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Abstract

We perform image to image translation using Generative
Adversarial Networks to translate an image of a car of one
make e.g. BMW to another make e.g. Mercedes. Our goal is
to change design related features of a car (e.g. grill, logo) in
an image, such that after applying the learned transforma-
tion, the car is recognizable as having the target make. At
the same time we want to preserve aspects that are not re-
lated to the make of a car like body color, the license plate,
background, reflections, people in the car etc. We first con-
sider the baseline model which is the unmodified StarGAN
architecture. We build on the baseline model by introduc-
ing data augmentations. We next consider how the number
of domains and the resolution of the training images affects
the learning task and the quality of the generated images.
We report improvements and argue about the reasons for
improvements. Finally we perform an evaluation of the gen-
erated images from our best model and report our findings.

1. Introduction

Image to image translation refers to the task of changing
a particular aspect of a given image. Significant improve-
ments have been achieved in the image to image translation
task. Recent unsupervised methods like [1] [2] have shown
good performance for tasks like style transfer (e.g. image
to painting, sketch to image), facial features and expression
transfer. We further explore and study the performance of
state of the art generative adversarial networks on a more
challenging task. Our goal is to translate images of cars
of one make e.g. BMW to a different make e.g. Mercedes.
(simpler and reads better). We want to change design re-
lated features of a car (e.g. grill, logo) in an image, such that
after translation, the car is recognizable as having the target
make. At the same time we want to preserve aspects that are
not related to the make of a car like color, the license plate,
background, reflections, people in the car etc. This task
has applications in photo editing and car design inspiration.
We start with the unmodified StarGAN architecture [3] as
the baseline (section 5.2), considering only images showing
the front views of the cars and improve the results by intro-

ducing data augmentations (section 5.3). We next consider
how the number of domains (section 5.4) and the resolution
of the training images (section 5.5) affect the learning task
and the quality of the generated images. We can efficiently
reduce perturbations in color and structure and improve the
sharpness of the generated images with these approaches.
Our evaluation based on a pre-trained make classifier (sec-
tion 6) reveals weaknesses in representing the target make in
the output image which we address with future work men-
tioned in section 8.

2. Related Work
Image to image translation has received significant re-

search attention and rapid advances have been made for this
task. Most recent methods are based on Conditional Gen-
erative Adversarial Networks[4]. Pix2Pix [5] considers a
supervised approach and requires pairwise data (x,y). It
combines the Conditional GAN loss with an L1 loss over
the generated output and the target image y such that the
generator learns to produce realistic images which are pixel
wise similar to y. CycleGAN [2] introduces the Cycle Con-
sistency Loss and overcomes the need for paired images.
StarGAN [1] conditions the Generator on the input image
and a target domain label by spatially replicating and ap-
pending the target label to the input image. This allows a
single discriminator and generator to perform translations
among multiple domains and thus provides a more scalable
framework than CycleGAN.

3. Method
Our method is based on the StarGAN [1] architecture.

Following the StarGAN terminology, we define a domain
as the set of images of cars that have the same make. So,
all images of BMWs is one domain, all images of Audis is
another domain and so on. We train a single generator G
that learns mappings among multiple domains. To achieve
this, G is trained to translate an input image x to an out-
put image y by being conditioned on the input image x and
the target label c, G(x, c) −→ y. Target labels are randomly
generated at training time so that G learns to flexibly trans-
late among all the domains. The conditioning on x and c
is achieved by onehot encoding the target label c and then
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spatially replicating and appending it to the input image x.
We add an auxiliary classifier to the discriminatorD, which
produces probability distributions over domains. Thus, D
produces probability distributions over sources (real/fake)
and domains D : x −→ {Dsrc(x), Dcls(x)}. The generated
image G(x, c) is translated back to its original domain c′

giving G(G(x, c), c′) and this generated image is forced to
be similar to the original image x using the Reconstruction
Loss which is the L1 norm of reconstructed image minus
the original image i.e. Lrec = ‖G(G(x, c), c′) − x‖1. The
reconstruction loss is added to the overall objective of the
G and is weighted by a factor λrec. The weight factor gov-
erns how similar the generated image should be to the input
image. The losses and the full objectives that we optimize
are the same as original StarGAN [1] and their details are in
the paper.

