RASPA 2.0: Molecular Software Package for Adsorption and Diffusion in (Flexible) Nanoporous Materials

David Dubbeldam ${ }^{1}$
Van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
Sofia Calero ${ }^{2}$
Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Sevilla 41013, Spain
Thijs J.H. Vlugt ${ }^{3}$
Engineering Thermodynamics, Process \& Energy Department,
Faculty of Mechanical, Maritime and Materials Engineering,
Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
Donald E. Ellis ${ }^{4}$
Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston IL 60208 USA
Randall Q. Snurr ${ }^{5}$,
Chemical and Biological Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA

January 27, 2020

[^0]
Contents

I RASPA 7

1. Introduction 9
1.1. Design philosophy 9
1.2. Units and conventions 10
1.3. Compiling and installing RASPA 11
1.3.1. Requirements 11
1.3.2. RASPA from 'git' 11
1.3.3. installing RASPA 11
1.3.4. compiling RASPA 11
1.3.5. Running RASPA 12
1.4. Output from RASPA 14
1.5. Citing RASPA 14
2. Format of the Input Files 15
2.1. Introduction 15
2.2. Simulation input 16
2.3. Force field 37
2.3.1. Force fields 37
2.3.2. 'pseudo_atoms.def' 37
2.3.3. 'force field_mixing rules.def' 38
2.3.4. 'force-field.def' 39
2.4. Molecules 40
2.4.1. Rigid molecule 40
2.4.2. Flexible molecule 41
2.4.3. Rigid/Flexible molecule 41
2.4.4. Chiral molecules 42
2.5. Framework 43
2.5.1. Asymmetric unit cell 43
2.5.2. Fractional occupancies in zeolites 45
2.5.3. Format of the framework atoms 47
2.5.4. Typing the atoms of the framework 48
2.6. Using CIF-files 52
2.6.1. Definition of CIF-files 52
2.6.2. What charge definition is used? 'pseudo_atom.def' or from the CIF-file? 53
2.6.3. How to choose atom-types? 54
3. Potentials 67
3.1. Functional forms of force fields 67
3.2. Bonded potentials diagonal terms 68
3.2.1. Bond-stretching potentials 68
3.2.2. Urey-Bradley potentials 69
3.2.3. Bending potential 71
3.2.4. Wilson inversion-bend potential 72
3.2.5. Torsion potential 74
3.2.6. Improper torsion potential 76
3.3. Non-bonded potentials 79
3.3.1. Van der Waals potentials 79
3.3.2. Tail corrections 82
3.3.3. Electrostatics 83
3.4. Bonded potentials cross terms 84
3.4.1. Bond-bond potential 84
3.4.2. Bond-bend potential 84
3.4.3. Bend-bend potential 84
3.4.4. Bond-torsion potential 85
3.4.5. Bend-torsion potential 85
4. Examples 87
4.1. Introduction 87
4.2. Basic examples 88
4.3. Non-basic examples 95
4.4. Advanced examples 102
4.5. Auxiliary examples 113
5. The source code 119
5.1. Introduction 119
5.2. Data types 119
5.3. Datastructures 120
5.4. Modifying 127
5.4.1. Monte Carlo 127
5.4.2. Molecular Dynamics 130
5.5. Debugging 132
5.5.1. Linux 132
5.5.2. Mac OSX 132
6. Troubleshooting 135
II Utilities 139
7. Visualization 141
7.1. Making pictures using VTK 141
7.2. Ball and stick 141
7.3. Framework surface 143
7.4. Density plots 146
7.5. Determining blocking pockets 149
7.6. Making movies 149
7.6.1. Using VMD 149
7.6.2. Combining pictures into a movie 149
III Tutorial 151
8. Tutorial 153
8.1. Adsorption isotherm of N_{2} in a metal-organic framework (MOF), Henry coefficients, en- thalpy of adsorption 153
8.2. NPT density of super-critical $\mathrm{CO}_{2}, \mathrm{RDF}$, diffusion 156
8.3. Reaction-ensemble of ammonia 158

Part I

RASPA

Introduction

1.1 Design philosophy

This software is a general purpose classical simulation package. It has been developed at Northwestern University (Evanston, USA; group of Prof. Randall Q. Snurr) during 2006-2009 in active collaboration with University Pablo de Olavide (Seville, Spain; group of Prof. Sofia Calero), and from 2010-2015 also at the University of Amsterdam (David Dubbeldam) and Technical University of Delft (group of Prof. T.J.H. Vlugt). It can be used for the simulation of molecules in gases, fluids, zeolites, aluminosilicates, metal-organic frameworks, and carbon nanotubes.

Programs can be written in various ways, but often it is true that the fastest codes are probably the hardest to read, while programs strictly based on readability lacks efficiency. RASPA is based on the following ideas:

- Correctness and accuracy

For all the techniques and algorithms available in RASPA we have implemented the 'best' ones available in literature. For example, RASPA uses Configurational-Bias Monte-Carlo, it uses the Ewald summation for electrostatics, molecular dynamics is based on 'symplectic' integrators, all MonteCarlo moves obey detailed balance etc.

- Functional design

Looking at the source, you will notice that there are not a lot of files. The program is split up according to its function: 'grid.c' contains the code to make and use a grid of a framework, 'ewald.c' handles all the electrostatic,'mc_moves.c' contains all the moves to be used in Monte-Carlo,'potentials.c' contains all the VDW potentials etc.

- Input made easy

The requirements for the input files is kept as minimal as possible. Only for more advanced options extra commands in the input file are needed. Also the format of the input is straightforward. Default settings are usually the best ones. Fugacity coefficients and excess adsorption are automatically computed.

- Integrated simulation environment

The code is built up of many functions and routines which can be easily combined to do what you want. Molecular dynamics can be used in Monte Carlo and visa versa. Extension and modification of the code is relatively straightforward.

RASPA used three 'types' or 'groups' for the particles: 1) Framework atoms, 2) Adsorbates, and 3) Cations. The advantage is that all the energies are split and the interactions can be examined (also the energies are split in the Ewald Fourier part). Another example is when using thermostats in e.g. LTA5A where a different thermostat operates in the framework atoms, the adsorbates, and the cations. These all move at different length- and time scales. Note that it is not possible to exchange types during Identitychange moves (if defined they are ignored).

1.2 Units and conventions

- The standard units in RASPA from which all other units are derived are:

quantity	symbol	unit	value
length	l	Ångstrom	$10^{-10} \mathrm{~m}$
temperature	T	Kelvin	K
mass	m	atomic mass	$1.6605402 \times 10^{-27} \mathrm{~kg}$
time	t	pico seconds	$10^{-12} \mathrm{~s}$
charge	q	atomic charge	$1.60217733 \times 10^{-19} \mathrm{C} /$ particle

Some examples of derived units:

quantity	symbol	units	conversion value
energy	U	$J=$ mass \times length $^{2} /$ time 2	$1.66054 \times 10^{-23}(=10 \mathrm{~J} / \mathrm{mol})$
pressure	p	$\mathrm{~Pa}=$ mass $/\left(\right.$ length \times time $\left.^{2}\right)$	1.66054×10^{7}
diffusion constant	D	$D=$ length $/$ time 2	1×10^{-8}
force	f	$f=$ length $/$ time 2	1.66054×10^{-13}
\ldots	\ldots	\ldots	\ldots

A pressure input of 10 Pascal in the input file, is converted to 'internal units' by dividing by $1.66054 \times$ 10^{7}. In the output any internal pressure is printed, multiplied by 1.66054×10^{7}. It is not necessary to convert units besides input and output, with a few exceptions. One of them is the Coulombic conversion factor

$$
\begin{equation*}
\frac{q_{i} q_{j}}{4 \pi \epsilon_{0}}=\frac{\text { charge }^{2}}{4 \pi \times \text { electric constant } \times \text { length } \times \text { energy }}=138935.4834964017 \tag{1.1}
\end{equation*}
$$

with the electric constant as $8.8541878176 \times 10^{-12}$ in units of $\mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$. This factor is needed to convert the electrostatic energy to the internal units at every evaluation.
The Boltzmann's constant k_{B} is

$$
\begin{equation*}
k_{B}=\text { Boltzmann constant } / \text { energy }=0.8314464919 \tag{1.2}
\end{equation*}
$$

with the Boltzmann constant as $1.380650324 \times 10^{-23}$ in units of J / K, and $k_{B}=0.8314464919$ in internal units.

- Numbering is based on the C-convention, i.e. starting from zero.
- Files in the current directory always have preference.

Sometimes one would like to try various parameters for force field fitting for example. In order to avoid making a lot of directories for each force field it is more convenient to have the 'pseudo_atoms.def', 'force_field_mixing_rule.def' and 'force_field.def' files in the current directory.

1.3 Compiling and installing RASPA

1.3.1 Requirements

RASPA needs a C compiler, like 'gcc' or intel's 'icc' compilers, and optionally the libraries 'fftw', 'blas', and 'lapack'.

1.3.2 RASPA from ' git' $^{\prime}$

Working with 'git' and a remote repository means that you will have to distinguish between two locations of the code:

1. The repository (visible to everyone)
2. your local copy (only visible to you)

To check-out the code for the first time do:
git clone https://github.com/iraspa/RASPA2
After that, you can update the code by using
git pull

1.3.3 installing RASPA

The RASPA DIR environment variable should be set to where you would like to install RASPA. A common way of defining it is using the bash-shell
export RASPA_DIR=\$\{HOME\}/RASPA/simulations/
or
setenv RASPA_DIR "\$\{HOME\}/RASPA/simulations/"
for 'csh' and 'tcsh' shells. It is possible to add this line to ".bashrc", "/etc/bashrc", "/etc/profile" etc, depending on the unix-version and shell version to automatically have the environment variable set at login.

Note that the source-code of RASPA is kept separate from the installation data. RASPA needs the environment variable to locate various files it needs, e.g. molecule definitions, framework definitions, force and field definitions. It looks for these files relative to the RASPA_DIR directory.

Before installing RASPA with
make install
from the top-directory, the code needs to be compiled.

1.3.4 compiling RASPA

RASPA uses the standard 'configure' utilities (autoconf, automake, libtool, and make). The steps to install from scratch, i.e. after a 'make distclean' or 'git clone' are

1. rm -rf autom4te.cache
2. mkdir m4
3. aclocal
4. autoreconf -i
5. automake --add-missing
6. autoconf
7. ./configure --prefix=\$\{RASPA_DIR\} or
./scripts/CompileScript/make-gcc-local
8. make
where '\$\{RASPA_DIR\}' is the directory you would like to install RASPA, and the commands are executed in the top directory.

Usually (when recent automake and autoconf versions are installed), it is enough to do

1. make clean
2. ./configure --prefix=\$\{RASPA_DIR\}
3. make

You can use the 'CFLAGS' environment variable to set compiler options and 'CC' to set the compiler. For example, for a gcc compiler one could use

```
export CFLAGS="-Wall -03 -ffast-math"
export CC="gcc"
```


1.3.5 Running RASPA

Running RASPA is based on two files:

- A 'run' file to execute the program an example file is:

```
#! /bin/sh -f
export RASPA_DIR=${HOME}/Research/simulations/
$RASPA_DIR/bin/simulate
```

This type of file is know as a 'shell script'. RASPA needs the variable 'RASPA_DIR' to be set in order to look up the molecules, frameworks, etc. The scripts sets the variable and runs RASPA. RASPA can then be run from any directory you would like.

- An 'input'-file describing the type of simulation and the parameters

In the same directory as the 'run'-file, there needs to be a file called 'simulation.input'. An example file is:

SimulationType	MonteCarlo
NumberOfCycles	100000
NumberOfInitializationCycles	10000
PrintEvery	1000
Box 0	
BoxLengths 303030	
ExternalTemperature 300.0	

```
component 0 methane
    TranslationProbability 1.0
    CreateNumberOfMolecules 100
```

This tells RASPA to run a Monte-Carlo simulation of 100 methane molecules in a $30 \times 30 \times 30 \AA$ cubic box (with 90° angles) at 300 Kelvin. It will start with 10000 cycles to equilibrate the system and will use 100000 cycle to obtain thermodynamic properties of interest. Every 1000 cycles a status-report is printed to the output. The Monte-Carlo program will use only the 'translation move' where a particle is given a random translation and the move is accepted or rejected based on the energy difference.

In order to run it on a cluster using a queuing system one needs an additional file 'bsub.job' (arbitrary name)

- 'gridengine'

```
#!/bin/csh
# Serial sample script for Grid Engine
# Replace items enclosed by {}
#$ -S /bin/csh
#$ -N Test
#$ -V
#$ -cwd
echo $PBS_JOBID > jobid
setenv RASPA_DIR ${HOME}/RASPA/simulations/
$RASPA_DIR/bin/simulate
```

The job can be submitted using 'qsub bsub.job'.

- 'torque'

```
#!/bin/bash
#PBS -N Test
#PBS -o pbs.out
#PBS -e pbs.err
#PBS -r n
#PBS -V
#PBS -mba
cd $PBS_O_WORKDIR
echo $PBS_JOBID > jobid
export RASPA_DIR=${HOME}/RASPA/simulations
${RASPA_DIR}/bin/simulate
```

The job can be submitted using 'qsub bsub.job'.

- 'slurm'

```
#!/bin/bash
#SBATCH -N 1
#SBATCH --job-name=Test
#SBATCH --export=ALL
echo $SLURM_JOBID > jobid
```

```
valhost=$SLURM_JOB_NODELIST
echo $valhost > hostname
module load slurm
${RASPA_DIR}/bin/simulate
```

The job can be submitted using 'sbatch bsub.job'.

1.4 Output from RASPA

RASPA generates output from the simulation. Some data is just information on the status, while other data are written because you specifically asked the program to compute it for you. The output is written to be used with other programs like:

- gnuplot
- VTK
- VMD

The main output is written to the directory 'Output/System_0/', 'Output/System_1/', ...for each of the simulated systems. Usually one simulates only a single system. However, the Gibbs ensemble requires 2 systems, one for vapor phase and one for the liquid phase, while n systems are used by the (hyper-) parallel-tempering technique(s).

1.5 Citing RASPA

If you are using RASPA and would like to cite it in your journal articles or book-chapters, then for RASPA:
D. Dubbeldam, S. Calero, D.E. Ellis, and R.Q. Snurr, RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials, Mol. Simulat., http://dx. doi . org/10.1080/08927022.2015.1010082, 2015.

For the inner workings of Monte Carlo codes:
D. Dubbeldam, A. Torres-Knoop, and K.S. Walton, On the Inner Workings of Monte Carlo Codes, http://dx.doi.org/10.1080/08927022.2013.819102 Mol. Simulat., 39(14-15), 12531292, 2013.

For the the description of Molecular Dynamics and diffusion:
D. Dubbeldam and R.Q. Snurr, Recent Developments in the Molecular Modeling of Diffusion in Nanoporous Materials, http://dx.doi.org/10.1080/08927020601156418, Mol. Simulat., 33(4-5), 305-325, 2007.

Format of the Input Files

2.1 Introduction

In order to run a simulation you need several input-files:

- 'simulation.input'

This file contains the information on the type of simulation, the amount of steps, the framework name, number of unit cells in each directions, the used molecules, the type of used Monte-Carlo moves etc.

- 'structure-name.cif'

If a framework (e.g. a zeolite or MOF) is used, then the definition of the structure needs to be provided. CIF-files are supported and the default input. The name of the file should be equal to the one provided in 'simulation.input', e.g. IRMOF-1.cif if 'Frameworkname IRMOF-1' is listed in 'simulation.input'.

- 'pseudo_atoms.def'

The 'pseudo_atoms.def' file list all the information on used pseudo-atoms, e.g. charge, mass. Usually a pseudo-atom is an atom, but there are exceptions like united atoms (where CH3 is lumped into one unit) and off-atom sites in Tip5p water that represent oxygen lone pairs. Because in CIF-files for frameworks you can provide also information on atoms, there is no need to list framework atoms here if a CIF-file is used. On reading the CIF-file these defined atoms are added to the pseudo-atoms. If also provided in the 'pseudo_atoms.def' then the definition in the 'pseudo_atoms.def ' file has priority.

- 'force_field_mxing_rules.def','force_field.def'

The force field defined on the pseudo-atoms in 'pseudo_atoms.def'. These files list the Van der Waals potential types, the parameters, whether to use tail-corrections, whether to shift to zero at the cutoff, and the type of mixing rule. Force fields in literature are usually published in two forms: 1) a list of potentials parameters per atom and a mixing rule, or 2) pairs of atoms and parameters. The first option corresponds to the file 'force_field_mxing_rules.def' and the latter option to the file 'force_field.def'. You can use both at the same time, where 'force_field.def' has precedence over 'force_field_mxing_rules.def'.

- 'molecule-name.def'

The definition of the used molecules. The name of the file should be equal to the one provided in 'simulation.input', e.g. propane.def if 'MoleculeName propane' is listed in 'simulation.input'.

- zframework.def'

Used for a flexible framework to define all the bonds, bends, torsions, core-shells, etc.
The format of these files will be described in the remaining sections. Chapter 4 provides lots of examples to see everything in action. In addition to the input-files you will need either a 'run' file that is executable, or a queuing-script to submit the job to the queue (see 1.3.5).

2.2 Simulation input

Leading spaces and comments at the end of each line are omitted. Empty lines are skipped, and case is not important except in file names (i.e. framework and molecule names).

Simulation types

- SimulationType MonteCarlo

Starts the Monte Carlo part of RASPA. The particular ensemble is not specified but implicitly deduced from the specified Monte Carlo moves. Note that a MD-move can be used for hybrid MC/MD.

- SimulationType MolecularDynamics

Starts the Molecular Dynamics part of RASPA. The ensemble is explicitly specified.

- SimulationType Spectra

Starts the computation of the vibrational analysis. Possible options include infra red spectrum at zero Kelvin, powder diffraction, and mode analysis.

- SimulationType Minimization

Starts the minimization routine. It produces configurations and crystal structures at zero Kelvin.

- SimulationType Visualization

Output VTK-files for snapshots and crystal structures, including energy surface pictures.

- SimulationType BarrierCrossing

Routine for the dynamical correction of dynamically corrected Transition State Theory.

- SimulationType Numerical

Computes all the forces numerically from the energy and compares them to the analytical expressions. Also the strain-derivative tensor (related to the stress tensor), and the second derivative of the energy with respect to strain, as well as the Hessian matrix can be checked.

- SimulationType MakeGrid Creates pre-tabulated energy-grids for use in rigid frameworks.

Simulation duration

- NumberOfCycles [int]

The number of cycles for the production run. For Monte Carlo a cycle consists of N steps, where N is the amount of molecules with a minimum of 20 steps. This means that on average during each cycle on each molecule a Monte Carlo move has been attempted (either successful or unsuccessful). For MD the number of cycles is simply the amount of integration steps.

- NumberOfInitializationCycles [int]

The number of cycles used to initialize the system using Monte Carlo. This can be used for both Monte Carlo as well as Molecular Dynamics to quickly equilibrate the positions of the atoms in the system.

- NumberOfEquilibrationCycles [int]

For Molecular Dynamics it is the number of MD steps to equilibrate the velocities in the systems. After this equilibration the production run is started. For Monte Carlo, in particular CFMC, the equilibration-phase is used to measure the biasing factors.

Restart and crash-recovery

- RestartFile [yes|no]

Reads the positions, velocities, and force from the directory 'RestartInitial'. Any creation of molecules in the 'simulation.input' file will be in addition and after this first read from file. This is useful to load initial positions of cations for example, and after that create adsorbates. The restart file is written at 'PrintEvery' intervals.

- ContinueAfterCrash [yes|no]

Write a binary file containing the complete status of the program. The file name is 'binary restart.dat' and is located in the directory 'CrashRestart'. With this option to 'yes' the presence of this file will result in continuation from the point where the program was at the moment of outputting this file. The file can be quite big (several hundreds of megabytes) and will be outputted every 'WriteBinaryRestartFileEvery' cycles.

- WriteBinaryRestartFileEvery [int]

The output frequency (i.e. every [int] cycles) of the crash-recovery file.

Printing options

- PrintEvery [int]

Prints the loadings (when a framework is present) and energies every [int] cycles. For MD information like energy conservation and stress are printed.

- PrintPropertiesEvery [int]

Output running averages of many properties (i.e. Henry coefficients and elastic constants).

- PrintForcefieldToOutput [yes|no]

Prints the force field information to the output-file. Default: yes.

- PrintPseudoAtomsToOutput [yes|no]

Prints the pseudo-atom information to the output-file. Default: yes.

- PrintMoleculeDefinitionToOutput [yes|no]

Prints the molecule definition information to the output-file. Default: yes.

Force field definitions

- ChargeFromChargeEquilibration [yes|no]

Compute the charges of the framework using the 'charge-equilibration'-method.

- SymmetrizeFrameworkCharges [yes|no]

All charges of the framework are made equivalent for equivalent framework atoms. Using regular charge-equilibration the charges are different for symmtrically equivalent framework atoms, and this options restores the symmetry.

- ForceField [string]

Reads in the force field [string], first the file 'pseudo_atoms.def' is read, then 'force field_mixing_rules.def' and finally 'force_field.def'. The latter overwrites general settings for interactions based on mixing rules with specific ones for individual interactions.

Note that if any of these files are in the working directory then these will read and used instead of the ones in '\$\{RASPA_DIR\}/simulations/share/raspa/forcefield/[string]'.

- CutOffVDW [real]

The cutoff of the Van der Waals potentials. Interactions longer then this distance are omitted from the energy and force computations. The potential can either be shifted to zero at the cutoff, or interactions can just neglected after the cut off, or the remainder of the potential energy can be approximated using tail corrections. This is specified in the force field files and can be specified globally or for each interaction individually.

- CutOffVDWSwitch [real]

The distance at which VDW switching will start. The smoothing will make sure the value and derivatives are zero at the cutoff. The default: 0.9 times the CutOff.

- CutOffChargeCharge [real]

The cutoff of the charge-charge potential. The potential is truncated at the cutoff and only shifted when 'ChargeMethod CoulombShifted' or 'ChargeMethod CoulombSmoothed' is used. No tail-corrections are (or can be) applied. The only way to include the long-range part is to use 'ChargeMethod Ewald'. The parameter is also used in combination with the Ewald precision to compute the number of wave vectors and Ewald parameter α. For the Ewald summation using rather large unit cells, a chargecharge cutoff of about half the smallest box-length would be advisable in order to avoid the use of an excessive amount of wave-vectors in Fourier space. For non-Ewald methods the cutoff should be as large as possible (greater than about $30 \AA$).

- CutOffChargeChargeSwitch [real]

The distance at which charge-charge switching will start. The smoothing will make sure the value and derivatives are zero at the cutoff. The default: 0.65 times the CutOff.

- CutOffChargeBondDipole [real]

The cutoff of the charge-bonddipole potential.

- CutOffChargeBondDipoleSwitch [real]

The distance at which charge-bonddipole switching will start. The smoothing will make sure the value and derivatives are zero at the cutoff. The default: 0.70 times the CutOff.

- CutOffBondDipoleBondDipole [real]

The cutoff of the bonddipole-bonddipole potential.

- CutOffBondDipoleBondDipoleSwitch [real]

The distance at which bonddipole-bonddipole switching will start. The smoothing will make sure the value and derivatives are zero at the cutoff. The default: 0.75 times the CutOff.

- OmitAdsorbateAdsorbateVDWInteractions [yes|no]

Omits the Van der Waals interactions between adsorbates.

- OmitAdsorbateAdsorbateCoulombInteractions [yes|no]

Omits the Coulombic (i.e. Ewald) interactions between adsorbates.

