI7J3LviZ5MQ6QTtuX0TVjsCzmJ/pdgTKHncGmm4bsU6oN5lHFO0Izp+m2xF4Jso52hFRtI2Ajo4O9V43xUnPe3ingx/iM902Yp0Qhj1NcfLqBH6mOSFO5gSbRtE2QjqiahuxTrAl6rEo2kZ7IuLk1Qlhrj/DQiwZdldAiQEvgPr6etXga2hoSPWgYNpEujDO+cMVFIYDgHuDwgDu18NlZWWq5wWCLl68mGbPnq3+zt/jwv+DwtmmvRicgsLSOKF3cMGCBTR37tzU32znJFEnPx742/z581W5w8aHEjhJ1MmPE158ixYtUh2x5eXlIjhJ1CkovdnoZxsniTr5hdFeWbhwoXrncfps5yRRJz9OSB/eeXPmzFHH60rgJFEnP05IM8rdzJkzVXtFAieJOsUCOOFvrB8cevifcP7r6uqoUIgdcfeCMwA+vWEYmHtZ+HsYP10YmSVdGJc3DKQLc7qCwn5pzybM/JCBTXNCHOgk4QxtihOHER/3lkWlEz/DFCedhx8/k3kP8SGvePULkxOHAZ6iaFN5SsdJD+MzHb+wOfnVY2Fz0nn48bNRJz9twInPfI2CE8Dl3BQnPcz1tM7PRp2CypP3PWSSE8B1pklOHEY8KHd6OTStUyYehXLSefjxM5n3AK7HTHHiMC6Uc3YmoihPHK8pTnoYSMcv7DrC27Y13Y7w41dK9V4hdbne9ouCE7dt9fxpsh0BFMKvUJ3CxIBx3DOB11NJRZT8oral085eezrt7LanZP2k21KydtLrMaedvfZ02tltT8n6SbdllxDt3K7yfb0mY8eOJamIkl/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptowL0s6NuPetn8DmMrymQRqi5Be1LZ129trTaWe3PSXrJ92WkrWTXo857ey1p9PObntK1k+6LROCtHOOu4ODg4ODg4ODg4ODg4NDCcNNle+bQjFq1CiSiij5RW1Lp5299nTa2W1PyfpJt6Vk7aTXY047e+3ptLPbnpL1k27LuCDt3Ih73xQKnNknYQpFsflFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsuEIO2c494HnHEpGVHyi9qWTjt77em0s9uekvWTbkvJ2kmvx5x29trTaWe3PSXrJ92WFUK0c1Pl+6ZQjBgxgqQiSn5R29JpZ689nXZ221OyftJtKVk76fWY085eezrt7LanZP2k2zIuSDs34t43hWLTpk0iplAUm1/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptkwI0s457n2orq4myYiSX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2rBainZsq3zeFYtiwYSQVUfKL2pZOO3vt6bSz256S9ZNuS8naSa/HnHb22tNpZ7c9Jesn3ZZxQdq5Efe+KRQbNmwQMYWi2PyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2VCkHbOcSeiWCxGtbW16lMiouQXtS2ddvba02lntz0l6yfdlpK1k16POe3stafTzm57StZPui1jgrQbMI4797Lg0xuGkHV1dZRMJlPfZwr39PSkDePyhoF0YU5XUNgv7dmEmZ9uC1OcAC4cJjnpmjY0NKTSFIVO/AxTnHQefvxM5j0AecWrX5icdPvV19eruGwqT+k4ecPp+IXNya8eC5uTzsOPn406+WnDL3k9vSY54W9czk1x8oa9/GzUKag8MT+ux0xywv1cZ5rkxGHEg3Knx29ap2zqurDeT378TOY9/T1kipOeXpRzfn4U5YnTFFXbKB2/sOsIb9vWdDvCj18p1XuF1OVAUD1mghMAW/pxNfHOTaapp6PQKUyIddznzZtHM2bMoFmzZqn/b9++XX3u3LlTXcC2bduosbFRGf+VV15RYQA7DzY1Nakwpla0tLSo8Nq1a2nfvn0qvGbNGmpvb1fhVatWUWdnpwqvWLGCuru71TMRxif+jzCA+/BbAL/nMJ6L5wOID/ECSAfSA+zZs4e2bNmiwkgr0h/ECcC9+A3S8PLLL9Pu3buNccL9QGtrK7344ovqHpOcWCdwWrdunbpMcdJ1Aj9+nilOet5rbm5W3BC/KU66TohvyZIl6remOLFOiJ/TaZKTrhMq0c2bNxvjpOe91atX08qVK1WaTXJinfCcpUuXpviZ4KTrBG5IJ/MwwYl12rp1qwqjvJvkxDoh/YsWLUqFTXDS8x74oZzjPWWKk573cIEfh01w0nXatWuXCu/YscMYJ10n/A38OGyCE+sE7V5//XUVl0lOrBPXJyh/pjjpeQ/8ELdJTnrew/fghvrTFCddJzwP9SbiNdk2wu/BCeV87969xttGrFNHR4eKzxQnPe8hDH5oR5huG8FuSBvam8zPdDuC25p4D5lsGyFOtDUBxBdF2wic4CfgOabbRkgL+IEbyrrpthGAtMLPwzNNt410nRDm+jMsxJJhdwWUGFCBoDcVmZJ7d3ijAg6jBwaioIe+rKxMfY/vuGfGLwwHAM8ICgO4Xw/j2TA3BF28eDHNnj1b/Z2/x4X/B4X90p5NmPmht4m/D5sTh/HJNgdMcdLDqLQHDx6cSm/YnPRwV1cXLViwgObOnZv6W9icdG38+IXNyZt2P/3C5KRrA27Il5xeE5w4jL/Nnz9flbtBgwYZ4aSHUVmjUg/iFwYnPexXj4XNSdfGj1/YnDhd7GiiI7a8vNwYJ10brjP5/rA56WnE97AlyjniM8FJDyM+lHOdX9ic9HA2+oX5zmV+XI+Z4MRhxI+GHOLi5pQJTnoY3JBXYEsTnPQw2isLFy5U7zxOn6m2URA/k+0I/T3E9aipdgTuh8MyZMiQVPym2kacPrzz5syZQxUVFUbbRhxGPRbEL+x3rl5Ps5Ym2xF+/Ey1I5BmlLuZM2eq9orJthGnhetMbz1moh2BT5S7mpoalS6TbaN4hno6LE66Nvgb6weHHv4n59VCMWB2lecMwJ/eME9/SXePHkZmyScMUYPCXBEFhbNJVyH8wuCE5+lxmeTEYW9BsFmnbPiZ5BSkX9icOF3csI5CJ65kM9UFYYXR6MyHXyF5L9d6LB/N8uFXaHnSNQtbv6C067aMoo5IV4+FxUlPox8/U/VeGPrlWoay4RdGXY7ncVz8OxOc9DCXO1OcvOFc7ZFPWOfh5Wfynau/h4L0C+v9hDrTW85NtyOCnmninYtwOn4m3kmZ6ulCOena+PEz1Y5gx5GdWlOc/Np+udZj+dblubZtC3k/lRVQT+dT73HngK5fWHgz1gEMFBBMYeKCIg1R8ovalk47e+3ptLPbnpL1k25LydpJr8ecdvba02lntz0l6yfdlglB2jnHva/3ZdSoUaH3igxEflHb0mlnrz2ddnbbU7J+0m0pWTvp9ZjTzl57Ou3stqdk/aTbMiZIuwEzVT4dICSvWZGIKPlFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsuYIO3ciHvfTtPY2ZCPFpCGKPlFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsseQdo5x71vg4Hx48f322hAEqLkF7UtnXb22tNpZ7c9Jesn3ZaStZNejznt7LWn085ue0rWT7ot44K0c1Pl+6ZQVFdXk1REyS9qWzrt7LWn085ue0rWT7otJWsnvR5z2tlrT6ed3faUrJ90W8YEaWd/10MIwNSJ5cuXi5hCUWx+UdvSaWevPZ12dttTsn7SbSlZO+n1mNPOXns67ey2p2T9pNuyR5B2znHvm0IxefJkEVMois0vals67ey1p9PObntK1k+6LSVrJ70ec9rZa0+nnd32lKyfdFvGBWnnpsr3TaGorKwkqYiSX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2jAnSzv6uhxCAqRNLly4VMYWi2PyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2WPIO2c4943hWLq1KkiplAUm1/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptowL0q6oDP71r3/R6aefTuPGjVPTGP7whz/0+/vevXvpoosuogkTJqjdAGfMmEEPPvigkbRIELNU+EVtS6edvfZ02tltT8n6SbelZO2k12NOO3vt6bSz256S9ZNuy7gQ7YrKYt++fXTUUUfRvHnzfP9+2WWX0eOPP04///nP6Y033qBLL71UOfJ//OMfQ01HIpGgFStWqE+JiJJf1LZ02tlrT6ed3faUrJ90W0rWTno95rSz155OO7vtKVk/6bZMCNKuqJvTnXLKKeoKwvPPP0/nnnsunXTSSer/X/jCF+ihhx6ihQsX0hlnnBFqL8z06dPF9MYUk1/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptowL0q6kd5V/y1veokbXP/vZz6rp9E8//bQ6h+/ee+8N/E1HR4e6GM3Nzeqzu7tbXX5IJpNqw4KysjI1Zd80EBfHGQWi5Be1LZ129trTaWe3PaOMT3KdORDik6yf087Zs1TziuRyJz0+p52cstcd4Hvmi1gSTy4BwJCPPfYYnXnmmanv4IBjlP2nP/0plZeXq56SH/zgB3TOOecEPudrX/sa3Xzzzft9/8QTT9DgwYN9fwMTtLa2Uk1NTSSCYqpGS0sL1dbWRtL7EyW/qG3ptLPXnk47u+0ZZXyS68yBEJ9k/Zx2zp6lmlcklzvp8Tnt5JS9trY2Ovnkk6mpqYnq6upkj7jff//9NH/+fDXqPnnyZLWZ3YUXXqhG39/97nf7/uarX/2qWhuvj7hPnDiRZs6cGYrBwgB6YBYtWkSzZs1SvT8O9sBpZy+cdvbCaWc3nH72wmlnL5x29sJpJ0e/ffv2hfrsknXc0UNx7bXXqlH4U089VX135JFH0pIlS+juu+8OdNwrKyvV5QVG7HEF9cR0dnbSoEGDIumJARAPnPagNIWJKPlFbUunnb32dNrZbc+o45NaZw6E+CTr57Rz9izVvCK53A2E+Jx24SEpqOyV7Cr9rq4udXmn98AIYe8KiOetW7dOxG6DxeYXtS2ddvba02lntz0l6yfdlpK1k16POe3stafTzm57StZPui0TgrQr6og7zmlfuXJl6v9r1qxRI+rDhg2jSZMm0YknnkhXXnmlOsMdU+WfeeYZtd79nnvuCTUd6Aw46KCDSCqi5Be1LZ129trTaWe3PSXrJ92WkrWTXo857ey1p9PObntK1k+6LcsEaVfUEffFixfTMcccoy4Aa9MRvvHGG9X/f/WrX6n1AWeddRbNmDGDbr/9drrtttvo/PPPD30KBabml8g+faEjSn5R29JpZ689nXZ221OyftJtKVk76fWY085eezrt7LanZP2k2zIpSLuiOu44nx1G9F6PPPKI+vuYMWPoxz/+MW3atEkZfOnSpcq5D3t9AqZOIA4JUyiKzS9qWzrt7LWn085ue0rWT7otJWsnvR5z2tlrT6ed3faUrJ90WyYEaVeym9NFCUyhmDZtGklFlPyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2WZIO1KdnO6KIFRfqy3lzCFotj8oral085eezrt7LanZP2k21KydtLrMaedvfZ02tltT8n6SbdlUpB2znHvE3T79u0iBC02v6ht6bSz155OO7vtKVk/6baUrJ30esxpZ689nXZ221OyftJtmRSknZsqj96LeJymTJlCUhElv6ht6bSz155OO7vtKVk/6baUrJ30esxpZ689nXZ221OyftJtGReknRtx7+uJaW5uFtETU2x+UdvSaWevPZ12dttTsn7SbSlZO+n1mNPOXns67ey2p2T9pNsyKUg757j3Cbp7924RghabX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2TArSzk2V75tCMXnyZJKKKPlFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsu4IO3ciHtfT8yePXtE9MQUm1/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptkwK0s457n2CtrS0iBC02PyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2VSkHYDxnFPJBKpT28YUyjGjx/f714WNyjc09OTNozLGwbShTldQWG/tGcTZn6xWMw4J8Qxbtw4FadJThxGfBMnTkw9Nwqd+BmmOOk8/PiZzHuID3nFq1+YnPSKc8KECSoum8pTOk56GJ/p+IXNya8eC5uTzsOPn406+WkDTqjHUB6i4ARwOTfFSQ9zPa3zs1GnoPLkfQ+Z5ARwnWmSE4cRD8qdXg5N65SJR6GcdB5+/EzmPYDrMVOcOIwL5Rz5M6ryxPGa4qSHgXT8wq4jvG1b0+0IP36lVO8VUpfrbb8oOHHbVs+fJtsRQCH8CtUpTIh13OfNm0czZsygWbNmqf/j/D5g586d6gK2bdtGjY2NyvgrVqxQYWDTpk3U1NSkwhs2bFC9NMDatWtp3759KrxmzRpqb29X4VWrVlFnZ6cK4znd3d2pZ+IT/0cYwH34LYDfcxjPxfMBxId4AaQD6QEwzWPLli0qjLQi/UGcANyL3yANy5YtUxszmOKE+4HW1lZ67bXX1D0mObFO4IS/rVu3zhgnXSfw4+eZ4qTnPeyCifsQvylOuk6Ib+nSpeq3pjixToh/8+bNKi6TnHSdUIkiTlOc9Ly3evVq2rp1q0qzSU6sE56zfv36FD8TnHSdVq5cqZ7FPExwYp1gRwDl3SQn1gnpf+WVV1JhE5z0vAd++MR7yhQnPe/hAj8Om+Ck67Rr1y4V3rFjhzFOuk74G/hx2AQn1gna4TmIyyQn1glhpAPlzxQnPe+BH+I2yUnPe/gecaL+NMVJ1wnPw4V4TbaN8HtwQhr27t1rvG3EOnV0dKj4THHS8x7CSA/aEabbRrAb0vb666+n+JluR6CdibThPWSybYQ40dYEEGcUbSNwgp+A55huGyEt4Iffox4z3TYCEBc/03TbSNcJYa4/w0IsGXZXQIkBFUh9fb3KlA0NDakeFO51YUCYsWPHUnl5ufoevUHcq+YX5p7hoDCA+/VwWVmZ6nmBoIsXL6bZs2erv/P33IMYFPZLezZh5ocRCMRlghOH2THiXlBTnPTecbzkR48ereI3wUkPd3V10YIFC2ju3Lmpv4XNSdfGj1/YnPS0B+kXJicOozIDN+RLjscEJw7jb/Pnz1flbtCgQUY46WHkFbwIgviFwUkPA9BuzJgxqXosbE66Nn78wubE6UJeWbRokeqIBTdTnDiMuLnO5OeEzUlPIztjKOf4zgQnPYx7kVd0fmFz0sPZ6BfmO5f5cT1mghOH9XqMYYITh/F3cENeqaioMMJJD6O9snDhQvXO4/SZahsF8TPZjvDqZ6pthDDiQucc6mj83mTbiNOHd96cOXOULU22jXgEFPVYEL+w37l6Pc3tT5PtCD9+ptoRiAvlbubMmaq9YrJt5G37eesxE+0IAOVu1KhR6p1gsm0U7yvncMbz5ZdrvYe/sX5w6OF/wvmvq6ujQjFgHPewDBYGkIHg/KEyRYZ1sAdOO3vhtLMXTju74fSzF047e+G0sxdOOzn6tba2huqHip0qnwvQM4KpEtzDIg1R8ovalk47e+3ptLPbnpL1k25LydpJr8ecdvba02lntz0l6yfdlglB2jnHvQ+Y9ikZUfKL2pZOO3vt6bSz256S9ZNuS8naSa/HnHb22tNpZ7c9Jesn3ZZdQrRz87T71jBgfbtURMkvals67ey1p9PObntK1k+6LSVrJ70ec9rZa0+nnd32lKyfdFvGBWnnRtz7plBgwxAJUyiKzS9qWzrt7LWn085ue0rWT7otJWsnvR5z2tlrT6ed3faUrJ90WyYEaeccdwcHBwcHBwcHBwcHBweHEoabKt83hQJHEkhFlPyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2VckHZuxL1vCgXO95MwhaLY/KK2pdPOXns67ey2p2T9pNtSsnbS6zGnnb32dNrZbU/J+km3ZUKQds5x70NFRQVJRpT8oral085eezrt7LanZP2k21KydtLrMaedvfZ02tltT8n6SbdlhRDt3FT5vikUI0aMIKmIkl/UtnTa2WtPp53d9pSsn3RbStZOej3mtLPXnk47u+0pWT/ptowL0s6NuPdNodi0aZOIKRTF5he1LZ129trTaWe3PSXrJ92WkrWTXo857ey1p9PObntK1k+6LROCtHOOex+qq6tJMqLkF7UtnXb22tNpZ7c9Jesn3ZaStZNejznt7LWn085ue0rWT7otq4Vo56bK902hGDZsGElFlPyitqXTzl57Ou3stqdk/aTbUrJ20usxp5299nTa2W1PyfpJt2VckHZuxL1vCsWGDRtETKEoNr+obem0s9eeTju77SlZP+m2lKyd9HrMaWevPZ12dttTsn7SbZkQpJ1z3IkoFotRbW2t+pSIKPlFbUunnb32dNrZbU/J+km3pWTtpNdjTjt77em0s9uekvWTbsuYIO0GjOPOvSz49IYhZF1dHSWTydT3mcI9PT1pw7i8YSBdmNMVFPZLezZh5qfbwhQngAuHSU66pg0NDak0RaETP8MUJ52HHz+TeQ9AXvHqFyYn3X719fUqLpvKUzpO3nA6fmFz8qvHwuak8/DjZ6NOftrwS15Pr0lO+BuXc1OcvGEvPxt1CipPzI/rMZOccD/XmSY5cRjxoNzp8ZvWKZu6Lqz3kx8/k3lPfw+Z4qSnF+Wcnx9FeeI0RdU2Sscv7DrC27Y13Y7w41dK9V4hdTkQVI+Z4ATAln5cTbxzk2nq6Sh0ChNiHfd58+bRjBkzaNasWer/27dvV587d+5UF7Bt2zZqbGxUxn/llVdUGMDOg01NTSqMqRUtLS0qvHbtWtq3b58Kr1mzhtrb21V41apV1NnZqcIrVqyg7u5u9UyE8Yn/IwzgPvwWwO85jOfi+QDiQ7wA0oH0AHv27KEtW7aoMNKK9AdxAnAvfoM0vPzyy7R7925jnHA/0NraSi+++KK6xyQn1gmc1q1bpy5TnHSdwI+fZ4qTnveam5sVN8RvipOuE+JbsmSJ+q0pTqwT4ud0muSk64RKdPPmzcY46Xlv9erVtHLlSpVmk5xYJzxn6dKlKX4mOOk6gRvSyTxMcGKdtm7dqsIo7yY5sU5I/6JFi1JhE5z0vAd+KOd4T5nipOc9XODHYROcdJ127dqlwjt27DDGSdcJfwM/DpvgxDpBu9dff13FZZIT68T1CcqfKU563gM/xG2Sk5738D24of40xUnXCc9DvYl4TbaN8HtwQjnfu3ev8bYR69TR0aHiM8VJz3sIgx/aEabbRrAb0ob2JvMz3Y7gtibeQybbRogTbU0A8UXRNgIn+Al4jum2EdICfuCGsm66bQQgrfDz8EzTbSNdJ4S5/gwLsWTYXQElBlQg6E1FpuTeHd6ogMPogYEo6KEvKytT3+M77pnxC8MBwDOCwgDu18N4NswNQRcvXkyzZ89Wf+fvceH/QWG/tGcTZn7obeLvw+bEYXyyzQFTnPQwKu3Bgwen0hs2Jz3c1dVFCxYsoLlz56b+FjYnXRs/fmFz8qbdT78wOenagBvyJafXBCcO42/z589X5W7QoEFGOOlhVNao1IP4hcFJD/vVY2Fz0rXx4xc2J04XO5roiC0vLzfGSdeG60y+P2xOehrxPWyJco74THDSw4gP5VznFzYnPZyNfmG+c5kf12MmOHEY8aMhh7i4OWWCkx4GN+QV2NIEJz2M9srChQvVO4/TZ6ptFMTPZDtCfw9xPWqqHYH74bAMGTIkFb+pthGnD++8OXPmUEVFhdG2EYdRjwXxC/udq9fTrKXJdoQfP1PtCKQZ5W7mzJmqvWKybcRp4TrTW4+ZaEfgE+WupqZGpctk2yieoZ4Oi5OuDf7G+sGhh//JebVQDJhd5TkD8Kc3zNNf0t2jh5FZ8glD1KAwV0RB4WzSVQi/MDjheXpcJjlx2FsQbNYpG34mOQXpFzYnThc3rKPQiSvZTHVBWGE0OvPhV0jey7Uey0ezfPgVWp50zcLWLyjtui2jqCPS1WNhcdLT6MfPVL0Xhn65lqFs+IVRl+N5HBf/zgQnPczlzhQnbzhXe+QT1nl4+Zl85+rvoSD9wno/oc70lnPT7YigZ5p45yKcjp+Jd1KmerpQTro2fvxMtSPYcWSn1hQnv7ZfrvVYvnV5rm3bQt5PZQXU0/nUe9w5oOsXFt6MdQADBQRTmLigSEOU/KK2pdPOXns67ey2p2T9pNtSsnbS6zGnnb32dNrZbU/J+km3ZUKQdgNmxD0d0BsyatSo0HtFBiK/qG3ptLPXnn5xYVrmN7/5TRX+6le/qqaI2QrpZUFy2ZNuS8nalUI9Jim+qCHZnk47u+0pWT/ptowJ0s457n2C8poViYiSX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2jAnSzk2V79tpGjsb8tEC0hAlv6ht6bSz1556XBhpx4XN/xgI8/c2QnpZkFz2pNtSsnaAe+fZC8llwZU7u+0pWT/ptuwRpJ0bce/bYGD8+PH9NhqQhCj5RW1Lp5299tTj+vrXv77f3+++++5U+KabbiLbIL0sSC570m0pWTvAvfPsheSy4Mqd3faUrJ90W8YFaecc974pFNXV1SQVUfKL2pZOO3vt6bSz256S9ZNuS8naSa/HnHb22tNpZ7c9Jesn3ZYxQdrZ3/UQAjB1Yvny5SKmUBSbX9S2dNrZa089LmxEh+uKK65I/R1h/t5GSC8LksuedFtK1g5w7zx7IbksuHJntz0l6yfdlj2CtHMj7n1TKCZPnixiCkWx+UVtS6edvfbU49LPwGRUVFRYvau89LIguexJt6Vk7QD3zrMXksuCK3d221OyftJtGReknXPc+6ZQVFZWklREyS9qWzrt7LWn085ue0rWT7otJWsnvR5z2tlrT6ed3faUrJ90W8YEaWd/10MIwNSJpUuXiphCUWx+UdvSaWevPf3iwgg7NqLDZfNo+0AoC5LLnnRbStauFOoxSfFFDcn2dNrZbU/J+km3ZY8g7Zzj3jeFYurUqSKmUBSbX9S2dNrZa0+nnd32lKyfdFtK1k56Pea0s9eeTju77SlZP+m2jAvSzn4GIUGCmKXCL2pbOu3stafTzm57StZPui0laye9HnPa2WtPp53d9pSsn3RbxoVoJ4NFgUgkErRixQr1KRFR8ovalk47e+3ptLPbnpL1k25LydpJr8ecdvba02lntz0l6yfdlglB2g0Yx53Fwqc3zFMo9HuTyWTaMNZJpAvj8oaBdGFOV1DYL+3ZhJkfNmcwzQlxTJkyRcVpkhOHEd/06dNTz41CJ36GKU46Dz9+JvMe4uPpRKY4cRiYNm2aisum8pSOkx7GZzp+YXPyq8fC5qTz8ONno05+2oAT6jGUhyg4AVzOTXHSw1xP6/xs1CmoPHnfQyY5AVxnmuTEYcSDcqeXQ9M6ZeJRKCedhx8/k3kP4HrMFCcO40I5R/6MqjxxvKY46WEgHb+w6whv29Z0O8KPXynVe4XU5XrbLwpO3LbV86fJdgRQCL9CdQoTYh33efPm0YwZM2jWrFnq/9u3b1efO3fuVBewbds2amxsVOEtW7bQnj17VHjTpk3U1NSkwhs2bKCWlhYVXrt2Le3bt0+F16xZQ+3t7Sq8atUq6uzsVGH06HR3d/fr3cH/EQZwH34L4PccxnPxfADxIV4A6UB6AKQP6QSQbqS/VDjh/mJxQnqi4tTa2pp6XlQ6IW3r1q2zXidv3gOnvXv3RsoJlejmzZsjKU8II79EqdPu3bsjqyNWr16dCpvOe1u3bk3xk1jv4f2E50vipOu0a9cuFd6xY4cYTqwTtGN+UXHCb1D+THHS8x7KHuKOUifUm8wjivcTh03nPTwT90T5zu3o6Ei9Z02XJ7zTcb/kNix+GwUnbjvApqVY74WhE9KMekwSJ69OCHP9GRqSwtHU1ISujuTu3bvV/3t6etSlh7u7u5Ovv/56srOzM/V9IpFIG8Zv0oVxecMAwu3t7cnnnntOxad/z+kKCvulPZsw8+vq6jLGicOI47XXXkvdZ4oThxHfG2+8oWxpipMeRjzPPvusitcUJ52HH7+wOelpR3zIK179wuTEYXDiuExy4jC4QbuOjg5jnPQw4knHLwxOetivHgubk87Dj1/YnDh+xIU6E58mOXEYn6jHuJyb4KSHoRmXc1Oc9DDX0zq/sDnlql+Y71zve8gEJw7r9ZhJThzmcs71mAlOehjx8DvPFCedhx+/sDml089kOwKcUM7ZlqY4cdr5nefXtjXxzuV6LIhfGJz0sLdta7od4ccvbE4cRlyoM+EvmOTk1/YzxUlPO7dtUSZMcUpo4XT1dFic9LCu3549e5QfCn80DMTwDwlGc3Mz1dfXq96Suro6KgWg92XBggU0Z84cKi8vL3ZyHHKA085eOO3shdPObjj97IXTzl447eyF006Ofq2traH6oWKnyucC9F1gOpHUPowo+UVtS6edvfZ02tltT8n6SbelZO2k12NOO3vt6bSz256S9ZNuy6Qg7Zzj3rfBAK/NkYgo+UVtS6edvfZ02tltT8n6SbelZO2k12NOO3vt6bSz256S9ZNuy4Qg7dw8bSIqKyujgw46iKQiSn5R29JpZ689nXZ221OyftJtKVk76fWY085eezrt7LanZP2k27JMkHZuxL1vCkVbW5uIKRTF5he1LZ129trTaWe3PSXrJ92WkrWTXo857ey1p9PObntK1k+6LZOCtHOOe98UCmz3L2EKRbH5RW1Lp5299nTa2W1PyfpJt6Vk7aTXY047e+3ptLPbnpL1k27LhCDt3FT5vikU06ZNI6mIkl/Uthxo2uFsyG9+85sq/NWvfpUGDRpkND6TGGjaufjsgdPObkiux1y9aa89nXZ221OyftJtWSZIOzfi3jeFYu/evSKmUBSbX9S2dNrZaU90QNx8882qEwI7fUqE9LIguexJt6Vk7QD3zrMXksuCK3d221OyftJtmRSknXPc+wTdvn27CEGLzS9qWw4U7eDcwtnt6upK/Q1hfIfLRnvGYjF1pqV07aSWBcllT7otJWsHuHeevZBcFly5s9uekvWTbsukIO3cVHn0XsTjNGXKFJKKKPlFbcuBoh1Gp724++67U+Gbbrop1PhMgTsZ0OmACnTnzp3U09OT+j7sqf/5IKzlCFHmTdNLKAZa2ZNej0nWDnDvPHshuSy4cme3PSXrJ92WcUHaOce9ryempaWFamtr1SigNETJL2pbDhTtoo7PlD3ZuWRUVVUZ6YAoBRQjb8KeUfZgSy170usxydoB7p1nLySXBVfu7LanZP2k2zIpSDvnuPcJunv3bhoyZIj1ghabX9S2HCjaXX311arHECPV7OheccUVVFFRYa098fyamhq1DKAUpi/pswEYejjXUewobKmnme2J7zg+kyPvksue9HpMsnaAe+fZC8llwZU7u+0pWT/ptkwK0q6ojvu//vUvuuuuu+iFF16gLVu20GOPPUZnnnlmv3veeOMN5bQ888wz1N3dTTNmzKDf//73NGnSpNDSAYdo8uTJJBVR8ovalrZpl+uU5nT84LSH7ZiZtic4A9wB0djYaKQDIozZAEAhswGiyJveNMOe99xzTyQzGGwre7lAej0mWTvAvfPsheSy4Mqd3faUrJ90W8YFaVfUzen27dtHRx11FM2bN8/376tWraK3ve1tdMghh9DTTz9Nr7zyCt1www1qOmjYPTF79uwpiVE/E4iSX9S2dNrZZU90NOBiR726uprKy8tT30tCMfIm7BkVJJc96fWYZO0A986zF5LLgit3dttTsn7SbZkUpF1RR9xPOeUUdQXhuuuuo/e///105513pr6bOnWqsbUP2OHa9ikUxeYXtS1t0S7fadhefrjP5ChqlPbE86Nck53rbACgkNkAUdhST/O3vvUtZc8LLriAKisryTRsKXv5QHo9Jlk7wL3z7IXksuDKnd32lKyfdFsmBWlXsmvcE4kE/eUvf6GrrrqKTj75ZHrppZfowAMPVA1V73R6HVgvq58L3dzcrD4xzR5XEMaOHavixGUa2EUbmQifUSFKflHGZYt2t99+eyrMlQYcLca11147oOyJaUs653RlMyrtkCb+ZI0Q5u/zSaNpW+ppBtCjjBkMhaQ5F0SVN6XXmdLjk66f087ZsxTzivRyJzk+p52cstcdcjssliyR4S40lPU17lu3blVGxmZLX//61+kd73gHPf7446qx/9RTT9GJJ57o+5yvfe1rvkdnPfHEEzR48GDf38AEMCwavFH0xCDT8O6G3MA2iSj5RW3LbOODzdetW6fCWOeSr93z1W7NmjVp/45OKZvsaVtcuWgXVl4plF8u6eB7y8rKaPz48erTNKLUT3KdORDik6yf087Zs1TziuRyJz0+p52cstfW1qYGoJuamtSIv1jHffPmzaoB+slPfpIeffTR1H1nnHGGcsB/+ctfZj3iPnHiRNq1a1egwWBgdBSMGTMmksoNPTCLFi2iWbNmRdLAjpJf1LbMNj5MJcZGiMCVV16Z9/TnfLXjafH4vO+++1T40ksvTaUjKD2lak/b4rKx3OWaZyXnFdu0c/ENHP2k5xXJ2kUdn9PObnu6d56dtix22cN+bsOHDw/NcS/ZqfIjRoxQPSPYRV7HoYceSs8991zg77C20299J56FKwhh7lKfbUcFXoLp0hQmouQXtS3Txcdry1FouY9KnyqTz4Zo+WjH9+J3nA6sR84m/lKyp81x2VLuCsmzkvOKDdq5+AamftLzimTtoo7PaWe3Pd07z05bSip7Jeu4o3GKnoply5b1+3758uWhb+mPBjGOURo2bFgkPTFRI0p+UdsyU3xhH/FVjKPjcO7khRdeGPppCgMtr0SNfPnlm2dLrezZDOm2lKyd9HrMaWevPZ12dttTsn7SbZkQpF1RHfe9e/fSypUr+60DXrJkiTIsekYwPfTjH/84nXDCCak17n/605/U0XBhQ9/hWyKi5Be1LW3SLp9d4aOuZCTnFVOdKwA2zvSOhksvC7brN5BtKVk76fWY085eezrt7LanZP2k21KKdkV13BcvXqwccsZll12mPs8991x65JFH6IMf/CA9+OCDqmF8ySWX0MEHH0y///3v1dnuYQKOETbCk4oo+UVty0zxhX3EVzGOjsM+DVgvw9+bPO9ccl6JGvnyyzfPllrZsxnSbSlZO+n1mNPOXns67ey2p2T9pNsyLki7ojruJ510UsYznD/72c+qy/QUip07d6p19bZPoSg2v6htmSk+PycXDpBJ57dQeKdKY1fKqKb3S84rJjtXvGHkLz9+mUbo+bf55NlSK3s2Q7otJWsnvR5z2tlrT6ed3faUrJ90WyYEaVeya9wdHBwcShU2753g4ODg4ODg4OBgH5zj3jeFYtSoUSQVUfKL2pbZxpfP2vJiwTtVGmdBRjW936a8ks3odTGh88tmhL7QPFuqZc9GSLelZO1sq8dKPb6oIdmeTju77SlZP+m2jAvSzjnufVMotm3bRqNHj7Z+CkWx+UVtS4naeZ04nPuIIyWicEyztWcYTrPN2mWzDl3nF8UIvSt74UG6LW0ue9nAvfPsheSy4Mqd3faUrJ90WyYEaecc9z6U8mZltvGL2pbStePzu0vdnvk48/nElc/oddjIdh269LIguexJt6Vk7QD3zrMXksuCK3d221OyftJtWSFEO+e4902hwIYFUhElv6htKVm7Ykzv99rT64wz/JxmdqjzjUva+nKdXxSnG7iyFx6k21JyvQm4d569kFwWXLmz256S9ZNuy7gg7Zzj3jeiuWXLFnVUgO1TKIrNL2pb+sVX6mufbbNnLk5zLiPgEspdus4VnV8UpxuUWl6xGdJtKVm7gfjOkwTJ9nTa2W1PyfpJt2VCkHbOce9DdXU1SUaU/KK2pdMufHui8wOVW9B09EzIdgQ8H+2iGL0OC9LLguSyJ92WkrUD3DvPXkguC67c2W1PyfpJt2W1EO2c4943hWLYsGEkFVHyi9qWenylsPY5E3KdDVAse958881pnXE4yn4j7fnElSvyGb2G3W+//XaaMmUKHXvssVRebr7q8+NncvlDMcueNEi3pWTtBtI7TyIk29NpZ7c9Jesn3ZZxQdo5x71vCsWmTZto/Pjx1k+hKDa/qG2px2fL2mcb7BmLxSiZTAbep49uX3755cohzXUE3JW7cDt5iln2pNWb0m0pWbuB9M5z2tllT6ed3faUrJ90WyYEaTdgHHfemZs/IRyH4aQMHjw45ajge3yHKyjc09OjnhEU5ufoYRzphThwD8Bh/h4X7g8K+6U9mzDz020RNicOA4iLHT9TnPRwbW1tPydTdzr1cL6cvGF+Xi6curu7VVifAdDR0ZGKE04Z369ro/PDFZZOfpz4fuh39dVXp5zHe+65R4Uvu+wyqqysVL/Td7rH6DXSr3+H5+J7P04cRpxDhgzpl3bYByPj+BucVTwniBPivPHGG9Nygt3xqW+cB7vjHq/dc817meoIhL38ctFJz8/p8pueNxCfXo+FzUnn4cevkLyXrjzp9Tc/3wQnPcx1Jqc3bE56GvE9l/Ns+IXxfvLyC5uTHs5Gv7Dfufp7yAQnDuv1mGlOHEZ8HDbByS9/RtE2CuJnsh3h1c9U24jDKOf6/abaRt73hlc/U+2IdPzC4OTVRm/bmmwbBfEzwUkvc+wjmOTkrTNNcdLzHj5hS788GRanpCdcCL9c6z1dP90/CQN2dzukwbx582jGjBk0a9Ys9f/t27erz507d6oLwJl+jY2NytBtbW3U1NSkvkevDIc3bNhALS0tKrx27Vrat2+fCq9Zs4ba29tVeNWqVSnHYMWKFSknDWF84v8IA7gPvwXwew7juXg+gPgQL4B0ID3Anj171OYKANKN9AdxAnAvfgN+eH5zc7MxTrifnSK2qUlOrBM4NTQ00MaNG+miiy5Szt7HPvax1OjkRz7yEbr00kvV9/ly0nVqbW1N2SgXThg5feCBB+gHP/hB6mz273//++r7hx56qB8nPe/t3btX8Vu3bl2oOgXlPcQHXnDQUSZYg5qaGsUFdsU9u3fvVjMYLrjgglS+2rFjh2oAsWZBnDjvgRNG5ZFXdE4jR45MTWUvlBPse99999EjjzyivkfF+rOf/Ux9f//99xeU9zLVEQhXVVUpfrnoBPsuX75cdWLAPtgJFWHEzVz98h47KVu3bjXGSddp9erVKl8g3jDyXrryxJyQ70xyYp3ACe8MvHRNcdLzHuJCOd+1a5cxTnreQz5BnNy5ZYKTrhN4cR1hipOuE3QDP+hoihPrxPkEcZnkxDohHpQ7lD9TnPS8h7KHuE1y0vMe+KHeZB6m2xGbN29ONb5Nto3wezwT5RztCNNtI9YJbTK8U0xx0vMe3ungh/hMcmKdoBn+Dnua4qTrhHYm+KHNY4oT68ScYFOTnFgncMLf2KYm20ZIC/IlbIl6zBSnJi3vIYw2LfiZbhvpOiHM9WdYiCXD7gooMSAz1tfXqwYfMolfjwqwfv16mjBhgnIYTPcqQ9DFixfT7Nmz1d9Nj7hz4Z80aVJqpNFUrzLuhS0nT56cciRM9irjOahMMf2FeyVReO644w5131VXXZVynsLorYQDtWDBApo7d27qb9lwuvXWW9Pm0xtuuMG3Z8+Pn8leZa9+qFzZlhiFhy3D6q1EZQZuyJeIB/fiu29961sqPZhuj+9w8Yh+rpzY7jz6gDXuqGA5fbrdw+Ckh5FXUOGDH9s3G52wvwCXHU67HsYsA7/y5FePhc1Jz29+/ArJe+nqCOSLRYsWqY5YfSZH2Jw4jLi5zuTnhM1JT6N3Gp8JTnoY9yKv6PxMjrhno1+Y71zmx/WYCU4c1usxhglOHMbfwQ15BR17pkfc0V5ZuHCheudx+ky1jYL4mWxHePUz1TbiTjJ0FKCOxu9Nto04ffPnz6c5c+YoW5rgpIfxW9RjQfzC4KRro9fT3P401TYK4hc2Jw4jLpS7mTNnqvaPKU5+bT9vPWaiHQGg3I0bN069E0xwSmrhdPV0WJx0bfA31g8+CfxPOP8YtCsUA2aqPGcA/tTDEBabFvBUb797vGG+N9cwRA0Ks3MRFM4mXUH8hg8fntYGYXHC8xAXp9sUJw6D29ChQ1NOrR8n/r6YOmXaCT1IGz9+JvOeVz846t69AQrVTE8Xyh3iufPOOynT/gT5cNLtjg4B4Mtf/rLilc7uYYTxMmJ+uZYzvT/VL+yX9/Kpx/LRLB9+hZYnXaewNQvSgOtMPb1hctLTgu/T1WNhcfLW015+pt5PYeiXS13nrcdMvnP1eox/Z4ITh7mc86ykKNoRudojnzDz8ONnsh2RjX5hvXPBCeVct6mpthEj6Jkm2hEIp+Nn4p2kt21Nt8v9+JngpDuOUbVhvXWmCU56Grlty067CU4xLVxIPZ1PvcdtNV2/sDBgHPd0gFHD6AUpVUTJL2pb+sVncufufJHvOd6lYE+b44ri/PSw+eV73J3kvBI1pNtSsnYS67Fixhc1JNvTaWe3PSXrJ92WMUHavdldMICBni2ss+AeLmmIkl/Uthxo2mHaIqZS49I3XDMVn0noccFZxQUHlYEwf28j8rUlOhVw6Y46dzak63BwZS88SLflQKs3pcRVjPiihmR7Ou3stqdk/aTbMiFIOzfi3tcTM2rUqNCnMwxEflHb0jbtcp0NINmeelymR8bxnGuvvVbtT5Bp5DosSNauGPFFCem2lKwd4N559kJyWXDlzm57StZPui1jgrRzjnufoLwbtkREyS9qWw4U7Xh0XT9OTg+H5eBKzitRo1B++XTyuLIXDqTb0pU9e23ptLPXnk47u+0pWT/ptowJ0s5Nle87Z2/lypWpnQ6lIUp+UdtyoGiHs81xhJm+YRvC+A5XGEDnwC233KKOrcOxGcXQjp1VXFGsQzcJ6WVBctmTbkvJ2gHunWcvJJcFV+7stqdk/aTbskeQdm7EvW9nQD6GRyKi5Be1LQeKdlGd2oh4cHalxLwSNaSXBcn6meKGzjHuaMPeDdw55bQLF+6dZy8klwXJdaZ07YoRX5SQbsu4IO2c4943haK6upqkIkp+UdtSsnZ6I//yyy9XjfxcdxrPNh596j0+ceYlrwUyNfKdi3Z+Dk+QExT0e8xawDnuxx57bOqoIZOQXhYklz3ptpSsHeDeefZCcllw5c5ue0rWT7otY4K0s7/rIQRg6sTy5ctFTKEoNr+obSldO95QA2dB5rPTeDbg6fboEOD4cOZ5mNPwS1U7k7v0Sy8LpaCfLdyQt3B596jg75124cK98+yF5LIguc6Url0x4osS0m3ZI0g7N+LeN4Vi8uTJIqZQFJtf1LaUqJ0+Ao6p642Njaqy4Ua+SXB8UUzNz0Y7v0359u3b5+sEMfSOjKBN/dARMlDLQi4zFcKIz0aEzc2vA0zfr+LGG28sybxiK9w7z16Uar1pW1zFgGTtihFflJBuy7gg7Zzj3jeqWVlZSVIRJb+obSlRO28jH9PWMQLOyGWn8WzA56TzNHzEF9Y0/EK183N4vvOd76R1gnT76L/nqf/33XdfqmNCPzc+7F36pZcFiWVvoNhSsnaAe+fZC8llwZU7u+0pWT/ptowJ0s7+rocQgNHMpUuXiphCUWx+UdtSunaobMaMGWP07Emebg9HneNDr2QY0/BLXTuTu/SXWlnINF077PhsRtjc0DmGS+8oQpi/L7W8YjvcO89eSC4LrtzZbU/J+km3ZY8g7dyIe98UiqlTp4qYQlFsflHbUqJ23hHw7du302WXXZbakA3rsfm+sB1rjEQjvlLJK15bAJdcconqZMB3PPoeNENA/z3PWrj00kvp3nvvTZu2MGxcamUh03TtXGdymOAX1jT+QhE2Nz8evEcFl7tSyiu2w73z7EWp1Zu2xlUMSNauGPFFCem2jAvSzjnufZAgZqnwi9qW0rTzNvLRqNcb+SbjxVrbRCIRaWWaKU1eDB48ONWJwQiyT5DD5NchwM4/nqsvTQiTn2nH1JU9Z8tSzStRw73z7IXkesyVO7vtKVk/6baMC9FOBosCAUdlxYoV6lMiouQXtS2la4ep66NHj6aOjo6cpznns2O65LwStDyAweve9WUJhUwlL7WykGm6dtjx5YKwp/EXClPaIc9hZgMuvdOm1PKK7ZBcjznt7LWn085ue0rWT7otE4K0GzAj7iwWf6LnRQ9jCoV+LxrvuILCWCeB3wWF+Tl6GDtZwzngNRYc5u9x4f6gcFDaEUbj9o477lDfXX311VRVVbUfP3ZITHDiMO7HWdnpeGTLKZsw4ps+fXrKniY4ecPs4JnkhAtnjV9//fXqubfddls/xxJhPr4NYTgCXk5eRzQTJ7YNTycywUkPA9OmTVP3ZNIJDjZswfzwvT5DIB0nfMKW1157Lc2fPz+1ozzu1Stxv1F2fSr5DTfckJGTHka8zK+trU19YuM//hsfA8b7CWSb99KVJ289pqcXNtC1AfBc/ftc6j2dX6HliWch6J0m0IPzMHcssGaF5r1MdQQu1GPMMx9OudZ7XI9lw6/Q9xPX0zo/E5w4rL9/g/iF+c71vodMcOIwwHWmSU56GOVOfw+Fzckb5rhMt42C+JlsRwBcj5lsG3F6Uc75+abbRrr9vPqZaBtxPRbEL+x2BL/zmKup9h7z8ONnom2klzn2EUxx8mv7meKk5z1uu3MaTHBKauF09XRYnHRtdP04HBbEjrjPmzePZsyYQbNmzVL/x7pdYOfOneoCtm3bpo6+ArZs2UJ79uxR4U2bNlFTU5MKb9iwgVpaWlR47dq16igqYM2aNdTe3q7Cq1atSo0KoUcHjXO9dwf/RxjAffgtgN9zGM/F8wHEh3gBpAPpAZA+pBNAupF+5rRr1y4Vrquro927d0fOCfeHzSlbnZCeqDi1tramnmeSk64T0jZ8+PDUCN2IESNSI8UjR45UjpfOCenDJhzggIoEI/YYvdy7d686x7JYOnnz3rp161SawtYJz7z99tvpe9/7ngrrnFCJbt68OcUJ5QadHhdeeKEqO0Btba26uDwNGTIkr/KEMPIL8Mgjj6hOAFzQA7rcc8899NOf/lR1uIVVnlD2M+m0Y8eOFCf8Pd86YvXq1alwGHUEOhuHDh2qwtXV1dTQ0KDCNTU1tHXr1hS/MPJeqdV7eD/h+ZI4+b2fkPekcGKdoB3zi4oTfoPyZ4qTnvdQ9hB3lDqh3mQeUbyfOGw67+GZuCfKdy5m6/F71nR5wjsd90fZjoi6jsBvo+DEbQfYtBTrvTB0QppRj0ni5NUJYa4/w0IsGXZXQImhubmZ6uvrVYMPDUG/HhWYAA4Nel3hEJnuVYagixcvptmzZ6u/F9JTzpkcjhkcAQAbmeHYA3wPZ4/5oXcLTp7JXmWkB3EdfPDBqfSb7FXGtXLlStWTBm5hcMLfMAKI+6655ppUngA/2HnBggU0d+7cFHeTvcrMb+LEiYofKvP7779fxYVN2uDs4HfQmzndcsstqZE0wBvGKLVfbyW0g8MLx/Kcc85RzzY54g5bgttBBx2UujeMXmWMbmO0Fr9HWcCaeP4bRtxR7niEW08jd3SgoaOXJeiP77mDJNseWH7JgJ/fjAk9nG7mQLa9yn71WBg6BZUnnR8/IxedvHmP60a/egzPW7RokeqI9c4cCLunnH+3bNkyxQ3pDLv335tGxAtboh7DM0xw0sP4RF7R+ZkccYe+mfQL853L/Pg9ZIITh/V6jEf+THDiMABuyCv8fg+bkx5GmVy4cKF653H6TLWNgviZbEd49TPVNkIYccFR4RF+k20jTh/eeXPmzNmvbWtidBrlHPVYEL+w2xH41Nu2pkfc/fiZaBvxOwHlbubMmaocmB5xZwfZrx4z0Y5AvCh3mBnFJxqZHHHvSlNPm2hH4G+sHxx6+J9w/nmAqBAMmKnynAH40xs+9NBDfb8PCvN021zDEDUozJkpKOyXFr+dornhq+8UnQ2/MDih8sRMB0Y+nHIJ4zrkkEP68S+Uk76UISydwuKHyofThcoOI5N+PPT+OL9wECf8HSMsPDXLBCcG0q/ny0LzHvd8ck81uHAYQEcE7g+qC/B3L+A4+m0glw0//I75oQMoaDM8L49C6ohc67Fcw7oGOj8d+dR7bGPm4bU991hzmTDFicP41Osx03V5pnosDE562FtPm3o/6fz8wmFyyodfGHV5UD1msh2hxxfF+ymX34bRjvDyM/nOzUa/sNp7qM+85dx0OyLomSbasLBlOn5hv5MQt66d6Xa5Hz8T71ndceS2mClOHEadmW89lm9d7rWlSf+pooB6Op96j9vaun5hYcA47unAIz3cqyUNUfKL2pZhxsdTW7wbZDGKcTQV8wPAz2/zLm/a0u2Yng1vVOD6hmCmeIedV/zWqGO6POO6666jKKHzy3Qc2EAve6UG6baUrB3g3nn2QnJZcOXObntK1k+6LZOCtHOOe980DKwj4WmKNiEbJy1KflHbMsz4wj7nOkx+v/rVr/qNnAN8hrk3bbk6iTpvVGjDhg1TszY4PlO8S7Xc8c7fA7ksFCu+sGxfKCTYspTiixrunWcvJJcFV+7stqdk/aTbMiFIO+e4901l4HWatiEbJy1KflHb0mbtcuHnddpNAfHwRo6lrp33TPTLL79chTE9nkfaL7jgArW5WTHgx8+kY+rKnrNlqeaVqOHeefZCcj3myp3d9pSsn3RblgnSzjnufc4KNg/gNbDSECW/qG0ZZny5TjGPAswPa6R5qny2acvWSfTyxjOx8Z3ppQFh5xXeKV1fTgAu/H3YO3ua5uftmMikh81lr9Qg3ZaStQPcO89eSC4LrtzZbU/J+km3ZVKQdm+urB/AwBQKbPfPm0HYCHbScHkb+FHyi9qWYcbHa5F1Z5hnL5h0YuGg3XzzzerS15br/LDu3FTa+Bmo2FCh8ekLpnnnqx1shMtvvb/XflHpJK0slGJ8UUK6LSVrB7h3nr2QXBZcubPbnpL1k27LhCDt3Ih73xQKHO8gFVHyi9qWtmmX6yhq1PzgvOOsZX23TFPIl1umvQgwE4EB+7KTbYJTOj3z5ZfvJomu7IUH6ba0rd7MFe6dZy8klwVX7uy2p2T9pNuyTJB2znHvc1ZwlBTOe7Z9CkWx+WUbV64ObKHxleIGWdk4aF5+QWkrxJ76rvUcr/69yV3lTeRL3YnXw/nuKp9Op3Qj7/nyy3eTxKjrMcn1pnRbStauVN95tsYXNSTb02lntz0l6yfdlklB2jnHXduQ64ADDrBe0GLzi9qWtmjn5/z5HV/mddCy5ac7kHzkRbbw7ipfV1cXya7yftyy6YAI2otAt12YyORIM/gceb3TRXJZsKXs5QPptpSsHeDeefZCcllw5c5ue0rWT7otk4K0c4573xTaKVOmkFREyS9TXGGflW6Ldn7OX5j2xE7qDITZjrnaE5Xbzp07KQrkq13QSQr5bC4Y1swPv+P58uWX7yaJUZcFW8pePpBuS8naldo7z/b4ooZkezrt7LanZP2k2zIuSDvnuPc5Ky0tLVRbW2t9T0yx+WWKK+yz0qVp53XQ8rEnH4UG5LOrPHbdvPDCC1Prw7EZG98X1rR5dpgR16WXXpripo9ae0ewCz0aMd9d5f0caZN5M5sjHsOML19IK3sDyZaStSu1d57t8UUNyfZ02tltT8n6SbdlUpB2znHvE3T37t3q2CjbBS02v6htaYt26UZR4cTytHmvgxYFPz0+xIFzz3kXe5PguMDx9ttvzziCHeZeBJnWrbMeemdFrjvWSy8LtpS9fCDdlpK1A9w7z15ILguu3NltT8n6SbdlUpB2znHvm0IxefJkkooo+WWKK+yz0m3RLt9R1Kj5oXJrbGxUo9N+R67pyGeKue4wc1w9PT15pTVomns2Dn2269YLgZ92uUzNz7VjIuq8YkvZywfSbSlZu1J759keX9SQbE+nnd32lKyfdFvGBWnnHPc+Z6WpqYnq6+ut74kpNj+/uDI5K9k4sLnEZxvSOWhR8kM6brzxRhVfpo3zuAMmV3gd5urqamObyoUBPh8e0O1/wQUXqHy7a9cu+sUvfqG+O/fcc2nEiBFFy5vS44sS0m0pWbtSeOdJii9qSLan085ue0rWT7otk4K0GzCOeyKR6PeJ3hcOA83NzWoKBaYI43sIiysojFFCPCMozHHpYZwjiMzDI4wc5u9x4f6gsF/aswkDyLBY24G4gji1tbXRnXfeqe6/6qqr1PrjbDlxGJ+ICzuTM0cGFxa+PxttMoV53Qq0Q/xh6hQUZk4cxug0HFI895prrlF5KCi9+BucdJ1/e3s73XHHHSp89dVXU2VlZYqHHz+dB3RCGDZ/8MEH1f3nn3++sj/nn2w5cRrxLDwb3/GnFx0dHfuF8Vs4/368WQ/9efgb8hj463lFv4fDnF78Bo40whwH7uERfOak6wEHW9cM91x++eXqExv5PfTQQxSEoE4FtrWexp/85CepMDRGvkC9Ai3AEWnHd3wPeLCWsFsuOvmFvfWYN18FaeOnUzb1ns7PW4ZyLU+Z6j29juDnZ1tH5FOX80sedSY/J2xOehpxcTnHdyY46WEu5zq/sDl5+WXSL8x3rvc9ZIIThxE/lwO9bjPVjsDfER+ONeK6LWxOfu9ZPX5TbaMgfqbaRn76meDEYdSZ+jpbU5w47YD+fjDdNsJv0/ELg5OujV5PIw2m2nvMw49f2Jz0th/APoIpTt62n189FhYnPe8BsCXKOdorJjgltXC6ejosTro2un5+behC0GsVgZg3bx7NmDGDZs2apf6PYwAA7JjNu2Zv27ZNTdWFsSE+RAU2bdqkMjCwYcMGlbmAtWvXpjbMWrNmTcrhWLVqVWpUbsWKFapyhqAI4xP/RxjAffgtgN9zGM/F8wHEh3gBpAPpAfbs2UNbtmxRYaQb6Q/iBOBe/IYbgswjiNP69etTU9bxfS6cYAMOw4lCfIgb3+P/cNCGDh2qwkgr0gbn5uKLL1ajlrlyYp3AY+LEialwmDoxJ10nOHr8PF0njBw3NDTkpRPCWOvN/PS8Bx7gB238OHH8+P3o0aOV3ZGWdevWqcowG0563uM44PB+6Utfok996lOp55999tkqDOfi4YcfVmG8wH7wgx8oRxmb4gXpxJzOOussuuiii+iSSy6hYcOGqfiQBz7ykY+oDfHw/ciRI1XaEf7whz+sllLoOqFz6ac//alyqnEf7kcYswR+/OMfq3jgpA4fPnw/nVCJbt68Wd0Lh/3Xv/51ihM38sEJF4Dv8DcA+rJOCMPOAPI18jeAOHn2CDRA2qDJI488otKIi3XCkXvgAec6V5386gg8E2nl/Ib1XMwJZSyb8pRLvYcwc8m3PGVb723dujXFKdc6Ip+6HJzQkcmOpglOeh2xY8cOVc4RNsUJYJ0A8ANMcdJ14joePE1x0nXCBX7Q0RQn1gmcUC8gLpOcWCfEg3IXVTsCZY/zjOm2Ee4HP9SbqD9NcdJ1Qpg7uk1xYp3ACeUcedMkJ10ndKzv3bvXGCc976GdAn4Im+TEOrFDxnWZCU66TkgD+HHYBCfWiU8KQp4xyYl1Ynty290EJz3vIX2wJYdNcGrS8h78O/h54GeKk59OCOe7MXIQYsmwuwJKDBALUyPQ4ENj269HBYBY+HsUI+4QdPHixTR79uxUp4HJXmXmBwfDb8QdzjTCqODhTACXXXaZckDwPWf2dJw4DP6wNZyyW2+91Xf0lMOYlu1NL2yjjxLCIco0EsC9hKZH3PEbbKKGIyXgUOq9sHDI8FyM5OI3QKa0s4MQZHfkRT9+fjygIdKG+3nUP5/eSl0/zhO6HhwOwg033JC2txIVGz7xUrr//vuV83veeeepT+bEPDAd3y/v3XLLLWnzFTTQ9WA74nP+/Pmq3GV7PB/00Msi65Qufh5xhyaof1Duvv71r6e9n8uCN7/5zRwIqiMAaAdbgqs3X+H3uD/djBBvXafnK10P/hvz47TkUp5yqffw4lu0aJHqiOW8baqnnOPnOpOfEzYnPY24eDSAG0+mR9yRV3R+Jkfcs9Ev7BF3vR4zwYnD4IY6GrZkmODEYfydO+WiGHHHe2rhwoU0d+7cVPpMj7h7+ZkccffqF8WIO0/XNcWJ04704Z03Z84cZcsoRty5zR3ViLveto1ixN3LL2xOHEZcKHczZ85MtQlNjrjrbT9vPWZqxJ1nS0Qx4t7d3a0c8Xz55Vrv4W+sH9q98C/1WWCFYMBMlecMwJ96GAZGIzfdPd4wO2e5htkR9gvjShfOJl3p+AU9x29Hb27w6/CuTw/ioU+j1vuF/MLetOg9UxxOxw/c0NuKQuHHL0ydvJuoee0GTt6j7bzp1df7+0G3O0+p9/LzSy+vT/dDrnmP9eMXk57+TJsLZipDXscf6YYDz8Dz9Xzix9WbBtyPNHCY0+XVA3zQ6XLcccel5YEeVN7RHr/h0Xd9V/lM+ZrTyz2wcLzT2S1dftOd/HR1BPIK4vvud79LmfKVnzZB4XR6MD/T9Z6er3Kpp/Oty8GZ60w9vWFy8qaFy3kY/LLRw4+fqfdTGPrlWn/r9Zjpdy6XA5OcOMzlXHc0Tbcjcvltoe9cP36m2kbZ6hdmO8Jbzk1xYgQ900QbFs9Pxy8sThzW62lTnHRt/PiFzcnrOPKAjSlOfm0/U5z0NGbbti2UU0zLeyb5edPL7SZdv7AwYBz3dIDxx48fT1IRJT89rlx2kA86nou/D9q8Lgpu6Y4Ok5Y3vfFls7N5IZsL8lSkXOIL2qE/Fz3RY+73DD67Pmxb5nKqQKb8FkVZyCYNkuvNYpc7afENlHeexPiihmR7Ou3stqdk/aTbMi5IO+e4941IY7oNplDoPSgDhZ+fg431xXAs8B2PPmbjPOhxpXNW4BjcfPPNqfj9RqEzneOdDbcwoKeNe87uu+++1HewFacVYWy2kY0j5Gdjb8dG1HnTdHzevIY12V/4whfUhnxhP1u3MabmY0M5/rufc+63ezzCeucR50P+Th+d17XnmRXgh7X7vAY+G2Q6qi5TWcCSBmhXyJGL2aRBcr0prdwVO76oESU/p52zZ6nmlaghvSxI1k+6LROCtHOOe8QjqKXIz8/B1p3mXJyHTHHli3RHytmgXaaOiXSjsPnyy+XM8Fzjy+WM8XTpQAWa74h9NmnQbcwO+QMPPJCaxoTf8zO4IyndEXjp7Amnnb9jx977gsj1bPZcAe14NDysWRGZ4pOKqLlJjy9qRMnPaefsWap5JWpILwuS9ZNuyy4h2jnHva9xPXbsWJKKKPn5xeUdqeSd58MoTFFw00dy+XzzSy+9lO699979nMNsZgmUct70xpev858tsNFLNr2fptKRac+BfJ6n52nww1r1TEs+dOSyxMRUXskmDZLrzWKXO2nxDbR3nqT4ooZkezrt7LanZP2k2zIuSDvnuPdNocBxACNGjLB+CkUh/PymAufqPGSKK9MUXBw/9uijj6bCeA6ng6GHsRulae0KXVOdjSOUbulBNvx0BxQ7qeN5ua6RziW+MNZJYwd6xMW7nIcFPR/7jaIHQbebrhGPzgfx0DtovPFhY7tsZ6ro6fcimxFzr3aFjO5nkwbJ9WbU3KTHFzWi5Oe0c/Ys1bwSNaSXBcn6SbdlQpB2znF3CNV5KHRUk512b1iH7gjB+SsWchkZzWW9f6GjyTwrQEeuziMfVcdnVAJ6OJs0ZuqkYccW58UHrQHPd6M2r0ZIO+9er8enP4un0uu7qEOjfNecOzg4ODg4ODg4OIQF57j3TaEYNWoUSUWU/DLFFTSq6XXowoovTCDd1157LS1YsEA5dH4jxWGvJc7Ez8+xDSM+v5HqsJcBADjTNl3vZ6FOs3fNOWuUqXMjrM4c8Mt1YzhGriPmJspCujRIrjej5iY9voH8zrM9vqgh2Z5OO7vtKVk/6baMC9LOOe59Uyi2bdtGo0ePtn4KRSH8/NYR5+o86HHxOezZjGpmwgUXXEDf+973UmGc/VgotzDuzRW5rPfHvZn4ZTuTIVvnkeMLA9mcVlBXV5c6WxMwsYGa97nZxKHn+XxmVnBHAfhhjbvfSQO212PFrjdNllPptiy2dpL4Oe2cPUs1r0QN6WVBsn7SbZkQpJ1z3PuQz4iYTYiSH8eVzVRpfSQeaGpqoocffliFP/e5z1FNTU3GEeVia5fvWuJsR5PD4JfLTICw7JnNaQWoTO+5557U/712zHejtkyzJcJa5pAJ4Bcloi4LxS57JiHdlpK1K9Y7T2p8UUOyPZ12dttTsn7SbVkhRDvnuPdNoeBN0AYiv0LXEecSlw7dSeM49HjhtPsdmcYj7/wMb3z5btSmn82d77rusJHJnukcUPDxmxJeSHxhY+/evZHttZBpCj1mgeT6XO+or3dmCfiVlZXltKt8vohau2LVm2HWVwPVlgP9nWdrXMWIL2pItqfTzm57StZPui3jgrRzjnvfqNiWLVvUUQG2T6HIh18+64iDpqnqcekbg7EDjqnS6aYN6z1i2U7tTsctl43aMp21nsuoejbTeLMZ9c3EL51jm89MAI7v6quvTm1Ol612+ZxWgCUPn/3sZ6mysjLtM3QHG+GwHOBcjiXMxp7ePAR+UW1kF3U9Vqx6M4rNAqXbcqC/82yNqxjxRQ3J9nTa2W1PyfpJt2VCkHZFTf2//vUvOv3002ncuHFqhOoPf/hD4L3nn3++uue+++4zkpbq6mqSjCj4waG69dZb1W7wuqOVC4YMGaIa3rgQzoWb35rxUgY7197OCv6+WHkT8XEadEcdYW/aCuUMvfw4+/3OL5wvOK9k+z3/DZv24cJIerr9CfTfRIli5BWpkG5LydpFzc9p5+xZqnklakgvC5L1k27LaiHaFXXEHaN5Rx11lBpx+9CHPhR432OPPUbz589XDr4JoPdl2LBhZDPSjfBm4pfLet9001T5b62trSrOMEawM43a69zC3qitFKbxerWDw8izCLAMgDs3CjmzO118psF5Jepp0YXmzUwzOfikBPAzmd+KqV2x6s2w9j0YyLaU8M4rFX5OO2fPUs0rUUN6WZCsn3RbxgVpV1TH/ZRTTlFXOmzatIkuvvhieuKJJ+jUU0/N+EzsUK3vUt3c3Kw+scM573Je7CkU2GUa62nxGeYzeV0twjrXTPz4O3zyMxDm7/Vn3X777akw36s7MfgNpgfDYeG/B8FPDzjo3/72t1X4y1/+cj8H3Zs2NNwxws/TrTPFp6fRj1s26c2kXSb7YIM0v/Rcd911/eIJ0i6dzmHAG1+6tBUCpJ3zCnQMKnf52NMP7OQdeOCBqrMwl7zJHQX4zDWP8ekHfvktbEieeqaXO+wZkG19lS8k21LKO2+gTn922tlrT6ed3fYs1jsvCki2ZbHLXtjtvlhSP5eriEADDCPrZ555Zj9Dv/vd76YPfOADyok74IAD6NJLL1VXEL72ta/5nkENxz9ofS5MAMPiXO5sG+aFALxwvnNtbW3BGYh3rQaH9evXq/CkSZP6NWiz5YdnrVu3ToUnT57sm7Y1a9ZkTBMa1nplg/R404a4NmzYsF9cSCd/P3HixNRZ6X5p43sRH2Zj8DP8bBEUXy7c4PRl0i6bZ+QC1o51Q/zozALGjx+fSoPfmfL5IKqywHpCuwkTJqR4eHXmcKH2BKeNGzdSVVWV2qCE80I2z80mz3vLHeDHzySirseijM+v3GVTX+ULyba0/Z1Xavycds6epZpXJJc76fE57eSUvba2Njr55JPVqVk4Ilj05nR33HGHMjKmRucyjfKyyy7rN+IOB3DmzJmhGCwMwKldtGgRzZo1KzV6lC++8Y1v7Pfd6tWrcx6RZBx//PFp/37sscemRh+z3W/gwx/+MD399NOpMJ/j/cwzz6S+06fZ8/fvete7UsfBodOF08YjoBid53vf85739OuY8caXDZ588sm0f//EJz6RUTs/+6CjidOQ73TesHUuFvTR66eeekqFMZNGtwt/D+1Qbguxp55XsKcGHPJDDjmEjj766NTfH3jgARX+0pe+lMpD+nMz5QuGN69lKkuZgLTdddddKnzllVeKOcokHwSVu0Jt7GDfO88hWjjt7IXTzl447eTot087nSoMlKzj/sILL6gp0y+++GJOvSPYndpvh2p0AASNSvJoLBz8qHYbBCc0YAodKc00YQLPD5Mfpxdp57j1I9cwjXno0KH06U9/up8OfC9PdUWa+DuE/ToBvv/97/frkPFblww7Ij44X3p69Piy3ZDimmuuSbueHulEZ9KUKVPouOOOS/Hz219Atw9GefNdi63PFEindVgj7qbLwm233bafdtCeuWGtsp4v2FnN157e+ICHHnrIN6/guX55JV2+0I/c85bnQm2pl5Fs6oqo67Go4wurzswG0m1p8zuv1Pg57Zw9SzWvSC53AyE+p114SAgqeyXruD/77LO0fft2Nf2UAScMDW009NeuXRtaXOxARDF9ohgbNZnmp+8IDkcDo+beXcJ5sy+/ZQz6pl65guPTndp8dyD3u5d3Us91h/Cwji9j7b7yla+oMLjyOfYXXHBBakaCjWXBTzs9L+hh/Yz0MJFNXvHTP5sj9/K1Zb4b8kVdj9lcb2aCdFuaiC+bIzCjQpT2lKBdKUGyPZ12dttTsn7SbRkTpF3JOu5nn322Wt+uA2sE8P1nPvOZUOOCkKUyjT5XpDvH2yS/dA5Le3t73oUDzqjumHIHRLoj3hCfDn1aih7OtyEZ5EjxOn6dq186C2nAptMOTjvvKh9Wo9l0WUDHG8AdENBO1zwIYe2an89zg/Tn79M50vnYMt9zyk1oly5f2VxvZkLU3KTHFzWi5Oe0c/Ys1bwSNaSXBcn6SbdlTJB2RXXccbTVypUr+20CtWTJErVlP0bahw8f3u9+OHFjxoyhgw8+OPQpFBjBx+Z3UU2hyBdBx4GVAj806m+44QYVV9DUkEwzBPRRTTimfsdueQsj8skZZ5xBP/rRj/Y71ivTEV9+jonXmdNnCbCTrk/vzjR7oJDjy6LOm6bj0/Vk7R588MH9jlHjcKHrujm/7dixg374wx+qMJZxoB4xfXScny1NjkoWO6+U0oir7ba0KT5TRzbaYk+btStFSLan085ue0rWT7otE4K0K6rjvnjxYnrHO96R+j9vKnfuuefSI488Elk64ECMGjXK6ikUmabsRsUvU1yZZgjkMh0dgPOMDQhL2UnINFoa5PDw9/g/ygbW1KOjRn9G2I3mKPMKa6d3gOiOunfmSD7g34f9XJO2zPec8jC1yyZfSag3gxA1N5vjy3eGiEmU0jvP9viihmR7Ou3stqdk/aTbMiZIu6I67ieddFLGzdV0hLmuXQeEzGbkutgj7TzFmKGHg9If9ShYobb0OqZ+TgxPocfRCj/5yU8Ux2zOSeSRc329tN+0en3DMdyrp4G/x87m3GuH7/UR2LCB9HBl49Uz7Eaz6bLg1RN8whhZz1RuvA4of58N10IcaX0pg186sl1rn01nQ5jaZZOvOL5SHHG17Z0gPb6oESU/p52zZ6nmlaghvSxI1k+6LWOCtCvZNe5RAmuVMU0fR0WV6lE1flPG9XXB6Rw0ZFicXa2frZ4tcnX8s7VltmuW/eLTeTM3ngYd1vTnTGmAI8X8dCeFN4zTN5HTd6bPZe00uDG/jo6Ofr+xqSwE5SHmhg4Qv40MTUzNBzCbhzsM882D2TjSui1Nj0rCxrfffruyJ/YAyfYkhULA/B599NH9OmC9GwvaNoU+6neCzfHl27ElxZ42a1eKkGxPp53d9pSsn3Rb9gjSzjnuRMpxGD9+vPXrHoKcQjSq9+zZozIuvveOKIfZkI7alsxNdxzgKLMT7udI53KmYrpN8fycsaBN1vxsnMmZY4DfPffc45s23uwNTmkYjWYT+gXtsM/alVq5C2uWSqG2zHVDvjDtmY0zxvxymTVlC6Kux2yOL9+OLSn2tFm7UoRkezrt7LanZP2k2zIuSDvnuPc5PVGMUBUCOKMATw/nvQDq6+t97/c6hfo0b9NHUmVjy1ydI92J4WnOsMXDDz+s0vW5z30uZQv9WX6OdC7T2r2jotdeey0tWLAgJ8cY6eQR93was0GdB0HHpXGjGTbWlwdkijvsZRWZZhREsfZV38WeN8H7/Oc/T7W1tcYdab0smBqV9NoYn1g2wrML8tUw29MqwC+IGzv0Nk6hj/qdID2+qBElP6eds2ep5pWoIb0sSNZPui1jgrRzjnvfFIpVq1bR1KlTS3YKhZ+zyQ58NlPlR44cqXbW9o6OBTWk853aG4UteZ0K0s7cqqqq9ltPbBrssGAEP11nQJBO2Tg8999/f6B2JsD2zGdZRa7LEa6//vpI84rugPqtdcqnsypdZ4deFkyNSuo2Zu3QQZduKUAYHTQ8NR/xYZd+7wsR3Epx07JSfSdIiM/UkY2lbk8J2pUSJNvTaWe3PSXrJ92WPYK0c4573xSKyZMnF3UKxWW/XkIvrt+twuyeoe2d7Pvf7vYj9vtNLHUn0VN3PdW7Jlo14IliQ06kuFojnaQd27dTfEOMKDlc/Ub9HZ+UpCdu+1/1mzgl6ZBDDqbyeIzK4jF6vfNA9V2/K9b7id9966+v0X/+/az67uR3v4tqa6ppUHmcystiFEtW0+YVu6iyokx9V1kep6qKOA0qK6NYspsqy8soTj2KH9KS6yicdxlAY2OjGmXUz9XmBqR+lFs+yGtUNJmkcuqmCuqmQdRFFdSlPvEdrX6aqKeLqKeTBvV0qnC8o5WOS76ibFK55Me9wsPeHR00J7GYynbE6H/mzKFBFRXU3tFB/1mwiBIUo7edcBLVDKklipdT+RuP0U0fOkyFu1b8jbrKK6mHymlMcht1I+Ydq4iqhxCVV9GgwQ1EZRVp7cnLKtieUsudjnwczaBlAMXgx9qF2cGTzhnj+EpFvzARtXbS44saUfJz2jl7lmpeiRrSy4Jk/aTbMi5IO+e4941U4aitYmJLUzut3fXmLvH7I336WtL+dvCbvQFAQLt+w+vbtP8NTxvfy89gh/+JKrzwrysoP8ykOCXoF7f+g8ooQWWxJI0dOZyqKsqUo4/P6ooyqhlURtW4KsqpelCc/vPsM1QeS1A54RpGFT09dOO8X1BFLEEV1ENXfOUSGjwIv8s/e5clu2kwtVHPhhdocFkHUdtuovYmirU20gFrllJ8x6O0fMkCqqJ2qqIOupg6Uk46HHZ0cPjip7/Z7yuk8jT+z9+f6vf9yQgkiOg/T6dywfv4hn+9ea+OCu3zi/zlD37iIVhJVDmEaNAQatyzjzppkGLwEXx2DaJX7n6S2qhKXad95Cyi6qFEVQ29n9UNRJX1qAmp1MudX+cDLyPwfh/mMgDAb1Q77FFJ76wNdGAFdTaFsfu79xmIT5+an82MkmJuWlaq7wTp8UWNKPk57Zw9SzWvRA3pZUGyftJtGROknXPc+6ZQrFixgqZPn160KRQ3nTGDWtq7UyPmvcCIOYd6Mx4awZh6DbfwnLPPofKK8t4B2j5/PJHoHaNPJJPq+87OLvrlr39NDQ1D6e0nnEBl5RXU1d1Nf/jfP1IiSfT+U0+jZCyu7qdYGfUkk9Tdk6COzm7qTiSotb2Dnv/PAjXCe9Qxx1F3Iqm+b+/ooteXLacExWni5AOJ4mXU2ZOgRDJGzftaqay8Uv2/oxtXD3WqzwS1dXarMXsGft9JfQ5gkmjF9t716+kxIe1fH7v9n6lwnI6lCkpQRaxHOdQjYs00LtZIY2O7aDTtpiPGDKKe7ctpKLXQpPo4DelposrORqro7tvA7lc/6Pds5I7xCKwjmpFFSrupjDqpQl0Y+R4xamzvaHfZoF7nORWuUKPlFIvTq6+91mcOpTpVVVdTW1u70hWzHdDZ0Xu9GZ4+5UCiRLe6Nq1frUb3y6mXc2+4dwZAyvI9HUStuHbRmEwkfvfk/t/FyohqhhMNHkk0eETfJ4d7/3/tuSdTcsgY2hcbTN/57gP77bCfS7nLZXq3fm+/JPcVpvvuu893KnkujmamZQB4FuIbPXp0KMsOguBdc474vLv0p0tzrlPXvVPzEV/Q1PxS3LSsVN8J0uOLGlHyc9o5e5ZqXoka0suCZP2k27JHkHbOce+bQoF1D8WcQnHImLqs7oNTMjLe61QeM6khq0bwSV/7shoVKy8vV41tPGPJn3un5X/w2Am+z9CnmB/Dfst/N6UyDFYIn8A/27I6de+NN97YLy5Os2rwlxFdfv3lFC8rp33tnXTPt++n7mSMPn3e56krGaeOrh5q707Qzx79FfVQnN532hnq722dPdTa2UNtXT0q3Nzarj73dXTRijXrlXNcO3S4crjqOrfTiJ6tNCaxnSbGcO2gMbFGGkONNCa2mypjno3edirvvhctHlsny2gX1VNjspb20BBqiw+h9rJa2kvVFB88jLoraikxqJ4SFYNp6eqN1BMrp+Nmz6X6+mGqc+Ppp55RswA+d+5ZNGrkyF7bZXGO5MEfeHNUE45VvDNOiRiG3YNx0zlvOkwjtVFR3QGl8nKiRO+0ferYS9S5V312te4m6mihRFsT/fOvf6SqWBe99bjDqayrmWJteyje0dw342BP72dXK1Gyh2jf9t4rAG+O/MfoMqqhFhpMtX96hcqHTiCqHUvJ2rE0bchYijfGiOonEA3a/8i8KBGmo8nLDrZv355x2UFYmwJyfFFOzUd8UneVj/KdID2+qBElP6eds2ep5pWoIb0sSNZPui3jgrRzjnsfbBEz36m2UfLzxuXdLK6muorKy+JUFetWUwmmj6nv5/A8XdakwqcdNjI12plyZrra6YHbrqQR1EjDaTcNG7SHhlIzNexrojpq6Z2ijs60NB1qTcnB1Ej1tCtZTzuogXYk65WDviNRTzupnrYn62lbcig1JodQJ5X3myGQwn4nyh2g/v31v/FvY993R6l/f/nQ61RXXUENNbgG0dCaChpaM0j9nz/x/TD8bXAFDRs8SF080AvH6Pzzz1c2yOZUgfQOaN9UIUx5579pOi18fIPqcHnLe66msspKf6eyu3eknvbtJNq3Q/vUw9uJ9m4natlKsWQP1dI+ddHqf6TijXkroOphRA0TiepxTVBX15DxRA2Tej8zTO/2mwqOEX5w543+gEsvvVRtZpgrgkby/cAdJtBOP80hl7Kbi0OPv6HTLJFIBJb1MKaue58Bfti5P1PaSmXTslJ+J0iPLypwuUE9dvXVV0cyPdJp5+xZqnklakgvC5L1k27LuBDt8nLct23bphp8Tz75pO+Ii8mpofkCDVr9EwJyGOlfvnw5TZs2TTVi8b3a6C0WCwyDI54RFOa49DCmZyAutg+H+XtcuD8o7Jf2bMLMD1NEMBKOC4185oS/e3lcddVVKozRc54KiwY6zhNnvXGfN4xnIK6DDz5Y/Rbf4Sguvgdh2Lijo6OfNnfccUc/vWqSrfS7uy5RDvoI2k0zD2yg5jUvUgM10ZfS6IzR99jQA2j17h7aQ/W0J1ZPTclaaqYhtDdWS83JGuqJl/umHc27CbEEjU/C8W7ss09SrVjHZPPzLriIdrW00aKXX6Nxk6fSb//3z8qxx8h8RxJT4svVZ0eynDqp9xPpQSxNbV3qWpd2L4L+wNr+eNcRVFsRo79950mqpC7V2VEdG0NV1EVf/9EfqDrWrcK3XHcVDSp7s2JiXZkf5wM9H+ph/V5Mf+bfcx7qV4biFURDxlC8bly//Nbe3t6n4yi6+uqfKocNHSmJvTsotncrxfZuo0TzZorBmd+7lRJ7NlLnzjVU2baNYhj9b2vsvba87Lte/0qqot1UT2vu+jPtoQbaTXV02tkXU2LogVTWMDHVWNe58PR1tgEAzkgb0s5lVOeB8nHDDTekvvfeA3zlK19RDgHyMzoEECc6CTjMzxo1apSqL9n+OMqQy9DFF1+sdmPn+oCXwrDd9e/hjKDcpKsjvPXYm3qQcmCUHh4esAX48veZ6j3cz3mM+eE7/p7T7lfvpct7meo9vf720yxdOJ+6HH9ftmwZHXTQQSqdJjjpafTueGuCkx7melrnFzYnPZyNfmG9c/l95q3HwubEYbznVq5cqWzJ9UzYnPQwAO34tAoTnLxhrtNMt42C+JlqG/npZ4ITh1G/r169WtXRuNcUJ047v3f89AuLkx6GLVGPBfELg5OuDT71tq0JTro2fvzC5qS3ywH2EUxx4jBPJferx8LipOc9xItyN2XKFNVeMcEpqYXT1dNhcdK10fULe1ZiXo47jv9Zv369atyOHTu2X6O4VDBv3jx1ceMXHQwNDQ20cyfmRlOqQY0MM3z4cHU8VHNzswpv2rRJnfOM+zds2EBDhw6luro6Wrt2rfod7l2zZg2NHz9eNbxRkLFbIRryyPg8HYPXU0Bc3HPIIYeoBjh+C6BhjTSgEsCRYkgjMnFLSwvt3r1bPRMjrPj/xIkTac+ePdTW1qbixW7OeAnA/n6cRowYQVu2bFHpQ/pramrUcxDOhhPuQfx4FhpASBsKCMKIA5rjd1u3blUV5rBhw9Q97GCAPxwUxIH0YYQTacC56ng+/o9RuMZtG6n5jafomOSrNL6imUYmttOwnm00hDwO7hoiHiNODKolGjGd9laOpZc3ttDO7sF03Ls+RH967hXa2V5OI8pHUnNlc++ygpEjld1gK6Q31thIF3z+8yrdkyZNUpweffRRxQlnweMTtvnFL36hOJ1xxhlKV3CbPrqWRlUlaG99D5109Dg66cCPq2ePGTNG5TVwOu+885RzhuvnP/85VQ8eQief/kEaPHQkrd60nZrauilZUUPrt+2ivZ0J6qBy2ryrmfZ2JqmlM0E7m9upqb2bepKklgdghHyvGkhOP336tzc+TlXlMRpRW0UjhwxSzvzkMcNo+JyPUbKtmf6xbBfVV8aps2kHHXXIFPred+6joUMbFGfYCfwmTJiguPJZ4NAN+Q+Adps3b1b37Nq1S33nzXvIb8hH4I4yBDvChpuauqi29gBqGHc0bVi3joYe1Jf3Vq9W+bSytpZWv7GExg1JUlX7Dtq2fDENL2+j8r2baduyRTS4a6fKDzXUrq7xpG2i+DNsbIiarJouoCHUUjGaNnfUUFP5COoYMpFW74lRomoo1QwerMoU8iW0RxnNtjwBqBfAH3aAsw57YbYDKmTw5M6pT37yk4oTnvW73/1OPfeLX/yi+oTtAC5P3/3ud1PliZ1gjGJzefrEJz6hyhLqITwP6UXaUKf41RF4PvI7nocw/g47o16DZngW4sDRgqwT7kVdp3TKod5DuQFPPJfrukz13rp169RLE/Ue4sql3kNaAfwdz82m3suVk16X8wwCfjGb4OTNe3g+OHHdGjYn/f2kv7O5MZoLJ+QhVb9VV9NHP/pROvDAA9OWJ34P43dIhwlO4AGnCPU680O8yDsbN26kQw89NBSdvHkPYXBA3kcdESYnv/KETnHch+eElffSlSfUl7AtYLpthLyH75FOtDFNt42gE8K8NwjiNMFJ1wn34H2BsmCKE+uEtGOQBGUAvExx0nXC/YgP6TfBSc97+D/qajwTYVOcWCekGb/FOxUcTXDivIc2B4B0IR5TnDjvIYz2DZ6H70xw0vPeuHHjVJpNcmrS8h40Q9x4NtotJjjpeQ9hAGHUL2EilsyjKwAEnn32WTr66KOp1AGx0MCGkDC6X48Kj2ihwcyjDyZ7lRHX4sWLafbs2ervpkfc9RG7dL1HfjyQuXFeM9JwzTXXpDihsnrooYdS07iRiXn0DnGhEN5yyy39RkBrqI3GJrfRWNpG42g7HTq0m5K71/Y71o6Bb3rqJ1Ni2HTqaThQjar+5p9LaBcNpc9efDUNqa1VBffee+9V6cEMkDvvvDPFN92sAMwcQOHC75BWjEoyP6QfeQYjtbgfo6Kcb8AP9liwYAHNnTu3Xy8zj/Zedtll6hm4Dx0XAL6DPfAM76hnULilo4c2bGuk7/3oZ9QZG0THn/Qeak3EaXtTKz3/wivUlqygulHjaE9rN+1q7VKb/+UCbFxXHeui6RPH0Oi6KhpVW0nDaipo0b/+ToPLElSVbKeaGEb40eDeXx99RBo2RBgVJJxR4KKLLlKb0OF73u/AL7/h4lkufuUJWuCzrWkH/b8f3ksNyT106lsOo8rWLRTbs46a1i6hodSkTiUIQrJqKCVHTCcacTCt3VdJE499N1WMPYwStePUZoCZ9Lj11lv3e2ZQvmKueGE8+OCDKvyFL3wh9T3yCr5Plz8zhTFbxq+O4HLOeRUNNj0PcvlHWoK45lLvgQv+putnoqcc9yKuRYsW0axZs/rNEDDRU85ph/1QXvn+sDnpaeTfczpMcNLD/B7S+eXCCbbRZ3Og0zJderPRr1BO3vcN0q3PWuFyU4hOfmHEAX48OhwmJ7/yxO9lLsumR9zVEqqFC9U7j9Nnqm0UxM/kiLv+HuJ6NGxO+mxLfPLmWKY4cdoR3/z582nOnDn7zSY1MTqNMP/fj18YnHRtAL1ta3rE3Y9f2Jw4jDSj3M2cOTNVT5scccffUe786rGwOOl5T//0zigIi1PSM6MgqJ4Oi5OuDf7G+sFXgR+BdiF8paKMuKP3Iuyhf9PgDMCfehhGRm8JeneC7vGG9V0JcwlzJvULc0UUFOaXqHfda6b0ZsvPL728dtYL9DhxHkCYR6gQF3qhpo9roGnJNf0c9Xrv7m+7e9c50+BRtGpfFW2nEeraRiNoJw2nruYKoma+eSdRrHfE8v4+55Dtgx4vtod3DS8cb1Tq6OHGaD//HenlSoN54Hv8n9dI43uE+f9cufhp47eemcHOE8BrfdNpBo2ry4jG1w+i0eWtNHp0Lb3/0KGqVw88yl79o7r3knNPUc6xSieV0a69HbRzbwftaOlUn3ztaMFnJ+1oaaddeztpX2ePmsLfkiyjF9fv8aT2QMLedan0UEI5+DXUpRz5mlin+vx/L22mMXVVNKa+ih554F61CZ8OduB1zl6uAEbIvLt86mF0zLyJEbQtNoKW/QfLLIb1XrFjKJZM0DXnf5IGNa8nalxFPduX0doXn1R7INTTXoq176bYxoVEGxfSFDxmxcO9aamoUTM3aOQhFB91KNGow4hGz6DuqpH0zdtv75envNDrPz3/6Ppz3uQOrmyegw4oXjueLi6/fMjl/De/+c1+8fnlwWzruqA6AnFm0i+sek+vv9PV5YVy4nCqHps+Xd1rgpOeFp4qz/GZ4KSH0ajw4+flgXR9/etf368s6Mvh/DZf9KYrDP2yec/q5YNnn3DjLQyd/MIAv1/1tJhqR8DeXO5McfKGc/ltoW0jP34mOOnwq8dMtPdwYbquHpcJTno46Jkm2rAA12N+/MLiFNS2Nd0u9+MXNiev48jtTlOcOIw6Mt96LJ+6XH/nZcuvkHcuYJKfN716B7KehjCQl+OO45QwOokG6QEH9G7KZTNgWEzDkArj/Hq6iDa/Rt1r/0Ov/+0nNJG2UBk10Vk+t+6kobSFRtEWGk3vPecKotGHqePDfq7tYp8LUDgwlQ8c/TbI0o/o8vsOTgw7MvpO+gx29vneTJtv+T0jV3g3QAM/lLVMx4898t27025kptJWRtRVFVcj9uqiCmrlcPLNMD7b1UF6cdqXrKR92AFA8wVf+O2b69BJHbnXo5z6wZpzP1j9v5Ne39xM4xqqqL66dx1T2PkSxxl21U4kGjaF6ICT1Hc/f6mvc+uKS2lQy3qiHcsose0Nalw+n4Ynd1Js16re3fGxnl5bUw9UVNbRZ5JDVCdS/IXRdO1ZJ1Fy1AzqKqvpd3xaprzGeTMXFHLGOdszqk5VyfVm1NxsiS+MIwVNwdtxi7KX6+aLkrWzBZLt6bSz256S9ZNuyzJB2mXtuGNUVW90Y00B1iJgTYT3xYg1ETbBO22wFMEjGrA7Qw+n29U5dH77dtGgDQvoprcmiTYsIrpnmnKCkJmO5Dgxlj58GiXGHEWtDQfR7/69krbSSDrvS5fSwQ0NdHBvojPueJ3OUWLwdLpSAKZLA/oI/wUXXKDKCYB1UTwqi3sxip4NP15jGAR9537WOggYHa+IdVAddaSNL5GMUWuynNpokHLkj3/n+2hPR5K2NnXQ1qZWem31JtqXrKAuKlcj/k3JanV58Y/vPKs+qyvKaGxDFY2tx1VN4+qraNSQCpo0YgiNH1pD4+qrqYx6+s0o8csXfvA6D/0ciMFHEI05ghKHdtOy6gVq2mB5LEm0e61y6GnHG0TbXqfEttcp1riSYh3NNIlwbSZ64pU37dYwmT6WrFD5eCuNUp/NVItu3ay1w54CDz/8cCqMZTzg5u2E4fLN32PjO8yuSAcu5+hU5Zkj+e4eL6XetIVbqcXnd0KDHi5FeOs83og13+MVbdXOdki2p9PObntK1k+6LZOCtCvPZZRdKjAlBRse8I6+pQi/kQ7vyLExfnt3EK17jmjtv4nWPtfr6HiQrKqn7tFH07/Xd1Fz/aH0to9fQkOGj1N/i3V20vrne51VOLB+DamgI8wyAQUQm0egQHJh1EfA9QZoJicm03FZeBbW+2MDjGOPPTa1VliH31R5fdSeHftswfywkY23cwKOH3cIeBvYfueGw/kDsDEHNt8DzjrrrNSaGziGSD/i+5//+R+1Ll93Hj85c3zqeb02+ltvOs6/kBrbE7RuRzP9+n8fV8781COOo12tPbSlqYO2tXRQ475OauvqodU79qkrCMMGV1Cs/VA1Up/4v2U0cfhgmjC0hkYP6d2xfxBheQMVjrKK3mnyuA49TX116803U1myW02xH007aVTfhTCWeWBN/aFEdCitTD2mlapoa3IkbaNRtLlvJgn2Ybjky19WO8zDlh/72MdSR1LxJnb6EX1Bx6XpnTHZnCefrpznex59vvHZjqi5lVp8mUbW9U7VKEa1cwXXmzzddCBpZzsk29NpZ7c9Jesn3ZYJQdpl7bjjzGipgIjYpVAqcuaH87fhoPO1c9n+94w4mGjibKKJc2jeHxfRzvZhROv7PKomope+33vWuHdtZNjOA5xZ7Capr+FFfN59AHQnCL/hdGQ6K1t3eLzn0ecD3XHTw/rIu3fEFfz8wCO32Xbo+C0bYAee42V76p0gDHzn16B/+MF5qfC0vhrl8lMP6cepvQtOfDttaWqjLXt6Pzf1fW7e00abdreptfeN+9ABMZh2JQfTT+av98R0jNpU74ARtTRxWA2NqRtEK5YsoNp4B33pnI/TASNr1XR8P2TT6QL0xMppO41Ul46qZBtd9qn30j8fvY9G0w4ao+5oVLvcT6EN6mJ00CAq//18ek+ikzZvG0VV+95Cd9//2H4j83qHjq4B21y3fTblJup6THK9Kd2WhcanO+omOoUKQdC+LKZgm3alDsn2dNrZbU/J+km3ZZkg7fJa4w5gY4HHHnuM3nijd/R1xowZ9IEPfCCwQVzKgLOCXf+wM67tUyjy4tfZSrT+eaJVTxGt+ifR9tf3v2f04UST30p0wNt6Pwf3HlUB7PzT6n63oiGnjwAHjSj6wXsvj1DjaAYc2+YHb3x+KGTKZ9C0Ue610xutQdOcOaw7a5kcN443G35hAvH5zRzIZtkCw9uQr6ooowNHDFaXX768+eZbqLOqjPYlB9Hevgtr61U4MYho8DC1wR421Vu5s1VdvZio/n3q4RfUZ21VOU0cWkMTh1X3fdbQJDj5tRXUnfSfEsydEchrSLd3xgXPdOiMxWh+7LiUpm2xBHVueoWe/e0DNJa207Fj41S24w2q7G4j2vgfOp4j+dFf6WoaRFuSo2gTjaVNNEZdLbHajDbMZc2wt5zn+vtcIbnejJpbqcWXaclPqSNKe5aadrZDsj2ddnbbU7J+0m2ZFKRdXl72a6+9ps63xuYvOFMUwNEw2MX1T3/6Ex1++OFkEzCFAuf04Sxa26dQZMUP0we3v9brpONa9x+iHn29c4xoDBz1t/U56m8hqsEu3pmBAoFjD3A2Yhjrzv0cSL/4zj777FRh1J1cONBwzryOL58LrY9644g7PAvQHR59wzmOA0tHmJ9+Lzus+v4D+YLX4oRpz0zxXX/99WrnTXSSpIsvaKpsLiNver6EWSuphypjbTSM2vaP7ytX0O13fUs59id/+CzatreL1u/cS/9csIRaEpWU7HPsW9q76fUtzeraH8dQ3dIkPfajxTR5xBCaOLSaJg2rpu2JwVQX6/AdOcR3mZapUOxwWkJER3/mq1ReFifauZxo80uU2PwSdaxZQFV7llNVdzsdSBvVleJfM5oSY4+hzlFH0m+fX02bafR+HV6lXI9Jrjel2zJTfJmW/Oy3j0SJIUp7lpp2tkOyPZ12dttTsn7SbZkQpF1ejjvW1h522GHqLHJsWgfgnPRPf/rT6szi559/nmwCRJw2bRqVMvLdsCrFb8JIojf+l2j5E73O+j7P9Ou68URT39l7TTkpa0fdCzh7WI8dFTg+rCHO6GCl+S7bHeTzHZ3n9eUIczy8Rl3/zuu48ZTPTLvV66P62eaLdGUBG5xxejKtZc13qqxe7oJG+DiMNJTHiOpjHTT/sR+lnvHP297Uqa2zhzbubqUNuBrbaENjK/3t+Rdpb7KSmpOVarS+uTtGL2xoVtebwMp1oj9/4ymaPLyGxjdU0Zau8VQXa6dFa3erjfmqCUcFZkOqXB0phyt+zFmkturr6e5dbrLpBepZv4i2L/mrWjcf37eN4isfp/KVjxMWIqGbZPtdv6KNNI420lj6wEXfUBs8ZruoP+p6zIZ6M19It6Vk7aLm57Rz9izVvBI1pJcFyfpJt2WZIO3yctyXLFnSz2kHEL7tttto1qxZZBvg/MEhhrNTjCkUmdZZA37fIb1pHabG1UTLHqfk8r8SrXueYgltZ3KcYX3A29901kdMp86urr50vBqYDj+w09XU1KTWXeN3GAHn0etCbJENEJ/J0Wi90wQbjgFf+tKXUpu66fDrPNA7BNiBD1qj7t0dnfMm7xSOWQG6Y8s2zmYjM+aBjg59Z3PMlAkqC+n2BigErDOed9lll2Uc4csG1YPKaProWnUxel74bV/aMdW9nGrHTqGlG3dSc6Iy5dBjxL6VBlFLRw/9d3OLuojGqt8996PFRHQU1Qwqo4lDq6hjxwaqi3fQx045iaaMqqUDhtfQ2KFDfOuNfrbEsYejD6Oewz9B3395BFUku9Q6+Qm0hcbRVppAW6mBmtXWdriOo1eJvvs3ouqhRBNm9e4nMWE2dY46gr75rd486C2jftplqldsrjdNImpuxY7Pm1cybdRZ6ojSnsXWThok29NpZ7c9Jesn3ZZJQdrl5bhjgf+2bdvUqLsObGplY48Gb8iFM+mtFjTRQ7RhAdGyv/aOrPdtKseMksOnU+zg9xFNf6/aVI7Ke3e6TodsGv+60wX7waH90Y9+5DuVPFewo4tlGb/5zW9UGLt0jxkzRoVxnNbatWtVg9Jv1DZf8Ai335rzKDdk0vNmPB7vt8Y0lx36dXif4d3Abfjw4XTeeeeptUBBCGP9NOeVbDpd8t3FWndAkE8n1vTQhVecS/fee2+/+7D+vUU58lXKkT945ltp3a5WWrtrn9o4r7Wzh5Ztw/KHYUQJolf+9OaGjbWV5XRA3/r9KSN7P6eOHEKTh1XTDk+9ku7Eg8HJfXTRmbOpYusSim1cSPGtLxO17SZa8bfeSx3lV0afT46g9TSOYksPJzrwbUS1o3Oqx8Jy6MXUmyXArdTiCzrlo5Q2oSsVe5aadrZDsj2ddnbbU7J+0m2ZFKRdXo47Gn1wqL72ta/R3Llz1Xfz58+nW265Ra11b25+cxqq36hkqQEOEXabjhposGPdRdDGaUFOWT+HqaeLaO2zRK//L9HSvxDt06apx8uJJh1PdPApRAe9j2LDp/qmI92ZvbmOrKJwYD12rghKg9+0dnbgAdiCtcu0Hj5fBKXN78i1TPAez8YbzzFPr1PKeTObNGRypDMtJeBd5aEfzh737g2QL2cdOg+OCxtdcqeLbougKf+5OBB+nS6I1zuiiHPdb7vyIt+1+p3dCTX9fuXWJvrhb/6kRuuHTT6E1jW20eamNmrp6KZXNzWpy4vRdZU0ZcR2OnBkrzM/te9zfEP1fmnbFxtM3dPeR1VHf6T3+7a99JM7rqSJtJnedXAdlW95gWLNm2gcbVMX/b/P9vIZeiDFJr+F4pPm0pRJx6uZM5heb/oM7mzrTdMj/xLeCcWKz8bz2kvNntLzStSQbE+nnd32lKyfdFvGBWmXl+N+2mmnpUY+ueeCR81OP/301P/xNzTKSx1Ia0tLC9XW1kbaE3PXXXftN9ronSrti+4OotVPE73+R6Jlf+kdlWNUNfSOqGNkfeq7iKob3uTXp0muZ/Zm6lTwOkEYqb3wwgtzaqBnmwa/kXHEh6nr+QDHHP7kJz9JnWmO0WbvmnM9HWy/Bx54IK8ZBfqz/DolvE4pa+cdIfb+PoyNolhf2NOvEySM+Lw6Iy7dJvpSApPIZURxUHm8z+keQicfcX6/v+GYu/WNrbRm5z51rd6xV51Tj/CufZ20rblDXf9Zvavf7yrL4zSlz5GfWD+IVncPpfp4uzrrPnWIXtkg2hwbQ5tpDC1Yji+mUR210ETaRJPUhe3sdlBs9xoiXEt6j/brpBpaRxNoHY2nUTSBttOI/c7gZhSyGV6x6s0oEDU3E/Gl6zBJV69430GlvAldKegnIa+UEiTb02lntz0l6yfdlklB2uXluD/11FMkCRAUm+vh3OmSFRTO+oq/946sL3+cqEPbXKtmBNGhpxHN+EDvuvWyCiP8gjoVvGd9Y/o1jgWMYmSN4/MbRc0G+lRx/UxzRjbP0RvIYYO1A89C1/EHrVvlMD7Znh0dHcZ3sfeLS+8c8HYU5ONAZJqpUChwzN1Bo2vV5cXufR00/7XVtC8+hNbs6nXmV23v/ezoTtAbW5rV1Yve2TB/uuM5tTnegSNqaNrIwbS8ezg1xNqVU18Z66HmWC29RoeoC6hMtqt18v/z9qmUXP8fSm5cTEN6WukwWq4uoJWqaH1yvHLm19IE+tZddxLF4tl3FAYgU72SmkmgnbCgh0t55D3qd0Kx4gujXilFRGlP6Xklaki2p9PObntK1k+6LZOCtMvLcT/xxBPVeXivvPKKWjOA6d46cFScTcAUismTJ0ce75VXXql2OgzcAAhr1tc+R/Tqb3tH1zu0qbhDxhDNOIPo0DN6j2uLl+XNLx+HN13haGxsVHGG4VRyo1KfQs27sWMzPIyWIz70pOUaJ5DLWnikh0eiL7300rRrwMM6Ro21y2WX91xHmf30MwWvzohLt0nY0DtUgmZLmBpRHDq4kk6Z3btjvY6eRFLtfn/rt39ATYkqakr2XnsSVdRBFbRxT7u6nl0JHQ5M/a6aOqkh3k4NsTZqiLfRBZ86kw4d10D11RUQV+1lEevuoK51Cyi2/nlKrnmOkuvnUw210yG0Sl1AO1XSuuR4WksTaQ1NpG00Muud63OpVzItzSjlkdyo3wlhxpdp+jvqgTDrlYGun815pRQh2Z5OO7vtKVk/6baMC9IuL8f98ccfp3POOcd3LXOpTo/nzgX+hIgcRprRE4ONzuBI43t8hysoDI54RlCY49LDeDYcBrYPRqV1ZxO/rygvp4qdrxG98lui1/4fUcuW1N+TteOIZpxJscPOpMT449SoWYpHX1zp+GEHcv5e54RGmle3r3zlK+qINax1hrOKdGMdMjjgGfi/zglhNAhvuOEGtfM5nonvceEZaMQjDjQU+W96GvFbhPVOIDwbzjG+43PXAd4RnR2x6upq+uEPf5hyxpB23ab8fT7h888/Xz0f3+mNWZ0f2y2b0Sv9/EiEdd5+2gDYMwLTezivcDxIA+sBZJP3dPuy/aAJ80DjHXzb2trSckLHHfazAK6++uqUTt685+WEPM/x4hO/w3dXXXWVulfPb3Ag8J2e34I4+YX1dOs9rDon3e5Bac/EKSgMLuhQQrnjeFQ6kgmaNKyGJpY10aTy5n75rS1Rphz4pmQ17e5z6vckq6k1OYjaaBC1JQbRFqoj6iH6z09wejzRqNpKmj56CE0fVUsTauN05OQZdOjxx1PyuC/Rt++5m8bSdvqft0+his0LKL5xAVV1tNDBtFpdQLJ6GCUnHU+J+Q9SbMqJFBt5CCX6ltWkq/f8+HnzXrqypeLu04k19gvr9YK3rIShU1D9zXUm359r3svESU+jdxpfIZy4rtVtzU45wiiv2IQSnZ8XX3yxquf1uh9x8Ekd+D5fTno4G/2QNnQgIG08g4rri1zfufg93kN88g3qqzvvvFOFUddwnV4IJw4jftTRyCts80LyXqZ2BMLghrwC+xSa97IJ6/WlybZRED8TnIL0M8FJb/uhLcN7P5nixGnX61ivfmFx8oZRjwXxC4OTro1eT7OWYXPStfHjFzYnDrNmXAeb4qRrw3Wmtx4Li5Oe9/CJcocRcC+/sDgltTCejcG+fPnlWu/p+mXyC3JF7kOUROpl/9GPfpS2bNmSehHzVSpO+7x582jGjBmp4+kwMwBAZwN3OGBnfIz4wagbN25UFQCwadMmJTCwYcMGVVAB7F7OUz3XrFmjGgPAqlWrUqMcK1asUA1a2AJhfOL/CAO4D78F8HsOj67YRydXLaGKh95Cse+fRLH585TTnqiso70Hf4To3D/T7nP/RZuPvIho0hxq3L1HpT+IEwB9UBDBb/369SqcjhPuYecUNgDw/9GjR6sMiQKybt069TL1coINADh8q1evVnHiuXg+/g4HDQUGYdiWn480IZ0A0s1nwOOlvWvXrhQnTiMqaJ7ezmE8e9iwYakRcPDj0eVTTz2VvvCFL6i17Dj2DGnHiD32YsC6eBxFBn7cWEYYwH24HyPyOALu5z//ufoez2Ub3XffffSDH/wg5ezy0WxIE4dRKXElr3PCd5zfWKegvIdL12nEiBGpNOSa91gn/B7PAdBY3rx5s/oONsT36PyAfbCPBXP65Cc/qRrTsGeQTt68l648YT8B2Ad5BfcgvUgD64Qw8htXnJk46eWJ8x7AeQ/As3Sd9LyXbXnSOSF+1DVwChD21hFcv/jpBAfiwx/+sMqDnPeuv/JSuu3Sz9C1Hz+BHr3ig3TakLV00cQt9K9LZ9NPzz6CvvKWkXRY+VaaVN5Co4b09rtub+mgf6/cRY88v5a+/sRq+tj3F9ARX/sbvec78+nJxGH0h+6Z9EjXu+lfR9xOLRctpa0f+DU9U/luWkEHUKK8hmJtjRRf9heKP341xR6YS3T3QdT2s09S+/M/INqzPm29hzwMfn55z688efOerhPyBfIH4K0jcKoEgPjy0SnXupw58Qai+ea9dJy8eQ/3olyFwUmvI7g8AdADHKDNqFGjUpxQZ7NOnPYwOLFOXEeAXyZOKKtcl+f7zoVuCENHLpec9/CeC4OTrhPuQVxh5L0gTpz3EA/KQZh5L115QtlD3CY56eWJZ32Z5KTrhLYf2oeI1xQnXSc83zQnXScsReOBD1OcdJ24zWKSE+sEzaLgxDqh7sAn0mSKE+uE05EAtIFMcmKdkCbw405PE5x0neAr4G8mOTVpeQ91Jso61y9RtCM4zPVnWIgl8+gKgNPx0ksv0dSp/ruUlxLQo4ORdO6VM9W7kksvGARdvHgxzZ49u9chRs/Qt4+i2J516t5keRXRQadQ7MiPUnLquyhZNshoz146TvoICEZm9VkC3p4v/EYfWefeLhRQTJHF9+j04XXNvDGSPmIL22Qayb311ltDGU1nTogvm/txL2yBnSnhcMFZC7pfx0UXXaQcXKSdp6kWK+/56cSzB/xmRugbWMGZZz2QL+655x71PRxPjNql45ctJ++Imz6jIJ8eWD2vANAOFSynDzNECilPYYwQwu54hm53fI9yg9kH+B42xg773p7k1q4ELd/aQiu2t9DK7Xtp2dYWWrxysxqh90OMknTA8MGU3L2Rhsbb6PMfejcdM2gDjd61iJJrnqHE2uepgvq/ZLBrPU05iWJTTqKeSW+l+JARWeU9nDKSrjzdeOONWY+mwUaLFi1SHbFcB5VCXZ5v77/Juhx5EmnHpecfnYf+Pec3HoU2wSmTfmjwID3eGTc8EsOzAnLViUc78F7x1lf4HtyLpZMteQ+2W7hwoTpBiNNnOyeJOvlxQvpw4tOcOXNS5dx2ThJ18uOENKPczZw5U7WrJHCSqFMsgBP+xvrh/Qb/E85/GCet5TVV/iMf+Qg9/fTTVjjuDM4A/KmHYWD0rPBInN893rB3ynO2YYjqGz7y40SbXiA64qMUO+RUoqpecdW61QxpyRTW+SHOXDihwkAD2w9eHjzbAg1AxMkOOAMFyG8ndV0bvWeKw0HpZScAHQHcO6l/n01Ydyb4eDYULkzHx/cYnUfHT7r12uhxAy/cz0eY8XcAGone9eXZ6gc76lN2C8l7vM6VP5Fev6OfWD+/vOK3bpkbxPq65Wz4AcwtU37DiAHvL4AlGxipT1ue+ipTXSPMnAAuuOCCVOXJnRX6ztvZpJ3zJh9rp9uVeSB+Lz/AG+Zy432OVyf+Pz8b15DKOB07eSgdPnaw4nFETQ1NrWqljiSm3FfTbjXlvlpNt8dnB5XTml0oK8NobYLoS795Qz1z8KDDafqoudTVtZRmxZfRZ4+qoHG7F1H55hd6d61/AdePqQy10dgjex35A99Bu+sOoYYRo335pSsfDOaRLgy763VEuro813DQzuvI/6gHeApmTnV5lpz0tCA+9PRzfIVw8h4zCLvjO2/ZRTnXT49A2Q2Tkx7OpJ/3XeG3cWIudR3rx2U+U32VDycd/H7NVbN86nJveyVMnYLCufy20LaRHz8TnHTo061NcNLT6y3nJjjp4aBnht6G7WtLpeMXFqegtq0JTro2fvzC5uR1HLnz0hQnDoNbvvVYPvVePm3bQt5PgEl+3vRye07XLyzk5bh/97vfVVPln332WTriiCP228gmqiOdwgRGt/hFURS849q8NogqBX7ezZDQSMzlLGB9l+98zg3H33THPRO8m8Jx4w1Hy3nB6+n5d3rauKB6175709rvTPAczrTme6HbF7/4xbw2w8vlyD12tJAmxK032ICwK58oyp2ffeE4+p3vHqYtOU9lw0/Pg0H5MNtN3fAsziveDccw0rljbyetaWynpVta6I2tzWqEfvm2FtrX2UNLNmIq2Fh6rWcsPbIYv3orHVSfoNMb1tJb4/+l6fteoNrmFURbXlZX/N/fpoayKood8Faiqe/svUYdmqrHMtm+1BH1OyHq+HKtN20D79MRVVyS80rUkGxPp53d9pSsn3RbtgnRLi/H/Ze//CX97W9/U41DjLx7G/e2Oe5wUMaPH1/cRBh02k3z8zox6NXSRzUyIWhH8WydFV6Hki2CzuvOBD4ujde36yP1fp0NYe2aDX7eEQIT4E4TxJfpfOeg3fH9ENRZkU2+5LV5uoOhh3nk3cTO2zbUK14e0I47lPQZJpznJ1RW0oThtfT26b3rzYGbvnYzNZdXUWNqhL6GGpPVtC9ZScub4vStpin0LZqC80JoJO2mdwx6g95Xs4xm9rxEdV07iVY92XvxaRfKiX8H0ZR3EA15M55SQjZH1UX5TjCRV7wdQt4THZBXSmUH+aBTRfJNG9sz7Oemi2tAtVcMQrI9nXZ221OyftJtGRekXV6O+3XXXadGhbAeMwqHwjR4miI2OJPAp9j84Ezpu8BHHR8caXb6eWouGur6tNAwke7s8XwcRe+94Ic9AfzuDfsc92z1yzTLIKx86aeZfoRftp0jSN+1115LCxYsUOm97bbb9rsnlzPNs3EI8i13uTgb3k4zaJfr0XrxGKmz4nHUHFHvhokApttjev3skz/Ud+Z8Cy3bFqffdL5FXUSfpumxTXRC/BU6oexVmhN/g6r2biV6+dHeCxh7NA2a9m666dPvJZowi6gsr1dO6Mh0VB32PoiyzoyijvaWUd7NtxRmQAQdVZlv2tLZs5Dn5hqXCbj2ir32dNrZbU/J+km3ZUKQdnm1ouBYfPzjH7eevI5cpnbbCJP8vI4G8gU2AMp21L3Qc7y9+VBfQ8tTc72jT/nAe46736h0oVOr/e4FPz9b6qPX2UzBz+Ycd47PD7mOVGXqrMDUbVvLXbaORj78CnFivNplk+exZwDPZOBOEewDwKc36LMaunsStGbnPnp9SzO9tqmJlqyro8d2Hkg/bH0/VVInHRdfTifEX6W3x1+hw+LriLYs6b2evZu6Kmqp54ATqeqQ9xJNexdR/QQqZUSdN6OOT9L7u9j2lJ5XooZkezrt7LanZP2k27JLiHZ5Oe44WuvXv/61GsGSADRgxo4dS1Jhmp/XocBO/tiQzbs5VdAIOJySdPd64b0X8QXdmwvYgeHN6QB9czrvKHMU0zAB8PMDbBjGyJGXB+JjHl6dclkbnk1nRaZ8mcmpzBemnht1vZJOu2yRy6yG8rI4TR9dq64PHD0+NSV/W3MHvb6liV7bdDi9vOXd9OjmZmprxGj8q3RC2StqVH5oVwtVrPgzES4cw1I9hVomvYPqjng/DTvkBIqVF3/kt1jvhGK8g5BXSs15D6OD1c+eYT03m7hMw7VX7LWn085ue0rWT7ot44K0y8txxy7IOArriSeeoCOPPHK/RmIu65tLAZhCgXP8cPZtqTVkbOTHR5/5baYWtDmVn0MYNMrovRfxead85tNI83Ng9M3p2EnypkNHUJpzcfK994Lfpz/96dRmUuxU4e88pV3fZyLTWu2gRqxuT5TxQjtCwsiXfmvY4Vznu7bdxBT8oHsLLXfZOBteff3Kgino/MbUV6nrnYf0ntsONLV10eubT6HXNjfRLRsbqXPjSzStaT6dEH+Zjo6tpBFtq2nEstVEy35Ie6mG3qg5jhrHnkiVh76XDpp2EI2trzKyIWKu3KKaxhf1O4jraYmI0p4DIa9ECcn2dNrZbU/J+km3ZUKQdnk57q+++iodc8wxKvzf//6339+K1dByKD7gLGBtKApHJschjBEQPY58HRV9inmu66RzQS5Ovt93fsca+R2tl+ta7Uzw6pTNpl6MqGYkRIVcTgSwCaZ0qq+uoOOnDlcXqc3tZlJr52fUWvnfrl1P3SuepNHbnqVjOxfT8FgzzWp9lmgVrq/TfxMH0F/LjqUto06gwVPn0oxx9dTdHp6TmcsMHykIWrrCjRgp+dnBwcHBwUEq8nLcn3rqKZIENFxGjRpFEhG1s+Fny1yc9Hyc8ZaWllB60DB9mo+yy8WBMTkNk/lF0aDnTjfEh1Fbv6P4Mm3qpdshm86KbMsdRtjDtHFUu01HVa/45cFsy36+a+rz4VczqJyOmzxUXXTiUUR0GbV3dtGyV/9N7a8/TkM3P00T2pbS4fG1dHhyLdG2/0eNW4fQ04mj6Z89x9C983fTlInj6KiJDXTE+Ho6ckI9NdTkXqdlc1RdlO+EKPKKt+yinPudaS4BUZa9qNsPktsr0u3ptLPbnpL1k27LuCDtSmOL3yIDUyi2bdtGo0ePtn4KRRDq6uoimRaZry0LOZ4rH25+8bHj6neMVljItRMDMxhgz+9///tp783leLZMDXrYM8xR+1Isd7k4q/nmzaj5FRqfvkwlm/0TConP26lw8HEnEeEC9u6gzuV/p72v/h8N3vA0DetuoQ+VPaeu7s44LVpxCP1z2dF0c+IYWpUcRwcMH6wc+aMmNKjPw8bVUVVF75F4+cI27fIBynnQ/hm2I0p7DoS8EiUk29NpZ7c9Jesn3ZYJQdo5x70Ptk7fDYLX2UCmjWpaZD62zGXX9TC4ZYpPj6vYU0hhz6uvvlrxy2Zqb6GdDWF38KTrrCjFcud1KnPJm8XmxxsKIq/k2tGQz2wXI/yGjKRBx36Khh37KaKebqINCyix7K/U9vIfaHDrBjq+7HV1XUeP0trEaHqy6Vj6x+5j6RtLDqZuKqfyeIwOGVubcuSPnthA00YOoTjOvSvhvBl2fN587J1lgnKO0z+wkahERKmf7Xml1CDZnk47u+0pWT/ptqwQop1z3PumUGDDAknwOhvYxCyKaZFR2DJKbsV22r32DNq8L5td3rNd7wt7RrHetxTKnendpqPkx/HdfPPNOXU05DujIB9+OceFc98PeCslJsyhJUNOoTkHjaby1U8SLX+caO1zdABto/Pif6Xz6K/UGhtMz9LR9JeOY+jpTUfSfzc10y8WrFePqa0spyMn1tMxE4cqR/7oSQ00YkhlyWlnEl7bopzDac+njiv1/R6i1E9iXikmJNvTaWe3PSXrJ92WcUHaOce9b4Rxy5Yt6qgA26dQBKGhoYH27NlTsrYsZM1xPtz84oOzivjwHY9qZztdv9j2DNMBhT2DRt3D3NSr1MpdkFPJR8fp+SIbzlHz4/hyRb4zCvLhV8jsBYWhBxDN+WLv1bGXaPVTRMseV458TetOOpn+TScP+jf1JOP0WvJAerHunfTL5sNpWcdI+vfKXepiTBxWTUdPHErHTGygYyZhin09DSqPF1W7MOLL1DmSTTm3xUEPQpT62ZxXShGS7em0s9uekvWTbsuEIO2c496H6upqkgSvY4oGWFTTIvOxZSFHq+XDze+5fru0R7HWOxd7hrGTfiZnCvb87ne/m/WGc0FH/NlW7jI5lezA57IcIWp+iI+XVUSxm39R9ascQnTo6b1Xoodo42Ki5X+lxNK/UtnOpXRkbBUduXcVfTpO1D72IFo19AR6MjmT/rxzDK3Y2UobGtvU9aeXN6vHwWk/fFwdHTsJo/L1NK0hTlGe+hqWLbPpHMHeGejszLXc5nKqRLERZd4sRjmXDMn2dNrZbU/J+km3ZbUQ7Zzj3jeFYtiwYSQJ3gYUzv/ONC0yjNGVKGyZDzdbwfYsZPO+XAF7RgHbyp3X9n677heTX7r40nU0cIcEdOez7C+44AKqqanJO77Id/OPl1HnmGOIxhxDXcdfSQ/fdT0dTKvpPZO6Kb7hP1S1ezkdhosepkuGjKHOOe+lFQ0n0L+6D6XFG9voxfW7aXdrF724fo+6GDhLHo48RuRnHjCMZoytS43Kh4lSyitAUH3jtw9I0KkSxUSU9iw0rlzfu7bVm7aXBVvjKgYka1eM+KKEdFvGBWk3YBx3nhLInxBRnya4ceNGGjduHJWXl6vvscM4rqBwT0+PekZQmOPSwzhiCzuW4x6Aw/w9LtwfFPZLe6YwpxnTIjnedJwYCCPebDlxGPfClhMnTlS/zZUT7I/Gn65NOn7Mrbu7WzX+c9UJv7n++utVGGs+ka729nblwOC+888/X/XS8U7znHY9HIZOXk7MA8/cvHkzPfLII6n72K5oRHMYNstWJ9yHhiJ+e80116gLf2tra1PnxcOeZ511ljqCjbmGoZNXG2gGbhMmTEjZLp/yFBT2asOaBdUFPFLd0dGR2jMBMzk4rDsosBM/E6OXfvzg6GBqVhC/MDh5+XnrMV0bjsvL+1vf+lYqXzEefPBBX36cdnC74447qL6+nr7whS+ocpQNJzgleh0I4O/8Pf/WW550zYJ49BtpjjXQAjqWFm6MUWXySJpOa+iDMyqJVv6DYnu30qAlP6XD6Kd0WMVgSk59JyXPOJU2jDiBFm3toSUbmpQjv3RrC21paqe/vLpFXUBleVwdQXfc5GF07KQGOmZiPY2sq85Jp6B6Wp/Gl0sd4Q3D+YN9cUFbfId8DBtzvY57kVeQN/mZuk5sSz1PcD7R6yBvOEibbPQL853L/Pg9lE95yrbO1usxRi6c/OyYro7AfeCGvIJyZ4KTN6zra7JtFMTPBKcg/Uxw4jDi2rp1q6qj8XtTnDjtgP5+MMFJD+O3qMeC+IXZNuLysmHDBqUdtz9NtiP8+IXNSW/7cV2AtJhsGyGst9299VhYnLy+BsrdmDFjVHvFZNsonqGeDouTro2un35SVRiwe6J/GsybN49mzJhBs2bNUv/fvn27+ty5c6e6ABwN0NjYqAwNZ62pqUl9v2nTplQYlQKfo7127drUtMA1a9ao3wCrVq1KjVCsWLFCZRAIijA+8X+EAdyH3wL4PYfxXDwfQHyIF0A6kB4AUxt5DSvSjfQHcQJwL0bR0PA++eSTU+n1csJzOV088gVOcGRxPfzww/T1r39d/T6IE+4H4PTgiCHY1BQnXs++Y8cOuvjii+mcc85R+haq03333Ue//OUvldOOimTkyJEqDCft5z//ufod7MnPM8HJm/dg/9raWtVTyCMx2GCDdUIakdZs8x7rhN/zRh3gxDwwcwEX9IOOzCNMTqzT+vXrU50thZQn5pRNeUIlisrbj9Pu3buVjcEbNud70IEBoEODR6ER5mlXQXXEunXr1PPAzyQnznvckEHDEEDegVONDhZwCtLJj9PQoUOpqqoqbXlC/oEDj3hz5QTtAdiHeaQrT8wJGgXlvSCdYjVD6dXYobR+zi3Ucv4SorN+T00HfZQSQ8YQde2j2NI/UfwP59PkHx1Jpyw+j24a/Sz95dNT6BcfGks/+8xxdMV7p9OciTU0tKaCOroTtGjtbnrwmVX0hZ+9QLO+8U96591P02W/fpHm/fUlWrm9Rdk913oPdRny3K5du/IuT6wTbIp7uHGEOgL5At8jT0IX/B+2ZGciUx2B3w4fPlyFkS+QPwDkF9gYgM2D6gjwAsAzH07evJepPIE7+CFv5lue/HTyy3vgxA24XDghXStXrlT5hXVCXYzvly5dGlieEA80iKodgbKHuE3o5Jf3wI/zqilOuk54H3Dj2xQn1gmcUM6hs0lOuk5ok3EeM8FJz3uo18EP8ZluG8Fu0Axx8SxB0+0IOLbgh/epKU6sE3NCnomibQROuA82NcVJz3vIl7AlwqbbRhxmfqY4+emEMNefYSGWDLsroMSAzIhRIbzE9c14wu5dyaUXDIIuXryYZs+erf5usqc8G0633npr2lEUDmNkFk5irr1gyLT6CC/3opvklI9Ot9xyS1ob3HjjjcpRWbBgAc2dOzfFMQqduMKBLTHyhbgwxRi/wQVnO1PeQ0WJMJ6F0WM8Dx0fHE7Hu5R0yiXv6drgb/Pnz1flDg3DoPTCPhhNBjAKz997R+LZKefe4mJwCiPv8fFxeGE99NBD6m9f/OIXlXPm5YdZGdx77ZcP2a6ZOMHGd955Z8rGcETScUJ8ixYtUh2xXAcF8chaJ+TvLUso8cafKbbs/yi2441+747kuGOJDjmV6JDTKDFsGsXicVq9cx+9sLaRXtrQRIvX7aaV23sbxDrg4B83eaiaWj9z8lA6bFwtVQ/qP3IYRXmCzW6//Xb1f9g4mzqCdeJRAtjUb/ZJUH2BTmK/9GajXynUEVG9c/GZ6X0DW5YCJ+SBhQsXqnce23wg6WQzJ6QP77w5c+aodpcEThJ18uOENKPczZw5M/UOs52TRJ1iAZzwN9YP7R34n3D+6+rqqFAMmKnynAH4Uw/DwOhF4Skifvd4w8gs+YQhalAYV7pwNunKxA/PCrpf78PxC6MHEBuRIVOiIvHjgXt5ug1nYu9zwuDEYXBDLy9z896Tizbe9bfslOjrb03qlIkf25Pt6F23nIkfGvE68Bye/q1rA4eNR+P4+zA56WBuUZQnrmTT1QUAnMhMa3WD9lTQn4O48uGXbx2RTz2GcJA9/PIzO9scL2aCsAMPwG65cNKfj+9R9rzrfb1pDEovzxDISafxx1J8/LFE776RaNcqoqV/IVr6Z0puWEixzS8S4frnrVQ2fJraBG/aIafTtFnH0sdn99pmT2snvbR+Dy1e10iL1+6mJRv2qLXy/3hju7oArIk/akK9cuRnHzCMjp08lOqr36xT2MFGufv85z+f4sEdnrotstUV9sXlzcdsd+QVvZ72aqP/X7el36kS6PzjExaCtMlGv2w4ZRvOxC9dfsu1Lge43OXKKd07l9Pg5ect51G0I3L5baF1uR8/k+9cQH/HmuCkpxcjqHpcptsRQc808c5Fvk3HL+x2hLdta7od4cfPRNtIdxx5mrwpThwGt3zrsXzqcr+2u0n/CTDJz5ters91/cLCgHHc04GdlbCNaws/vw2j/JDNJkR6XKY3VONNfdDQvfTSS1O7yue7yV4uO9tLzJvopID+6KDhkUqTGOjlLh+ky9v5xue3CzlvUpeurOPFhLyiOxzZpD+bo8qyfVaoR5UNn0r01kt6r5at1PbyH6hq3ZMUW/000a6VRM/d23vVjVej8HToadQw6S30jkNGqUulqTtB/93cRC+s3U2L1jbSC+t20659nWp6Pa7vEaYCEx0ypo5mHzCUZh04jI4eX5uyZannlbBPlZBQt+QbV74bNbp6c+DlFVsQNT/p8UUJ6baMCdLOOe59goYxfSEK5NNYzcQvzEaXHlemY4kYhTa6eRq5NPhpHeZ57V5wgxH25LiQhptvvrlfGgZiuQNytX3U/KKIz+tsIK/ksit8pjoBz/Jz6L0jZOkQRhmJ1Y6h6redT4SrvZlo5d+J3vgT0fK/ETVvIlr4UO9VPYzo4Pf3Hkk35SQaVNG7Cz2uz58wRTnka3buU6PxcORxrd3VSm9saVbXT/7Tu463NnY4je7cS+MXb6DjJtXThIaqfpxNdHhmU6ZN1jfFLAthdirnW+7y7Si2rd7MFRLrzWLEVQxI1q4Y8UUJ6baMCdLOOe59022wycABBxyQUwPRFkTJT4/LFPRGFwojNk3Culb+Xnfi82mMlVJjlfnxtClJ8Q3EcpfvKHE252dHYU/vqC3yCqaChdWhozvxevi6666L7CxxPB9T18HtvPPOo6qqOqLDP9x7dbUTYQQeTvyy/yNqayRa8vPea1At0UHvJTr0DKLp7yEaNFjZaMrIIer62Kzeqb/bm9vV6Pt3f/1X2paopcZkNbUkq6ilp4qu/9MydU8NddKYshYaHR9BY+J76a67cIJEb/oy1U3ZzGrwlvNc82Up1ZF+yFQWsjnrPqy4wsZArDelxOe0s9uekvWTbsuEIO2c497XiBk1alRJj9oWMkKQLT+9McajrLlCj8tvKuAll1yiRhXwHU+9z9W59ja6sAEhb5oUVmOsVLTGiB34Yb1rpnPDM8FvfSr04PWpeC42RMLfeamDyXPjbSh3pcLPz9HwLl3JN75M+SIInDdziS9oenC6JTr52KJQBHKrqCI6+H29V0830frne534N/5M1LKZ6L+/773Kq4imvbvXiT/oZKLq3p3XgVF1VXTqkWNp8WO9O992Jstoe2Iw7Yg10OauatqZGEytNIhW9wxXF1BFXTQ63kJjyvbS0q3NdNCoWorHY3nPavDWK1y3SEGUdUuhceUzk8fVmwMzr5Q6ouYnPb4oId2WMUHaOce9T1A+SqhUUcgIQT78MjXmg0Zo9Lj8nDu9gZ0rjyBIa3R6tQY//QzlfB2TbNansn5+HTdhd4LYUO7C4md6vwdvfLmA49bLUaYpu/mOuAZND853vW+Y8GqE/8Ox5Rf9fmkvKyc68ITe6313EG16geiN/yV6/Y9Ee9apTe7UFa8gmnIi0YwPEB18KtHgXmfcy3kCNdMvrruC2jq76ZVNzfTC+mb6f8+9opz6dqqgdYlh6nrffc9SQ00FzTlwGM2dMlxdB48OduS9YPt66xVT+bIYyFQWwsxvUddj2cYX+h4QEaFU7WlbXMWAZO2KEV+UkG7LmCDtnOPed7YzzuA78MAD++0MOJD5ZXLy+FxQbiDw91HYUm90oeGJs4bPPvvsfjtJZtsYK/XGDbiAH86ZzGUTsHzB+iFek/HxdGRw+8xnPpM6P9w2ndKlSy8LYU7NDUKhZU9Pezb2DbOsZ1rvm8s5qPnmFV0jLnfeHfMDgal3E2f1Xu+5lWjrq0Rv/LHXid+5jGjlP3qv2KVEB7xNOfGDsC5+yKh+8WEK34ih9fTOofX0toM6qXXR76gnGaP3/8/59MKGZlqwBrvXN9Ke1i564rVt6gLgyGPHejjxZ37mIjp41BDq6ekOnNWQrl6xcZZSrnkzzI1Io24/uPaKvfZ02tltT8n6SbdljyDtnOPet/HR+PHjS3rdQyEjBGHyCxo55O+RHm9c+uic/vt8Rzr0EUI0Ovfs2aP+7x3d5PSUipOXrVPh1Rr8wtzlPd1oKecVnPuMxr3JEVDWrpTLXSboeU3vwIq6XuF8BX0uv/zyvB33XBy1QviV+hppzpt5dV6hA3Hskb3XO68n2rGs14HHaDwc+jXP9F5/uZxo8lspfvCpNDjRQnv29J5v7kVZLEnHTmqgudNG0eff2km3feN22lVZQ4eccDotWtekNryDI/+317epi8+Sx671Td0jaWy8RZ2d7levhNk5V0qda1GWvajbD5nii2J2z0Cyp61xFQOStStGfFFCui3jgrRzjnvf6EOmEb9io5ARgkL4eRvYflOovetL08Vl4sg13qQuF0R1VF0+jVjv1GVOVxQNrnR5JYxOEC8nfKabjlyqjdBMHViArn9UU8HzKQulVG9m49AHLeNhW+aSV/Ryig4P3MMa4TMUjUYeTHTilb1X4+peJ/71/+09I37dc1S+7jm6HPeNnkP0Yn3vlPr6CYG2iMeSNDK2j77w9gPponcNoq6eBP13UxPNX91I81fvUo48zpJ/4nWcIz9Z/ebZu/6lRuOPnzqcZk2qI/jr4OflDOicS8kZN5E3QzmBIOL2Q6b4opjdYxKlZk9b4yoGJGtXjPiihHRbxgRp5xz3vikUq1atoqlTp1o/haLY/KKIS989HtfIkSPVyJG+eVumxknUjZt8HVDml88u7/k0urPVL6zpyOCWbjpyqTZCM22QBpswP9jU74UR5mwQdtgRH05YYJh0tIpVbwYt4yk0r/ARiADbEr3zodpw2BSit13ae+1Z3zcS/0eiDQvevJ64lmj8TKLDzux14hsmZaw/jpk0VF0XnDRVOfKvbGyi/6zaSf9ZvUsdRbdzbyf9+ZUt6gIGx46kA2s66c//3U4nHTqOhlVX+ObLbPYPKcXONWnvvGLGFzUk29NpZ7c9Jesn3ZY9grRzjnvfFIrJkydbMYUinxGCKPllG1chIx3eBnpjY2O/XeWLOaIQ1Ij12zU7yKnQOybg0IIf7FnorvL56GdySjNzi2LtftTgEwHADy+MQjdQDBpl5jDnpSjLQlT1Cu+HMGXKFDr22GPVtO8wnhnkbPISHC53+T4/Y8dWwySit1ykrmTTJup59TEqW/5niq2fT7Rpce/1t+uJxh1Lz2weTK/TQbQnVp+x/qgoi9Nxk4eq66J3TqeO7h5asn6PcuL/s2oXvbR+D+3rGUT/3TeIrvnDG0R/eIMOHFFDlZ2TaGxZs5p2z3vgZ+OMh9m5FtYIfym+86KKrxQ2epRkT1vjKgYka1eM+KKEdFvGBWlXVMf9X//6F9111130wgsv0JYtW+ixxx6jM888M/XSuf766+n//u//aPXq1VRfX0/vfve7VQNu3LhxoaYDDlJlZSVJRZj8Mu02Xwxb5rJxlenGTaZGbD7PAL9cdpUv9OjAdPoVOrrmtTu4pbO7rY1QTqufdoXsxu7dvyGMspAvoirr3n0EePaCt1Mpl7xSajM5YvXjqfxtFxHhatnae8QcptOv+7eaUv8eInoPPUubk6PpNTpoPyc+HSrLy2jOlOHquvTdRG2dPbR4XSM9v2oXPb9yJ726qYnW7GzFQXW0tGcUzbnjaRpG+5QTPy6Os+RjVB5LlsRMl2wR5Xso6ndepvhMLEeLEqVmT1vjKgYka1eM+KKEdFvGBGlXVMcdzt9RRx1Fn/3sZ+lDH/pQv7+1trbSiy++qM6Vxj27d++mL3/5y3TGGWfQ4sWLQ00HRsRWrFhB06dPt34KhWl+mY6OisKW3l3lR48eTZ/61KdyKpTFatzouztn44CisgG/bdu2ZT0yXYhTkkm/MKYje7mlm45cqo3QTCPg+WpXjLKQL0yX9Vz3EfCrm2D3fHcKz4dbvh1b/eKrHUM0+/O9197taip94r9/oNj6f9O45DYaR9uUE98z6khKzjiTEjgrPgdUDyqjt0wZRiN7dtEV7zme9nYmaMHqXb2O/KqdtHzbXtpFg2lX92D6L42lMkrQqPheGhdvVs788Bic/HA719huKE8MPZyrhlG903k2CMrdOeecE8kaStdesdeeTju77SlZP+m27BGkXVEd91NOOUVdfsAI+9///vd+3333u9+l2bNn0/r162nSpEmhpQOOA9Y9SJhCERW/oKOjorClHh8a5tu3b++3PrXQXcELma6ZSyM2yAH1PgP8wtxVvlTKAmtnY7kL6sAypZ2+fIKhhxF3oWXBVF4Jaz8E4IEHHkh1grCt80GmcppvOci3YyswPhwXN+tzFJ/1OaK9O6j7v3+g9Y9/hw6gDVS27RUiXE/dQjT2aKLDPti7Ln7oARnTqcdXX11G7z1sjLqA7S3t9OyybfT8qkb696pdtLW5g7Yk6tRF3UR1VeW07Wcv0Numj6ATpo+kScNrCu5cy7RnRD7Lw6TWY9lyK/WTG0qlPRZlfK6tabc9Jesn3ZZxQdpZtca9qalJNeAaGngF3v7Axkz65kzNzc2pKaRB00jx4sWl725tuucH8eEzCpjgh8x/3XXXpf7PtvWLC41jLIkArrzyytCmOcN+HAfC+UwTRs8bPwNhPCPdczNpx5UCPvkZCPP3+q7fQWnme3UbIlxVVZUKp8NVV12Viuu+++5T4UsvvTRl93S/z5RXCnm2l+O1116r4kI8mX4XlN+KXe68+SeT/vlOZceoHoOfq0/BR7kqtCzkWk6zrVfyLad+nRT6d+3t7an/I9zW1pa6h7/Hpo78vc4nG53yqTMz3VvQO6hqKHUd9T/0879toZpkK13y3gOpfNmfKbbuOYptWUKE6x83UWLMUZQ87IOUPLR3Y7tc4xtWXU4fOHq8utDpcsOd99OmnjoaPPVYWrh2DzW3d9Pjr21VFzBxaDW9bdpwmntgA3VSOVXGenKuN/O1WxBMv9P1UzH0PMibiJpcyuPaK/ba02lntz2jjE+CnzCQ4+vR9At7CWMsWSI7Q8GQ+hp3L/BSfOtb30qHHHII/eIXvwh8zte+9jXfI8ueeOKJ1DpsL2ACTM2vqamJRFC83FtaWqi2tjayEYGo+PnFBb7r1q1T4bA3h8iXGzew8HvM4AAmTJiQ2hBu48aN6jvM7NAb9tlqFwZnFHakA41ATMXMdVMu/H7Dhg0qPHHixKx+n609w+AnudwhLuQraDdmzJiCp2atWbMm7d8PPPDAgu2Zq6aZ4vMrY97ylC1n/AYdV3gP5PvKgo2y5RxmvZIN50K0q+jcQ0O3/puGrP8HjW5bTnF60z4tdQfRztFvp12j30Yd1aNzjs9rnyTFaE1TD726o5v+u6OLVuzuoR5NDjxpSkMZHTmynI4YWUFTh5ZReTyWsexlk79LqW7x5k2Uc96QMp/05gJXb9prT8naFYOf5PicdnLKXltbG5188slq8Lmurm5gjLjjhfixj31MGf573/teximQmJqqj7jDaZk5c2agwbgnRh+pMQn0wCxatIhmzZoVyVqLKPnpcXEvE/R76qmnVBh7FPBoRBijEvly+8Y3vrHfd9gEMd13GCHORbvjjz8+r5FO/ftnnnlG8UKh56mn2doNa0Txe+D0008P7LjKx566ph/+8Ifz0lJ6uZs7d25o/LCberqZDjxVPp/49NHDXMpppvgylTGUp2w4Ix+j3ocz9J73vIceeughygef+MQnsi6nheZN2PLpp5/OunwUrt3b6b77qqgm1koXvmsSDVrxF4qvf55qm5er68AVP6Tk+OMocegH1Eh8sm581vF57fMWLby3o5sWrumdUv/sip20emcrrdrTo67HVnTQkMpyOn7KMHrr1GFUV7aJ3jV7tm/Ze/LJJ/PSrlh1ize93OGbb3pzgeR6k+sg8DrttNMiWfJTrPaRNO2KwU9yfE47OWVvn7ZfSxgot8VpR6//P//5z4y9FdiUyW9jJow2Bo048vQJ/D0KQQHEg4o0jKONMiFKfnpcfg33e++9NxUOY/1dvtzyGbVjrcLWDj1znB4817veE/Gxs5bLrvJIHz8XYR4NTNcYytae+PuNN96YFb9C4woTtpY7Ti/SzppiBNq730M+8d122205l1Net45RHCyf8KtzM5WxTBrw33nKGXO+5pprfNen8z3g7rduPRfNC9XOW6YzxR2Wdvuomu58cgcRzabBycPoilMPInrtD0Rrn6PYpheobNMLRP+4kZITZiknPn74BylWP4HyRUN5Ob338HHqQp647ra71Vr4+kPmqjXyu1u76O9vbFcX8O1XnqcTDxqp1sbPnTpcOfYAaxp0Wkmu5dV03eLNg4hD38vCZP0isd7kdxaXG8SHcDbvLFvbR1K0KyY/6fE57cJDUlDZK7fBacdOgOiFHT58uJF48HJYtWqViN0Gi81Pj6uUufltToWGIk955MajyaPHMu1AzQV/1KhRke0qX6y84sqdffbkvMmNa1NH+Xk3wsx00kDQiRdR2jLXjcFMaLcvNlhtbKeulm1qd3p67TGidc9TbOMiKtu4iOjv1xNNOr53Y7sZHyDCjvYF1GND4l00Pb6LrjjzUCorK6fXtjTTf9bsoWeW7aAX1++mdbta6af/WaeuirKYOmv+pINHKWf+kDG1/WYFIZyvw2a6LHhPx0A5QDxRjBBLrDe9G1HCnvfcc0/qnWdykz33zrPTlgMhvigh3ZYJQdoV1XHfu3cvrVy5st+6sSVLltCwYcNo7Nix9JGPfEQdCffnP/9Zjbps3dq7GQ7+HuYLEiJi7bxURMlPjyuKM7jz5eaXf7ihGEbDPwwHm4+OQ76P6uzyYuWVUkIhpwqY5pfOIcw3vlzKqe6koVGNvIkXIn8fdNpEIeUJ92Na/YIFCyIpA8XIm8a1qx395hFzzVvedOLX/+fN669XE01+a+/O9DPOJBoyMrSOwvNPOJCeem4+dQ+foqbV/2v5Tlrf2Erz/3971wEeV3Fuz6pLVrcs2ZZly7LcaTbuGJvee09CT+ihBEINkBBCaMEQiFPgvUdIAiEkoQYI1cYYXMEFd1uWZHXJkq1qyZa07/tnNeJ62ZVWqzt3d0b/+b7Rjnbv7sz5z8zc+WfmzuysE+Gx97cgMykWR+cPRm17GoZHejaV1UE/WQ+c6gyGa7tptz2dAt/z9LTlQEjPSZhuy0iDtAup407nsR977LHd/8tn06+44gqxydzbb78t/j/iiCMO+h7Nvh9zzDG23ijkUWBOLaFwEk7ys6blxBncJmtnXeJLIVC79WfAJFRlxTTtQsEv2PT6Uk+9nTQql4Gu5ujvWdl5eXniuXe57MzfIIYdx2Dppl2fzq5PHgb3jGux/4grEdNaA9emLie+dCVQvNQT3r8LyD3aMxNP58QP6v9qt4RoF2ZOzMSphw4X/xftbsZn22pEoPPjqxvb8O815QDGwHXAjS0vrMQxE7Jw7PhMTB6ejIgIV9jpR79PjwxRWk4NKpnYbnrfs6iO33rrrY494873PP1sORDScxKm29JtkHYhddzJ+e5p+a9TG97LnXPpjD/dl1CEmp/Ttuxver46+U6dfxuIg00NDK0w8bcc2Rf6M2ASrmXFrlnw3tLo6dGFvqapwpY92cHpuifLZk1NTY9ttY7nSevWjvUrvdk3AhT27gI2vQVseB0o/xoo/MwT3r0DyJsPTD4PmHgGEJ9my0BhbsYgEa6Yk4vWAx1YXbQHn2yuwBvLtmKvOx5fl9SLsOCjbchIjBXL6Y+dMARH5w9BSkK0lu2Yjuk5Ae9HD6hdcfLRA1PLitMwvS6YrJ/ptuw0SLuwfsbdKZCI48aNg6lwkp+vtFR23HXWLhAHu78bwOlWVkKJ/uwNEA78+pteIPXU20mrrq7u1UkLdtDF30CKvOmq7NTrop20kXUGgeK+Hl3oNT06833OzZ6wp8gzC0+hYh1Q8Kkn/OcnwJhjPU78hNOAuBRbVlZFuDswY1QypgyPB9a8jqbOGEw64QJ8sXMPlhXUYXdTG/79dakIkREuTB2ZKp6NP2b8EEwalnwQf+/yprqTpktZ0QU0CEjtSjC6BdPWDOR7nt0wvS6YrJ/ptow0SDt23LtuFHQ+MO1YrPsSilDykzdN6rTdcccdPneathusnX8EM2DipD0DScvuWXAnYactA7FDf9MLpNPr/R7V9b48xtGfDasIdLqCExtWOd2uBJtesINNvaaXlgvM/Ykn1BYAG1/37E5ftQHY/qEnRMYA+Sd4nPjxpwCu4Nt7bx6JEfux69NXkANgeIQLp/zoRizeVoNFW6qxvboJq4r2iPDkB1sxNDlOzMTTkvqj8jMQ3UVHHpGoGrqUFR0gHz0gfk4+ehBO9zydYXpdMFk/023pNkg7dty7llCUlZWJc4J1X0IRan5UIVJTU/u0tHuga9eTg+00PyfTCyQtu2fBe4LdmynaactA7OB0WemtrqsedFH5+ITJ9U7uGZCRkYGrrroK8fHxPX9h8Bhg3p2eULPVMwtPy+l3bwW2vucJUXGIGXsSfn7+ucC4k0lc2/Ib6XJjTn6GCPedNhGle1qweGsNFm+txhc7alHZ0Iq/rywRgXaqnz4qFR3tmTgsNVJwlZ00VYN8JpeVUCAYfv1pa8LtnqczTK8LJutnui07DdKOHfeuJRT5+fkwFar5ee80Tc+8+ttp2m6wdvraM9y0s3szRaf5BZteMJ1eOTPWE/o76GIdSHnqqadE/LbbbhMj5qoRDtoFMjAR7GCTbKf73IEZMh445h5g/t1A9WbPTDw58XUFnp3qKUQnAONOAQ45zzMjH93LwEAvPMgODz30UPd1I9IScOmsUSLQs/ErCuvETPy/l21BY0ccvty5B8BIrKgAXvv1BxgRWY+ciHo89/PbEB0ZgYFaVnRBMPbsT1szkO95JtYFk9JzEqbbMtIg7dhx7+rENDc3i+PAdF9CEQp+3jdN6jSo3ml6oGqnuoPmpD0DScuJIwVVwU5bBmKHYNPrz3JrlWXF30CKhMrHJ5xuV4JNry+DTd4DNN5HX/bJbpTHrEmecOzPgMr1HgeeZuP3FnctrX8diEkCxp8K18Sz4epMtIWHFXHRkWLTOgr4+l+od8ehtCMFJZ0pqO5MQr07HvXt8diIoTjy4Y8wf3wmjp/geTY+NcGetlOXsqILTLYna6e3PU3Wz3Rbug3Sjh13y2Youbm52gsaan70+8nJyaitrXXs+ULWTk97BpKWE0cK+krTjsGm/tqyt0Eabzs4XRd6S0/VoIsTj0+osqU/Ta3pScfa7oEJ7z0DqJ1esGBB//cMIPsMO9wTTviFZ0d64cS/CTSUAt+8hshvXsOMqEGIqDkLOPQCzy71kdG2rgS5776DV2gkpmVg1MxTsHTnXizetht7Wg7gnXXlItDJctNGpeO4iZk4YWImxgxJDFrnUNY7VWUllAjGnv09AjWc7nk6I9zuQbqn5yRMt6XbIO3YcacdbSMixBnBpkI1P++b5u7dux2bFR0o2jm1SZuT9hwo2oV7esF2entLz65BF7r+vvvuw4oVKxxbadFf7fq6MsaaXjADE30dbKJODLXTVliXowfdnlCHKPtITzjxYaB0FTrW/xMtq19BUnszsP7vnhCfDkw807OcftRcIDLqOzxkfgK1g/cgVmNdDc48YgTOn5GHfa1t+Omjz6GkIxVtg8dia1UTVhbVifDY+1swanACTpiYJcK03LQ+LakPZT13cg8QpxCMPfvT1vA9b+Dd83RJz0mYbssIg7Rjx13e5BsbkZSUpP1ITCj4ed8c6RlUVTtND1Ttnn76aUc6aE7asy9p6XgWeLC27G2Qpqel68GkF2ynN1R1z4nHJ+zm1pumlHeZnlN2o3b6pptu6l4yL/cRsA0REcDImegYOgVPf5WEWcM7cVzmXkRtexdorgG+fskTBg0BJp7lceJHzgYi7Nk4iPjJ1QR0hFxmRLMI9950Oaqb28Vz8Z9sqcaXBbUorm3B/y4tFCE5LgrHTqCZ+CzMHz8EyXHRYVUPrOmZiFDaM5zueTrCZO1CkZ6TMN2WboO0Y8e9S9A9e/YgMTH45XLhDCf50e8nJCQ4skx+IGlH3Jx69MApew4U7frKrz/PnFvTU7kfgtyZPC0tDddcc02PG8bZPejixOMTwWrnz0G36idhfe+BBx7oTk/VwITVPrKdlicCWDnatZLnIFu4XKiOH4uWY89C3MmPwlX8JaK3dm1mR0786v/1hMShwORzgMnn4t577gZcEX22A+WZ7FlSUiJ0pHx465E5KBoXHzkcl83ORXNbOz7fvhsfb64Sznxt8368tbZchKgIF2bmpXfPxuekJ4S8HbOmp/MeIP7QH3sGewQq3/PsQSjrgonpOQnTbek2SDt23LuWUIwaNQqmwil+gew0bTcGinb33HOPIx00J+05ULTTJb1gllvX1dWJdE2DL1sGMhDS26BLIOk5NTBB2tm5ksfbPt7P1BOeeeYZyzP1zwKnPwUUfgZseAPY8g7QVAms+KMIMckjhBPvGncGZVg4/31Z/kz2DGS5/aDYKJxyyFAROjrdWFuyBx9tqhaO/I7qJnHkHIWH3tmEicOSceKkLJw0KQuThycLXqGs56HYA8QO9FSXdGs3wzWtUMBk7UKRnpMw3ZYRBmk3YBx3ObMgX0lE62wDjcSkpKSIIwPofXqPgr94R0eH+A1/cZmWNU6/TZ0WuoYg4/J9CnS9v7ivvAcSl/zozGX5vt2cZJxe9+7dK2biJEcVnKzxhoYGsfxF5tduTt5x2fFUxcmqjTc/qSelRR00ypN8v7+cZPq+9LOTk1Ub4ibPAlehk1UbyaentqC/nKzx9vZ2sTTLHz9/nGiQhuIUyMmg79xxxx3i8ZOeyh5dR9rR7Df9TltbW3f7R3GZFv1OsJz27dsnriVu9D+lRZ1wyYk64P3VyVd9smpm5UEzq9ZrguHkr7zJNlNeL20vnVBfnCSsK2Ss8dtvv11sCCfjsbGx4nuUrnUZn5WHN+/+3p+o3SC7UVl57rnnesxvX+5Pra2t3fm1xv1B8HNFIiL/BHTmHQfXGQvgKlgEN+1Gv+U9uGhju2W/Q/Sy3+FWJGOTexxQfiowajo6eqlPlCfi15se1uspREZEYOrINEzJScU9p07AzppGfLy5Gp9srsaqojpsrmgQ4dlPtmN4ahxOnJiF4ycMwYTBURgyOL37d+3QyV8bQXHiRmVFtgmyT2Ft1+y8P1ntZQcna36t/SF//FT2I6z3IdmOqupH0PVNTU1iY0iZvsp+hLUceOunom9EcWrH/PGz+55LsPZtVfX3JA9f/FT1I7zbYJV9I+++n3c7Zhcna9mjV6p3NAPuzc8uTm5LnH67vr4+aH59bfes+sm4XTBvqqQLCxcuxKRJkzB9+nTxP+0mSKANeeSmPFVVVWLWgYxaWloqGgBCWVmZEJhAy+2oohKKiorEcQKEwsLC7s5JQUFB97LA7du3i04tCUpxeqX/KU6g6+i7BPq+jNPv0u8TKD1Kl0D5oPwQqFJVVFSIOOWb8u+PE4Gupe8Qv127dnV3ZFRwousJ1LHfuXOnSFMlJ6kTxem3iZ8qTladWlpaun9PFSfvskfByikjI6N7pt0OTt46FRcXC/1UcpI60XcpLbt18lf2qBEtLy9Xysla9mT70hdO8jdJYwpSb1ptIfPuq+xROpWVlXj++efFbBa9yg7GCy+8gN///vfi/f5wevHFF8Wz0DSgkJmZKZZbkyP6l7/8BU888YRtOnmXPeJFoDZahU7eZY9sSXknm9NnW7ZsEe/TjTkrK0u8Tx3wbdu2HcSJZg9vueUWXHTRReJ9Gti45JJLxPs33nhjd37JbpRfGuig36H8U97obHV5DXGlZ9BpVphO6egvJ2vZo3pA8TvvvFOs3DnnnHPE5+QonXfeeSK/t912W0A6UXtBvy870ATK7+WXXy4GnK666qru57EvvfRSXHvtteL3v6NT0z5g/CnYdeTP0Hj918DFL6Mp9xS4oxOQigbMwWrE/PlE4Nkp2Pvv23Gg5CsxE++rPpE+FL/77rvFAAlxIlA9uuCCC7p16q3spUYewOlj4vCP62bjwxum4v4TR+HkyVmIi4pA+d5WvLSsGJe/uBrH/nYlbn11DV75fDPKq2tt08m7PlE5fPjhh/Hyyy8fVPYoLSonZO+e2ohg2j2qe5S2HZzk/ZPicoCK4nQN1QO6Xq4GcaJvRKC+H/UPKV2VfSPZRtDvO9E3kjrRoC3ZViUnq06yz+JE34g0c4KT1En2MylPqvtGVFcI1L460TeiPBE/Oeipum9EvgJ9ppJTvaXs0f2J6rpsX5zoR8i4bD/tgstt91BAmIFGdGgmXXYqVI2u9GUUjARdvXo1ZsyYIT5XPePuBKdgR8F040QdQtrdetasWd2f6c7JRJ188aDPli9fLuqdnBkOZ050HTna9B2ahSenIxCdqGPfE2i2NVhOv/zlL33OXHrHyWGSNraj7NGNb9WqVWIglpxLJ3Uizj1xpceDvDlRZ/nxxx8X15At5EZpvt4Ph7JHHQ4aeCHcddddiI+PD1gnKm89dSOIJ/027eh77rnnit/uC6cDLfV46zc/xmRsw6ToUrgOeDq0AoPz0UlnxNPGdpmT0NmVL+/65I9fsO1eS9sBfLGDnouvEUvq6bl4iZioCMwbmyGOmaPn4jOS4sJCp2DbcuqvrFy5UtzzZP6CLXu/+tWvemw77r//fiPuT6HQyRcnyh/d82bOnCnuH9yP0KdvRNpRvZs2bZq4l3J/Lzx1cvlpI+gzqR+1B+R/kvMvJ1P6gwGzVF5WVPlqjZOBaWRFzhb4usY7ToUlmDiJ6i9Ooad4IPnqjZ8c5VbFSc7UyqVLqjjJOHGzLmnVWadA+ankJEdbvfWzk5MVkpsTOslGtqe2wM44pRUMP8mDgvczxj2VPVnPyVGifPjbD6E/nLz3WqCZ4+uvv14s+ZY7k1MZknkiDr6eZ+1rfbJqZrd+vjQgW8p2jGB1TH3Fvcuer7TofXLUvTWV9ZxG+mW96yuPnp4Z7o0f/UYgdcufTr2N/XvnN1B+csai3RWDza5x2Ixx+OmNNyK2eBEiNr+FiIKPgdodiFj6FEAhYxwiJ58rNrbrzBgfEL9g2/KE2GicOHmYCAfaO/D5phIsK2nBh5uqxA71tLyeQoRrA6blpuPkyUPFc/G0uV0w9ydpC9mZpHpHg1nyfam3qvtTX74bCCd/9cn6uJ2se6rvud7LrYPlFEi7TsG7nqvuR/j7TRX3XDmb6Y+f3fdZ776t6n6EL36q+hGyrstl5Ko4+ev7qeBkzWMwfdv+9MsJKvl551e2a1b97MKAcdx7Ay3bkDcKE+EkP6dtydrpa0/WTo09vTumdm1Y5f0b9L/VeZWw7uIdzujJ4ZW2DGbn7mB2tw5luxmOxy363Ojv2d93xcbh5/f8Edj6X2DTm8D2j4Dd24DPHhfBNWQConKOB2ZeBmRNVMqPjpobPzgaxxwyAfedNhHbqprwwcZKfLipEhvKGrCysE6Eh/+zCYdkJ+OUyZ6N8PIzk4K2BfGReyUQwk07fwi0Lunah+jt2EdaLcT3PHuha1kJR5huy32GaMeOe9eoSXZ2NkyFk/yctiVrp689Wbuence+HucWCnvSCHZvO5NTx9zuo8ZUw2pLO3fu9qdpsNr15ij4y6OdZUU6Y/Ss37PPPivi9Pz4oEGDoBSxScBhF3pCawOw7b/AhteBgk/gqtmC5JotwNcLxRJ6moXHpHOAIeNsz4a3LccPTRLhluPHonRPCz7cWCUcedrcjhx5Cr/5cBvGDBnk2c1+8jDh0PdlVsa68Z5OCKQu6dyHCOQoT+5r2gedy0q4wXRbRhikHTvuXcttaPlLenr6d2aqTICT/Jy2ZbhqZ9cZ2ibbM1y1swuh1k7lLKM8K5vSo41Ae4K14xrsUWN2I5CZMR3qXSCOgp3p+YJ1oEnCOoMqN++RcbmksLc2sU8rHeKSgcMu8oR9e9G55T20r30N0SVL4areBFBY9AiQOdnjxNNZ8RljYQd6suWItARcPXe0CLVNbeJ5+P9uqBTHyxXUNGPhogIRslPjcdLkLJx6yDAcOSpNzOL3ZAvaiZk2+aNHVExDqNtNU9IKBUzWLhTpOQnTbdlpkHbsuGu2tFMHfk7bkrXT154DWTt/zqN839/S854cnlDUPX/P1Adyfnmo0JvDS4MS3rbsz0BIIAMFureb1nJJcV/nuNPJBvLRCl+27G3AM6CVDvGpwOGXoHboschKjoVr2/vAxjeAnYuA6o2esOhXQNYhnll4cuQz8pXbcnBiLC6ePlKEhtYDWLSlWszEL9pSg7K9+/DiF0UiZCTG4pRDPE78zNHpiIr0DMJZQfVNh/Pa/aG3uqRrXQhksGkg3/M4vfAGa6cH2HHvugkOGzYMpsJJfk7bMty0C3bpqpP8euocm1xWnEZv/HpzHv2976/DG051jzqqIVtCbQPstmUgM+PBpBfM8/eqyko4PSd/EL8pP/CEljpg63tdTvxioGqDJxzkxPd9Jj4YWybHRePsI7JFaD3QgSXbavDfjZX4eFMVdje14W/Ld4mQlhCNkyYNxSmHDsVRYzIOOi1H91kjfwindkzFowAD+Z7H6YUvWDt9wI571xIKOsePzks28WboJD+nbRlu2gW7dHUg2jPctLMbJmsXivTsRG8Ory62DPb5+3DTrrcBT1vazYR0YMqlnkBO/JZ3PRvbeTvx9Ey8dOKHjA8urT4gLjoSJ9Gu85OHYn97J74s2C2W09Ns/J6WA/jH6hIRkuKicOLELJx6wbWYmOYSqzRMhC51L9gB86SkJNx4443ihAnTYKp2oUrPSZhuy06DtDOz5WcwGMpXAzDUOI/WXdr7Movq9P4Lvc24PvTQQ9+5Rs68E0I5O9ubwyuP4rELwc6MDxTYPeDZK8iJn3qZJ3g78fKZ+MW/BoZM9Djwk84GMidCNegM+GPGZ4rwq3MOEbvRv7ehAh9srEJNYxteX1MmwqCYSJw4KQunHToM88YNEc4/I3wQTqtPGAyGWWDHvWuJSGZmJkyFk/yctmW4aWd3B91OfoF0jk0uK06jN369OY/em30Fsqv8QK574cytJ61J54cffrhfAyl9dRT6yy+QwR/roxLPPfeciNNMY3JyMlSjT/y8nfit73uc+IJFQM1mYDGFR4GM8R4HnkLWZBpZ85uWHYNj9Gz7nPwMER466xB8VbwH731Tgfc3VKCqoQ1vri0XITE2CsdPzBRO/HwDnHjT2jHvAfPGxkZ0dHR0v2/SgLlp2oU6PSdhui0jDNKOHfeu2ZWqqipkZWVpv4Qi1PyctmW4aWfn0VGm2zPctLMb4aad3SsuektPh1lmfw5vKMomObR2z/T7gxP8fJUn2t+gJyffrrISND+xnL7rmfh9ezxO/EZy4j8Fdm8FljzhCeljup34zqxDUVVdrdSWtMv8jNHpItx/2gR8sm4nlpfvF0vqK+pb8dbachFoJv74iVk44zB9Z+LDrd20e8Cc6nm4nK5hN0zTLtTpOQnTbdlpkHbsuHchnDqTuvNz2pasXWAItHNscllxGoHw8+c8BrPcsqf0VCxH7ik9uwexnIaKsmnVlAZSKMjBE+pYUFx2KlTbKRh+qh63UVFW+q1ffBpwxPc9obUe7Zv+gx1vP4V8FCGqrgBYukCEeqSgNHoSki64FzG5s8RMvMrHkSIiXOLIuBOnpOOB0ydhTclevC9m4ivF7vRvrysXgWbiaTn96YcOw9HjMhAbpY8Tb3IfwqnBuVDBZO1CkZ6TMN2W0YZox4571xIK2rDAVDjJz2lbhqt2dj3jZie/QDrHJpcVp2F6XTBZP1/cfC1/7s+SaO+BlKamJixYsMCRmbhgtQtm8Idsct9992HFihW2dpx6Ox3D1rIZl4LOQy7EP97ZgRj3ftx59mGI2vYfuLd/iLT2ekw/sAz4+1moRxI2Ix+bMRYuDIfbFWH77Ko3N3LiKfzs9IlYW7IX766vwLvfVIiZ+DfWlImQRE78ZM9M/Nz8IeJZ+nCFae2Y94A51fNwW3lkF0zTLtTpOQnTbRlhkHbsuHeNgFZUVIhjLHRfQhFqfk7bkrXT156snbP2VLEcOZCyouNGTaEom6mpqdi7d68jaYVr3bOrrNjJz3uVwX5XDOqyj0V07klomFqBFS8/giOii5DvLkBKeyNmYY0IjRiELW6PE1+EEcKJtwP+uNFmllNGpolw32kTxUw8OfH0XHxlQyte/7pMhOS4KJxyyFCccdhwzBkzWDxLH04wrQ/hPZhH9TwyMlKblUcDWbtQp+ckTLdlp0HasePehfj4eJgMJ/k5bUvWzt7OscllxWmEU11QsRzZZP0kN1/Lw2nDNesyd+/PA7Gp90AK/d7tt9+O2NhYOIFgtAuHfQukHqSBhDUubW9X2fS1yuAPf/jDt/+4xqE45gjsb67HGBRjIrbjsNgyJLU1YDrWieCOT0fnuFOAbR8CefOBqP5p3Bs3uZyewv2nT8RXu/Z0z8TT7vSvrS4VYfCgGJx66FCcedhwTM9NF98LB4RTu2k3rJuOmgiTtQtFek7CdFvGG6LdgHHc5XNF8pVGXKxxGgW1Xkuj1xT8xWlXUPqev7j8HWucRlnpqCe6hiDj8n0KdL2/uL+8BxInfpS/nvj1h5OM0/UpKSk98rCLk8x7enq6iNNvquDkHZfHdankZOXhzU8VJ/k7VFZUc5JlMS0tTTknb816awv6w8kap7R64mcHJ++4dzvWEw95jcxDX9s9X/xUcJJ59JVfO3TypQ0FasfoPXLcJF8CxeWxdrIcE5566qnuax544IFeOdE53Nb8trS0CAfY+327OHnHJb+etPHWiZxiax0iyNnDnrQJRL9AOfWmB9ne+z7Un7IXCEg7uKKxFfkiTLztDvzziZsx0b0NU+LL4dpXh8h1rwDrXoE7JgkYdzJcE89ER96xiIhL7nMbQfVO5i0QTtPIiR+ZigfOmISVO3fjnfUV+O/GKtQ278fflu8SISs5VuxMf9bhw3FYtidP0gbS1qr7Rv74qexHEGQ7ppIT1e3777//oPdV942s9vPWT8U9l0D9FX/87L7nynue5Kq6H+GLn6p+hExP+giq+xHWvp/qvpHMO9mS4t59W7s4uS1xQn/49bXds+on43ZB7/UCPWDhwoWYNGkSpk+fLv6vrq4Wr7t37xaBQDsM1tXVCeNv2LBBxAllZWWor68X8ZKSEnF8B6GoqKh7ZL+wsBCtra0iXlBQ0D2Kun37drS3t4vfpDi90v8UJ9B19F0CfV/G6Xfp9wmUHqVLoHxQfgi0jJKWehAor5R/f5wIdC19h/Kwfv167NmzRxknul52YNasWSOuUclJ6kSc6HeLi4uVcbLqRPzk76niZC17DQ0N4pXSV8XJqhOlt27dOvFdVZykTpT+jh07RFoqOVl1oka0vLxcGSdr2du5c6cIlGeVnKRO9Dtbt27t5uePE9WZm266Say6qK2t7RMnq06kHf0veajgJHWqrKzszrvdOvkqe5T/1atXizjdiGknWtlRpDiBHOwhQ4aIOHXK5fNz5MT2pd0jTuRkkvOgkpO17FEgfjLeV50kD5rBkDx6qk9Uzgg1NTW2cCK7k/0JcpdgqRNpRzyIn4z3p+xdeeWVYqXB1Vdf3X2UXVJSkggE0m7o0KHdHd+EhAQgMga1aVPwccLZOHDrRlSd/AL2H34FkDQMrv2NcG34F/DPK+D6zVh0vnIJsPbvKNy8JqA2QraXVP/6yol2px+fHombZg7GyvuOx+8uGI/TJw1GUlyUOGLuxS+KcO7vv8Tcxz/FL99ci80VDUInStuustdbG0Hvy7azLzoF25bT723btk2kq7JvRN8nTpQGPeeuum8kdWpraxPpqeJkLXsUt/ZbVHGSOlHe1q5d281PdT+C+pmUNrXZKvtGlKYYDAREmk70jYgT+Qn0O6r7RpQX4kefUzumum9EoLySn0e/qYqTL50oLttPu+By2z0UEGagBoRurFQo6abqa0SFbriy80SjN6pHlWWnYsaMGeJz1TPukp91tEnVqLKs9NQJJaiecZcaUydK5lflqDItEaVNlmbNmtX9mcpRZV/8VI4q+9NPxQgs5Ze4yXqpcqRcfrZ8+XJR7+QMod2crHFqrKmB98fPDk7WOP02aUfOhayLdnOyauOLn92cZL4orVWrVomB2EBmpIPlZNVGtplU5+l6+oxm1em6m2++WeSD2vLf/e534nq5zJ3yTY58X9o9ep9sSfXcOtMZKCfK42OPPSZ+h5xMsm1P9Ymuo7IiZ6vs0slffgPRL1CdfvnLX35nxt0apxl3yU+2Y3Zwok7Z448/Dl+gAYx9+/Z1/0+DYj55UPqlq+Da8h+4Nr8N7PF0NkVbGxEF5B4N14TT0THuVESkZPusTxQnblRWyJZ26HSg040lW6vFTPzHm6vRst+zKpCQP2QQjkhvxw2nzcDoIYl9rk+kPZVN+v/uu+/ubnv9tRG++KnsR1jvQ7IdVdWPoOvJyZQDQCr7RjJ/dM+bOXOmaJNU9o1knNoxf/zsvuda22mppcp+hC9+qvoRlOeVK1di2rRpos6onnG39v1ke6qqb0R5p1eqd4mJid9ZUWAXJ7clTr9Nznew/Pra7tFnUj+6d1AZpfRl2ekPBsxSeVkA5Kt3nJZs+HrfX5wKSzBxEtVfXDZE/uKB5Ks//OzgRL9nTUslJxm3Lg/WXadA+Knk5E8/uznJfMmOtRM6yUa2t7bArjh1OoPh15+yJ9NTxcma377w6299smpmt37+8i7rgXzmXI6g001fnkdufV6VrvN+tr0vbURP7ZiM97STunUMnnj4utZqd2s9V93u2aGfVRsrV++4zFMg/HzxoEEQXza25sUbVqe9Rx7U/oycCVA48ZdA1UZg8zsiuKo3AjsXiRD53k+B7GnAxDMQOeFMICP/IB7Wem6HTrERwImTh4mwb38HPtlShbfXlmPx1hrsqGnGjhrgX1s/x+EjUnDm4cNFyEqO61UnilsfDZT56K2N8Oan8p5rvQ/J3+uNU6Bxb22ozfSu56r7Ef5+U8U9l+I98VNxT/JVz+3kZNXGFz9V/QjpOEqnVhUnX30/f/XA7ntuX/u2/bk/RUZGKuXnnV95X7LqZxcGjOPeE6iC0PKHnJycHm/OusJJfk7bkrXrO3rq/JtcVpyG6XXBZP2c5Eb1kWYkyXm45pprEBcX16fvEnxtktfTJlg6aefdXskN8miJony2/ZZbbhGDKSr5WTf1tG6Q99xzzwntvv/973cvnw8I1JkbeognHHsvUFsAbPkPsPk/QOlKoGy1J3z8C2DIBGDC6cCEM9A59HCUlJYq0y4+JlLsOE+hft8BvL++HC8v3SRdf/0AAG3ISURBVIKNu9uxrrRehEfe24xZowfj7COG49RDhiElIbpPZbOnDRx1qXvBQKd6FwxMvweZrJ/ptuw0SDt23LtGX+TmJCbCSX5O25K109eerF3427OnQR6T9fPFzddpDP5OaOjr+e40Ok/P/PmzpT8nyHpGuISv97wdJp20sw5AUJyWVnpDroCQCIZfXxxNGafvSO3ovX4d8TV4DHDUrZ7QWAlsedfjyBcuAWq2eMLnT8GVnI1ho0+A68A5QO5cIErdsWIp8dG44Mhs5LSXIn/yEfhgc42YiV9dvAfLdtaK8OBbG3HM+CE4+4hsHD8xE3HRkX534w/kTHuny2Zvdc9OhGu962t7NVD7f+Gqnx0w3ZYug7Rjx71LUDueOwhXOMnPaVuydrC1Y2pyWXEaptcFk/Vzgpt3faTn4Oh5YNmxsHaee3OCeoO3w6SDdv7aq0CO0wqGXzCOptSItLP1GL+kocD0H3rCvr3A9g89S+p3fAJXQxli1r0EUIhNAcae6JmNzz8BiFOn6eDEWFw+O1eE0j0teHtdOd5aU46tVY34cFOVCImxUTh58lAxE9/pBoI5XS7c6p6d0KHe9Qem34NM1s90W7oM0o4d964lFLQ7YG5urvZLKELNz2lbsnaBj5gH0jE1uaw4DZ3rQiCDPCbrFyy3QM8Y966P1KkYPHjwQUfK+ZuR9AU6S70vjrwO2vlqr+TSeGkffzZyih/pSZvhUVpyl3vbEZ8KHHaRJxxoRWfBIjSt/geSKpbC1VwD0A71FCJjgNHzgPGnAeNPBZKHq8kPgBFpCbjxmHwRtlQ24K215WImvmzvPvz761IRMhLn4IxDh+K0yUPw3t/+JJ4MoHJKm6T1BCe0s7Pu9QXhVu+CfZzBxHteOKbnJEy3ZadB2rHj3tVwZ2ZmGrGEItT8nLYla6evPVm78LVnIIM8JusXLLdAnE1fIIeBdti1brRmhXyu27o83p8TdMcdd4gOd0/Xhqt21gHI/iAYfn2xcX/TChrRcXCNPwURI44G4uOAsq+ArbSk/l2gdgew42NPePd2YNgR3zrxQw/1PFOvABOGJmPCKcm486Tx+GrXHry5pgzvflOB3U378edlu0RIcU3GmMg6VDa1Y0zWt3sR+ILTZbO3umcnwq3eBfs4w0Dt/4WbfnbCdFu6DNKOHfcuQX09N2cKnOTntC0HunZ9GTEPpGNqcllxGqbXBZP1c4Kbd32kuuzPUfQ180XXWZ+1tl7rfb33tXY8z2qafr3Z2M60+oOD0rPuUF+zzfNM/Nb3gdJVQMVaT1j8ayB5hMeBp5B7tJLn4iMiXJiemy7Cz8+cjCXbavDm2jJ8tKkK9e3x+Lo9G8c/vRTTRqXhnCnZOP3QYUgbFBP2dc9OmNxmDoR7kMn6mW5Ll0HaseMOiONKCgsLMXr06IO29DcFTvJz2pYDXbu+jJgH0jE1uaw4DZ3rQiCDPCbr5wQ3783UMjIyxBK+YBxpf5vk+YNMTx7VFWr4GoCkneKpvNHGYX/4wx987h7vDya3Y37TGzIOGHI7cPTtQFM1sO0DjxNf8CnQUAqsesETYpKA/OOAcacAY08CBmXYnseYqAicMClLhMbWA/jvhkrhxH9ZUCs2tqPw0Du0qV0mzp+ajWMnZCI2KlLLutcXhFubGewqk7CvC4ak5yRMt2WHQdqx4951Fl92drb2zz2EAz+nbcna6WtP1i587RnIII/J+jnNjZbp7t27t9f0+uKge19rdY5letSZke+Hcua9t0cM+jID3l/9+joIEpb3vMRMYOplnnBgH7DzM2Dre8C2/wJNVcCmtzwBLmDEdGDcyZ7Z+MxJti+pT4qLxoXTckSorG/FO+vK8caaMmyqaBCz8RRo9/rTDxuG86ZkY+rI1LCse3Yg3NrMYFeZaFUXNE7PSZhuywiDtGPHvWvENT4+HqbCSX5O23KgaxfMiHlPHVOTy4rTML0umKxfsNwCOWO8v46iXZtTUptBG3JJqNqQy04E6lCY3I71Ob3oeGD8KZ7Q2QmUr/E48NveByq/8ZwZT+HTh4GUkR4nngIdNUfftRFDU+Jwzbw8EbZWNuL1NaViZ/rKhla8smKXCCPTE3DulGwRcjN6X13RH/S37vX1sROT20wt6oJm6TkJ023pMkg7dty7llAUFBRgzJgx2i+hCDU/p2050LWze8Tc5LLiNEyoCz11bMNVPzue4Q6Wm6+0vM8YtzO9/nRihgwZgpqaGkc25eoNvQ1A9lVDp+xJZe2xxx4Ttrzyyisd6Rj2ixvNNo040hOO+xlQX9blxH8AFH4G1O/6dkl9VLzYpd6VfwJi9g2xncf4oUm499SJuOvkCVi+sxavf12G9zdUYFddC377yXYRaPb9/CNH4IxDhyMlQc3z53zPs2fw0GlbDoT0nITptuwwSDt23LuWUIwaNcqIJRSh5ue0LVk7fe3J2ultT5P1c5KbHGig48TIWe1Lp6I/m1PW1dXh9ttvD2pgoy+DI9K5zcvLw9SpU30em6Ziya5T+tHAB9lSy3qXkv3tefH7WzzOu3DkPwQay4HtHyBy+weYTjy3TgTGnQSMPRnImQlE2tN9jIxw4aj8DBEePmcyPthQKY6To+fhv961V4SH3tmEEydm4fwjszFv7BBERUaE1J7BHqNmcps5EO5BJutnui0jDNKOHfeu2YfY2FiYCif5OW1L1s7eEXOTy4rTML0uhJt+dp5J3F9uwdTH9vZ2W46fC3RzSkrP1w70JkB12fQua2RLq3522NTf4IgybjEJ3+48T6swqjYKx9299QOxS72rZjNA4YvfAnEpQN6xQP4JnpA8zJYsJMRE4dypI0SobmgVG9r9+6sybK1qFEfMUchIjMHZR2Tj/KkjMGl4cr/TDMaewR6jFm5tpt0w/R5ksn6m29JlkHbsuHctodi+fTvGjh2r/RKKUPNz2pasnb72ZO30tme46WfnmcROcLM6f9SpyMrKQltbW/fnKh1qmV5fd5Xvy+CIv2ulPX3xs3PJrkr9rGVN2pL2C5CPHajcL8CRekcDEEMPEaFj9q34aunHmJZaj8iCrnPi99UBm970BELWocDYLidezMZH28Lv2nljcM3RedhY3iCW0r+1tkycD/+/SwtFmDgsWexKT8fLZSQG1ynne559MP0eFG73PDthui07DNKOHfeuJRT03IMJSyhCzc9pW7J2+tqTtdPbnibr5wQ374GG6upqLFiwoPv/QJy/YDenfOCBB8QMsa9l633Jc0+DI97OLeGZZ55xxLl1smwSH9LOrr0CehscIW2drnft0UlwH3ICcMTFQGcHUPaVx4Hf/pFns7uqbzxh6dNAbDKQN9/jxI85HkjN6Zd2VHYOyU4R4d7TJuCzrTViU7uPN1Vjc0UDfvVuAx57f4s4Wu6CI0fguAmZ4ji6YNNTeYyayW3mQLgHmayf6baMMEi7AeO4d9JuqpZXEk/GZaeC/qeRGHql9yj4i9PoDf2Gv7j8PWucfptu7nKWQ8bl+xToen9xX3kPJC750e+o4mSNyw6MSk6+4jK/Kjj1hV9/eVi18cVPFSfJQ0IVJ+84QTUnq2Y9tQV2cZJ574mfHZyscV/tmApOVh7e/OzmJPNl1Uz+vnfe7777bhGnWWvpAMtnuPva7lnLvypO3vB2/ALRiRxvqQG90m+Q80D5kPn1xU/mxcov0HbPmpZ33FubntDfstdTffJV5/ujk3ecyhph37594vQAuv7mm29GQkLCQfyC4UQDHt72lc4hxWnQRV5P+tvFqae4VV+XKwKunBnozJ4G1zH3wtVSi84dH8O14xO4Cj4BWmqBze94Atk/YxxcY45Dx+hjETF6LhAzqMf6ZLWH5CfzHhXhwnEThojz4fe27Mfba8vw+ppyrC3Zi483V4mQlhCNsw8fjgum5WDi0ETxW4G0ez1p5q0T1TEZl6DPpeNu7dd59/160sbue64s/wfrp65v5F3/VPaNrI8Vyfuf6n6EL36q+hFSM1mWVPaNvPt+TvWN6Hpf/FTfczsd6BtZ9fO+t/cX+g89+MHChQsxadIkTJ8+vXs2g7B7924RCFVVVWJTGTL+mjVrsGfPHvF+WVkZ6uvrRbykpASNjY0iXlRUJI75IRQWFqK1tVXEaadCOUpOSzFoJoN+k+L0Sv9TnEDX0XcJ9H0Zp9+l3ydQepQugfJB+SHQWaMVFRUiTvmm/PvjRKBr6TuUh6+//lrEVXGi6wktLS1YvXq1uEYlJ6kTxSkfu3btUsbJqhPxk7+nipO17DU0NIg8qeRk1YnS++qrr8R3VXGy6rRp0yaRlkpOVp2oES0vL1fKyarT5s2bRZ5VcpI60e9s2LChm58qTladtmzZ0s1DBSepU2VlpYhTG+2PU1NTk3DSiZt0oOhzcq7o/b60e5T/lStXdsdVcKJdyGnm7uqrr0ZKSopYbn3FFVfgRz/6kXi/rzoNHjy4e/l5b/WJAvGT8UA5Ub5+/OMf45JLLhHv0y7q3//+98X7119//UH1iXjR+1dddRWSkpLE+5deeimuvfZa8X5/y15P9Yk+I34y3h+dfLUR1E5SIEeNtMvJyRFOZm1trbhH9JcTlQXZCaS47ORSnDhRvbObk782guoe2dcvp0EZKEqageaTnwZ+ugMlp/wFB+beKZbMu12RcO3eBqz4IyJfvRh4YjTw0lmofftBdJavR/uB/d8pe8SP2s3eONFmesfmROHNm47Cv354OH4wNROZSbHY03IAf15WjDOeW4qTn/4Mz36wAbVNbX7rU2lpqWg3Kd2+6rRz585unSgeSBtBn1FbpbpvJHWigUxKrz/1qS9tBF1HdUN134jsRnmj/qbkp7ofQf1M+g7lSXXfSLYjxcXFjvSNKE/kJ9DvONE3In6UVyf6RrLvQH4e/aYTfSPJieKy/bQLLrfdQwFhBmpA6MZKoqWmpvocUaFGlwxL7zkx406CUmMzY8aM7jRVjsBKfnIWRgUnGZcVTY48qx5VlmnI91TPuNPSuBUrVmDWrFndn6kcgfXFT+WoMr0nZzqs+qkYgZUjkbLcqBwpl58tX75c1DtycFSPKsvG2h8/OzhZ477aMbs5WbXxxc9uTjJflNaqVavEQCyVzZ540M3z8ccfF//TzChtSBPMjDvVdTmjrYKTd34pnTvvvFPk1+7Rf+845UMulZff7QsncgasNo6Li+tRjyeeeELsKn/uuecKZ18FJ2vZk/zkfcgOnbw5WWfcKR80oCEHjKQ9guFE5Y7iFOi5efqMVo4QF/ou/bac6XVixl0OgtA9T+Y1YE7NdYgo/hyugk/hphn5+i6nuwvuQUPgzp2HiPzj4B49H51Jw8V3vfkFyqnTDSzZViN2pf9oUzX2d3je98zUZ+LCI7Nx7IQsRHRN1sq05H1ItqOq+hFyplHOFqvsG8n80T1v5syZ3eVHVd9Ixgn++Nl9zyVY+7ZOzLh781PVj6A8U72bNm1a96oxlTPu1r6ftc+pqh9BrzJ9J2bcOzo6xPXB8utrW06fSf3ofkH+Jzn/ycn931BzwCyVlwVAvlrjVhH9XeMdt25u0Jc4ieovLhsDf/FA8tUTv95+xy5OvfGwg5OMy5uhdcmorjoFyk81JwlVnKxxq/OnkpO1ke1LPe9PnPISDL9gy14w7VgwnILh19/6ZOXUGz9ybHw9P92Xds/agbfmN1BO5Hx57wjeW32SZdMO/QIpb774BaqTr3QDzWOw/PraRljza3dbLgctrGk999xz3f9T+QuWk1w1IWdsqCxad/+XnVE5uOrE/akv3z2I06B0YNLZIriofardARR8Cuz4BCj6HK7mGrg2/hvY+G9QCpGDx8Kddwww6mhEjpkPRKX2iRP9PW5ilgj1LQfw9vpy/Gt1CdaV1uPDTVUi0CZ2tKHdhdNGID8z6aD7kBP9PeuAmd06+Yr7+00V91xpS3/87L4nefdtVfcjfPFT1Y+QjqN0alVx8tX3c6JvFEzftr9teafFGVfByZufjFttawe+TXUAg8SUS7RMhJP8nLYla6evPVk7ve1psn5OciOH7P7778eFF17Y583iQsVP7v5Oobfd7+nz++67D6NHj+518y4d9aNOWWZmpu2dM1XcaEDgoYceEkEODjgCsk/GWGDmdcAPXgPuLgaufBeYdyeQPQ1wRQC12+Fa9QKi/nU58EQe8D8nAp88DOz8DDjgWeUQKFISonHZrFF468dz8cFt8/CjuaMxeFAMdje14U9LduKEBUtwzsIv8PLyYqzfvI3veTbA9HsQ3/P0tWWnQf2VAbNU3q4lCnaARuxouTUtX3Kqo8awB6ydvmDt9IUu2ll3BPe127SJZ6abpN9A0Nnf+fAh127fXqBoKbBzEbBzsWd23orIWGDkTGD0PGD0fGD4lD4fO3egoxOLtlTjtdWlWLS1Gh20tp5W6URH4LRDh+GiaTmYOTrdsUEY1TCt3g0ksHbm6NfS0mKrH8o1uWu5Dd3M5HJG0+AkP6dtydrpa0/WTm97mqxfsNyCPUveBO366hCqhGp7enMjp4iCE5yD5dbbMXMhH2yITwUmngH3hNM9/PZVwVX4OVC4BCj8DGis6IovAfArICYRGDUHyJ3rCUMPByJ77tJGR0bgpMlDRahpbMOba8rw2uoSbK9uEufEU8gdnIALp+WIo+WykuNspWhym2lKOxZO6TkJ023pNkg7XirftYSCdm40YQlFqPk5bUvWTl97snZ629Nk/Uy3pcnaOc2POoHp6elhrx0NqlCwDiRRXL4fDqCO9cMPP4z/+7//Q2vsEGDKD4Dz/gTcvhn48Wrg9Kc8z8zHpwP7m4DtHwIfPQi8cBzweC7w8oXA0meA0q+Ajp53ch6SFItr5uXh/VuOwm/PGIGLpo3AoJhIFNW24MkPtmL2o5/g6j+vwn83VIqZejvA9c5ecLvJthyIdY9n3Ls2Dxg3bhxMhZP8nLYla6evPVk7ve1psn7BcqOZ5p6WUNudXrCwM71wnMl1yp7E7cEHH4STMLneyZkxOr7XutlT9/PxFKb/iHrhQNUGz+x78Ree0FrvceQpEGhGfuRsIPcoYOQcz9L6qO+WRVopcfbcw3E2rYg5czLe+6ZCzMKvKtqDT7dUi5CRGIPzp47AxdNzkDckMWhupmunczsWjuk5CdNtGWmQduy4d90oaLt+2o1Y9yUUoebntC1ZO33tydrpbU+T9QuWmy8nlZz23pxXnbUL9vEAlTC5HQs2vWAHlZyA9+AP5cm6cd536g/t5jzsME+Y82Ogs8PjyBd94XlOvnipx5Hf8ZEnEKLiPJvg0fL6UbOBETOA2MSD7DkoNkosk6dQUNMkHPh/f1XWvaEdhRmj03HJ9BzxTHxctGVwYYC3mTrVBV3ScxKm29JtkHa8VL5rCUVZWZkRSyhCzc9pW7J2+tqTtdPbnibrZ7otTdbO9HYs2PTkkXJWR10OKoX6+XbrMn7qVNOZxwsWLAh8GX9EJDDscGD2jcD3XgHuKgSu+xw4+VFgwhlAwmCgvdXj0C95AvjrucBjI4Hnj4H7v/di77K/orOh4qCfHDMkEfeeOhHL7j0Oz192JI6fkCnOf19ZWIfbX1uH6Y98jAff2oCN5fUB8+R6NzDrng4w3ZadBmnHM+5dSyjy8/NhKpzk57QtWTt97cna6W1Pk/XrLzd5XJpT6fUVdqYXjjO5JrdjJtc7OTNWU1PTvx8RjnzXjDw583R40u7twK4vgeJlQPGXQP0uoHwNIsrXYBh9Z8mdQFoukDMTyJkB5MwCMiciOjKye0O7ivp9+NfqUvxjdQlK9+zDX5YVi3DYiBSxjP6sw4cjKS56wGpnel0wWT/TbRlpkHbsuHfdKJqbmzFo0CDtl1CEmp/TtmTt9LUna6e3PU3Wz3RbeqfXnx3hg308QCVMbsf6m15fB5WcgPfgD+Xx5ptvtq8MkZ2GjPOEI6/0vFdfKpx4d/GX6Ny1DBE1W+DaUwRQWP8PzzWxycCIaR5nPnsahmVPxc3Hj8VNx+bjy4Ja/H3VLny4sRLrS+tFeOTdzcJ5v2TGSBw+IuU7+pjcZoZzXbDrxAuT9QtX7XRNTyV4qbxlMxRTj7R3kp/TtmTt9LUna6e3PU3Wz3Rbmqyd6e2YidpZl/FTp5rOOpbH6ykbAEoZARx2IdynP4XiU1+Bm5bXX/o6MP9uIO8Yz+Z2bQ1AwafA4keBl88HnhgNPHckIt66AXP3vomFx0Rgxd3zcf/pEzFmyCC07O/Aq6tKcM7CL3Das0vxl2VFqN93wGjtBlJdMFk/7WzpdgO1BUDFOmfSCyOEdMZ9yZIlePLJJ/HVV1+hoqICb7zxBs4555zuz8nANDL8wgsvYO/evTjqqKPwhz/8AWPHjrU1HxEREcjLy4OpcJKf07Zk7fS1J2untz1N1s90W8r07NwRPpxmck1ux0yud7Lft3v3bsHTcXvmH+8JBDpOrnoTULICKF3lCXU7gdodnrDu7+Ky9Kh4/Gj4Efjh5KkoiBmP18oG489bI7C5ogEPvrURv35vM04/dDi+PzMHU0emGa1duNUFu0+8MLnuhZt2PtFY5TlJYudioPAzoL4EGD0fuOJtNemFKULquNOyhcMPPxxXX301zjvvvO98/sQTT+DZZ5/FSy+9hNGjR+OBBx7AySefjE2bNomdAe28UTQ2NiIpKUn7JRSh5ue0LVk7fe3J2ultT5P1M92WMr2nn3467HaEtwMmt2Mm1zt5vB7xc2qPBL/2jIz69jn5Gdd43muuBcq+8jjxZas958W31QO7lsG1axnoCdr7ANwzKAUVgybg8+aRWNSYjS+/HoN/f12C8VlJOPewTHxv9hikJIR2Q8CBUBfsPvHC5LoXbtoJtDZ4jnrc+ZnHUaeBNCsiY4DIaM/sey95Nkm7kDrup556qgj+jPzMM8/g/vvvx9ln0wmbwF/+8hdkZWXhzTffxCWXXGJbPiitPXv2IDExUXtBQ83PaVuydvrak7XT254m62e6LWV6lJYJSwcHUjtmcr0Le3sOGgyMO8kTCLRDNc2+kyNfvgYo/xqo/AYRbfXIbluBS7ACl3T557vdKdhQl4uNi0bhwcV5GDphJk6eOwtTRqYZo2OotfN+ll11eiYh1NoJtNSJQTCxeSS9lq8F3B2Wb7k8A2k0y06Ps4ycDcQkBJ+epgjbzekKCwtRWVmJE044ofu9lJQUzJw5E8uWLfPruLe1tYkg0dDQIF7b29tF8Ifs7GxxTIATRwV0dHSIQkSvTsFJfk6m5XR6pmvndHqsnb72dDI9rndqtLvzzju7l4/SQDnhtttu657t7OmeqUI/ygc9PkegvPVn1tXUdszp9Lju9YK0PE849OIug+0HqjfDVbEWrvI14pVmCjNQj2Mi1+EYdD2Tux1o2BaPb6LyEJl9BHInz0LsiMOBjLGemUTWrs91Yd++fd1OGcXvuusu29s3vufZh+xEN9zr/oHOkuVixYpr99bvXONOy4N79Dy4R8+He9RcICH94Av6oGGo2k277qMSLneYDLdTZbM+4/7ll1+KZ9rLy8sxbJg4rEPgoosuEtf+4x9du3564Re/+AUeeuih77z/wQcfiN0EfYFMQIalzVCcGImhQiOXbDjxHJeT/Jy2JWunrz1ZO73t6WR6JreZ4ZAe2be4uFh8NmrUKNttHKh+duXD5HaM20397BnR0YaEpkIMaihAQv02RNcXIqWlGDH49nlriU5XJPYNykFz4mi0JOWiOTEPzUmjcSAmrdflwAO13aSjvgjkJJWWlor4iBEjut8n6NaumKZdREcrEht2ILF+G5IatiBx71bEtX332MeWQTloSD0EDWmT0ZA6GW3xWdq3m/v27ROPedfX14uNN42dcQ8WtDzm9ttvP2jGPScnB9OmTfNrMDIwbY5HAwROVBBqXFatWoXp06cf1LCogpP8nLYla6evPVWl5W/WzuR6Z3p6rJ1a7ajOLFq0SHx2/vnn2/58cW/6yQ2jrPk466yzuvPR1/yY0I6FS3pc9+zCvG7tMkg7dwf2lG7E+tVLsXvHaoxo246Jrl1IRgsGNRWJgMpvv+1OGAz3kInAkAlwdwVkjP/uDOQA1I4eo/Weg9y5c2d3nPoBdrRvfM8L1FAdQO12uMq+8gR6hKR6E1wHLXsH3K5IuIceJpa8u0fOgjtnFmISBiMDEMGUdrO5udnW3w5bx33o0KHitaqq6qAZd/r/iCOO8Pu92NhYEbxBoywU/IFG4ZwEjfhQQ9pTnuyEk/yctiVrp689VaRFDbS8iXvXMZPrnenpsXbqtKP6QJuChUq/Rx555DvvWTfOC2aTPN3bsXBKj+ueGu3SxkzD/DHTxP1qVdEePLC8CGs3bMQYdxEmuHbhsOgSHBlbjoz9JXC11MJVvBSgYMWgTCBzAiCc+vGeMHgskJg5YLTrbelzfHy8be0b3/O8cGCfZ9O4ivVifwdUrgeqNgIHWr5rvMShwIhpQPaR4tU1fCpcsYlwCqMMaTfD1nGnXeTJef/kk0+6HXWaPV+xYgVuuOEGW9OiSk/HzaWmpjp2BImTcJKf07Zk7fS1p91p9Xb0i9N12/S6YHLdM92WJmsnN6hKSEjAzTffbOsJNL7A2rE9+1tWqIM/Y3S6CLVNk/HPr0rxyopd+H1dC9AKxGI/zh3RiItHNuCwmApE0rPANVuB+l1AczVQSGHJwYnFpiBy8BiMdafCdWCWx6Gn5+fTxwDRcUbVBadgcrvZKzeaDGkoA6q3ADWbPU46Oeu7t3ltINeF6EHA8ClA9tQuZ30akJL93fSiO/mep5Pj3tTUhB07dhy0Id3atWuRnp6OkSNHik0kfvWrX4lz2+VxcMOHDz/orHe7QM8gUIE1FU7yc9qWrJ2+9rQzrd6OfvnZz34Gp2F6XTC57pluy3DSTu4ATQNtss7+9Kc/7deS/b6e0TyQtfPejdtJ25loz/6kNTgxFtfPH4Nrj87D5zt24+Xlxfh4cxVeLR0sQkbieFwy/XJ874yRyI5vB2q2eRypmi0ep4ocqb27xDF1tERZzLtXfGpJwQUkZwPpo7sCba7XFafXuGTttLv77ruF80dLkukIacItt9zid18rU9pNJdxSUoC9JZ7yJMuUiG8F9jf6/mLCYICWvNOO70O7wuAxQETkgK3nxjruq1evxrHHHtv9v3w2/YorrsCf//xnsSMkVcRrr71WjMzMnTsX//3vf20fQacKT7sNmgon+TltS9ZOX3uydnrb02T9TLdluGnny1Ekp70vDqT3ihvqM9BzhvJ9Vc6obtqFm5Ouuz1VpRUR4cL8cUNEqKjfh1dXluDVVbtQ1dCG3y3agd8v3oHjJmThstmjcPThU8X13TjQCtTtREf1FpSuXYSchFZE1BUAu3d4zp1vKPWEos+/m3BCBpCWC6SOBFJzPK8pI7/9P2ZQ2Gon63ow7Ucw6WkLerSgqRKoLRDlBHUFiKjbiexaiu8E2vf5/l5EFDA437N6I+vQLkf9UCBpWJ83Tgx1WdEZIXXcjznmmB7PkKXlQ7/85S9FUAlaslFXVydm+k1b/uI0P6dtydrpa0+701Ixa9cfmF4XTK57ptvSRO28V9zQeb3WFTfBPCdvuna9PV4UCqdeZ3uqSmtYSjx+cuI4/Pi4fHy8qQp/XV6MLwtqxUw8hVGDE3DpzFG44MgRSBsU41kKnzUJ7sHjUNqQheyZMxFBz9lSf7u5BqgrBPYUel7JURPxnUBLLdCy2xPKVvufXU3JAVJGAMnDPU4bzeAnD0dn4lDUtcchPSs7JNpZy6uKsqtNu0mOOT1CQTPn9DhFfWlXvMSzGoN09+ecEyKiv3XQMz0bIopAs+iR9vSnTK7nqhG2z7g7DevNykQ4yc9pW7J2+trTzrR6m7Wz+yzNQGB6XTC57pluy3DUjuqqXQ62k50zHbTz5aQ/9dRT37nOicEOE+wZirSiIyNw6qHDRNhR3YSXVxTjX1+Vori2BY+8txlPfrgVZx42HFfMGYXDRvhYEkyzorRpHYWRM7/7eWuDx4En546CdPTI6dtbDLQ1dDn3tQCdT++FiK7dwN3xaR6HftAQIDHr2zRpI73ErvcoTjvi99MR9B5oUl1mQ9pu0sBLWyPQVAU0VgCNVZ6Z88bKrvcqPc+hk6Pe8e3qA59wRXpWUZAznp6HzrQ87I1IR2reVESk59rmoA/Ueq4S7Lh33eCtO9ebBif5OW1L1k5fe7J2etvTZP1Mt6WJ2nmvuKHNbJ1YcaOLdr72AAlH6GLPUKeVn5mIn585GXeePB5vry0Xs/Abyxvw769LRTg8JxWXzhiBjA7/q1q/A3q+ffgRnuAL+/Z+68w3lHsCOZDkLMr/D7TAtW8PQCEQxKYACWlAfLpnNj+h65X+j08F4lKA2GQgNsmTP4p3vUZEROpZVsgB39/sccJFaPAEsllLnQgRzTUYV7IdEQUuYB+9R5/t9r1buy+4IoCk4Z7HG2h1BK2SEPEcz74G5LRbnHMadPF/sKD9MLmeqwY77l1LKHbv3o2MjAztl1CEmp/TtmTt9LWnqrScGHUPBKbXBZPrnum2NFE77xU3SUlJ4ige1cu9TdMulI8XmWhP1WklxEThkhkjcfH0HKwp2Yu/LivGu+srsK5krwhJMS58r3EbLpudi5z0hP4lRo40BXqu2Qc6OzpQW16IwdGtiKCl2k0yVHmW6NNrU9crzdqDZpDrPWFPUZ+z445JRGdUPCJiB8EVnQCIEO95jen6PyrO46CKEONZBi7j8n1ycmnTPvGcdtez2jIun93u7EBnxwE0N9ZjUHwcImgn9c52z5nlnQeA9jbP0Wi0BJ32GOh+bRXOduf+FjTUlIoTAuJcB+By93yEHeVoiL8PafCCVi0kDfUEGafj1pKHeZxzeoyhD7PmJtc70+557LgzGAwGg8FgBLnRGw0S3HjjjcqPnlO1BwjxkMvmVWzqxVAP2hNq6sg0EX52+kT8Y1UJ/ra8GBX1rXj+80L8z9JCsZnd5bNHYW4+OS8uFZmAm5zKjDwg4pCeryWHl2bwyYEXM8p1Xa+138ZpBppmpFu7ZqTlKznDlNz+JkTubwJaauAEyN1L6sd3ux9ekIsgaMBArCboWlFAjxjQ6oOEweiMS0NxTSNGTpiCSHrMQKxESPc46T1sEMgwH+y4dy2hyMwUh2YYCSf5OW1L1k5fe7J2etvTZP1Mt6XJ2oVixU1jY6NjszjBamfHzv1OwOS64FRaGYmxuOnYfPxwzkj86Z0vsKIuDl/urOvezC4vY5Bw4M8/cgSS4qJDw4+OChs02BP6ivb9XY58vWeWW4RmzystQT/ovVbPjDg9891Br9Y4ve73LF0nb7p7s2z3d9+jHdUjozyv3SHS80rPi9PMPm0KGBXf9Ur/J6DdFQV3VDzaXdH42z/fQhticfUNtyJqUJr4PCY21ifFzvZ2lK9YgZzDZgK0saBimFzvTLvnsePetYSiqqoKWVlZ2i+hCDU/p23J2ulrT9ZOb3uarJ/ptjRZOyf4eW/0lpycjLa2tu7PVTrDKriFy+NFptcFJ9OiMvrE448hLy8P/3vZ+Shr7BAz8LSZ3c7dzfjFO5vw5AdbhfN++exc8cy8NvyiYoCoDHTGp3vSyw7fsvLIQw99+4/L84z1k3/8a/dbXO/CV7twBTvuXQjlM12m8XPalqydvvZk7fS2p8n6mW5Lk7VTzc97ozfqFC5YsMCxznh/uIWTkz4Q60Ko6h055r84azJ+evJ4vP51KV76sggFNc34y7JiEWj5/BVzcnHchExE9mMZvcnahSI9J2G6LaMN0Y4d964lFLRhgalwkp/TtmTt9LUna6e3PU3Wz3RbmqxdKPg1NTU5lhZrp689nUjL17F/FKeNGgmJsTFihv2yWaPwxY5avLSsSCyfX7pjtwgj0uLFMvqLp41ESkLfHB3T27Fg0utpb4lwgg621Ck9lWDHvWu0vKKiQhwVoPsSilDzc9qWrJ2+9mTt9LanyfqZbkuTtXOCn3dnPDU1FVdffTVi/TyvaidYO33t6URa1tUgtGEd4ZlnnoG761ltudqCPps7NkOEkroWsYz+1VUlKN2zD79+bwue/mg7zp2ajSvn5GJcVmBbspnejgWTni57S+hgS53SUwl23LsQHx8Pk+EkP6dtydrpa0/WTm97mqyf6bY0WTvV/Lw73TTL6WRnnLULbvd/OejirdNAv+fRMXH3njYRt50wDm+vK8OLXxRhS2UjXlmxS4Sj8gfjyjmjA1pGb3o7Fo762QXTbRlviHYDxnGn0RbrK424WOM0Ym69lkYjKfiLd3R0iO/5i8vfscZpqRKNetI1BBmX71Og6/3F/eU9kDjxk6OvKjjJOF2fkpLSIw+7OMm8p6enizj9pgpO3nE5cq2Sk5WHNz9VnOTvUFlRzUmWxbS0NOWcvDXrrS3oDydrnNLqiZ8dnLzj3u2Y3ZysPHzxU8GJrrVqJn9fBScZp0DtmOSpgpN3fmU9D4Rff+9Psp228lPBqS/62XnP9b4PqeBkRUtLi3JO1rJH9U6mZTcnX3HZfqrkZOXhzc8unXy1jQTZjqnkJPNL9dzaptjdj6CBCYq3t7d377tw6623Cqelt35EfEwkLpiajQuPHIEVhXX485dF+GhTlVhSTyEnPR6XzxolrklLjPsOP9mO+eNn9z1X3vNkf0J1P8IXv0DzHhUVJVY7WMtkT/VJpid9BNX9CGvfT3XfSOadbElx7zJpFye3JU7oD7++tntW/WTcLui9XqAHLFy4EJMmTcL06dPF/9XV1eJ19+7dIhBoh8G6ujph/A0bNog4oaysDPX19SJeUlIijnohFBUVobm5WcQLCwvR2uo5S7KgoKD7uaLt27eLBpN+k+KyAaU4ga6j7xLo+zJOv0u/T6D0KF0C5YPyQ9i7d69Y6kGgvFL+/XEi0LX0HcrD+vXrsWfPHmWc6HrZgVmzZo24RiUnqRNxot8tLi5WxsmqE/GTv6eKk7XsNTQ0iFdKXxUnq06U3rp168R3VXGSOlH6O3bsEGmp5GTViRrR8vJyZZysZW/nzp0iUJ5VcpI60e9s3bq1m58KTladSDv6X/JQwUnqVFlZKeJU31VykjpR/levXt0dV8HJWvaIH11H9ylVnKxljwLxk3EVnKw61dbWinhNTY0yTlad6DPiJ+MqOFGgmdtrrrkGF154oeiYq+QkdZLtJdU/FZy8yx6VTUpbJSdr2aP3ZdvZX070HgV6pIF2/k9MTBRx+g0qi5LHtm3bRLoq+0b0feJEadCeCKr6RlQmidu+ffvE+7QShPJB79O9IRBOdJ+ckZuGn0xPxOI75uOaublIjIlASd0+PPLeFsx67FPc/+Y32FRae1DZo7i132IXJ39lj+y9du3a7j0mVPcjqJ9JadN9SGXfiNKkviaB0nSib0ScyE+g31HdN6K8ED/6nNox1X0jAuWV/Dz6TdV9I6tOFJftp11wue0eCggzUANCI+9UKGm0xdeICo2Q0Od0HY3eqB5Vlp2KGTNmiM9Vz7hLftbRJlWjyrLS0wg2QRUna5w0TkpK6s6vipFyGaeb/ooVKzBr1qzuz1SOKvvip3JU2Z9+KkZgKb/ETdZLlSPl8rPly5eLekedGNWjytRYUwPvj58dnKxx+m3Sjjqosi7azcmqjS9+dnOS+aK0Vq1aJQZiyUFSOVIu8y7bTHm93ZyseaT3yZZUz+VMkt2crHFKj8qKlZ/KGfdA9LPzniv5yXZMBScZt7ZjsjulgpM1TtyorJAtVc+4U39l5cqV4p4n86dydtoXv2A5PWQ9issHaAbUWz+VM+50PTmZ1EbLPKrqG1Ff5fHHHxfHwZ133nlISEjoF6fm1gN455tK/PmLQmyt+nYzxnljM3D13NE4Op82/vK0Y/742X3PtbbTsi6q7EfQ+978VPUjKM9U76ZNmyb6K6pn3K19P+92zC5O1rJHr1TvaDDNe0WBXZzcljj9NjnfwfLra7tHn0n9yKGnMkrpy7LTHwwYx90ug9kB6sSQ8zdz5kxxY2LoA9ZOX7B2+oK10xusn77QWbtAHHeToUI7chmWFdTi/74owidbqiA9iDFDBuHKo0bj/KnZSIjRq5yEI3SudwwcpB+tLrDTDzV2qXxfQCMjtBxFjrCYBif5OW1L1k5fe7J2etvTZP1Mt6XJ2pnejrF2gYOe96ZAx29JUFy+77Q9TdCOZhTn5Gfgf66YhsU/PQZXHZWLxNgocSb8A29uwIxffYRfv7sJZXs9S/VVguse23Ig1T0Jdty7GiK5OYmJcJKf07Zk7fS1J2untz1N1s90W5qsnentGGsXOGiJMQXrmdly93+5s7zJZUU1Rg0ehJ+fORnL7j0OD54xCaPSE9C0vxPPf16IeU8swk0vf42vij17K6kA1z225UCse7z+okvQcFlGrzs/p23J2ulrT9ZOb3uarJ/ptjRZO9PbMdZOX3uaql1SXLR4zv2KObn4dEs1XvyiEF8W1OLdbypEOCInFT+cOxqnHjIUUZH2zRdy3bMPptvSZVDd4xn3riUUcvdnE+EkP6dtydrpa0/WTm97mqyf6bY0WTvT2zHWru+g2XV6np2C9xnuJpcVp+GCG2PimvG3H87Ae7ccLY6Vi4mMwNqSvbj572vELPwfPytAfcsBW9LjumcfTLdlp0F1jx33rpGYzMxMI5ZQhJqf07Zk7fS1J2untz1N1s90W5qsnentGGunrz0HknaThifjyQsPxxf3HIdbjx+LwYNiUF7fisfe34LZj32CB9/agMLdzbal5wRM1s90W7oM0o6XyncJSkcSmAon+TltS9ZOX3uydnrb02T9TLelydqZ3o6xdvracyBqNyQpFj85cRxuOGYM3l5Xjv9bWogtlY34y7Ji/HV5MU6YmIUfzR2NGaPT++xUcd1Tq51KmJ6eSvCMOyDO3NuxY4d4NRFO8nPalqydvvZk7fS2p8n6mW5Lk7UzvR1j7fS150DWLi46EhdNy8H7tx6NV340E8dNyBRHyX20qQoXP78cZy/8Am+tLcOBjsCXMnPdc0Y7FTA9PZVgx52MEBGB7Oxs8WoinOTntC1ZO33tydrpbU+T9TPdliZrZ3o7xtrpa0/W7tvj5P7vyun4+Pb5+P7MkYiNisD60nrc+upa8Rz8n+g5+H29PwfPdU/fsml6eiqhPwMbQA1JfHy8Ec8+hJqf07Zk7fS1J2untz1N1s90W5qsnentGGunrz1Zu4ORn5mIX597KJbdezzuOHEcMhJjUVHfikff34I5j36Ch97ZiJK6lrCxp8n6mW5Ll0HasePetYRi27ZtRiyhCDU/p23J2ulrT9ZOb3uarJ/ptjRZO9PbMdZOX3uydr6RPigGNx8/FkvvPhZPXHAYxmcloXl/B178ogjzn1yEm175WuxMH2p7mqyf6bbsMEg73pyuawnFqFGjjFhCEWp+TtuStdPXnqyd3vY0WT/TbWmydqa3Y6ydvvZk7XqGfA6ejpH7fPtuvPD5TvH67voKEWbkpuOaeXk4fkImIiJcXPc0Lpump6cS7Lh3LaGIjY2FqXCSn9O2ZO30tSdrp7c9TdbPdFuarJ3p7Rhrp689WbvA7TRv3BARNlc04H8+L8Tb68qwsqhOhLyMQfjh0aNx/tQRiOO6p2XZND09ldB/6MEG0NKJLVu2GLGEItT8nLYla6evPVk7ve1psn6m29Jk7Uxvx1g7fe3J2vUdE4cl46mLDsfSu48TR8olx0Vh5+5m/OyNDeI5+Ptf/RLVDfvgBEzWz/R2rMMg7QaM497Z2dn96h2npROjR48+6Fo3nVPRQ5zE7ylOwTtO6Cku8+Uv7ivvgcQlP7kpg0pOlEZubq5IUyUnGaf0xowZ0/27Tugkf0MVJysPX/xUlj1Kj8qKt352cpJxQl5enkhLp/rUEydrnF574mc3J1/tmN2crDx88dNRJ1/aECdqx6g+OMGJIOu5Kk7WuGynrfx01MlfffK+D6nkRJBtpkpOMk7pUL2z1kPVOvXGo7+crDx88VNZ9giyHVPFScYpUD2n8ulUfZLpquJkjRN64tcfTkMSY3DXyePFRnYPnjERI9LiUddyAH9buwfznlyM+9/8BgXVDbZzsvLwxS+c2r3+tOXWvp8TnGTf1lo+VfYjCP3h11+d7ISxjvvChQsxadIkTJ8+XfxfXV0tXnfv3i0CoaqqCnV1dd2f793r2fyirKwM9fX1Il5SUoLGxkYRLyoqQnNzs4gXFhaitbVVxAsKCrB//34R3759O9rb24WgFKdX+p/iBLqOvkug78s4/S79PoHSo3QJlA/KD4HyV1FRIeKUb8p/T5zoWsmpsrJSKSe6XnKSeVfNSepEFVE1J6lTS0tL9++p5GTVifgVFxcr4+StU3l5uXJOBOIkeajmJHWiRlTyU8HJWvYoLnmo5GTVid5Xycmq086dO0W+VXOi/FH7RdizZ49STladJD9VnKw60f2H6rlqTladiJ9KTladamtrRbympkYpJ6tOxE8lJ6mTte+gmpPUycpPdT+C6p6s56r7RlInikseTvQjmpqalHOi79NvUj13qm9EaGtr6+ansm9Ev0v3dOKnktOg2CgcnxOJt687Es99bwrGZ8Sh9UAn/rZ8F05Y8Dmu+8sqrNm1R9k9l/ip7htRmtTX9O4nqe5HyPus6r6RLHtkS2rHnOgb7d27t9sPVN03supEcdl+2gWX2+6hgDBDQ0MDUlJSRIcvNTW1ewRFjroQyAS022B+fj6io6PF+zQaJEfVfMXlyLC/OIGut8YjIyNFWiTo6tWrMWPGDPG5fJ+CnCHwFfeV90Dikt/YsWMRFRWlhJOMUwGltMaPH9+dfxWcrKNmO3bsECN3xE0FJ2v8wIEDWLFiBWbNmtX9md2crNr44mc3J2veZSM5bty4g/Szk5OMky2JG6Ulr1XBScbps+XLl4t6FxMTo4STNS5vMv742cHJGvfVjtnNyaqNL352c5L5onK5atUqMRBL9UAVJxmnz7du3Sq4UT5VcLLmkdIlW1I9p99Qwckap1cqK1Z+dnOyxgPRz857ruQn70MqOMm4tR2Tq9pUcJJxAnGjskLtmApO1jjV85UrV4p7nsyfqr6RP34q+xHe+qnqG1Gc0iJHhdpoulZl30jmj+55M2fO/E7fVkU/guo5tWP++Nl9z5XtdF1UBv73iyIs2loDiem5abhWbGSXBbf7YB7BtuW++KnqR5AOVO+mTZsm6oHKvpF338+7HVPRj6B0qd7Rahcqmyr7RhG9tNMq+hH0mdSPHHryP8n5T05ORn8xYBz3ngwmC4A0umpQBSHnjxpT6sSohpP8nLYla6evPVk7ve3pZHomt5kDIT2T9WPt2J7hWlZMrne+0tta2Yjnl+wUG9kd6Oha2j5kEK6bNwZnTxmO2KhIW9NTiYGmnWnptVv0o9UTvfmhfYGxS+X7Cjm6Yiqc5Oe0LVk7fe3J2ultT5P1M92WJmtnejvG2ulrT9ZOnT3HD00SG9l9ftdxuG5eHpJio1BQ04y7/r0e855YhD99VoDG1gO2pWcaTG/HOg3Rjh33LjFp+YspooaSn9O2ZO30tSdrp7c9TdbPdFuarJ3p7Rhrp689WTtn7Dk0JQ73njYRX957HO47bQKykmNR1dCGR9/fgjmPforH3t+C6oZW29IzAaa3Y50GacdL5UMAp5fAMOwDa6cvWDt9wdrpDdZPX7B2+oK186CtvQNvrS0XM+40A0+IiYzAeVOzcc28PIwZkohwA2unN9p5qbz6Zx9o501TH/d3kp/TtmTt9LUna6e3PU3Wz3Rbmqyd6e0Ya6evPVm70NiTnm2/aFoOPvrJfLxw+TQcOSoN+zs68eqqEpyw4DNc99fVWFuy17b0dITp7ZjbIO14qXzXEgo6csGEJRSh5ue0LVk7fe3J2ultT5P1M92WJmtnejvG2ulrT9YutPaMiHDhxElZ+PcNc/Cv62fjhImZID/ug41VOGfhF/je88uxZFuNX+fOZP1Mb8c6DdKOl8qHALwERl+wdvqCtdMXrJ3eYP30BWunL1i73rG9qhF//Gwn3lpbhvZOj8M+eXgybjhmDE49ZBgiI9TvQO4LrJ3eaOel8mpBo2v79u0zYglFqPk5bUvWTl97snZ629Nk/Uy3pcnamd6OsXb62pO1Cz97js3y7ET/2V3H4uqjRiM+OhIbyxvw41fW4LinFuPlFcVoPdBhW3rhCtPbMbdB2vFS+a4lFGVlZUYsoQg1P6dtydrpa0/WTm97mqyf6bY0WTvT2zHWTl97snbha8/s1Hg8eOYkfHnPcbjthLFITYhGcW0LfvbGBhz9xCL88bMC1LfsN7bdNL0d6zTonsdL5UMAXgKjL1g7fcHa6QvWTm+wfvqCtfOP/fv349FHHxXxe++9FzExMQgnsHbBo2V/O/6xqgQvLNmJ8nrP0XHJcVG4Yk4urpyTi8GJsVAJ1k5vtPNSebWgpRNNTU1GLKEINT+nbcna6WtP1k5ve5qsn+m2NFk709sx1k5fe7J2+tgzISYKVx01Wiyh/82Fh2PMkEFoaG3Hc5/uwFGPf4pfvL0R5Xv3wRTo1o7t378fDz30kAgUV51eOIGXyncJWl1dbYSgoebntC1ZO33tydrpbU+T9TPdliZrZ3o7xtqF3p7kKFA4cOBA93sUl+/bmZZOMLEuREdG4IIjR4ij5H7//SkYPyQOrQc68ecvizDviUW485/rUFDTBN1honam1r2oUGcgHBAREYG8vDyYCif5OW1L1k5fe7J2etvTZP1Mt6XJ2pnejrF2obenXB5vxW9+85vu+M9//nPb0tIJJtcFOkrutMOG49RDh+GLHbX4/eId+LKgFv/8qhT/+roUpx4yFDcek49DslOgI3TRbn/XwJj3oJmEv8dVTKp77Lh3jcQ0NjYiKSkJLldojn4whZ/TtmTt9LUna6e3PU3Wz3Rbmqyd6e0Ya6evPVk7M9I7Kn8w5o7NwJpde/D7xQX4aFMV3vumUoRjxg/BTcfmY3puOnSCLu3Yo0EOmplU99hx7xJ0z549SExM1F7QUPNz2pasnb72ZO30tqfJ+pluS5O1M70dY+1Cb0/aiE7O9Emn4ac//Smio6NtT0snmF4XvNObMjINL1w+DduqGvH7RTvw9rpyLN5aI8KM0enCgZ83NkMLrUNtS9PSU4kB47jLIwDkKy2bsMZzcnIOupaEpeAv3tHRIb7nLy5/xxqPjIwUhYeuIci4fJ8CXe8v7i/vgcSJnyysKjjJOF0/YsSIHnnYxUnmfdSoUSJOv6mCk3dcPiOjkpOVhzc/VZzk71BZUc1JlsWRI0cq5+StWW9tQX84WeOUVk/87ODkHfdux+zmZOXhi58KTnStVTP5+yo4yTgFasckTxWcvPMr63kg/Pp7f5LttJWfCk590c/Oe673fUgFJxknyDZTJSdr2aN6J9NSwck7LttPlZysPLz5qexHWO9DgXIiB13GJehz6bhb+3Xe2lA9t7YpKvsRVvt566finivbMX/87L7nynue5Kq6H+GLH73mDxmEZy6ZgluPz8fzSwrx76/LsLKwDisLV+LQ7BTcMD8PJ03KQlRUZMBthExPliXV/Qhr309130jmnWxJce++bU+c7rrrLhGnJfMLFiwQ791xxx2IiorqsT711E7byUnGrfrJuF0wdnO6hQsXYtKkSZg+fbr4nzYlIOzevVsEQlVVFerq6oRRd+zYIUZjCHTWX319vYiXlJSI5RWEoqIiNDc3i3hhYSFaWz1HRBQUFHQ/d7F9+3ZxDAAJSnF6pf8pTqDr6LsE+r6M0+/S7xMoPUqXQPmg/BD27t2LiooKEad8U/79cSLQtfQd4kfpU1wVJ7qesG/fPmzatEmkqZKT1IniFHbt2qWMk1WnlpaW7t9Txcla9hoaGsRnKjlZdaL0tm7dKvRTxcmqU2VlpUhLJSerTtSIlpeXK+Vk1Ym+T/xUcpI6UTr0nuSnipNVp5qamu72RQUnqROVEwK10ao5UV6J0zfffCNm1FRx8i579B7ZUxUna9mjekD86FUlJ6lTbW2tiBM/VZysOpFuxI90VMXJqhPdfygtlZykTpQO2VE1J6kT1T1KWyUna9kjfpS+E30jQmlpqQiy/ewLp507d3Z31ikeSBtB6dLu1qr7RlKntrY2kZ7dOvkre5QH6keo7huR3UizzZs3d/NT3Y+gei77nL44JbnacMucIVhy17G4ZGoWYqMi8E1ZPW58ZQ1OXLAYb6wpRUlZeUBtBPU1CcXFxY70jShPsn1xom9EvgJ9p6+cSkpKxHPsdO/KyMgQ71N7T/0eet9ffaK+A/l5xM+JvpHkRHHZftqFAXOOO4mWmprqc0SFQA338OHDxaiN6lFlEnT16tWYMWOG+Fz1jLssbDQDQWmpHCmna8mWchRU5Ui5HJWkCjts2LDuUUmVo8rUQKxYsQKzZs3q/kzlqLIvfipHlf3pp2IElhoz4kbl0jrqq2pUmT5bvny5qHfUwKseVaayQo2/P352cLLGfbVjdnOyauOLn92cZL6orKxatUoMxMqRdVUj5TJ92WbK37GbkzWPFMiWVM/pPRWcrHG6lsqKlZ/KGfdA9LPzniv5yXZMBScZt7ZjEio4yTh9TtyorNAMrwpO1jj1V1auXCnueTJ/KmfcffFT2Y/w1k9V34jilBYNhFAbLWeMVfWNZP7onjdz5kxhS5V9I4rTd6kd88fP7nuutZ2W/U+V/Qhf/HrKb21TG15atkvsQN/U5nHeRqUn4Ppj8nD+1BxERfgubxSntKjeTZs2TfRXVPaNvPt+3u2Yin4Egerd0KFDxT2hr5za2trw+OOPi/fuueceUb57qk89tdN2cbJqQ59J/cihJ/+TnP/k5GT0FwPGcbfLYHaAChA5f9SYUoFl6APWTl+wdvqCtdMbrJ++YO30BWsXHmhoPYC/LivG/3y+E3taPDugD0+Jw/XHjMFF03IQFx35ne+wdnqj3eLn0eoJO/1QY5fK9wU0MkLLI+QIi2lwkp/TtmTt9LUna6e3PU3Wz3Rbmqyd6e0Ya6evPVm7gZlecly02Kjui3uOw/2nT8SQpFiU17fiwbc24ugnFuGFJTvR3DUjHyroYstgYVLdY8e9C/S8hclwkp/TtmTt9LUna6e3PU3Wz3Rbmqyd6e0Ya6evPVm7gZteQkwUfnR0Hj6/61g8fPZkZKfGo6axDY+8txlzH/8Uv/t0u5idDxV0suVArnu8TrvrGYbs7GyYCif5OW1L1k5fe7J2etvTZP1Mt6XJ2pnejrF2+tqTtdPbnnalR0vjL5udi4unj8Sba8rw+8U7UFTbgt98uA3PL9mJq44ajctnffusuRPQ1ZYDse7xjHvXEgraVdCEJRSh5ue0LVk7fe3J2ultT5P1M92WJmtnejvG2ulrT9ZOb3vanV5MVAQump6Dj2+fj99ecgTyMxPR0NqO336yHfN+8xle27wPdc2e3clVQ3dbDqS6x457F2iHZJPhJD+nbcna6WtP1k5ve5qsn+m2NFk709sx1k5fe7J2ettTRXpRkRE4+4hsfHjbPCz8/lRMGJqE5rYOvLWjDcc8tQS/fm+zWFKvGibYciDUPV4q37WEgo4eMRVO8nPalqydvvZk7fS2p8n6mW5Lk7UzvR1j7fS1J2untz1VpxcR4cLphw3DqYcMxQcbyvH4u9+gqL5DLJ9/6csifH/mSFw/fwyykuMUpG2WLU2uezzj3rWEorq62oglFKHm57QtWTt97cna6W1Pk/Uz3ZYma2d6O8ba6WtP1k5vezqVHjnwJ07Kwq+OTsT/XDYVR+Skoq29Ey9+USR2of/5WxtQUW/vRmum2tLEuseOO4PBYDAYDAaDwWCECVwuF44ZPwRv3DgHf/3hDEzPTcP+9k68tKwY859YjAfe3IDyvWbslM4IHLxUvmsJRWZmJkyFk/yctiVrp689WTu97Wmyfqbb0mTtTG/HWDt97cna6W3PUOlHDvzRY4dgbn4GlhXU4plPtmNlYR3+urwYr67ahQun5eDGY8ZgRFpC0GmYbssIg+55POPetYSioqLCiCUUoebntC1ZO33tydrpbU+T9TPdliZrZ3o7xtrpa0/WTm97hlo/cuDn5Gfgtetm4+/XzMKsvHQc6HDjlRW7cOxvFuPe19ejpK4lqN823ZadBt3zwtpx7+jowAMPPIDRo0cjPj4eY8aMwcMPPwy32217WtHR0TAZTvJz2pasnb72ZO30tqfJ+pluS5O1M70dY+30tSdrp7c9w0W/2WMG49VrZ+Mf187CUfmDhQP/95Ul/XLgTbdldJhoZ/RS+ccffxx/+MMf8NJLL2Hy5MlYvXo1rrrqKqSkpOCWW26xdQlFRkYGTIWT/Jy2JWunrz1ZO73tabJ+ptvSZO1Mb8dYO33tydrpbc9w1G9m3mC8nDcYq4vqxPnvn2/fLRz4f64uxYXTRuDGY/KRk977EnrTbRkRhtoZOeP+5Zdf4uyzz8bpp5+O3NxcXHDBBTjppJOwcuVKW9OhpRNlZWVGLKEINT+nbcna6WtP1k5ve5qsn+m2NFk709sx1k5fe7J2etsznPWblpuOv/5wJv51/WwcPTYD7Z3WGfhvULqnZUDbsjOMtTNqxn3OnDl4/vnnsW3bNowbNw7r1q3D0qVLsWDBAr/faWtrE0GioaFBvLa3t4vgCyRkTEyM+JxGZZx4BICW+9OrE3CSn9O2ZO30tSdrp7c9nUzP5DZzIKRnsn6sHdszXMuKyfXO9PSC1e6IEcl48Yoj8VXxHjz7aQG+KKjF31fuwr++KsH5U7Jxw/w8ZKfFDyhbhrru+fM9g4XLreKBcRsNfd999+GJJ55AZGSkMMAjjzyCe++91+93fvGLX+Chhx76zvsffPABBg0ahHDh1djYiKSkJEcKEMM+sHb6grXTF6yd3mD99AVrpy9YO31hl3Zba9vx+rZWbNjtcR4jXcD8kTE4Z2wcBsez/+GEfvv27cPJJ5+M+vp6JCcnm+24v/rqq7jzzjvx5JNPimfc165di9tuu03MuF9xxRUBz7jn5OSgtrbWr8HkboPDhg1zbCRm1apVmD59uhiQUA0n+TltS9ZOX3uydnrb08n0TG4zB0J6JuvH2rE9w7WsmFzvTE/Pbu1WF+3Bc4s8M/CE6EgXLp42AtfPz8PQ5DijbRnqutfc3IzBgwfb5riH9VJ5ctrvueceXHLJJeL/Qw89FMXFxXj00Uf9Ou6xsbEieCMqKkoEX6CxC9rwjnYcpOMWnAClQ5XRX57shJP8nLYla6evPVk7ve3pdHqmtpkDIT2T9WPt2J7hWlZMrncDIT07tZuVP0QEOv/96Y+2YdnOWvxtRQle+6oM358xUiyhN9mWboPqXlivk2hpafnOyAgZwe7NBci4qampjonpNJzk57QtWTt97cna6W1Pk/Uz3ZYma2d6O8ba6WtP1k5ve5qg34zR6fj7tbPwyjUzMSM3HfvbO/HnL4sw78nFeG5pOXY37XckH6ydoY77mWeeKZ5pf/fdd1FUVIQ33nhDLJM/99xzbU2HBgJoJt+E3QZDzc9pW7J2+tqTtdPbnibrZ7otTdbO9HaMtdPXnqyd3vY0Sb85YzLwj+tm4eUfzcSRo9LQ1t6J/11aiKOf+BS/fm8zapu+feRYBVg7Q5fKP/fcc3jggQdw4403orq6GsOHD8d1112HBx980PaRn7S0NK1H0cKFn9O2ZO30tSdrp7c9TdbPdFuarJ3p7Rhrp689WTu97WmafsTjqPwMzBkzGEu21eA3H2zBN+WNeH7JTvxteTGuOioX1xydh9SEGCVps3YGOu60G98zzzwjgkpQAbJjw4BwhZP8nLYla6evPVk7ve1psn6m29Jk7Uxvx1g7fe3J2ultT1P1I17zx2di3rghWLy1Bgs+2oZvyuqxcFEB/vJlMX549GhcPXc0kuOibU2TtTNwqbxToCUbO3fuNGL5S6j5OW1L1k5fe7J2etvTZP1Mt6XJ2pnejrF2+tqTtdPbnibrR5wKCwsxf1wG3v7xUfjTZUdiwtAkNLa145mPt+Poxxdh4aIdaG6z50xy1i54sOPeNfKTmZlpzPKXUPJz2pasnb72ZO30tqfJ+pluS5O1M70dY+30tSdrp7c9TdbPyo3CyZOH4r1bjsbvvj8FY4YMQv2+A3jyg62Y98QivLBkJ/bt77AtPSfgMkg7dty7BE1MTDRC0FDzc9qWrJ2+9mTt9LanyfqZbkuTtTO9HWPt9LUna6e3PU3Wzxe3iAgXzjhsOD78yXw8ffHhyB2cgNrm/Xjkvc2Y/+Qi/GVZEdrag3PgWbvgwY47gI6ODuzYsUO8mggn+TltS9ZOX3uydnrb02T9TLelydqZ3o6xdvrak7XT254m69cTt8gIF86dMgIf3z4fT5x/GLJT41Hd2IYH39qI437zGV5bVYL2jr49PsDaBQ923MWoUgSys7O/c2a8KXCSn9O2ZO30tSdrp7c9TdbPdFuarJ3p7Rhrp689WTu97WmyfoFwi4qMwEXTc/DpT+fj4bMnIzMpFmV79+Guf6/HiU8vwVtry9DZ6bYtPTsRYZB2+jOwAbRkIz4+3sjlL07zc9qWrJ2+9mTt9LanyfqZbkuTtTO9HWPt9LUna6e3PU3Wry/cYqMicdnsXCy561j87LSJSB8Ug8Ldzbj11bU49bef44ONlXC7e3bgWbvgwY5715KNbdu2Gbn8xWl+TtuStdPXnqyd3vY0WT/TbWmydqa3Y6ydvvZk7fS2p8n6BcMtLjoS18zLEw78T08ah6S4KGytasR1f/0KZy/8QpwN78+BZ+2CBzvuXUsoRo0aZcQSilDzc9qWrJ2+9mTt9LanyfqZbkuTtTO9HWPt9LUna6e3PU3Wrz/cEmOj8OPjxmLpXcfhx8fmIyEmEutL63H5/63EJc8vx+qiOlvTG+ja6c/ABtCSjdjYWCOXvzjNz2lbsnb62pO109ueJutnui1N1s70doy109eerJ3e9jRZPzu4pSRE46cnjxcz8D+cOxoxURFYUViHC/64DFe9uBIbyuptTW+gaseOe9eSjS1bthi5/MVpfk7bkrXT156snd72NFk/021psnamt2Osnb72ZO30tqfJ+tnJLSMxFg+cMQmf3XkMvjdjpNiVftHWGpzx3FLc9MrXKKhpYu36gQHjuHd2dna/esdp6cTo0aMPulY+l+EvToW7pzgF7zihp7jMl7+4r7wHEpf85EiTSk6URm5urkhTJScZp/TGjBnT/btO6CR/QxUnKw9f/FSWPUqPyoq3fnZysj7zlJeXJ9LSqT71xMkap9ee+NnNyVc7ZjcnKw9f/HTUyZc2xInaMaoPTnAiyHquipM1LttpKz8ddfJXn7zvQyo5EWSbqZKTjFM6VO+s9VC1Tr3x6C8nKw9f/FSWPYJsx1RxknEKVM+pfDpVn2S6qjhZ44Se+NndRnj3bVX3I3zxC6d2rz9tubXvZxenrKRY/PrcQ/DJ7fNx1uHDQDK9u74CJy74DHe//g3iBg8/qHyq7EcQ+sOvvzrZCWMd94ULF2LSpEmYPn26+L+6ulq87t69WwRCVVUV6urquj/fu3eviJeVlaG+3rOko6SkBI2NjSJeVFSE5uZmES8sLERra6uIFxQUYP/+/SK+fft2tLe3C0EpTq/0P8UJdB19l0Dfl3H6Xfp9AqVH6RIoH5QfAuWvoqJCxCnflP+eONG1klNlZaVSTnS95CTzrpqT1IkqompOUqeWlpbu31PJyaoT8SsuLlbGyVun8vJy5ZwIxEnyUM1J6kSNqOSngpO17FFc8lDJyaoTva+Sk1WnnTt3inyr5kT5o/aLsGfPHqWcrDpJfqo4WXWi+w/Vc9WcrDoRP5WcrDrV1taKeE1NjVJOVp2In0pOUidr30E1J6mTlZ/qfgTVPVnPVfeNpE4Ulzyc6Ec0NTUp50Tfp9+keu5U34jQ1tbWzU9l34h+l+7pxM+pvhGhtLTUsb4RpUv8VHOiNKmv6d1PUt2PkPdZuznlZgzCbTNT8a8fHYkTJmaBToz711dlOOmZpbjzlRWoqGtypB9R3eUHqu4bWXWiuGw/7YLLbfdQQJihoaEBKSkposOXmpraPYIiR10IZALaTTE/Px/R0dHifRp9kqNqvuJyZNhfnEDXW+ORkZEiLRJ09erVmDFjhvhcvi9HEP3FfeU9kLjkN3bsWERFRSnhJONUQCmt8ePHd+dfBSfrqNmOHTvEKChxU8HJGj9w4ABWrFiBWbNmdX9mNyerNr742c3JmnfZSI4bN+4g/ezkJONkS+JGaclrVXCScfps+fLlot7FxMQo4WSNy5uMP352cLLGfbVjdnOyauOLn92cZL6oXK5atUoMxFI9UMVJxunzrVu3Cm6UTxWcrHmkdMmWVM/pN1RwssbplcqKlZ/dnKzxQPSz854r+cn7kApOMm5tx+TMnwpOMk4gblRWqB1Twckap3q+cuVKcc+T+VPVN/LHT2U/wls/VX0jilNaNOBCbTRdq7JvJPNH97yZM2d+p2+roh9B9ZzaMX/87L7n0qu1b6uyb+SPn6p+BOWZ6t20adNEPVDZN/Lu+3m3Y3b3I1YX1uKpj7Zh2U6PkzwoJlI8E3/1UaOQkhCrpB9xoId2WkU/gj6T+pFDT/4nOf/JycnoLwaM496TwWQBkEZXDaog5PxRY0qNjWo4yc9pW7J2+tqTtdPbnk6mZ3KbORDSM1k/1o7tGa5lxeR6Z3p6A0G7z7dV4zcfbsf6rk3r0hKiceMx+bhs9ihx1Jwpda+lpaVXP7QvMHapfF8hR1dMhZP8nLYla6evPVk7ve1psn6m29Jk7Uxvx1g7fe3J2ultT5P1c5rb7Lx0vHnTHPzhB1MxZsgg7Gk5gEfe24xjnlyMV1fuQnuHvfnpNEQ7dty7xKTlL6aIGkp+TtuStdPXnqyd3vY0WT/TbWmydqa3Y6ydvvZk7fS2p8n6hcqWNBN+6qHD8MFt8/DE+YdheEocKhtacc/r3+Ckp5eIzezsWBjeaZB2vFQ+BHB6CQzDPrB2+oK10xesnd5g/fQFa6cvWDt9MVC1az3QgZdX7MLCRTtQ1+zZ4O2wESm4+5QJOCo/A7qAl8orBo3m0M6bpj7u7yQ/p23J2ulrT9ZOb3uarJ/ptjRZO9PbMdZOX3uydnrb02T9wsWW9Gw7bVS35K5jcevxY8XGdetL6/GD/1mBS/9nBb4prbc1PR3BS+W7llDQkQsmLKEINT+nbcna6WtP1k5ve5qsn+m2NFk709sx1k5fe7J2etvTZP3CzZaJsVH4yYnj8Nldx+LKObmIjnRh6Y7dOPN3S3HTy19jZ02TrenpBF4qHwIM1CUwJoC10xesnb5g7fQG66cvWDt9wdrpC9buYJTUteDpj7bhjbVloEnzyAgXLpqWg9tOGIus5DiEG3ipvGLQ0ol9+/YZsYTCF5zk57QtWTt97cna6W1Pk/Uz3ZYma2d6O8ba6WtP1k5ve5qsX7jbMic9AQsuPgLv3XI0jpuQiY5ON/6+chdO/e3n4rl4u9MLZ/BS+a4lFGVlZUYsoQg1P6dtydrpa0/WTm97mqyf6bY0WTvT2zHWTl97snZ629Nk/XSx5cRhyfi/K6fjtetm48hRafjejJyAznw3STtepw0gMjIS+fn5MBVO8nPalqydvvZk7fS2p8n6mW5Lk7UzvR1j7fS1J2untz1N1k83W84YnY5/XT8bBzrcA047nnHvWkLR1NRkxBKKUPNz2pasnb72ZO30tqfJ+pluS5O1M70dY+30tSdrp7c9TdZPR1u6XC7EREUMOO3Yce8StLq62ghBQ83PaVuydvrak7XT254m62e6LU3WzvR2jLXT156snd72NFk/023pNkg7XipPoxcREcjLy4OpcJKf07Zk7fS1J2untz1N1s90W5qsnentGGunrz1ZO73tabJ+ptsywiDteMa9aySmoaHBiJGYUPNz2pasnb72ZO30tqfJ+pluS5O1M70dY+30tSdrp7c9TdbPdFu6DdJuwDjucidBevWOk5B1dXXo6PAcKSDf6ylO1/YUp+AdJ/QUl/nyF/eV90Di9Bu1tbUHva+KE/0epSWvUcXJGt+zZ89B+VWtk/wNVZysPHzxU1n2/OlnJydrfqneWfOrQ33qiZM1Tud49sTPbk6+2jG7OVl5+OKno07+tJFtphOc6LuynqviZI3Lem7lp6NO/uqTdzumkpO1HVPJyRqn9Kj+OaVTbzz6y8nKwxc/lWXPWz8VnGScOFE9t6avuj7JPKni5B3viZ/dbYS1nVbFycrDF79wavf605Zb20wnONH/ZEuqE6o4uS3xntppJ3SyE8Y67gsXLsSkSZMwffp08T8920DYvXu3CISqqiohJC2hiI6OFqMxBDoyoL6+XsRLSkrQ2Ngo4kVFRWhubhbxwsJCtLa2inhBQQH2798v4tu3bxcFkQSlOL3S/xQn0HX0XQJ9X8bpd+n3CZQepUugfFB+CHv37kVFRYWIU74p//44Eeha+g7xi4qK6uahghNdL+NUUClNlZykTvS7o0aN6o6r4GTVqaWlpfv3VHGylj3iQfx27dqljJNVJ4qTdhRUcZI6EaeMjAyRlkpOVp2obJaXlyvjZC17xcXFyMrKEvxUcpI6UTrJycndPFRwsupE8WHDhol0VXGSOlVWVoo43ehVcpI6Eae2trbum7cKTtayV1NTI+o5xVVxspY9AvEjqOJk1Yk6hATiqYqTVScKxI90VMVJ6kScEhMTRVoqOUmdKB2qd071I6juyTKjum9E1xM/ajep/VTFyaoTxVNTU0W6KvtG9H3iRPWczpNW3TeSOlE9oE25VHGylj26pxM/iqvuG5HdSDNyisieqjhZdaI8ED8ZV8FJ6kR9TQKVGSf6RhQnP4FsqrpvRHmh/JEtZVwFp3pL2SP/jvw84qe6b2TVieKy/bQLLrfdQwFhBhIrJSVFdPiocZYjKCSejNPOhPQ5XUdHBtD79B4Ff3HpnPqLE+h6a5x+m8xNgq5evRozZswQn8v3KciGyFfcV94DiUt+8uakgpOM0ysV9rS0NHGNKk7WOGmclJTUnV+7OVnjBw4cwIoVKzBr1qzuz+zmZNXGFz+7OXnn3Zd+dnKyakPcZL1UxUnG6bPly5eLehcTE6OEkzVOjTU18P742cHJGqffJu3IeZd10W5OVm188bObk8wXpbVq1SoxECs7Fyo4WbWRbaa83m5O1jzS+2RLqueUngpO1jilR2XFys9uTtZ4IPrZec+V/GQ7poKTjFvbMdmdUsHJGiduVFbIlio4WePUX1m5cqW458n8qeob+eOnsh/hrZ+qvpGcISQnmtpomb6qvpHMH93zZs6cKZwWlX0jGad2zB8/u++51nZaaqmyH+GLn6p+BOWZ6t20adNEf0Vl30jmRbaZ3u2Yin4EvVK9o0FPypfKvlFEV9kg5ztYfn1t9+gzqR859FRGKX1ZdvoDY2fcvSELAL16x0lEGjWRDYE0fk9xWdD8xSl4xwk9xWW+/MV95T2QuORntYUqTgRKS94AVXGyakoNqcyTEzrJ31DFycrDFz+VZc+ffnZystpPHs+hU33qiZN3vCd+dnOidCg9a/p2c7Ly8MVPR518aWNtM53gRJ/Jeq6Kk3fcm5+OOvmrT97tmEpO1nZMJScZl/Xcmr5qnQJp6+y6P/nip7LseeungpM1v3K2zqn6JPPkVN+oJ352txHefVvV/Qhf/MKp3etPW25tM53gRJCrJlRxcnnF+8PPjnuuXeBd5buMn5OTA1PhJD+nbcna6WtP1k5ve5qsn+m2NFk709sx1k5fe7J2etvTZP1Mt2WEQdp9O9QygEFLGui5Brk0wjQ4yc9pW7J2+tqTtdPbnibrZ7otTdbO9HaMtdPXnqyd3vY0WT/TbdlpkHbsuHdBbm5hKpzk57QtWTt97cna6W1Pk/Uz3ZYma2d6O8ba6WtP1k5ve5qsn+m23GeIdrxUvmsJRXZ2NkyFk/yctiVrp689WTu97Wmyfqbb0mTtTG/HWDt97cna6W1Pk/Uz3ZYRBmnHM+5dSyjoOAATllCEmp/TtmTt9LUna6e3PU3Wz3Rbmqyd6e0Ya6evPVk7ve1psn6m27LTIO3Yce8CHfNlMpzk57QtWTt97cna6W1Pk/Uz3ZYma2d6O8ba6WtP1k5ve5qsn+m2PGCIdrxUvmsJxbBhw2AqnOTntC1ZO33tydrpbU+T9TPdliZrZ3o7xtrpa0/WTm97mqyf6baMMEg7nnHvWkJRXV1txBKKUPNz2pasnb72ZO30tqfJ+pluS5O1M70dY+30tSdrp7c9TdbPdFt2GqQdO+4MBoPBYDAYDAaDwWCEMXipfNcSiszMTJgKJ/k5bUvWTl97snZ629Nk/Uy3pcnamd6OsXb62pO109ueJutnui0jDNLOeMfd7XaL14aGhl6XUJCoJK5qtLe3o7m5WeQpKkq9BE7yc9qWrJ2+9mTt9Lank+mZ3GYOhPRM1o+1Y3uGa1kxud6Znh5rZ07da2lpOcgf7S+Md9wbGxvFa05OTqizwmAwGAwGg8FgMBiMAYTGxkakpKT0+3dcbruGAMIUNMpSXl6OpKQkuFwuv9dNnz4dq1atciRPNAJDAwklJSVITk52JE0n+TmZltPpma6d0+mxdvra08n0uN7ZD657etrS6fS47tkL1k5fezqZHtc7c+peUlKScNqHDx9uy2y/8TPuZKQRI0b0el1kZKRjjpgEpedUmk7yc9qWrJ2+9mTt9Lan0+mZ2mYOhPRM1o+1Y3uGa1kxud4NhPRYOzPqXooNM+0SvKt8F2666SaYDCf5OW1L1k5fe7J2etvTZP1Mt6XJ2pnejrF2+tqTtdPbnibrZ7otbzJEO+OXyocjaAkFjb7U19c7PvrD6B9YO33B2ukL1k5vsH76grXTF6ydvmDt9EaDQj+PZ9xDgNjYWPz85z8Xrwy9wNrpC9ZOX7B2eoP10xesnb5g7fQFa6c3YhX6eTzjzmAwGAwGg8FgMBgMRhiDZ9wZDAaDwWAwGAwGg8EIY7DjzmAwGAwGg8FgMBgMRhiDHXcGg8FgMBgMBoPBYDDCGOy4MxgMBoPBYDAYDAaDEcZgx91hLFy4ELm5uYiLi8PMmTOxcuVKp7PA6AWPPvoopk+fjqSkJGRmZuKcc87B1q1bD7qmtbVVnAk5ePBgJCYm4vzzz0dVVRXbNszw2GOPweVy4bbbbut+j7ULb5SVleHSSy8VdSs+Ph6HHnooVq9e3f05nWD64IMPYtiwYeLzE044Adu3bw9pnhlAR0cHHnjgAYwePVroMmbMGDz88MNCLwnWLjywZMkSnHnmmRg+fLhoH998882DPg9Ep7q6OvzgBz8QRx2lpqbihz/8IZqamhxmMjDRk34HDhzA3XffLdrNQYMGiWsuv/xylJeXH/QbrF941j0rrr/+enHNM888c9D7rF34ard582acddZZ4ig4qn/kS+zatcvW/ic77g7iH//4B26//XZxRMDXX3+Nww8/HCeffDKqq6udzAajF3z22WeiYi1fvhwfffSRuBGedNJJaG5u7r7mJz/5Cd555x3885//FNfTTfG8885j24YRVq1ahT/96U847LDDDnqftQtf7NmzB0cddRSio6Px/vvvY9OmTXjqqaeQlpbWfc0TTzyBZ599Fn/84x+xYsUKcXOkdpRuiIzQ4fHHH8cf/vAH/O53vxOdF/qftHruuedYuzAD3cuo/0ETCb4QSB0jp33jxo3iHvmf//xHdGqvvfZaB1kMXPSkX0tLi+hf0iAavb7++uti4oGcCStYv/CsexJvvPGG6IOSk+gN1i48tSsoKMDcuXMxYcIELF68GOvXrxf1kCZqbe1/uhmOYcaMGe6bbrqp+/+Ojg738OHD3Y8++iirEMaorq6mKSP3Z599Jv7fu3evOzo62v3Pf/6z+5rNmzeLa5YtWxbCnDIkGhsb3WPHjnV/9NFH7vnz57tvvfVW8T5rF964++673XPnzvX7eWdnp3vo0KHuJ598svs90jQ2Ntb997//3aFcMnzh9NNPd1999dUHvXfeeee5f/CDH4g4axeeoPvWG2+80f1/IDpt2rRJfG/VqlXd17z//vtul8vlLisrc5jBwIa3fr6wcuVKcV1xcbH4n/ULb+1KS0vd2dnZ7g0bNrhHjRrlfvrpp7s/Y+3CV7uLL77Yfemll/r9jl39T55xdwj79+/HV199JZacSURERIj/ly1b5lQ2GEGgvr5evKanp4tX0pFm4a1a0gjbyJEjWcswAa2YOP300w/SiMDahTfefvttTJs2DRdeeKF4TGXKlCl44YUXuj8vLCxEZWXlQbrSkjR67Ijb0dBizpw5+OSTT7Bt2zbx/7p167B06VKceuqp4n/WTg8EohO90vJ4qqsSdD31aWiGnhF+fRha2kuaEVi/8EVnZycuu+wy3HnnnZg8efJ3Pmftwle3d999F+PGjROrk6j/Qm2mdTm9Xf1Pdtwdwu7du8UzgFlZWQe9T//TTZIRvpWRno+m5buHHHKIeI/0iomJ6b4JSrCW4YFXX31VLBGkvQq8wdqFN3bu3CmWW48dOxYffPABbrjhBtxyyy146aWXxOeyreR2NPxwzz334JJLLhEdEXrUgQZdqO2kZZ0E1k4PBKITvVLH1IqoqCgxuM39mfACPd5Az7x/73vfE/sREFi/8AU9YkR1ie57vsDahSfokWfa44P2VTrllFPw4Ycf4txzzxXL4GlJvJ39zyjbc89gGDZzu2HDBjFzxAh/lJSU4NZbbxXPXVqfK2LoM1BGs3i//vWvxf/k/FH9o2dtr7jiilBnj9EDXnvtNbz88st45ZVXxEzR2rVrheNOz2iydgyG86DZvYsuukhsNkgDoozwBs3I/va3vxUTD7RCgqFX34Vw9tlni+fYCUcccQS+/PJL0X+ZP38+7ALPuDuEjIwMREZGfmf3QPp/6NChTmWD0Qf8+Mc/FpvuLFq0CCNGjOh+n/SiRx/27t170PWsZXjc+Gjkc+rUqWLUmgKNdtJGSxSnkU3WLnxBu1hPmjTpoPcmTpzYvSurbCu5HQ0/0NJOOetOO1rTck/qwMiVL6ydHghEJ3r13lS3vb1d7HbN/ZnwctqLi4vFQLacbSewfuGJzz//XNQrWjot+y+k3x133CFOoyKwduHr45FevfVf7Oh/suPuEGh5xJFHHimeAbSO0ND/s2fPdiobjABAo9PktNOunp9++qk43sgK0pGWglq1pF1bqXKylqHF8ccfj2+++UbM9slAM7i0XFfGWbvwBT2S4n30Ij0zPWrUKBGnukg3OGvda2hoEM/Vct0LLWg3a3rG2QoarJYzEaydHghEJ3qlzicNlErQvZK0puc6GeHhtNMRfh9//LE4esoK1i88QYOdtBO5tf9CK5ZoUJQeHSOwduHr49HRbz31X2zzHYLcUI8RBF599VWxM+uf//xnsTPktdde605NTXVXVlayPcMIN9xwgzslJcW9ePFid0VFRXdoaWnpvub66693jxw50v3pp5+6V69e7Z49e7YIjPCDdVd5AmsXvqDdj6OiotyPPPKIe/v27e6XX37ZnZCQ4P7b3/7Wfc1jjz0m2s233nrLvX79evfZZ5/tHj16tHvfvn0hzftAxxVXXCF2Qv7Pf/7jLiwsdL/++uvujIwM91133dV9DWsXPqdurFmzRgTqBi5YsEDE5a7jgeh0yimnuKdMmeJesWKFe+nSpeIUj+9973shZDVw0JN++/fvd5911lnuESNGuNeuXXtQH6atra37N1i/8NPOF7x3lSewduGpHd3zaNf4559/XvRfnnvuOXdkZKT7888/t7X/yY67wyAhSbSYmBhxPNzy5cudzgKjF1CF9BVefPHF7muoA3PjjTe609LShGNx7rnnihsjI/wdd9YuvPHOO++4DznkEDHIOWHCBHETtIKOq3rggQfcWVlZ4prjjz/evXXr1pDll+FBQ0ODqGd0f4uLi3Pn5eW5f/aznx3kLLB24YFFixb5vMfR4EugOtXW1gpHPTEx0Z2cnOy+6qqrRMeWEVr9aNDMXx+Gvsf6hXfdC8Rx57oXvtr97//+rzs/P1/cAw8//HD3m2++edBv2NH/dNEf+xYLMBgMBoPBYDAYDAaDwbAT/Iw7g8FgMBgMBoPBYDAYYQx23BkMBoPBYDAYDAaDwQhjsOPOYDAYDAaDwWAwGAxGGIMddwaDwWAwGAwGg8FgMMIY7LgzGAwGg8FgMBgMBoMRxmDHncFgMBgMBoPBYDAYjDAGO+4MBoPBYDAYDAaDwWCEMdhxZzAYDAaDwWAwGAwGI4zBjjuDwWAwGIbC7Xbj2muvRXp6OlwuF9auXetY2kVFRY6nyWAwGAyGqXC56a7OYDAYDAbDOLz//vs4++yzsXjxYuTl5WHYsGF44403cM455yhPu6OjAzU1NcjIyEBUVJTy9BgMBoPBMBl8J2UwGAwGw1AUFBQIZ33OnDmOpx0ZGYmhQ4c6ni6DwWAwGCaCl8ozGAwGg2EgrrzyStx8883YtWuXWLKem5sr3j/33HMP+v8Xv/gFjjjiCPzpT39CTk4OEhIScNFFF6G+vv6g36JZ+l//+tfIyspCamoqfvnLX6K9vR133nmnWIo/YsQIvPjii93f4aXyDAaDwWDYB3bcGQwGg8EwEL/97W+Fc00OdUVFBVatWiXeJ+fa+j9hx44deO211/DOO+/gv//9L9asWYMbb7zxoN/79NNPUV5ejiVLlmDBggX4+c9/jjPOOANpaWlYsWIFrr/+elx33XUoLS11nCuDwWAwGKaDHXcGg8FgMAxESkoKkpKSupesDxkyRLxPs+XW/wmtra34y1/+Imbe582bh+eeew6vvvoqKisru6+hWfVnn30W48ePx9VXXy1eW1pacN9992Hs2LG49957ERMTg6VLl4aEL4PBYDAYJoMddwaDwWAwBjhGjhyJ7Ozs7v9nz56Nzs5ObN26tfu9yZMnIyLi224DLZk/9NBDu/+nAYLBgwejurrawZwzGAwGgzEwwI47g8FgMBiMXhEdHX3Q//ScvK/3yOFnMBgMBoNhL9hxZzAYDAZjgIAcbTqmzRu0gR09vy6xfPlyMbtOy+EZDAaDwWCEHuy4MxgMBoMxQEA7yX/yySfi2fU9e/Z0vx8XF4crrrgC69atw+eff45bbrlF7CzPx7kxGAwGgxEeYMedwWAwGIwBgqeeegofffSROPZtypQp3e/n5+fjvPPOw2mnnYaTTjoJhx12GH7/+9+HNK8MBoPBYDC+hcvtdrst/zMYDAaDwRhAoHPc33zzTaxduzbUWWEwGAwGg+EHPOPOYDAYDAaDwWAwGAxGGIMddwaDwWAwGAwGg8FgMMIYvFSewWAwGAwGg8FgMBiMMAbPuDMYDAaDwWAwGAwGgxHGYMedwWAwGAwGg8FgMBiMMAY77gwGg8FgMBgMBoPBYIQx2HFnMBgMBoPBYDAYDAYjjMGOO4PBYDAYDAaDwWAwGGEMdtwZDAaDwWAwGAwGg8EIY7DjzmAwGAwGg8FgMBgMRhiDHXcGg8FgMBgMBoPBYDAQvvh/dCHqAot8kgEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show('ftpmi', 'mph', rides, 'Speed (miles per hour) versus Ride Grade (feet per mile)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, I average a little under 14 mph when the overall route is fairly flat, with a lot of variability, depending more on my level of effort (and maybe the wind) than on the grade of the road. But when the grade is steeper than 50 ft/mile, my speed falls off quickly: down to 12mph at 80 ft/mile; 11 mph at 100 ft/mile; and around 10 mph at 120 ft/mile. Note that 120 ft/mile is only 2.3% grade, but if you figure a typical route is 1/3 up, 1/3 down, and 1/3 flat, then that's 7% average grade on the up part.\n", "\n", "I can use this to predict the time of a ride. For example, if I'm in La Honda and want to get to Pescadero, which way is faster: the [coast route](https://www.google.com/maps/dir/La+Honda,+California/Pescadero,+California/@37.2905834,-122.3896683,12z/data=!4m19!4m18!1m10!1m1!1s0x808faed4dc6265bd:0x51a109d3306a7219!2m2!1d-122.274227!2d37.3190255!3m4!1m2!1d-122.4039496!2d37.3116594!3s0x808f062b7d7585e7:0x942480c22f110b74!1m5!1m1!1s0x808f00b4b613c4c1:0x43c609077878b77!2m2!1d-122.3830152!2d37.2551636!3e1) (15.7 miles, 361 ft climb), or the [creek route](https://www.google.com/maps/dir/La+Honda,+California/Pescadero,+California/@37.2905834,-122.3896683,12z/data=!4m19!4m18!1m10!1m1!1s0x808faed4dc6265bd:0x51a109d3306a7219!2m2!1d-122.274227!2d37.3190255!3m4!1m2!1d-122.3658887!2d37.2538867!3s0x808f00acf265bd43:0xb7e2a0c9ee355c3a!1m5!1m1!1s0x808f00b4b613c4c1:0x43c609077878b77!2m2!1d-122.3830152!2d37.2551636!3e1) (13.5 miles, 853 ft climb)? We can estimate:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Coast: 70 min, Creek: 64 min.'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f'Coast: {estimate(15.7, 361)} min, Creek: {estimate(13.5, 853)} min.'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This predicts the shorter but steeper creek route would be about 6 minutes faster (whereas Google Maps predicts the creek route would be 80 minutes, 2 more than the coast route—I guess Google lacks confidence in my climbing ability). This is all good to know, but other factors (like the scenery and whether I want to stop at the San Gregorio store) are probably more important in making the choice." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# VAM\n", "\n", "Climbing speed is measured by [VAM](https://en.wikipedia.org/wiki/VAM_%28bicycling%29), which stands for *velocità ascensionale media* (for native Campagnolo speakers) or *vertical ascent in meters per hour* (for SRAM) or 平均上昇率 (for Shimano), or *Vm/h* (for physicists). The theory is that for fairly steep climbs, most of your power is going into lifting against gravity, so your VAM should be about constant no matter what the grade. (For flatish segments power is spent on wind and rolling resistance, and for the very steepest of climbs, in my experience, power goes largely to cursing *sotto voce*, as they say in Italian.) \n", "\n", "Here's a plot of my VAM versus grade over short segments:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIjCAYAAACpnIB8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfQecZEW1/umevJM3zOYcgAUEhA0gIohKEhQxIKiYQEXxKSBBBVxFMqjgPoI+/et7guHhM/CeKAKSN7Msm3dn8+zOzM5OzqH7//uqt3rv9N7u6Z65qU+d78ela+/cvuee76s6XelWhaLRaJQEAoFAIBAIBAKBQCAQZCXCfj+AQCAQCAQCgUAgEAgEguFDGvYCgUAgEAgEAoFAIBBkMaRhLxAIBAKBQCAQCAQCQRZDGvYCgUAgEAgEAoFAIBBkMaRhLxAIBAKBQCAQCAQCQRZDGvYCgUAgEAgEAoFAIBBkMaRhLxAIBAKBQCAQCAQCQRZDGvYCgUAgEAgEAoFAIBBkMaRhLxAIBAKBQCAQCAQCQRZDGvYCgcAI7N27lwoLC+m1116jIGHXrl0UCoXo//2//+fK/f/1r3+p++NTEGx873vfU1o1NDRQkPDYY4/RtGnTqKenx+9HEQgcx9lnn60Op/DZz36WZsyY4dj9BAKBIF1Iw14gEAwLl1xyCY0aNYra2tqSXnPllVdSfn4+HTp0KH6uublZNbDRgNm0aVPSihH+XlZWRl1dXUf9fdu2bervOB544IG0nvf73/8+LVq0iN71rneRH3jyySfpxz/+sS+2g4a77rqL/vSnP/n9GII0gfLY29tLjz/+uHAmSAkp24LhYP/+/apjc+3atUKgQDACSMNeIBAMC2i0o9H9P//zP7Z/7+zspD//+c90/vnn05gxY+Ln//CHP6gG+YQJE+g3v/lN0vvn5uaqe/z1r3896m/4HjoH0sXBgwfpV7/6FX35y18mv5CsYT99+nTF46c//WkyBVL5zy6grF111VX00EMPUTQa9ftxBAGGlG2in/3sZ7Rlyxa/pci6hv2SJUukYS8QjBDSsBcIBMMesS8tLVUNVjugUd/R0aE6AKz4r//6L7rwwgvpk5/8ZNLvAgUFBXTuuefSU089ddTf8L2LLroo7WeFTXQUXHzxxeQ1wEEqoJMDDaecnBzPnokjuru7KRKJUNAxVH4I6rN+/OMfp927d9OLL75IQUA28ShwB+j4DSLy8vLU71e2QcqUQJD9kIa9QCAYFoqKiugjH/kIPf/881RfX2/b+EbDHx0AGnv27KFXXnmFLr/8cnXs3LmTXn/99aQ2rrjiCvrb3/6mpu9rrFy5Uk3Fx9/SBaZ9Yxp+SUlJ/NzXvvY19W+7yiE6HTCjYGBgIH4Oz/Hud7+biouLlV/oWNiwYcNRU5Zxz+rqatV5gevQsYH3N//3f/9XNYz0KwT6Hcxk79hv3rxZNabGjRunuD7mmGPoO9/5TvzvuNe1116rzuPvmBXxsY99TN1vJO93b926lT71qU9ReXm5sn3bbbepUVqsUfChD31IvR4Bbh588MGj7oF3sO+44w6aM2eOqthOnTqVbrrppkHvZsMGKpCYQaG5AG8aNTU19PnPf57Gjx+v7nH88cfTL37xC9t1A37729/Sd7/7XZo8ebJ6LaS1tZX6+vrUyM/cuXNVhwl4OfPMM+m5555L6T/4xz1ffvll+tKXvqS+B18/85nPUFNT01HXjyQ/DAXkd3y3oqJC6fC5z33uqHza399PP/jBD2j27NmKJ+Snb3/720e9Bw+foG0icL2Vd+3/Sy+9pPJVVVUVTZkyJf73U089lUaPHq067FLBy3IFIBZcdtll6r7QG8+M2NLS0jLkGhaJ3OC1om984xuKG3AKDt7//vfTmjVrUvqc7veWL1+uZjBBU+TX97znPbZrfiB/n3baacof6ItXIHT5THx+8I1ZUPPnz1dx4PTTT6e3335b/R3fQ1nEfRCD7GJDOs+kbW/fvj1lvhyqbNsBcQy/EdAfvH3zm9+kv//970etC4LnP+GEE2j16tV01llnqWdFfgeQJ5FvJk2apPgHZygb1nym8cQTT6i/g6uFCxeq3yM7pBPL0n3HXudBvDam7eOeCxYsUL9nQ8Hr2IQO0p/85Cd04oknqryD3wHkkVWrVh3VYY64AC4RG1Du8DthhdZt48aNdM455yjdEK/vu++++DXQGVwAyFM677i17oxAwBm5fj+AQCDIXqAigErc73//e1XB1GhsbFSVM1Tk8aOvgdF3VDY++MEPqvOo4GBa/RlnnGF7f3QcYPr8H//4R9XY0x0Gxx57LL3zne9M6xnR0EPl6Stf+cqg85/4xCdo6dKlqsGNBrGGnv6Pio8eRf/P//xPNRX5vPPOo3vvvVdd8+ijj6oG45tvvjmoEocGF67D31CRQ0UGjQ40NPbt20c/+tGP1HXWToZErFu3TlXMMPJzzTXXqPujAobn+uEPf6iugU/oFEFlCo0ZVB7xTKhIoRIFu8MBeDnuuOPonnvuUdzceeedqtKGRsJ73/te5T80u/HGG1VlDJVsXRlEBf3VV19Vz4x7oIEBf9FZoN+pB5df/OIXVaUa1wHIB0BdXR0tXrw43mBBhRKV1C984Quq0Y7GkxWovGMNBzwLKtxIoxFy9913x23ge6iQopGFxtZQgF00XHAfTKcFp2h86M4EJ/LDUECHzsyZM5UfeO6f//znqtEDWxrwD2Xvox/9KN1www2qgYbrsW5Fstdj0gEa9eD99ttvP2oED2VuqMUnvSxXeO8f56D9ddddp8oZOoaeeeYZ1TmCxmcmQKz57//+b5UH0FDG2iDIz+A0VbxJ53svvPACXXDBBaohhAZjOBymX/7yl6pMoXGJvArAbzSiJk6cqDqo0DjF+iDQxA747l/+8hf66le/qv6NPID4ikbov//7vys90fhDQwoxFM+hke4zpZsvU5VtOyB/wdaBAwfo3/7t35R+iO/JZoWAVzwvYh46H9H5B6ABiHh6/fXXq0/4hfyLsn///ffHv/8f//EfqmGM3xvEkh07dqiYhfiGhrtGurEsU8A3dALhGRBLoAl+4/AciPVBiU2It+AUXENPXIf8sGzZMtXhBOB3CJ2+yBO4Bq+7PfLII+r3AHbwnBrIf8jT8BXXo6zcfPPNquMANsAv8jg0A9/47QOS1QsEAkEKRAUCgWCY6O/vj06cODF6+umnDzr/2GOP4UXc6N///vdB50888cTolVdeGf/3t7/97ejYsWOjfX19g6676qqrosXFxSr90Y9+NHruueeq9MDAQHTChAnRJUuWRHfu3Kls3H///Smfcfv27eq6Rx55ZND5SCQSnTx5cvSyyy4bdP73v/+9uv7ll19W/25ra4tWVFREr7766kHX1dbWRsvLywedx3Pju7fccstRz3HRRRdFp0+fftR57ccvf/nL+LmzzjorWlpaGt29e/dRz6zR2dl51L3eeOMNda9f//rX8XMvvviiOofPVLjjjjvUdddcc80gfadMmRINhULRe+65J36+qakpWlRUpPzV+M///M9oOByOvvLKK7Z54bXXXoufg7bW72p84QtfUPmpoaFh0PnLL79cca191j7NmjXrKB5OOukkxXWmAP+456mnnhrt7e2Nn7/vvvvU+T//+c+O5odUGnz+858fdP7SSy+NjhkzJv7vtWvXquu++MUvDrruxhtvVOdfeOGF+Dn8G/dNBPKiVQPt/5lnnql0twPyBnRPBS/L1ZtvvqnO/+EPf0j6PHblKxk3sPvVr341mimG+h44mTt3bvS88847qgzPnDkz+v73vz9+7uKLL46OGjUqWlNTEz+3bdu2aG5urnrexOcvKChQPmo8/vjj6jziZGtra/z8rbfeqs7razN5pnTzZaqybYcHH3xQ3fdPf/pT/FxXV1f02GOPPSpmvec971HnEE8SYRcLv/SlLykeu7u71b9RpquqqqInn3xytKenJ37dE088oe6L+w8nltkB/ltjvc6D4KqxsTF+HjEF5//6178GJjYhduD817/+9aOeQ+eTXbt2RXNycqI//OEPB/397bffVvnUel7rZv1NAv/In9YYsXLlyqTlVCAQpA+Zii8QCIYNjLxh9OSNN94YNM0TIxMYTcE78tZRaIx6YBRfA2ls7YXR/WTAlHuMSNTW1qqRGHxmMg1fr8hfWVk56DxGODCi+H//93/U3t4eP/+73/1OTRXEKAaAKdwY/dPPqg/4jun9dqNLibMDMgFGPjDlEqNr2GIs8Zk1rDMhMCsBfmLaKEZKhpo6nAoYfdGAjxihQRsCozgasIFXADDSpIHpwBh5wWwKK08YkQOGejcbNp5++mm1DgLS1ntgVAkzHhL9wsiUlQf9bJh2iinawwFGjKyjZ9AS6zMgn3iVHxIXecQIFvTFCCSgnwUjlFZg5B7AaPlwcfXVVydd7wFlCAs9pnq32ctypUfkET+ceN8aeQczH7CQl5Pfw0rf+vUh6Kh9xYg1YiTKO0aJMTr/z3/+kz784Q+raeUaKNcY2bQDvm8dhQV3AF5PwPTqxPO6zKb7TJnky0zx7LPPqjxhfV0LU7+RB+2A6euYqp0IawzAiDj8wLMhT+CVJgCzdvDKGHzAzB4NzCBJnNkx0liWajaL9XdIj0xb46jfsQkxGGUYMzgSoX9/MIMOeQOj71Y7mHGBV6AS7WAWBWZYaIB/zOpI12+BQJA+ZCq+QCAY8XR8TFFEYx7vPGK6Oabtff3rXx/UQMD7eJiGP2vWLPWupq7EoVKKqd3JFsPT7/+hYYDKKKZ/o6Kb6bvkdqt5o6KFleoxlRUVXDREUEnSUyUB3UDUlbpE4F1HK1DRsr6bnCl0ZQfvJaYCGliYEoups5h+bPVPv188HCR2JqDSC53Gjh171HnrNobgCVOPk00ZtluHIbFDA5VSvIOKI517YFpwIjClE2sBzJs3T3GIKaDYceAd73gHpQNUTBMrpZgWrfObF/khUQPdGMCUVtwf028xbRrlwApUrNHIxN+HCztONXQeS3zX269yhWdF5wZW60cMQUMJjUS9RkSmwNRodBZhWjampyP24D1mxKyRfE/7imuSAWUWC0CiXCfqCtidS1ZeAevUcut5/U52us9kbYgOlS8zBfIppuon5qdkvqITwNoo10BHHtbaQMdvYieDjoW6TCSWbzSUE/UdaSxLhlT8BSU24ZUvdCrh9YRkgB3EgsTn0Uh8rQA2EjWG7+jsFwgEzkIa9gKBYERARRYjG3h/Hg17fOJH37pIGP6N8xgNwjuodhUlVP7t3jvHKA3ezcP7xGj02i0Elgp6qz27yhPe50bHAtYIQAME7wCjYo2GiYYetcK7i2g4JQKVo8TnRaPLbeCdYjTq8a4oFsxCxR2VJ8ygGMnq8HajtclGcK2dCbCJdybRyLJDYkMjEfqZ0ShL1thIbJwnjtYDeMcTlVMsqPWPf/xDvQeMjqfHHnts0GyE4cKL/JAO3+k0sFPBbmGxZJxqoAzhPdxU13hdrrCII0Zdtd7oUESHF94HtmtQpPIfI5DoHMAaBbgX3s/Ge8oYoUw2Yp7O97SvOH/yySfb3gOxDw37TJEsrwyVh9J9pkzu6Tbs8h06A7HgHxqt6NRDRwE6IjG7B+9xDycWjjSWJYPb/Hn1WwU7KFdY/8TOp6DlG4HAJEjDXiAQjBhoxGMhHfTAY+QePfl6lVsAK21jJB8VL0xxTGwsYIohFiSyTtezAo0DrIyOSggarpmOkqBCiBX4k1XKsQIwRnowKwANEjRMNPTiT1gk6n3vex8NF+k2wvTo0fr161NehwWI0AC2rk6PhoF1BwEvAZ7eeustNY13KF/t/o7RMczMQINrJDwDGG3ClF0c6DBCYx8dQuk07DEahdWbNfB9LO6FUVgn88NIMH36dFW5xrNayxMWH4T++Lt1ZCwxT2DROfiUKVCGEstvMnhVrgA0wnBg1BYLSr7rXe9SHTlY+FGPiiZykGxWA0ZAseAcDnQ4YvE7LBSWqmE/1Pe0r2h8pvIVXKBRqmc0WWF3biRI95kyRSadTcinWOgTDTzr9zLxFa9pYeYQOlH0Qp5AYrzXZQJlxjqijdeYcO1JJ500rFjmJbyITbgHXm3BArjJRu1xDTTDjBnMjHICQeJZIMhmyDv2AoFgxNCj81jVFtPl7fauxzT8b33rW2oVb+uB9ynREYCptMmAygxWQP/pT39qOxKRCpgWiPfEE7fq0cAoIlbVxowAvPOJBokVeL8bld+77rpLVQLtppCnA/ifzhR5NHBRQUVHBrYHTDbCgVGQxBEPrEqcbCTWbYA3vBLws5/97Ki/YbTWusI6uEhsaMEfvBeMdzztOjXS5dn6eoAePcLU3nS2qQLwGoBVZ6wojVWhdcPOqfwwEuiKPKa7W6FHGK2vtaASjvelE30cTj7BKGi6K1V7Ua7QaQBtrEADHx2AWm/YwGskiRxgxXgrwEdi+UQDCdOSU+WddL6HWU3QASuPW9cdSPQVZQANMnRyWt/XR0MXo6NOIt1nyhR2ZTsZkAcQM/DKhrVz0i6GJIMeDbbGQnRcJeqL3wDEVnT44O8aWP098XkziWVewovYhBgMLrEjQyI0x5hBB95xTeJvEP6dGIPTzTeAXx3TAgEXyIi9QCAYMdBzjwq/3uPa2rBH5RaNNWw1htEoO+C9WIzuYaQLleJEoKKO0bjhAu9cYw94NAQS3zPEyBoafvg7ntU6XRjA9ahA4T1tXIsZA6ggotGNRcowOogOh3Qq0hi5xDvBmM2ABicWirPDww8/rBYZgz3MZgC/eI8S9tBxAmBLK0y5xBR8vN6ABQyx8JZ+9cBrgB9MvcbiVFg8Cbyg0YPFq3Aeo0B6qyRwgWdFQxQNIPiHxZ2wxR6+izQ6fOAXRo7QoMT1SA8FfAdb/ul919Gho7ciSweo9GOkDpV7bCmFBgK00At8OZUfRgKMLmK2Bir6eiryihUrVCMaC69ZR/UwSwGaoMKOMoiRSGiRuGbCUMD+4eAfZSkdeFGu8E41dMVifRg5RCMHZUJ3Elk5QN7CJ/IgGvnYtswKLLqGqfvobAS/KJ/Ic9hW0jorJhHpfA/xC6+EoAF2/PHHq5kkeF8cjUfkd3CB1xUAzCzBdH74j4XNUIbAA9aL0GXfCWTyTJkgWdm2A9ZcgG9Y7A3b3WHWAzp49e9EOqO4+N3BrAyUB7yGge8gDyQ2ONHBixkcsIkRe+RHjNTjdabEd+wziWVewovYhNiB7+M3CDMEsEYJZgdh3Rz8DeUNHULg8tZbb1W/S4g5mG0FPvE6Cn6zsAVpJsA9sT4IOl5wLzT0kW9SrfkhEAhskMEK+gKBQJAUS5cuVdvVLFy4cND5p59+Wp3/j//4j6Tf/de//qWu+clPfnLUdnfJkO52d0BdXZ3ahgfbGNnhO9/5jrrXnDlzkt4DWy9hayhsG1RYWBidPXt29LOf/Wx01apV8WtSPXd7e3v0iiuuUNsRwZbeDinZdlzr169X20nhetg75phjorfddtugLec+97nPqe0CS0pK1LNt3rz5qG3MMt3u7uDBg4POJ/MJ2xgdf/zxg85hK6Z7771Xncc2XJWVlWqLJmxP2NLSEr8Oz4kt/bB1GmxanxdaYeuwqVOnRvPy8tS2SNjuENtSJfpkt83ZnXfeqfIgeMP9sXUWtl+ybhOVakupl156SW3rhmcHr9ie8dChQ47nh0w00M9m3dYMW0SCV2xNBp7AF7Y009t7aWCLyJtvvlnlE2z/hWfGFpDJtrvDtlN2wD2mTZs2aGu0oeB2udqxY4fagg3fwXdHjx4dPeecc6L//Oc/j9oODVspwga2kfz4xz8era+vH7TdHbbg+ta3vqW2S8Q1sIf0v//7v6f0MZPvYXu+j3zkI2rbM5QPaIBnef755wddh3+fcsop0fz8fOXbz3/+8+gNN9ygfLQCz5+4zV6yuJiszKTzTJnky1Rl2w7QENtT4vpx48YpP/VvxrJly1LGGw1sP7d48WJ1j0mTJkVvuukmtdWqXdyDLigz8PW0005T2y/i3tbt7jKJZZlsd2f3W5VsO0o/YxO2u8SzInYiD0KXCy64ILp69epB10EnbI+J++DA9ciPW7ZsGVK3RI4AbNs3f/78+NaOsvWdQJA5QvifXYNfIBAIOAHbtWGUDiMPAkEiMCUXo5YYafVjNC7IwIg73pG/5ZZb1MiqwHtgVHQk2zhmE/CKyTe/+U21LgtmEZgOiU0CgSBdyDv2AoHACGBfXjTaXnvtNb8fRSDIKmC6MqYyJ+5jLnAHeI/bCjTmsV0gXjHh7ivesX/88cfVuivSqBcIBILMIO/YCwQCI4DV8YeznZRAYDrQoJdGvXfAO9/Ywg+fWL0f701j//abbrqJuAELsSE2Y8s9LEKIhVbxLnuqxVQFAoFAYA9p2AsEAoFAIBAEBFiw7KmnnqLa2lq11/jpp5+uVjrHKDY3YCV3LOKHhjwWqMPil7/97W+PWmxRIBAIBEND3rEXCAQCgUAgEAgEAoEgiyHv2AsEAoFAIBAIBAKBQJDFkIa9QCAQCAQCgUAgEAgEWQx5xz4NRCIR2r9/P5WWllIoFHJfFYFAIBAIBAKBQCAQGI1oNEptbW00adIkCodTj8lLwz4NoFE/depUp/QRCAQCgUAgEAgEAoEgLezdu5emTJmS8hpp2KcBjNRrQsvKytJjX2CL/v5+WrVqFZ122mmUmyvZL9shevKC6MkLoicviJ68IHrygujJC/0Baq+0traqAWbdHk0FaVmlAT39Ho16txr22OalurqaZs+eTTk5Oa7YCIJNFJTi4mLFo1cFxRRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0HEjDx3ReB5fF8wICvDMxffr0Id+dyHabfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Aw75KOM2AcE6IUpKChgb9MPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeIYd85Nv1kWXAFIzNmzerT842/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6DngkI/SsA8IMPUC71V4PbXFa5t+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDvkI1+GshB+ZFjOhcREbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Aw74CN/lrIEkUiEtm3bpj452/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBnxCEfpWEfoF6auXPnej61xWubfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Aw75CNfhrIQfvREce79MpFb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9Iw74KA37AIlZXV3t+dQWr236AVO4FT15cSt68uJW9OTFrejJi1vRkxe3oicvbk3QM+KQj7427F9++WW6+OKLadKkSWr/vj/96U/xv/X19dHNN99MJ554IhUXF6trPvOZz9D+/fsH3aOxsZGuvPJKKisro4qKCvrCF75A7e3tg65Zt24dvfvd76bCwkKaOnUq3XfffRQ05OTk0LHHHqs+Odv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ45DPvrasO/o6KCTTjqJli5detTfOjs7ac2aNXTbbbepzz/+8Y+0ZcsWuuSSSwZdh0b9hg0b6LnnnqNnnnlGdRZcc8018b+3trbSBz7wAZo+fTqtXr2a7r//fvre975HTzzxBAUJ0WiUenp61Cdnm37AFG5FT17cip68uBU9eXErevLiVvTkxa3oyYtbE/SMOuSjrw37Cy64gO6880669NJLj/pbeXm5aqx//OMfp2OOOYYWL15MP/3pT1XjfM+ePeqaTZs20bPPPks///nPadGiRXTmmWfSI488Qr/97W/jI/u/+c1vqLe3l37xi1/Q8ccfT5dffjl9/etfp4ceeoiCBEy92L17t+dTW7y26QdM4Vb05MWt6MmLW9GTF7eiJy9uRU9e3IqevLg1Qc+IQz7mUhahpaVFTdnHlHvgjTfeUOnTTjstfs373vc+taLg8uXLVYcBrjnrrLMoPz8/fs15551H9957LzU1NVFlZeVRdtBjgsM66g/09/erwy3MmjVL9dS4acNvmwMDA8oePr2ECdz6YVP0dBeiJx9u/bAp5dNdiJ58uPXDppRPdyF68uHWlPI5K4mPmficNQ377u5u9c79Jz/5SfU+PVBbW0tVVVWDrsvNzaXRo0erv+lrZs6cOeia8ePHx/9m17C/++67acmSJUedX7VqlXrf3w1ASPTSoFMCnRdewA+bsNfW1kYrVqzwbNsKU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAzmsJHvLrOqmGPhfQwJR9OP/roo67bu/XWW+n6668fNGKPRfcwM0B3KjgNiLlr1y6aMWOGZw1eP2yi52vlypW0YMECzxbBMIVb0ZMXt6InL25FT17cip68uM1WPVE/xtpRwLe+9S3Ky8tLeb0p3GarnpnCFG5N0DOSwkc9c5xFw1436vHewQsvvDCoYT1hwgSqr68/aroCVsrH3/Q1dXV1g67R/9bXJKKgoEAdicBsABxuYd68ea7dO0g20ROFQuIml6ZyK3ry4lb05MWt6MmLW9GTF7fZqCcaA3qxrXTvYwq32ajncGAKtyboOS+Jj5nYD2dDo37btm30z3/+k8aMGTPo76effjo1NzerBfU00PhHoMNievoarJSPe2lgUT4syGc3Dd8vIDBjmz6vV5n02qYfMIVb0ZMXt6InL25FT17cip68uM02PbEoNA5r3RZpfd50brNNz+HCFG5N0DPqkI++NuzhwNq1a9UB7Ny5U6Wx6j0C1Ec/+lH1XjtWtseUCLwTj0MHreOOO47OP/98uvrqq9U7EK+99hp97WtfUyvfY9974IorrlAL52F/e2yL97vf/Y5+8pOfDJpqHwRASMw+8LqgeG3TD5jCrejJi1vRkxe3oicvbkVPXtxmm55YCwrHAw88ED+HtD5vOrfZpudwYQq3JugZdchHX6fio9F+zjnnxP+tG9tXXXWV2mv+L3/5i/r3ySefPOh7L774Ip199tkqjUY/GvPnnnuueifhsssuo4cffnjQtnn/+Mc/6Ktf/SqdeuqpNHbsWLr99tsH7XUfBODZsRoid5t+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDvko68NezTOU/VMpNNrgRXwn3zyyZTXvOMd76BXXnmFggz4itUXS0tLPV1l0mubfsAUbkVPXtyKnry4FT15cSt68uI22/TEIs8AZrfqUfsbb7xxyMXzTOE22/QcLkzh1gQ9ow75GOh37E0CBG1qavJ8aovXNv2AKdyKnry4FT15cSt68uJW9OTFbbbpiVdMcVgb8kjr86Zzm216DhemcGuCnlGHfAz8qvimAFMwpk+fzt6mHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPcMO+Sgj9gEBemiwwr/XPWBe2/QDpnArevLiVvTkxa3oyYtb0ZMXt9mqJ0bn77jjDnWkGqk3jdts1TNTmMKtCXpGHfJRGvYBe7fC64LitU0/YAq3oicvbkVPXtyKnry4FT15cSt68uJW9OTFrQl6Rh3yUabiB2gKxtSpU9nb9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtyaoGfYIR9lxD4giEQi1NjYqD452/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBnxCEfpWEfIHR1dRlh0w+Ywq3oyYtb0ZMXt6InL25FT17cip68uBU9eXFrgp5dDvgoU/EDNAVj8uTJ7G36AVO4FT15cSt68uJW9OTFrejJi1vRkxe3oicvbk3QM+yQjzJiHxBg6kVDQ4PnU1u8tukHTOFW9OTFrejJi1vRkxe3oicvbkVPXtyKnry4NUHPiEM+SsM+QOjr6zPCph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD37HPBRpuIHaArGxIkT2dv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ9ghH2XEPiDA1Iv6+nrPp7Z4bdMPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeEYd8lIa9QCAQCAQCgUAgEAgEWQyZih+gKRhVVVXsbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAz7JCPMmKfAfT0CHymk45GoynTAwMD8TQWTNi/f7/6uz6PIzENpEpr+8nS1mfs7++nmpqa+DmnfbJLJx5O+2SXxgE/4a9bPiWm8X3oqRfCcNonuzT8O3DggPp0wye3dUo378E/XVa88gnndFlxwye7tM63+nm80mmk/mWa93Ag36KseJX3rGXFq7inY7z22avyZH1et+OeXVnxIkYklhUv4p6O8fp3xe2451cs12VF++yFT3b1ISd9sksPpz7khE7aB69+cxPzrRd5D0eq+pAbMSJZjPe7PDkdI5LVh9z0KVl9yM24lxjjs02niANxL11Iwz4Fli5dSvPnz6cFCxaof+PdBwDbEeAA6urqqLGxUaURRJqbm1UaGbClpUWl9+7dS21tbSq9a9cu6ujoUOmdO3dSd3e3Su/YsSNud9u2bfFghLQOUkgDvb29VF1drdL4Pu4D4L64PwB7sAvgOfA8AJ4Pzwngudvb213zCc+IZ030qbOz01Wf8PyJPsFPN32y08mqqxs+2emUl5fnqk+JOu3evVuloalbPtnppCslbvhkpxPyT1NTk6s+2emEe7jlUzKdcJ/a2lrXfLLTCfl2+/btnsU9xHLY9DLuwb/c3FxP497BgwfjlWmv4h6ug123fEqmE+7jVdzTPqHCpWOgF3FP/17v2bPHk7infUJZ8TLuIa0rsl7FPTyffhav4p7+7fQq7mmf8F2v4p72CaORiIFu+WSnE/Itfsu8invaDy/jHu6hn9GruIc8q5/Fi7hnLZew7YZPHUl00p1SQYh76SIUzaQbwFC0trZSeXm5qthXVFTEe2AQqFKlQ6GQOpKlkWFwbbI0oAOiTufk5MR7kOzSOHB9snS6z+6WT8icy5cvp0WLFqlKLgefOOqUrk8IPKtWraKFCxeqcxx84qhTuj7humXLlik98/PzWfjEUad0nx3lc8WKFbR48eK47Wz3iaNO6fqE54SeGGxAo4WDTxx1StcnfCLeWutD2e4TR53S9claH8LfOfjEUadImj45UR9yyid06qL9ic6BsrIySgUZsc8A1opROmkIkiqNzKTT+NRTMPR5HIlpfW2ytLafLG19Rt2jpDO/0z7ZpRMPp32yS8M/3cvmlk+JadiEnlZ9nfTJLg3o3lI3fHJbp3TzHqDLilc+IcjrsuKGT3Zp2MJoA2x7qdNI/cs078E/5NvEuOBm3rOWFS/jHvIt/PWyPFmf1+24p8sK8q0uK17ECB3jdVnxIu7pGK/hdtzzK5brsqIrvV74ZFcfctInu/Rw6kNO6ORl3LOWFQ0v8h7yTqr6kBsxQudb67+DUJ6cjhHJ6kNu+pSsPuRm3EuM8dmmU9iBuJcujuQMge8oKioywqYfMIVb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9ixzwUVbFDwjQazN69Gj2Nv2AKdyKnry4FT15cSt68uJW9OTFrejJi1vRkxe3JugZdshHGbEPCDD1Agsq6HcyuNr0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ8QhH6VhHxDg/YnS0tKM3qPIRpt+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDnko0zFDwggJFY85G7TD5jCrejJi1vRkxe3oicvbkVPXtyKnry4FT15cWuCniGHfJQR+4AAUy+wH67XU1u8tukHTOFW9OTFrejJi1vRkxe3oicvbkVPXtyKnry4NUHPiEM+SsM+QD01lZWVnk9t8dqmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPUMO+ShT8QMCCFlWVsbeph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD1DDvkoI/YBAaZe7Nixw/OpLV7b9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtyaoGfEIR+lYR+gnpqqqirPp7Z4bdMPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeIYd8lKn4AQGELCkpYW/TD5jCrejJi1vRkxe3oicvbkVPXtyKnry4FT15cWuCniGHfJQR+4BgYGCAtm/frj452/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqDngEM+SsM+IAiHwzR58mT1ydmmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPcMO+ShT8QM0BaOoqIi9TT9gCreiJy9uRU9e3IqevLgVPXlxK3ry4lb05MWtCXqGHPKRb9dHlgFTL7Zu3er51BavbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdBzwCEfpWEfEGDqxfTp0z2f2uK1TT9gCreiJy9uRU9e3IqevLgVPXlxK3ry4lb05MWtCXqGHfJRpuIHaApGQUEBe5t+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDnkI9+ujywDpl5s3rzZ86ktXtv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3Jqg54BDPkrDPiDA1IvZs2d7PrXFa5t+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDvkI1+GXEAkEol/ppOORqMp0+iVsaYxDcN6HkdiGkiV1vaTpROf0eqbGz4lphMPN3yyS6fSzwmf7HSCnm76ZJdGQHDTJ7d1Sjfv6bLipU8abvlkl9bP6qVOI/VvOHkP+dbrvKfLildxT8d4r8uT9Xm9iHvWPOtljND3cssnuzT09DLu+RXLUVa89imxPuS0T3Y6aXipk/bBy99cq79e5b1U9SG3YoRdjA9CeRqJT3Zpu/qQ2z5peBn3rLazUafoCONeupCGfQosXbqU5s+fTwsWLFD/rq+vV58NDQ3qAOrq6qixsVGlDxw4QM3NzSpdU1NDLS0tKr13715qa2tT6V27dlFHR4dK79y5k7q7u1W6urpaTcGAyNu2baP+/v54Gp/4N9JAb2+vuh7A93EfAPfF/QHYg10Az4HnAfB8eE7tx1tvvaXu75ZPeFbA6lNnZ6drPuG58fxWnWALfmr/3PApUSekoadbPtnp1NTUpGzv27fPFZ/sdNq9e7dKQ1M3fLLTac+ePbRhwwb1bG74ZKdTa2srrV69Wn3XDZ/sdIKtVatWKW7d8CmZTrhPbW2tKz7Z6YQ0nhurwXoR9/Dc8A/3RUz3Ku7BPxz4mxdxDzh48CD19fW55pOdTvjOypUr1Xkv4h6+A1tr1qyJ++d23MN9cM3GjRs9i3u4d3t7ezwGehH34BNs4Tt4Ji/invZp06ZN6pm9inv4/XzzzTfVPb2Ie9onxHev4h6eH/dft25dvD7rdtzT6S1btqj454ZPdjohDdv79+/3JO7hOu2HV3EPQH1v/fr16nm8iHsA4hDqJrjei7gHG7o+pGOg23Fv72Gf0KhGHnLDp0zjXroIRTPpBjAUqNSXl5erwF9RURHvgdG9gcnS6HnRPfp2aWQYXIu0Fi0nJyfe0wgkpvF33YNkl8ahe9ft0tZnhH38Ozc3N94b5KRPdmn4uXz5clq0aJGy67RPdmnNL85pfp30yU4nzS+g+XXSJ7u0tSjrZ3TSJzttEHgQbBcuXKjOOe2TnU6691I/g9M+2emEc7gPtASc9skuDaBRBps6Pznpk10a1y1btkzpmZ+f77hPdtroUWytqdtxL7GswL7bcQ/Q8UA/m9txD2mUzxUrVtDixYvjz+Fm3NPxFfE2Ly/vKP3ciHvWGK9jkNtxzxrj8f1U/jkZI2APemKwAfy6Hfeso1U6Jrkd95LVh9yMe8OtD420POET8dZaH3Iz7qVTH3IjRlhnttjVh9yIEclivFtxL7E+pPl1M+7pPGRXH3Ir7uk8Y1cfcivu6dhjjfFux72oQ/Uhp+IeOjTQ/kTnQFlZGaWCrIqfAawVo8Rzw0nrSqxOW0VNdg2gKxJ2aV0AkqUTn8Wa8dzwye7ZrYcbPiWmrT/Sbvhkl9aBQQc+p32yS8Me8hBsDnWf4fhk54c1re/vpE/J0rqsuO2T1Q8Nt3xKTFt/pN3yKTGtf2ScjnWpdIKfupKQylcnY0QmZcXJGAGbiWXFrbin08P1byTlyfq8bsc9a4z3Mu4ldkZ5Efesv9fDiQtD+WTnh463TpWVdPNeuvWh4fiUTCen60Pp5D27+pCTPjldHxpOeRqqPuRGjBhujHe7PLkRI+zqQ277pOFF3LOL8V7oFPGgPpRu3LNyPhSO3FHgK/TUC/3DwtWmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPSMO+Sgj9gEBemSOPfZY9jb9gCncip68uBU9eXErevLiVvTkxa3oyYtb0ZMXtybomeOQjzJiHxBgmklPT8+g94I42vQDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBn1CEfpWEfEGDqBVYY93pqi9c2/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6BlxyEeZih+gKRjz5s1jb9MPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeOQ75KCP2AQGmXnR1dXk+tcVrm37AFG5FT17cip68uBU9eXErevLiVvTkxa3oyYtbE/SMOuSjNOwDAky9qKmp8Xxqi9c2/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6BlxyEeZih+gKRhz5sxhb9MPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeOQ75KCP2AQGmXrS3t3s+tcVrm37AFG5FT17cip68uBU9eXErevLiVvTkxa3oyYtbE/R0ykdp2AcEELK+vt7zguK1TT9gCreiJy9uRU9e3IqevLgVPXlxK3ry4lb05MWtCXpGHfJRpuIHBOFwmGbNmsXeph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD3DDvkoI/YBAXpoWltbPe8B89qmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPaMO+SgN+4AAQjY1NXleULy26QdM4Vb05MWt6MmLW9GTF7eiJy9uRU9e3IqevLg1Qc+oQz7KVPwATcGYPn06e5t+wBRuRU9e3IqevLgVPXlxK3ry4lb05MWt6MmLWxP0DDvko4zYBwTooWlubva8B8xrm37AFG5FT17cip68uBU9eXErevLiVvTkxa3oyYtbE/SMOuSjNOwDAgjZ1tbmeUHx2qYfMIVb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9ow75KFPxAzQFY+rUqext+gFTuBU9eXErevLiVvTkxa3oyYtb0ZMXt6InL25N0DPskI8yYh8QRCIRamxsVJ+cbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAz4pCP0rDPkHT9mU5aT6dIlh4YGBiU7uzsHHQeR2IaSJXW9pOlE5+xo6PDVZ8S04mHGz7ZpeGnmz7Z6QQ93fTJLt3V1eWqT27rlG7e02XFS590WXHLJ7s0bHqt00j9G07eQ771Ou/psuJV3NMx3uvyZH1eL+JeYlnxKkZYy4pXcQ96ehn3/IrlKCte+5RYH3LaJzudMq0POaGT9sHL31xrvvUq76WqD7kVI+xifBDK00h8skvb1Yfc9smuPuR2jBiqPhR0naIjjHvpQhr2KbB06VKaP38+LViwQP27vr5efTY0NKgDqKurUz0swIEDB9TCB0BNTQ21tLSo9N69e9V7E8CuXbviBWLnzp3U3d0dT48bN05Nxdi2bRv19/crwZHGJ/6NNNDb20vV1dUqje/juzrT4/4A7MEugOfA8wB4PjynTufm5iqbbviEZ8SzAlaf9I+KGz7hufH8Vp3gH/zUfrjhU6JOsAk9tR9O+2SnE/a/nDx5skq74ZOdTrt371ZpaOqGT3Y6IV1WVqY4dsMnO510xxBsuuGTnU6w1dPTE/fDaZ+S6YT71NbWuuKTnU6wh3yr027HPTz3wYMHlU2kvYp7OD9x4sS4f077ZKcT/Ozr63PNJzudkEaFGvnXi7iH78CWvq8bPtnpBJsVFRW0Z88eV3yy06m9vV2lYdOLuAef8AwoKzrttE92OuF3ZcyYMYpjr+Iefj9hD4cXcU/7hN9Or+Ienh/+5efnx/1wO+5pP8aPHx/3w+24h3O4DvlWp532yU4nL+t71vpsSUmJ0tWLuAcgvuN3BTa9iHuwAVuwCdtu+NSRRCc0qvfv3++KT5nGvXQRimbSDWAoEPDLy8vV/oL4Idc9MCA/VToUCqkjWRoZBtcijQyLDABRIYmuqOjGhE7n5OTEe5Ds0vq7ydLWZ0RGQQYcO3Zs3FcnfbJLw+by5ctp0aJFqrHttE92aQCFbvTo0XGbTvpkpxP+fujQIZVf8vLyHPfJLo0DeQg2Ycdpn+y0QeBZtWoVLVy4UJ1z2ic7nZCHUBZRVgCnfbLTCfeAnigruKfTPtmlYQP5Fn7ieZz2yS6N65YtW6b0ROXPaZ/stAGgJ2IsyqfbcS+xrOjKvJtxD0C+hU3EIcDtuIc0yueKFSto8eLF8edwM+7pfGotK27HPWuM12XF7bhnjfGVlZUq37od95DGc0JPDDbgd8XtuKdHtJBv4Sfu63bcS1YfcjPuDbc+NNLyhE/EW2t9yM24p2HNt27HPX1PcJusPuRGjEgW492Ke4n1Ifzd7bin861dfcituGcX492Oe+nWh5yOEREH6kNOxT106iIvo3MAA1upIIvnZQBrxSjx3HDSyEzWtO6RSTyfmIbQydI4UqUTn0VXrN3yye7ZrYcbPiWmdYVouPoN5ZNdGjahp1s+JUvrXtSh7jMcn+z8sKb1/Z32yS6ty4rbPln90GXFLZ8S07pSrW254VNiWv/IOB3rUukEm8i3ujPKaZ+GKitO+JquNsi3iWXF7Rgx3Lw6kvJkLStexD0d472MezrGexn3rBXF4cSFoXyy8wO2UFbcjguJOqVbHxqOT8l0cro+lE7es6sPOelT4rMk5lsv4t5Q9SG3YsRwYrzb5cmNGGFXH3LbJ7v6kJt1o5HUh4arkxf1oXTjnn62dCAN+4AA4mKaJnebfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Aw75OORrgKBr0DPEN7ht06X4mjTD5jCrejJi1vRkxe3oicvbkVPXtyKnry4FT15cWuCnhGHfJSGvUAgEAgEAoFAIBAIBFkMmYofEGAKRlVVFXubfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Aw75KOM2AcEmHqBrRG8ntritU0/YAq3oicvbkVPXtyKnry4FT15cRt0PbHi+pIlS9Sht8EaDkzhNuh6OgVTuDVBz4hDPkrDPkDANiAm2PQDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBnngM+ylT8AE3BsO6fytWmHzCFW9GTF7eiJy9uRU9e3IqevLgNqp56dB5bt2lY09hfOxOYwm1Q9XQapnBrgp5hh3yUEfuAAFMvampqPJ/a4rVNP2AKt6InL25FT17cip68uBU9eXEbVD3vvvtudTzwwAPxc0jr85nCFG6DqqfTMIVbE/SMOOSjNOwDhKKiIiNs+gFTuBU9eXErevLiVvTkxa3oyYtb0ZMXt6InL25N0LPIAR9lKn6ApmCMHj2avU0/YAq3oicvbkVPXtyKnry4FT15cRtUPW+99db49Hs9an/jjTcO+11cU7gNqp5OwxRuTdAz7JCPMmIfEGDqxd69ez2f2uK1TT9gCreiJy9uRU9e3IqevLgVPXlxG1Q98Q49DmtDHml9PlOYwm1Q9XQapnBrgp4Rh3yUEfuAIBQKUWlpqfrkbNMPmMKt6MmLW9GTB7dY/Eq/C3vttddKvHUBUj7dgyncSrzlxa3oyYtbE/QMOeSjNOwDAghZUVHB3qYfMIVb0ZMXt6InP27Ly8tZV0xMKitSPnlxG3Q9MTp/xx13jPg+pnAbdD2dgincmqBnyCEfZSp+QICpF7t37/Z8aovXNv2AKdyKnry4FT2zm1uM1OPQW1PhR3vXrl3U3d0d38KKI0wpK1I+eXErevLiVvTkxa0JekYc8lFG7AMCVPoqKys9n9ritU0/YAq3oicvbkXP7OY2cSuqaDRK//M//6Ma9oATo29BhCllRconL25FT17cip68uDVBz5BDPkrDPiCAkGVlZext+gFTuBU9eXErevLjVjfqOcOUsiLlkxe3oicvbkVPXtyaoGfIIR99nYr/8ssv08UXX0yTJk1SDv3pT386aoTj9ttvp4kTJ6q9/d73vvfRtm3bBl3T2NhIV155pSID7yZ84QtfoPb29kHXrFu3jt797ndTYWEhTZ06le677z4KGjD1YseOHZ5PbfHaph8whVvRkxe3omd2c4ttqnBgayoAv3Gf+MQn6Oabb45vYcURppQVKZ+8uBU9eXErevLi1gQ9Iw756GvDvqOjg0466SRaunSp7d/RAH/44Yfpscceo+XLl1NxcTGdd955g0Y90KjfsGEDPffcc/TMM8+ozoJrrrkm/vfW1lb6wAc+QNOnT6fVq1fT/fffT9/73vfoiSeeoCABlb6qqirPp7Z4bdMPmMKt6MmLW9Ezu7lN3KYKHdXjx4+ngoKCYW1TlS0wpaxI+eTFrejJi1vRkxe3JugZcshHX6fiX3DBBeqwAypBP/7xj+m73/0ufehDH1Lnfv3rX6uKEUb2L7/8ctq0aRM9++yztHLlSjrttNPUNY888ghdeOGF9MADD6iZAL/5zW/UQkW/+MUvVGXq+OOPp7Vr19JDDz00qAPAb0DIkpIS9jb9gCncip68uBU9+XGLzmnOFROTyoqUT17cip68uBU9eXFrgp4hh3wM7Dv2O3fupNraWjX93rpV0KJFi+iNN95QDXt8Yvq9btQDuD4cDqsR/ksvvVRdc9ZZZw0aIcGo/7333ktNTU1qoYJE9PT0qMM66g/09/erww1g6gVWTJ4xY4Z6fi/gh82BgQHVaYNPr2AKt6InL25FTx7c4v7f+c53RE8XIeVTuM3GPCT1IfcgevLi1gQ9Iyl8zKTtGdiGPRr1AEborcC/9d/wiWkLVuTm5tLo0aMHXTNz5syj7qH/Ztewx2rGS5YsOer8qlWr1IiLG0Dmgaj19fWejej4YRP22traaMWKFZ4VTlO4FT15cSt68uJW9OTFrejJi1vRkxe3oicvbk3QM5rCR7y6nvUNez+BhY2uv/76QSP2WHQPMwO4r8roNtDzhVcnFixYQDk5OX4/jmCEED15QfTkBdGTF0RPXhA9eUH05IWBALVX9MzxrG7YT5gwQX3W1dWpVfE18O+TTz45fg16NhKnK2ClfP19fOI7Vuh/62sSgcWNcCQCswFwuJWBqqurafbs2Z5lID9sAuiJgj23uDSVW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPQdS+JiJfV9XxU8FTJ9Hw/v5558f1GOBd+dPP/109W98Njc3q9XuNV544QU1lQHv4utrsFJ+X19f/BqsoH/MMcfYTsP3C5jmgZX7vZqe7pdNP2AKt6InL25FT17cip68uBU9eXErevLiVvTkxa0JeoYd8tFXhrDfPFaox6EXzEN6z549qpfkG9/4Bt155530l7/8hd5++236zGc+o1a6//CHP6yuP+644+j888+nq6++Wr0D8dprr9HXvvY1tbAergOuuOIKtXAe9rfHtni/+93v6Cc/+cmgqfZBAPzFLAGvt4/w2qYfMIVb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9Qw756GvDHovRnXLKKeoA0NhG+vbbb1f/vummm+i6665T29LhHQd0BGB7u8LCwvg9sJ3dscceS+eee67a5u7MM88ctEc9VtL/xz/+oToNTj31VLrhhhvU/YO01Z2egrF582ZPV4v3w6YfMIVb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9BxzyMRTFMnyClMArAOggaGlpcW3xPMiA9QHwHoWXq0x6bRP28DoFXpXw6h17U7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAzmsLHTNqhfF9WyEL48e4I5/dVTORW9OTFrejJi1vRkxe3oicvbkVPXtyKnry4NUHPsAM+8mcpS4AF/7Zt26Y+Odv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ8QhH6VhH6Bemrlz53q+yqTXNv2AKdyKnry4FT15cSt68uJW9OTFrejJi1vRkxe3JugZdshHvgxlIfzoieLc+2Uit6InL25FT17cip68uBU9eXErevLiVvTkxa0JekYc8FEa9gESs7q62vOpLV7b9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtyaoGfEIR+9WZZcMCRycnLUtn3cbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAzxyEfZcQ+IMA2Bz09PeqTs00/YAq3oicvbkVPXtyKnry4FT15cSt68uJW9OTFrQl6Rh3yURr2AQGmXuzevdvzqS1e2/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBnxCEfZSp+gKZgzJs3j71NP2AKt6InL25FT17cip68uBU9eXErevLiVvTkxa0JeuY45KOM2AcEmHrR1dXl+dQWr236AVO4FT15cSt68uJW9OTFrejJi1vRkxe3oicvbk3QM+qQj9KwDwgw9aKmpsbzqS1e2/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBnxCEfZSp+gKZgzJkzh71NP2AKt6InL25FT17cip68uBU9eXErevLiVvTkxa0JeuY45KOM2AcEmHrR3t7u+dQWr236AVO4FT15cSt68uJW9OTFrejJi1vRkxe3oicvbk3QM+qQj9KwDwggZH19vecFxWubfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Iw65KNMxQ8IwuEwzZo1i71NP2AKt6InL25FT17cip68uBU9eXErevLiVvTkxa0JeoYd8lFG7DOAXtAAn+mkda9LsvTAwEA83d/fTy0tLerf+rxdGkiV1vaTpa3PiO81NzfH/+60T3bpxMNpn+zSuBZ+6nu64ZNdGnpCVzd8skvj/q2trYOe0Umf3NYp3bwHm7qseOUTPnVZccMnu7TOt9by6oVOI/Uv07yHvyHfoqx4lfesZcWruKdjvLbvVXmyPq/bcc+urHgRIxLLihdxT8f4ofxzM0Y47ZOdH7qsjNSPTHyyqw856ZNdejj1ISd00j549Zs7VH3IjbyH76SqD7kRI5LFeL/Lk9MxIll9yE2fEmO8F3EvMcZnm04RB+JeupCGfQosXbqU5s+fTwsWLFD/xhQJoKGhQR1AXV0dNTY2qvSBAwdUxgOwsiEEAvbu3UttbW0qvWvXLuro6FDpnTt3Und3t0pXV1fTwYMHlXjbtm1TAkNwpPGJfyMN9Pb2qusBfB/3AXBf3B+APdgF8Bx4HgDPh+cEDh06RHv27FE23fIJzwpYfers7HTNJzw3nt+qE/yDn/DXLZ8SdYJN6OmWT3Y6NTU1qWPfvn2u+GSn0+7du1Uamrrhk51O0BJ/A8du+JRMpx07dsQr8077ZKeTjgXY/sQtn+x0wn1qa2td8clOp56eHpVvvYp72ifYRBn1Ku4hjfv39fV5EvcA+Ad7bvqUqBP03Lp1q8q/XsQ9XcGEHe2f23EP94FNPItXcQ/3xvuXOgZ6FfdgC2UFz+RF3NM+6SmpXsU9+IhrYNOLuKd9wm+nl3EP/uFaxAa3fErUCQ0T1L+8ins4B3vQ1Ku4h+u0H17FPQD1vf3798d1dTvuaZ+2b9+ubHoR92ADtmDTq7i397BPyLvg1w2fMo176SIUzaQbwFCg16+8vFwFiYqKingPDKZNpEqHQiF1JEsjw+DaZGkA11vTWDVR9yDZpXHg+mTpdJ/dLZ+QOZcvX06LFi2i3NxcFj5x1CldnxB4Vq1aRQsXLlTnOPjEUad0fcJ1y5YtU3rm5+ez8ImjTuk+O8rnihUraPHixXHb2e4TR53S9QnPCT0x2JCXl8fCJ446pesTPhFvrfWhbPeJo07p+mStD+HvHHziqFMkTZ+cqA855RM6ddH+ROdAWVkZpYKM2GcAa8UonTQESZVGZrKe11Mw9HkciWkgVVrbT5a2PiPOo9NCZ2anfbJLJx5O+2SXhn/w0/q8TvuUmIZN6Gl9Xid9SuYHegf1czjtk9s6pZv38KnLilc+AbqsuOGTXRq2dK+ulzo5kQ8zyXsA8q2+xou8Zy0rXsU9HeOtfntRnryMexp6hMWrGKFjvIYXcU/HeGtccjPu+RXLdVnRdr3wya4+5KRPydKZ1oec0En74NVv7lD1ITfyHpCqPuRW3LOL8X6XJ6djRLL6kJs+JasPuRn3EmN8tukUdiDupQtp2AcEuhKPT842/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6Bl1yEdZFT8gQE/N1KlT2dv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ9ghH2XEPiDAexZYcEG/k8HVph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD0jDvkoDfsAQa9+zd2mHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPbsc8FGm4gdoCsbkyZPZ2/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBn2CEfZcQ+IMDUC+yD6PXUFq9t+gFTuBU9eXErevLiVvTkxa3oyYtb0ZMXt6InL25N0DPikI/SsA8Q+vr6jLDpB0zhVvTkxa3oyYtb0ZMXt6InL25FT17cip68uDVBzz4HfJSp+AGagjFx4kT2Nv2AKdyKnry4FT15cSt68uJW9OTFrejJi1vRkxe3JugZdshHGbEPCDD1or6+3vOpLV7b9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtyaoGfEIR9lxF4gEAgEAoFAIMgi9Pb20t13363St956K+Xn5/v9SAKBwGdIwz5AUzCqqqrY2/QDpnArevLiVvTkxa3oyYtb0ZMXt6InL25FT17cmqBn2CEfZSp+QICpFwcOHPB8aovXNv2AKdyKnry4FT15cSt68uJW9OTFbTbpiZF6HNaFtpDW51PBFG6zSc+RwBRuTdAz4pCPMmIfIOTl5Rlh0w+Ywq3oyYtb0ZMXt6InL25FT17cZoueevq9FQ888EA8fccdd6T8vincZoueI4Up3JqgZ54DPkrDPkBTMMaOHcveph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD3DDvkoU/EDAky9qKmp8Xxqi9c2/YAp3IqevLgVPXlxK3ry4lb05MVtNumJhfJw3HjjjfFzSOvzqWAKt9mk50hgCrcm6BlxyEcZsQ8QioqKjLDpB0zhVvTkxa3oyYtb0ZMXt6InL26zRU+71e8xhTfdVfFN4TZb9BwpTOHWBD2LHPBRGvYBmoIxevRo9jb9gCncip68uBU9eXErevLiVvTkxa3oyYtb0ZMXtyboGXbIR5mKHxBg6sXevXs9n9ritU0/YAq3oicvbkVPXtyKnry4FT15cZuNemKEHgvl4Uh3tN4UbrNRz+HAFG5N0DPikI/SsM+QdP2ZTjoajaZMDwwMDDpfUlJCoVAofh5HYhpIldb2k6Wtz4jzxcXFyqYbPtmlEw+nfbJLwz/4aX1ep31KTMMm9LQ+r5M+JfOjtLQ0/hxO++S2TunmPXzqsuKVT4AuK274ZJfW+VbDK52cyIeZ5D0A+VZf40Xes5YVr+KejvFWv70oT17GPbuy4kWMSCwrXsQ9HeOtccnNuOdXLNdlRdv1wie7+pCTPiVLZ1ofckIn7YNXv7mJ+daLvAekqg+5FffsYrzf5cnpGJGsPuSmT8nqQ27GvXTqQ0HWKeJA3EsX0rBPgaVLl9L8+fNpwYIF6t/19fXqs6GhQR1AXV0dNTY2qjT2H2xublZpLIDQ0tKi0uiBaWtrU+ldu3ZRR0eHSu/cuZO6u7tVeseOHTRq1Cgl6LZt26i/v1+JjDQ+8W+kAexTWl1drdL4Pu4D4L64PwB7sAvgOfA8AJ4Pzwk0NTVRT0+PsumGT3hGvaeq1afOzk7XfMJz4/mtOsE/+Al/3fIpUSfYhJ7Q1Q2f7HTC9ysqKmj//v2u+GSn0+7du1Uamrrhk51O+/bto5ycHMWxGz7Z6dTe3q78gk03fLLTCbbwPeRdN3xKphPuU1tb64pPdjph/2Xk2+3bt3sS9/DciOWweejQIc/iHvwrKytTP9JexD3g4MGD8b2uvYh7AOzpuOtF3MN3YAv3b21tdcUnO51gE+816xjodtzDvRGHgD179ngS9+AT4i3KCrj1Iu7pdGFhoeLYq7iHdFdXVzzuuh33tE/47fQq7uH54R/KKGKfWz4l6qQbn4iBbvhkpxPqe8i3+C3zIu7hOu2HV3EPQH0PmuLwIu7pPKvjrhdxT9e98HfYdsOnjiQ64fcaHLvhU6ZxL12Eopl0AxgK/KCVl5fHA4XugcH7EKnSurAlSyPD4FodaCH8tGnTVBDEeQDXW9No0OgeJLu0/m6ytPUZkVHwow2bGk76ZJeGzeXLl9OiRYsoNzfXcZ/s0roiNGXKlLhNJ32y0wl/h83Jkyeryp/TPtmlcSAPwaZu+Drpk502CDyrVq2ihQsXqnNO+2SnU2K+ddonO51wD+g5ffr0eC+1kz7ZpWEDjQb4iedx2ie7NK5btmyZ0hNTO532yU4bAHpOmjRJlU+3415iWcE5t+MegHwLm1OnTlX/djvuIY3yuWLFClq8eHH8OdyMezqfWsuK23FPw1pW3I571hivf1fcjntI4zmhJwYb8LvidtzTI1rIt/AT93U77iWrD7kZ94ZbHxppecIn4q21PuRm3EunPuRGjNCNmWT1ITdiRLIY71bcS6wP4e9uxz27fOt23LOL8W7HvXTrQ07HiIgD9SGn4h46ddH+ROcABghSQRbPywDWilHiueGkkZniQuTmqkUT9A+n3TU6jWuSpXGkSifeW9vUf3fSp2TPbj2c9skujQICP/U9nfbJLq1t6oaK0z7ZpfHdysrKeKPeaZ/s/LCm9f2d9CnZs9vlWzd8sj77mDFjBuVdJ31KloZN/W+nfbJL6x8Zp2NdqryHsoJ8i7Kin8fNuJdpWXEqRugYr+077VOy9HD9G255Siwrbsc9AHnIWla8iHuJvytux73EimKqsjJcn+z8wHmUlZHkpUzTmdSHhuOTXdqN+lA6z25XH3LKJzfqQ8MpT0PVh9yKe8OJ8W6XJ6djRDr51mmfktWH3K4bDbc+NFydvKgPpRv3rNoOBWnYBwQQbaheGA42/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6BlyyMcjXQICX4GeIbyPbZ0uxdGmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPSMO+SgN+wD11FRVVWU03SIbbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAz5JCPMhU/IICQeiskzjb9gCncip68uBU9eXErevLiVvTkxa3oyYtb0ZMXtyboGXLIRxmxDwiw6iG2ArHuE8nRph8whVvRkxe3oicvbkVPXtyKnry4FT15cSt68uLWBD0HHPJRGvYBAVZA1NtycLbpB0zhVvTkxa3oyYtb0ZMXt6InL25FT17cip68uDVBz7BDPspU/ABNwSgqKmJv0w+Ywq3oyYtb0ZMXt6InL25FT17cip68uBU9eXFrgp4hh3zk2/WRZcDUi61bt3o+tcVrm37AFG5FT17cip68uBU9eXErevLiVvTkxa3oyYtbE/QccMhHGbEPCDD1Yvr06Z5PbfHaph8whVvRkxe3oqd33Pb29tLdd9+t0rfeeivl5+e7bpMrTCkroicvbkVPXtyKnry4NUHPsEM+SsM+QFMwCgoK2Nv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ8ghH/l2fWQZMPVi8+bNnk9t8dqmHzCFW9GTF7eip/vcdnV1qdH6vr6++N+QxjkcbtiUeOs8pHy6B1O4lfLJi1vRkxe3Jug54JCPMmIfEGDqxezZsz2f2uK1TT9gCreiJy9uRU/3ub3rrruO+tsDDzwQT99xxx2O25R46zykfLoHU7iV8smLW9GTF7cm6Bl2yEe+DGUh/MiwnAuJidyKnry4FT15cSt68uJW9OTFrejJi1vRkxe3JugZdsBH/ixlCSKRCG3btk19crbpB0zhVvTkxa3o6T63N910k1os78Ybb4z/DWmcw+GGTYm3zkPKp3swhVspn7y4FT15cWuCnhGHfJSp+AHqpZk7d67nU1u8tukHTOFW9OTFrejpDbdYsMaKvLw811bFl3jrDqR8ugdTuJXyyYtb0ZMXtyboGXbIR74MZSH86Ini3PtlIreiJy9uRU9e3IqevLgVPXlxK3ry4lb05MWtCXpGHPBRGvYBErO6utrzqS1e2/QDpnArevLiVvT0jluM0GOhPBxujNbb2eQKU8qK6MmLW9GTF7eiJy9uTdAz4pCPMhU/IMjJyaFjjz2WvU0/YAq3oicvbkVPXtyKnry4FT15cSt68uJW9OTFrQl65jjko4zYBwTRaJR6enrUJ2ebfsAUbkVPXtyKnry4FT15cSt68uJW9OTFrejJi1sT9Iw65KM07DOAnh6Bz3TSWpxk6YGBgXi6r6+Pdu3apf6uz+NITGvxk6W1/WRp6zP29/fHbbrhk1068XDaJ7s0DvgJf93yKTGtbUJXN3yyS8O/3bt3q083fHJbp3TzXmK+9cInnNM23fDJLo3PnTt3xp/HK51G6l+meQ8H8i3Kild5z1pW3I57+KFesmQJ3XnnnWqanfbZq/JkfV63457+O/KtvpcXMULHW23Li7iX+LvidtzzK5brsqJ99sInu/qQkz7ZpYdTH3JCJ+2DV7+5ifnWi7ynfz+T1YfciBHJYrzf5cnpGJGsPuSmT8nqQ27GvcQYn206RRyIe+lCGvYpsHTpUpo/fz4tWLBA/bu+vl59NjQ0qAOoq6ujxsZGlT5w4AA1NzerdE1NDbW0tKj03r17qa2tTaUhWkdHh0qj8tPd3R0/P2PGDDUVA9sd6GCktz7Av5EGent7VQURwPdxHwD3xX0A2INdAM+B5wHwfHhOfb6srEzZdMMnPCOeFbD61NnZ6ZpPeG48v1Un+Ac/9bO74VOiTrAJPfWzO+2TnU6417x586i2ttYVn+x0wg8nAE3d8MlOp/3799PEiRMVx274ZKcT/CssLFQ23fDJTifYys3NjVeGnPYpmU64D/KQGz7Z6YQfLeTbHTt2eBL38NzwAzabmpo8iXtYeb+qqopmzpypfqC9iHvAwYMH4/nHi7gHQE+s6ov860Xcw3dga9SoUdTe3u6KT3Y6webkyZPjfrgd93Bv7d+ePXs8iXvwCfEWZQW2vYh72r9p06Ypjr2KezhfUlKibHoR97RP+G3xKu7h+eFfZWWlin1u+ZSoE+LfrFmzVIx3wyc7nfAd5FvU272Ie7hO++FV3APwWz1+/HilqxdxT6exewxsehH3YAO2YFP74Xbc23vYJ/yeIQa64VOmcS9dhKKZdAMYitbWViovL1eBsKKiIt4Dg8pLqjSCGY5kaV0BQhqiQcSioiJ1jd7uIDENwXUPkl0aB65PlrY+I+wjY6NCpLOBkz7ZpeHn8uXLadGiRarR4rRPdmnYtzbMnPbJTieku7q61EJc8NNpn+zS+C7yEGzqZ3TSJzttYG/VqlW0cOFCdc5pn+x00qOgKCu4t9M+2emEc9ATZQVw2ie7NIB8Cz91eXXSJ7s0rlu2bJnSE/nIaZ/stMEn9NQVBbfjXmJZgX034h4a1Hq06sEHH1R/u/baa1XjAfZ1/nUr7iENH1esWEGLFy+O8+lm3NPx1VpW3I571hivy4rbcc8a4wsKClL652SMwHNCTww2oLy4Hff0eeQj+JnO8+Lae++9V527+eab1e9upuXJrj7kZtwbbn1opOUJn4i31vqQm3EvnfqQGzEC58BtsvqQGzEiWYx3K+4l1ofwd7fjns5DdvUht+KeXYx3O+6lWx9yOkZEHKgPORX30LGK9qcekE0FGbHPANaKUTppnRmTpZGZdBqf6BXSmUwLnZjW1yZLa/vJ0tZn1D1KOgM57ZNdOvFw2ie7NPzTvWxu+ZSYhk3oadXXSZ/s0oDuLXXDJ7d1SjfvAbqseOUTgrwuK274ZJfW+VZXMr3SaaT+ZZr34B/ybWJccDPvWcuKW3Hv7rvvpvvuu0816jV+//vfq3M4nPYpnWd3O+7ZlRUvYkRiWfEi7ukYr+F23PMrluuyoiu96T67/vdwfLKrDznpk116OPUhJ3TyMu5Zy4pVI7fzHvJOqvqQGzFC59vEfOh3eXI6RiSrD7npU7L6kJtxL536UJB1CjsQ99KFrIofEEC4OXPmsLfpB0zhVvTkxa3oyYtbVEgwNZ47TCkrUj4HQ08b1a9+JKYz2UZS9HQPpnAr5ZMXtybo6ZSP0rAPCFDpw3sWxcXFGfXMZJtNP2AKt6InL25Fz+zm9tZbb403bh544AGVxlR8TKOTeOsspHz6zy1mqCRC53vgjjvucNymk5B4y4tb0ZMXtyboGXXIxyNzOQS+C4pFPvQ0E642/YAp3IqevLgVPbObW4xQ4sC70AB+qLGQDv6dyehltsGUsiLlkxe3oicvbkVPXtyaoGfUIR9lxD4gwHsWWDWUu00/YAq3oicvbkVPXtzix3r69OmD3o3kCFPKipTPoWeo3HjjjfGOraBzK3ry4lb05MWtCXqGHfKRdw0ji4BKH1bf97oHzGubfsAUbkVPXtyKnjy4xeg8piHffvvtamVoibfOQ8qn/9wmzlAB9OyUTGeoiJ7uwRRu5feTF7cm6Bl1yEdp2AcEEBLb6XldULy26QdM4Vb05MWt6MmLW9GTF7eiJy9uRU9e3IqevLg1Qc+oQz7KVPwATcHANE3uNv2AKdyKnry4FT15cSt68uJW9Ew9QyXbuBU9eXErevLi1gQ9ww75KCP2AQF6aLCwktc9YF7b9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtyaoGfUIR+lYR8QQMi2tjbPC4rXNv2AKdyKnry4FT15cSt68uJW9OTFrejJi1vRkxe3JugZdchHmYofoCkYU6dOZW/TD5jCrejJi1vRkxe3oicvbkVPXtxmo569vb109913x3clSGeRQlO4zUY9hwNTuDVBz7BDPsqIfUAQiUSosbFRfXK26QdM4Vb05MWt6MmLW9GTF7eiJy9uRU9e3IqevLg1Qc+IQz5Kwz5A6OrqMsKmHzCFW9GTF7eiJy9uRU9e3IqevLjNFj0xUo+jr68vfg5pfX4omMJttug5UpjCrQl6djngo0zFD9AUjMmTJ7O36QdM4Vb05MWt6MmLWw56pjP11xRuOeiZDkzhNpv01GXQigceeCCeTrUrgSncZpOeI4Ep3JqgZ9ghH2XEPiDA1IuGhgbPp7Z4bdMPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeEYd8lBH7AME6rYqzTT9gCreiJy9uRU9e3Garnnp6b+LUX43EkXtTuM1WPTOFKdxmi56YLaOfV4/U33jjjZSXl5fW903hNlv0HClM4dYEPfsc8DHQI/YDAwN022230cyZM6moqIhmz55NP/jBDwZtBYD07bffThMnTlTXvO9976Nt27YNug8WI7jyyiuprKyMKioq6Atf+AK1t7dT0KZgwAd8crbpB0zhVvTkxa3oyYvbbNYTU39xWKf7Iq3Pm8htNuuZCUzhNpv0REcaDmtDHml9PhVM4Tab9BwJTOHWBD3DDvkYaIbuvfdeevTRR+mnP/0pbdq0Sf37vvvuo0ceeSR+Df798MMP02OPPUbLly+n4uJiOu+886i7uzt+DRr1GzZsoOeee46eeeYZevnll+maa66hIAFTL+rr6z2f2uK1TT9gCreiJy9uRU9e3IqevLgVPXlxK3ry4lb05MWtCXpGHPIx0FPxX3/9dfrQhz5EF110kfr3jBkz6KmnnqIVK1bER+t//OMf03e/+111HfDrX/+axo8fT3/605/o8ssvVx0Czz77LK1cuZJOO+00dQ06Bi688EI14jBp0iQfPRQIBAKBwJ1F7kKhEJ1zzjm+T/0VCATOA6PzqRbKEwgE5iHQDfszzjiDnnjiCdq6dSvNmzeP3nrrLXr11VfpoYceUn/fuXMn1