The StarGAN architecture scales well with the num-
ber of domains (only one discriminator and 1 generator is
trained irrespective of the number of domains) as opposed
to CycleGAN which requires 2 Generators for each possible
combination of domain pairs. So StarGAN provides a prac-
tical approach for multi-domain image to image translation.
We find that this is useful to easily observe the effect of
number of domains on the quality of generated images. We
discuss this further in the experiments section. Besides this,
StarGAN also utilizes PatchGAN [5] which is shown to pro-
duce sharper and less noisy images. Being able to train the
generator and discriminator on images of different domains
simultaneously, extends the training set for real/fake classi-
fication for all domains. Furthermore, learned features can
be shared across different classification tasks. We assume
that in our case, where images of all domains share basic
structures (e.g. all images show cars of the same view) this
cross learning scenario comes with a beneficial generaliza-
tion effect.

4. Datasets
The primary source of our data is the Comprehensive

Cars Dataset [6]. The data set contains around 130,000 im-
ages of full cars. The images are labelled with the following
information:

• Make, model and year of manufacture.

• Bounding boxes around the cars

• The viewpoint from which the image was captured.

We also include images from the Stanford Cars Dataset [7].
The dataset contains around 16,000 images and the labels
provided are make, model, year of manufacture and bound-
ing boxes around the cars. The viewpoint information is
not provided so we manually filter images according to the
viewpoints we need. We also collect some images publicly
available on the internet and add them to our dataset.

5. Experiments
5.1. Data Preparation

• To simplify the learning task we only consider car im-
ages showing the front. Including more perspectives
like the back view without additional constraints can
theoretically lead to a transformation from a front view
to a back view what is undesired.

• We crop the images to extended bounding boxes. This
means, if necessary, we extend the given bounding
boxes to match a 1:1 ratio and then crop to this ex-
tended bounding box. We do this to prevent distortion
of the car when resizing.
We crop the images to reduce scale variance and make
the images structurally more similar, to simplify the
learning task.

• We resize the images to 128x128 to reach feasible
training time but still having sufficient quality. To min-
imize aliasing effects, we used Lanczos resampling for
resizing.

• We remove cars with uncharacteristic design (e.g. con-
cept cars), because we want to focus on characteristic
design patterns. Having a concept car in the target do-
main means that having an output similar to this con-
cept car is a valid output. That is not desired.

5.2. Baseline (Model 0)

For the baseline we choose the following domains (sam-
ple counts in braces):

• Mercedes (615)

• BMW (568)

• Audi (528)

• Skoda (215)

• Citroen (302)

We choose these because they belong to the domains with
the highest sample counts and have comparable car shapes
and not too dissimilar designs. Some SUVs for example
differ fundamentally in design and shape from ordinary
limousines. Experiments showed that transformations to
such targets do not lead to convincing results without fur-
ther adjustments (e.g. reducing reconstruction loss weight).
We use the StarGAN architecture as it is with preset hyper-
parameters [3]

Results for this model are shown in Figure 1 and Figure
2 in the first row of each figure. We see that some basic
design structures as logo and grill shapes are learned but
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Figure 1. Showing outputs for a Mercedes test image for models 0 to 3. First image in each row is input.

Figure 2. Showing outputs for a BMW test image for models 0 to 3. First image in each row is input.
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the output images are dominated by perturbations in color
and structure. We interpret these as overfitting effects (e.g.
most cars have a darker background, so we see this as part
of the output)

5.3. Data Augmentation (Model 1)

To address overfitting on color, background and reflec-
tions we use data augmentation.

• Color Jitter with changes in the interval of
[−20%,+20%] for brightness and saturation and
[−10%,+10%] for contrast and hue to reduce the
color and brightness bias in the data set. Experiments
showed that using heavier changes in color lead to
undesired color shifts in the output.

• Horizontal Flip which flips the background and reflec-
tions but preserves the design of the symmetric car.

Results for this model are shown in Figure 1 and Figure
2 in the second row of each figure. We see less perturba-
tions in color and structures, but they are still dominating
the images.