- OmitInterMolecularInteractions [yes|no]

Omits the interactions between all molecules (only interactions with the framework). This also works with the Ewald summation on. The options implies the setting of both

- OmitAdsorbateAdsorbateVDWInteractions [yes|no]
- OmitAdsorbateAdsorbateCoulombInteractions [yes|no]
- InternalFrameworkLennardJonesInteractions [yes|no]

Compute the Van der Waals interaction of the flexible framework. The Demontis flexible model for silicalite is defined with only bond, bend, and torsion for example. One can use this option and also use 'Charge None'.

RemoveBondNeighboursFromLongRangeInteraction [yes|no]

- RemoveBendNeighboursFromLongRangeInteraction [yes|no]

RemoveTorsionNeighboursFromLongRangeInteraction [yes|no]
After construction of the connectivity table all interactions are removed from Van der Waals and charge interactions that are defined as 1-2 (i.e. bonds), 1-3 (i.e. bends, Urey-Bradley) and 1-4 (i.e. torsion, inversion-bend) respectively.

- Remove12NeighboursFromChargeChargeInteraction [yes|no] Remove13NeighboursFromChargeChargeInteraction [yes|no] Remove14NeighboursFromChargeChargeInteraction [yes|no] Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range charge-charge interaction within the flexible framework respectively.
- Remove12NeighboursFromChargeBondDipoleInteraction [yes|no] Remove13NeighboursFromChargeBondDipoleInteraction [yes|no] Remove14NeighboursFromChargeBondDipoleInteraction [yes|no]
Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range charge-bond dipole interaction within the flexible framework respectively.
- Remove12NeighboursFromBondDipoleBondDipoleInteraction [yes|no]

Remove13NeighboursFromBondDipoleBondDipoleInteraction [yes|no] Remove14NeighboursFromBondDipoleBondDipoleInteraction [yes|no]
Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range bond dipolebond dipole interaction within the flexible framework respectively.

Thermostat and barostat parameters

- ExternalTemperature [list-of-reals]

The external temperature in Kelvin for each system. Because the system is in contact with this imaginary reservoir the average temperature of the system can be controlled. Default: 298K.

- ExternalPressure [list-of-reals]

The external pressure in Pascal for each system. Because the system is in contact with this imaginary reservoir the average pressure of the system can be controlled.

- ThermostatChainLength [int]

The length of the chain to thermostat the system. Default: 5 .

- BarostatChainLength [int]

The length of the chain to thermostat the volume and/or cell parameters. Default 5 .

- NumberOfYoshidaSuzukiSteps [int]

The number of Yoshida/Suzuki multiple timesteps.

- TimeScaleParameterThermostat [real]

The time scale on which the system thermostat evolves. Default: 0.15 ps .

- TimeScaleParameterBarostat [real]

The time scale on which the thermostat for the volume and/or cell parameters evolve. Default: 0.15 ps.

Molecular dynamics parameters

- TimeStep [real]

The time step in picoseconds for MD integration. Default value: $0.0005 \mathrm{ps}(0.5 \mathrm{fs})$.

- Ensemble [list-of-nve|NVT|NPT|NPH|NPTPR|NPHPR]

Sets the ensemble as a list of NVE,NVT, NPT, NPH, NPTPR, or NPHPR for each system. If only a single ensemble is given, it is used for all systems. The given ensemble will be used for both initialization as well as the production run.

- NVE

The micro canonical ensemble, the number of particle N, the volume V, and the energy E are constant.

- NVT

The canonical ensemble, the number of particle N, the volume V, and the average temperature $\langle P\rangle$ are constant. Instantaneous values for the temperature are fluctuating.

- NPT

The isobaric-isothermal ensemble, the number of particle N, the average pressure $\langle P\rangle$, and the average temperature $\langle P\rangle$ are constant. Instantaneous values for the pressure and temperature are fluctuating.

- NPH

The isoenthalpic-isobaric ensemble, the number of particle N, the average pressure $\langle P\rangle$, and the enthalpy H are constant. Instantaneous values for the pressure and temperature are fluctuating.

- NPTPR

The isobaric-isothermal ensemble with a fully flexible cell (Parrinello-Rahman).

- InitEnsemble [list-of-NVE|NVT|NPT|NPH|NPTPR|NPHPR]

Sets the ensemble as a list of NVE,NVT, NPH, NPTPR, or NPHPR for each system. If only a single ensemble is given, it is used for all systems. The given ensemble will be only used for the initialization run.

- RunEnsemble [list-of-NVE|NVT|NPT|NPH|NPTPR|NPHPR]

Set the ensemble as a list of NVE,NVT, NPH, NPTPR, or NPHPR for each system. If only a single ensemble is given, it is used for all systems. The given ensemble will be only used for the production run.

- NPTPRCellType [list-of-Regular|Monoclinic|RegularUpperTriangle|MonoclinicUpperTriangle|Isotropic|Anisotropic] The type of constraints on the cell-matrix h. Default: RegularUpperTriangle.
- Regular

If the pressure tensor is asymmetric $\left(P_{\alpha \beta} \neq P_{\beta \alpha}\right)$ at a given instant of time, then there will be a net torque acting on the cell that will cause it to rotate. Cell rotations can be eliminated by using the symmetrized tensor $P_{\alpha \beta}=\left(P_{\alpha \beta}+P_{\beta \alpha}\right) / 2$ in the equations of motion and setting the initial total angular momentum of the cell to zero. This approach is formally implemented by constraining the force on the cell $\mathbf{g}=\mathbf{g}^{T}$. All three angles α, β, γ are allowed to change, as well as the box lengths $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

- Monoclinic

All three box lengths $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are allowed to vary, as well as cell angle β, but $\alpha=\gamma=90^{\circ}$.

- RegularUpperTriangle

Only the upper triangular part of the cell matrix is used to eliminate rotation of the box. All three angles α, β, γ are allowed to change, as well as the box lengths $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

- MonoclinicUpperTriangle

Only the upper triangular part of the cell matrix is used to eliminate rotation of the box. All three box lengths a, \mathbf{b}, \mathbf{c} are allowed to vary, as well as cell angle β, but $\alpha=\gamma=90^{\circ}$.

- Isotropic

All three box lengths $\mathbf{a}=\mathbf{b}=\mathbf{c}$ are allowed to vary isotropically, and the angles remain fixed $\alpha=\beta=\gamma=90^{\circ}$.

- Anisotropic

All three box lengths $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are allowed to vary independently, but the angles remain fixed $\alpha=$ $\beta=\gamma=90^{\circ}$.

Box parameters

Box [int]

- [real] [real] [real]

Set the system [int] to type 'Box' (other option is 'Framework' when a framework is present). The cell dimensions of rectangular box of system [int] in Angstroms. Default: $252525 \AA$.

BoxAngles [int]

- [real] [real] [real]

Set the system [int] to type 'Box' (other option is 'Framework' when a framework is present). The cell angles of rectangular box of system [int] in Angstroms. Default: $90^{\circ} 90^{\circ} 90^{\circ}$.

BoxMatrix [int]
[real] [real] [real]

- [real] [real] [real] [real] [real] [real]
Set the system [int] to type 'Box' (other option is 'Framework' when a framework is present). The 3×3 cell matrix of system [int], given as three vectors (as columns). This is the most general form and any box can be specified in this way. Units of the vectors are Angstrom.

Framework parameters

- Framework [int]

Set the system [int] to type 'Framework' (other option is 'Box' when no framework is present). All other options listed in the section framework parameters refer to this system, so make sure this is before any other framework options.

- FrameworkName [string]

Loads the framework with name [string]. Several frameworks can be read per system, which is useful for to study interpenetration of frameworks. Here the frameworks are allowed to move independently from each other.

- HeliumVoidFraction [real]

The void fraction as measure by probing the structure with helium a room temperature. This quantity has to be obtained from a separate simulation and is essential to compute the excess-adsorption during the simulation.

- UnitCells [int] [int] [int]

The number of unit cells in x, y, and z direction for the system. The full cell will contain the unit cells, and periodic boundary conditions will be applied on the box level (not on a unit cell level).

- ShiftUnitCells [real] [real] [real]

Shift the fractional positions so that the center of a framework can be altered.

- FlexibleFramework [yes|no]

Allow the current framework of the current system to be fully flexible. The name of the flexible model is provided using the 'FrameworkDefinitions [string]' input option.

- FrameworkDefinitions [string]

The force field name [string] of the flexible framework. The file is read even when 'FlexibleFramework no' is specified (the reason is that framework bond-dipoles are defined using the 'framework.def' file).

- ModifyFrameworkAtomConnectedTo [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4]

Modifies the atom-type- 1 to atom-type-2, always if atom-type-3 and atom-type-4 are omitted, or only it is connected to atom-type- 3 when atom-type- 3 is specified, or only when it is connected to both atom-type- 3 and atom-type- 4 if both are specified.

- ModifyFrameworkDimer [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4]

Modifies the connected atom-type-1 and atom-type-2 dimer to atom-type-3 and atom-type-4.

- ModifyFrameworkTriple [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4] [atom-type-5] [atom-type-6]
Modifies the connected triple atom-type-1,atom-type-2,atom-type-3 to atom-type-4,atom-type-5,atom-type-6.
- RemoveAtomNumberCodeFromLabel [yes|no]

Reading structure-files: the number is removed from the framework atom-types, e.g. '01', '02', '03', etc. are mapped to ' 0 '.

- AddAtomNumberCodeToLabel [yes|no]

Writing structure-files: the number is added to the framework atom-types, e.g. ' 0 ' are mapped to '01', '02', '03', etc.

- RestrictFrameworkAtomsToBox [yes|no]

Restricts (places back) atoms to the unit cell dimensions, i.e. fractional positions between 0 and 1 .

- ReadCIFAsCartesian [yes|no]

Reads the position listed in the CIF-file as Cartesian. Only applicable to P1 systems (no symmetry).

System moves

- FrameworkChangeMoveProbability [real]

The probability per cycle to randomly translate a framework atom. During this move the number of inner cycles is the amount of framework atoms, with a maximum of 500 . This move is applicable to relatively rigid structures like zeolites. For other structure where movement is caused by collective behavior (for example, the rotation of a phenyl-ring in a metal-organic framework) the MC/MD move is more convenient. Such movement is hardly sampled at all by individual MC translation moves.

- VolumeChangeProbability [real]

The probability per cycle to attempt a volume-change. Rigid molecules are scaled by center-of-mass, while flexible molecules and the framework is atomically scaled.

- VolumeChangeDirection $[\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{AB}| \mathrm{AC}|\mathrm{BC}| \mathrm{ABC}]$

Change the volume of the unit cell along a particular direction/directions in Monte Carlo. Default: ABC.

- BoxShapeChangeProbability [real]

The probability per cycle to attempt a shape-change of the box. One of the 6 upper triangular elements of the box matrix is randomly chosen. Rigid molecules are scaled by center-of-mass, while flexible molecules and the framework is atomically scaled.

- GibbVolumeChangeProbability [real]

The probability per cycle to attempt a Gibbs volume-change MC move during a Gibbs ensemble simulation. The total volume of the two boxes (usually one for the gas phase, one for the liquid phase) remains constant, but the individual volume of the boxes are changed. The volumes are changed by a random change in $\ln \left(V_{I} / V_{I I}\right)$.

- HybridNVEMoveProbability [real]

The probability per cycle to attempt a hybrid Monte Carlo move using Molecular Dynamics in the NVE-ensemble. The whole system is integrated using Newton's equations of motion. The new configuration is then accepted or rejected using the standard MC rule. Note that the difference in energy ΔU is the integration error. The integration time step is set using 'TimeStep'.

- NumberOfHybridNVESteps [int]

The number of integration steps for the hybrid MC/MD NVE move. Default: 5 .

- ParallelTemperingProbability [real]

A move where two neighboring systems are swapped that differ in their temperature.

- HyperParallelTemperingProbability [real]

A move where two neighboring systems are swapped that differ in their temperature and chemical potentials.

- ParallelMolFractionProbability [real]

A move where two neighboring systems (similar to parallel tempering) are swapped that differ in their mol-fraction of components A and B.

- ParallelMolFractionComponentA [int] The identifier of the first component.
- ParallelMolFractionComponentB [int]

The identifier of the second component.

- ChiralInversionProbability [real]

A move specifically designed for systems with chiral molecules to change all S-molecules into R molecules and vica versa. Note that the spacegroup needs to be set. If you have a framework that is P1 but has higher symmetry then use 'CalculateSpaceGroup yes' to determine the true space group of the framework. An error will be given if this move is impossible for your system (e.g. when the framework is chiral).

Component information

- Component [int] MoleculeName [string]

Reads in the definition of component [int] using the file 'molecule-name-string.def' from the directory '\$\{RASPA_DIR\}/share/raspa/molecules/molecule-definitions-string'.

- MoleculeDefinitions [string]

The type of the molecule. For example, there could an OPLS version of the molecule, or a TraPPE version, etc. This molecule-definitions-string is actually the directory name under which the molecule file is found in '\$\{RASPA_DIR\}/share/raspa/molecules/'.

- StartingBead [int]

The staring bead for the configurational bias Monte Carlo (CBMC). In CBMC the molecule is grown bead by bead biasing the growth towards energetically favorable configurations. Certain operations, like the rotation MC move and Widom particle insertion, use this bead as the center of rotation and position of the probe molecule, respectively.

- BlockPockets [yes|no]

Block certain pockets in the simulation volume. The growth of a molecule is not allowed in a blocked pocket. A typical example is the sodalite cages in FAU and LTA-type zeolites, these are not accessible to molecules like methane and bigger.

- BlockPocketsFileName [string]

The file name for the definitions of all the blocking spheres.

- MolFraction [real]

The mol fraction of this component in the mixture. The values can be specified relative to other components, as the fractions are normalized afterwards. The partial pressures for each component are computed from the total pressure and the mol fraction per component.

- FugacityCoefficient [real]

The fugacity coefficient for the current component. For values 0 (or by not specifying this line), the fugacity coefficients are automatically computed using the Peng-Robinson equation of state. Note the critical pressure, critical temperature, and acentric factor need to be specified in the molecule file.

- Intra14VDWScalingValue [real]

The scaling factor for intra-molecular 1-4 van der Waals interactions. For example: OPLS uses a factor of $\frac{1}{2}$.

- Intra14ChargeChargeScalingValue [real]

The scaling factor for intra-molecular 1-4 charge/charge interactions. For example: OPLS uses a factor of $\frac{1}{2}$.

- IdealGasRosenbluthWeight [real]

The ideal Rosenbluth weight is the growth factor of the CBMC algorithm for a single chain in an empty box. The value only depends on temperature and therefore needs to be computed only once. For adsorption, specifying the value in advance is convenient because the applied pressure does not need to be corrected afterwards (the Rosenbluth weight corresponds to a shift in the chemical potential reference value, and the chemical potential is directly obtained from the fugacity). For equimolar mixtures this is essential.

- GibbsSwapProbability [real]

The relative probability to attempt a Gibbs swap MC move for the current component. The 'GibbsSwapMove' transfers a randomly selected particle from one box to the other (50% probability to transfer a particle from box I to II, an 50% visa versa).

- TranslationProbability [real]

The relative probability to attempt a translation move for the current component. A random displacement is chosen in the allowed directions (see 'TranslationDirection'). Note that the internal configuration of the molecule is unchanged by this move. The maximum displacement is scaled during the simulation to achieve an acceptance ratio of 50%.

- TranslationDirection $[\mathrm{X}|\mathrm{Y}| \mathrm{Z}|\mathrm{XY}| \mathrm{XZ}|\mathrm{YZ}| \mathrm{XYZ}|\mathrm{A}| \mathrm{B}|\mathrm{C}| \mathrm{AB}|\mathrm{AC}| \mathrm{BC}|\mathrm{ABC}|$

ORTHOGONAL_TO_AB_DIR|ORTHOGONAL_TO_AC_DIR|ORTHOGONAL_TO_BC_DIR|
ORTHOGONAL_TO_O_AB_DIR|ORTHOGONAL_TO_O_AC_DIR|ORTHOGONAL_TO_O_BC_DIR|
ORTHOGONAL_TO_A_BC_DIR|ORTHOGONAL_TO_B_AC_DIR|ORTHOGONAL_TO_C_AB_DIR| ORTHOGONAL_TO_O_ABC_DIR]
Specifies the allowed translation direction for the current component. Useful to sampling configuration with the starting bead restricted to a plane, i.e. see dcTST. Default: XYZ.

- RandomTranslationProbability [real]

The relative probability to attempt a random translation move for the current component. The displacement is chosen such that any position in the box can reached. It is therefore similar as reinsertion, but 'reinsertion' changes the internal conformation of a molecule and uses biasing.

- RotationProbability [real]

The relative probability to attempt a random rotation move for the current component. The rotation is around the starting bead. A random vector on a sphere is generated, and the rotation is random around this vector.

- CBMCProbability [real]

The relative probability to attempt a partial reinsertion move for the current component. Part of the molecule is regrown, while part of the molecule can remain fixed. The list of partial reinsertion moves is specified in the 'molecule.def' file.

- ReinsertionProbability [real]

The relative probability to attempt a full reinsertion move for the current component. Multiple first beads are chosen, and one of these is selected according to its Boltzmann weight. The remaining part of the molecule is grown using biasing. This move is very useful, and often necessary, to change the internal configuration of flexible molecules.

- SwapProbability [real]

The relative probability to attempt a insertion or deletion move. Whether to insert or delete is decided randomly with a probability of 50% for each. The swap move imposes a chemical equilibrium between the system and an imaginary particle reservoir for the current component. The move starts with multiple first bead, and grows the remainder of the molecule using biasing.

- WidomProbability [real]

The relative probability to attempt a Widom particle insertion move for the current component. The Widom particle insertion moves measure the chemical potential and can be directly related to Henry coefficients and heats of adsorption.

- SurfaceAreaProbability [real]

The relative probability to attempt a surface-area move for the current component.

- ReinsertionInPlaceProbability [real]

The relative probability to attempt a reinsertion-in-place move for the current component. The reinsertion position is the current position of the starting bead of the randomly selected molecule. Alternatively, one can use the partial reinsertion move leaving one bead fixed. The move is very useful to sample configuration on a plane for dcTST to change the internal configuration, e.g. bonds, bends, torsions, etc.

- IdentityChangeProbability [real]

The relative probability to attempt an identity-change move for the current component. A molecule of type A is reinsertion, in the same place as the starting bead of A, as type B using the starting bead of component B. The $A-B$ list is defined using 'IdentityChangesList' defining B for each component A, i.e. the current component can be reinserted into any component defined in the 'IdentityChangesList' list, and from that list the component is chosen randomly.

- NumberOfIdentityChanges [int]

The number of 'IdentityChangesList' elements for the current component.

- IdentityChangesList [list-of-int]

The list of components that the current component can be changed into. The identity-change move will randomly choose the new component from this list.

- GibbsIdentityChangeProbability [real]

The relative probability to attempt an identity change for the current component in the Gibbs ensemble. It is a very useful move to for mixture of n components. Out of the n components, two components $i \neq j$ are selected at random. At random, it is selected to switch the identity of component i in box I or in box $I I$, and the identity of the component j in the other box. In each box, a particle is selected at random which matches the desired identity.

- NumberOfGibbsIdentityChanges [int]

The number of 'GibbsIdentityChangesList' elements for the current component.

- GibbsIdentityChangesList [list-of-int]

The list of components that the current component can be changed into. The Gibbs-identity-change move will randomly choose the new component from this list.

- ExtraFrameworkMolecule [yes|no]

There are two major types of molecules, 'Adsorbates' and 'Cations'. The 'ExtraFrameworkMolecule' keyword sets whether the current component is a 'Cation' (yes) or a 'Adsorbate' (no). Energies in the output as splitted in Host-Host, Host-Adsorbate, Host-Cation, Adsorbate-Adsorbate, Cation-Cation, and Adsorbate-Cation. The distinction in two types of molecule is sometimes necessary. For example, consider a mixture of components, where polarization needs to be neglected between certain components (because they are parameterized without). The water model 'rpol' is defined including polarization, but CO2 using TraPPE is not. One can define water as 'Adsorbate', CO2 as 'Cation' and neglect polarization between cations.

- RestrictEnantionface [yes|no]

Restricts all MC-moves to the enantioface defined by 'Enantioface'. Moves that result in an opposite enantioface are rejected.

- Enantioface [Re|Si]

The enantioface of the component, either ' Re^{\prime} or 'Si'.

- EnantiofaceAtoms $[\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}]$

The definition of the enantioface based on 5 atoms. The first 4 form a torsion, as well as the first 3 and the last atom. These two torsions form the definition of the enantioface.

- CreateNumberOfMolecules [int]

The number of molecule to create for the current component. Note these molecules are in addition to anything read in by using a restart-file. Usually, when the restart-file is used the amount here should be put back to zero. A warning, putting this value unreasonably high results in an infinite loop. The routine accepts molecules that are grown causing no overlap (energy smaller than 'EnergyOverlapCriteria'). Also the initial starting configurations are far from optimal and substantial equilibration is needed to reduce the energy. However, the CBMC growth is able to reach very high densities.

Options to measure properties

- ComputeDistanceHistograms [yes|no]

Sets whether or not to compute the histograms of specified distance pairs for the current system. A directory 'DistanceHistograms' is created containing the histograms for each system.

- WriteDistanceHistogramEvery [int] Output the distance histograms every [int] cycles.
- MaxRangeDistanceHistogram [real] The range of the histograms.
- NumberOfElementsDistanceHistogram [int] The number of elements of the histograms.
- DistanceHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int] Define a distance histogram between two atoms.
- ComputeBendAngleHistograms [yes|no]

Sets whether or not to compute the bend-angle histograms of specified trimers of atoms for the current system. A directory 'BendAngleHistograms' is created containing the histograms for each system.

- WriteBendAngleHistogramEvery [int] Output the distance histograms every [int] cycles.
- MaxRangeBendAngleHistogram [real]
- NumberOfElementsBendAngleHistogram [int]
- BendAngleHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int]
- ComputeDihedralAngleHistograms [yes|no]

Sets whether or not to compute the dihedral-angle histograms of specified quads of atoms for the current system. A directory 'DihedralAngleHistograms' is created containing the histograms for each system.

- WriteDihedralAngleHistogramEvery [int] Output the distance histograms every [int] cycles.
- MaxRangeDihedralAngleHistogram [real]
- NumberOfElementsDihedralAngleHistogram [int]
- DihedralAngleHistogramDefinition $[\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int $][$ int $][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int $][$ int $][\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int $]$ [int]
- ComputeAngleBetweenPlanesHistograms [yes|no]

Sets whether or not to compute the histograms of angles between specified planes for the current system. A directory 'AngleBetweenPlanesHistograms' is created containing the histograms for each system.

- WriteAngleBetweenPlanesHistogramEvery [int] Output the distance histograms every [int] cycles.
- MaxRangeAngleBetweenPlanesHistogram [real]
- NumberOfElementsAngleBetweenPlanesHistogram [int]
- AngleBetweenPlanesHistogramDefinition $[\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int $][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int] [int] [F|A|C] [int] [int] [$\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}][\mathrm{F}|\mathrm{A}| \mathrm{C}][\mathrm{int}][\mathrm{int}]$
- ComputePSD [yes|no]

Sets whether or not to compute the pore-size distribution (PSD) for the current system. A directory 'PoreSizeDistributionHistogram' is created containing the output 'HistogramPoreSizeDistribution.dat' per system.

- WritePSDEvery [int] Output the PSD every [int] cycles.
- PSDProbeDistance [Minimum|Sigma]

Sets whether to use the minimum of the potential $\sigma^{1 / 6}$ as the probe distance or whether to use σ.

- HistogramSizePoreSizeDistribution [int] default: 100.
- MaxRangePoreSizeDistribution [real] default: 10.
- ComputeRDF [yes|no]

Sets whether or not to compute the radial distribution function (RDF) for the current system. A directory 'RadialDistributionFunctions' is created containing the output per system. The RDF is computed for each atom type pair unless the option 'print' flag in 'pseudo_atoms.def' is 'no'.