dbWqun3GuXl5bRo0SJ64403VMMen5h+rxv1AK7HVAeM8F966aVH2e3p6VGHRmtrq/rs7+9Xh1sYPXq06qnxskfKa5t4vQIdMvj0EiZw64dN0dNdiJ58uPXSJsolGvU4nIi3emogPnFPndbnE38XOXPrp02Jt+5C9OTDrR82pXy6CxP0HJ3Ex0zanoFu2N9yyy2qUX3sscdSTk6OIveHP/yhmloPoFEPYITeCvxb/w2fVVVVg/6em5uryNPXJAIjHUuWLDnq/KpVq9RUfzeAzINRFvTA6oqT2/DDJjJrW1ubmnXh1bsypnArevLiVvTkxa0XNnVlALZmzZql7CDeohMb6ZHGXNwf99W/h3b348ptEGzK76d7ED15cSt68uLWBD2jKXzs6Ojg0bD//e9/T7/5zW/oySefpOOPP57Wrl1L3/jGN9T0+auuuso1u5h2eP3118f/jc6FqVOnqlF/LMDnVgZqamqiyspKzxq8fthE5wxei1iwYIHqrPECpnArevLiVvTkxa0XNu+6665B/0blAIvPrlmzRlUavv3tb4/Yxumnn24kt0GwKb+f7kH05MWt6MmLWxP0jKTwUc8cz/qG/be+9S01ao8p9cCJJ55Iu3fvViPqaNhPmDBBna+rq1MrCWrg3yeffLJK4xosRpA4pQEr5evvJ6KgoEAdicBIPw63kDjzwAv4YROVTRQSN7k0lVvRkxe3oicvbt22ad0xJvE8Dq9iLkdug2JTfj/dg+jJi1vRkxe3Jug5PomPmdgP9Kr4nZ2dR/VagGA93RAjEWicP//884N6NTDtUI8q4LO5uZlWr14dv+aFF15Q98C7+EEBnqempsbzVSa9tukHTOFW9OTFrejJi1svbGK2GQ4sbKcxbdo01UmuF8BzG1y5DYJNP2AKt6InL25FT17cmqBnxCEfAz1if/HFF6t36lExwVT8N998Uy2c9/nPfz7ek4Kp+XfeeSfNnTtXNfSx7z2m6n/4wx9W1xx33HF0/vnn09VXX622xMOqvl/72tfULICgrYhfVFRkhE0/YAq3oicvbkVPXty6bdNuD2v8TmL1ei9nSHHkNig2/YAp3IqevLgVPXlxa4KeRQ74GOiGPbalQ0P92muvVdPp0RD/0pe+RLfffnv8mptuukktKoB96TEyf+aZZ6rt7QoLC+PX4D19NObPPfdcNQPgsssuo4cffpiCBDwXFvTjbtMPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlxa4KeYYd8DPRU/NLSUrVPPd6r7+rqourqajU6bx2VwGjE97//fbXCfXd3N/3zn/9UW+NZAaKwAB9WN2xpaaFf/OIXVFJSQkECpl7s3bvX86ktXtv0A6ZwK3ry4lb05MWtlzb1/tZYLM+rhYZM4dZPm37AFG5FT17cip68uDVBz4hDPga6YW8S0EGBjgyvtnHwy6YfMIVb0ZMXt6InL25FT17cip68uBU9eXErevLi1gQ9Qw75GOip+CYBQlZUVLC36QdM4Vb05MWt6MmLW9GTF7eiJy9uRU9e3IqevLg1Qc+QQz7KiH1AgKkXeOXA66ktXtv0A6ZwK3ry4lb05MWt6MmLW9GTF7eiJy9uRU9e3JqgZ8QhH6VhH6CemsrKSs+ntnht0w+Ywq3oyYtb0ZMXt6InL25FT17cip68uBU9eXFrgp4hh3yUqfgBAYQsKytjb9MPmMKt6MmLW9GTF7eiJy9uRU9e3IqevLgVPXlx64bN3t5euvvuu1X61ltvtd0uNht9lBH7gABTL3bs2OH51BavbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9uTdAz4pCPMmIfEKCnpqqqyvOpLV7b9AOmcCt68uJW9OTFrejJi1vRkxe3oicvbkVPXtw6abO3t1d99vX1xc9Z036N3DvlozTsAwIIWVJSwt6mHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tZJm3cfnn5vxQMPPBBP33HHHeQHnPJRpuIHBAMDA7R9+3b1ydmmHzCFW9GTF7eiJy9uRU9e3IqevLgVPXlxK3ry4tYEPQcc8lFG7AOCcDhMkydPVp+cbfoBU7gVPXlxK3ry4lb05MWt6MmLW9GTF7eiJy9unbR56623xqff65H6G2+8kfLy8shPOOWjNOwDAkzBKCoqYm/TD5jCrejJi1vRkxe3oicvbkVPXtyKnry4FT15ceukzXybd+jRqA/CqvhO+Mh7qDaLgKkXW7du9Xxqi9c2/YAp3IqevLgVPXlxK3ry4lb05MWt6MmLW9GTF7cm6DngkI8yYh8QYOrF9OnTPZ/a4rVNP2AKt6InL25FT17cip68uBU9eXErevLiVvTkxa0bNvPz831bKM9NH6VhHxBgCkZBQQF7m37AFG5FT17cip68uHXLJrbu0av84t3BIEwn5MJt0Gz6AVO4FT15cSt68uLWBD1DDvnIe6g2i4CpF5s3b/Z8aovXNv2AKdyKnry4DYKe7e3ttGTJEnUg7QZM4TYIenoBU7gVPXlxK3ry4lb05MWtCXoOOOSjNOwzQCQSiX+mk45GoynTEE+n8Tlr1iw1BUOfx5GY1tcmS2v7ydLWZwRmzpypbLrhk1068XDaJ7s0/IOfVh2d9ikxDZvQ06qvkz7ZpYHZs2fH7+W0T27rlG7eA3RZ8con9KTqsuKGT3Zp2JoxY4ay7aVOif4lKzdOxQj4h3ybGBfczHvWsuJl3EO+hb9O+NTd3a0OrOyrgbQ+b/e8bsc9XVaQb3VZ8SJG6Bivy4oXcU/HeA23455fsVyXFXDrlU929SEnfbJLD6c+5IROXsY9a1nR8CLvIe+kqg+5ESN0vrX+OwjlyekYkaw+5KZPyepDbsa9xBifbTpFHIh7rjfs6+vraf369bRu3bpBBycsXbqU5s+fTwsWLIj7DDQ0NKgDqKuro8bGRpU+cOAANTc3q3RNTQ21tLSo9N69e6mtrU2ld+3aRR0dHSq9c+fOeAVsx44d1N/fr9Lbtm1TaQiOND7xb6T11Mvq6mqVxvdxHwD3xf0B2INdAM+B5wHwfHhOAM+t/XDDJzwjnjXRp87OTld9wvMn+oRPN32y0wlp6OqWT3Y6ISC46VOiTrt371ZpaOqWT3Y6wZ5bPiXTaf/+/a76ZKcTzrvpk51OuA90xQg9nr2srEydr62tVdfr806WJ+RbL+MeYjlsehn3rHHBCZ8eeeQRevzxx9V2PSUlJUonpP/93/9dHcDBgwfjDX+v4h6u03HBq7in86dXcU/7ZI2BXsQ9PWtmz549nsU92EVZ8TLuIa398Cru4fl0Hc8Nn5LphN8yr+Ke9sla9/Mi7ukGjlf1Pe0T8q2Xcc8aF7yKe7iHjgtexT3cd9++fa76ZKcTbHoZ93SjWtf9/I576SIUzaQbgIhWr15NV111FW3atCneg4AeFKStIxGc0NraSuXl5dTU1EQVFRXxHhjdQ5YsDT50L7ddWvf6I60z27x58+L3AHQPq07n5OTEe5Ds0rpnK1na+oyo8G3fvl3Z1L1gTvpkl0bmXL58OS1atIhyc3Md98kujeuw0uScOXPUlhZO+2SnEwCb6DHGO69O+2SXxvMgD8EmuHXaJzttkG9XrVpFCxcuVOec9slOp8R867RPdjrpHwbY1H456ZNdGp9btmxRNqGn0z7ZpXHdsmXL6IUXXkjZQ3zbbbc5FiNgB3qip1rvI+tm3EssKzrfuhn3AORb2Jw7d67620h9wusRqYBFgVA+V6xYQYsXL44/h5txD8+OsoLYd8wxx8RtuRn3rDEe3OrfFTfjnjXG698Vt+OezrfQE4MNsOl23MMn9ES+hZ8453bcS1YfcjPuDbc+NNLyhE/EW2t9yM24l059yI0YAZv4/UxWH3IjRiSL8W7FvcT6EP7udtyzy7duxz0d4+3qQ27FPf1pjfFux72opT4EPZFv/Yx76LxB+xOdA3qwxbGG/UknnaQKys0330zjx4+PB0ANrOjHtWGfDqHDhc5EWkgv4IfNxIa9FzCFW9GTF7d+6vn888+nbNg7uZKsKdw6bVP35qNih5F64MYbb4x3jqAiIvHWPUi85cWt6MmLW9GTF7cm6BlN4WMm7dCMnxRTi59++mnV2ydwFtbeJc42/YAp3IqevLj1S89/+7d/U73YmCb66KOPqnNf+cpXaNSoUa7YM4VbJ23arX6PRr3fq+Jz4DbINv1AJn46tUuD6OkeTOFWyicvbk3QM+KAjxl/+9xzz6W33nprREYF9mJiCoaeusHVph8whVvRkxe3fupZXFys3tu2NuSRxjkcTsIUbqV88uJW9OTFrejJi1vRkxe3JugZccjHjEfsf/7zn6t37LFw3gknnBCf9qdxySWXjOiBTAVGx4499lj2Nv2AKdyKnry4FT15ceuWTYyIOvlqxEjBidug2fQD6fppfTVEw5rOZORe9HQPpnAr5ZMXtybomeOQjxk37N944w167bXX6G9/+9tRf9Mv+Qsyh154Az9+Xr6z4rVNP2AKt6InL26DoCdG591uNJrCbRD09AKmcCt6Doaefm+FXvsByCSOOMIt1gjp7yHq6yTq6yLq7z782UPU30XU1x37VP/upmh/Lw30dFJOKEKhgR6igb7Y3wZ6Y0ek//AxEPub9d/4jA4QRSOHj6glbTmncdinHCI6sa2dcjaVHj4XIgrnEIXCRz5DOYfT+MT5XKKcfKJwHlFO7uHPvMPnkS4gys0nyi2MXYfP3ILDRyFFc/Kpj3Ipb1QZhfJGEamjKPaJ77tQfqR8ugdTuDUh3kYd8jHjhv11111Hn/rUp9SqyFg8T+AMMPUC2+boFTy52vQDpnCbjk2n3n/0E0HlloNNP2AKt6InL25FTxeAhnR3K0U6G6m2eiNNGVtGOf2dRD1tRD3tRL1tlnR7LI3PXjTeO4l6Ow5/4t8dsQZ1mkA12pvlfAfbVMtgtXhrM+mvPjoPdEM/v5iooIQoH0fx4c+Sw+fwt1KigjKiwvLDn2WDP3GtZUVyKZ/uwBRuTYi3EYd8zDiOHTp0iL75zW9Ko95hQES9xQFnm37AFG5FT17cip68uBU9eXEreg4GOoqBvu5OevShu2gUddHnPnkp5fa1U6i7iej1nxJ1NRF1N8c+Vbrl8NFK1NMaG1U/PJLt6P5KGM3Oxah0oeWzwJI+PLqtD4x45yQeGBXPoUgolwYoTAPqM0el+/EZDVGEwhShkEqrg0IUOZyOYBBf/Rvbv8VmFPRHBqhmXw1NnDSRQiFssxWhkDoG1CcNSsc+w9F+Ckf6KBwdoJxo7DOMzwg+eykc6aecSC/lRHooB9cN9FA4gvM9FB7ojf17oJvC/V0UwtHXpWwo4BOdJzhiW2sPH5htgAZ+USXlFFXQvMIKorcq1L8J6SIco4lGjbEco2N/c2CBNCmf7kHibbB5zbhh/5GPfIRefPFF1aMgcHYKRnd3NxUWFno6tcVrm37AFG5T2XTy/Ue/ETRuOdn0A6ZwK3ry4tYYPXs7qKdxHxX0t1Goo4Go42Ds6DxE1Nl4+PMQ5R/+d35PC92ov/zUr4dns6CMogWlFCospxBGhtVIcenh0eLDnwWlFM0vod6cIuoJFVI3xY5OyqfOaAG1RwupHZ8DudTZH6Lu/gh19w1QV98A9fQdSeOzpzdy+Fw/9Q1EqXcgQj39EertP/KJc/0DEdVAdxajibaSj4hSHg1QEfVQIfVSYaiXysI9VJ7TQ2U5vVQe7qHScA+VhbupJNRDJeEeKqEudRRTJxVHcXRQUaSDCnEMtFNOFK8mRGKdODiaMuwQQONfN/aLxxIVjyMqroqlS6oG/xszBmzKnzHl05DYZ4KeUYd8zLhhj94E9My++uqrdOKJJx61eN7Xv/71YT+MycAUjJqaGpo5c6anU1u8tukHTOE2lU0n33/0G0HjlpNNP2AKt6InL26zWk+8X95RT9SOoy52tB3+xDn8DY339oMU6uugwgxvj7ZvFxVSUeVECmEUFg21+EhtJUUKK6grt5Q6Q6XUHhpFbVRMLdEiao4UUfNAATV3DdC+ukOUU1hMnb0D1N4zQB3N/dTR20/tPf3UoY4B9e8jr67HrMYO75ATDlGuPnLC6lOfy8kJUU4o9m8c4dDhA6/Kh0JqWnxHRzuVlZaqv6szQ9Xno0SRaFR5i0/V0XD4U/87EsFsgFgnhPqMEA2oc1EaiKCjYoAG8LcBnCP1zj2OViqO0YgB/GEvlxWlAuqjMuqkslAHVVA7lYc6qJw6qCJ0JI3PSmqjylA7jQ610ehQO5VQZ6xD4HBnUTqI5BRQtLiKQqXjKVw6gQhHyXiKFo+jpnai8XNOopyKKUSjxjoyEyBoMCX2ZXW89djHYa2KjwWVXnrpJXVYgR4GadgPDxBxzpw57G36AVO4FT15cSt68uJW9OTFbSD1HOg/3EivJWrbf/jzQOyz1fJvjKJmAizIpkZJ9ejpWIqOGku9BZXUkVNObeFyaqZSOhQtpYZIMdX3FlJzd4RauvrU0drZRy2H+qkV6a4+auvpt9y8//BL5nYvmjem/YiFeWEalZ9LRXk5NCo/h0YV5NKovBwqys9R5wrVEVafRZZ0AdK5YfWZn4PPMBUc/szPyTn8Gaa83DDl5YQoLxxLo+GelxNWDfLhor+/n5YvX06LFi2i3Fyv3/A/MkqIWQroAOjrj1IfPgcOz1LQMxYs/9azFzDTofvwzIfu/li65/AMCKQxG0IdvQPU0jdAB3qR7lcdNTjX2TegOhusyKN+qrA29qmVxoRaaSwOajmcbqExh9NloS71agG17o0dFqAJPwmJf8X+jVcnOgvGUc+oCTRQPIGobBLlVEymgsopVDR2GuVWTot1CmChwiyCKbEvkPE2oD5mHEl27tw5YqMC++Da0dGh9o/2cmqL1zb9gCncprIZf/+xry8+Un/jjTceNeMmGxA0bjnZ9AOmcCt68uLWc5tYfb21hkqbN1FoYy1R+4FYY711H1FLTSzdXpv+gnF4b7xkfGxqc8l4Giiuoq78sdSaW0nN4UpqiJZTfaSUDvSV0L72ELX2Rqmps5eaDvZR4+5eau7sVQ3CI8AQLzoM0u80QAO7tDCXSgpzqbQwj8rUZy6VFORSYU6UKkuK1PliNNLzc9R5pPVncUEOFR9uzIdTNLCti8benGTRWFPLJ4783BDloyns0ht5dtyqFcAHIrGZF5iB0Xt4FoaekYGZGt196rO1u482dvdTmzr61KwNpHu6Oii/p4GKexpoXKiZxoVaqCrURFXUTFWhIwc6BXKon0q7D6gjWX8R1ks4FB5LzXnjqb1wAnWPmkR9JZMpVDGZ8kbPoFFVM6myopLGlOSr/BiEfGJE7DOkfEYd8tGfLkKBraD19fU0Y8YMTwuK1zb9gCncprJpV5FBoz6b3q0PKrecbPoBU7gVPXlx67hNrOTegkb6nthn897D/8YnRiT3U26kn96Ba1emuA9WNj88JXmgZKIapWzNG0tN4TFUR5VU019O+/rKaV93PjV09FFDaw8d2t+rRtaPRvvhIzkwml0xKo8qR+VTufrMo4qifHWurCiPyouOfKp0YW78HEa8k01J3bVrl+I27NH0aSmf3nKLz4LcHHWMLh5ZPQQj/2jsqxkh3ZgV0k/NnT300r5ayisup47ObhpoPUChtgOU31lLhV11VNJbT+X9B2ls5BBNpEaaEGqkvNAAVUXqqaqnnqjnbdtJJAejZbQtOo5qqIoa8yZSa+Ek6iqeTP1l0yhUMY3amrrpYNEBqiovoqrSAhpbUqDyu1txiUXsC6hNr+GUj8Nq2O/bt4/+8pe/0J49e+KLcmk89NBDw34Yk4Efr1mzZrG36QdM4Vb05MWt6MmLW9HTcJv9vbEGevNuoqbdRM17BqfxXvsQiIZyqKdgNOWOmUldRROoNb+KGnPG0YHoaNrbX0k7+iqpuqOQ6jv66WBNjxrVPBoY0bdfzQzTytHIGlOcrz4r8Tkq9jnG8m802vF3fGK03OmKtlN6ZrJorJRP9+A2t8i3uuNoEE5Uk/EP43jb72JBRHRq7W7voraG/dRzaDcNNO2lUOs+ymuvoaLOA1TWc4DG9NeqhQLHhVrVcTJVxyapdBw+6kntfrA/OpZ2bR1PO6Pj6V/RKtodHU8HQhOpo3gKlZRVUFVZoWrwV5UW0viyAqrCUVqoPscUF2T8akdWxL4stek1nPIx44b9888/T5dccokyvnnzZjrhhBNUzyp6Gt75zneO+IFMBfhra2uj0tJST3vAvLbpB0zhNh2bqMhk00J52cQtB5t+wBRuRU8DbGKV+KZdRE07iRp3Hk7viqVbaw4v8JbinvmlNFA6mTpHTaLm/PF0MFxFNdExtLNvDG3tLqfN7UVU09yT4hX5nsPHEeTnhmlcSQGNK40dGEEcV5JPY0oK1JRiNCbGlcY+0TBKnNIeGG6HgUwWjZXy6R6CnIew4GGsLBQQTaggovnJb9rVRNGm3dTTsJO663dS36FdqnMuv20vjercR3mRHpoaOkhT6SARrR/83V6iuoMVtLN+Iu2ITKBd0Qn0fHQi7YhOpL3RKuqlPNWoR6N/fFkhTcBRfvgoG/yJtSEy9dNJmGLTazjlY8YNe7yri3dzlyxZoow//fTTVFVVRVdeeSWdf/75w34Q0wFBm5qa1MKEXhYUr236AVO4FT15cSt6eset9R1c/Ma58YqK6OkePOMWS7Cj8d5YTdGG7RTZ9SZRfwNR445YYx57sqf6em4R9ZRMobaiSXQodwLVhKpoV/9Y2tIzmta1V9D2tlzqb03V+D/SaMd75hjlGx8f+YuNBKLxjhFA3ZDH1PeRcGJK7JPyyYtbV2wWVVKoqJIKJ5189E4R0Sj1N++jTa/9H82fWEQ5eKWmcSdFDsViQ7i7icaHmtWxOLzpqHf70YG3IzKJqjsmUXX7JNq+bxKtjE6iQ1SGFxcGXY/ZMhPLC2lieRFNLC+gUdRDx06bQJMrR9GkilgHADos3AIbPQMGp3zMuGG/adMmeuqpp2Jfzs2lrq4u9RDf//736UMf+hB95StfGfbDmAxMwZg+fTp7m37AFG5FT17cip68uBU9s4jbnjaiQ9uJDlUTNWyLpRuriVBJ74k13lFtxvheInqLxlFb0VQ6mDeR9tF42t4/jjZ0VdLatkra211C1J6qwhYlDJijQT6hvIgmlBWoyjtG8FCRH1ucR3U7N9P7zlxI5cWZbkJnXlnJZNFYKZ/uIZvzUNpAQ6x0IrVWnkDRkxahgRR7Dv33rqZYByBiiooth+PLoWrK6W2jaaGDNC3nIJ1Nbw26bUdOGe0LT6Ht0Um0oXcCbeyfSNs6ptCGjrG0YX/rkQuX1cWTiCFo3E+uLKLJFUWHP0fF/z2lsmjQqH+mMEJPH+CUjxk37LFan35vaeLEiVRdXU3HHx97d6WhoWHED2Qq0FPT0tJC5eXlnvaAeW3TD5jCrejJi1vR031ui4qKlJ7pvIPrlE2Jt87AOsvilltuUYMMGXGLzb0xqnZwK9GhbUca8DiwJVwK4P32QwVTaG8U79JOpA09Y2lteyXtGBhHXd2FyV5hVxhbgtG2IjWypj8nVWDkDUds1D3ZaJvaHu1gjloR3itkc+xLtWgs8g9mnuoOAJyX8ukOsjkPOYaiSqLJp8aOxFlA7fWxjsOGrbE4dHBLLN28h4oHWumYgY10DG2kixAWDmfp/txiaiqeRfvzptOy+gLaODCZ9paeSG+3FVPfANH+lm51rEwSjPBKztTRRTS1cpT6nILPw2nEo2QLW8YeWfR0A07xmvGvw+LFi+nVV1+l4447ji688EK64YYb6O2336Y//vGP6m+Ckb1bUVZW5vk7K17a9AOmcCt68uJW9HSf24cfflil03kH1ymbEm+dR0pu+3tijXVVWUYDfsuRxnx/d9J7duVV0sGCabSbJtHm/ipa1zmWtvRV0Z5oFXV3F9h+B+/ITikvjI+STdGfaopsrOE+kpEyP2BK7JPyyYvbrNFTjfSPjx3Tzzh6pwzd4EfMUrErFsdy+ztoXMvbNI7eppPQBsfRTRQtKaO+scdRS+k8OlA4m6rD02l932Ta2Ram/c1dtK+pS+0g0NDeo4439xy9YAdG/NHROH3MKJo2ehRNO/w5fXSx+iwtzBE9A5xnM27YY9X79vbY9ifo7UT6d7/7Hc2dO1dWxB/hFIypU6eyt+kHTOFW9OTFrejpPreJjXo3IXo6A7uVzgcGBmj8mHIaqFlL4aZqooObYhXg+k2xd9+T7O0+EMqjgwVTaTdNps19VbSuexxVRybRjugEasW0+bbB16OuhcWrMLI1JT7ahZGuIpoyehSNTzHanq3gEPusi8Yi/+Cwm6Uzfvx4z7bX8wsc9AyqTceRP4powomxw4qBPuqt3Uyhhs0UrdtI217/K1XRIRobaqFQTyvl1yyncYSD1PaYl+I7FdOJxp9A0XfMp87K46imcA5V942lvc3dqrG/t7GT9jah4d9J3X0RqmnuUsfr1YeOeiwssolG/4wxDTRjzCiaPqaYZozFv4vV+/9udKSw0NMjHzNu2N911130qU99Kj4t/7HHHiNTgL1VrZ8QIVUamRtHsjQqI7hWTwVtbW2lyspKVdnUPy643prOyclRf0+W1t9NlrY+I6b1NTc30+jRo+M+OumTXVo/iz6c9skuDTQ2NlJFRYVaF8Jpn+x0wt+xCAZ63jDFz2mf7NI4kIdgE3ac9slOG1wP6PNO+2SnE/ItpiuhrABO+2SnE+4BPVFWcE+nfbJLw0ZdXR098cQT6js33XQTFRYWOuaTXdqqZSaxbiTlCYCeWIwV5dPtuGctK9/61rfi+lrfwcV9rXHfiRiBfAubiEOA23FPp7WuXsQ9PHtiWXHap3vvupPGUBNVUQOdQ4doHDVQ9/2/oCJqoXCSVee7w8W0N2cqbRmYSG/3TFDvq1ZHJ6nVqAe6Bo+gY/s2jFAtRoN9dBHNGFsSa7hXFNLUMcVq33ZrjMe0SeTbxDLkRoywaom023FPx3jkWz091O24l6w+5JRPeH1Dx1cAaV32R40apWahargZ9/SzJ9aH3Ix7GtZ862Z9zxp3UNdMVh9yI+5Z60M453bcS6wPIe1afS+UQ3f//I/x/FtU/Anq7OykHIrQGDpE46mBLj1jLlH9RgrVbYi9WoStNZt3U2jL/1IxEc0jorkFpaqxTxPeQdF3nEChSSdRdOwiqu+IUE1LN+1q6KQ9hzpUg393I9KddLC9R20PuG5fizoSgUU90cifPnoUzRxbTLOrSmjG4XRFccGwyxO4Qj0eMUH/zrgZ96IO1YecinuZDEJk3DV58OBBtfo9ehVQKXrrrcELPXDC0qVLaf78+bRgwQL17/r6+vhaAno9AVS8kdmAAwcOqOAF1NTUqMoqsHfvXjW9AsDWgB0d2PSSaOfOndTdHZsKuGPHjvg127ZtU5VACI40PvFvpAH0NmNtAwDfx30A3Bf3B3Av2AXwHHgeAM+H5wTw3Hh+t3zCM+rRFatPCEDcfLLTCfeCrpn6hPs/+OCD9Mgjj6h0Jj7hPVM3fUrUaffu3SoNTb3UCRUTt3yy0wkzk/bt2+d53oNNvdATzjvpUzKdcJ/a2lpPyxPy7fbt2z2Le4jlsIkfURzgGBVALASL9KFDh1SeHolPiTrBP9zTy7iH32s9GulV3MN1+tlH5NOhQ9SwfQ3Rlmep8x8/pN6nPkP072fQt+kRupZ+TR+l/6OzaDkdR9U0hppVo74tOoreDh9HTw28l5b0fZqu7L2VFnYvpWM7n6D3t91OX+u8mh4fuJhW5C+i/DEz6IITJ9HX3zuHbjyzin77xQW07JZz6I9XTKf/u+5dtPSTJ9HH5uTQpxdPp9NnlFOkpZYKcnMG+YTn1THQi7inZ0vu2bPHk7infUJZ8TLuIY1y6YZP6BzVncJYY0N3tKFRr9Ne1iN0TPCyvodPr+tG+A5ioFs+2emEfIvfMq/invbDizos8iuAPIvfLaB89FhqLZpKb4eOo51zPkcdH/4V0Q2bacfHnqeeTz5NdP691DLrEopMeAdRTj6FetootOcNCq14nMJ/vY5Cj59FobunUMX/ew+duvZ2uqT3GbqsZCM99JFj6b8+ewo9dfkM2vj98+jpq0+lW95VSbdecAx99OQJ9M7Jxer1I4zTY5r/+ppW+t+3a+mnL1bTN3/3Fl366Bt08g/+Safd+RxduvQV+rffrKRH/1VNv399C63ZVkN9A5G08h7S+nfZi7gHoFG9f//+QMS9dBGKDmMuIirVf/jDH+jJJ5+kV155hY499li13d0VV1xBM2bMIG7QvdXwG4XIzR5cN0fjvOhpH8ontfjP8uW0aNGieG9xtvvktE7gyLr1lh7FDKJPCDyrVq2ihQsXqnMm6eSmT2iMId3T0xN/xen6669XU0pxXnPttE+4btmyZUpP2DJFp6HKXDb4hLJ47733qnM333yzasDg3IoVK9T6N9p2IH3qaadwwxaK1L5Nobr1apQpik+sTm+DTiqirdEptHFgCm2LTlHprZEpdFCtUx+bBlqcn0MzxxWr6aEYLcIxtbKQZo0rVdNF9bP7nfcyKU94TuiJwQZ0QAUl72VTjEBM1SOqGKnHfTFKr2fpoNx45RM+EW+t9SHRKXvznrU+hL+7WZ5gS+dnuzoC8lNKnyL9NFC3icL164kOrCOqfZuo7m0K2W3ZGc6laNVxFJ1wEoUnn0LRiSdTtGo+hfNHDfKjq7dfjfDvaeqmHQfb1Ij/zkMdtONgB9W3HdmqMxG54ZB6d3/2OIzwl9KssaNoTlWJSpcW5Pj2+xRxoD7kVN5Dpy7an+gcwCBEKgxraVX0dl5zzTXqwIgStr/7xS9+QbfffntGvQrZBmvFKPHccNLW6Z4QD6NEmL5oPW+X1hV7uzSOVGmrfQA9S7Dphk/Jnt16OO2TXRoFR/vphk926USb6fikR9ZSrdCd6nlhE72Gegqs0z7Z+WFN6/sPV6d004AuK277pJ9dTwPTNp32KTF9zz33qLTuiQf0j3fiom5Oxgj9I+N0rEulE2xqPfXzuBn3EssK/m19BzcRTsUIuxjvpE92z2aXV62ryaMTw7pyuBPlCWVFT8XXldv4syPRup9CB9ZRSFcka9dTCNtAYas3C++4to9yqToykbZEp9KWyFTaHJ1KW6NTaV90rLoiRFEqCfXQO+dMpveX5dH8KWNoFiqE40rU6vLadzuMNEbYxXg3415iRTFVWRmuT3Z+QE9rWXHaJ7t0JvWhTH0qKIgtfKhHw+AfOknQEIKeQ/3ODjedKi4k1ocy9SmTvDfS+tBwYsRQ9SEn63vJYrzTPiWmvfDJmkYHFAA/UU9Aww95224nCNtnz8mjnEnvIMJx8hWxcxjnbd5DdOAtogNrifavjX12HlLxWsXstf8Vi+PhPIpOOIFCk09VB1b7Lxozl46ZWK4OovGDngEj+bsaOmhHQwftPIjPdtXgrz7YTp29A+o8juc2xWZGayCOzx1fQrPHltCkkhCdNKOK5k0oozElBa7rFPGgPpRu3Ev1W5aIEe2ZgkYHeqcwAospBFh4RDAyPk2w6QeygVtd2R7JCt2ip3vwg9vEDg2uyIbyGVSbdovJ6bR+59NrKPuRgdjK86gMoqKIz9p1qpJoh4PRctoUmUabotNoU2Q6bY5OU+/Bo3E/Kj+HZk8oUaM4l2NUZ1wJTa8soN/+/KeUE4rSzVdepDoTvF78TOItL25FT17cmqKnYzEPjcfK6bFj/iVHGvste4808vevpej+NynU1Ui0/83YsfLnsWsLyogmnXxkW78pC4hKJ8TfvT9hcrk6rEDHWm1rN1XXxxr58aO+Q53HSD+O17br343YdPnKUXk0t6qU5owvoWPGl9I8dZQMavBnI5zIs8Nq2L/44otqGv7TTz+tejQ+8pGP0DPPPEPvfe97R/xApgIFc+LEiext+gFTuBU9+XCLkVQd5K2Luun37TnBlLLils1UHYLo5T/33HOH7AAA7EZ60sZAX2wF+gNvUfjAWzTxwFqK1q4n6u866tL+aFg12DdGp9PGyHTaFJ1OmyPTqIHK1WrLqJzNqSqlj1eVqJEaNOYnlMUWjUzE9793ezzNRc9MgZE6rMkCYEq5dZaPE+BUVqywm6UTBD3dBlc9g2DTD2Dk/pvf/KZ7BhB3K6bFjsON/ZAa2d9NVLOaqGZN7BMN/55Wop0vxw6N8mlEUxcQTVkYa+hjhf/cI781iOvYWg/HmXMxE+sI2rr7qPpgB22ra6Pt9e3q2FbfTnubOqmps49W7GpUhxVjS/IPN/JjxzETStRnaWHw605O5dmMG/aTJ09WU2qwgB5Wa7744ovjU5sEw4eeNjR27FjPRhz8sOkHsoXbkTbmRE/34DW3+n0uLH6mgXwwosZXQJEt5TMbbTo9I0ihv5eofsPhEZy3KIpRnLoNFBqIdRxooBneGS1Q0+c3RGbQhugM1ZDHtPqiUcU0r6qU5k0oofdXldK1qhFfqiplmUw5NFlPr2D1M3EtCrfikejpHkzh1sTy6Rm3eD2nbxSNnX8phU+4LHZyoJ/o4ObDjf3VRPtWxbYdbdkTO9Y/Hbsut5Bo4slHGvvTFhOVVNnaQWP85KkV6rD62dMfVaP62+rbaFtdO22ta6Otde20p7GTGtp7qaH90FHb9GFxv+MmoqGPo4yOm1Cq1l0J0vakTmmZccP+e9/7Hn3sYx+Lrx4qEAicgV0liWtjTiAQOINUHYKYir9mzZrh31xX1vavUVMuIzVvqkZ8OHKkEa+b4a3RUbQ+MoPWR2eqTzTk6/Km0Ozx5XTM+NioyUWoVI0vpXFDvP8uGBp6hXy9SnRi2umRe4FAIEiKnFyiCdg67wSiU6+KncPip2jk711JtA/HCqKuJqK9y2KHxuhZRFMXxxr5OMbOi80USIKi/Bzbaf0dPf1qVD/W0G+jLWj017apKf01zV3q+KflHX5sXYoZYcdOKKWvvneOesWLAzJu2F999dXuPInhQO9MVVUVe5t+wBRuRU9+NjFDKu2R1CyFKWXFLZupOgSti9kOOSMIC7NhETs1rXIN9e1dTeG6tylnoPuID4c/m6Il9HZkpmq8r1efMylnzAw6dmKFGhH54IRSunFCGU2pLKJwOOT6lHIv9LRbdNDP30/NlRWPPvpoPO1U3AC3GMhBXnLlNQ7m5TNoMIVb0TMA3BaUEs06O3YAmMJ/qDrWwN97+KjfGPvdwfHWk7HrikYTTV0Ua+RPP0ON8Idzh463xQW5dNLUCnVY0dzZS5tr22hLbRttrm2Np7Fo38YDreq49pzZ5DecyrMjWjxP4OwUDOx/6OXiP37Y9APZxm2qFbrdsplNyDY9s8mmHzCFW7/1TGx8FUc7KH/XC5Rbu5Z6dq+gvgNrKa8vtocuoF8Aao0Wqcb7uugsejsyi3bmz6OySbPpuEnldNyEMvrSxFK1iBFGUQb5WVmYdqN+pDBRT68AP5cuXRrfX3lEr3FkYFP0dAemcGtS+cwabjEKP3ZO7NAr8Xc1x0bz9yyLHehYxsJ8W/8WO4C8URSdsoDax7yDiud/gMKYxp9XlLbZilH5tHjWGHUc8SFK+5q6aFNtq2rkY1tULlpKwz5A8GNhLI6LcZnMrejpPPRIIkYQMWNpqD1EnYToyYtbN21aOwQxurxkyRI13f2cc84h6usi2r+BIntXUPf2N+irkddobKiF6A+Pq+tjGycRdUfz1FT6dZFZ9FZkFh0qP57KJh1Dx06qoPkTy+iSSWU0sdx+Ibvh+unUlHK3uE226KDees4vYFaD5kqP1H/lK1+hUaNGOW7LD1+5lc8gwRRuRc8s4Laogmju+2OHXsMFu6eohv4bRLtfVw390M6XqHTnS0SrHiHKyY+tuo/R/Onvio3s52fWMA+HQzRtzCh1nHd8bOX+IMAJXqVhHxCgdwYLJnC36QdM4Vb0dBdogHjZ8y968uLWM5uY7ti4g06MbqSq6EGa/dqfKfT8Trwwr6bSq26pEBZACtG26GRaG5lDb9Nsaq58BxVPPZGOmzyaTpxcTh+bMLyVhDP104kp5W5y69iigw7DrsMDjXo3VsW/7rrrPN2lg3X59BmmcCt6Zim3WDF/ymmx44yvxV4Ra9hCtPs1ol2vxT7b62KNfhyvPEgUzos19GeeRTTz3bFF+fJ0d3X2wClepWEfEKBH/MCBA2qrAy+n03ht0w+Ywq3o6SwSRxLxnqk+58XiVKInL25ds9nbQdGa1dS05TXq2fE6lR96i0YNtNBH9N8PvyJfH62gNZG5tD40h5pHn0QFU99Jc6dOVAsQfXh8CRXkxqbSjxSsuB0CiAmwzf33E7tzJG7D5ObCriblIa9hCreiJxNucf+q4ygy9hg6MOkCmviRCRRu3nWkob/rVaLWfUcW5Hv5PqKcAqKpC4lmvDvW0J982qAt9oIKp3iVhn2AUFRUZIRNP2AKt6Knc0gcScSU3Mcfj01d9mqkTvTkxe2IbWI0vmUvtWx9lZq3vk4FB1bSuI6tlEMRGm25rCeaq6bUr43Mpt25s2lX/1iKhPLotq9+lt43zv0tfjLx06kp5W7pmWzRwZycHGppaSG/gQ5Gt2NRVpaVLLHpB0zhVvRkaBOvgY2ZHTve+ZnYb2LTTqKdrxDteiX22V4bS+P4F3ohi4lmvOvIQn5V81Ouuu8nnOBVGvYBAXpnRo8ezd6mHzCFW9HTXVjf+/UCoicvbodlc6CfOva+SXXrX6LI7jdoTOObVDlwiLDJj3WjnwPR0bQmMoe2RGfQHppEzaFKKg/3UmVeN82bPYtyd+ygaDSqVqwPmp9OTCl3U89Uuw4UFmbfdM9MYeV2uAu7jsSmV5B4y4tb0dMQm2igY7s8HNhmL4qV97cT7Xz5SEO/s4Fo2z9iB1A8jmjme4409CumUhDgFK/SsA/QFIyamhq1vZWXU5W8tukHTOFW9HQW1pHExx57TE27/fjHP+7Z/tCip3k2+7taad/bL1Pr1leo8MAqmtqxnoqpm2ZZrumL5tDG6HTaWXg8dYx/J+XPWEQvv/w6VeZ00U03Xq8aX3p0GYvcTZs2jS677DI1whwUP8Vm9kD05AXRkxdET7uV9+fGjgVfiL2jjy31dvwrdmAKf8dBovX/HTuA0bOJLn2cCKvtM9BSGvYBASpgpaWlQ642nO02/YAp3IqezsLagMdoZ3d3NxUXF3vWsBc9+dtsqKuhvWufp/6dr9HoQ6tpem81zQgNXoG8NTqKNuQcSwcrT6HQtMU06fh30XHTxtNxFLsOjfiNr/4zbkPnV6tdjDDn5uYGmtuRTCn3Qs/E0WpwLL+fvMsnR5jCrejJi9th2wyHiSacEDuwGB9W3cf2erqhj+31GquJyiaR33CKV2nYBwQQEiOC3G36AVO4FT3dRVdXl+c/ZFI++XDbH4nSgQP7aN0//4ty9i6jya1raEa0hgatgRsiqomOo53FJ1LX+NOoZO67ac4JC+j0sqPfu8N2dqlWa/cLmXKLtSv0yvN4n304C7JJvHUPpnAr8ZYXt6InL24ds5mbH3vfHsd7v0PU3UK0bxVR+WTyG075KA37gABTMPbu3UtTp071dPqi1zb9gCncip7uACOJt912m9LTjT2ik0H0zG5um9p7aNPGtdSy+V9UfGAZze5cR8eFGui4hOt2hqdTXeUpFJ16Bk048WyaPnMeTQ6HhmwEDwWMLvf399Py5cvJC2DHCCw4icrJJz7xCZo7dy7r2Cflkxe3oicvbkVPXty6ZrOwnGjOuRQEOOWjNOwDAlSGKisrPR8R9NqmHzCFW9GTF7eiZ/Zwi2nZOw6209b1q6lr+8tUUb+C5vetpzNCTRajRP0Upt3586hl3GlUMOdMmnbye2lm5XiaOcw1IKzv07u9t3gmXJSXlw/JLTopADy/hjWdyci9lE/3YAq3Em95cSt68uLWBD1DDvkoDfuAAEKWlZWxt+kHTOFW9OTFregZXG77BiK0fl8zbdv4JvVWv0RVh1bQKZENdEGo1WKEqJdyad+o+dQ96XQqP+5smnj8u2l2YeYr09s1gu3ep3dzb/FUI/WJu0ZgtKGjo0Olk61JYTfzwPoqQSbv20v5dA+mcCvxlhe3oicvbk3QM+SQj9KwDwgwBWPXrl00Y8YMT6e2eG3TD5jCrejJi1vRMzjcdvT005rdjbRt89s0UP0STWxaSQtDG+mUUHNCQz6PDpSdSANTzqCxJ55LZXNOp1l5RQk2izPOQ0M1gv0Ept8nVk7+8Ic/0KFDh1Sngxfbo0n5FG6zMQ/5AVPKiujJi1sT9Iw45KM07AMCVIaqqqo8n9ritU0/YAq3oicvbkVP/7ht7uyllbuaaPPmDTSw4yWa3rKaFoU30LtDjbELDv/m9oXy6GD5SUQz303jTjiX8qcvpOm5BcOyORJ40XhOF2jMt7a2DppJkGwGAvD1r3+dHn744RG9SiDl0z2Ywq3EW17cip68uDVBz5BDPkrDPsPeFOsnelRSpSEOjmTpgYEBda0+j620rOe1LWsaexGjwpQsjQPXJ0tbnxHnsBiYtu+0T3Zp/Sz6cNqnZGn4ievtfB2pT8l0gp5u+mSXxrRXnXbDp0Q/cD2gz7vhU6JOuJ8uK274ZKcToMuKGz4lSxcVHVkN3Wmf7NJWLTOJdSMtT8i3XsW9xLKCaxo6emnFjkO0ftsOGtjxMs1sXUWnhzfQ+8N1MfIPbwHfT7nUWPkOypl1FlUc917Knb6QJuUVHXn2IfIe8q3WMhOfbr75ZpVGg/ihhx5S566//nrVCB5KD62rW3EPzwFg6v3jjz+u0p/73OcUvzpG2PmkyxK24dNpXId/D6c8WRe2dDvuWWO81Rc3416iltqum3FPp7WW+j5uxz27+pDbdaPh1IdGWp50vLXWh9yOe0PVh9yIEUinqg+5VTeyxni363uJ9aFkcc/pGNHT0xOfNYXfiYKCAtfjXrL6kNt1I2uM9yLuOVEfciru6edJBzznMziEpUuX0vz582nBggXq3/X19eqzoaFBHUBdXR01NsZGcQ4cOEDNzbGpmTU1NdTS0qLSWOWwra1NpTHNQr97uHPnTrU3NrB9+3basmWLEnDbtm1qNWOIjDQ+8W+kAVTuqqurVRrfx30A3Bf3B2APdgE8B54HwPPhOYGDBw/S2rVrlU03fMIz6pEZq094F9Mtn/DceH6rTvAPfsJft3xK1Ak2oSd0dcMnO52Qhj3czw2f7HTavXu3SkNTN3yy0wk2N2zYoDh2wyc7nWB79erVyqYbPtnpBFsrV66M++e0T8l0wn1qa2td8clOJ2wjqOOfF3EPz/329j30s7+voVv+62W69Z776S/3fpZmPX0B3bL+g/SdzvvoitwXaGa4jgYoh+pLj6eGd3yJ6NN/ov2ffo0KP/dnGnPxEtodnkodPQNp5z34h3+jIpapT+Ab786DK70dDsocprvjfDKdEPP0e/luxT1UtgoLC+O/j+hsgJ7olEIj3eqTvg+eA4sEAU1NTXGf8EzDKU8oK2vWrFH3csKndPIebG7cuDHun9txD/fW6xns2bPHk7gHnxBvoSe49SLuATt27KDNmzcrjr2Ke3jWN998U9n0Iu5pn1COvYp7eH74t27durh/btf3kEYM2rp1q4qBbvhkpxNiH/Itvud2fU/7pP3wor5n9WnSpEmqAYi023FP+4G6CfKSF3EPNnR9SPvndtzbe9gn2N2/f78rPmUa99JFKJpJN4ChwLRCrPKrKyBu9OBCNIiIylBiL5NbPbiwj4yte2+d9skurbdfWrRokar0edGDC/v48UTlE/d0s1famkYlHJVu+Olmr7RO47vIQ7Cpn9GNXmlrGvZWrVpFCxcuVOfc6pVOfHY0jlBW9KiD2yNXOAc9dY+xm73SOg0g38JPXV7dHrnCdcuWLVN6Ih+50Sud6Ac+oScahPj3Pffco85h9EE/w0hjRG1zJy3f2Ugrdx6klm3L1Ij8u3LW0ztD2ygvNDA43pfNo9w5Z1Ph3LMpPPNMiuSXOhIjkEZ5QRzSo9OZ+gSe7r33XvVvzU8qPWBvxYoVtHjx4vhzuBX3UFH50Y9+pNJf+cpXaNy4cUflyR/84Afx3xo92mNNY1vJ4ZQnHeN1WXE77lljPEbIUmnmZIzAc0JPDDagvLgd9/R55CP4ORI/Msl7dvUhN+PecOtDIy1P+ES8tdaH3KrvpVsfciNG4By4TVYfcqNuZK0Pwb6b9T27+hD+7mZ9D7aQBq8//elPVecJZk9pf/VMKDdiRLL6kJsj9unUh5yOEREH6kNOxT106qL9ic6BoRbYk6n4GcBaMUo8N5y0ntKihMjNVUfiebs0hE6W1gUgWTrRvp4aqv/upE/Jnt16OO1TsrT20w2fkqWt04bc8MkubZ267YZPqXTS93faJ7tn19xa860bPlmf3ZqHnPYpnXzrtE92af0j43SsGyrv6XyrfwitHTbD8elQew8t29FIr28/SPu2r6MZLSvozPB6uim8kcpCXUSW17g7i6dS7uyzKX/eOUQzzqKykliDNP7sDpUna4zXyFQnNK5uv/32QfcYivfh5tVMyxMqG3bv+lt9so4j2KWdKitexb3EGO9m3EusKOr7uxn39Pl0f1ecSmdSHxqOT3ZpN+pD6eQ9u/qQUz65UR8abnlKVR9yq240nHzrdnlyKkaggzcReE1LwxqLnfYpWX3Irbg30vrQcHXyoj6UbtyzxqShIA37gEBPvZg9e/YgQbnZ9AOmcCt68uLWJD0xTRMrweqGS6Z7mrd299EKNOSr8Z58NVU1LKd3h9+mr+aso0lY8M7SkO/Nr6DojLOoueJ4GrvwYzRq7GzyAibpmczPW2+9Na6tXtV/uAvmpWvTLYievLgVPXlx67ZNjKzq3UoQ17zeZlQDDT7MjsKrB15NwOaoZxDglI/SsA8I0Gszffr0Qb03HG36AVO4FT15cRtEPd2ozMC/P/7xj0e9Q5ZqT/PuvgFatauJXt3eQCu3H6C8A6vpzPA6+lD4bfpuaCeF849UcAbC+RSduphy576XaNbZlD/hHRQNhakCUxk9rIwFUU+v/bTLL2jUjzQfSfl0D6ZwK+WTF7fc9dSdpPhN/slPfqIa9U50kqYD0TPYvErDPiBAr5t+h42zTT9gCreiJy9uTdJzqIVhBiJRerumhV7b3qCO+t2b6Izom3RWeB1dF95Ixfk9g67vH3sc5c49l2j2eyln+hlEh/eSj9s8PK09G/UcaeeK2yNNppQVk8qnCdyKnry4dcumXtDMOqNMp/Wq+F7AGrf176cTnaSm6RkkOOWjNOwDAr0a/ty5cz2d2uK1TT9gCreiJy9ug6RnqsoMMJLKBPz86Ec/SrNmzVJT8TFSjxmFH/v8tbRiTyu9Xt1IZ3z/L3RC71v0nvA6ujv8Fk3PrR98j1FjKWf2e1VDHqPyuWUTh7Rpsp5++4n8Yvc+vps2nYboyYtb0ZMXt27Z1J2idrPL0DA799xzyUvAzwkTJsRXaPfKJhc9gwSnfJSGfUCAqRd4r8LrqUpe2/QDpnArevLiNkh6pqrMACNppMG/efPmUXtvhF7e0kCv9U6n/ZFSWvbof9N7wm/R58Jv0WnhLZSff2Q0JBrOI5q2mEJzMCp/LuWMPwE3Yq3nSDtX3OycyXZus8WmHzCFW9GTF7em6IndDT7/+c/HV8H3AqJnsHmVhn2A4EcA4h70TONW9OTFLWc9e/sjtGZPE72y7SC9srWBdu4/QGeE1quG/Nn5b9FELHpnQbRiOoXmvl815EMz301UUGqUniPtXHGzcybbuc0mm37AFG5FT17cumEz1QKgGHFds2YNeQ0u3AbRZjb6KA37gABTUL2eZuKHTT/ghp9DvacqeroHU7gNUvl0ajXz3Yc66KWtB+nlrQfpjeoGmty3m84Or6VbMSqfv2XQnvLR3KJYA37O+4nmnEuh0bMw19ERf0zX002Ywq3oyYtb0ZMXt27ZTLUA6FBrxbgBTtwGzabXcMpHadgHqJcGYno9Vclrm37AFG5FT17cBknP4a5m3tHTT29UH4o15rcdpPpDjXRGeAO9N7yWluSspckFhwZ/YfRsorkfIJr7PgpNP5Mor5DcQDbqOVTnylCdjW5tNceB22yx6QdM4Vb05MWt6MmLWxP0DDvkozTsA9Zb43Wm9cOmH3DKz0zeUxU93YMp3GZb+cSWO1vq2uhfWw7SS1sO0qrdjTQ+UkfvDb9JS8Jr6fSCjVQQOlJeormFRDPeTZFZ51L4mPMoNGaWZ8+abXoO1bmiY9Nwv28yt9lk0w+Ywq3oyYtbN206vQDoSMCN2yDZ9BpO+CgN+wCJWV1d7fnUFq9t+gEn/Uz3PVXR0z2Ywm0Qy6ddZaatu09tQYfGPI6G1nY6NbSN3puzhr6fs5bm5tUMvknFNKK55xHNO49CM85U+8yr6WcV08krLznpGZTtlzhyGzSbfsAUbkVPXtyKnry4NUHPiEM+hqIYYhGkRGtrK5WXl1NLSwuVlZUJWyMA3kFavnw5LVq0SK3imW1YsmRJyr8HpQfXK2S7noLM9cRPxta6dnpxSz39a0s9rdrVRKMibXR2+C06N+dN9Vke6jhyfSiHQtNOJ5qHKfbnEY07xrF35QWpY5LefknKJw9IvOUF0ZMXRE9e6A9Q/TaTdqjUxAMCVJYx8oIRMa+2rPDDph9w0s9031MVPd2DKdwGqXx29Q7Q69UN9MLmenpxcz3tb+mmWaH9dG54DX0j901aEN5CORSJX99BRbSNZtKxH7yOCo+/kKiogkznNkh6ugmu3CauYYCYL3q6A655KAgwhVvRkxe3JugZdchH3i8rZNkUjN27d6tPzjb9gJN+osDhsDbk9Xuqie/Xi57uwBRu/S6fexs76ddv7KLP/nIFnfz9f9A1v1pO21b8nT7X8XN6seB6eqHgRvpO3pO0OLwp1qivmk905jep85N/ogfpS/Tn0PnUf+wlKRv1JnHrlk00MnGgg1EDaZz71re+RV6DE7dBs+kHTOFW9OTFrejJi1sT9Iw45KOM2AcEeJ9i3rx57G36AVO4FT15ceu1zYFIVE2rf2pjF31v+Wu0rb6diqmLzgqvo7tyVtP7CtdSObUf+UI4jwjb0c07X70v3543Vp3u7OykaOjleFqjpKTEWG7dtBm07Zc4cTvUGgYzZsxg+74nVz2DZNMPmMKt6MmLWxP0zHHIR2nYB2gKRnd3NxUWFno6tcVrm37ADT+HWhFV9HQPpnDrhc3W7j61p/wLm+rVO/NNnX00gQ7R+3LW0G35q+n08CbKoyMNGioarRrxqjE/51yigtL4nx60edf70UcfjaeTlReu3AbBph/gxm2qBVPRgYKZEaKns+CWh4IEU7gVPXlxa4KeUYd8lKn4AQGmXtTU1Hg+tcVrm37AFG5FT17cumVzz6FO+sWrO+nKny+jd37/Ofrak2to/dpldGXP7+mZwttoWeF1dGfeL9VIvWrUY2/5M64j+tzfiG7cRnTpY0THf3hQo34k4MStnzZ1ZyMON7awM5lbO6DiVVFRIb+fLsCUPOQHTOFW9OTFrQl6OuVj4FfFh5M333wz/e1vf1PTOufMmUO//OUv6bTTTlN/x+OjIvOzn/2Mmpub6V3vepcaJcJ2ARqNjY103XXX0V//+le1P+Bll11GP/nJT5JODU2ErIrPc5XJoCJxkSY/K+lDQfQMPiKRKK2raaHnNtbScxvr1Ir2YYrQqaGt9IGcVXRh3hqaHK2NXx+lENGUBRQ69iKiYy4kGpfe1LD29tg0fcRpPVL/la98hUaNGqXS6cZbgXOQ8unsVHy7BVO9jM+iJy+InrwgevJCf4DaK2xWxW9qalIN9XPOOUc17MeNG6f2O66srIxfc99999HDDz9Mv/rVr2jmzJl022230XnnnUcbN25U0xmAK6+8kg4cOEDPPfec+nH+3Oc+R9dccw09+eSTFBSgg6Kjo4OKi4s9ndritU0/YAq3oicvbkdis7tvgN6oPkT/2FhHz2+qo/q2HiqgXjoz/DZ9MW81nZ/3JpVFWg4bwstdBUSzz6GBuRfQ6rax9M6zzs/4h8yu4Y5G/VAN+mzjNpts+gFu3CZbwwAHbOJT9HQW3PJQkGAKt6InL25N0DPqkI+Bbtjfe++9NHXqVDVCr4HGu5WEH//4x/Td736XPvShD6lzv/71r2n8+PH0pz/9iS6//HLatGkTPfvss7Ry5cr4KP8jjzxCF154oep9nzRp0lF2e3p61GHtKdG9N24tRoSpF7W1tTRt2jQ1q8AL+GFzYGBA6YZPr5At3OoFmfCpCzXet9FcJW6p54TNkUL0dA+Z6tnc2Usvbmmgf26qo1e2H6LO3gEqpU46J7yWLixYRWeH11JhtPvwzYmihRUUnfsBih5zIUVnnUOUX6L07F25ckTlE9/V+RfpoWJmtpTPbLQp5dNZLq35GhA9Rw783t1///0qjV0c8Dsn5dM9mMKtxFte3JqgZySFj5m0PQM9FX/+/Plq9H3fvn300ksv0eTJk+naa6+lq6++Wv19x44dNHv2bHrzzTfp5JNPjn/vPe95j/o3ptv/4he/oBtuuEGN/lsJwmj+H/7wB7r00kuPsvu9732PltgsBPX3v/9d9aQIRpZx29raqLS01LPC6ReQz/bu3avS6KAaagR0586dKf9u7dQKCkzS07odCTB9+nTffT7UFaHVtX20qraPNh3qp0iUaCy10PtyVtPFeStpEW2gXDryg9BTMJYOVZ1OjVWnU2vFCRQN5xqtJ3eInrzgtJ5BiGdBeAa/IOWTF0RPXogEqD6EkXy0h7N+Kj4a7nhX8/rrr6dvf/vbatT961//upoad9VVV6meDQAj9Fbg3/pv+Kyqqhr0dzSwRo8eHb8mEXivGTatI/ZomGHEfyhChwv0r+AdVUxb9XJqi9c20fMFHRcsWODZNkF+cVtfX686pICLL754yE6h559/PuXfMQNlKJuipzvQ3BYUFNCLL76ozmGtjqFmUTidb3Fu+8EOem5jPT23qY7eronNJppEDfTZnJV0aeFqOmFgE4XU/PrD9xkzh6LHfJAix15EORNPoapQiAZHRDPLpwk2RU/3wEFPjJYPFc/c8tM6Q00/wyWXXKKeATYxa1LKp/MwJfZxKJ/pwBRuTdAzmsJHPXM8HeQGvbcEjem77rpL/fuUU06h9evX02OPPaYa9m4BlXcciUCHgFsLKMBXvTiCl1NbvLYJIMOikHi1GIXXfqJgwiYWbQR0JUUHhmTvHN9yyy0pF2kaii/R0z3glQjoiU5CPckJfOvVS91YQEvric7Et/e30bPra+kfG2ppR0OH+vv0UC19OXcFfbRoDc3p2xr7kp4xNukUomM/SHTcxRQadwyWw0t7CxTu5dMkm4Do6Q6yWU+9ICB8GCqeueXnD3/4w6PO/ehHP4r7iDqelE/nYUrsy+bymQlM4dYEPSMpfMzEfqAb9hMnTlTT8a047rjj6Omnn1bpCRMmqM+6ujp1rQb+rafm4xqMnCZOkUYlXX8/CICImIbG3aYf8NrPBx98cFj7eSdbpCndRqPo6e56H4nQnS+pNB0uBiJRWrmriZ5d305/f/JfdKAF78ZHaW6ohr6ZFxuZn9a3I3axGvgKEU07nWj+JbEGfcVUyhZY861XO0JIvHUPpnCbzfFWl7F04pkffqKzQfR0B6aUlWwun5nAFG5N0DPskI+BbthjRfwtW7YMOrd169a443jnGI1zTGHWDXn0dmB7AmyzBJx++ulqG7zVq1fTqaeeqs698MILqmcEWxgEBfghw7sT6KnxcmqL1zb9gF9+FhUVUVdXl2f2RM/s1rO3P0Jv7DhEz64/QP/YUEeHOjCqFqXjQnvoqoKV9OH8lTShb++Rxnwoh2jmWbHG/DEXEZUOfiXJDwynYW7Nt15B4q1wm415yA+45SfiQ7IZarCJepvUh5yHKbFPyicvbk3QM+qQj4Fu2H/zm9+kM844Q03F//jHP04rVqygJ554Qh0AHP/GN75Bd955p9q3Xm93h5XuP/zhD8dH+M8//3y14B6m8ONH5Gtf+5p6X9luRXw/BcUiDZh262VB8dqmH/DaTyzWiI4jLJyH2SWwb93PeyigMTScEWDR0z3cfPPNasvMsWPH0kMPPXTUaxLDBbale3VbA/3f+gP0z4111NqNhe6idHxoF32lcBVdnLuCxvfXHGnM5+QTzX4v0XFozF9ANGo0ZTuQb7G4KRY0ta4+q9/BBZweuc/meOvVrAYTuQ26TS8a1V75mWqGGn4/MdNS9HQeppSVbC6fmcAUbk3QM+qQj4Fu2GPBgv/5n/9RP0Lf//73VcMd29thX3qNm266Sa0WiH3p0cN75plnqu3t9B72wG9+8xvVmD/33HPVVAcsEvPwww9TkIDnwgJ93G36Aa/91O/QY2aJfn8xnf28vfAz6I2CoOZbxBPEH/1uaqavSSQ25l/aepD+7+0D9PymemrviTXm3xHaQZcVraYP5q2gMb37Yxf3oz2fQ9tpJs390I2Ue9xFRIXuLOA5EmherI3xdBvm0BPblHr5qoPEW/dgCrfZ/PuZyWtfpnCbzXpmAlO4FT15cWuCnmGHfAx0wx744Ac/qI5kQK8GGv04kgEr4D/55JMUZKCHGh0TFRUVni5G4bVNk7jFlBovIXq6z226sy4S0dnbT//aEmvMv7C5Xu0xj8b8CaGd9IlRq+iDucupsvcAThGhjZxbpPaYb5lyNj36XDX1hvLp1uMvQ42csv2dXTtuwWtnZ6drz8ch3o6k88RLZCO32WLTD7jtp90MNdHTPZjCrZRPXtyaoGfEIR8D37A3CXh/F4Jyt+kH/PITr4Z4GYSS+ZktjYJsKCvpjh539Q7Qv7bU0zNozG+qp66+WGP++NBuurz4cGO+p4YIC1FDnrxRRPPOI5r/Yeqd/h6K5BZR4/791Bvam/V6DQW8aoVtSjEVf6ipwW7lIS9ms4wk346k88RrmPJblu2/n+m+9mUKt9muZ7owhVvRkxe3JujZ5YCP0rAPCND4mzx5MnubfsAUblPZzKZGQbZxmzjNHiPz/6um2dfFR+axAN4nS1bRB3OW0+iefbFt6QYGN+Zp7geI8mMzAu5esiSr9Mrknd2hVsUf6asO2Z6Hsh2mcCt68uJW9OTFrejJi1sT9Aw75KM07AMCve85XhvwcmqL1zb9gCncip7+cNvTP0Avb22g/123n57bWEcdqjFPNDtUQ1cUr6IP5y2jMd271fvy6sgtIpr3AaLjLz3cmC9OahfrMrS3t1PQMZKtGq3cegWrTWx/6sVslpGWz5F0nngJU2KfxFte3IqevLgVPXlxa4KeEYd8lIZ9gGCtTHK26QdM4TaZzWxpFGQLt30DEXq9+hD99a399PcNtdSmVrMnmhaqo+uKV9Kl+StofNf2IyPzOQVEc99PdMJHiOaeR1SQeiFF6IUgX1tbS7/61a+yXq90uR3ujhAjsenlbJaR5NuRdJ6YVj452/QDpnArevLiVvTkxa0JevY54KM07AMC9M5MnDiRvU0/YAq3qWxmU6MgqNxWjZ9Ay3c20l/X7adn19dSo9pnnmgiHaIvFq+ijxYsp8mdm2MNeWx3H86LbU13wmWxrekyWM1e62LdkjMb9BpOwzxoZYWTTT8wUj+Hs9aB6OkeTOFWyicvbkVPXtyaoGfYIR+lYR8QYHSuoaFB7ZPt5dQWr236AVO4FT2dB7YrfHNvM/1lbQ0989Z+auiI9aaOplb6ctEqunzUCprRsS7WmMei7qEcoplnxRrzx32QqKhyRHoePHiQuMPvsuLVbBan/PRyVkM26snZph8whVvRkxe3oicvbk3QM+KQj9KwFwgMQtAbBUHB1ro2+sva/fTnt2pobyOG34lKqZM+VbiGPl2yiuZ1rKZQdICo4/AXpr8rNs3+uA8RlYxz7DnQuPR6Z4VU8GLleK/BaTZLNoPbzh0CgUAgEHgNadgHBGqqb1UVe5t+wBRuRc+RYV9TJ/31rQP057U1tLm2TZ0roF66NH8tfbZsNZ3QuZxyIr1Eei27iScTnfhRouM/QlQ+mb2e1ka9kzClrARNz6D5OZK1DkRP92AKt1I+eXErevLi1gQ9ww75GIxhIIGagnHgwAH1ydmmHzCFW9Ezc+A9+f98Yxd99NHX6cx7X6R7n91M22qb6Zzct+k3Y/8frS/5Kv0o/GM6qf0V1aiPjj2G6JzvEF23huhLLxGdcZ0rjfqg6YlGvXUrOj2aanc+U5hSVoKkp5swhVvRkxe3oicvbkVPXtyaoGfEIR9lxD5A8GPFa66rbJvKreg59NTxrt4Bem5THf3pzRp6eetB6o9E1V7zp4Sr6ZrKNXR23ytU1HvoyMh8+VSKHv8Rap72fiqfewaFcnKM0jPZSL2TK8ebUlaCoGdQ/RzpWgeip3swhVspn7y4FT15cWuCnnkO+CgN+wBNwcCCCdxt+gFTuBU9kwNt99e2H6K/rq+jv6+vje81Pyu0n66uXEUX0mtU3rX3yDvzRaNj+8yf+DGiqYsoFA7T8JfBy2493Zh+H6Sy4tW73UHR020M18+RrHXgdx7iDFO4FT15cSt68uLWBD3DDvkoDfuATcHAVgderjLptU0/YAq3oucRoLGGFe3X7W2iFb1TaMfAaPrVr9eov42jZrqmdBV9Iv8NmtCxKbY1HZBXTHTsRbHG/OxziHKO9JyKnkOPtGZTvrXa9Gofeymf7sHvPCS/n9nPrejJi1vRkxe3JugZcchHadgHCEVFRUbY9AOmcCt6Eu1v7qLrHvg1VQ+MoeYoNJhAo6ibPh7+F30892V6Z2gLhfuiRH2Ht6ebcy7ROz4R22s+vzhQ3AZBT7sp0sANN9ygRlOdGNE2hdsg6Bl0P4e7c4fo6R5M4VbKJy9uRU9e3JqgZ5EDPkrDPiBA78zo0aPZ2/QDpnBrsp7tPf30t7cP0B/X1NCynYcoGp1COTRA7w2/SZ/MfZHOCr1FBaEj06tpyoJYYx7T7YuHnvpksp7JGu5ONer95tarfeyd8DMbthv0W0/ONv2AKdyKnry4FT15cWuCnmGHfOQ5n8El6JUK8ZlOGlOBU6UHBgbiaVQq9+zZo/6uz+NITAOp0tp+srT1Gfv7++M23fDJLp14OO2TXRoH/IS/bvmUmNY29bu6Tvtkl4Z/e/fuVZ9u+OS2TunmPZ1ve/v66cXNdfT1p9bQaXc+R9/673X0xo4GOp520NLRv6P1Zf9Gv8i/n94fXqUa9ZHKmdT3rhup50vLKPqF52jg1M+rRn06PuHc7t2748/hhE/d3d20ZMkSdSCdqBM+YVM/j1c6pfJP4+abb6bc3FxHyhMO5FuUFa/ynrWswA80kHMsiyIirc87FSN0jNc+D9enUCg0rHLjRdyzKytexIjEsuJF3Ev8XXE77vkVy3VZ0T574ZNdfchJn+zSw6kPOaGT9sGr39zEfOtF3sORqj7kRoywxvgglSenY0RivvXCp2T1ITfjXmKMzzadIg7EvXQhDfsUWLp0Kc2fP58WLFig/l1fX68+Gxoa1AHU1dVRY2OjSuPdiObmZpWuqamhlpYWlUZwaWuL7Yu9a9cu6uiIrdC1c+dOVaHX6cLCQlVp27ZtWzwYIa2DFNJ61Ka6ulql8X18F8B9cX8A9mAXwHPgeQA8H54TaGpqUveCTTd8wjPqhamsPnV2drrmE54bz2/VCf7h/vDXLZ8SdYJN6Kn9cNonO53w/dLSUtq/f78rPtnphEALQFM3fLLT6eV12+nRN2rpXff9iz73/1bRX946QKP76unW4mdodeV36JmC79JFnX+mot5GihaNofWjzqD/CF9JPVe/TtVTP0a5VfMyznvt7e3KR+jqlE9I62lXuF+iTrDV2tpKPT09I9Ypk7yH+9TW