5.4. Domain Set Extension (Model 2)

Since the real/fake classification task is learned across
all domains, extending the domain set gives more samples
to this task. This can have a generalization effect and re-
duce perturbations. Furthermore, the domain set extension
can have a generalization effect on the domain classification
task which can lead to both an improvement if the discrim-
inator overfits on certain domains or domain samples or a
deterioration if the discriminator already underfits because
of lack of capacity. In our situation it is hard to asses over-
or under-fitting for the domain classification task based on
the output on model 1 (section 5.3). Images are dominated
by perturbations which can be caused by overfitting of the
real/fake classification and/or domain classification.
We add 1483 new samples (+83%) by adding three new do-
mains:

• VW(754)

• Chevrolet(446)

• Volvo(283)

Using more domains did not give better results concern-
ing color perturbations but lead to a worse representation
of the target domain in the output, because introducing
more domains extends the domain classification task. The
discriminator with unchanged capacity tends to underfit.

Results for this model are shown in Figure 1 and Figure
2 in the third row of each figure. The additional domains are
not shown but in the appendix more examples can be found

containing all 8 domains. The results show significantly
less perturbations in color and structure but in Figure 1 in
the fourth image (Audi) the shape and some details in the
spoiler are now nearer to the input image than before, which
can be considered as a deterioration. This could be caused
by generalization of the discriminator in terms of the the
domain classification task.

5.5. Higher Resolution Input Images (Model 3)

To improve sharpness and high frequency details we in-
crease the resolution of the input images from 128x128 to
256x256. This is motivated by two reasons.

• Down-sampling has a smoothing effect. So high fre-
quencies are dumped. Going to a higher resolution re-
duces this effect. So higher frequencies are better pre-
served in the input image. The model has the chance
to learn something about higher frequency structures.

• A higher resolution input image leads to a higher res-
olution patch grid for real/fake classification. Star-
GAN has a fully convolutional discriminator which
last layer for real/fake classification has not one acti-
vation but several. One for a patch in the input (sub
image). The amount of patches and the patch size is
implicitly defined by the depth of the network. Be-
cause of a stride of 2 for each layer, deeper layers in
the network have activation maps of smaller resolu-
tion. Because of a fully convolutional network, ac-
tivations in the last layer implicitly correspond to a
certain patch in the input image based on the recep-
tive field. So higher resolution input images lead to
a higher resolution activation map for the last layer if
we do not change the architecture of the discrimina-
tor and thereby implicitly to more patches in the in-
put image. Focusing on smaller local patches gives a
more fine-granular fake/real prediction, better preserv-
ing high frequencies.

Results for this model are shown in Figure 1 and Fig-
ure 2 in the fourth row of each figure. We see a significant
sharpness improvement and new high frequency details in
the output (e.g. in Figure 1, third image, the BMW logo)
which do not exist in detail in the 128x128 input image.
The license plate is now significantly better readable in all
outputs. But we see a worse representation of the target do-
main for Audi and Mercedes in Figure 2. The Audi grill
is incomplete. This can be explained by a focus shift. The
discriminator is now especially more demanding in terms
of the fake/real loss. This implicitly dumps the importance
of the other losses in the sum of losses for the generator.
Another problem is that any influence on the discriminator
can have an effect on both the domain classification task
and the real/fake classification task and so on their perfor-
mance, since both tasks are realized in one network and the
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capacity is shared. We show how we want to address these
problems in future work (section 8).

6. Evaluation
For now there does not exist a universal metric to eval-

uate generative models as shown in [8] and finding appro-
priate metrics is still an open issue. For evaluation we use
a pre-trained classifier to measure quality properties of gen-
erated images as for example, in Zhang et al. [9] where a
classifier was used to evaluate the performance of their style
transfer approach using conditional GANs. Similarly, Rad-
ford et al. [10] used a classifier trained on the ImageNet
dataset to evaluate their approach on representation learn-
ing via DCGAN.

We use a pre-trained classifier to evaluate if the gener-
ated image can be recognized as belonging to the target
make. If the generated images capture the target make, as
real images of the target make do, classifiers trained on real
images should be able to classify the synthesized images
correctly. We use the pre-trained classifier (10,000 training
iteration snapshot) from github [11] which was originally
used for fine grained car model and make classification on
the CompCars dataset [6]. It was initially trained on the Im-
ageNet dataset [12] and further fine tuned on the CompCars
dataset. It obtained an accuracy of 82.9 % on the CompCars
test data for all views. The pre-trained model[11] gives 431
posteriors for the existing 431 CompCars models which fur-
ther can be used to get the corresponding make posterior by
summing up the model posteriors corresponding to a given
make. We use a publicly available classifier to give the met-
ric more meaning by making our results comparable to po-
tentially other work using the same metric.