- WriteRDFEvery [int] Output the RDF every [int] cycles.
- ComputeMSD [yes|no]

Sets whether or not to compute the mean-squared displacement (MSD) for the current system using a modified order-N algorithm. A directory 'MSDOrderN' is created containing the output per system. The output consists of files containing self-msd data per component, the total self-msd, the Onsager msd for each component pair, and the the total Onsager msd. The units in the files are \AA^{2} for the msd, and ps for time.

- WriteMSDEvery [int] Output the MSD every [int] cycles.
- SampleMSDEvery [int]

Samples every [int] integration steps. Default: 1.

- ComputeIndividualMSD [yes|no] Computes the msd, not only per component, but also per molecule.
- NumberOfBlocksMSD [int]

The number of blocks for the order- n correlation measurement. Each block represent a different time-scale of sampling. Default: 25.

- NumberOfBlockElementsMSD [int]

The number of elements in each block. For example, if the number is 10, then the first block samples: $1,2,3, \ldots, 10$, the second block $10,20,30, \ldots, 100$, the third block $100,200,300, \ldots, 1000$, etc. Default: 25.

- ComputeVACF [yes|no]

Sets whether or not to compute the velocity autocorrelation function (VACF) for the current system using a modified order-N algorithm. A directory 'VACFOrderN' is created containing the output per system. The output consists of files containing self-vacf data per component, the total self-vacf, the Onsager vacf for each component pair, and the the total Onsager vacf. The files start with the integration diffusivity-values, computed using a generalization of the Simpson's rule (in the sense that it is exact for cubic polynomials and is valid for an odd as well as even number of intervals). The units in the files are \AA^{2} / ps for velocity, and ps for time.

- WriteVACFEvery [int] Output the VACF every [int] cycles.
- SampleVACFEvery [int]

Samples every [int] integration steps. Default: 5.

- ComputeIndividualVACF [yes|no] Computes the vacf, not only per component, but also per molecule.
- NumberOfBlocksVACF [int]

The number of blocks for the order- n correlation measurement. Each block represent a different time-scale of sampling. Default: 10.

- NumberOfBlockElementsVACF [int]

The number of elements in each block. For example, if the number is 10 , then the first block samples: $1,2,3, \ldots, 10$, the second block $10,20,30, \ldots, 100$, the third block $100,200,300, \ldots, 1000$, etc. Default: 5000.

- ComputeRVACF [yes|no]

Sets whether or not to compute the rotational velocity autocorrelation function (RVACF) for the current system using a modified order- N algorithm. A directory 'RVACFOrderN' is created containing the output per system. The output consists of files containing self-rvacf data per component, the total self-rvacf, the Onsager rvacf for each component pair, and the the total Onsager rvacf. The files start with the integration diffusivity-values, computed using a generalization of the Simpson's rule (in the sense that it is exact for cubic polynomials and is valid for an odd as well as even number of intervals). The units in the files are \AA^{2} / ps for velocity, and ps for time.

- WriteRVACFEvery [int] Output the RVACF every [int] cycles.
- SampleRVACFEvery [int] Samples every [int] integration steps. Default: 5.
- ComputeIndividualRVACF [yes|no]

Computes the vacf, not only per component, but also per molecule.

- NumberOfBlocksRVACF [int]

The number of blocks for the order- n correlation measurement. Each block represent a different time-scale of sampling. Default: 10.

- NumberOfBlockElementsRVACF [int]

The number of elements in each block. For example, if the number is 10 , then the first block samples: $1,2,3, \ldots, 10$, the second block $10,20,30, \ldots, 100$, the third block $100,200,300, \ldots, 1000$, etc. Default: 5000.

- ComputeMOACF [yes|no]

Sets whether or not to compute the molecular orientation velocity autocorrelation function (MOACF) for the current system using a modified order-N algorithm. A directory 'MOACFOrderN' is created containing the output per system. The output consists of files containing self-moacf data per component and the total self-rvacf. The units in the files are $\mathrm{rad}^{2} / \mathrm{ps}$ for velocity, and ps for time.

- WriteMOACFEvery [int] Output the MOACF every [int] cycles.
- SampleMOACFEvery [int]

Samples every [int] integration steps. Default: 5.

- ComputeIndividualMOACF [yes|no]

Computes the moacf, not only per component, but also per molecule.

- NumberOfBlocksMOACF [int]

The number of blocks for the order- n correlation measurement. Each block represent a different time-scale of sampling. Default: 10.

- NumberOfBlockElementsMOACF [int]

The number of elements in each block. For example, if the number is 10 , then the first block samples: $1,2,3, \ldots, 10$, the second block $10,20,30, \ldots, 100$, the third block $100,200,300, \ldots, 1000$, etc. Default: 5000.

- ComputeMSDConventional [yes|no]

Sets whether or not to compute the mean-squared displacement (MSD) for the current system using the conventional algorithm. A directory 'MSD' is created containing the output per system. The routine is available for legacy reasons, the same results can be obtained using the order-N method and 1 block of size 'BufferLengthMSD'. The units in the files are \AA^{2} for the msd, and ps for time.

- WriteMSDConventionalEvery [int] Output the MSD every [int] cycles. Default: 5000.
- SampleMSDConventionalEvery [int]

Samples every [int] integration steps. Default: 1.

- NumberOfBuffersMSDConventional [int]

The number of (overlapping) buffers with a different offset in time. Default: 20.

- BufferLengthMSDConventional [int]

The length of the buffers. Default: 5000.

- ComputeVACFConventional [yes|no]

Sets whether or not to compute the velocity autocorrelation function (VACF) for the current system using the conventional algorithm. A directory 'VACF' is created containing the output per system. The routine is available for legacy reasons, the same results can be obtained using the order-N method and 1 block of size 'BufferLengthVACF'. The units in the files are \AA^{2} / ps for velocity, and ps for time.

- WriteVACFConventionalEvery [int]

Output the VACF every [int] cycles. Default: 5000.

- SampleVACFConventionalEvery [int] Samples every [int] integration steps. Default: 1.
- NumberOfBuffersVACFConventional [int]

The number of (overlapping) buffers with a different offset in time. Default: 20.

- BufferLengthVACFConventional [int]

The length of the buffers. Default: 5000.

- ComputeDensityHistograms [yes|no]

Sets whether or not to compute a density histogram for the current system. For example, during adsorption it keeps track of the amount of molecules.

- ComputeEnergyHistogram [yes|no]

Sets whether or not to compute a histogram of the energy for the current system. For example, during adsorption it keeps track of the total energy, the VDW energy, the Coulombic energy, and the polarization energy. Output is written to the directory 'EnergyHistograms'.

- WriteEnergyHistogramEvery [int] Sets to print the energy histogram of the system every [int] cycles.
- EnergyHistogramSize [int] Sets the number of elements of the histogram. Default: 1000.
- EnergyHistogramLowerLimit [real] Sets the lower limit of the histogram. Default: -10000.
- EnergyHistogramUpperLimit [real]

Sets the upper limit of the histogram. Default: 0.

- ComputeThermoDynamicFactor [yes|no]

Sets whether or not to compute the thermodynamic factors of the energy for the current system. The output is written to the directory 'ThermoDynamicFactor'.

- WriteThermoDynamicFactorEvery [int]

Sets to print the thermodynamic factors every [int] cycles.

- ComputeEndToEndDistanceHistograms [yes|no]

Sets whether or not to compute a histogram for end-to-end distances of molecules for the current system.

- ComputePrincipleMomentsOfInertia [yes|no]

Sets whether or not to compute the average principle moments of inertia of molecules for the current system.

- ComputeSpectra [yes|no]

Sets whether or not to compute the Infra-Red (IR) spectra of molecules for the current system.

- WriteSpectraEvery [int]

Sets to print the spectra of molecules every [int] cycles.

- ComputeMoleculeProperties [yes|no]

Sets whether or not to compute properties of molecules like average bond-lengths, average bendangles etc. for the current system.

- PrintMoleculePropertiesEvery [int]

Sets to print the properties of molecules every [int] cycles.

- ComputeSurfaceArea [yes|no]

Sets whether or not to compute the surface.

- SurfaceAreaProbeAtom [string]
- SurfaceAreaSamplingPointsPerSphere [int]

Sets the number of points to sampling a sphere per iteration.

- SurfaceAreaProbeDistance [Minimum|Sigma]

Sets whether to use the minimum of the potential $\sigma^{1 / 6}$ as the probe distance or whether to use σ.

- DensityProfile [yes|no]
- DensityProfileGridPoints [int] [int] [int]
- ComputeElasticConstants [yes|no] Sets whether to compute elastic constants.
- ComputePowderDiffractionPattern [yes|no]

Sets whether to compute the powder diffraction pattern for the framework.

- DiffractionType [Xray|Neutron|Electron]

Sets the diffraction type as xray-scattering, neutron-scattering, or electron-scattering, respectively.

- DiffractionRadiationType [chromium|iron|copper|molybdenum|silver|synchrotron]

Sets the type of the diffraction radiation as chromium, iron, copper, molybdenum, silver, or synchrotron, respectively.

- WaveLengthType [Single|Double]

Set the type of the beam as single or as a doublet.

- PeakShape [Gaussian|Lorentzian|PseudoVoigt]

Sets the shape of the peaks as Gaussian, Lorentzian, or Pseudo-Voigt, respectively.

- WaveLength [real]

Sets the wavelength of the diffraction beam.

- TwoThetaMin [real]

Sets the minimum value of 2θ.

- TwoThetaMax [real]

Sets the maximum value of 2θ.

- TwoThetaStep [real]

Sets the step size of 2θ.

- PeakWidthModifierU [real]
- PeakWidthModifierV [real]
- PeakWidthModifierW [real]
- ComputerNormalModes [yes|no] Sets whether to compute normal modes.
- MinimumMode [int] Sets the minimum normal to compute.
- MaximumMode [int]

Sets the maximum normal to compute.

- ModeResolution [int]

Energy/force grid options

- UseTabularGrid [yes|no]

Use a pre-tabulated grid for the energy and forces. Default: no.

- SpacingVDWGrid [real]

The grid spacing of the Van der Waals potentials. Default: 0.15 Angstrom.

- SpacingCoulombGrid [real]

The grid spacing of the Coulomb potential. Default: 0.15 Angstrom.

- GridTypes [list-of-strings]

A list of atom-types for each of the used grids.

Minimization/Saddle point search

- MinimizationMethod [Baker]

The Baker minimization method uses the eigenvalues/vectors to find a true minimum where all eigenvalues are positive. Newton-Raphson uses the first and second derivatives, but not the eigenvalues/vectors. The saddle point search can best be started from a minimum energy configuration. The algorithm walks up hill along the softest eigen mode to find a first order saddle point.

- MinimizationVariables [Cartesian|Fractional]

Whether the minimization is performed in Cartesian or fractional positions. For some crystal minimizations it might be more convenient to choose fractional positions. An example is when one wants to keep a particular fractional position fixed during the minimization.

- MaximumNumberOfMinimizationSteps [int]

The maximum number of minimization steps after which the minimization is stopped. Default: 10000 .

- RMSGradientTolerance [real]

Stopping criteria: the maximum allowed RMS gradient. Default: 10^{-6}.

- MaxGradientTolerance [real]

Stopping criteria: the maximum allowed gradient for each and every atom (and the strain elements for cell minimizations). Default: 10^{-6}.

- MaximumStepLength [real]

The maximum length of a minimization step. The length is dependent on the problem at hand. A too low value converges slowly (i.e. the minimization takes more steps), while a too high value might not converge at all. Default value: 0.3.

- FrameworkFixedInitialization [free|fixed]

Sets all framework atoms as 'free' or 'fixed'. This command must preceed individual overwrites and applies to the current system.

- AdsorbateFixedInitialization [free|fixed]

Sets all adsorbate groups and atoms as 'free' or 'fixed'. This command must preceed individual overwrites and applies to the current system.

- CationFixedInitialization [free|fixed]

Sets all cation groups and atoms as 'free' or 'fixed'. This command must preceed individual overwrites and applies to the current system.

- ActiveFrameworkAtom [int]

Sets the atom of the current framework and system as 'active'.

- ActiveFrameworkAtoms [int] [list-of-ints]

Sets the [int] atoms listed in [list-of-ints] of the current framework and system as 'active'.

- FixedFrameworkAtom [int]

Sets the atom of the current framework and system as 'fixed'.

- FixedFrameworkAtoms [int] [list-of-ints]

Sets the [int] atoms listed in [list-of-ints] of the current framework and system as 'fixed'.

- ActiveAdsorbateMolecule [int]

Sets all atom and groups of the adsorbate molecule [int] as 'active'. Applies to the current system.

- FixedAdsorbateMolecule [int]

Sets all atom and groups of the adsorbate molecule [int] as 'fixed'. Applies to the current system.

- ActiveAdsorbateAtom [int] [int]

Sets an atom (second argument) of an adsorbate molecule (first argument) as 'active'. Applies to the current system.

- FixedAdsorbateAtom [int] [int]

Sets an atom (second argument) of an adsorbate molecule (first argument) as 'fixed'. Applies to the current system.

- ActiveAdsorbateGroup [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'active'. Applies to the current system and both center of mass and the orientation are set as 'active'.

- FixedAdsorbateGroup [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'fixed'. Applies to the current system and both center of mass and the orientation are set as'fixed'.

- ActiveAdsorbateGroupCenterOfMass [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'active'. Applies to the current system and only the center of mass is set as 'active'.

- FixedAdsorbateGroupCenterOfMass [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'fixed'. Applies to the current system and only the center of mass is set as 'fixed'.

- ActiveAdsorbateGroupOrientation [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'active'. Applies to the current system and only the orientation is set as 'active'.

- FixedAdsorbateGroupOrientation [int] [int]

Sets a group (second argument) of an adsorbate molecule (first argument) as 'fixed'. Applies to the current system and only the orientation is set as 'fixed'.

- ActiveCationMolecule [int]

Sets all atom and groups of the cation molecule [int] as 'active'. Applies to the current system.

- FixedCationMolecule [int]

Sets all atom and groups of the cation molecule [int] as 'fixed'. Applies to the current system.

- ActiveCationAtom [int] [int]

Sets an atom (second argument) of an cation molecule (first argument) as 'active'. Applies to the current system.

- FixedCationAtom [int] [int]

Sets an atom (second argument) of an cation molecule (first argument) as 'fixed'. Applies to the current system.

- ActiveCationGroup [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'active'. Applies to the current system and both center of mass and the orientation are set as 'active'.

- FixedCationGroup [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'fixed'. Applies to the current system and both center of mass and the orientation are set as 'fixed'.

- ActiveCationGroupCenterOfMass [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'active'. Applies to the current system and only the center of mass is set as 'active'.

- FixedCationGroupCenterOfMass [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'fixed'. Applies to the current system and only the center of mass is set as 'fixed'.

- ActiveCationGroupOrientation [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'active'. Applies to the current system and only the orientation is set as 'active'.

- FixedCationGroupOrientation [int] [int]

Sets a group (second argument) of an cation molecule (first argument) as 'fixed'. Applies to the current system and only the orientation is set as 'fixed'.

FixAtomType [string]

- FixAtomTypes [int] [list-of-strings]

The atom-types that are considered fixed during the minimization. All other atoms/groups will be optimized. If the atom-type is contained in a rigid unit, the entire unit will be frozen.

- DistanceConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [real]

Defines a 'hard' distance constraint between two atoms and/or groups, and the distance.

- AngleConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real]

Defines a 'hard' angular constraint between three atoms and/or groups, and the constraint angle.

- DihedralConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real] Defines a 'hard' dihedral constraint between four atoms and/or groups, and constraint dihedral.
- HarmonicDistanceConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real] Defines a 'hard' distance constraint between two atoms and/or groups, and the distance.
- HarmonicAngleConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real] Defines a 'hard' angular constraint between three atoms and/or groups, and the constraint angle.
- HarmonicDihedralConstraint $[\mathrm{F}|\mathrm{A}| \mathrm{C}][$ int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real] Defines a 'hard' dihedral constraint between four atoms and/or groups, and constraint dihedral.

Monte Carlo settings

- MinimumInnerCycles [int]

The minimum number of inner cycles for each cycle. Default: 20.

- NumberOfTrialPositions [int]

The number of trial positions during the growth of a molecule. Default: 10 .

- NumberOfTrialPositionsForTheFirstBead [int] The number of trial positions for the first bead. Default: 10 .
- NumberOfTrialPositionsTorsion [int]

The number of trial positions for torsions over a single bond. Default: 100 .

- NumberOfTrialMovesPerOpenBead [int]

The number of trial moves per open bead during CBMC. Default: 200.

- TargetAccRatioSmallMCScheme [real]
- TargetAccRatioTranslation [real]
- EnergyOverlapCriteria [real]

The energy criteria to consider an energy as 'overlap'. Default: $10^{5} \mathrm{~K}$.

- MinimumRosenbluthFactor [real]

The minimum Rosenbluth weight, values lower are consider to be 'overlapping'. Default: 10^{-150}.

Biasing options

- BiasingDirection [A|B|C|AB_DIAGONAL|AC_DIAGONAL|BC_DIAGONAL

A_BC_DIAGONAL|B_AC_DIAGONAL|C_AB_DIAGONAL| O_ABC_DIAGONAL]

- BiasingMethod [UMBRELLA|RUIZMONTERO]
- BiasingProfile [string]

The name of the file containing the biasing profile.

- RuizMonteroFactor [real]
- UmbrellaFactor [real]

The biasing free energy is multiplied by the UmbrellaFactor. This is useful when the biasing free energy goes to infity in certain regions. if the exact free energy would be used to biased, then the histogram would be flat, even very close to atoms. To keep the repulsion one can lower the used free energy biasing by e.g. multiplying by 0.9 .

- RestrictMovesToUnitCell [yes|no]

Restrict the Monte-Carlo moves to the first unitcell for this component.

- BoxAxisABC_Min [real]

When a particle is restricted in all Monte-Carlo moves (RestrictMovesToUnitCell or RestrictMovesToBox) then do not allow trial moves with a fractional position smaller than BoxAxisABC_Min.

- BoxAxisABC Max [real]

When a particle is restricted in all Monte-Carlo moves (RestrictMovesToUnitCell or RestrictMovesToBox) then do not allow trial moves with a fractional position greater than BoxAxisABC_Max.

Transition State Theory settings

```
    FreeEnergyMappingType [A_MAPPING|B_MAPPING|C_MAPPING|ABC_MAPPING
                MAP_AB_DIAGONAL|MAP_AC_DIAGONAL|MAP_BC_DIAGONAL|
                MAP_A_BC_DIAGONAL|MAP_B_AC_DIAGONAL|MAP_C_AB_DIAGONAL|
                MAP_O_ABC_DIAGONAL]
```

Determines how the free energy profile is constructed from the contributions of points in the unit cell. The free energy is computed using Widom insertion by inserting probe molecules at many random position inside the unit cell. The 'FreeEnergyMappingType' maps a Cartesian position on a reaction coordinate ' q '. The mappings 'A_MAPPING', 'B_MAPPING', 'C_MAPPING' map the Cartesian position onto the ' a ', ' b^{\prime}, ' c ' lattice vectors. The diagonal mapping maps onto diagonal, either in 2 D or in 3D. For example, 'MAP_A_BC_DIAGONAL' maps onto the line from ' A^{\prime} to ' $\mathrm{B}+\mathrm{C}^{\prime}$ where ' A ', B ', and ' C^{\prime} are the end points of the lattive vectors; and 'MAP_O_ABC_DIAGONAL' maps onto the line from the origin to the opposite point ' $\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}$ ' on the diagonal.
PositionHistogramMappingType [A_MAPPING|B_MAPPING|C_MAPPING|ABC_MAPPING| MAP_AB_DIAGONAL|MAP_AC_DIAGONAL|MAP_BC_DIAGONAL| MAP_A_BC_DIAGONAL|MAP_B_AC_DIAGONAL|MAP_C_AB_DIAGONAL| MAP_O_ABC_DIAGONAL]
Determines how the position histogram is constructed from the contributions of points in the unit cell. The free energy is computed from the histogram by using $F(q)=-\log [P(q)]$. The 'PositionHistogramMappingType' maps a Cartesian position on a reaction coordinate ' q '. The mappings 'A_MAPPING', 'B_MAPPING', 'C_MAPPING' map the Cartesian position onto the ' a ', ' b ', ' c ' lattice vectors. The diagonal mapping maps onto diagonal, either in 2D or in 3D. For example, 'MAP_A_BC_DIAGONAL' maps onto the line from ' A ' to ' $\mathrm{B}+\mathrm{C}^{\prime}$ where ' A ', B ', and ' C ' are the end points of the lattive vectors; and 'MAP_O_ABC_DIAGONAL' maps onto the line from the origin to the opposite point ' $\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}$ on the diagonal.

- PutMoleculeOnBarrier [yes|no]

Places the first molecule of component 0 at the position given by 'BarrierPosition'. This is used e.g. to start sampling configuration on top of a free energy barrier.

- BarrierPosition [real] [real] [real]

The location of the free energy barrier in fractional units of the first unit cell.

- MaxBarrierDistance [real]

The maximum distance in Ångstrom of the dcTST trajectory.

- MaxBarrierTime [real]

The maximum time of the dcTST trajetory in picoseconds.

- NumberOfVelocities [int]

The number of times the same initial position of the sampled dcTST starting configurations is used with different initial velocities.

- WritedcTSTSnapShotsToFile [yes|no]

Whether to write out sampled configuration to a file. The file is stored in the directory 'dcTST_starting_configurations' and used as the tarting point to compute the transmission coefficient in dcTST.

- WritedcTSTSnapShotsEvery [int]

The frequency in MC cycles of writing out the sampled configurations. Default: 1000.

2.3 Force field

2.3.1 Force fields

2.3.2 'pseudo_atoms.def'

The 'pseudo_atoms.def' files describes the (pseudo-)atoms to be used in the simulation. An example is is the definitions for the tip5p water model:

The first line is skipped, the second line is the number of (pseudo-)atoms, the third line is skipped again, and next all the (pseudo-)atoms are specified. The format and meaning is:

name	An unique string of character to be used to identify the atom. The same name has be used in other files to refer to this atom.
print	Whether or not this atom should be printed to movies. The dummy 'L' atoms of the tip5p water model are an example where you would like them to be skipped, only the 'O' and 'H' atoms should be printed.
as	The string to be printed to movies. The chemical symbol, e.g. $\mathrm{O}, \mathrm{O}^{-}, \mathrm{O}^{2-}$. used only in powder diffraction and spectra.
scat defined in 'scattering factors.c' and are	
oxidation	not used yet
mass	The mass of the atom in atomic units.
charge	The charge of the atom in atomic units.
polarization	not used yet
B-factor	The temperature factor of the atom, used only in powder diffraction.
radius	The radius of the atom to be used to decide what atoms are considered as 'neighbors'. The current rule is that two atoms i and j are considered 'bonded' if the distance be- tween the atoms is smaller then $0.56+$ Radius ${ }_{i}+$ Radius j.
connectivity	The connectivity of the atoms (not yet used).
anisotropic factor	The magntitude of the anisotropy.
anisotropic-type	The type of anisotropy, either 'relative' or 'absolute'. For example, a relative anisotropic factor of hydrogen of $-0.077, ~ u s e d ~ i n ~ t h e ~ M M 3 ~ f o r c e ~ f i e l d, ~ m e a n s ~ t h e ~ s i t e ~ i s ~ p u l l e d ~ i n w a r d ~$
by 7.7% (and located at 92.3% of the $\mathrm{C}-\mathrm{H}$ bondlength). An absolute anisotropic factor	
of e.g. 0.3 means the site is displaced outward by $0.3 \AA$.	
Tinker-type	The type of the atom in other codes, e.g. Tinker. This is used for output-files in formats used in other codes.