1h7lE57lK1/5ipomjbLkVIzAjxny7fbt2z2Je3jugwcPKpuHDh2K64RzJSUlcc2cjhHwD/fHj3SmPuE8rsWzV1RUqPN4djyPPm+X9+CTrkx7EfcA2MO9kX+9iHv4jraFPOqGT3Y6wSZmdaAi5oZPdjohDgGw6YZPdjrt27dPlRVw64ZPdjrhdwWdauDYq7iHNL4Dm274lEwn/K54Fffw/PAP90f8cMunRJ3QKBk1apSKgW74ZKcTfqOQb/Fb5kXcw3Ve1ve0T6jvQVMcXsQ9nWcRi2DTi7gHG7Cl62Fu+NSRRCf8XoNjN3zKNO6li1A0k24AQ4EftPLychUoUKnSPTCYNpEqrQtbsjQyDK5NlgZwvTWNkSTdg2SXxoHrk6XTfXa3fELmXL58OS1atEiNiHHwiaNO6fqEwLNq1SpauHChOueWTw1t3fTXdQfo6TX7aH1NrPJeQp10WdEauqp4Gc1sf5NCdDiU5RRQ5JgLKHTS5dQ37Sy65/4H1TPccsstKs/5rRM4QxoN9oceekj97frrr48HdDyjX3kP1y1btkzpqUerg5r3OJanZD794Ac/iPfY476JP9u33Xab7bMjr61YsYIWL14ctx0Unzjq5LZPeE7oicEGdCpw8ImjTun6hE/EW2t9KNt94qhTuj5Z60P4O3edUJ/Hq2G4F+pXiEnZ7lPY4fqQUz6hUwPtT3QOlJWVUSrIO/YZwFoxSjw3nLR16ifEQy/81KlTj5oSmpjGtcnSOFKlrfZ1zxFsuuFTsme3Hk77ZJdGwdF+uuGTXTrRptM+2aVhEz1+sDnUfYbjk50f1rS+v1M+9UeIXtxST0+v3qc++waiFKYInZ2zga4ufZ0W9y2nnIHuI/vNTz+T6KRPEM3/EIULy9UpvIF8++23kx0yyXsI8tayMhKd7r333qOeRTfwAb1wGPTEaJnW0ymdUuU9/SPjdKxLlfdgU8c+/Txuxr3EsuKEr+loYxfj0/XJ2pBPbNQP9YzDzavDjRF4Pp1vdeXWzbgHWOOtNf865ZOdTnYx3kmf7NLWimKqsjJcn+z8gJ5OlpV00pnUh4bjk13ajfpQOnnPrj7klE9u1IeGU56Gqg+5ESOGG+PdLk9OxwhAlxWvfNL1ofHjx8f/7aRP6cR4L3SKeFAfSjfuWePUUJCGfUAA0SorKzMSLxttmsitVwtecdFz4/5W+sPqvfTntfupsSM2FWluaB99qWI5XRB9mYp7DhLFZmARjZlLdNLlRO/4OFHFNLZ5iDNM4XYkNr1a4M9EbrPJph8whVvRkxe3oqd7wO8QXiuzTg/Xr3wBbtRxTdAz5JCP0rAPCCDkUNMrONj0A6Zwm816NnX00p/X1tAfVu+jDftjU+1HUyt9bdQKurLwdZrYuflIY76okuiEjxKd9Emiye+E41nFbbqNtGzWMxOYUlZGYtOuooT8EsRV8bON22yy6QdM4Vb05MWt6Oke7rnnnqPOWbfCHc52pUPBBD1DDvk4eD6HwDdgyseOHTviU+242jSJWyx4gcU5rD2ZSGMEXy+KYbKe/QMRenFzPV37m9W06K7n6Xt/3Uhb9zfSBbmr6E9jltKqoq/RjZFfxBr14VyiYy4i+sR/UeSbm2jHcddSZNIpnjTqneZWbxNnbcjrRpq1oZZteg4XpsQ+0ZMXt6InL25FT17cip7uNkDHjh3r6ei5CXpGHPJRRuwDAhSQqqoqz6cqeW3TJG7/+7//+6gGvJu9mk776dYrBDsbOugPq/aqhfDqWmMrvs8P7aJrypfR+ZFXqLCviSi2SCjRxJOJTr4iNkJfPEadCkWjRpQVKZ+8uHXCJsqgG6MhTiJbuc0Gm37AFG5FT17cip7uAdvdYnV6DEg8+OCDnrwaZoKeIYd8lIZ9QAAh9VZLnG2axK0bo/LZqmdX7wD939sH6Her9tKKnbGtQMZQC321aDl9uvA1mtC1jSjWxicqGU/0jk/EGvRVx7EtK0M10oKsp5PgomcQbfoBU7gVPXlxK3ry4lb0dA8FBQXqsNZx3X41zAQ9Qw75KA37gADbGWA/xZkzZw5aDZGbTZO4vfzyy2natGlqWo0XC1455acO1omvEGikG7yxUuq6fS2qMf/XtfupraefcqmfPpCzlr5ctoxO7l5B4Wg/UReW/cwnOuZCopOvJJr9XqKc5KHJlLIi5ZMXt6InL25FT17cip68uBU93ed28uTJLloxr70y4JCP0rAPCLDlAQpJ4jYW3GyaxC0a9YWFhYMaxW72ajrlp55+P9xXCLAQ3v+8WUO/X7WXNte2qXPzQnvpOyWv0SWhV2lUX2OsMQ9MPjW2CN4JlxGNGp3W85lSVqR88uJW9OTFrejJi1vRkxe3oqf73KJ+69WrYSboGXbIR2nYB2gKRlFREXubfsDqp1PvjQ91H9P0jESi9Pr2Bvrtyr307IZa6u2PUBm102fzltHni1+jad1biPTOKMVVsf3mT/4UUdWxGdvyk1uvti602uQOU8qK6MmLW9GTF7eiJy9uRU9e3JqgZ8ghH6VhH6ApGNXV1TR79mxPpyp5bdMPWP30w6ZXC145pWcme2bXt/XQX7Z1062vvUJ7GrsoRBE6I7yBri59nd498AblRHpj29RhVft55xOd8imiOe8jysnLyrIydepUT+yZWj45xz7Rkxe3oicvbkVPXtyKnry4NUHPAYd8lIZ9QICpF9OnT/d8qpLXNv0A/Js4cSL19/erYyTvjaf7/nk26znUntkDkSi9vPUgPbViDz2/uV79ezIdpG8VvEpX5L9ClX21RJqSquOJTrmS6MSPE5WMIyfgB7fIN8hDCLwjyT+ZwKTyma1lJeg2/YAp3IqevLgVPXlxK3ry4tYEPcMO+SgN+wBNwcAqk9xt+gH4+dBDDx11fjhbz6X7/jlHPQ+0dNHvV+6j363cQ/tbuqmAeumC8Gr63KiX6J2RtylE0ViDvqCc6B0fi43OY7s6h7cn8YPbe+6556hzbm5daFr55FZWgmLTD5jCrejJi1vRkxe3oicvbk3QM+SQj3y7PrIMGAncvHnzoBFBjjb9APybMGGCp/tfctATo9Dfve12evcnvkzXPrWO3nXPC/Sjf26l8tYtdFfhf9La4uvop/mP0KmRdbFG/cz3EH3k50Q3biG66EGiSac43qj3i1vkHRPykB/gUFaCatMPmMKt6MmLW9GTF7eiJy9uTdBzwCEfZcQ+IMDUC7xX4fXUFq9t+gH496lPfYpyc3PVlOqRbD2X7vvn2a5n4uh8KXXSJ3Nep8+PeoVm922LXTRAFC2bTPvGnEUTL/wW5Y7zZg0DP7i9+eabVd7BFn4PPvig61sXmlY+s7msBNmmHzCFW9GTF7eiJy9uRU9e3JqgZ9ghH6VhHyD4kWE5FxIrsC0HfLWOuA5n67mh3j/PZj3Vu/PbDtJvlu2hFzbXUSQapQWhLXRL4Ut0QXgZ5UV6YlPtw3lEx15E9M5P08C0d9OelatoYuX0ET97JivOe80tnkV3DHmxdaFp5TPbyko22fQDpnArevLiVvTkxa3oyYtbE/QMO+Ajf5ayBJFIhLZt26Y+Odv0Cu3t7bRkyRJ1tLW1GcHtcG0ebOuhpS9up/fc/yJ97pcrae2mrfTF8F/p9eKb6A8F36dL6KVYo37csUTn3UV0w2aij/8qtrp92PvVSbOJ28SOC50n9SKMbtvMBmSrntlg0w+Ywq3oyYtb0ZMXt6InL25N0DPikI8yYh+gXpq5c+d6PrXFa5t+AKP02k9sIeHEQmdDbWEXdD0xpXzZjkb6zfLd9PcNteqdnneH36bvFb5I59BqysE8e7zmk1dMdMJHiN75GaIpC1x5Zz7dnQaCwq0XWxcm2uQMv/XkbNMPmMKt6MmLW9GTF7eiJy9uTdAz7JCP0rAPENBL43Wm9cOm2yP1QGdnZ/wc0mi4olFfWlpqtJ4tnX309Jp9qkFffbCDJtAh+nLOS/TpUS9TVaT+yIWTTyV651WxRn2Bu5ylu9NA0LnNtOMC5/X7+slePQhy+czk1YmhkE16ZptNP2AKt6InL25FT17cip68uDVBz4gDPkrDPkBiVldXq94aNEC52nQbuqFkxeOPP07jx4+nuro6uv32243Uc31NC/3nG7vpz2/VqEblOeG19N2CF+k9obUUpgjhPyrENnWXE516FdH44ymoCBq3I+24cMNmNiHb9Mwmm37AFG5FT17cip68uBU9eXFrgp4Rh3yUhn1AABGPPfZY9jb9AKad19bWGqdnd98A/e+6A/Sfy3bT2r3NNJkO0rW5L9IVRS/T2GjjkS9OO4Po1M8Szb+EKK+IvEa6Ow0EiVunYffqQVDLZ6avTgwFjnoGxaYfMIVb0ZMXt6InL25FT17cmqBnjkM+SsM+A+gFDfQnpkukSuPdbhzJ0pgerldqx2rbOAoKCgZNxUhMQ3g0VJOlceD6ZGnrM8I+KulYMR5/d9onu7R+Fn047dM3v/lNle7u7qZHH31Upb/85S+re+mGotM+2emEdE9Pj1pJHcdIfEo3je8iD+1v7aWnVu6jP6zaS62d3XRueA39v/wX6azwWxTGfvP4b9QYopM+SaF3XkUDo2en5ZOdNnq/TX3e6geeBaPVuO8tt9yieLB7dn3eCmhlPZ+oBxqSKCuwMxKd0s17OAc9UVa0v+lqg63yADyHdaQez6bLHWaa6PRtt90W370B+Rh+6vLqpE92aauWyWJdqhkIeDb9/OmWJ3xCTzyf7qV2M+5ZywryGOy7Hfe0/rCJjg/Yd9qnVHHBq7iHZ08sK27HPZ3vrGXFaZ/sdNIxHrEqlX/D9cnOD6uWOva5Gff0eeRb/fvptE92abv6kJtxb7j1oZGWJx1vrfUhN+OetawgDuny6mbc09eD22T1Ibfinl2MdyvuJdaH9OufbsY9nW/t6kNuxT27GO923Eu3PuR0jEinPuRV3NPPkw54v6wwQixdupTmz59PCxYsUP+ur4+9g9zQ0KAOANO7Gxtjo58HDhyg5uZmla6pqaGWlhaV3rt3r1qZHdi1axd1dHSo9M6dO1VGBTD9YseOHfFVESGuTusfVqQBBEhcD+D7uA+A++L+AOzBLoDnwPMAeD48p/Zj48aN6v5u+aRH96w+4Z13t3zCffCdUaNGqffpcRQVFdHu3bvjz+WGT4k6IQ09nfAJWkCTVHmvZv9+emb1Tvr0z16n9z74Mv3fK8vpc72/oWWFX6cn8n9EZ4cx5T5K/dPOJProL6j6Q89Q91nfJRo3L22f7HQCrwA0tfMJ3FdUVKTtU1lZGZWUlKTUac+ePfFnG6lO6ea91tZWWrdunfpupjo1NTWptR9QMQYXyJsA0uAHqKysjP9Iap9ga+3atfH1Ipz2KVnew330DJd0dEr0KdPypPPR1q1bPYl78An+wSZiuldxD/7hO/ibGz7Z6XTw4MH4bAov4p72480331Tn3Y572ifYWr9+fdw/p32y0wnXbN++3TWf7HTSa8ggBnoR9+ATbKGs4Jnc8CmZTng2PLNXcQ9xesOGDeqebvlkpxPiu1dxD8+P+2/atClen3U77uk0rkUMdMMnO52QRr7dv3+/J3EP12k/vIp7wL59+2jLli3qebyIewDi0FtvvaWu9yLuwQZswaaOgW7Hvb2HfUKjGnnIDZ8yjXvpIhTNpBvAUKBSX15ergI/Kq5u9uC63Svtdo/TUD4hcy5fvpwWLVqkelLd8gk/lvp9+xtuuCHe8OCmU0sXFsOrUe/P72tsU6PzV+S8QGflrIuNzqPHcdRYCp1yJUVO+QyFxsx21CcEnlWrVtHChQvVOT2KpXusMZKL+0IDPRqLBqwfec/v8qRnMOg8iXs89NBD6t/XX3+9GkHB8+oRBj98wnXLli1TeuJ5kvmBNBqM1ufXvcz4zGadOOU9lM8VK1bQ4sWL47az3SeOOqXrE54TemKwAR2FHHziqFO6PuET8dZaH8p2nzjqlK5P1voQ/s7BJ446RdL0KZ36kFc+oUNDD5xgYCUVZCp+BrBWjBLPDSdtXRwB59F7hEaP9bxdGkInS+NIlbbaxzlt0w2fkj279XDaJ53GaKJeTR0FVPvphk926USbTvhkTW860Eq/fmM3/enNGqroq6fLc1+kywtfpPHUFL+WZp2t3p0PHXMRUW7+oOk5w/HJzg9rWj/bPffcY7EU4z9xlfuR5LFk+dYNn7QegJ56lolO1nTiFonWvezRGE58N11XFHQectonu7T+kUkV6/RzWv9m9/zplif42dXVFefWaZ/snsXOpptxL1mMdzru2aWH65+dH6l2QrBer/OtWz4lpqGndWqok7FcP2Ni2i7GO+mTXdpaUUxVVobrk50fgC4rTteBUqXTrQ8Nx6dkaafrQ+nkPbv6kFM+jaSsOFk3Gqo+5EaMGG6Md7s8OR0j0sm3TvuUrD7kVtyzy7de6BRJoz7kVdyz1kWHgrWuL/ARyECYqqF/uLna9ANcuO0biKjF8D7++Bt00U9eogOr/kwP0730auG/0b/l/lE16vsLKily+teJrltD9Jk/Ex1/qWrUcwIXPYNo0w+Ywq3oyYtb0ZMXt6InL25FT17cmqBnxCEfZcQ+IECPzJw5c9jb9APZzu2h9h56asUe+q9le2igtZY+nvMveqjgBZoSir3TozDj3USnfY5yj/0gUW4B+YlMV7k3TU+NxBF8L2x6+fym6RlEm37shGAKt9msZyYwhVvRkxe3oicvbk3QM8chH6VhHxBgmgkWUCguLs5oykW22fQD2cot9p7/5Wu76K/raujUyHq6Lec5Oq9wNeVSbOVVKqwgOvnK2FZ14+ZZbMbe1fYLdtudoVGf6TZo3PTMBpt+wBRus1nPVDshANYOHlO4zWY9M4Ep3IqevLgVPXlxa4KeUYd8lKn4ARIUq5Tik7NNP5BN3GK6/TPr9tNHH32drnzkWap46wn6W/h6eir/h3RRzopYo37qIqIPP0Z0w2ai8+9SjfqR2Mw2ZJOe2WbTD5jCrejJi1vRkxe3oicvbt22iVlMS5YsUYd1vRyvwZHboNj0Gk75KCP2AQEWTZg1axZ7m34gG7iNT7d/YzdNaN9An8r9J32w4A0qDB2e7ppfQvSOTxCd9nmiCSc4YjNbpmpno57ZajMVUi2cNhKYwm3Q9HTr9RpTuM1mPTOBKdyKnry4FT15cWuCnmGHfJSGfUCAHhrsa4h9172c2uK1TT8QZG4317bSL1/dRc+uraYLoq/Sz3P+SScUxPbSVBh/ItGCzxOd+DGiglJHbGY7gqxnttv0A6Zwm816ZvJ6jSncZrOemcAUbkVPXty6ZTPVeiPYlsxrcOI2aDa9hlM+SsM+QII2NTWpbdq8LChe2/QDQeN2IBKlFzbX0y9f20l1O9bRp3L+Sd/JeZnKQl2x7+YUUOiEj8RG56cswN4bI7bJaYQ3aHpysjnShdOGA1O4DYqebsMUbkVPXtyKnry4dctmqvVGYOfcc88lL8GJ26DZ9BpO+SgN+wBNwZg+fTp7myZz29bdR39YtY/+6/XtNK/5VfpqznP0roIN8b9HR8+i0GmfpxAWxBs12hGbHBEUPTnaHOnCacOBKdwGRU+3X68xhVsOeqYDU7gVPXlxK3ry4tYEPcMO+SgN+wD11LS0tFB5ebmnPWBe2zSR231NXWp1+xdXvUWX9D9HT+a+QBPym2LXhcIUmncB0YIvUGjWOSjZjtjkPsJrQlkJip5uwxRuRU9e3IqevLgVPXlx65bNVOuNYCr+mjVryEtw4jZoNr2GUz5Kwz5g71aUlZV5/s6Klzb9gB9+RiIRem1rLf1l8zZq3fwv+lTOP+jb4VWUmxeJPdOocRQ69SoKYau6iqms9HR7hNeUshIUPTNZOG04MIXboOjpNkzhVvTkxa3oyYtbt2ymWm+kv7+fvAYnboNm02s45aM07AM0BWPq1KnsbfoBL/3EdnV/W19LT760nubU/R9dn/McHZO/L/736NTTKbTwixQ67mKi3AJHbYue7r3nb3L5zGThtOHAFG6DoqfbMIVb0ZMXt6InL25FT17cmqBn2CEfpWEfEGCEt7m5mSoqKpS4XG36AS/8bOnqo9+u2EMvvvoqnd/1DP0s5xUqzYsthhfJLaLwSZ8gWvBFCk040RX7QdLT7RFeU8pKUPR0G6ZwK3ry4lb05MWt6MmLW7dturWdb6bgyG1QbHoNp3yUhn2A0NXVpQTlblM3+n74wx86vmK6137ubeykX76yjQ6u/jN9IvosfSlnQ7xU9ZROp7wzvkzhk68gKqpgraeXI7zp+OnGe/4mlU+vKzKmcBskPd2EKdyKnry4FT15cSt68uLWBD27HPBRGvYBAXpnJk+ezN6mH3DDzzV7muipf71J47b+jj6f80+aEm5Q5yMUpujc8yhn8TVUMPPsES2GlylET/fe85fy6R5M4VbKJy9uRU9e3IqevLgVPXlxa4KeYYd8lIZ9gKZgNDY20ujRoz2d2uK1TYyawq5bK6a76Sf2n39uYx298MLfaUH9f9OdOW9QQW7s2fsKKin3tKsovOALRBXTBtnEgipu7Ofutp4jfT/drRFeU8qKHzb9gCncip68uBU9eXErevLiVvTkxa0JekYc8lEa9gGCtYHL1eb9999Ps2bNohdffNGVFdPd8LOrd4D+uHIH7Xj5N3Rh1zN0X3hbvOR0jTuRit51LeUd/xGivELHbA4Xftj0A0P56cZ7/qKnOwsTmsStlE9e3IqevLgVPXlxK3ry4tYEPfsc8FEa9gEBemcmTpzI3qYfGK6fDe099PS/VlF01S/psug/aFyohShMNBDKpb5jPkSF7/oKFU05jej/t3cm0HFUZ9r+WpIXeZG823gFYxtjFgPxRsKwBA+QQAj7MhAI8JMEzI4JzJ8YxpAEwgAmYEOA+AAJWYYkDBPIJED4wQyLZcQWVu+LvNt4lWzZlrr/817nakpNdasl1a2u+up9zunTV6VW3/re99anuktV+TyWAnX27t3bzNaHtTohKD9dP4c+jDiDvs6fx6c7kqIt860ubemnLm3ppy5t6acubZPgZ0lAMbJjH6ElGBs3bpQ+ffqEurQl7Dpvuukmqa6ullNPPVVmzJgR+B3Tg4hz6YZa+esLz8ngBb+US1NV0iHVKJIS2dGpr5RN/D/ScfwlUtq9f4t1zpw50zyT0ovL1QlB+en6OfTtJSnHSjHqLMbAT1K0jaqfQZMUbemnLm3ppy5t6acubZPgZzqgGNmxb6Xo3ncIn6+cSqXMK1e5sbHRfNaWM5mM+Xu73dblLZeWlprP5Srjhc/nKmfvo+uYsstlZWXmZ7wDlNGpx8vW1d6Ysss2PqtlrpjeWbxaPnjhSfnS2qflipIlZnYebOp1hFQeO0W6HPRNacTN8RBTCz7h+2x81tfsso21LTG15GV7fLLk2nd8xnpjP289a49PrWl7dl9aigmdzB/+8IdN3mR71prjyds+XcSUXbb7mJ0XvPEFnSO8XubKC/kGfrBv06ZNa1Xbs6DsjVtT3rPx2X3yHkNBxZSr7D1Wgo4pn0/ethR0TNnl7GPFVUzess2Jxcp7KAcdU0t5L9f/0CDzXq7zIZd5r615ob3Hk9XVvlznPUuhXgaVI2yddnsYeS+Xly7znvd8yJvjXeU9vxzvOu/55XjXea/Q86Ggc0Qh50Nh5T27vRB0DnsExKxZs2TMmDEyfvx48/P69evNO0ZU8ALr1q0zNzsAa9asMc8gBKtWrZKtW7eack1NTdPM7bJly6Surs6Uly5dKvX19U1l++zChQsXmiXcMBxlvONnlO2M2eLFi00Zf4+/BfhefD9AfagXYD+wPwD7h/20ZduQXcSEfbSze96YduzY0VRv//79A40J+4399/pkD1QbhzemmpUr5YXXq+QP//49GfrLiXLp+rtkbMkS2S0dZM2+p0nmO6/Kpq8/JrtHnixS2iFnTNk+oc7LL79czj777KYVCRiFQ/maa66R888/v10x+fm0bds26devnym3xyfs4/e//3057bTTTFJBLCjjOuobbrihmU/Lly83ZXjaXp8KbXsol5eXm/1qbdtr6/GE8q5du0ydLmLy8wl11dbWNsURdEy5fML3rF27Nm9MFRUV0q1bN1NG3urSpUtTubVtD/Wh3dqy67yHmDZs2GDqRDmsvIftyAE2vqBj8vMJcdrVFC5i8vMJZeQitF8XMfn5hLoQp40j6Jj8fEKdXbt2lRUrVjiJyc8n5AOAOsPIe4gJ+4BjxZaDjsnPJ/xfQY6BxmHlPbRZezLtIqZcPuF/Z1h5D/tvOws2Dtd5z8aBG4LZOFznPWzD59BubTnomPx8snGElfdsuVOnTsbXMPKefSQb2i3qDCPvoQ7UhTpRt4uY6nL4hJywevVqJzG1Nu8VSirTmmGAhIKEX1lZKZs3bzYnri5GcHFSgpOwAQMGNHV6gcsRXDQUNELvNR2uR3BRZ1VVlUycONHM2rsalc4eocYBhkEEW+fuhrS8PucFKan6ufzTnjf2LrfHgVvWVxqOuFR6/dP/kVS3vm0e7cTv0Tnq27ev2U/McmLbLbfcYjr5LkZw8UIbQp3Qrr2j0kh6d999tymjo4/OdLY3SDy4tGLChAlmm8tRabvvaEMYZMOxAlyOStt9x3fATxwrdqbOxai0t4w60G4RJ/YnjJkrfG7u3LnGT6x28Nt3+08TOeu+++4z2zDgg5MLbMd7a2fs4Sc6vXYlj8u8l32sYJvrvGd1Q512MDOMGXscn/PmzZNJkyY17UeQMfn5lH2sBB1Tvhxvj5WgY/LzyeZ4dB7QbsOYucJ+wk9MNuD/SBgz9vgeOxBmB3pd5r1c50OuZ+zbcj7U3uMJ78i33vMhl3nP4m23rvOe/U5oi3xrz39c5r18Od7ljL33fAi/D2PGPtf5kKu855fjw5ixL+R8KOgckS7gfCisvIdBXTtxgs5/PrgUvxV4T4yyt7WljMbkLdtrU7O3Z5dhdK4yXvnK2fuCk3CXMfntu/flIqbssu1s4OfaHTtk3vOPS/9PH5fJmb0jeFhXX9N9rHQ/5irpcfjpZmbeS0sx+ZVRJ/xE2Y602TG0IGLKVcY/TZsM2uNTrnI+n+z3Bx2TX9keK65j8sZhjxVXMWWX0V5sJ9lVTNll+08mX67z0x77mX1tfaFtD3Wi3drBqKBjaulYCSKvF+oNNMo+VlzlPVtua1ttz/HkPVZcxJRd9g4ouYopu2xzfJh5z3ui2Ja80FJMfnGgLjuIEPQ5UD6fCj0faktMuXwK+nyokLbndz4UZEzZ+5LdbsPIe97zIRcxBZnjXR9PLnKE3/9k1zH5nQ+5PDdqz/lQW30q5HworLxn960Q2LGPCDAXM1ba6ywG5sBprJc3H79ZRtX8Xr4qm8323VImSwd8TQafdJ0M2XecM21dPc89X51BENZ+t5akHCtJOj6ToC391KUt/dSlLf3UpS391KVtEvwsCSjG/x0qIEUFI0O4BsO7XEpjnWGz+rO58s7PzpWKh8bKUTWPSj/ZLOszlfL79GTZM+V9OeB7T0nXgDv1gH66IynaRv34tAM/eLXnEYhJ0TbqfgZFUrSln7q0pZ+6tKWfurRNgp/pgGLkjH2EwDXMSajTOelGWfHWH2TX6zNl5M6/y0BsS4ksKBsldYddJs9Xr5Z0Sal8szL/I+vaC/1sHbg+zd5xHTfqy9dZTIq2Ko/PBGtLP3VpSz91aUs/dWlLP3VpmwQ/ywOIkR37CC3BwF1DNdbp7bDhJmyuyOzcIiteflS6vDdbhjbuvav3nkypVHc9WrocdaWM/tIxe2/89c497X72dpL9LDZJ0ZZ+6tKWfurSln7q0pZ+6tKWfurSNgl+lgQUI5fiRwQsvcAjEMJe2hJ2nS5Ib1wsK566SurvHi3Dqn8sfRvXyuZMN3mh14Wy9MK3ZOLUZ2RO9Wfy05/+tOl52wBlDDj4PZe73ftEP1s18IOXd6AFZbs9qdpqOT5bIina0k9d2tJPXdrST13a0k9d2ibBz3RAMXLGPiLgjofdu3dv1Z0Po16n7ZRld9jQaPFuH23VJvAYnsVzZP3f7pf+a1+VobL3jvMLM4PlwyH/IuNO+Y6cOKDvPz6aMY9uC/PJjhr9dIXfwIp3ACb7Bn5J0TaufraWpGhLP3VpSz91aUs/dWlLP3VpmwQ/UwHFyI59RICReEahpjr9Omz333+/DB8+XF555ZWmjnZL11M3o2GX7Hn/adk+50HptX2+2CfOzskcIasPvFiO/9q5ckZl+RfivO6660wZAwq20zh16lTzOBQXaPQzKiRFW/qpS1v6qUtb+qlLW/qpS1v6qUvbJPiZCihGLsWPCJjFXr58eehLW8Kus83UbpDdL98pO+4+UDo8f5Xp1O/IdJKnUyfKU+P+IIfd8qKcf963pV9Wpx4gvjVr1pgVAt6OPMoYUAj6+npbJ/0sDAzs4IWBFgvKdntStY3V8dkOkqIt/dSlLf3UpS391KUt/dSlbRL8TAcUI2fsIzRS07Nnz9CXtris03bKvLPkV155pXz88cdy0kknyaxZs5p+b/lCJ3vdJ7L79ZlS8tHvpWNmt+C3azK95Jmyr0uPf7pczvjyIVLesTRx2kalziDwG1ixgy5J1jaufraWpGhLP3VpSz91aUs/dWlLP3VpmwQ/UwHFyI59RICRFRUVqur065g99NBDZin+nDlzcl9PjdGqxS/L7tcflI7L55jOPHg/PVz+VH6aHHDchXL5uP2kY1lJq+O0z952jUY/o0KQcRb6iD366Y6kaMvjU5e29FOXtvRTl7b0U5e2SfAzFVCMXIofEbD0YsmSJaEvbQm7znyUZfaIvPOENMycKPLrs0ynvjGTkj83TpDru/5Ulp/+nPzf70+TcyftX3CnPknaRs3P1mIHXfDKd3lEUrSNu5+FkhRt6acubemnLm3ppy5t6acubZPgZzqgGDljH6GRmn79+oW+tKW1dRY6w+nFO0u+c+dOqa6ullNPPVVmzJhhtk294mLp/PdfiVT/WuS5TaZRbs+Uy380HitV/c6RcyZ/Re4d3U9KSlKqtY1jncUgiDhzPbHBkt2u6ac7kqItj09d2tJPXdrST13a0k9d2ibBz1RAMbJjHxFgZLdu3dTXiWunS0pKzHvfzEY5Ut6R8p/PlJL03o7WykwfebzhJFk0+HS5fPJhctmI3u1u5EnRthh1FoMg4mzLI/bopxuSoi2PT13a0k9d2tJPXdrST13aJsHPVEAxcil+RGhsbJRFixaZ9yjWiRlOvLJnOO32gslkpPLzd6Xj0+fLlfJLOVw+Np3699Ij5Mrd18gPhvxKTrjsdnnyisly1Mg+gYzORV3bONdZDJKiLf3UpS391KUt/dSlLf3UpS391KVtEvxsDChGzthHBMxiDxo0yLxHsc7WznB+gYbdIh/9QUrfnCkHr//YbML18y+kx8svGr4uvUYfJVOOGyGHD+0pSdM2znUWgyDi9HtiAx6x530cYtB1thb6qUtb+qlLW/qpS1v6qUtb+qlL2yT4WRJQjOzYRwTMTJeXl+urc8cmkXceF6l6VKR2rWD+vQ7Pn288Vh5vPEkOPnis3HHcCDloYKWzXVCrbQTqLAZBxNmWR+zRTzckRVsen7q0pZ+6tKWfurSln7q0TYKfqYBijNXQx1133WUCv+6665q21dfXy5QpU6R3797m2oQzzzxT1q1b1+zvVqxYISeffLJ06dLF3JjgpptukoaGBokSWHqxYMGC0Je2FFonZjjxwqymBWW7/QtsWiLy3zeJzDhI5OXbTad+baan3LXnPPnyrgfl3TE3y+zrzpaHLviS0059HLSNc53FICna0k9d2tJPXdrST13a0k9d2tJPXdomwc/GgGKMzYz922+/LY888ogceuihzbZff/318uc//1l+//vfS2VlpVx11VVyxhlnyBtvvGF+D4HQqR8wYIC8+eabsmbNGrnooovM7NxPfvITiQpYejFs2LDQl7YUWmfBM5w1b4u8+YDIp8/hgnqz6dP0UHm04WT578yR8rWxQ+WHPbbL6ZPHSllZOM0v6trGuc5iEGSc3ic2hFVnodBPXdrST13a0k9d2tJPXdrST13aJsHPkoBijEXHvra2Vi644AJ57LHH5Ec/+lHT9q1bt8rs2bPlN7/5jXz1q1812x5//HE58MADZe7cuTJp0iR58cUX5ZNPPpG//e1v0r9/fznssMPkjjvukJtvvln+7d/+raDHtYUBViJ06tQpnnWmG0Xm/0XkzQdFauY2bX61caw81vh1mSuHyOmHD5a/HjdChvToJFVVVRImsdY24nUWg6RoSz91aUs/dWlLP3VpSz91aUs/dWmbBD9TAcUYi449ltpj1n3y5MnNOvbvvPOOufkVtltGjx4tQ4cOlbfeest07PF+yCGHmE695cQTT5QrrrhCPv74Yzn88MO/UN+uXbvMy7Jt2zbzjuX7rpbwp9NpczfEESNGhDYi1ZY68bkf/OAHe3/Ys1Maq56UkqqHJbVpsdnUIGXyTMNX5BeNX5clqaFy+uED5aVjhsvQXl2aVlBkMplQl9PERds41kk/3UE/dWlLP3VpSz91aUs/dWlLP3VpmwQ/03libE3fM/Id+9/97nfy7rvvmqX42axdu9bMuPfo0aPZdnTi8Tv7GW+n3v7e/i7XHeCnT5/+he3V1dXStWtXcQEaD16bNm0K5BFvLuss271V9ql5TvapeV7K9uwd9KiVrvJkw/HyZMOJ8nmqpxw9pKNcObKT9O1SJ2sWfihrPA13+/btMm/evNAOzjhpG7c66ac76KcubemnLm3ppy5t6acubemnLm2T4GcmT4x1dXU6OvY1NTVy7bXXyksvvSSdO3cOrV7cDO6GG25oNmM/ZMgQGTdunFRUVDg1FGaGfaAUXOemJVJS9ZCkPvitpBrqzaYNpf3lofoTzF3ud5V0kTPHDZIrjhkug3v639kRI18YpBk/fryUlpZKGMRC25jWST/dQT91aUs/dWlLP3VpSz91aUs/dWmbBD8zeWK0K8dj37HHUvv169fLEUcc0Uzo1157TWbOnCkvvPCC7N69W7Zs2dJs1h53xcfN8gDeMdrixd41334mG1zj4HedA2725uqGb4hr4cKFMnLkyNA6vAXXubJa5I2fNbsh3pIOI+W+upPkL+kJkiopk7MnDJYrjx0hQ/6x5D4faLCoL6yb50Va25jXCeinG+inO3h8Uts4tiHAfOsG+ukO5ltqG8c2FHa+zRdja+qPdMf++OOPlw8//LDZtksuucRcR4+b32EWHXdmf/nll81j7sD8+fPN4+2OPPJI8zPef/zjH5sBAjzqDmAFAGbex4wZI1EByzxgZth3mcxZZzotsvDFvR36FW82bX6/8wS5a9sJMrf+QCkrKZFzWtGhLxaR01ZRncUgKdrST13a0k9d2tJPXdrST13a0k9d2ibBz5KAYox0x7579+5y8MEHN9uGa9zxzHq7/bLLLjPL5nv16mU661dffbXpzOPGeeCEE04wHfhvfetbcvfdd5vr6n/4wx+aG/JF7Q6LuJ4j7Eb7hTobdon8/em9d7jfOH/vZ0o6yJvlx8rtmybLgvohUlaSkvPGD5Ypx0W7Qx85bZXWWQySoi391KUt/dSlLf3UpS391KUt/dSlbRL8TAcQY+wVmjFjhpxyyilmxv7oo482y+ufeeaZpt9jOcPzzz9v3tHhv/DCC81z7G+//XaJmpmLFy8270Wps36ryOv3i9x/qMifrjKd+sYO3eWvlefIkTtmyIWfXyKLU0Pl7C8Nlv9347Fy15mHxqpTX1RtFddZDJKiLf3UpS391KUt/dSlLf3UpS391KVtEvxMBxRjKoMr9UlecNOCyspK2bp1q7Ob5xWNbWtE5j4kUv24yO7tZtOergPkT52/KbetGi+10kVKUiKnHTZIrj5+pOzXp31PBcAjG/Ac+4kTJ4Z2jT1xB/3UBf3UBf3UBf3UBf3UBf3URUOE+iut6YeyZxURML6CGwHi8X2h3PFxw3zJvPGAyN//Q1LpPWbTrp6j5OmOp8vtyw+SPVIm2I1vjh0o1xw/Uvbv2818BvuIxwHapwdgf6NO6NomqM5ikBRt6acubemnLm3ppy5t6acubemnLm2T4GcmoBhjvxRfC1h6sXz5cvfLTFbMFfnt+SKzJkjq/adMp75+n4nyiyF3ypi1t8q05WNNp/7kQ/aRF687Wn523uFNnfq4Epq2CayzGAQZJ5Lo9OnTzQvlMOosFPqpS1v6qUtb+qlLW/qpS1v6qUvbJPiZDihGzthHBNwDYNSoUW6+3Nzh/oW919DXzP3HxpTs3P9r8oScKvd+WikN6b1XZPzzmP5y/eRRMmZg86UettOzZ8/e2f3scpRn7p1qm/A6i0FStKWfurSln7q0pZ+6tKWfurSln7q0TYKfpQHFyI59hJZg1NfXS+fOnYNbZtKwW+SjP+x9ZN2Gz/ZuK+0oOw88W36RPkUe/CAluxsxMpSRY0b1lRv+eZSMHdLD96vs8nsv99xzT1P5tttuk0Rpyzpj7WdrB6qS0oaKQVK0pZ+6tKWfurSln7q0pZ+6tE2Cn0HFyKX4EQFLL1atWhXMMpNdtSJvzRJ54DCRZ6/Y26nvVCH1E66WBw/5oxz+wTfk3nczplM/dp9y+Y/vTJQnL52Qs1MfdwLVlnWq8BMDVXh5B6dQtttd1NlailFnMUiKtvRTl7b0U5e29FOXtvRTl7ZJ8DMdUIycsY/QEowRI0a070vqNopU/Vxk3mMi9Vv2buvWX3aN+67Mrj9OHnprg9Tu2nvn+yOG9pCpJxwgXx7RJ+fXeW+Ud+ONN5pZTMxq2s7Q1KlTpUOHDpIIbVlnZKCfuqCfuqCfuqCfuqCfuqCfeigNqK/Cjn2ElmDU1dVJ165d274EAx361/59b7nXcNkz6Wr5Zd0kmfnaStm8Y43ZfNDACtOhP/aAvubn2tragupEpz57eTI69VG+tj5QbVmnKj/xRAdQ6EBVUtpQMUiKtvRTl7b0U5e29FOXtvRTl7ZJ8DMTUIxcih8hQ9evX2/e28yE74gM+4rsOfMJeWr8H+UrLw2VO15YKpt37JH9+3aVWf9yhDx31VFy3Oh+ptHkqhMz9XhlX39stydSW9apyk87UOXtyNuBKr/BqqS0oWKQFG3ppy5t6acubemnLm3ppy5tk+BnJqAYOWMfEUpKSmT48OHt+o7G8l7y7KGPyv1/WSA1mz412wb1KJfrJo+U0w8fJGWlJQXVGecb5bnSlnVGB/qpC/qpC/qpC/qpC/qpC/qph5KA+irs2EcEjNBs375dunfv3uYlGPe+OF8eenWxKfft3kmu/uoIOXf8EOlUVtrsc1h+f++995ryd7/7Xenfv7/apS1Bacs6dfqJ2flCBqqS0oaKQVK0pZ+6tKWfurSln7q0pZ+6tE2Cn5mAYmTHPkKGbt68Wbp169ZmQ/9l4lD5wzsr5dKj9pOLj9xXyjs279Bng3q2bt0q/frtXZrf1uuPk6At64wO9FMX9FMX9FMX9FMX9FMX9FMPmYD6KuzYR2gJxrBhw9r1HYN7dpE3bvmqdMhacu+dqQc7duxoakQ9e/Zs+hmNCfhdYxyXG+W50pZ1Rgf6qQv6qQv6qQv6qQv6qQv6qYeSgPoq7NhHBHSyMXteWVnZrpGaXJ16YJffe3niiSdk586dTq+d9z427/vf/77EVVvWGQ3opy7opy7opy7opy7opy7opx4yAfVVeFf8iF1b0Z67IaIDPX36dPMq5O71aDidO3fO2YDs9cd4xXW2PihtWWd0oJ+6oJ+6oJ+6oJ+6oJ+6oJ96yATUV+GMfStIp9PN3rFsIl8ZHWa8cpUbGxvNZ+2j5wYPHtxsu63LWy4tLTWfzVW232W342/tzzfeeKPZhqX3jzzyiNl2zjnnmCX42G4/H1RMWAmAckNDQ9N+YcABn8E79rmQmPDyxpFdLsSPQYMGfcHHtsTkV87lE/y0dbmIya88ZMgQU7ZtIeiYsuPA573xuYgp2ydgjxUXMfn5hO9BG3IVk18Znxk4cGBTzEHH5Ff2etmaXNfe4wntFmW7D0HG1NKxEnTey+WTzfHWyzDyns0FYeY9fAbt1u5vGHnP5nh7rLjOe94c7z1uXOa9bC9tjneZ92x9OFa8Od5l3st1PuQy79nvsTk+rLznbTdefV3mvZbOh1zliHznQ65yhF+Od5X3ss+HvDneZd7LdT7kMu/lOh9yeW6UneNd571MQOdDQeU9uz+FwBn7PMyaNUvGjBkj48ePNz/j+YJg48aN5gXWrVsnmzZtMuU1a9bIli1bTHnVqlVmSQWoqakxozBg2bJlUldXZ8pLly6V+vp6U160aJH5Lpi8cOFC0xm2ZbzjZ5QBOsWLF++9+z3+Hn+Lbdu2bZPevXub7dgPfD+2Yz+wP+jA43ts/fj5888/ly5dupjvKSQm/IwVAdAGn8sXE5b54+Z7eOHO+2ikDzzwgKxdu9ZcFpAvJnwPwPfi+wE0hJbAxmRjxX4B7LfdL+sT9MN32/ja4xO+x66GyOcTytgPeOMiJj+fUMYL3+ciJj+fli9fbsoYLHIRk59PqHPlypVm31zE5OcTjq3PPvvM/K2LmPx8Ql0ff/xx0z0wgo4pl0/4HhyjLmLy8wllfNeCBQucxZTtE+LDO3K6i5j8fEJ8yLf4XRh5D2zYsMHcBNVVTH4+4W8++ugjsz2MvIe/QV3z5883Nx5yEZOfT/jM6tWrm+Jznffw3fY+OStWrAgl7yEm5FvsG7QNI++BJUuWmGPU/u8OI+9hX+13hpH3bEzI72HlPXuOie+w57Ou854tIxchB7qIyc8nlPF7HKNh5D18zsYRVt6zceCF/Qkj7wHkoU8++cR8Poy8hzpQF+q0OdB13qv5R0zoVKMNuYiptXmvUFKZ1gwDJBSc1OOaB/xj69Gjh5MRXJx8oUFgpsM7glzIiNMdd9zRNJpjR3285VtvvbXZKBoOjBkzZpjPXHDBBc2em9hSTGiA9913n/nu66+/3jyWIVdMt99++xf2Be+oDw142rRpTkelbdkeVPvss4+UlZU5HZW2ZfweyQADGrjxYBgzV3YwAXXaUVXXI7hIPNXV1TJhwgSzLYwRXNvxxLFi25brmSub3O2IsatRaW8ZdaDdIk7sTxgzV/jc3LlzjZ+4/MbFqHR2HAB+4ukcOD6DjqmlYwXbXMzGZfuEdos6kYdAGDP2OD7nzZsnkyZNatoP1zNX2ceK67znzfH2WHGd97w5fsCAAabdhjFzhf2En5hswP8V13nPzjyi3SJOO3PmMu/lOh9ymfdQxvGJE3HvbLbLvGf/ryDfTpw4sencxGXes3jbreu8Z78T2uY6H3KRI3LleFd5L/t8CL8PY8Y+1/mQq7znl+PDmLEv5Hwo6ByRDuB8KKi8h34b+p8YHKioqJB8sGPfio59IYIWA8yg5yOIm+J576j/8MMPm/IVV1xhZvu9d9T3YkebvI/Nw2DABx98IOPGjZPy8vJ27xcpLvinUlVV1XRiQuIN/dQF/dQF/dQF/dQF/dRFQ4TOb1vTD+WZeETAqA2Wb/Tq1atphKlQ2vrc+dbU6XdHfdvBzzV4kOuxeairpX2LirasM3rQT13QT13QT13QT13QT13QTz2kA+qrsGMfIey1kK2lPc+db2udcaMYcSalzmKQFG3ppy5t6acubemnLm3ppy5t6acubZPg554AYmTHPiJgdMZeexmVOr3Pn7/mmmvMYEGupfj5sI/NA625AYRmbbXUWQySoi391KUt/dSlLf3UpS391KUt/dSlbRL8LAkoRt4VP0JLMHCXUu8NTlpLa58735o6u3btaq6j93bkUcY2v+vrtWnLOqMD/dQF/dQF/dQF/dQF/dQF/dRDOqC+CmfsSd6b3llsOQlLYQghhBBCCCEkTrBjH6ElGHjcUxTqtMvvvdib8gV1l/2kaqutzmKQFG3ppy5t6acubemnLm3ppy5t6acubZPgZ0lAMXIpfkTA0gs85zPs5eJh11kMkqIt/dSlLf3UpS391KUt/dSlLf3UpS391KVtEvxMBxQjZ+wjRJiPgMtXZ1sfnxdloqKtxjqLQVK0pZ+6tKWfurSln7q0pZ+6tKWfurRNgp8dAoiRHfsILcHo06dPJOpsz+PzokiUtNVWZzFIirb0U5e29FOXtvRTl7b0U5e29FOXtknwsySgGLkUPyJg6cWqVatCX9oSdp3FICna0k9d2tJPXdrST13a0k9d2tJPXdrST13aJsHPdEAxcsY+QpSXl0eqTu/z5+NO1LTVVGcxSIq29FOXtvRTl7b0U5e29FOXtvRTl7ZJ8LM8gBjZsY/QEoxevXqpr7MYJEVb+qlLW/qpS1v6qUtb+qlLW/qpS1v6qUvbJPhZElCMXIofEbD0oqamJvSlLWHXWQySoi391KUt/dSlLf3UpS391KUt/dSlLf3UpW0S/EwHFCM79hEhlUpJ9+7dzbvmOotBUrSln7q0pZ+6tKWfurSln7q0pZ+6tKWfurRNgp+pgGLkUvyIACN79Oihvs5ikBRt6acubemnLm3ppy5t6acubemnLm3ppy5tk+BnKqAYOWMfEbD0Yvny5aEvbQm7zmKQFG3ppy5t6acubemnLm3ppy5t6acubemnLm2T4Gc6oBjZsY/QSE3Pnj1DX9oSdp3FICna0k9d2tJPXdrST13a0k9d2tJPXdrST13aJsHPVEAxcil+RICRFRUV6ussBknRln7q0pZ+6tKWfurSln7q0pZ+6tKWfurSNgl+pgKKkTP2EQFLL5YsWdKuJRi7d++W6dOnmxfKYdQZB4oRZ1LqLAZJ0ZZ+6tKWfurSln7q0pZ+6tKWfurSNgl+pgOKkR37Vopu3wspZzKZvOXGxsZm2/v27WtGbOx2vLLLIF/ZLuFA2e6Lt+zdR2zv06eP+RsXMfmVs1+FxOQXR66Y/MqID3F69zfomLLLqBN+evc3yJhyxdGvX7+m/Qg6Jtc+Fdr28G6PlbBiAvZYcRGTX9m2W0tYPgXRDlvT9gDarf1MGG3Pe6yElfdsjvfGHcbxFGbe8ztWwsgR2cdKGHnP5nhvXnKZ94qVy+2xYusNIya/86EgY8pVbu35UBA+2RjC+p/b0vmQi7YH8p0Pucp7fjm+2MdT0Dki1/mQy5hynQ+5zHuFnA9F2ad0AHmvUNixz8OsWbNkzJgxMn78ePPz+vXrzfvGjRvNC6xbt042bdpkymvWrJEtW7aY8qpVq2Tr1q2mjOcSbt++3ZSXLVsmdXV1prx06VKpr683ZYzSdOzY0Ri6cOFCaWhoMCajjHf8jDLAbPzixYtNGX+/aNEis23btm3Su3dvsx37ge/HduwH9sdux36CzZs3m31BnS5iwj7alQPemHbs2NFiTPgegO/F9wPUh3pBrpiw39h/r0+ID9+DeF3FlO0T6oSf8NVFTH4+4e+7desmq1evdhKTn0+40QeApy5i8vNp5cqVTYneRUx+PtXW1pr2gzpdxOTnE+pCztm1a5eTmHL5hO9Zu3atk5j8fNqzZ49pt8hjrmLK9gm6os7PP/88tLyH+Lp06WL+SYeR98CGDRuMvq5i8vMJ9aH9oP2GkffwN/a4xP9AFzH5+YQ68bI50HXew3cjD4EVK1aEkvcQE/ItjhVoG0bes+WysjKjb1h5D2X8DnWGkfdsTPjfGVbew/7b4xK5z1VM2T7h/3Xnzp1NDnQRk59P+H+NdotcFEbew+dsHGHlPYDzPTvQGEbes23WnluHkffscYm/Q90uYqrL4RO0hcYuYmpt3iuUVKY1wwAJBf/QKisrTaLAowjsCExJSUnesv3Hn6uMBoPPogwDcYIwfPjwpu8A+Ly3XFpa2jSCZMt33HFH02iOHUHzlm+99Vbznr2POAFDQ0KddqY/yJj8ymicVVVVMnHiRNOAc8XkLdt9z1VuyQ98Dh3sfffdVzp06BB4TH4+AdQ5bNgw08EPOia/MvYHbQh12uQQZEx+3qDdVldXy4QJE8y2oGPy8ym73QYdk59PaLfwc//992+KK8iY/Mp4R3JHnPAz6Jj8yvjc3LlzjZ9ot0HH5OcN6oWfQ4cONcdn0DG1dKzYdusy7wG0W9S53377md+5znso4/icN2+eTJo0qWk/XOY97Hv2seI679kc7z1WXOc9b463/1dc5z3bbuEnJhtQp+u8h3f4iXaLOLHNdd7LdT7kMu+19XyovccT3pFvvedDLvNeIedDLnIE6kQHKtf5kIsckSvHu8p72edD+L3rvOfXbl3nPb8c7zrvFXo+FHSOSAdwPhRU3sOgLvqfGBxo6Tp83jyvFXhPjLK3taWMxmRBgh08eHCTkX6fsWV7UmjL3rEZv7JtNNn14+DwqzOomHLtu/eVK6bsz+crt7Rf0AFxIl4XMfmVbZ22oxJ0TH5l/O2gQYOaOvVBx+QXh7dsvz/ImPzKudqti5js92PbkCFDmuoMOia/Mt5Rp92foGPyK9t/MkHnunxtD8cK2q3tqAQdU3uPlaByhM3x2ObdR1d5zxurq5j8ytnHiuu8B9CGvMdKGHkv+/+K67yXfaKY71hpa0x+cSA+HCvedusy77X2fKgtMfmVXZwPFdL2/M6HgorJxflQW46nls6HXOW9tuR418dT0DmikHYbdEy5zodcnhu153yorT6FcT5UaN7z/twS7NhHBJhWXl7epr/913/9V/OOkbt77rnHlKdOndqURF3UGSeKEWdS6iwGSdGWfurSln7q0pZ+6tKWfurSln7q0jYJfqYCivF/hwpIUcFSiwULFjS7OUWhYIkIXt6OPMp2u4s640Qx4kxKncUgKdrST13a0k9d2tJPXdrST13a0k9d2ibBz8aAYmTHPiJg6QWuBfIuy9BYZzFIirb0U5e29FOXtvRTl7b0U5e29FOXtvRTl7ZJ8LMkoBi5FD9CSzA6derUru/A7Pxtt90Wap1xoBhxJqXOYpAUbemnLm3ppy5t6acubemnLm3ppy5tk+BnKqAY9Q59xAwsvfjss89CX9oSdp3FICna0k9d2tJPXdrST13a0k9d2tJPXdrST13aJsHPxoBi5Ix9RMDSC/voCM11tgQe93DnnXc23RQw3z0CCiUp2kbRTxckRVv6qUtb+qlLW/qpS1v6qUtb+qlL2yT4WRJQjHoViiHFaLCaD5Ikaks/dWlLP3VpSz91aUs/dWlLP3VpSz91aZsEP0sCiFG/SjEBz0tcuHBh03NqtdaZb6YeLzyyz4Ky3d4ekqJtlPx0SVK0pZ+6tKWfurSln7q0pZ+6tKWfurRNgp/pgGLkUvwIjdKMHDky9KUtYdeZC7v83ss999zTVG7NTQGTqm2U/HRJUrSln7q0pZ+6tKWfurSln7q0pZ+6tE2CnyUBxahXoRhSjJEozaNfSdSWfurSln7q0pZ+6tKWfurSln7q0pZ+6tI2CX6mA4iRHfsImbl48eLQl7aEXWcucKM8vKZOndq0DWW7vT0kRdso+emSpGhLP3VpSz91aUs/dWlLP3VpSz91aZsEP9MBxcil+BGhtLRURo8erb7OXPjd/b5Dhw6B3BU/KdpGyU+XJEVb+qlLW/qpS1v6qUtb+qlLW/qpS9sk+FkaUIycsY8ImUxGdu3aZd4119kS3hvltfemeUnTNop+uiAp2tJPXdrST13a0k9d2tJPXdrST13aJsHPTEAxsmMfEbD0Yvny5aEvbQm7zpbwztAHMVufJG2j6KcLkqIt/dSlLf3UpS391KUt/dSlLf3UpW0S/EwHFCOX4kdoCcaoUaPU15kLOzuf/bi7IDr5SdE2Sn66JCna0k9d2tJPXdrST13a0k9d2tJPXdomwc/SgGJkxz4iYOlFfX29dO7cWVKplNo6i/G4u6RoGyU/XZIUbemnLm3ppy5t6acubemnLm3ppy5tk+BnJqAYuRQ/ImDpxapVq0Jf2hJ2ncUgKdrST13a0k9d2tJPXdrST13a0k9d2tJPXdomwc90QDFyxj5CSzBGjBihvs5c2EfaYfm9nanH4+5wZ/z2khRto+SnS5KiLf3UpS391KUt/dSlLf3UpS391KVtEvwsDShGzti3AjuKgvdCyvbOhrnKjY2NTeWGhgbZvn27+dlu9yuDfGVbf66ydx/xd9u2bWv6fdAx+ZWzX3bf0YFHo7YdeSxDQRmvsrKygmPyK+OziNPW5SImvzL8hK/t9anQMr6/tra22T4GGVOQba8tZe8+2mMlrJjwbo8VFzH5lW279R6vYfjU3vha2/bwO7RbHCthtT3vsRJW3rM53tYf1vHk3V/Xec/vWAkjR2QfK2HkPZvjW4rPZY4IOia/OOyx0t44WhOT3/lQkDH5ldtyPhSETzaGsP7ntnQ+5KLt4W/ynQ+5yBG5cnyxj6egc0Su8yGXMWXn+DDyXnaOj5tP6QDyXqGwY5+HWbNmyZgxY2T8+PHm5/Xr15v3jRs3mhdYt26dbNq0yZTXrFkjW7ZsMWUsp9i6dasp19TUGLPAsmXLpK6uzpSXLl1qrqcAixcvNn8P8xYuXGgMhuEo4x0/o2xvNIfPA/w9vgfge/H9APWhXoD9wP4A7B/qAZ9//rksWbLE1OkqJntTPG9MO3bsyBsTOvN9+vRpU0zYb+y/1yfEhzgRr6uYsn1CnagnCJ/8YvLzafPmzaaNrly50klMfm0Pd/AE8NRFTH4+rVixwnw/NHYRUy6fFixYYOp0EZOfT6jr008/lZ07dzqLyc8nfM/atWudxOTnEx7vgnYbVt6zMaHODRs2hJb3UEYdWJXkKqZsnxCfvQlpGHkPwM9PPvnEtN8w8h7+xv7ftPG5znv4HtSJXBtW3sN3o6Nic2BYeQ914VjBPoWR92xM+Bw0Divv4f/nokWLTJ1h5D0bE/53hpn3EB++A7nBVUzZPqFjgv8pYeU9bMP5HtptWHkPn7NxhJX3AHIQjlH4GkbeszHNnz+/aXDTdd6znV3UGVbeq/lHTGi7q1evdhJTa/NeoaQyrRkGSCgYJaqsrDSJv0ePHk0jMCUlJXnLmHXGK1cZDQafzVUG+Ly3jFltO4LkV8YLn89VLnTfXcWExllVVSUTJ040M/EaYtLoU6ExIfFUV1fLhAkTzDYNMWn0qdCY8Lm5c+caP/EkCg0xafSp0H3H8Tlv3jyZNGlSU91xj0mjT4XGhP2En5hswAC4hpg0+lRoTJKJVKcAAA9WSURBVHhHvvWeD8U9Jo0+FRqT93wIv9cQk0af0gXGFMT5UFAxYVAX/U8MDlRUVEg+eI19K/CeGGVva0sZjcm7HSM43bt3b7bdrwyjc5Xxylf21o9ttk4XMeXad+8r6Jj8yjhAcVAgThcx+ZVRp9XWRUx+ZdSJQSjU2dL3tCUmvzi8Zfv9QcbkV87Vbl3EZPcd2DbkIqZc7RYjubYNBR2TX9n+kwk61+Xzya/dusx7rT1WgsoRfjneZd6z5bbG19bjCdh2G0bea02ODzJH+OV4l3kv+0Qx37HS1pj84gD2WHGZF7LLhZ4PtSWmXOWgz4cKaXt+50NBxeTifKgtx1NL50MuckRbc7zr4ynoHFFIuw06plznQy7PjbLbbRg+pUM4Hyo073nPRVvif7+RFBU0WqwIwLvmOotBUrSln7q0pZ+6tKWfurSln7q0pZ+6tKWfurRNgp+ZgGLkjH1EwEjNsGHD1NdZDJKiLf3UpS391KUt/dSlLf3UpS391KUt/dSlbRL8LAkoRs7YRwSM0NibAGmusxgkRVv6qUtb+qlLW/qpS1v6qUtb+qlLW/qpS9sk+JkJKEZ27COCvQYp7AMl7DqLQVK0pZ+6tKWfurSln7q0pZ+6tKWfurSln7q0TYKfmYBi5FL8CC3BGDJkiPo6i0FStKWfurSln7q0pZ+6tKWfurSln7q0pZ+6tE2CnyUBxcgZ+4iAuy/i2Yf2rrda6ywGSdGWfurSln7q0pZ+6tKWfurSln7q0pZ+6tI2CX6mA4qRHfsIsXPnzkTUWQySoi391KUt/dSlLf3UpS391KUt/dSlLf3UpW0S/NwZQIxcih+hJRiDBg1SX2cxSIq29FOXtvRTl7b0U5e29FOXtvRTl7b0U5e2SfCzJKAYOWMfEbD0YuPGjaEvbQm7zmKQFG3ppy5t6acubemnLm3ppy5t6acubemnLm2T4Gc6oBjZsY8Qe/bsSUSdxSAp2tJPXdrST13a0k9d2tJPXdrST13a0k9d2ibBzz0BxMil+BFagrHPPvuor7MYJEVb+qlLW/qpS1v6qUtb+qlLW/qpS1v6qUvbJPhZElCMnLGPCFh6sX79+tCXtoRdZzFIirb0U5e29FOXtvRTl7b0U5e29FOXtvRTl7ZJ8DMdUIzs2BNCCCGEEEIIITGGS/EjtASjX79+6ussBknRln7q0pZ+6tKWfurSln7q0pZ+6tKWfurSNgl+lgQUIzv2BZDJZMz7tm3bxPUSDJgKc8OgGHU2NDRIXV2d0bKsLJzmlxRt6acubemnLm3ppy5t6acubemnLm3ppy5tk+BnOk+Mtv9p+6P5YMe+ALZv327ehwwZ0ja3CCGEEEIIIYSQNvZHKysr834mlSmk+59wMIqyevVq6d69u6RSKWf1jB8/Xt5++21n3x+FOjHqhAGSmpoaqaioCK3eJGhbjDrpp1vopx5ti1Enj0+30E892hajTh6fbqGferRNyvE5PkeM6KqjUz9w4MAWVyxwxr4AIOLgwYPFNaWlpaF2dotVJ0CdYdabFG3ppy5t6acubemnLm3ppy5t6acubemnLm2T4Gdpnhhbmqm38K74EWLKlCmJqLMYJEVb+qlLW/qpS1v6qUtb+qlLW/qpS1v6qUvbJPg5JYAYuRSfhAqWtmDUaevWrUUZeSPBQj91QT91QT91QT91QT91QT91sS2m/RXO2JNQ6dSpk9x2223mncQf+qkL+qkL+qkL+qkL+qkL+qmLTjHtr3DGnhBCCCGEEEIIiTGcsSeEEEIIIYQQQmIMO/aEEEIIIYQQQkiMYceeEEIIIYQQQgiJMezYE0IIIYQQQgghMYYdexIKd955p4wfP166d+8u/fr1k9NOO03mz59P9RVw1113SSqVkuuuu67Yu0LawapVq+TCCy+U3r17S3l5uRxyyCFSXV1NTWNGY2OjTJs2Tfbbbz/j4/777y933HGHZDKZYu8aKZDXXntNvvGNb8jAgQNNbn322Web/R5e3nrrrbLPPvsYjydPniwLFy6kvjHzcs+ePXLzzTebXNu1a1fzmYsuukhWr15d1H0mbT82vXzve98zn7n//vspaYz9/PTTT+XUU081j77DcYq+zIoVKySqsGNPQmHOnDkyZcoUmTt3rrz00kvmH9oJJ5wgdXV1dCDGvP322/LII4/IoYceWuxdIe1g8+bN8pWvfEU6dOggf/nLX+STTz6Re++9V3r27EldY8ZPf/pTefjhh2XmzJnmhAQ/33333fLggw8We9dIgeD/4tixY2XWrFm+v4efDzzwgPz85z+Xqqoqc7J54oknSn19PTWOkZc7duyQd9991wzE4f2ZZ54xEx7oRJB4HpuW//zP/zTnu+gwkvj6uXjxYjnqqKNk9OjR8uqrr8rf//53c7x27txZogofd0eKwoYNG8zMPTr8Rx99NF2IIbW1tXLEEUfIQw89JD/60Y/ksMMO48h0TLnlllvkjTfekP/5n/8p9q6QdnLKKadI//79Zfbs2U3bzjzzTDOz+9RTT1HfmIFZJHQSsMrNztajs3DjjTfK1KlTzbatW7caz5944gk577zzirzHpFAvcw2WT5gwQZYvXy5Dhw6lmDH0E6vfJk6cKC+88IKcfPLJZjUjVzTG08/zzjvPTHj86le/krjAGXtSFHAiAnr16kUHYgpWYOCfFpaBknjzpz/9ScaNGydnn322GXA7/PDD5bHHHiv2bpE28OUvf1lefvllWbBggfn5gw8+kNdff12+9rWvUU8FLF26VNauXdss72KJKDoSb731VlH3jQRzboQORo8ePShnDEmn0/Ktb31LbrrpJjnooIOKvTuknV7++c9/llGjRpkVUTg3Qp7Nd/lFFGDHnhTlYMHoJZb+HnzwwXQghvzud78zSwdx7wQSf5YsWWKWb48cOdLMMlxxxRVyzTXXyJNPPlnsXSNtWH2BWQYsHcRMAwZpkG8vuOACaqkAdOoBZui94Gf7OxJPcCkFrrk///zzpaKioti7Q9oALn0qKysz/z9JvFm/fr1ZmYr7SJ100kny4osvyumnny5nnHGGWW0cVcqKvQMkmTO9H330kZlFIvGjpqZGrr32WnOvhChfZ0RaN9iGGfuf/OQn5md0BnGM4hreiy++mFLGiKefflp+/etfy29+8xszY/T++++bjj2Wb9NLQqIJ7jt0zjnnmEstMMhK4sc777wjP/vZz8ykB1ZdkPifF4FvfvObcv3115syLjl98803zbnRMcccI1GEM/YkVK666ip5/vnn5ZVXXpHBgwdT/Zj+88JIJq6vx8g0Xhi9xM2cUMZduUm8wN21x4wZ02zbgQceGOk7vxJ/sATUztrjbttYFoqTEq6u0cGAAQPM+7p165ptx8/2dySenXpcV48Bc87WxxPcowbnRrg3gj03gqe4H8a+++5b7N0jraRPnz7Gw7idG3HGnoQCRqGvvvpqc2MK3FkSj2Ii8eT444+XDz/8sNm2Sy65xCz9xTLC0tLSou0baRu4LCb78ZO4RnvYsGGUNGbgTtslJc3H7HFM2tkHEm/wvxMdeNxHAbNHYNu2bebu+LiEhsSzU4/HFWLCA48bJfEEg6jZ9xzCtdnYjnMkEi86duxoHm0Xt3MjduxJaMvvsTT0v/7rv8yz7O21gLjpD+7WTOID/Mu+NwIet4QTEt4zIZ5gRhc3XcNSfJxkzps3Tx599FHzIvECz+T98Y9/bGaNsBT/vffek/vuu08uvfTSYu8aKRBc17lo0aJmN8zDJRW42Sx8xaUVeBIJ7omBjj4ev4RLLfLdbZ1Ez0uslDrrrLPM0m2sZMRqN3tuhN+jY0HidWxmD8zgPicYiDvggAOKsLekvX5iBdy5555rnt513HHHyV//+ld57rnnzARlZMkQEgJoan6vxx9/nPor4Jhjjslce+21xd4N0g6ee+65zMEHH5zp1KlTZvTo0ZlHH32UesaQbdu2mWNx6NChmc6dO2eGDx+e+cEPfpDZtWtXsXeNFMgrr7zi+//y4osvNr9Pp9OZadOmZfr372+O1+OPPz4zf/586hszL5cuXZrz3Ah/R+J3bGYzbNiwzIwZM0LfTxKcn7Nnz86MGDHC/D8dO3Zs5tlnn81EGT7HnhBCCCGEEEIIiTG8eR4hhBBCCCGEEBJj2LEnhBBCCCGEEEJiDDv2hBBCCCGEEEJIjGHHnhBCCCGEEEIIiTHs2BNCCCGEEEIIITGGHXtCCCGEEEIIISTGsGNPCCGEEEIIIYTEGHbsCSGEEEIIIYSQGMOOPSGEEEIIIYQQEmPYsSeEEEJIUXj11VcllUrJli1b6AAhhBDSDtixJ4QQQgghhBBCYgw79oQQQghpM8cee6xcddVV5lVZWSl9+vSRadOmSSaTMb/ftWuX3HzzzTJkyBDp1KmTjBgxQmbPni3Lli2T4447znymZ8+eZub+29/+Np0ghBBC2kBZW/6IEEIIIcTy5JNPymWXXSbz5s2T6upq+c53viNDhw6Vyy+/XC666CJ566235IEHHpCxY8fK0qVLZePGjaaj/8c//lHOPPNMmT9/vlRUVEh5eTlFJYQQQtoAO/aEEEIIaRfopM+YMcPMuh9wwAHy4Ycfmp+POeYYefrpp+Wll16SyZMnm88OHz686e969epl3vv16yc9evSgC4QQQkgb4VJ8QgghhLSLSZMmmU695cgjj5SFCxfKe++9J6WlpaaDTwghhBB3sGNPCCGEECd07tyZyhJCCCEhwI49IYQQQtpFVVVVs5/nzp0rI0eONNfUp9NpmTNnju/fdezY0bw3NjbSAUIIIaQdsGNPCCGEkHaxYsUKueGGG8xN8H7729/Kgw8+KNdee63su+++cvHFF8ull14qzz77rLlxHp5dj+vuwbBhw8wS/ueff142bNggtbW1dIIQQghpA+zYE0IIIaRd4M73O3fulAkTJsiUKVNMpx53xgcPP/ywnHXWWXLllVfK6NGjzZ3y6+rqzO8GDRok06dPl1tuuUX69+9vHplHCCGEkNaTytgHzRJCCCGEtOE59ocddpjcf//91I4QQggpEpyxJ4QQQgghhBBCYgw79oQQQgghhBBCSIzhUnxCCCGEEEIIISTGcMaeEEIIIYQQQgiJMezYE0IIIYQQQgghMYYde0IIIYQQQgghJMawY08IIYQQQgghhMQYduwJIYQQQgghhJAYw449IYQQQgghhBASY9ixJ4QQQgghhBBCYgw79oQQQgghhBBCiMSX/w9y82DMPRvmfAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show('pct', 'vam', segments, 'VAM (vertical meters per hour) versus segment grade in percent')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Champion cyclists can do over 1800 meters/hour over a 10 km climb, and can sustain [1400 meters/hour for 7 hours](https://www.strava.com/activities/4996833865). My VAM numbers range mostly from 400 to 800 meters/hour, and I can sustain the higher numbers for only a couple of minutes:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
