apiVersion: numaflow.numaproj.io/v1alpha1 kind: Pipeline metadata: name: numalogic-simple-pipeline spec: watermark: disabled: true limits: readBatchSize: 10 bufferMaxLength: 500 bufferUsageLimit: 100 vertices: - name: in source: http: {} - name: preprocess scale: min: 1 udf: container: image: quay.io/numaio/numalogic/example-udf:v0.4 env: - name: WIN_SIZE value: "12" args: - python - starter.py - preprocess - name: inference scale: min: 1 udf: container: image: quay.io/numaio/numalogic/example-udf:v0.4 env: - name: WIN_SIZE value: "12" args: - python - starter.py - inference - name: threshold scale: min: 1 udf: container: image: quay.io/numaio/numalogic/example-udf:v0.4 env: - name: WIN_SIZE value: "12" args: - python - starter.py - threshold - name: postprocess scale: min: 1 udf: container: image: quay.io/numaio/numalogic/example-udf:v0.4 env: - name: WIN_SIZE value: "12" args: - python - starter.py - postprocess - name: out scale: min: 1 sink: log: {} - name: train scale: min: 1 udf: container: env: - name: WIN_SIZE value: "12" image: quay.io/numaio/numalogic/example-udf:v0.4 args: - python - starter.py - train edges: - from: in to: preprocess - from: preprocess to: inference - from: inference to: threshold - from: threshold to: train conditions: keyIn: - train - from: threshold to: postprocess conditions: keyIn: - postprocess - from: postprocess to: out --- #mlflow deployment config apiVersion: apps/v1 kind: Deployment metadata: name: mlflow-sqlite labels: app: mlflow spec: selector: matchLabels: app: mlflow template: metadata: labels: app: mlflow spec: containers: - image: quay.io/numaio/numalogic/example-mlflow name: mlflow args: - server - --backend-store-uri - sqlite:///mlflow.db - --artifacts-destination - file://app/.mlruns - --serve-artifacts - --host - "0.0.0.0" - --port - "5000" command: - mlflow ports: - containerPort: 5000 --- kind: Service apiVersion: v1 metadata: name: mlflow-service spec: type: ClusterIP selector: app: mlflow ports: - port: 5000 targetPort: 5000