2.3.3 'force_field_mixing_rules.def'

```
# general rule for shifted vs truncated
shifted
# general rule tailcorrections
no
# number of defined interactions
9
# type interaction
\begin{tabular}{llll} 
Zn1 & lennard-jones & 0.42 & 2.7 \\
O1 & lennard-jones & 700.0 & 2.98 \\
O2 & lennard-jones & 70.5 & 3.11 \\
C1 & lennard-jones & 48.5 & 3.76 \\
C2 & lennard-jones & 47.86 & 3.47 \\
C3 & lennard-jones & 47.86 & 3.47 \\
H1 & lennard-jones & 7.65 & 2.85 \\
O_co2 & lennard-jones & 80.507 & 3.033 \\
C_co2 & lennard-jones & 28.129 & 2.757
\end{tabular}
# general mixing rule for Lennard-Jones
Jorgensen
```

The first line is skipped, the second line is the general cutoff rule for shifted vs truncated, the third line is skipped, the fourth line is the general tule for tail corrections, the fifth line is skipped, the sixth line is the number of defined self-interactions for the (pseudo-) atoms. The next line is skipped again followed by the defined potentials for the (pseudo-)atoms. The file is ended with a skipped line and the general rule for the mixing rule. Note all these interactions can be subsequently overwritten using the 'force_field.def' file for specific interactions.

For convenience, you can use pattern matching of the interactions. Any string s_{1} ending with an underscore will match any string s_{2} that starts with the substring s_{1}. Note that usually the ${ }^{\text {'*' }}$ symbol is used, but this symbol has already a different meaning for CIF-files. Of course patterns can match more than one atom, e.g. 'C_' matches ' C 1 ' (a carbon atom) but also ' Cl ' (chloride), and the rules are applied top to bottom. Therefore, list the generic ones first and the more specific after the generic patterns.

Example of a generic UFF/TraPPE force field for united atom alkanes in MOFs:

```
# general rule for shifted vs truncated
shifted
# general rule tailcorrections
no
# number of defined interactions
32
# type interaction, parameters. IMPORTANT: define generic matches first
O_ lennard-jones 48.1581 3.03315
N_ lennard-jones 38.9492 3.26256
C_ lennard-jones 47.8562 3.47299
F_ lennard-jones 36.4834 3.0932
B_ lennard-jones 47.8058 3.58141
Cl_ lennard-jones 142.562 3.51932
Br_ lennard-jones 186.191 3.51905
H_ lennard-jones 7.64893 2.84642
Zn_ lennard-jones 62.3992 2.46155
Be_ lennard-jones 42.7736 2.44552
```



```
Fe_ lennard-jones 6.54185 2.5943
```

Mn_	lennard-jones	6.54185	2.63795
Cu_{-}	lennard-jones	2.5161	3.11369
Co_	lennard-jones	7.04507	2.55866
Ga_	lennard-jones	208.836	3.90481
Ti_	lennard-jones	8.55473	2.8286
Sc_	lennard-jones	9.56117	2.93551
V_	lennard-jones	8.05151	2.80099
Ni	lennard-jones	7.54829	2.52481
Zr_{-}	lennard-jones	34.7221	2.78317
Mg	lennard-jones	55.8574	2.69141
Ne_{-}	lennard-jones	21.1352	2.88918
Ag_{-}	lennard-jones	18.1159	2.80455
In_	lennard-jones	301.428	3.97608
Cd_	lennard-jones	114.734	2.53728
Sb_	lennard-jones	225.946	3.93777
Te_	lennard-jones	200.281	3.98232
He	lennard-jones	10.9	2.64
CH4_sp3	lennard-jones	158.5	3.72
CH3_sp3	lennard-jones	108.0	3.76
CH2_sp3	lennard-jones	56.0	3.96
\# general mixing rule for Lennard-Jones			
Lorentz-Berthelot			

Here, 'CH4_sp3', 'CH3_sp3', and 'CH4_sp3' are first matched by 'C_' but later overwritten with the correct values. However, carbon atoms listed in the MOF CIF-file, like 'C1', 'C2', 'C3', etc. will be set to the ' C_{-}' value as intended.

general cutoff rule	'shifted' or 'truncated'	'shifted' shifts the potentials to zero at the cutoff radius, 'truncated' leaves them unchanged.
general tail corrections rule	'yes' or 'no'	'yes' applies the tail corrections to all interactions, 'no' omits the tail corrections for all interactions
general mixing-rule (only used for Lennard-Jones)	'Jorgensen' or 'Lorentz-Berthelot'	'Jorgensen' $\left\{\epsilon_{i j}=\sqrt{\epsilon_{i} \epsilon_{j}}, \sigma_{i j}=\sqrt{\sigma_{i} \sigma_{j}}\right\}$ 'Lorentz-Berthelot' $\left\{\epsilon_{i j}=\sqrt{\epsilon_{i} \epsilon_{j}}, \sigma_{i j}=\frac{1}{2}\left(\sigma_{i}+\sigma_{j}\right)\right\}$
self interaction type	'zero-potential','12-6','LennardJones', 'Buckingham', 'MCY', 'generic', 'HIW', 'MIE', 'BHM', or 'Hydrogen'	the type of the potential determines the subsequent parameters, i.e. Lennard-Jones expects a strength parameter $\epsilon_{i i}$ and a size parameter $\sigma_{i i}$.

2.3.4 'force_field.def'

The 'force_field_mixing_rules.def' file given above can be used for the flexible model of the metal-organic framework IRMOF-1. It is defined using the Jorgensen mixing rule and uses shifted potentials cutoff at $12 \AA$. The EMP2-CO 2 model however uses the Lorentz-Berthelot for $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interactions and uses a truncated potential with tail corrections. Moreover, if we also want to use the DREIDING model for the CO_{2}-framework interactions the correction-file 'force_field.def' would look like:

```
# rules to overwrite
3
# pair truncated/shifted tailcorrections
```

O_co2 O_co2 truncated	yes	
O_co2 C_co2 truncated	yes	
C_co2 C_co2 truncated	yes	
\# number of defined in	eractions	
14		
\# type type2	interaction	
Zn1 C_co2	lennard-jones	27.347760423 .420
Zn1 O_co2	lennard-jones	46.779268913 .545
01 C_co2	lennard-jones	36.071179632 .915
01 O_co2	lennard-jones	61.700972443 .04
02 C_co2	lennard-jones	36.071179632 .915
02 O_co2	lennard-jones	61.700972443 .04
C1 C_co2	lennard-jones	35.947461663 .135
C1 O_co2	lennard-jones	61.489348673 .26
C2 C_co2	lennard-jones	35.947461663 .135
C2 O_co2	lennard-jones	61.489348673 .26
C3 C_co2	lennard-jones	35.947461663 .135
C3 O_co2	lennard-jones	61.489348673 .26
H1 C_co2	lennard-jones]	14.371847482 .825
H1 O_co2	lennard-jones]	24.583531072 .95
\# mixing rules to over	ite	
1		
\#		
O_co2 C_co2 Lorentz-Ber	thelot	

Tip: always double check the complete interaction set printed in the output !

2.4 Molecules

The format of the molecules is designed to allow for a combination of flexible and rigid subunits. A molecule is made up of 'groups', where a group is a collection of either rigid or flexible atoms.

2.4.1 Rigid molecule

An example of CO_{2} as a rigid molecule.

```
# critical constants: Temperature [T], Pressure [Pa], and Acentric factor [-]
304.1282
7377300.0
0.22394
#Number Of Atoms
3
# Number of groups
# CO2-group
rigid
lllc
# Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntravDW IntraCoulomb
# Bond stretch: atom n1-n2, type, parameters
O 1 RIGID_BOND
1 2 RIGID_BOND
# Number of config moves
```

The first three numbers are the critical constants: the critical temperature, the critical pressure, and the acentric factor. They are used to automatically compute the fugacity from the pressure using an equation of state, e.g. Peng Robinson. Then the number of atoms and the number of groups. The groups are listed one by one with first the number of atoms in the group, whether it is rigid or flexible, and the atoms as number,
type, and for a rigid molecule the relative positions. After the groups follows the bond, bend, torsion etc. parameters. The file is ended with the config moves.

2.4.2 Flexible molecule

An example of a flexible molecule is the united-atom 2-methylbutane molecule. Note that for flexible units there is not need to list relative positions. Bond-potentials are listed as the two atoms on which the potential operates, the potential type and the corresponding parameters. At the end we have 2 config moves defined, one where atoms $0,1,2$ are kept fixed and the rest is regrown, and another config move where only atoms 2,3 are kept fixed.

```
460.
3395700.0
0.2296
Number Of Atoms
Number Of Groups
# Alkane-group
5
CH3_sp3
1 CH_sp3
3 CH3_sp3
3 CH3_sp3
# Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb
# Bond stretch: atom n1-n2, type, parameters
0 1 HARMONIC_BOND 96500 1.54
1 HARMONIC_BOND 96500 1.54
1 1 4 HARMONIC_BOND 96500 1.54
3 HARMONIC_BOND 96500 1.54
Bond bending: atom n1-n2-n3, type, parameters
O 12 HARMONIC_BEND 62500 112
14 HARMONIC_BEND 62500 112
12 HARMONIC_BEND 62500 }11
123 HARMONIC_BEND 62500 114
Torsion n1-n2-n3-n4 type
123 OPLS_DIHEDRAL -251.06 428.73 -111.85 441.27
4123 OPLS_DIHEDRAL -251.06 428.73 -111.85 441.27
# Number of config moves
# nnr
nr_fixed followed by a list
3 12
2 23
```


2.4.3 Rigid/Flexible molecule

Flexible and rigid units can easily be combined, as shown for the 1,4-benzenedicarboxylate (BDC) molecule. Note that the relative positions in the rigid units are recomputed in the molecular reference frame.

```
# cr
0.0
Number Of Atoms
1 6
3
# carboxyl-group
flexible
Mof_0b
Mof_Ca
Mof_Ob
# phenyl-ring
1 0
Mof_Cb 6.458 6.458 11.526
Mof_Cc 7.308 7.308 12.22
Mof_Cc 5.608 5.608 12.221
Mof H 
8 Mof_Cc 7.308 7.308 13.611
Mof_Cc 5.608 5.608 13.611
10 Mof_H 
11 Mof_H
12 Mof_Cb 6.458 6.458 14.306
# carboxyl-group
#
flexible
1 4 \text { Mof Ob}
Mof_Ob
# Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb
```

\# Bond stretch: atom n1-n2, type, parameters
01 HARMONIC_BOND $543840.64928424 \quad 1.27$

```
2 HARMONIC_BOND 543840.64928424 1.27
*)
4 RIGID_BOND
6 RIGID_BOND
7 RIGID_BOND
8 RIGID BOND
9 RIGID_BOND
10 RIGID_BOND
11 RIGID_BOND
12 RIGID_BOND
12 RIGID_BOND
2 13 HARMONIC_BOND 353750.919316375 1.44
14 HARMONIC_BOND 543840.64928424 1.27
3 15 HARMONIC_BOND 543840.64928424 1.27
```


2.4.4 Chiral molecules

44methylethyloctane, the left-handed form:


```
lrr}\begin{array}{l}{3}\\{5}
# Number of config moves
```

while the right-handed form has
\# chiral center
\# chiral ce
2348 R

2.5 Framework

2.5.1 Asymmetric unit cell

Frameworks are often presented in literature using as much symmetry as possible to reduced the amount of atoms needed to describe the structure. Usually only the fractional positions of the atoms in the asymmetric unit cell are given. Given a space group and the unit cell parameters (length and angles) all other positions in the full unit cell can be generated. For example, the isoreticular metal-organic framework IRMOF-1 is published as 7 fractional positions, space group 225, a cubic unit cell with cell lengths of $25.832 \AA$, and $\alpha=\beta=\gamma=90^{\circ}$. RASPA can read cif-files, and the structure can be put into a file (see 'IRMOF-1.cif' in 'structures/mofs/cif'):

```
data_IRMOF-1
_cell_length_a 25.832
_cell_length_b 25.832
_cell_length_c 25.832
_cell_angle_alpha }9
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 17237.5
_symmetry_cell_setting cubic
_symmetry_space_group_name_Hall '-F 4 2 3'
_symmetry_space_group_name_H-M 'F m -3 m'
_symmetry_Int_Tables_number 225
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
\begin{tabular}{lllll} 
Zn1 & Zn & 0.2934 & 0.2066 & 0.2066 \\
O1 & 0 & 0.25 & 0.25 & 0.25 \\
O2 & O & 0.2819 & 0.2181 & 0.134 \\
C1 & C & 0.25 & 0.25 & 0.1113 \\
C2 & C & 0.25 & 0.25 & 0.0538 \\
C3 & C & 0.2829 & 0.2171 & 0.0269 \\
H1 & H & 0.3049 & 0.1951 & 0.0448
\end{tabular}
```

RASPA can then be run using:

(a) The seven asymmetric atoms of IRMOF-1.
(b) The full unit cell of IRMOF-1 has 424 atoms.

Figure 1: Asymmetric unit cells: the left figure shows the seven crystallographicly different atoms in the IRMOF-1 structure in ball-and-stick format. The 'copies' (crystallographically identical atoms) are shown as lines. The right figure shows the full unit cell of IRMOF-1 in ball-and-stick.

```
SimulationType MonteCarlo
NumberOfCycles 0
InitializationCycles 0
Forcefield GenericMOFs
Framework 0
FrameworkName IRMOF-1
UnitCells 1 1 1
```

and in the directory 'Movies/System_0/i' several files appear:

- 'Framework_0_initial_1_1_1.cif'

The framework in CIF-format at the start of the simulation.

- 'Framework_0_initial_1_1_1_P1.cif'

The framework in CIF-format at the start of the simulation converted to P1 (no symmetry).

- 'Framework_0_initial.pdb'

The framework in PDB-format at the start of the simulation converted to P1 (no symmetry).
The files named 'final' are the structures at the end of the simulation. There are several programs that can read and view CIF-files: e.g. Jmol (free), Mercury (free), Crystal Maker (commercial, free demo), Materials Studio (commercial), and Gaussview (commercial). The PDB-files can be viewed in the freely available VMD-program.

Tip: always double check the 'Framework_0_initial_1_1_1_P1.cif', if you see something strange then check '_symmetry_space_group_name_Hall' and the fractional positions.

Space group 225 has 192 elements and the first 10 elements look like (see the file 'src/spacegroup.c' for the complete set):

$$
\begin{array}{lll}
x^{\prime}=x & y^{\prime}=y & z^{\prime}=z \\
x^{\prime}=-x & y^{\prime}=-y & z^{\prime}=z \\
x^{\prime}=-x & y^{\prime}=y & z^{\prime}=-z \\
x^{\prime}=x & y^{\prime}=-y & z^{\prime}=-z \\
x^{\prime}=z & y^{\prime}=x & z^{\prime}=y \\
x^{\prime}=z & y^{\prime}=-x & z^{\prime}=-y \\
x^{\prime}=-z & y^{\prime}=-x & z^{\prime}=y \\
x^{\prime}=-z & y^{\prime}=x & z^{\prime}=-y \\
x^{\prime}=y ; & y^{\prime}=z & z^{\prime}=x \\
x^{\prime}=-y & y^{\prime}=z & z^{\prime}=-x \\
x^{\prime}=y & y^{\prime}=-z & z^{\prime}=-x
\end{array}
$$

The procedure to generate a unit cell is to loop over the elements of the spacegroup and the atoms in the asymmetric unit cell, and to apply simply all the rule. For each new $x^{\prime}, y^{\prime}, z^{\prime}$ position a check is needed whether the same position has already been added (doubles have to be removed). After this procedure the 7 positions have been expanded to 424 positions. The fractional positions are transformed in the final step to Cartesian positions.

2.5.2 Fractional occupancies in zeolites

The procedure from asymmetric to full unit cell is rather simple when the fractional occupancies are unity. However, quite often there is some disorder the type of atoms. For example, in zeolites like FAU the $\mathrm{Si} / \mathrm{Al}$ ratio is specified, but it is unknown where the aluminum actually is. Zeolite X is faujasite with a high amount of aluminum. The FAU structure with a $\mathrm{Si} / \mathrm{Al}$ ratio of unity is given by

```
data_NaX
_audit_creation_method RASPA-1.0
_audit_creation_date 2011-2-20
_audit_author_name 'David Dubbeldam'
_cell_length_a 25.099
_cell_length_b 25.099
_cell_length_c 25.099
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 14273.9
_symmetry_cell_setting cubic
_symmetry_space_group_name_Hall '-F 2uv 2vw 3'
_symmetry_space_group_name_H-M 'F d -3'
```

_symmetry_Int_Tables_number 203				
```loop_ _atom_site_label```				
_atom_site_type_symbol				
_atom_site_fract_x				
_atom_site_fract_y				
_atom_site_fract_z				
Si1	Si4+	-0.05381	0.12565	0.03508
Al1	Al3+	-0.05524	0.03639	0.12418
01	02-	-0.1099	0.0003	0.1056
02	02-	-0.0011	-0.0028	0.1416
03	02-	-0.0346	0.0758	0.0711
04	02-	-0.0693	0.0726	0.18

Now the aluminum and silicon are alternating and Löwestein rule is obeyed. For higher $\mathrm{Si} / \mathrm{Al}$ ratios the ' $\mathrm{Al}^{\prime}$ position is fractionally occupied and a certain percentage might actually be silicon. The procedure here is to first generate the full unit cell of FAU with 96 aluminum (the maximum amount) and judiciously replace aluminum by silicon in the full unit cell.

SimulationType	MC
NumberOfCycles	0
NumberOfInitializationCycles	0
PrintEvery	
	10
Forcefield	
Substitute 0 Al1 Si1	
Substitute 5 Al1 Si1	
Substitute 10 Al1 Si1	
Substitute 15 Al1 Si1	
Substitute 20 Al1 Si1	
RandomlySubstitute 75 Al1 Si1	
Framework 0	
FrameworkName NaX	
UnitCells 1 1 1	
ExternalTemperature 300.0	

It reads the CIF-file which is Nax with 96 aluminum. You can use two types of commands to replace an atom:

- Substitute

For example. Substitute 10 Al1 Si1 means replace the 10th Al1 by Si1.

- RandomlySubstitute

For example, RandomlySubstitute 75 Al1 Si1 means randomly substitute 75 Al1 by Si1.
When you do them both, first the fixed rules are substituted and next the random ones with the 'leftovers'. The first one 'Substitute' is useful to always have the same structure. You could make a random structure once, look in the output which Al was substituted and use the next time the 'Substitute' command. In this way, you always work with the spacegroup NaX structure (not in P1) which is afterwards change by specifying rules.

More problematic are when several atoms have fractional occupancies lower than unity. Consider IRMOF-8 shown in Fig. 2. The linker molecules are disordered over two possible positions. One of these needs to be selected per linker. First the unit cell is generated from the asymmetric unit cell and subsequently the unit cell needs to be edited. Program which can do just that are Materials Studio, Gaussview, etc. After the cell has been created and edited, the file needs to be placed in 'structures/mofs/cif'. Structures with disorder needs to be created at unit cell level (P1).

Even more difficult is MOF-1. Here the cif-file also contains several possibilities, but is not a priori known which ones to choose, i.e. what is the structure of the Dabco unit (1,4-diazabicyclo[2.2.2]octane) within the framework? One possibility is to choose a structure and use a quantum code and minimize the periodic unit cell. The result is shown in Fig. 3.

Note that all these procedures are necessary, but it is still an open question, especially for MOFs, whether you can keep the framework rigid or not. However, it is very hard to calibrate a flexible framework model and for this a substantial amount of reliable experimental data is required.

### 2.5.3 Format of the framework atoms

The atom-types in CIF-files are constructed from the name of the element and an identifier, e.g. 'C10' carbon type 10. Usually these carbon atoms are different because they have either different charges or different Van der Waals parameters.

Sometimes a force field is defined to have interactions on an atom-type which depends on its neighbors. For example, the oxygen atom is different whether it is connected to a silicon or to an aluminum atom. Therefore the atom are labelled using

```
ModifyFrameworkAtomConnectedTo O1 Oa1 Al1
ModifyFrameworkAtomConnectedTo O2 Oa2 Al1
ModifyFrameworkAtomConnectedTo O3 Oa3 Al1
ModifyFrameworkAtomConnectedTo O4 Da4 Al1
```

which modifies ' $\mathrm{O1}$ ' to $\mathrm{zOa1}$ ' when connected to ' $\mathrm{Al1}$ ', etc. In the CIF-file you can list the new framework atom with unknown position '?'.