What we do not evaluate are basic quality properties of
the generated images (e.g. sharpness) and how well features
that we consider as design unrelated are preserved in the
output (e.g. background, color, reflections, basic shape of
the car). Such aspects could be evaluated with a user study.

For building the test set we collected samples from the
Stanford Car Dataset [13] and online sources. The test set
size per make is shown in Table 1.

Make Size
Mercedes 77
Audi 71
BMW 60
Citroen 55
Skoda 65

Table 1. Test set sample count per domain

Since the model gives posteriors corresponding to spe-
cific models, we sum up all posteriors corresponding to one

Make Acc. (real data) Acc. (generated data)
Mercedes 83.22 % 29.87 %
Audi 76.99 % 49.29 %
BMW 75.59 % 11.72 %
Citroen 87.03 % 38.18 %
Skoda 92.57 % 24.61 %

Table 2. Classification Accuracy per domain

make what gives the posteriors for makes. Table 2 shows
accuracy for the prediction of make on real images and on
generated images for model 3 (section 5.5). In the most
cases the results show significantly worse accuracy for gen-
erated images. One reason for this could be the following.
Model 3 (see section 5.5) especially focuses on preserving
sharpness and reducing perturbations by the cost of worse
representing fundamental design features of the target do-
main in comparison to model 2 (see section 5.5). Further-
more, we aim on transferring fundamental design features
by preserving the basic shape of the car but not on fully em-
bedding a car of the target domain into the input image (e.g.
a car contained in an image of the target domain appears as
being copied into the background of the input image is not
the goal). The classifier was trained to predict specific mod-
els of makes. However, our generated images are supposed
to be not similar to images of specific existing models. A
possibility to address this is to train a classifier for the more
general task of predicting the make, not specific models. In
that way the classifier generalizes to the fundamental design
aspects of makes rather than fitting to special properties of
specific models. Furthermore, the result shows only 11.72%
accuracy for BMW and 24.61 % accuracy for Skoda. Most
of the generated and wrongly classified BMW cars are clas-
sified as Skoda and vice versa. This can be explained by the
similarity of grill and the missing of a precisely represented
logo in the generated image (see fourth row in Figure 1).

7. Conclusion

Our aim was to transfer the car design from one do-
main to another by preserving design unrelated features
(e.g. background, color) of the input image. Initially the
output images were dominated by perturbations in shape
and color. We could efficiently reduce these perturbation
and furthermore significantly improve the sharpness with
different approaches we showed. We have succeeded in
transferring design related features (e.g. grill, logo) to a
certain degree from one domain to another, but face weak-
nesses concerning the representation of the target domain in
the output. We see barely changes to other structures then
logo and grill (e.g. front spoiler). We mention how to ad-
dress this in future work.
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8. Future Work
To better control the performance of the domain clas-

sification, we plan to separate the current discriminator
network into two separate discriminator networks, such
that real/fake classification and domain classification
are performed separately. In that way the capacity of
the discriminator networks are not longer shared and
taking influence on one task does not unintentionally
influence the other. Together with adjustments of the loss
weight for the classification loss for the generator network
(λcls), we want to improve the representations of the
target domain in the output. Currently we see for exam-
ple incomplete grills for images with Audi as target domain.

Additionally, we want to adjust classification (λcls)
and reconstruction loss (λrec) further to control the degree
of the transformation. This means by how far the car in
the input is adopted to the target domain. Currently we
see mostly changes of logo and grill, but these could be
extended to changes of front spoiler, lights etc.

Furthermore, our model is restricted to use front views
only. We also plan to extend our approach to include
multiple views (e.g. back view, side view).

To improve the evaluation of our approach we want to
address several weaknesses. The classifier we use for pre-
dicting make does not fully capture the requirements of pre-
dicting make in a more generalized why as described in sec-
tion 6. We want to address this by training an appropriate
classifier focusing on make rather than on specific models.
We do not evaluate basic quality properties of the generated
images (e.g. sharpness) and how well features that we con-
sider as design unrelated are preserved in the output (e.g.
background, color, reflections, basic shape of the car). We
want to evaluate these properties with a user study.

9. Reports to indicate assignments of each
group member

There is no clear separation. We discussed most prob-
lems and approaches in the team. All team members con-
tributed equally.
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Figure 3. Outputs of model 3 for all 8 domains on test images.
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Figure 4. Outputs of model 3 for all 8 domains on test images.

8