titlehoursmilesfeetmphvamftpmipctkmsmeters
Bridge to Wild Rye0.010.06396.001189.0650.012.310.1012.0
Limantour Spit0.090.473035.221026.0645.012.210.7692.0
Tunitas flattens0.050.421668.401012.0395.07.490.6851.0
Westridge 3min0.080.372404.62914.0649.012.290.6073.0
Old La Honda Mile 10.130.993707.62868.0374.07.081.59113.0
Tunitas flattens0.060.421667.00843.0395.07.490.6851.0
Westridge0.140.683854.86838.0566.010.721.09117.0
Westridge 3min0.090.372404.11813.0649.012.290.6073.0
Stirrup to Moon0.060.361596.00808.0442.08.360.5848.0
Old La Honda0.482.9812556.21797.0421.07.984.79383.0
Redwood Gulch hits0.060.181513.00767.0839.015.890.2946.0
Page Mill to Ventana0.080.471965.87747.0417.07.900.7660.0
Pomponio Creek0.050.381227.60744.0321.06.080.6137.0
Pomponio Creek0.050.381227.60744.0321.06.080.6137.0
Westridge0.160.683854.25733.0566.010.721.09117.0
Sand Hill 280 to horse0.040.499512.25724.0194.03.670.7929.0
Redwood Gulch wall0.110.432583.91715.0600.011.360.6979.0
Old La Honda Mile 10.160.993706.19705.0374.07.081.59113.0
Bandera Dr0.050.191153.80701.0605.011.460.3135.0
Red Hill KOM0.070.341614.86701.0474.08.970.5549.0
\n", "
" ], "text/plain": [ " title hours miles feet mph vam ftpmi pct \\\n", " Bridge to Wild Rye 0.01 0.06 39 6.00 1189.0 650.0 12.31 \n", " Limantour Spit 0.09 0.47 303 5.22 1026.0 645.0 12.21 \n", " Tunitas flattens 0.05 0.42 166 8.40 1012.0 395.0 7.49 \n", " Westridge 3min 0.08 0.37 240 4.62 914.0 649.0 12.29 \n", " Old La Honda Mile 1 0.13 0.99 370 7.62 868.0 374.0 7.08 \n", " Tunitas flattens 0.06 0.42 166 7.00 843.0 395.0 7.49 \n", " Westridge 0.14 0.68 385 4.86 838.0 566.0 10.72 \n", " Westridge 3min 0.09 0.37 240 4.11 813.0 649.0 12.29 \n", " Stirrup to Moon 0.06 0.36 159 6.00 808.0 442.0 8.36 \n", " Old La Honda 0.48 2.98 1255 6.21 797.0 421.0 7.98 \n", " Redwood Gulch hits 0.06 0.18 151 3.00 767.0 839.0 15.89 \n", " Page Mill to Ventana 0.08 0.47 196 5.87 747.0 417.0 7.90 \n", " Pomponio Creek 0.05 0.38 122 7.60 744.0 321.0 6.08 \n", " Pomponio Creek 0.05 0.38 122 7.60 744.0 321.0 6.08 \n", " Westridge 0.16 0.68 385 4.25 733.0 566.0 10.72 \n", " Sand Hill 280 to horse 0.04 0.49 95 12.25 724.0 194.0 3.67 \n", " Redwood Gulch wall 0.11 0.43 258 3.91 715.0 600.0 11.36 \n", " Old La Honda Mile 1 0.16 0.99 370 6.19 705.0 374.0 7.08 \n", " Bandera Dr 0.05 0.19 115 3.80 701.0 605.0 11.46 \n", " Red Hill KOM 0.07 0.34 161 4.86 701.0 474.0 8.97 \n", "\n", " kms meters \n", " 0.10 12.0 \n", " 0.76 92.0 \n", " 0.68 51.0 \n", " 0.60 73.0 \n", " 1.59 113.0 \n", " 0.68 51.0 \n", " 1.09 117.0 \n", " 0.60 73.0 \n", " 0.58 48.0 \n", " 4.79 383.0 \n", " 0.29 46.0 \n", " 0.76 60.0 \n", " 0.61 37.0 \n", " 0.61 37.0 \n", " 1.09 117.0 \n", " 0.79 29.0 \n", " 0.69 79.0 \n", " 1.59 113.0 \n", " 0.31 35.0 \n", " 0.55 49.0 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(segments, 'vam')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On segments that are at least a kilometer long my VAM tops out at about 800 meters/hour:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
titlehoursmilesfeetmphvamftpmipctkmsmeters
Old La Honda Mile 10.130.993707.62868.0374.07.081.59113.0
Westridge0.140.683854.86838.0566.010.721.09117.0
Old La Honda0.482.9812556.21797.0421.07.984.79383.0
Westridge0.160.683854.25733.0566.010.721.09117.0
Old La Honda Mile 10.160.993706.19705.0374.07.081.59113.0
Woodside Climb0.131.7129513.15692.0173.03.272.7590.0
Huddart0.170.923855.41690.0418.07.931.48117.0
Tunitas steep0.271.205994.44676.0499.09.451.93183.0
Old La Honda0.572.9812555.23671.0421.07.984.79383.0
Canon to No Cycling0.090.751988.33671.0264.05.001.2160.0
Canon to No Cycling0.090.751988.33671.0264.05.001.2160.0
Lower Redwood Gulch0.221.034744.68657.0460.08.721.66144.0
Lobitas Creek0.200.964304.80655.0448.08.481.54131.0
Lobitas Creek0.200.964304.80655.0448.08.481.54131.0
West Alpine switchback0.150.783225.20654.0413.07.821.2698.0
Kings via Greer and Huddart0.774.6516146.04639.0347.06.577.48492.0
Kaboom Portola Rd0.050.6710213.40622.0152.02.881.0831.0
Huddart0.190.923854.84618.0418.07.931.48117.0
Tunitas steep0.301.205994.00609.0499.09.451.93183.0
Woodside Climb0.151.7129511.40599.0173.03.272.7590.0
Try not to fall back0.210.714103.38595.0577.010.941.14125.0
Sand Gill Sharon-top0.070.8513612.14592.0160.03.031.3741.0
Mt Eden climb0.141.022727.29592.0267.05.051.6483.0
Sand Gill Sharon-top0.070.8513612.14592.0160.03.031.3741.0
Kings via Greer and Huddart0.844.6516145.54586.0347.06.577.48492.0
Haskins0.301.515665.03575.0375.07.102.43173.0
Tunitas lower climb0.231.304215.65558.0324.06.132.09128.0
Haskins0.311.515664.87557.0375.07.102.43173.0
Kings to Skeggs0.151.102737.33555.0248.04.701.7783.0
West Alpine switchback0.180.783224.33545.0413.07.821.2698.0
\n", "
" ], "text/plain": [ " title hours miles feet mph vam ftpmi pct \\\n", " Old La Honda Mile 1 0.13 0.99 370 7.62 868.0 374.0 7.08 \n", " Westridge 0.14 0.68 385 4.86 838.0 566.0 10.72 \n", " Old La Honda 0.48 2.98 1255 6.21 797.0 421.0 7.98 \n", " Westridge 0.16 0.68 385 4.25 733.0 566.0 10.72 \n", " Old La Honda Mile 1 0.16 0.99 370 6.19 705.0 374.0 7.08 \n", " Woodside Climb 0.13 1.71 295 13.15 692.0 173.0 3.27 \n", " Huddart 0.17 0.92 385 5.41 690.0 418.0 7.93 \n", " Tunitas steep 0.27 1.20 599 4.44 676.0 499.0 9.45 \n", " Old La Honda 0.57 2.98 1255 5.23 671.0 421.0 7.98 \n", " Canon to No Cycling 0.09 0.75 198 8.33 671.0 264.0 5.00 \n", " Canon to No Cycling 0.09 0.75 198 8.33 671.0 264.0 5.00 \n", " Lower Redwood Gulch 0.22 1.03 474 4.68 657.0 460.0 8.72 \n", " Lobitas Creek 0.20 0.96 430 4.80 655.0 448.0 8.48 \n", " Lobitas Creek 0.20 0.96 430 4.80 655.0 448.0 8.48 \n", " West Alpine switchback 0.15 0.78 322 5.20 654.0 413.0 7.82 \n", " Kings via Greer and Huddart 0.77 4.65 1614 6.04 639.0 347.0 6.57 \n", " Kaboom Portola Rd 0.05 0.67 102 13.40 622.0 152.0 2.88 \n", " Huddart 0.19 0.92 385 4.84 618.0 418.0 7.93 \n", " Tunitas steep 0.30 1.20 599 4.00 609.0 499.0 9.45 \n", " Woodside Climb 0.15 1.71 295 11.40 599.0 173.0 3.27 \n", " Try not to fall back 0.21 0.71 410 3.38 595.0 577.0 10.94 \n", " Sand Gill Sharon-top 0.07 0.85 136 12.14 592.0 160.0 3.03 \n", " Mt Eden climb 0.14 1.02 272 7.29 592.0 267.0 5.05 \n", " Sand Gill Sharon-top 0.07 0.85 136 12.14 592.0 160.0 3.03 \n", " Kings via Greer and Huddart 0.84 4.65 1614 5.54 586.0 347.0 6.57 \n", " Haskins 0.30 1.51 566 5.03 575.0 375.0 7.10 \n", " Tunitas lower climb 0.23 1.30 421 5.65 558.0 324.0 6.13 \n", " Haskins 0.31 1.51 566 4.87 557.0 375.0 7.10 \n", " Kings to Skeggs 0.15 1.10 273 7.33 555.0 248.0 4.70 \n", " West Alpine switchback 0.18 0.78 322 4.33 545.0 413.0 7.82 \n", "\n", " kms meters \n", " 1.59 113.0 \n", " 1.09 117.0 \n", " 4.79 383.0 \n", " 1.09 117.0 \n", " 1.59 113.0 \n", " 2.75 90.0 \n", " 1.48 117.0 \n", " 1.93 183.0 \n", " 4.79 383.0 \n", " 1.21 60.0 \n", " 1.21 60.0 \n", " 1.66 144.0 \n", " 1.54 131.0 \n", " 1.54 131.0 \n", " 1.26 98.0 \n", " 7.48 492.0 \n", " 1.08 31.0 \n", " 1.48 117.0 \n", " 1.93 183.0 \n", " 2.75 90.0 \n", " 1.14 125.0 \n", " 1.37 41.0 \n", " 1.64 83.0 \n", " 1.37 41.0 \n", " 7.48 492.0 \n", " 2.43 173.0 \n", " 2.09 128.0 \n", " 2.43 173.0 \n", " 1.77 83.0 \n", " 1.26 98.0 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(segments[segments.kms >= 1], 'vam', n=30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I can also look at VAM numbers for complete rides. I would expect the ride VAM to be half the segment VAM (or less) since most of my rides are circuits where I return to the start, and thus no more than half the ride is climbing. Sure enough, the best I can do is about 400 meters/hour:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateyeartitlehoursmilesfeetmphvamftpmipctkmsmeters
Sun, 11/29/20152015Mt. Hamilton3.6837.00490210.05406.0132.02.5159.531494.0
Fri, 4/2/20212021Everesting 5: climb 2×(OLH + WOLH)3.2731.4843449.63405.0138.02.6150.651324.0
Mon, 3/29/20212021Everesting 1: Mt Diablo2.6022.2234068.55399.0153.02.9035.751038.0
Tue, 3/30/20212021Everesting 2: Kings + WOLH + OLH3.3435.99437710.78399.0122.02.3057.911334.0
Sun, 12/1/20132013Mt. Hamilton3.7837.5649219.94397.0131.02.4860.431500.0
Sat, 11/25/20172017Mt. Hamilton3.6936.6548069.93397.0131.02.4858.971465.0
Fri, 10/30/20152015OLH / West Alpine3.4839.51450511.35395.0114.02.1663.571373.0
Sat, 4/26/20142014OLH / Tunitas Creek5.2658.69674211.16391.0115.02.1894.432055.0
Sat, 4/18/20152015Tunitas + Lobitos Creeks5.2461.27661111.69385.0108.02.0498.582015.0
Wed, 10/14/20152015Half Moon Bay6.1372.97764411.90380.0105.01.98117.412330.0
Sun, 6/4/20172017Sequoia Challenge6.2966.52752010.58364.0113.02.14107.032292.0
Sat, 7/25/20152015Palo Alto, California4.0443.62481910.80364.0110.02.0970.181469.0
Sat, 10/11/20142014OLH / Tunitas5.0958.29604411.45362.0104.01.9693.791842.0
Sat, 8/13/20162016Petaluma / Point Reyes4.5054.75528612.17358.097.01.8388.091611.0
Fri, 8/28/20152015Pescadaro via OLH5.3166.01613712.43352.093.01.76106.211871.0
Sun, 4/4/20212021Everesting 7: Mill Creek / Morrison Canyon3.0829.3835179.54348.0120.02.2747.271072.0
Sat, 2/10/20242024Seacliff, etc.4.7263.41536513.43346.085.01.60102.031635.0
Wed, 6/18/20142014Sierra to the Sea Day 44.9657.64556111.62342.096.01.8392.741695.0
Sun, 6/3/20182018The Sequoia5.9764.92667710.87341.0103.01.95104.462035.0
Sat, 5/9/20152015OLH2.5032.33278812.93340.086.01.6352.02850.0
\n", "
" ], "text/plain": [ " date year title hours \\\n", " Sun, 11/29/2015 2015 Mt. Hamilton 3.68 \n", " Fri, 4/2/2021 2021 Everesting 5: climb 2×(OLH + WOLH) 3.27 \n", " Mon, 3/29/2021 2021 Everesting 1: Mt Diablo 2.60 \n", " Tue, 3/30/2021 2021 Everesting 2: Kings + WOLH + OLH 3.34 \n", " Sun, 12/1/2013 2013 Mt. Hamilton 3.78 \n", " Sat, 11/25/2017 2017 Mt. Hamilton 3.69 \n", " Fri, 10/30/2015 2015 OLH / West Alpine 3.48 \n", " Sat, 4/26/2014 2014 OLH / Tunitas Creek 5.26 \n", " Sat, 4/18/2015 2015 Tunitas + Lobitos Creeks 5.24 \n", " Wed, 10/14/2015 2015 Half Moon Bay 6.13 \n", " Sun, 6/4/2017 2017 Sequoia Challenge 6.29 \n", " Sat, 7/25/2015 2015 Palo Alto, California 4.04 \n", " Sat, 10/11/2014 2014 OLH / Tunitas 5.09 \n", " Sat, 8/13/2016 2016 Petaluma / Point Reyes 4.50 \n", " Fri, 8/28/2015 2015 Pescadaro via OLH 5.31 \n", " Sun, 4/4/2021 2021 Everesting 7: Mill Creek / Morrison Canyon 3.08 \n", " Sat, 2/10/2024 2024 Seacliff, etc. 4.72 \n", " Wed, 6/18/2014 2014 Sierra to the Sea Day 4 4.96 \n", " Sun, 6/3/2018 2018 The Sequoia 5.97 \n", " Sat, 5/9/2015 2015 OLH 2.50 \n", "\n", " miles feet mph vam ftpmi pct kms meters \n", " 37.00 4902 10.05 406.0 132.0 2.51 59.53 1494.0 \n", " 31.48 4344 9.63 405.0 138.0 2.61 50.65 1324.0 \n", " 22.22 3406 8.55 399.0 153.0 2.90 35.75 1038.0 \n", " 35.99 4377 10.78 399.0 122.0 2.30 57.91 1334.0 \n", " 37.56 4921 9.94 397.0 131.0 2.48 60.43 1500.0 \n", " 36.65 4806 9.93 397.0 131.0 2.48 58.97 1465.0 \n", " 39.51 4505 11.35 395.0 114.0 2.16 63.57 1373.0 \n", " 58.69 6742 11.16 391.0 115.0 2.18 94.43 2055.0 \n", " 61.27 6611 11.69 385.0 108.0 2.04 98.58 2015.0 \n", " 72.97 7644 11.90 380.0 105.0 1.98 117.41 2330.0 \n", " 66.52 7520 10.58 364.0 113.0 2.14 107.03 2292.0 \n", " 43.62 4819 10.80 364.0 110.0 2.09 70.18 1469.0 \n", " 58.29 6044 11.45 362.0 104.0 1.96 93.79 1842.0 \n", " 54.75 5286 12.17 358.0 97.0 1.83 88.09 1611.0 \n", " 66.01 6137 12.43 352.0 93.0 1.76 106.21 1871.0 \n", " 29.38 3517 9.54 348.0 120.0 2.27 47.27 1072.0 \n", " 63.41 5365 13.43 346.0 85.0 1.60 102.03 1635.0 \n", " 57.64 5561 11.62 342.0 96.0 1.83 92.74 1695.0 \n", " 64.92 6677 10.87 341.0 103.0 1.95 104.46 2035.0 \n", " 32.33 2788 12.93 340.0 86.0 1.63 52.02 850.0 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(rides, 'vam') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exploring the Data\n", "\n", "\n", "Some more ways to look at the data, both rides and segments." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateyeartitlehoursmilesfeetmphvamftpmipctkmsmeters
Tue, 12/16/20252025Pleasanton3.8373.6597119.2377.013.00.25118.50296.0
Sun, 5/22/20162016Canada2.1936.68133216.75185.036.00.6959.02406.0
Wed, 9/13/20172017Healdburg / Jimtown2.1334.4591216.17131.026.00.5055.43278.0
Sun, 8/25/20242024Petaluma–Santa Rosa + Napa5.2284.26296616.14173.035.00.67135.57904.0
Sat, 1/25/20142014Woodside1.5625.08124316.08243.050.00.9440.35379.0
Sat, 4/11/20152015Woodside1.5424.73103516.06205.042.00.7939.79315.0
Mon, 5/27/20242024Saratoga4.8377.25174915.99110.023.00.43124.30533.0
Sun, 7/11/20212021San Jose4.1065.10108615.8881.017.00.32104.75331.0
Sun, 1/18/20152015Woodside1.6426.02125715.87234.048.00.9141.87383.0
Fri, 6/24/20162016Foothill Expway1.5925.1162315.79119.025.00.4740.40190.0
Sun, 1/26/20142014Canada Rd2.1033.12144615.77210.044.00.8353.29441.0
Fri, 1/6/20122012Omarama to Wanaka New Zealand4.4870.35326215.70222.046.00.88113.19994.0
Sun, 4/12/20152015Palo Alto Cycling2.0331.76121015.65182.038.00.7251.10369.0
Sun, 10/15/20172017Los Gatos2.8644.71143715.63153.032.00.6171.94438.0
Sun, 8/5/20182018Bike Ride Northwest Day 13.5855.77182415.58155.033.00.6289.73556.0
Sun, 2/28/20162016Woodside Loop1.7326.9384315.57149.031.00.5943.33257.0
Fri, 12/19/20252025Livermore, Pleasanton4.5871.12112515.5375.016.00.30114.43343.0
Sun, 6/26/20162016Los Gatos3.2850.78118115.48110.023.00.4481.71360.0
Mon, 1/19/20152015Canada Rd, etc.2.9545.64183615.47190.040.00.7673.43560.0
Sun, 1/19/20142014Palo Alto, CA1.6225.01120115.44226.048.00.9140.24366.0
\n", "
" ], "text/plain": [ " date year title hours miles feet \\\n", " Tue, 12/16/2025 2025 Pleasanton 3.83 73.65 971 \n", " Sun, 5/22/2016 2016 Canada 2.19 36.68 1332 \n", " Wed, 9/13/2017 2017 Healdburg / Jimtown 2.13 34.45 912 \n", " Sun, 8/25/2024 2024 Petaluma–Santa Rosa + Napa 5.22 84.26 2966 \n", " Sat, 1/25/2014 2014 Woodside 1.56 25.08 1243 \n", " Sat, 4/11/2015 2015 Woodside 1.54 24.73 1035 \n", " Mon, 5/27/2024 2024 Saratoga 4.83 77.25 1749 \n", " Sun, 7/11/2021 2021 San Jose 4.10 65.10 1086 \n", " Sun, 1/18/2015 2015 Woodside 1.64 26.02 1257 \n", " Fri, 6/24/2016 2016 Foothill Expway 1.59 25.11 623 \n", " Sun, 1/26/2014 2014 Canada Rd 2.10 33.12 1446 \n", " Fri, 1/6/2012 2012 Omarama to Wanaka New Zealand 4.48 70.35 3262 \n", " Sun, 4/12/2015 2015 Palo Alto Cycling 2.03 31.76 1210 \n", " Sun, 10/15/2017 2017 Los Gatos 2.86 44.71 1437 \n", " Sun, 8/5/2018 2018 Bike Ride Northwest Day 1 3.58 55.77 1824 \n", " Sun, 2/28/2016 2016 Woodside Loop 1.73 26.93 843 \n", " Fri, 12/19/2025 2025 Livermore, Pleasanton 4.58 71.12 1125 \n", " Sun, 6/26/2016 2016 Los Gatos 3.28 50.78 1181 \n", " Mon, 1/19/2015 2015 Canada Rd, etc. 2.95 45.64 1836 \n", " Sun, 1/19/2014 2014 Palo Alto, CA 1.62 25.01 1201 \n", "\n", " mph vam ftpmi pct kms meters \n", " 19.23 77.0 13.0 0.25 118.50 296.0 \n", " 16.75 185.0 36.0 0.69 59.02 406.0 \n", " 16.17 131.0 26.0 0.50 55.43 278.0 \n", " 16.14 173.0 35.0 0.67 135.57 904.0 \n", " 16.08 243.0 50.0 0.94 40.35 379.0 \n", " 16.06 205.0 42.0 0.79 39.79 315.0 \n", " 15.99 110.0 23.0 0.43 124.30 533.0 \n", " 15.88 81.0 17.0 0.32 104.75 331.0 \n", " 15.87 234.0 48.0 0.91 41.87 383.0 \n", " 15.79 119.0 25.0 0.47 40.40 190.0 \n", " 15.77 210.0 44.0 0.83 53.29 441.0 \n", " 15.70 222.0 46.0 0.88 113.19 994.0 \n", " 15.65 182.0 38.0 0.72 51.10 369.0 \n", " 15.63 153.0 32.0 0.61 71.94 438.0 \n", " 15.58 155.0 33.0 0.62 89.73 556.0 \n", " 15.57 149.0 31.0 0.59 43.33 257.0 \n", " 15.53 75.0 16.0 0.30 114.43 343.0 \n", " 15.48 110.0 23.0 0.44 81.71 360.0 \n", " 15.47 190.0 40.0 0.76 73.43 560.0 \n", " 15.44 226.0 48.0 0.91 40.24 366.0 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(rides, 'mph') # Fastest rides (of more than 20 miles, that I sampled into database)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
titlehoursmilesfeetmphvamftpmipctkmsmeters
Vickrey Fruitvale0.060.996816.50345.069.01.301.5921.0
Highway 9 Mantalvo0.030.453515.00356.078.01.470.7211.0
Highway 9 Mantalvo0.030.453515.00356.078.01.470.7211.0
The Boneyard0.101.4813514.80411.091.01.732.3841.0
Vickrey Fruitvale0.070.996814.14296.069.01.301.5921.0
Sand Hill Alpine to 2800.121.6718013.92457.0108.02.042.6955.0
Canada to College0.101.3711913.70363.087.01.652.2036.0
Foothill Homestead0.091.2212613.56427.0103.01.961.9638.0
The Boneyard0.111.4813513.45374.091.01.732.3841.0
Kaboom Portola Rd0.050.6710213.40622.0152.02.881.0831.0
Woodside Climb0.131.7129513.15692.0173.03.272.7590.0
Sand Hill Alpine to 2800.131.6718012.85422.0108.02.042.6955.0
Alpine Westridge0.060.769912.67503.0130.02.471.2230.0
Alpine Westridge0.060.769912.67503.0130.02.471.2230.0
Stanford Ave0.050.638512.60518.0135.02.561.0126.0
Canada to College0.111.3711912.45330.087.01.652.2036.0
Sand Hill 280 to horse0.040.499512.25724.0194.03.670.7929.0
Stevens Country Park0.101.2211212.20341.092.01.741.9634.0
Stevens Country Park0.101.2211212.20341.092.01.741.9634.0
Sand Gill Sharon-top0.070.8513612.14592.0160.03.031.3741.0
\n", "
" ], "text/plain": [ " title hours miles feet mph vam ftpmi pct \\\n", " Vickrey Fruitvale 0.06 0.99 68 16.50 345.0 69.0 1.30 \n", " Highway 9 Mantalvo 0.03 0.45 35 15.00 356.0 78.0 1.47 \n", " Highway 9 Mantalvo 0.03 0.45 35 15.00 356.0 78.0 1.47 \n", " The Boneyard 0.10 1.48 135 14.80 411.0 91.0 1.73 \n", " Vickrey Fruitvale 0.07 0.99 68 14.14 296.0 69.0 1.30 \n", " Sand Hill Alpine to 280 0.12 1.67 180 13.92 457.0 108.0 2.04 \n", " Canada to College 0.10 1.37 119 13.70 363.0 87.0 1.65 \n", " Foothill Homestead 0.09 1.22 126 13.56 427.0 103.0 1.96 \n", " The Boneyard 0.11 1.48 135 13.45 374.0 91.0 1.73 \n", " Kaboom Portola Rd 0.05 0.67 102 13.40 622.0 152.0 2.88 \n", " Woodside Climb 0.13 1.71 295 13.15 692.0 173.0 3.27 \n", " Sand Hill Alpine to 280 0.13 1.67 180 12.85 422.0 108.0 2.04 \n", " Alpine Westridge 0.06 0.76 99 12.67 503.0 130.0 2.47 \n", " Alpine Westridge 0.06 0.76 99 12.67 503.0 130.0 2.47 \n", " Stanford Ave 0.05 0.63 85 12.60 518.0 135.0 2.56 \n", " Canada to College 0.11 1.37 119 12.45 330.0 87.0 1.65 \n", " Sand Hill 280 to horse 0.04 0.49 95 12.25 724.0 194.0 3.67 \n", " Stevens Country Park 0.10 1.22 112 12.20 341.0 92.0 1.74 \n", " Stevens Country Park 0.10 1.22 112 12.20 341.0 92.0 1.74 \n", " Sand Gill Sharon-top 0.07 0.85 136 12.14 592.0 160.0 3.03 \n", "\n", " kms meters \n", " 1.59 21.0 \n", " 0.72 11.0 \n", " 0.72 11.0 \n", " 2.38 41.0 \n", " 1.59 21.0 \n", " 2.69 55.0 \n", " 2.20 36.0 \n", " 1.96 38.0 \n", " 2.38 41.0 \n", " 1.08 31.0 \n", " 2.75 90.0 \n", " 2.69 55.0 \n", " 1.22 30.0 \n", " 1.22 30.0 \n", " 1.01 26.0 \n", " 2.20 36.0 \n", " 0.79 29.0 \n", " 1.96 34.0 \n", " 1.96 34.0 \n", " 1.37 41.0 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(segments, 'mph') # Fastest segments (there are no descent segments in the database)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
titlehoursmilesfeetmphvamftpmipctkmsmeters
Bike Hut Classic (Tunitas)1.358.3319086.17431.0229.04.3413.40582.0
Bike Hut Classic (Tunitas)1.158.3319087.24506.0229.04.3413.40582.0
West Alpine Full1.547.3818874.79373.0256.04.8411.87575.0
West Alpine Full1.397.3818875.31414.0256.04.8411.87575.0
Kings via Greer and Huddart0.844.6516145.54586.0347.06.577.48492.0
Kings via Greer and Huddart0.774.6516146.04639.0347.06.577.48492.0
Page Mill Moody to Skyline1.4611.4513027.84272.0114.02.1518.42397.0
Page Mill Moody to Skyline1.5411.4513027.44258.0114.02.1518.42397.0
Old La Honda0.482.9812556.21797.0421.07.984.79383.0
Old La Honda0.572.9812555.23671.0421.07.984.79383.0
Alma Mt. Charlie0.533.128755.89503.0280.05.315.02267.0
Kings half way0.502.898205.78500.0284.05.374.65250.0
Kings half way0.462.898206.28543.0284.05.374.65250.0
Tunitas steep0.301.205994.00609.0499.09.451.93183.0
Tunitas steep0.271.205994.44676.0499.09.451.93183.0
Haskins0.301.515665.03575.0375.07.102.43173.0
Haskins0.311.515664.87557.0375.07.102.43173.0
Lower Redwood Gulch0.221.034744.68657.0460.08.721.66144.0
Lobitas Creek0.200.964304.80655.0448.08.481.54131.0
Lobitas Creek0.200.964304.80655.0448.08.481.54131.0
\n", "
" ], "text/plain": [ " title hours miles feet mph vam ftpmi pct \\\n", " Bike Hut Classic (Tunitas) 1.35 8.33 1908 6.17 431.0 229.0 4.34 \n", " Bike Hut Classic (Tunitas) 1.15 8.33 1908 7.24 506.0 229.0 4.34 \n", " West Alpine Full 1.54 7.38 1887 4.79 373.0 256.0 4.84 \n", " West Alpine Full 1.39 7.38 1887 5.31 414.0 256.0 4.84 \n", " Kings via Greer and Huddart 0.84 4.65 1614 5.54 586.0 347.0 6.57 \n", " Kings via Greer and Huddart 0.77 4.65 1614 6.04 639.0 347.0 6.57 \n", " Page Mill Moody to Skyline 1.46 11.45 1302 7.84 272.0 114.0 2.15 \n", " Page Mill Moody to Skyline 1.54 11.45 1302 7.44 258.0 114.0 2.15 \n", " Old La Honda 0.48 2.98 1255 6.21 797.0 421.0 7.98 \n", " Old La Honda 0.57 2.98 1255 5.23 671.0 421.0 7.98 \n", " Alma Mt. Charlie 0.53 3.12 875 5.89 503.0 280.0 5.31 \n", " Kings half way 0.50 2.89 820 5.78 500.0 284.0 5.37 \n", " Kings half way 0.46 2.89 820 6.28 543.0 284.0 5.37 \n", " Tunitas steep 0.30 1.20 599 4.00 609.0 499.0 9.45 \n", " Tunitas steep 0.27 1.20 599 4.44 676.0 499.0 9.45 \n", " Haskins 0.30 1.51 566 5.03 575.0 375.0 7.10 \n", " Haskins 0.31 1.51 566 4.87 557.0 375.0 7.10 \n", " Lower Redwood Gulch 0.22 1.03 474 4.68 657.0 460.0 8.72 \n", " Lobitas Creek 0.20 0.96 430 4.80 655.0 448.0 8.48 \n", " Lobitas Creek 0.20 0.96 430 4.80 655.0 448.0 8.48 \n", "\n", " kms meters \n", " 13.40 582.0 \n", " 13.40 582.0 \n", " 11.87 575.0 \n", " 11.87 575.0 \n", " 7.48 492.0 \n", " 7.48 492.0 \n", " 18.42 397.0 \n", " 18.42 397.0 \n", " 4.79 383.0 \n", " 4.79 383.0 \n", " 5.02 267.0 \n", " 4.65 250.0 \n", " 4.65 250.0 \n", " 1.93 183.0 \n", " 1.93 183.0 \n", " 2.43 173.0 \n", " 2.43 173.0 \n", " 1.66 144.0 \n", " 1.54 131.0 \n", " 1.54 131.0 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(segments, 'feet') # Biggest climbing segments" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
titlehoursmilesfeetmphvamftpmipctkmsmeters
Redwood Gulch hits0.060.181513.00767.0839.015.890.2946.0
Limantour steepest0.090.201592.22538.0795.015.060.3248.0
Joaquin0.120.332532.75643.0767.014.520.5377.0
Joaquin0.110.332533.00701.0767.014.520.5377.0
Stirrup Wall0.060.171252.83635.0735.013.930.2738.0
Stirrup Wall0.080.171252.12476.0735.013.930.2738.0
Bridge to Wild Rye0.010.06396.001189.0650.012.310.1012.0
Westridge 3min0.090.372404.11813.0649.012.290.6073.0
Westridge 3min0.080.372404.62914.0649.012.290.6073.0
Limantour Spit0.090.473035.221026.0645.012.210.7692.0
Bandera Dr0.050.191153.80701.0605.011.460.3135.0
Redwood Gulch wall0.110.432583.91715.0600.011.360.6979.0
Try not to fall back0.210.714103.38595.0577.010.941.14125.0
Westridge0.160.683854.25733.0566.010.721.09117.0
Westridge0.140.683854.86838.0566.010.721.09117.0
Short climb0.030.12674.00681.0558.010.570.1920.0
Stair Step0.090.321753.56593.0547.010.360.5153.0
Page Mill to Moody0.050.211124.20683.0533.010.100.3434.0
Page Mill to Moody0.050.211124.20683.0533.010.100.3434.0
Tunitas steep0.301.205994.00609.0499.09.451.93183.0
\n", "
" ], "text/plain": [ " title hours miles feet mph vam ftpmi pct kms \\\n", " Redwood Gulch hits 0.06 0.18 151 3.00 767.0 839.0 15.89 0.29 \n", " Limantour steepest 0.09 0.20 159 2.22 538.0 795.0 15.06 0.32 \n", " Joaquin 0.12 0.33 253 2.75 643.0 767.0 14.52 0.53 \n", " Joaquin 0.11 0.33 253 3.00 701.0 767.0 14.52 0.53 \n", " Stirrup Wall 0.06 0.17 125 2.83 635.0 735.0 13.93 0.27 \n", " Stirrup Wall 0.08 0.17 125 2.12 476.0 735.0 13.93 0.27 \n", " Bridge to Wild Rye 0.01 0.06 39 6.00 1189.0 650.0 12.31 0.10 \n", " Westridge 3min 0.09 0.37 240 4.11 813.0 649.0 12.29 0.60 \n", " Westridge 3min 0.08 0.37 240 4.62 914.0 649.0 12.29 0.60 \n", " Limantour Spit 0.09 0.47 303 5.22 1026.0 645.0 12.21 0.76 \n", " Bandera Dr 0.05 0.19 115 3.80 701.0 605.0 11.46 0.31 \n", " Redwood Gulch wall 0.11 0.43 258 3.91 715.0 600.0 11.36 0.69 \n", " Try not to fall back 0.21 0.71 410 3.38 595.0 577.0 10.94 1.14 \n", " Westridge 0.16 0.68 385 4.25 733.0 566.0 10.72 1.09 \n", " Westridge 0.14 0.68 385 4.86 838.0 566.0 10.72 1.09 \n", " Short climb 0.03 0.12 67 4.00 681.0 558.0 10.57 0.19 \n", " Stair Step 0.09 0.32 175 3.56 593.0 547.0 10.36 0.51 \n", " Page Mill to Moody 0.05 0.21 112 4.20 683.0 533.0 10.10 0.34 \n", " Page Mill to Moody 0.05 0.21 112 4.20 683.0 533.0 10.10 0.34 \n", " Tunitas steep 0.30 1.20 599 4.00 609.0 499.0 9.45 1.93 \n", "\n", " meters \n", " 46.0 \n", " 48.0 \n", " 77.0 \n", " 77.0 \n", " 38.0 \n", " 38.0 \n", " 12.0 \n", " 73.0 \n", " 73.0 \n", " 92.0 \n", " 35.0 \n", " 79.0 \n", " 125.0 \n", " 117.0 \n", " 117.0 \n", " 20.0 \n", " 53.0 \n", " 34.0 \n", " 34.0 \n", " 183.0 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(segments, 'pct') # Steepest climbs" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateyeartitlehoursmilesfeetmphvamftpmipctkmsmeters
Fri, 1/9/20122012Otago Rail Trail Century7.87102.41228613.0189.022.00.42164.78697.0
Sat, 5/7/20222022Wine Country Century6.65100.26525315.08241.052.00.99161.321601.0
Thu, 6/14/20122012Coyote Creek Century with Juliet8.14100.07151312.2957.015.00.29161.01461.0
Sat, 5/13/20172017Morgan Hill iCare Classic7.46100.05459613.41188.046.00.87160.981401.0
Sat, 3/9/20242024Millbrae / San Bruno / Sawyer Camp Trail / Bay...8.1298.52489612.13184.050.00.94158.521492.0
Fri, 9/20/20242024Santa Rosa + Michael J Fox6.2893.33362814.86176.039.00.74150.171106.0
Sat, 5/12/20182018ICare Classic, Morgan Hill6.8091.29416013.42186.046.00.86146.891268.0
Sat, 5/6/20172017Wine Country Century7.2689.49524612.33220.059.01.11143.991599.0
Fri, 8/10/20182018Bike Ride Northwest Day 66.2484.70438013.57214.052.00.98136.281335.0
Fri, 2/28/20202020Sawyer Camp Trail6.4184.43344813.17164.041.00.77135.851051.0
Sun, 8/25/20242024Petaluma–Santa Rosa + Napa5.2284.26296616.14173.035.00.67135.57904.0
Sun, 6/15/20252025Aqueduct / Del Puerto Canyon / Mines6.3082.94143013.1769.017.00.33133.45436.0
Sat, 6/1/20242024OLH / Old Haul / Loma Mar / Pescadero / Tunita...7.8481.70731410.42284.090.01.70131.462229.0
Wed, 6/7/20232023Los Altos7.0581.54211011.5791.026.00.49131.20643.0
Sun, 8/30/20202020Los Gatos6.3680.92210012.72101.026.00.49130.20640.0
Sat, 9/17/20222022San Gregorio / Tunitas6.5680.53601512.28279.075.01.41129.571833.0
Sat, 10/1/20162016Half Moon Bay overnight campout7.5180.07603910.66245.075.01.43128.831841.0
Mon, 10/5/20202020Half way around the bay on bay trail6.4480.0554112.4326.07.00.13128.80165.0
Sun, 6/21/20202020Sawyer Camp Trail6.5979.78173812.1180.022.00.41128.37530.0
Thu, 1/5/20122012Tekapo Lake to Omarama New Zealand5.4679.42214514.55120.027.00.51127.79654.0
\n", "
" ], "text/plain": [ " date year title \\\n", " Fri, 1/9/2012 2012 Otago Rail Trail Century \n", " Sat, 5/7/2022 2022 Wine Country Century \n", " Thu, 6/14/2012 2012 Coyote Creek Century with Juliet \n", " Sat, 5/13/2017 2017 Morgan Hill iCare Classic \n", " Sat, 3/9/2024 2024 Millbrae / San Bruno / Sawyer Camp Trail / Bay... \n", " Fri, 9/20/2024 2024 Santa Rosa + Michael J Fox \n", " Sat, 5/12/2018 2018 ICare Classic, Morgan Hill \n", " Sat, 5/6/2017 2017 Wine Country Century \n", " Fri, 8/10/2018 2018 Bike Ride Northwest Day 6 \n", " Fri, 2/28/2020 2020 Sawyer Camp Trail \n", " Sun, 8/25/2024 2024 Petaluma–Santa Rosa + Napa \n", " Sun, 6/15/2025 2025 Aqueduct / Del Puerto Canyon / Mines \n", " Sat, 6/1/2024 2024 OLH / Old Haul / Loma Mar / Pescadero / Tunita... \n", " Wed, 6/7/2023 2023 Los Altos \n", " Sun, 8/30/2020 2020 Los Gatos \n", " Sat, 9/17/2022 2022 San Gregorio / Tunitas \n", " Sat, 10/1/2016 2016 Half Moon Bay overnight campout \n", " Mon, 10/5/2020 2020 Half way around the bay on bay trail \n", " Sun, 6/21/2020 2020 Sawyer Camp Trail \n", " Thu, 1/5/2012 2012 Tekapo Lake to Omarama New Zealand \n", "\n", " hours miles feet mph vam ftpmi pct kms meters \n", " 7.87 102.41 2286 13.01 89.0 22.0 0.42 164.78 697.0 \n", " 6.65 100.26 5253 15.08 241.0 52.0 0.99 161.32 1601.0 \n", " 8.14 100.07 1513 12.29 57.0 15.0 0.29 161.01 461.0 \n", " 7.46 100.05 4596 13.41 188.0 46.0 0.87 160.98 1401.0 \n", " 8.12 98.52 4896 12.13 184.0 50.0 0.94 158.52 1492.0 \n", " 6.28 93.33 3628 14.86 176.0 39.0 0.74 150.17 1106.0 \n", " 6.80 91.29 4160 13.42 186.0 46.0 0.86 146.89 1268.0 \n", " 7.26 89.49 5246 12.33 220.0 59.0 1.11 143.99 1599.0 \n", " 6.24 84.70 4380 13.57 214.0 52.0 0.98 136.28 1335.0 \n", " 6.41 84.43 3448 13.17 164.0 41.0 0.77 135.85 1051.0 \n", " 5.22 84.26 2966 16.14 173.0 35.0 0.67 135.57 904.0 \n", " 6.30 82.94 1430 13.17 69.0 17.0 0.33 133.45 436.0 \n", " 7.84 81.70 7314 10.42 284.0 90.0 1.70 131.46 2229.0 \n", " 7.05 81.54 2110 11.57 91.0 26.0 0.49 131.20 643.0 \n", " 6.36 80.92 2100 12.72 101.0 26.0 0.49 130.20 640.0 \n", " 6.56 80.53 6015 12.28 279.0 75.0 1.41 129.57 1833.0 \n", " 7.51 80.07 6039 10.66 245.0 75.0 1.43 128.83 1841.0 \n", " 6.44 80.05 541 12.43 26.0 7.0 0.13 128.80 165.0 \n", " 6.59 79.78 1738 12.11 80.0 22.0 0.41 128.37 530.0 \n", " 5.46 79.42 2145 14.55 120.0 27.0 0.51 127.79 654.0 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top(rides, 'miles') # Longest rides" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.3" }, "toc-autonumbering": true, "toc-showmarkdowntxt": false }, "nbformat": 4, "nbformat_minor": 4 }