```
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Si1 Si4+ -0.05381 0.12565 0.03508
Al1 Al3+ -0.05524 0.03639 0.12418
01 02- -0.1099 0.0003 0.1056
02 02- -0.0011 -0.0028 0.1416
03 02- -0.0346 0.0758 0.0711
04 02- -0.0693 0.0726 0.18
Oa1 02- ? ?
Oa2 02- ? ?
Oa3 02- ? ?
Oa4 02- ? ?
```

Alternatively, you can list the atom types 'Oa1'-'Oa4' in your 'pseudo_atoms.def' file.
Other times a force field is defined as

```
rules to overwrite
0
number of defined interactions
```

4				
\# type	type2	interaction		3.062219744
0	0	lennard-jones	29.4338257	3.483346249
0	Si	lennard-jones	49.05711264	3.962387454
Si	Si	lennard-jones	81.76308187	3.47
CH4_sp3	0	lennard-jones	115.00	
\# mixing rules to overwrite				
0				

Here, we have that all oxygens in the framework are of the same type, and all silicon is of the same type. In this case, we would like to map '01', '02', '03', etc. to 'O', and 'Si1', 'Si2', etc. to 'Si'. You can acgieve this using

RemoveAtomNumberCodeFromLabel yes
Suppose you want to use MFI with only ' 0 ' and ' Si '. MFI is defined using

Si1	Si4+	0.42238	0.0565	-0.33598
Si2	Si4+	0.30716	0.02772	-0.1893
\dots				
01	$02-$	0.3726	0.0534	-0.2442
02	O2-	0.3084	0.0587	-0.0789
\dots				

The force field in 'force_field.def'

```
rules to overwrite
O
number of defined interactions
1
\begin{tabular}{lllll}
\# type & type2 & interaction & & \\
CH4_sp3 & 0 & lennard-jones & 115.00 & 3.47
\end{tabular}
mixing rules to overwrite
0
```

The 'pseudo_atom.def'

$3$												
\#type	print	as	scatt	mass	charge	polarization	B-factor	radii	connectivity	anisotropic	anisotropic-type	tinker-type
0	yes	0	0	15.9994	-1.025	0.0	1.0	0.5	2	0	absolute	0
Si	yes	Si	Si	28.0855	2.05	0.0	1.0	1.18	4	0	absolute	0
CH4_sp3	yes	C	C	16.04246	0.0	0.0	1.0	1.00	0	0	absolute	0

and the output file will show:

```
Pseudo atoms: 2
```



```
 Charge=2.050 Polarization=0.017 [A^3] (considered a charged atom and no polarization) Interactions: no
 Anisotropic factor: 0.000 [-] (Absolute), Radius: 1.110 [A]
Pseudo Atom[1] Name 0 Oxydation: Element: 02- pdb-name: 0 Scat. Types: 105 8 Mass=15.999404927 B-factor:0.000
 Charge=-1.025 Polarization=3.880 [A^3] (considered a charged atom and no polarization) Interactions: no
 Anisotropic factor: 0.000 [-] (Absolute), Radius: 0.660 [A]
```


### 2.5.4 Typing the atoms of the framework

Atoms from a pdb- or cif-file are usually labeled e.g. 'C' for a carbon atom. In many force fields different carbon types have different charges. It is necessary to 'type' the structure and RASPA contains tools to do this. Let's assume the original structure always contains elements like ' $\mathrm{H}^{\prime}$, ' $\mathrm{C}^{\prime}, ~ ' \mathrm{~N}$ ', ' $\mathrm{O}^{\prime}$, etc. and we want to type them 'Mof_Ha', 'Mof_Hb', etc. A force field type called 'Typing' preexists. It only defines the 'pseudo_atoms.def' file:


Figure 2: IRMOF-8 has linkers which are disordered, the linker atoms have a fractional occupancy of 0.5, The atoms however are not individually disorder and there are two disordered linker, one out of two possibilities needs to be selected per linker position.


Figure 3: The MOF-1 structure is synthesized as [ $\mathrm{Z} n_{2}(1,4-b d c) 2$ (Dabco)]. The Dabco (1,4-diazabicyclo[2.2.2]octane) is very disordered with occupancies of 0.38 for the carbon and 0.5 for the hydrogen. The cif-file shown on the left shows all possibilities on top of each other. Here, just choosing one of the possibilities is difficult and it is not obvious which atoms to select. The brute force method is to select one possible choice and use a quantum plane wave for periodic structures and optimize the full unit cell. In this case it is feasible because of the low amount of atoms in the unit cell (only 54 atoms).

43									
\#type	print	as	scat	mass	charge	polarization	B-factor	radii	connectivity
UNIT	no	H	H	1.0	1.0	0.0	1.0	1.0	0
He	yes	He	He	4.002602	0.0	0.0	1.0	1.0	0
Zn	yes	Zn1	Zn	65.37	0.0	0.0	1.0	1.448	0
Zn1	yes	Zn1	Zn	65.37	0.0	0.0	1.0	1.448	0
Cu	yes	Cu1	Cu	63.546	0.0	0.0	1.0	1.4	0
Cu1	yes	Cu1	Cu	63.546	0.0	0.0	1.0	1.4	0
0	yes	0	0	15.9994	0.0	0.0	1.0	0.68	2
01	yes	01	0	15.9994	0.0	0.0	1.0	0.68	2
02	yes	02	0	15.9994	0.0	0.0	1.0	0.68	2
03	yes	03	0	15.9994	0.0	0.0	1.0	0.68	2
04	yes	04	0	15.9994	0.0	0.0	1.0	0.68	2
C	yes	C	C	12.0107	0.0	0.0	1.0	0.720	0
C1	yes	C1	C	12.0107	0.0	0.0	1.0	0.720	0
C2	yes	C2	C	12.0107	0.0	0.0	1.0	0.720	0
C3	yes	C3	C	12.0107	0.0	0.0	1.0	0.720	0
C4	yes	C4	C	12.0107	0.0	0.0	1.0	0.720	0
C5	yes	C5	C	12.0107	0.0	0.0	1.0	0.720	0
C6	yes	C6	C	12.0107	0.0	0.0	1.0	0.720	0
C7	yes	C7	C	12.0107	0.0	0.0	1.0	0.720	0
C8	yes	C8	C	12.0107	0.0	0.0	1.0	0.720	0
C9	yes	C9	C	12.0107	0.0	0.0	1.0	0.720	0
C10	yes	C10	C	12.0107	0.0	0.0	1.0	0.720	0
C11	yes	C11	C	12.0107	0.0	0.0	1.0	0.720	0
C12	yes	C12	C	12.0107	0.0	0.0	1.0	0.720	0
C13	yes	C13	C	12.0107	0.0	0.0	1.0	0.720	0
C14	yes	C14	C	12.0107	0.0	0.0	1.0	0.720	0
C15	yes	C15	C	12.0107	0.0	0.0	1.0	0.720	0
C16	yes	C16	C	12.0107	0.0	0.0	1.0	0.720	0
N	yes	N	N	14.00674	0.0	0.0	1.0	0.68	0
N1	yes	N1	N	14.00674	0.0	0.0	1.0	0.68	0
N2	yes	N2	N	14.00674	0.0	0.0	1.0	0.68	0
N3	yes	N3	N	14.00674	0.0	0.0	1.0	0.68	0
N4	yes	N4	N	14.00674	0.0	0.0	1.0	0.68	0
H	yes	H	H	1.00794	0.0	0.0	1.0	0.320	0
H1	yes	H1	H	1.00794	0.0	0.0	1.0	0.320	0
H2	yes	H2	H	1.00794	0.0	0.0	1.0	0.320	0
H3	yes	H3	H	1.00794	0.0	0.0	1.0	0.320	0
H4	yes	H4	H	1.00794	0.0	0.0	1.0	0.320	0
H5	yes	H5	H	1.00794	0.0	0.0	1.0	0.320	0
H6	yes	H6	H	1.00794	0.0	0.0	1.0	0.320	0
H7	yes	H7	H	1.00794	0.0	0.0	1.0	0.320	0
H8	yes	H8	H	1.00794	0.0	0.0	1.0	0.320	0
н9	yes	н9	H	1.00794	0.0	0.0	1.0	0.320	0

As an example, let's type the structure 'NU-100' [? ]. Figure 4 shows the NU-100 cluster with linkers and metal-corners. The pictures shows the different types of atoms and has been used to compute CHelpG charges. In the RASPA input-file you can use the typing command:

ModifyFrameworkAtomConnectedTo C Mof_Ca O
Look for a ' C ' atom, check if it is connect to an ' O ' atom and if so, type it 'Mof_Ca'. It is also possible to define two neighbors:

ModifyFrameworkAtomConnectedTo C Mof_Cc Mof_Cb Mof_Cb


Figure 4: Cluster used for deriving partial charges on atoms in NU-100SP [? ].

Look for an ' C ' atom, if it is connect to a 'Mof_Cb' and to another ' $\mathrm{Mof}^{\prime} \mathrm{Cb}^{\prime}$ atom, then type is 'Mof_Cc'. The input-file to type ' $\mathrm{NU}-100^{\prime}$ is


```
ModifyFrameworkAtomConnectedTo C C9 C8
ModifyFrameworkAtomConnectedTo C C10 C9
ModifyFrameworkAtomConnectedTo C C11 C10
ModifyFrameworkAtomConnectedTo C C12 C11
ModifyFrameworkAtomConnectedTo C C13 C12
ModifyFrameworkAtomConnectedTo C C14 C13
ModifyFrameworkAtomConnectedTo C C15 C14
ModifyFrameworkAtomConnectedTo H H1 C3
ModifyFrameworkAtomConnectedTo H H2 C4
ModifyFrameworkAtomConnectedTo H H3 C9
ModifyFrameworkAtomConnectedTo H H4 C10
ModifyFrameworkAtomConnectedTo H H5 C15
ModifyFrameworkAtomConnectedTo O O2 C1
ModifyFrameworkAtomConnectedTo Cu Cu O2
```

For MOFs, the easiest start-point to type is the carboxylate group. The carbon connected to the oxygen is typed 'Mof_Ca', the carbon connected to 'Mof_Cb' is typed 'Mof_Cc'. The third line is important: the carbon should only be typed 'Mof_Cc' when it is connected to an 'Mof_Cb' and another 'Mof_Cb'. This must be done like this, otherwise the atom which is above called 'Mof_Cd' would also be wrongly labeled 'Mof_Cc'. After running RASPA, the 'Movie'-directory contains the file 'Framework intitial.cssr' which is the cssr-file with complete typing. This file can be copied to 'structures $/ \mathrm{mofs} / \mathrm{cssr}$ ' and given an appropriate name. Each pseudatom type can now be assigned a different charge in the 'psuedo_atoms.def' file of the 'NU-100' forcefield.

Note that the lines containing the typing-rules are performed top to bottom and in later rules one can use the new names of the previous rules.

### 2.6 Using CIF-files

### 2.6.1 Definition of CIF-files

CIF files present crystallographic data in an human readable free format. Let's look at an example:

```
data_FAU_SI
_audit_creation_method RASPA-1.0
_audit_creation_date 2011-2-19
_audit_author_name 'David Dubbeldam'
_citation_author_name 'J.J. Hriljac, M.M. Eddy, A.K. Cheetham, J.A. Donohue, and G.J. Ray'
_citation_title 'Powder Neutron Diffraction and Si-29 MAS NMR Studies of Siliceous Zeolite-Y'
_citation_journal_abbrev 'J. Solid State Chem.'
_citation_journal_volume 106
_citation_page_first 66
_citation_page_last 72
_citation_year 1993
_cell_length_a 24.2576
_cell_length_b 24.2576
_cell_length_c 24.2576
_cell_angle_alpha }9
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 14273.9
_symmetry_cell_setting cubic
_symmetry_space_group_name_Hall '-F 4vw 2vw 3'
_symmetry_space_group_name_H-M 'F d -3 m'
```

```
_symmetry_Int_Tables_number
 227
loop_
_symmetry_equiv_pos_as_xyz
 'x,y,z'
 ' }-x+3/4,-y+1/4,z+1/2

 'z,-y+3/4,-x+3/4'
 'z+1/2,y+1/2,x'
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_charge
_atom_site_polarization
\
01 02- 0 0-0.10623 0.10623 -1.025 0
02 02- -0.00323 -0.00323 0.14066 -1.025 0
03 02-
```

The 'data_' string signal the start of a data block. Each data block corresponds to a different structures, and typically only one structure is present (although it possible to combine more than one structure in a single file). The CIF instructions are divided into data name categories, such as '_atom_site_' to describe atomic site parameters, ' cell_' to describe the cell parameters, '_symmetry_' to specify space group symmetry, etc. CIF data names begin with an underscore. For some data name the data can be provided using a list of data items. Such data items are preceded by a 'loop_' string. The '_atom_site_' section is typical example. The order of the data items correspond to the order in which the actual data is provided.

A nice feature of CIFs is that one can easily extend the syntax to include nom-standard data item. For example. in the '_atom_site_' section, the data items '_atom_site_label', '_atom_site_type_symbol', '_atom_site_fract_x', '_atom_site_fract_y', '_atom_site_charge' belong to the official CIF specification, but '_atom_site_charge', '_atom_site_polarizatic '_atom_site_anisotropic_displacement', ‘_atom_site_anisotropic_type', and '_atom_site_print_to_pdb' have been added in RASPA CIFs. Used in this fashion, they provide a replacement for the 'pseudo_atoms.def' file. Note that if a 'pseudo_atoms.def' file is used, the value in that file will have preference over the CIF-file values (if they both define the same atom-type).

### 2.6.2 What charge definition is used? 'pseudo_atom.def' or from the CIF-file?

For adsorbates the charges are defined via the atom-type in the 'pseudo_atom.def' file. For the framework, there are several scenarios:

- define charges via the CIF-file

If you want a possibly different charge for each atom, then use the option:

UseChargesFromCIFFile yes
and define the charge using the field '_atom_site_charge' in the CIF-file. Atom-types from the CIF-file that are not defined in the 'pseudo_atom.def' are automatically added, atoms that are already defined as a type in the 'pseudo_atom.def' get the charge from the CIF-file. In the output-file in the list of pseudo-atoms you will see e.g.

```
Charge=0.111115012 (av)
```

which signals that for this atom-type the averages charge is listed (because each atom potentially can have a different value in this case). This is a typical case for simulations based on CHelpG charges from quantum.

- define charges via the 'pseudo_atom.def' file

If you want the same charge for all atoms of the atom-type, then you can list all of these in the 'pseudo_atom.def' file and use

```
UseChargesFromCIFFile no
```

which is the default. Any atoms with a type known in the CIF-file will get a charge given in the 'pseudo_atom.def' file; atoms of unknown type will be added to the pseudo-atoms but with a charge of zero. The latter is probably not what you want, so make sure you have listed all atom type in 'pseudo_atom.def' file.

- Define charges using 'Charge Equilibration'

No matter what you define in the 'pseudo_atom.def' or CIF-file, the charges will be recompute using the charge-equilbration scheme of Wilmer and Snurr.

Tip: the charges that are actually used in the simulation are listed as the column '_atom_site_charge' in the file 'Movies/System_0/Framework_0_initial_P1.cif'. Also, check the ouput-file for the net-charge of the framework, and the smallest and largest charge it found, e.g.

```
Framework has net charge: 0.000000
largest charge : 0.931455
smallest charge: -0.626799
```


### 2.6.3 How to choose atom-types?

The FAU structure above was defined with atom types: 'Si1', 'O1', 'O2', 'O3', and 'O4'. Using the option:

```
RemoveAtomNumberCodeFromLabel yes
```

these 5 types will be reduces to 2 : ' $\mathrm{Si}^{\prime}$ ' and ' O '. There are advantages and disadvantages to each of the options:

- Specific types

Use if

1. You want RDF between the adsorbate atoms and the specific framework atoms.
2. If you have different VDW parameters for each specific framework atom (so 'O1', 'O2', 'O3', 'O4' would have different VDW parameters).

- Reduced types

Use if you are not interested in the difference between 'O1', ..., 'O4', but only have a single VDW parameter set for that atom type ' $\mathrm{O}^{\prime}$. Note: you can still list different charges for each of these atoms in the CIF-file. This options avoid excessive number of pseudo-atoms, which can clutter the output, and avoids having lots of different RDFs (and manually having to averages these afterwards).

## Appendix: space group information

triclinic									
id	Int. Nr.	long Hermann-   Mauguin name	Hall name	cell choice	centered	$\#$	Chiral	Centric	Enantio-   morphic
1	1	P 1	P 1	cell choice 1	primitive	1	yes	no	no
2	2	P -1	-P 1	cell choice 1	primitive	2	yes	no	no

Table 2.1: Triclinic spacegroup information.

monoclinic									
id	Int. Nr.	long Hermann-   Mauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
3	3	P121	P 2y	unique axis b	primitive	2	no	yes	no
4	3	P 112	P 2	unique axis c	primitive	2	no	yes	no
5	3	P 211	P 2x	unique axis a	primitive		no	yes	no
6	4	P 1211	P 2yb	unique axis $b$	primitive		no	yes	no
7	4	P 1121	P 2c	unique axis c	primitive	2	no	yes	no
8	4	P 2111	P $2 \times \mathrm{a}$	unique axis a	primitive		no	yes	no
9	5	C 121	C 2 y	b, cell choice 1			no	yes	no
10	5	A 121	A 2 y	b, cell choice 2	a		no	yes	no
11	5	I 121	I 2 y	b, cell choice 3	body		no	yes	no
12	5	A 112	A 2	c, cell choice 1	a		no	yes	no
13	5	B 112	B 2	c, cell choice 2	b		no	yes	no
14	5	I 112	I 2	c, cell choice 3	body		no	yes	no
15	5	B 211	B 2x	a, cell choice 1	b		no	yes	no
16	5	C 211	C 2x	a, cell choice 2	c		no	yes	no
17	5	I 211	I $2 x$	a, cell choice 3	body		no	yes	no
18	6	P 1 m 1	P-2y	unique axis $b$	primitive		no	no	no
19	6	P 11 m	P-2	unique axis c	primitive	2	no	no	no
20	6	Pm 11	P-2x	unique axis a	primitive		no	no	no
21	7	P1c1	P-2yc	b, cell choice 1	primitive		no	no	no
22	7	P1n1	P-2yac	b, cell choice 2	primitive		no	no	no
23	7	P1a1	P-2ya	b, cell choice 3	primitive		no	no	no
24	7	P 11 a	P-2a	c, cell choice 1	primitive		no	no	no
25	7	P11n	P -2ab	c, cell choice 2	primitive		no	no	no
26	7	P 11 b	P -2b	c, cell choice 3	primitive		no	no	no
27	7	Pb 11	P-2xb	a, cell choice 1	primitive		no	no	no
28	7	Pn 11	P-2xbc	a, cell choice 2	primitive	2	no	no	no
29	7	Pc 11	P-2xc	a, cell choice 3	primitive		no	no	no
30	8	C 1 m 1	C-2y	b, cell choice 1	c		no	no	no
31	8	A 1 m 1	A $-2 y$	b, cell choice 2	a		no	no	no
32	8	I 1 m 1	I -2y	b, cell choice 3	body		no	no	no
33	8	A 11 m	A -2	c, cell choice 1	a		no	no	no
34	8	B 11 m	B -2	c, cell choice 2	b		no	no	no
35	8	I 11 m	I-2	c, cell choice 3	body		no	no	no
36	8	B m 11	B -2x	a, cell choice 1	b		no	no	no
37	8	B m 11	C $-2 x$	a, cell choice 2	c		no	no	no
38	8	Im 11	I $-2 x$	a, cell choice 3	body		no	no	no
39	9	C 1c1	C-2yc	b, cell choice 1	c		no	no	no
40	9	A 1 n 1	A -2yab	b, cell choice 2			no	no	no
41	9	I 1 a 1	I -2ya	b, cell choice 3	body		no	no	no
42	9	A 1 a 1	A -2ya	-b, cell choice 1	a	4	no	no	no
43	9	C1n 1	C-2yac	-b, cell choice 2	c		no	no	no
44	9	I 1 c 1	I-2yc	-b, cell choice 3	body		no	no	no


45	9	A 11 a	A -2a	c, cell choice 1	a	4\|no	no	no
46	9	B 11 n	B -2ab	c, cell choice 2	b	4 no	no	no
47	9	I 11 b	I -2b	c, cell choice 3	body	4 no	no	no
48	9	B 11 b	B -2b	-c, cell choice 1	b	4 no	no	no
49	9	A 11 n	A -2ab	-c, cell choice 2	a	4 no	no	no
50	9	I 11 a	I -2a	-c, cell choice 3	body	4 no	no	no
51	9	B b 11	B $-2 x b$	a, cell choice 1	b	4 no	no	no
52	9	Cn 11	C-2xac	a, cell choice 2	c	4 no	no	no
53	9	I c 11	I -2xc	a, cell choice 3	body	4 no	no	no
54	9	C c 11	C-2xc	-a, cell choice 1	c	4 no	no	no
55	9	B $n 11$	B -2xab	-a, cell choice 2	b	4 no	no	no
56	9	I b 11	I - 2 xb	-a, cell choice 3	body	4 no	no	no
57	10	P $12 / \mathrm{m} 1$	-P 2y	unique axis b	primitive	4 yes	no	no
58	10	P $112 / \mathrm{m}$	-P 2	unique axis c	primitive	4 yes	no	no
59	10	P $2 / \mathrm{m} 11$	-P 2x	unique axis a	primitive	4 yes	no	no
60	11	P $121 / \mathrm{m} 1$	-P 2yb	unique axis $b$	primitive	4 yes	no	no
61	11	P $1121 / \mathrm{m}$	-P 2c	unique axis c	primitive	4 yes	no	no
62	11	P 21/m 11	-P 2xa	unique axis a	primitive	4 yes	no	no
63	12	C $12 / \mathrm{m} 1$	-C 2y	b, cell choice 1	c	8 yes	no	no
64	12	A $12 / \mathrm{m} 1$	-A 2y	b, cell choice 2	a	8 yes	no	no
65	12	I $12 / \mathrm{m} 1$	-I 2y	b, cell choice 3	body	8 yes	no	no
66	12	A $112 / \mathrm{m}$	-A 2	c, cell choice 1	a	8 yes	no	no
67	12	B $112 / \mathrm{m}$	-B 2	c, cell choice 2	b	8 yes	no	no
68	12	I $112 / \mathrm{m}$	-I 2	c, cell choice 3	body	8 yes	no	no
69	12	B 2/m 11	-B 2x	a, cell choice 1	b	8 yes	no	no
70	12	C $2 / \mathrm{m} 11$	-C 2x	a, cell choice 2	c	8 yes	no	no
71	12	I 2/m 11	-I 2x	a, cell choice 3	body	8 yes	no	no
72	13	P $12 / \mathrm{c} 1$	-P 2yc	b, cell choice 1	primitive	4 yes	no	no
73	13	P $12 / \mathrm{n} 1$	-P 2yac	b, cell choice 2	primitive	4 yes	no	no
74	13	P $12 / \mathrm{a} 1$	-P 2ya	b, cell choice 3	primitive	4 yes	no	no
75	13	P $112 / \mathrm{a}$	-P 2a	c, cell choice 1	primitive	4 yes	no	no
76	13	P $112 / \mathrm{n}$	-P 2ab	c, cell choice 2	primitive	4 yes	no	no
77	13	P $112 / b$	-P 2b	c, cell choice 3	primitive	4 yes	no	no
78	13	P 2/b 11	-P 2xb	a, cell choice 1	primitive	4 yes	no	no
79	13	P 2/n 11	-P 2xbc	a, cell choice 2	primitive	4 yes	no	no
80	13	P 2/c 11	-P 2xc	a, cell choice 3	primitive	4 yes	no	no
81	14	P $121 / \mathrm{c} 1$	-P 2ybc	b, cell choice 1	primitive	4 yes	no	no
82	14	P $121 / \mathrm{n} 1$	-P 2yn	b, cell choice 2	primitive	4 yes	no	no
83	14	P $121 / \mathrm{a} 1$	-P 2 yab	b, cell choice 3	primitive	4 yes	no	no
84	14	P 11 21/a	-P 2ac	c, cell choice 1	primitive	4 yes	no	no
85	14	P 11 21/n	-P 2n	c, cell choice 2	primitive	4 yes	no	no
86	14	P 11 21/b	-P 2bc	c, cell choice 3	primitive	4 yes	no	no
87	14	P 21/b 11	-P 2xab	a, cell choice 1	primitive	4 yes	no	no
88	14	P 21/n 11	-P 2xn	a, cell choice 2	primitive	4 yes	no	no
89	14	P 21/c 11	-P 2xac	a, cell choice 3	primitive	4 yes	no	no
90	15	C $12 / \mathrm{c} 1$	-C 2yc	b, cell choice 1	c	8 yes	no	no
91	15	A $12 / \mathrm{n} 1$	-A 2yab	b, cell choice 2	a	8 yes	no	no
92	15	I $12 / \mathrm{a} 1$	-I 2ya	b, cell choice 3	body	8 yes	no	no
93	15	A $12 / \mathrm{a} 1$	-A 2ya	-b, cell choice 1	a	8 yes	no	no
94	15	C $12 / \mathrm{n} 1$	-C 2yac	-b, cell choice 2	c	8 yes	no	no
95	15	I $12 / \mathrm{c} 1$	-I 2yc	-b, cell choice 3	body	8 yes	no	no
96	15	A $112 / \mathrm{a}$	-A 2a	c, cell choice 1	a	8 yes	no	no
97	15	B $112 / \mathrm{n}$	-B 2ab	c, cell choice 2	b	8 yes	no	no
98	15	I $112 / \mathrm{b}$	-I 2b	c, cell choice 3	body	8 yes	no	no
99	15	B $112 / \mathrm{b}$	-B 2b	-c, cell choice 1	b	8 yes	no	no
100	15	A $112 / \mathrm{n}$	-A 2ab	-c, cell choice 2	a	8 yes	no	no


101	15	I 1 1 2/a	-I 2a	-c, cell choice 3	body	8	yes	no
102	15	B 2/b 1 1	-B 2xb	a, cell choice 1	b	8	nes	no
103	15	C 2/n 1 1	-C 2xac	a, cell choice 2	c	8	no	
104	15	I 2/c 1 1	-I 2xc	a, cell choice 3	body	8	no	no
105	15	C 2/c 1 1	-C 2xc	-a, cell choice 1	c	no	no	
106	15	B 2/n 1 1	- 2xab	-a, cell choice 2	b	8	yes	no
107	15	I 2/b 1	no	no				

Table 2.2: Monoclinic spacegroup information.

orthorhombic									
id	Int. Nr.	long HermannMauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
108	16	P 222	P 22	cell choice 1	primitive	4	yes	yes	no
109	17	P 2221	P 2c 2	abc	primitive	4	yes	yes	no
110	17	P 2122	P 2a 2a	cab	primitive	4	yes	yes	no
111	17	P 2212	P 22 b	bca	primitive	4	yes	yes	no
112	18	P 21212	P 22 ab	abc	primitive	4	yes	yes	no
113	18	P 22121	P 2bc 2	cab	primitive	4	yes	yes	no
114	18	P 21221	P 2ac 2ac	bca	primitive	4	yes	yes	no
115	19	P 212121	P 2ac 2ab	cell choice 1	primitive	4	yes	yes	no
116	20	C 2221	C 2c 2	abc		8	yes	yes	no
117	20	A 2122	A 2 a 2 a	cab	a	8	yes	yes	no
118	20	B 2212	B 22 b	bca	b	8	yes	yes	no
119	21	C 222	C 22	abc	c	8	no	yes	no
120	21	A 222	A 22	cab	a	8	no	yes	no
121	21	B 222	B 22	bca	b	8	no	yes	no
122	22	F 222	F 22	cell choice 1	face	16	no	yes	no
123	23	I 222	I 22	cell choice 1	body	8	no	yes	no
124	24	I 212121	I 2b 2c	cell choice 1	body	8	no	yes	no
125	25	P m m 2	P 2-2	abc	primitive	4	no	no	no
126	25	P 2 mm	P-2 2	cab	primitive	4	no	no	no
127	25	Pm 2 m	P -2-2	bca	primitive	4	no	no	no
128	26	P m c 21	P 2c -2	abc	primitive	4	no	no	no
129	26	P c m 21	P 2c-2c	ba-c	primitive	4	no	no	no
130	26	P 21 ma	P -2a 2a	cab	primitive	4	no	no	no
131	26	P 21 a m	P-2 2a	-cba	primitive	4	no	no	no
132	26	Pb 21 m	P -2-2b	bca	primitive	4	no	no	no
133	26	Pm 21 b	P -2b-2	a-cb	primitive	4	no	no	no
134	27	Pcc 2	P $2-2 \mathrm{c}$	abc	primitive	4	no	no	no
135	27	P 2 a	P-2a 2	cab	primitive	4	no	no	no
136	27	Pb 2 b	P-2b-2b	bca	primitive	4	no	no	no
137	28	Pma 2	P $2-2 \mathrm{a}$	abc	primitive	4	no	no	no
138	28	Pbm 2	P $2-2 \mathrm{~b}$	ba-c	primitive	4	no	no	no
139	28	P 2 mb	P-2b 2	cab	primitive	4	no	no	no
140	28	P 2 cm	P-2c 2	-cba	primitive	4	no	no	no
141	28	Pc 2 m	P-2c-2c	bca	primitive	4	no	no	no
142	28	Pm2a	P -2a-2a	a-cb	primitive	4	no	no	no
143	29	P ca 21	P 2c-2ac	abc	primitive	4	no	no	no
144	29	Pb c 21	P 2c -2b	ba-c	primitive	4	no	no	no
145	29	P 21 ab	P-2b 2a	cab	primitive	4	no	no	no
146	29	P 21 ca	P-2ac 2a	-cba	primitive	4	no	no	no
147	29	P c 21 b	P -2bc -2c	bca	primitive	4	no	no	no
148	29	Pb 21 a	P -2a-2ab	a-cb	primitive	4	no	no	no
149	30	Pnc2	P $2-2 \mathrm{bc}$	abc	primitive	4	no	no	no
150	30	Pcn 2	P $2-2 \mathrm{ac}$	ba-c	primitive	4	no	no	no


151	30	P 2 na	P-2ac 2	cab
152	30	P 2 an	P-2ab 2	-cba
153	30	Pb2n	P -2ab -2ab	bca
154	30	Pn 2 b	P -2bc-2bc	a-cb
155	31	Pmn 21	P 2ac-2	abc
156	31	Pnm 21	P 2bc-2bc	ba-c
157	31	P 21 mm	P -2ab 2ab	cab
158	31	P 21 nm	P-2 2ac	-cba
159	31	Pn 21 m	P -2-2bc	bca
160	31	Pm 21 n	P -2ab-2	$\mathrm{a}-\mathrm{cb}$
161	32	Pba 2	P $2-2 \mathrm{ab}$	$a b c$
162	32	P 2 cb	P-2bc 2	cab
163	32	Pc 2 a	P-2ac -2ac	bca
164	33	Pna 21	P $2 \mathrm{c}-2 \mathrm{n}$	abc
165	33	Pbn 21	P 2c - 2 ab	ba-c
166	33	P 21 nb	P-2bc 2a	cab
167	33	P 21 cn	P-2n 2a	-cba
168	33	Pc 21 n	P-2n-2ac	bca
169	33	Pn21a	P -2ac -2n	a-cb
170	34	Pnn 2	P $2-2 \mathrm{n}$	abc
171	34	P 2 n n	P-2n 2	cab
172	34	Pn 2 n	P-2n-2n	bca
173	35	Cmm 2	C 2-2	abc
174	35	A 2 mm	A -2 2	cab
175	35	B m 2 m	B -2 -2	bca
176	36	C m c 21	C $2 \mathrm{c}-2$	abc
177	36	C cm 21	C $2 \mathrm{c}-2 \mathrm{c}$	ba-c
178	36	A 21 ma	A -2a 2 a	cab
179	36	A 21 am	A - 2 2a	-cba
180	36	B b 21 m	B -2-2b	bca
181	36	B m 21 b	B -2b-2	$\mathrm{a}-\mathrm{cb}$
182	37	Ccc 2	C $2-2 \mathrm{c}$	$a b c$
183	37	A 2 a	A -2a 2	cab
184	37	B b 2 b	B -2b-2b	bca
185	38	A m m 2	A 2-2	abc
186	38	B m m 2	B 2-2	ba-c
187	38	B 2 mm	B -2 2	cab
188	38	C 2 mm	C-2 2	-cba
189	38	Cm 2 m	C-2-2	bca
190	38	A m 2 m	A -2-2	a-cb
191	39	Abm 2	A $2-2 \mathrm{~b}$	abc
192	39	B m a 2	B $2-2 \mathrm{a}$	ba-c
193	39	B 2 cm	B -2a 2	cab
194	39	C 2 mb	C-2a 2	-cba
195	39	Cm2a	C -2a-2a	bca
196	39	Ac 2 m	A -2b-2b	a-cb
197	40	A ma 2	A $2-2 \mathrm{a}$	abc
198	40	B b m 2	B $2-2 \mathrm{~b}$	ba-c
199	40	B 2 mb	B -2b 2	cab
200	40	C 2 cm	C-2c 2	-cba
201	40	C c 2 m	C-2c-2c	bca
202	40	Am 2 a	A -2a-2a	a-cb
203	41	Aba 2	A $2-2 \mathrm{ab}$	abc
204	41	B ba 2	B 2 -2ab	ba-c
205	41	B 2 cb	B -2ab 2	cab
206	41	C 2 cb	C-2ac 2	-cba


\| 207	41	Cc2a	C -2ac-2ac	bca	c	8	no	\|no
208	41	Ac2a	A -2ab -2ab	a-cb	a	8	no	no
209	42	F m m 2	F 2 -2	abc	face	16	no	no
210	42	F 2 mm	F-2 2	cab	face	16	no	no
211	42	Fm 2 m	F-2-2	bca	face	16	no	no
212	43	Fdd 2	F $2-2 \mathrm{~d}$	abc	face	16	no	no
213	43	F 2 dd	F-2d 2	cab	face	16	no	no
214	43	F d 2 d	F-2d-2d	bca	face	16	no	no
215	44	Imm 2	I 2-2	abc	body	8	no	no
216	44	I 2 mm	I-2 2	cab	body	8	no	no
217	44	Im 2 m	I -2-2	bca	body	8	no	no
218	45	I ba 2	I 2-2c	abc	body	8	no	no
219	45	I 2 cb	I-2a 2	cab	body	8	no	no
220	45	Ic 2 a	I -2b-2b	bca	body	8	no	no
221	46	Ima 2	I $2-2 \mathrm{a}$	abc	body	8	no	no
222	46	Ib m 2	I $2-2 \mathrm{~b}$	ba-c	body	8	no	no
223	46	I 2 mb	I-2b 2	cab	body	8	no	no
224	46	12 cm	I-2c 2	-cba	body	8	no	no
225	46	Ic 2 m	I-2c-2c	bca	body	8	no	no
226	46	Im 2 a	I -2a-2a	a-cb	body	8	no	no
227	47	$\mathrm{P} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	-P 22	cell choice 1	primitive	8	yes	no
228	48	$\mathrm{P} 2 / \mathrm{n} 2 / \mathrm{n} 2 / \mathrm{n}: 1$	P $22-1 n$	cell choice 1	primitive	8	yes	no
229	48	$\mathrm{P} 2 / \mathrm{n} 2 / \mathrm{n} 2 / \mathrm{n}$ : 2	-P 2ab 2bc	cell choice 2	primitive	8	yes	no
230	49	P $2 / \mathrm{c} 2 / \mathrm{c} 2 / \mathrm{m}$	-P 2 2c	abc	primitive	8	yes	no
231	49	P $2 / \mathrm{m} 2 / \mathrm{a} 2 / \mathrm{a}$	-P 2a 2	cab	primitive	8	yes	no
232	49	P 2/b 2/m 2/b	-P 2b 2b	bca	primitive	8	yes	no
233	50	P 2/b 2/a 2/n:1	P $22-1 \mathrm{ab}$	cell choice 1	primitive	8	yes	no
234	50	P 2/b 2/a 2/n:2	-P 2ab 2b	cell choice 2	primitive	8	yes	no
235	50	P 2/n 2/c 2/b:1	P $22-1 \mathrm{bc}$	cab	primitive	8	yes	no
236	50	P 2/n 2/c 2/b:2	-P 2b 2bc	cab, cell choice 2	primitive	8	yes	no
237	50	P 2/c 2/n 2/a:1	P $22-1 \mathrm{ac}$	bca	primitive	8	yes	no
238	50	P 2/c 2/n 2/a:2	-P 2a 2c	bca, cell choice 2	primitive	8	yes	no
239	51	P 21/m $2 / \mathrm{m} 2 / \mathrm{a}$	-P 2a 2a	abc	primitive	8	yes	no
240	51	P $2 / \mathrm{m} 21 / \mathrm{m} 2 / \mathrm{b}$	-P 2b 2	ba-c	primitive	8	yes	no
241	51	P $2 / \mathrm{b} 21 / \mathrm{m} 2 / \mathrm{m}$	-P 2 2b	cab	primitive	8	yes	no
242	51	$\mathrm{P} 2 / \mathrm{c} 2 / \mathrm{m} 21 / \mathrm{m}$	-P 2c 2c	-cba	primitive	8	yes	no
243	51	$\mathrm{P} 2 / \mathrm{m} 2 / \mathrm{c} 21 / \mathrm{m}$	-P 2c 2	bca	primitive	8	yes	no
244	51	P 21/m $2 / \mathrm{a} 2 / \mathrm{m}$	-P 22 a	a-cb	primitive	8	yes	no
245	52	P $2 / \mathrm{n} 21 / \mathrm{n} 2 / \mathrm{a}$	-P 2a 2bc	abc	primitive	8	yes	no
246	52	P 21/n $2 / \mathrm{n} 2 / \mathrm{b}$	-P 2b 2n	ba-c	primitive	8	yes	no
247	52	P 2/b $2 / \mathrm{n} 21 / \mathrm{n}$	-P 2n 2b	cab	primitive	8	yes	no
248	52	P $2 / \mathrm{c} 21 / \mathrm{n} 2 / \mathrm{n}$	-P 2ab 2c	-cba	primitive	8	yes	no
249	52	P 21/n $2 / \mathrm{c} 2 / \mathrm{n}$	-P 2ab 2n	bca	primitive	8	yes	no
250	52	P $2 / \mathrm{n} 2 / \mathrm{a} 21 / \mathrm{n}$	-P 2n 2bc	a-cb	primitive	8	yes	no
251	53	$\mathrm{P} 2 / \mathrm{m} 2 / \mathrm{n} 21 / \mathrm{a}$	-P 2ac 2	abc	primitive	8	yes	no
252	53	$\mathrm{P} 2 / \mathrm{n} 2 / \mathrm{m} 21 / \mathrm{b}$	-P 2bc 2bc	ba-c	primitive	8	yes	no
253	53	$\mathrm{P} 21 / \mathrm{b} 2 / \mathrm{m} 2 / \mathrm{n}$	-P 2ab 2ab	cab	primitive	8	yes	no
254	53	P 21/c $2 / \mathrm{n} 2 / \mathrm{m}$	-P 22 ac	-cba	primitive	8	yes	no
255	53	P $2 / \mathrm{n} 21 / \mathrm{c} 2 / \mathrm{m}$	-P 2 2bc	bca	primitive	8	yes	no
256	53	$\mathrm{P} 2 / \mathrm{m} 21 / \mathrm{a} 2 / \mathrm{n}$	-P 2ab 2	a-cb	primitive	8	yes	no
257	54	P 21/c 2/c 2/a	-P 2a 2ac	abc	primitive	8	yes	no
258	54	P 2/c 21/c 2/b	-P 2b 2c	ba-c	primitive	8	yes	no
259	54	P 2/b 21/a 2/a	-P 2a 2b	cab	primitive	8	yes	no
260	54	P 2/c 2/a 21/a	-P 2ac 2c	-cba	primitive	8	yes	no
261	54	P $2 / \mathrm{b} 2 / \mathrm{c} 21 / \mathrm{b}$	-P 2bc 2b	bca	primitive	8	yes	no
262	54	P 21/b 2/a 2/b	-P 2b 2ab	a-cb	primitive	8	yes	no


| \| 263 | | 55 | P 21/b 21/a 2/m | -P 22 ab | abc | \|primitive | 8 | yes | no | no |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 264 | 55 | P 2/m 21/c 21/b | -P 2bc 2 | cab | primitive | 8 | yes | no | no |
| 265 | 55 | P 21/c $2 / \mathrm{m} 21 / \mathrm{a}$ | -P 2ac 2ac | bca | primitive | 8 | yes | no | no |
| 266 | 56 | P 21/c 21/c $2 / \mathrm{n}$ | -P 2ab 2ac | abc | primitive | 8 | yes | no | no |
| 267 | 56 | P 2/n 21/a 21/a | -P 2ac 2bc | cab | primitive | 8 | yes | no | no |
| 268 | 56 | P 21/b 2/n $21 / \mathrm{b}$ | -P 2bc 2ab | bca | primitive | 8 | yes | no | no |
| 269 | 57 | P 2/b 21/c 21/m | -P 2c 2b | abc | primitive | 8 | yes | no | no |
| 270 | 57 | P 21/c $2 / \mathrm{a} 21 / \mathrm{m}$ | -P 2c 2ac | ba-c | primitive | 8 | yes | no | no |
| 271 | 57 | P 21/m 2/c 21/a | -P 2ac 2a | cab | primitive | 8 | yes | no | no |
| 272 | 57 | P 21/m 21/a $2 / \mathrm{b}$ | -P 2b 2a | -cba | primitive | 8 | yes | no | no |
| 273 | 57 | P 21/b 21/m 2/a | -P 2a 2ab | bca | primitive | 8 | yes | no | no |
| 274 | 57 | P 2/c 21/m 21/b | -P 2bc 2c | $\mathrm{a}-\mathrm{cb}$ | primitive | 8 | yes | no | no |
| 275 | 58 | $\mathrm{P} 21 / \mathrm{n} 21 \mathrm{n} 2 / \mathrm{m}$ | -P $22 n$ | $a b c$ | primitive | 8 | yes | no | no |
| 276 | 58 | $\mathrm{P} 2 / \mathrm{m} 21 / \mathrm{n} 21 / \mathrm{n}$ | -P 2n 2 | cab | primitive | 8 | yes | no | no |
| 277 | 58 | P 21/n 2/m 21/n | -P 2n 2n | bca | primitive | 8 | yes | no | no |
| 278 | 59 | $\mathrm{P} 21 / \mathrm{m} 21 / \mathrm{m} 2 / \mathrm{n}: 1$ | P $22 \mathrm{ab}-1 \mathrm{ab}$ | cell choice 1 | primitive | 8 | yes | no | no |
| 279 | 59 | $\mathrm{P} 21 / \mathrm{m} 21 / \mathrm{m} 2 / \mathrm{n}: 2$ | -P 2ab 2a | cell choice 2 | primitive | 8 | yes | no | no |
| 280 | 59 | $\mathrm{P} 2 / \mathrm{n} 21 / \mathrm{m} 21 / \mathrm{m}: 1$ | P 2bc $2-1 b c$ | cab | primitive | 8 | yes | no | no |
| 281 | 59 | $\mathrm{P} 2 / \mathrm{n} 21 / \mathrm{m} 21 / \mathrm{m}: 2$ | -P 2c 2bc | cab, cell choice 2 | primitive | 8 | yes | no | no |
| 282 | 59 | $\mathrm{P} 21 / \mathrm{m} 2 / \mathrm{n} 21 / \mathrm{m}: 1$ | P 2ac 2ac -1ac | bca | primitive | 8 | yes | no | no |
| 283 | 59 | P 21/m 2/n 21/m:2 | -P 2c 2a | bca, cell choice 2 | primitive | 8 | yes | no | no |
| 284 | 60 | P 21/b 2/c 21/n | -P 2n 2ab | abc | primitive | 8 | yes | no | no |
| 285 | 60 | P 2/c $21 / \mathrm{a} 21 / \mathrm{n}$ | -P 2n 2c | ba-c | primitive | 8 | yes | no | no |
| 286 | 60 | P 21/n $21 / \mathrm{a} 2 / \mathrm{b}$ | -P 2a 2 n | cab | primitive | 8 | yes | no | no |
| 287 | 60 | P 21/n $2 / \mathrm{a} 21 / \mathrm{b}$ | -P 2bc 2n | -cba | primitive | 8 | yes | no | no |
| 288 | 60 | P 2/b 21/n 21/a | -P 2ac 2b | bca | primitive | 8 | yes | no | no |
| 289 | 60 | P 21/c 21/n $2 / \mathrm{b}$ | -P 2b 2ac | a-cb | primitive | 8 | yes | no | no |
| 290 | 61 | P 21/b 21/c 21/a | -P 2ac 2ab | abc | primitive | 8 | yes | no | no |
| 291 | 61 | P 21/c 21/a 21/b | -P 2bc 2ac | ba-c | primitive | 8 | yes | no | no |
| 292 | 62 | P 21/n 21/m 21/a | -P 2ac 2n | abc | primitive | 8 | yes | no | no |
| 293 | 62 | P 21/m 21/n 21/b | -P 2bc 2a | ba-c | primitive | 8 | yes | no | no |
| 294 | 62 | P 21/b 21/n 21/m | -P 2c 2ab | cab | primitive | 8 | yes | no | no |
| 295 | 62 | P 21/c $21 / \mathrm{m} 21 / \mathrm{n}$ | -P 2n 2ac | -cba | primitive | 8 | yes | no | no |
| 296 | 62 | P 21/m 21/c 21/n | -P 2n 2a | bca | primitive | 8 | yes | no | no |
| 297 | 62 | P 21/n $21 / \mathrm{a} 21 / \mathrm{m}$ | -P 2c 2n | a-cb | primitive | 8 | yes | no | no |
| 298 | 63 | C $2 / \mathrm{m} 2 / \mathrm{c} 21 / \mathrm{m}$ | -C 2c 2 | abc | c | 16 | yes | no | no |
| 299 | 63 | C $2 / \mathrm{c} 2 / \mathrm{m} 21 / \mathrm{m}$ | -C 2c 2c | ba-c | C | 16 | yes | no | no |
| 300 | 63 | A $21 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{a}$ | -A 2a 2a | cab | a | 16 | yes | no | no |
| 301 | 63 | A 21/m $2 / \mathrm{a} 2 / \mathrm{m}$ | -A 22 a | -cba | a | 16 | yes | no | no |
| 302 | 63 | B $2 / \mathrm{b} 21 / \mathrm{m} 2 / \mathrm{m}$ | -B 22 b | bca | b | 16 | yes | no | no |
| 303 | 63 | B $2 / \mathrm{m} 21 / \mathrm{m} 2 / \mathrm{b}$ | -B 2b 2 | a-cb | b | 16 | yes | no | no |
| 304 | 64 | C $2 / \mathrm{m} 2 / \mathrm{c} 21 / \mathrm{a}$ | -C 2ac 2 | abc | c | 16 | yes | no | no |
| 305 | 64 | C $2 / \mathrm{c} 2 / \mathrm{m} 21 / \mathrm{b}$ | - C 2 ac 2 ac | ba-c | c | 16 | yes | no | no |
| 306 | 64 | A 21/b $2 / \mathrm{m} 2 / \mathrm{a}$ | -A 2ab 2ab | cab | a | 16 | yes | no | no |
| 307 | 64 | A $21 / \mathrm{c} 2 / \mathrm{a} 2 / \mathrm{m}$ | -A $22 a b$ | -cba | a | 16 | yes | no | no |
| 308 | 64 | B 2/b $21 / \mathrm{c} 2 / \mathrm{m}$ | -B 22 ab | bca | b | 16 | yes | no | no |
| 309 | 64 | B $2 / \mathrm{m} 21 / \mathrm{a} 2 / \mathrm{b}$ | -B 2ab 2 | $\mathrm{a}-\mathrm{cb}$ | b | 16 | yes | no | no |
| 310 | 65 | C $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$ | -C 22 | abc | c | 16 | yes | no | no |
| 311 | 65 | A $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$ | -A 22 | cab | a | 16 | yes | no | no |
| 312 | 65 | B $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$ | -B 22 | bca | b | 16 | yes | no | no |
| 313 | 66 | C $2 / \mathrm{c} 2 / \mathrm{c} 2 / \mathrm{m}$ | -C 2 2c | abc | c | 16 | yes | no | no |
| 314 | 66 | A $2 / \mathrm{m} 2 / \mathrm{a} 2 / \mathrm{a}$ | -A 2a 2 | cab | a | 16 | yes | no | no |
| 315 | 66 | B $2 / \mathrm{b} 2 / \mathrm{m} 2 / \mathrm{b}$ | -B 2b 2b | bca | b | 16 | yes | no | no |
| 316 | 67 | C $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{a}$ | -C 2a 2 | abc | C | 16 | yes | no | no |
| 317 | 67 | C $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{b}$ | -C 2a 2a | ba-c | C | 16 | yes | no | no |
| 318 | 67 | A $2 / \mathrm{b} 2 / \mathrm{m} 2 / \mathrm{m}$ | -A 2b 2b | cab | a | 16 | yes | no | no |


319	67	A $2 / \mathrm{c} 2 / \mathrm{m} 2 / \mathrm{m}$	-A 2 2b	-cba	a	16	yes	\|no	\|no
320	67	B $2 / \mathrm{m} 2 / \mathrm{c} 2 / \mathrm{m}$	-B 2 2a	bca	b	16	yes	no	no
321	67	B 2/m 2/a $2 / \mathrm{m}$	-B 2a 2	a-cb	b	16	yes	no	no
322	68	C 2/c 2/c 2/a:1	C 2 2-1ac	cell choice 1	c	16	yes	no	no
323	68	C 2/c 2/c 2/a:2	-C 2a 2ac	cell choice 2	c	16	yes	no	no
324	68	C 2/c 2/c 2/b:1	C 2 2-1ac	ba-c	c	16	yes	no	no
325	68	C $2 / \mathrm{c} 2 / \mathrm{c} 2 / \mathrm{b}$ :2	-C 2a 2c	ba-c, cell choice 2	c	16	yes	no	no
326	68	A 2/b 2/a 2/a:1	A $22-1 \mathrm{ab}$	cab	a	16	yes	no	no
327	68	A 2/b 2/a 2/a:2	-A 2a 2b	cab, cell choice 2	a	16	yes	no	no
328	68	A 2/c 2/a 2/a:1	A $22-1 \mathrm{ab}$	-cba	a	16	yes	no	no
329	68	A 2/c $2 / \mathrm{a} 2 / \mathrm{a} 2$	-A 2ab 2b	-cba, cell choice 2	a	16	yes	no	no
330	68	B 2/b 2/c 2/b:1	B $22-1 \mathrm{ab}$	bca	b	16	yes	no	no
331	68	B 2/b 2/c 2/b:2	-B 2ab 2b	bca, cell choice 2	b	16	yes	no	no
332	68	B 2/b 2/a 2/b:1	B 22 -1ab	a-cb	b	16	yes	no	no
333	68	B 2/b 2/a 2/b:2	-B 2b 2ab	a-cb, cell choice 2	b	16	yes	no	no
334	69	F $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	-F 22	cell choice 1	face	32	yes	no	no
335	70	F 2/d 2/d 2/d:1	F $22-1 \mathrm{~d}$	cell choice 1	face	32	yes	no	no
336	70	F 2/d 2/d 2/d:2	-F 2uv 2vw	cell choice 2	face	32	yes	no	no
337	71	I $2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	-I 22	cell choice 1	body	16	yes	no	no
338	72	I $2 / \mathrm{b} 2 / \mathrm{a} 2 / \mathrm{m}$	-I 22 c	abc	body	16	yes	no	no
339	72	I $2 / \mathrm{m} 2 / \mathrm{c} 2 / \mathrm{b}$	-I 2a 2	cab	body	16	yes	no	no
340	72	I $2 / \mathrm{c} 2 / \mathrm{m} 2 / \mathrm{a}$	-I 2b 2b	bca	body	16	yes	no	no
341	73	I 21/b 21/c $21 / \mathrm{a}$	-I 2b 2c	abc	body	16	yes	no	no
342	73	I 21/c 21/a $21 / \mathrm{b}$	-I 2a 2b	ba-c	body	16	yes	no	no
343	74	I 21/m 21/m 21/a	-I 2b 2	abc	body	16	yes	no	no
344	74	I 21/m 21/m 21/b	-I 2a 2a	ba-c	body	16	yes	no	no
345	74	I 21/b $21 / \mathrm{m} 21 / \mathrm{m}$	-I 2c 2c	cab	body	16	yes	no	no
346	74	I 21/c $21 / \mathrm{m} 21 / \mathrm{m}$	-I 22 b	-cba	body	16	yes	no	no
347	74	I 21/m 21/c $21 / \mathrm{m}$	-I 22 a	bca	body	16	yes	no	no
348	74	I 21/m 21/a $21 / \mathrm{m}$	-I 2c 2	a-cb	body	16	yes	no	no

Table 2.3: Orthorhombic spacegroup information.

tetragonal									
id	Int. Nr.	long HermannMauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
349	75	P 4	P 4	cell choice 1	primitive	4	no	yes	no
350	76	P 41	P 4w	cell choice 1	primitive	4	no	yes	yes
351	77	P 42	P 4c	cell choice 1	primitive	4	no	yes	no
352	78	P 43	P 4cw	cell choice 1	primitive	4	no	yes	yes
353	79	I 4	I 4	cell choice 1	body	8	no	yes	no
354	80	I 41	I 4bw	cell choice 1	body	8	no	yes	no
355	81	P -4	P -4	cell choice 1	primitive	4	no	no	no
356	82	I-4	I -4	cell choice 1	body	8	no	no	no
357	83	P 4/m	-P 4	cell choice 1	primitive	8	yes	no	no
358	84	P 42/m	-P 4c	cell choice 1	primitive	8	yes	no	no
359	85	P 4/n:1	P 4ab -1ab	cell choice 1	primitive	8	yes	no	no
360	85	P 4/n:2	-P 4a	cell choice 2	primitive	8	yes	no	no
361	86	P 42/n:1	P 4n-1n	cell choice 1	primitive	8	yes	no	no
362	86	P 42/n:2	-P 4bc	cell choice 2	primitive	8	yes	no	no
363	87	I $4 / \mathrm{m}$	-I 4	cell choice 1	body	16	yes	no	no
364	88	I 41/a:1	I 4bw -1bw	cell choice 1	body	16	yes	no	no
365	88	I 41/a:2	-I 4ad	cell choice 2	body	16	yes	no	no
366	89	P 422	P 42	cell choice 1	primitive	8	no	yes	no
367	90	P 4212	P 4ab 2ab	cell choice 1	primitive	8	no	yes	no
368	91	P 4122	P 4w 2c	cell choice 1	primitive	8	no	yes	yes


369	92	P 41212	P 4abw 2nw
370	93	P 4222	P 4c 2
371	94	P 42212	P 4n 2n
372	95	P 4322	P 4cw 2c
373	96	P 43212	P 4nw 2abw
374	97	I 422	I 42
375	98	I 4122	I 4bw 2bw
376	99	P 4 mm	P 4-2
377	100	P 4 bn	P 4-2ab
378	101	P 42 cm	P 4c-2c
379	102	P 42 nm	P 4n-2n
380	103	P4cc	P $4-2 \mathrm{c}$
381	104	P4nc	P 4-2n
382	105	P 42 mc	P 4c-2
383	106	P 42 bc	P 4c -2ab
384	107	I 4 mm	I 4-2
385	108	I 4 cm	I 4-2c
386	109	I 41 m d	I 4bw -2
387	110	I 41 cd	I 4bw -2c
388	111	P-42m	P-42
389	112	P-42c	P-4 2c
390	113	P-4 21 m	P-4 2ab
391	114	P-421c	P-4 2n
392	115	P-4m 2	P-4-2
393	116	P-4 c 2	P -4-2c
394	117	P -4 b 2	P -4-2ab
395	118	P -4 n 2	P-4-2n
396	119	I -4 m 2	I -4-2
397	120	$\mathrm{I}-4 \mathrm{c} 2$	I-4-2c
398	121	I-42m	I-4 2
399	122	$\mathrm{I}-42 \mathrm{~d}$	I-4 2bw
400	123	$\mathrm{P} 4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	-P 42
401	124	P 4/m $2 / \mathrm{c} 2 / \mathrm{c}$	-P 4 2c
402	125	$\mathrm{P} 4 / \mathrm{n} 2 / \mathrm{b} 2 / \mathrm{m}: 1$	P 42 -1ab
403	125	P 4/n 2/b 2/m:2	-P 4a 2b
404	126	P 4/n 2/n 2/c:1	P $42-1 n$
405	126	P 4/n 2/n $2 / \mathrm{c}$ : 2	-P 4a 2bc
406	127	P 4/m 21/b $2 / \mathrm{m}$	-P 42 ab
407	128	P $4 / \mathrm{m} 21 / \mathrm{n} 2 / \mathrm{c}$	-P 4 2n
408	129	P 4/n 21/m 2/m:1	P 4ab 2ab -1ab
409	129	P 4/n 21/m 2/m:2	-P 4a 2 a
410	130	P 4/n 21/c 2/c:1	P 4ab 2n -1ab
411	130	P 4/n 21/c 2/c:2	-P 4a 2ac
412	131	P 42/m $2 / \mathrm{m} 2 / \mathrm{c}$	-P 4c 2
413	132	P 42/m $2 / \mathrm{c} 2 / \mathrm{m}$	-P 4c 2c
414	133	P 42/n 2/b 2/c:1	P 4n 2c-1n
415	133	P 42/n 2/b 2/c:2	-P 4ac 2b
416	134	P 42/n 2/n 2/m:1	P 4n $2-1 n$
417	134	P 42/n $2 / \mathrm{n} 2 / \mathrm{m}$ : 2	-P 4ac 2bc
418	135	P 42/m 21/b $2 / \mathrm{c}$	-P 4c 2ab
419	136	$\mathrm{P} 42 / \mathrm{m} 21 / \mathrm{n} 2 / \mathrm{m}$	-P 4n 2n
420	137	P 42/n 21/m 2/c:1	P 4n 2n-1n
421	137	P 42/n 21/m 2/c:2	-P 4ac 2a
422	138	$\mathrm{P} 42 / \mathrm{n} 21 / \mathrm{c} 2 / \mathrm{m}: 1$	P 4n 2ab -1n
423	138	P 42/n 21/c 2/m:2	-P 4ac 2ac
424	139	I $4 / \mathrm{m} \mathrm{2/m} 2 / \mathrm{m}$	-I 42


cell choice 1	primitive ${ }^{\text {P }}$	8	no	yes	yes
cell choice 1	primitive 8	8	no	yes	no
cell choice 1	primitive 8	8	no	yes	no
cell choice 1	primitive 8	8	no	yes	yes
cell choice 1	primitive 8	8	no	yes	yes
cell choice 1	body	16	no	yes	no
cell choice 1	body	16	no	yes	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive	8	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	primitive 8	8	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	body	16	no	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	16	yes	no	no
cell choice 2	primitive	16	yes	no	no
cell choice 1	primitive	32	yes	no	no


\|425	140	I $4 / \mathrm{m} 2 / \mathrm{c} 2 / \mathrm{m}$	-I 4 2c	cell choice 1	mitive	32	yes	no	no
426	141	I 41/a $2 / \mathrm{m} 2 / \mathrm{d}: 1$	I 4bw 2bw -1bw	cell choice 1	body	32	yes	no	no
427	141	I 41/a $2 / \mathrm{m} 2 / \mathrm{d}: 2$	-I 4bd 2	cell choice 2	body	32	yes	no	no
428	142	I 41/a 2/c 2/d:1	I 4bw 2aw -1bw	cell choice 1	body	32	yes	no	no
429	142	I 41/a 2/c 2/d:2	-I 4bd 2c	cell choice 2	body	32	yes	no	no

Table 2.4: Tetragonal spacegroup information.

trigonal									
id	Int. Nr.	long HermannMauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
430	143	P 3	P 3	cell choice 1	primitive	3	no	yes	no
431	144	P 31	P 31	cell choice 1	primitive	3	no	yes	yes
432	145	P 32	P 32	cell choice 1	primitive	3	no	yes	no
433	146	R 3:H	R 3	hexagonal	rhombohedral	9	no	yes	o
434	146	R 3:R	P 3*	Rhombohedral	primitive	3	no	yes	no
435	147	P-3	-P 3	cell choice 1	primitive	6	yes	no	no
436	148	R -3:H	-R 3	hexagonal	rhombohedral	18	yes	no	no
437	148	R-3:R	-P 3*	Rhombohedral	primitive	6	yes	no	no
438	149	P 312	P 32	cell choice 1	primitive	6	no	yes	no
439	150	P321	P 32 2'	cell choice 1	primitive	6	no	yes	no
440	151	P 3112	P 312 (004)	cell choice 1	primitive	6	no	yes	yes
441	152	P 3121	P 312 "	cell choice 1	primitive	6	no	yes	yes
442	153	P 3212	P 322 (002)	cell choice 1	primitive	6	no	yes	yes
443	154	P 3221	P 32 2"	cell choice 1	primitive	6	no	yes	yes
444	155	R 3 2:H	R 3 2"	hexagonal	rhombohedral	18	no	yes	no
445	155	R 3 2:R	P 3* 2	Rhombohedral	primitive	6	no	yes	no
446	156	P 3 m 1	P 3-2"	cell choice 1	primitive	6	no	no	no
447	157	P 31 m	P 3-2	cell choice 1	primitive	6	no	no	no
448	158	P 3 c 1	P 3-2"c	cell choice 1	primitive	6	no	no	no
449	159	P31c	P 3-2c	cell choice 1	primitive	6	no	no	no
450	160	R 3 m : H	R 3-2"	hexagonal	rhombohedral	18	no	no	no
451	160	R $3 \mathrm{~m}: \mathrm{R}$	P 3*-2	Rhombohedral	primitive	6	no	no	no
452	161	R $3 \mathrm{c}: \mathrm{H}$	R 3-2"c	hexagonal	rhombohedral	18	no	no	no
453	161	R $3 \mathrm{c}: \mathrm{R}$	P 3*-2n	Rhombohedral	primitive	6	no	no	no
454	162	P-312/m	-P 32	cell choice 1	primitive	12	yes	no	no
455	163	P-312/c	-P 3 2c	cell choice 1	primitive	12	yes	no	no
456	164	P-3 2/m 1	-P 32 "	cell choice 1	primitive	12	yes	no	no
457	165	P-32/c 1	-P 3 2"c	cell choice 1	primitive	12	yes	no	no
458	166	R-3 2/m:H	-R 32 "	hexagonal	rhombohedral	36	yes	no	no
459	166	R -3 2/m:R	-P 3* 2	Rhombohedral	primitive	12	yes	no	no
460	167	R-32/c:H	-R 32 "c	hexagonal	rhombohedral	36	yes	no	no
461	167	R-3 2/c:R	-P 3* 2 n	Rhombohedral	primitive	12	yes	no	no

Table 2.5: Trigonal spacegroup information.

hexagonal									
id	Int. Nr.	long HermannMauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
462	168	P 6	P 6	cell choice 1	primitive	6	no	yes	no
463	169	P 61	P 61	cell choice 1	primitive	6	no	yes	yes
464	170	P 65	P 65	cell choice 1	primitive	6	no	yes	yes
465	171	P 62	P 62	cell choice 1	primitive	6	no	yes	yes
466	172	P 64	P 64	cell choice 1	primitive	6	no	yes	yes
467	173	P 63	P 6c	cell choice 1	primitive	6	no	yes	no


468	174	P-6	P-6	cell choice 1 \|	primitive	6	no	no	no
469	175	P 6/m	-P 6	cell choice 1	primitive	6	yes	no	no
470	176	P 63/m	-P 6c	cell choice 1	primitive	12	yes	no	no
471	177	P 622	P 62	cell choice 1	primitive	12	no	yes	no
472	178	P 6122	P $612(005)$	cell choice 1	primitive	12	no	yes	yes
473	179	P65 22	P $652(001)$	cell choice 1	primitive	12	no	yes	yes
474	180	P 6222	P $622(004)$	cell choice 1	primitive	12	no	yes	yes
475	181	P64 22	P 642 (002)	cell choice 1	primitive	12	no	yes	yes
476	182	P6322	P 6c 2c	cell choice 1	primitive	12	no	yes	no
477	183	P 6 mm	P 6-2	cell choice 1	primitive	12	no	no	no
478	184	P6cc	P 6-2c	cell choice 1	primitive	12	no	no	no
479	185	P 63 cm	P 6c-2	cell choice 1	primitive	12	no	no	no
480	186	P 63 mc	P 6c-2c	cell choice 1	primitive	12	no	no	no
481	187	P-6m 2	P-62	cell choice 1	primitive	12	no	no	no
482	188	P-6c2	P-6c 2	cell choice 1	primitive	12	no	no	no
483	189	P-62m	P -6-2	cell choice 1	primitive	12	no	no	no
484	190	P-6 2 c	P-6c-2c	cell choice 1	primitive	12	no	no	no
485	191	$\mathrm{P} 6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	-P 62	cell choice 1	primitive	24	yes	no	no
486	192	P 6/m 2/c 2/c	-P 620	cell choice 1	primitive	24	yes	no	no
487	193	P 63/m 2/c $2 / \mathrm{m}$	-P 6c 2	cell choice 1	primitive	24	yes	no	no
488	194	P 63/m 2/m 2/c	-P 6c 2c	cell choice 1	primitive	24	yes	no	no

Table 2.6: Hexagonal spacegroup information.

cubic									
id	Int. Nr.	long HermannMauguin name	Hall name	cell choice	centered	\#	Chiral	Centric	Enantiomorphic
489	195	P 23	P 223	cell choice 1	primitive	12	no	yes	no
490	196	F 23	F 223	cell choice 1	face	48	no	yes	no
491	197	I 23	I 223	cell choice 1	body	24	no	yes	no
492	198	P 213	P 2ac 2ab 3	cell choice 1	primitive	12	no	yes	no
493	199	I 213	I 2b 2c 3	cell choice 1	body	24	no	yes	no
494	200	P $2 / \mathrm{m}-3$	-P 223	cell choice 1	primitive	24	yes	no	no
495	201	P 2/n -3:1	P 223 -1n	cell choice 1	primitive	24	yes	no	no
496	201	P 2/n -3:2	-P 2ab 2bc 3	cell choice 2	primitive	24	yes	no	no
497	202	F $2 / \mathrm{m}-3$	-F 223	cell choice 1	face	96	yes	no	no
498	203	F 2/d -3:1	F 223 -1d	cell choice 1	face	96	yes	no	no
499	203	F 2/d -3:2	-F 2uv 2vw 3	cell choice 2	face	96	yes	no	no
500	204	I $2 / \mathrm{m}-3$	-I 223	cell choice 1	body	48	yes	no	no
501	205	P 21/a -3	-P 2ac 2ab 3	cell choice 1	primitive	24	yes	no	no
502	206	I 21/a -3	-I 2b 2c 3	cell choice 1	body	48	yes	no	no
503	207	P432	P423	cell choice 1	primitive	24	no	yes	no
504	208	P 4232	P 4n 23	cell choice 1	primitive	24	no	yes	no
505	209	F432	F423	cell choice 1	face	96	no	yes	no
506	210	F 4132	F 4d 23	cell choice 1	face	96	no	yes	no
507	211	I 432	I 423	cell choice 1	body	48	no	yes	no
508	212	P 4332	P 4acd 2ab 3	cell choice 1	primitive	24	no	yes	yes
509	213	P 4132	P 4bd 2ab 3	cell choice 1	primitive	24	no	yes	yes
510	214	I 4132	I 4bd 2c 3	cell choice 1	body	48	no	yes	no
511	215	P-43m	P-4 23	cell choice 1	primitive	24	no	no	no
512	216	F-43 m	F-4 23	cell choice 1	face	96	no	no	no
513	217	$\mathrm{I}-43 \mathrm{~m}$	I-4 23	cell choice 1	body	48	no	no	no
514	218	P-43n	P-4n 23	cell choice 1	primitive	24	no	no	no
515	219	F-43c	F -4a 23	cell choice 1	face	96	no	no	no
516	220	I-43d	I -4bd 2c 3	cell choice 1	body	48	no	no	no
517	221	P $4 / \mathrm{m}-32 / \mathrm{m}$	-P 423	cell choice 1\|	primitive	48	yes	no	no


518	222	P 4/n-3 2/n:1	P 423 -1n	cell choice 1	primitive	48	yes	no	no
519	222	P 4/n-3 2/n:2	-P 4a 2bc 3	cell choice 2	primitive	48	yes	no	no
520	223	P 42/m-3 2/n	-P 4n 23	cell choice 1	primitive	48	yes	no	no
521	224	P 42/n-3 2/m:1	P 4n $23-1 n$	cell choice 1	primitive	48	yes	no	no
522	224	P 42/n-3 2/m:2	-P 4bc 2bc 3	cell choice 2	primitive	48	yes	no	no
523	225	F $4 / \mathrm{m}-32 / \mathrm{m}$	-F 423	cell choice 1	face	192	yes	no	no
524	226	F $4 / \mathrm{m}-32 / \mathrm{c}$	-F 4a 23	cell choice 1	face	192	yes	no	no
525	227	F 41/d-3 2/m:1	F 4d $23-1 \mathrm{~d}$	cell choice 1	face	192	yes	no	no
526	227	F 41/d -3 2/m:2	-F 4vw 2vw 3	cell choice 2	face	192	yes	no	no
527	228	F 41/d-3 2/c	F 4d 23 -1ad	cell choice 1	face	192	yes	no	no
528	228	F 41/d-3 2/c	-F 4ud 2vw 3	cell choice 2	face	192	yes	no	no
529	229	I $4 / \mathrm{m}-32 / \mathrm{m}$	-I 423	cell choice 1	body	96	yes	no	no
530	230	I 41/a -3 2/d	-I 4bd 2c 3	cell choice 1	body	96	yes	no	no

Table 2.7: Cubic spacegroup information.

## Potentials

### 3.1 Functional forms of force fields

The molecular energy can be described as an Taylor expansion in bonds, bends, torsions, etc.

$$
\begin{align*}
U= & \sum_{\text {bonds }} U_{r}(r)+\sum_{\text {bends }} U_{\theta}(\theta)+\sum_{\text {torsions }} U_{\phi}(\phi)+\sum_{\text {out-of-plane bends }} U_{\chi}(\chi)+\sum_{\text {non-bonded }} U_{n b}(r) \\
& +\sum_{\text {bond-bond }} U_{b b^{\prime}}\left(r, r^{\prime}\right)+\sum_{\text {bond-bend }} U_{b \theta^{\prime}}(r, \theta)+\sum_{\text {bend-bend }} U_{\theta \theta^{\prime}}\left(\theta, \theta^{\prime}\right)  \tag{3.1}\\
& +\sum_{\text {bond-torsion }} U_{r \phi}\left(r, \phi, r^{\prime}\right)+\sum_{\text {bend-torsion }} U_{\theta \phi}\left(\theta, \phi, \theta^{\prime}\right)+\ldots
\end{align*}
$$

This expansion is believed to capture all the chemical entities we can think of, such as atoms, bonds, angles, etc, and physical properties like equilibrium structures, vibrational spectra, etc. The cross terms are not ad-hoc functions, but arise naturally from this expansion. For example, bonds and bends interact, as the bend angle becomes smaller the bond lengths tend to increase. Their inclusion leads to two advantages: 1) they increase the accuracy of the force field (especially the vibrational frequencies), and 2) they increase the transferability of the diagonal terms $U_{r}(r), U_{\theta}(\theta), U_{\phi}(\phi), U_{\chi}(\chi)$. On top of the terms in Eq. 3.1 one can add ad hoc terms, such as hydrogen bonding, that are not adequately accounted for otherwise.

Eq. 3.1 is historically referred to as an force field. The name arose from the lowest order approximation using only springs with force constants. Force fields have matured and have become quite accurate and many parameters exists for a wide range of structure. These parameters are crucial and determine the quality of the force field. Unfortunately, deriving high quality parameters remains more than a art rather than a science. However, some progress has been made and in the end of the chapter some algorithms are described how to obtain them.

The terms in Eq. 3.1 consists of a functional form, force constants (a resistance against a change from the optimum value), and a reference value. The functional form is chosen such as to be an accurate description of the true potential energy (either known from experiment or from quantum mechanics), although one can simplify the functional form to decrease computational evaluation time of the energy at the cost of diminished accuracy. This tradeoff has almost vanished for intra-molecular potentials but is still an issue for the non-bonded terms. The reference value is not the equilibrium value (except by chance). For example, bond lengths are affected by all other terms in the force field and the more strained a molecule the farther
the bond equilibrium length will deviate from its reference value. This means that one can not simply take the equilibrium values from known experiment.

### 3.2 Bonded potentials diagonal terms

### 3.2.1 Bond-stretching potentials

The bond stretching potential describes the change in energy as the bond stretches and contracts. The simplest functional form would be Hook's law:

$$
\begin{equation*}
U=\frac{1}{2} k\left(r-r_{0}\right)^{2} \tag{3.2}
\end{equation*}
$$

where $k$ is the force constant and $r_{0}$ the reference value for the bond. This form is computationally very fast, but not very realistic. It is well known that it is easier to stretch a bond than it is to compress a bond. The 'Morse' potential is an-harmonic and provides a much better description of the energy

$$
\begin{equation*}
U=D\left(1-e^{-\alpha\left(r-r_{0}\right)}\right)^{2} \tag{3.3}
\end{equation*}
$$

Expanding around the equilibrium value leads to

$$
\begin{equation*}
U=D \alpha^{2}\left(r-r_{0}\right)^{2}\left[1-\alpha\left(r-r_{0}\right)+\frac{7}{12} \alpha^{2}\left(r-r_{0}\right)^{2} \ldots\right] \tag{3.4}
\end{equation*}
$$

The first terms is the harmonic potential (with $k=2 D \alpha^{2}$ ) and for organic structures where distortions from equilibrium are small the difference between the potentials are small. However, for larger deviations the Morse potential provides a significantly better description. The Morse potential provides a restoring force which goes to zero at long distances. For minimizations starting far equilibrium could result in nonconvergence. Some force fields solved this problem by using modification of Hook's law. MM2 added a cubic term making the bond an-harmonic. However, this leads to large negative energies for poor initial geometries with large distortions. MM3 added the quartic term to solve this. Note the $7 / 12$ terms in the MM2/3 functional forms originate from the Taylor expansion of the Morse potential, and the cubic and quartic terms are chosen to mimic the Morse potentials for moderate distortions. Dinur and Hagler proposed a functional form based on inverse bond lengths which follows the true potential energy compared to QM over an even wider range

$$
\begin{equation*}
U=U_{0}+C_{2}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)^{2}+C_{3}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)^{3} \tag{3.5}
\end{equation*}
$$

The implemented bond-potentials:

- HARMONIC_BOND

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2} \tag{3.6}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA$.

- CORE_SHELL_SPRING

$$
\begin{equation*}
U=\frac{1}{2} p_{0} r^{2} \tag{3.7}
\end{equation*}
$$

1 argument: $p_{0} / k_{B}$ in units of $K / \AA^{2}$.

- MORSE_BOND

$$
\begin{equation*}
U=p_{0}\left[\left(1-e^{-p_{1}\left(r-p_{2}\right)}\right)^{2}-1\right] \tag{3.8}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA^{-1}$, and $p_{2}$ in $\AA$.

- LJ_12_6_BOND

$$
\begin{equation*}
U=\frac{p_{0}}{r^{12}}-\frac{p_{1}}{r^{6}} \tag{3.9}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} \AA^{12}$, and $p_{1} / k_{B}$ in units of $K \AA^{6}$.

- LENNARD_JONES_BOND

$$
\begin{equation*}
U=4 p_{0}\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right] \tag{3.10}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA$.

- BUCKINGHAM_BOND

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{6}} \tag{3.11}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in units of $\AA^{-1}$, and $p_{2} / k_{B}$ in $\mathrm{K} \AA^{6}$.

- RESTRAINED_HARMONIC_BOND

$$
U= \begin{cases}\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2} & \left|r-p_{1}\right| \leq p_{2}  \tag{3.12}\\ \frac{1}{2} p_{0} p_{2}^{2}+p_{0} p_{2}\left(\left|r-p_{1}\right|-p_{2}\right) & \left|r-p_{1}\right|>p_{2}\end{cases}
$$

3 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA$, and $p_{2}$ in $\AA$.

- QUARTIC_BOND

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2}+\frac{1}{3} p_{2}\left(r-p_{1}\right)^{3}+\frac{1}{4} p_{3}\left(r-p_{1}\right)^{4} \tag{3.13}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA, p_{2} / k_{B}$ in $K / \AA^{3}$, and $p_{3} / k_{B}$ in $K / \AA^{4}$.

- CFF_QUARTIC_BOND

$$
\begin{equation*}
U=p_{0}\left(r-p_{1}\right)^{2}+p_{2}\left(r-p_{1}\right)^{3}+p_{3}\left(r-p_{1}\right)^{4} \tag{3.14}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}$, $p_{1}$ in $\AA, p_{2} / k_{B}$ in $K / \AA^{3}$, and $p_{3} / k_{B}$ in $K / \AA^{4}$.

- MM3_BOND

$$
\begin{equation*}
U=p_{0}\left(r-p_{1}\right)^{2}\left(1-2.55\left(r-p_{1}\right)+\frac{7}{12} 2.55^{2}\left(r-p_{1}\right)^{2}\right) \tag{3.15}
\end{equation*}
$$

2 arguments: $p_{0}$ in units of mdyne $/ \AA$ molecule, $p_{1}$ in $\AA$.

- RIGID_BOND

Use for connections between rigid units.

- FIXED_BOND

Use for bonds constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Monte-Carlo, Molecular Dynamics, and minimization.

- MEASURE_BOND

A histogram of the bond-distance can be computed.

### 3.2.2 Urey-Bradley potentials

The Urey-Bradley potential is sometimes used to account for the repulsion between two atoms bound to a common atom. In more modern force field they are replaced by bond/bend cross potentials. Urey-Bradley are essentially just bonds between 1-3 nearest neighbor atoms and the same range of potentials is offered as for 1-2 bonds in RASPA.

- HARMONIC_UREYBRADLEY

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2} \tag{3.16}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA$.

- MORSE_UREYBRADLEY

$$
\begin{equation*}
U=p_{0}\left[\left(1-e^{-p_{1}\left(r-p_{2}\right)}\right)^{2}-1\right] \tag{3.17}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA^{-1}$, and $p_{2}$ in $\AA$.

- LJ_12_6_UREYBRADLEY

$$
\begin{equation*}
U=\frac{p_{0}}{r^{12}}-\frac{p_{1}}{r^{6}} \tag{3.18}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $K \AA^{12}$, and $p_{1} / k_{B}$ in units of $K \AA^{6}$.

- LENNARD_JONES_UREYBRADLEY

$$
\begin{equation*}
U=4 p_{0}\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right] \tag{3.19}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA$.

- BUCKINGHAM_UREYBRADLEY

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{6}} \tag{3.20}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in units of $\AA^{-1}$, and $p_{2} / k_{B}$ in $\mathrm{K} \AA^{6}$.

- RESTRAINED_HARMONIC_UREYBRADLEY

$$
U= \begin{cases}\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2} & \left|r-p_{1}\right| \leq p_{2}  \tag{3.21}\\ \frac{1}{2} p_{0} p_{2}^{2}+p_{0} p_{2}\left(\left|r-p_{1}\right|-p_{2}\right) & \left|r-p_{1}\right|>p_{2}\end{cases}
$$

3 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA$, and $p_{2}$ in $\AA$.

- QUARTIC_UREYBRADLEY

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(r-p_{1}\right)^{2}+\frac{1}{3} p_{2}\left(r-p_{1}\right)^{3}+\frac{1}{4} p_{3}\left(r-p_{1}\right)^{4} \tag{3.22}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{1}$ in $\AA, p_{2} / k_{B}$ in $K / \AA^{3}$, and $p_{3} / k_{B}$ in $K / \AA^{4}$.

- CFF_QUARTIC_UREYBRADLEY

$$
\begin{equation*}
U=p_{0}\left(r-p_{1}\right)^{2}+p_{2}\left(r-p_{1}\right)^{3}+p_{3}\left(r-p_{1}\right)^{4} \tag{3.23}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \AA^{2}$, $p_{1}$ in $\AA, p_{2} / k_{B}$ in $\mathrm{K} / \AA^{3}$, and $p_{3} / k_{B}$ in $\mathrm{K} / \AA^{4}$.

- MM3_UREYBRADLEY

$$
\begin{equation*}
U=p_{0}\left(r-p_{1}\right)^{2}\left(1-2.55\left(r-p_{1}\right)+\frac{7}{12} 2.55^{2}\left(r-p_{1}\right)^{2}\right) \tag{3.24}
\end{equation*}
$$

2 arguments: $p_{0}$ in units of mdyne $/ \AA$ molecule, $p_{1}$ in $\AA$.

- RIGID_UREYBRADLEY

Use for connections between rigid units.

- FIXED_UREYBRADLEY

Use for bonds constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Monte-Carlo, Molecular Dynamics, and minimization.

- MEASURE_UREYBRADLEY

A histogram of the Urey-Bradley distance can be computed.

### 3.2.3 Bending potential

The simplest approach for an angle potential is the harmonic potential

$$
\begin{equation*}
U=\frac{1}{2} k\left(\theta-\theta_{0}\right)^{2} \tag{3.25}
\end{equation*}
$$

Angles are much softer than bonds, especially in zeolites where a Si-O-Si angle ranges between 135 and 180 degrees. A problem with all polynomial representations of angles is that angles of 180 degrees results in singular point (unless the reference angle is 180 degrees). The case of 0 degree is not possible due to repulsion of the i and k atoms in the $\mathrm{i}-\mathrm{j}-\mathrm{k}$ bend. The singularity is due to the fact that the force expression of such a polynomial contains a factor $1 / \sin (\theta)$. A common solution is to use a trigonometric function

$$
\begin{equation*}
U=\frac{1}{2} k\left[\cos (\theta)-\cos \left(\theta_{0}\right)\right]^{2} \tag{3.26}
\end{equation*}
$$

Note that close to the maximum these potentials have no restoring force, but for small distortions this is not a problem. The MM force fields use higher order terms. A six power term was needed to describe the highly bent bicyclo[1.1.1]pentane. Cubic terms and higher become desirable when the bending is more then 10-15 degrees. MM3 angle bending has been divided into in-plane and out-of-plane bending for planar trigonal centers.

- HARMONIC_BEND,CORE_SHELL_BEND

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\theta_{i j k}-p_{1}\right)^{2} \tag{3.27}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}$ and $p_{1}$ in degrees.

- QUARTIC_BEND

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\theta_{i j k}-p_{1}\right)^{2}+\frac{1}{3} p_{2}\left(\theta_{i j k}-p_{1}\right)^{3}+\frac{1}{4} p_{3}\left(\theta_{i j k}-p_{1}\right)^{4} \tag{3.28}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}$, $p_{1}$ in degrees, $p_{2} / k_{B}$ in $\mathrm{K} / \mathrm{rad}^{3}$, and $p_{3} / k_{B}$ in $\mathrm{K} / \mathrm{rad}^{4}$.

- CFF_QUARTIC_BEND

$$
\begin{equation*}
U=p_{0}\left(\theta_{i j k}-p_{1}\right)^{2}+p_{2}\left(\theta_{i j k}-p_{1}\right)^{3}+p_{3}\left(\theta_{i j k}-p_{1}\right)^{4} \tag{3.29}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees, $p_{2} / k_{B}$ in $\mathrm{K} / \mathrm{rad}^{3}$, and $p_{3} / k_{B}$ in $\mathrm{K} / \mathrm{rad}^{4}$.

- HARMONIC_COSINE_BEND

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\cos \theta_{i j k}-\cos p_{1}\right)^{2} \tag{3.30}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of K and $p_{1}$ in degrees.

- COSINE_BEND

$$
\begin{equation*}
U=p_{0}\left(1+\cos \left(p_{1} \theta_{i j k}-p_{2}\right)\right) \tag{3.31}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ dimensionless, and $p_{2}$ in degrees.

- MM3_BEND

$$
\begin{align*}
U=\frac{1}{2} p_{0}\left(\theta_{i j k}-p_{1}\right)^{2}\left(1-0.014\left(\theta_{i j k}-p_{1}\right)+5.6 \times 10^{-5}\left(\theta_{i j k}-p_{1}\right)^{2}\right. & -7 \times 10^{-7}\left(\theta_{i j k}-p_{1}\right)^{3} \\
& \left.+2.2 \times 10^{-8}\left(\theta_{i j k}-p_{1}\right)^{4}\right) \tag{3.32}
\end{align*}
$$

2 arguments: $p_{0}$ in units of mdyne $\AA / \mathrm{rad}^{2}, p_{1}$ in degrees.


Figure 5: The definition of the Wilson inversion-bend angle $\chi$. On the left a positive Wilson angle, and on the right a negative Wilson angle.

- MM3_IN_PLANE_BEND

$$
\begin{align*}
U=\frac{1}{2} p_{0}\left(\theta_{i j k}-p_{1}\right)^{2}\left(1-0.014\left(\theta_{i j k}-p_{1}\right)+5.6 \times 10^{-5}\left(\theta_{i j k}-p_{1}\right)^{2}\right. & -7 \times 10^{-7}\left(\theta_{i j k}-p_{1}\right)^{3}  \tag{3.33}\\
& \left.+2.2 \times 10^{-8}\left(\theta_{i j k}-p_{1}\right)^{4}\right)
\end{align*}
$$

2 arguments: $p_{0}$ in units of mdyne $\AA / \mathrm{rad}^{2}, p_{1}$ in degrees. The bend is 'in-plane' and only applicable to bends in a defined planar trigonal centers. The bend is dependend on the fourth atom of the trigonal center.

- FIXED_BEND

Use for bend-angle constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

- MEASURE_BEND

A histogram of the bend angle can be computed.

### 3.2.4 Wilson inversion-bend potential

Common planar molecule that contain a double bond or $\mathrm{sp}^{2}$ hybridization form planar groups with trigonal centers. For example: the carbon and nitrogen centers in formamide, and the carbon centers in benzene. The mode of motion is different from bond stretching, bending, and internal rotation. The associated harmonic potential is

$$
\begin{equation*}
U=\frac{1}{2} k(\chi)^{2} \tag{3.34}
\end{equation*}
$$

with $\chi$ the out-of-plane angle. Two possible definitions are in use

1. the distance of the central atom from the plane defined by the other three atoms (pyramid height),
2. the average angle between any bond that extends from the central atom and the plane defined by the other two bonds.

Note that an alternative to the out-of-plane angle is the improper torsion using

$$
\begin{equation*}
U=\frac{1}{2} k(1-\cos 2 \chi) \tag{3.35}
\end{equation*}
$$

The out-of-plane potential can also be used for non-planar structure, for example in united-atom for chiral centers to avoid inversion of the chiral center. Another example of its use is coordination complexes where


Figure 6: The definition of the dihedral angle $\phi$ : the angle between the planes formed by atoms $a-b-c$ and $b-c-d$. On the left a positive dihedral angle, and on the right a negative dihedral angle.
now the plane of the ligands need no longer be defined exactly. In square planar complexes it is necessary to define an average plane through the ligands (usually the least-square plane). Note that the definition include one central atom which is listed as the second in $a-b-c-d: a, c$, and $d$ are bonded to the central atom $b$. The inversion angle potential is the average of the three possible inversion angle terms.

- HARMONICINVERSION

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\chi_{i j k}-p_{1}\right)^{2} \tag{3.36}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}$ and $p_{1}$ in degrees.

- HARMONIC_COSINE_INVERSION

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\cos \left(\chi_{i j k}\right)-\cos \left(p_{1}\right)\right)^{2} \tag{3.37}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of K and $p_{1}$ in degrees.

- PLANARINVERSION

$$
\begin{equation*}
U=p_{0}(1-\cos (\chi)) \tag{3.38}
\end{equation*}
$$

1 argument: $p_{0} / k_{B}$ in units of $K$.

- MM3INVERSION

$$
\begin{align*}
U=\frac{1}{2} p_{0}\left(\chi-p_{1}\right)^{2}\left(1-0.014\left(\chi-p_{1}\right)+5.6 \times 10^{-5}\left(\chi-p_{1}\right)^{2}\right. & -7 \times 10^{-7}\left(\chi-p_{1}\right)^{3}  \tag{3.39}\\
& \left.+2.2 \times 10^{-8}\left(\chi-p_{1}\right)^{4}\right)
\end{align*}
$$

2 arguments: $p_{0}$ in units of mdyne $\AA / \mathrm{rad}^{2}, p_{1}$ in degrees.

- FIXED_INVERSION_BEND

Use for inversion bend-angle constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

### 3.2.5 Torsion potential

Intramolecular rotations about bonds do not occur freely. A possible description with a physical interpretation is the three-term Fourier expansion

$$
\begin{equation*}
U=\frac{V_{1}}{2}[1+\cos \phi]+\frac{V_{2}}{2}[1-\cos 2 \phi]+\frac{V_{3}}{2}[1+\cos 3 \phi] \tag{3.40}
\end{equation*}
$$

1. the 1 fold-term has been attributed to residual dipole-dipole interactions, to Van der Waal interactions, or to any other direct interaction between atoms not accounted for otherwise,
2. the 2 -fold arises from conjugation or hyper conjugation, being geometrically related to p orbitals,
3. and the 3-fold term has a steric (or bonding/anti-bonding) origin.

The values for 4-fold or higher are small and it is not known whether these are essential to include. It may be that Van der Waals and dipole interactions already take care of these effects. Torsions are even softer than bond angles. All possible values can be found in structures. Therefore, the energy function must be valid over the entire range, the function must be periodic, and for reasons of symmetry have stationary points at 0 and 180 degrees. The periodicity is the number of minima for the potential, usually 3 for an $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ bond and 2 for a conjugate bond.

The definition of a torsion includes two central and two terminal atoms. The term 'torsional' means an internal rigid rotation and 'dihedral' means a rotation of two vicinal bonds about a middle bond.

- HARMONIC_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\phi_{i j k l}-p_{1}\right)^{2} \tag{3.41}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees.

- HARMONIC_COSINE_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[\cos \left(\phi_{i j k l}\right)-\cos \left(p_{1}\right)\right]^{2} \tag{3.42}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in degrees.

- THREE_COSINE_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.43}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$

- MM3_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.44}
\end{equation*}
$$

3 arguments: $p_{0}, p_{1}, p_{2}$ in units of $\mathrm{kcal} / \mathrm{mol}$.

- CFF_DIHEDRAL

$$
\begin{equation*}
U=p_{0}\left[1-\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1-\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.45}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- CFF_DIHEDRAL2

$$
\begin{equation*}
U=p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1+\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.46}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- SIX_COSINE_DIHEDRAL

The Ryckaert-Bellemans potentials is often used for alkanes, the use implies exclusion of VDWinteractions between the first and last atoms of the dihedral, and $\phi^{\prime}=\phi-\pi$ is defined according to the polymer convention $\phi^{\prime}($ trans $)=0$.

$$
\begin{align*}
U & =\sum_{n=0}^{5} p_{n} \cos ^{n}\left(\phi_{i j k l}^{\prime}\right)  \tag{3.47}\\
& =p_{0}+p_{1} \cos \left(\phi_{i j k l}^{\prime}\right)+p_{2} \cos ^{2}\left(\phi_{i j k l}^{\prime}\right)+p_{3} \cos ^{3}\left(\phi_{i j k l}^{\prime}\right) p_{4} \cos ^{4}\left(\phi_{i j k l}^{\prime}\right)+p_{5} \cos ^{5}\left(\phi_{i j k l}^{\prime}\right) \tag{3.48}
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, \ldots, p_{5} / k_{B}$ in units of $K$. Rewritten in terms of $\phi$ the potential reads

$$
\begin{equation*}
U=p_{0}-p_{1} \cos \left(\phi_{i j k l}\right)+p_{2} \cos ^{2}\left(\phi_{i j k l}\right)-p_{3} \cos ^{3}\left(\phi_{i j k l}\right)+p_{4} \cos ^{4}\left(\phi_{i j k l}\right)-p_{5} \cos ^{5}\left(\phi_{i j k l}\right) \tag{3.49}
\end{equation*}
$$

- TRAPPE_DIHEDRAL

$$
\begin{equation*}
U=p_{0}+p_{1}\left[1+\cos \left(\phi_{i j k l}\right)\right]+p_{2}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+p_{3}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.50}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}$ in units of $K$.

- CVFF_DIHEDRAL

$$
\begin{equation*}
U=p_{0}\left[1+\cos \left(p_{1} \phi_{i j k l}-p_{2}\right)\right] \tag{3.51}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ dimensionless, and $p_{2}$ in degrees.

- OPLS_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}+\frac{1}{2} p_{1}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{3}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.52}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}$ in units of K .

- FOURIER_SERIES_DIHEDRAL

The general form of a Fourier expansion is:

$$
\begin{equation*}
U=\sum_{n=1}^{6}\left[a_{n} \cos (n \phi)+b_{n} \sin (n \phi)\right] \tag{3.53}
\end{equation*}
$$

This form uses equilibrium angles of 0 for $n=1,3,5$ and 180 for $n=2,4,6$

$$
\begin{align*}
U= & \frac{1}{2} p_{0}[1+\cos \phi]+\frac{1}{2} p_{1}[1-\cos (2 \phi)]+\frac{1}{2} p_{2}[1+\cos (3 \phi)]+ \\
& \frac{1}{2} p_{3}[1-\cos (4 \phi)]+\frac{1}{2} p_{4}[1+\cos (5 \phi)]+\frac{1}{2} p_{5}[1-\cos (6 \phi)] \tag{3.54}
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}, p_{4} / k_{B}, p_{5} / k_{B}$ in units of $K$.

- FOURIER_SERIES_DIHEDRAL_2

The general form of a Fourier expansion is:

$$
\begin{equation*}
U=\sum_{n=1}^{6}\left[a_{n} \cos (n \phi)+b_{n} \sin (n \phi)\right] \tag{3.55}
\end{equation*}
$$

This form uses equilibrium angles of 0 for $n=1,3,4,5,6$ and 180 for $n=2$

$$
\begin{align*}
U= & \frac{1}{2} p_{0}[1+\cos \phi]+\frac{1}{2} p_{1}[1-\cos (2 \phi)]+\frac{1}{2} p_{2}[1+\cos (3 \phi)]+  \tag{3.56}\\
& \frac{1}{2} p_{3}[1+\cos (4 \phi)]+\frac{1}{2} p_{4}[1+\cos (5 \phi)]+\frac{1}{2} p_{5}[1+\cos (6 \phi)]
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}, p_{4} / k_{B}, p_{5} / k_{B}$ in units of $K$.

- FIXED_DIHEDRAL

Use for dihedral-angle constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

The following identities are convenient when dealing with torsions:

$$
\begin{align*}
& \cos 1 x=\cos x \\
& \cos 2 x=-1+2 \cos ^{2} x \\
& \cos 3 x=-3 \cos x+4 \cos ^{3} x \\
& \cos 4 x=1-8 \cos ^{2} x+8 \cos ^{4} x  \tag{3.57}\\
& \cos 5 x=5 \cos x-20 \cos ^{3} x+16 \cos ^{5} x \\
& \cos 6 x=-1+18 \cos ^{2} x-48 \cos ^{4} x+32 \cos ^{6} x \\
& \sin 1 x=\sin x \\
& \sin 2 x=(\sin x)(2 \cos x) \\
& \sin 3 x=(\sin x)\left(-1+4 \cos ^{2} x\right) \\
& \sin 4 x=(\sin x)\left(-4 \cos x+8 \cos ^{3} x\right)  \tag{3.58}\\
& \sin 5 x=(\sin x)\left(1-12 \cos ^{2} x+16 \cos ^{4} x\right) \\
& \sin 6 x=(\sin x)\left(6 \cos x-32 \cos ^{3} x+32 \cos ^{5} x\right)
\end{align*}
$$

### 3.2.6 Improper torsion potential

The improper torsion is an alternative for the out-of-plane angle, and a possible definition is

$$
\begin{equation*}
U=\frac{1}{2} k(1-\cos 2 \chi) \tag{3.59}
\end{equation*}
$$

It is termed 'improper torsion' because it simply treats the four atoms in the plane as if they were bonded in the same way as in a true torsional angle. Note that the definition include one central atom which is listed as the second in $a-b-c-d: a, c$, and $d$ are bonded to the central atom $b$. Improper torsions are often used to keep sp2 atoms planar and sp 3 atoms in a tetrahedral geometry.

The CHARMM convention is to list the central atom first, while there are no rules how to order the other three atoms. Hence, six possibilities exist for the definition of an improper torsion. The AMBER convention is that the out-of-plane atom is listed in the third position and the order of the other atoms is determined alphabetically by atom type, and by the atom number (i.e. the order in the molecule) when atom types are identical.

- HARMONIC_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\phi_{i j k l}-p_{2}\right)^{2} \tag{3.60}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees.

- HARMONIC_COSINE_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[\cos \left(\phi_{i j k l}\right)-\cos \left(p_{1}\right)\right]^{2} \tag{3.61}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in degrees.


Figure 7: The most common (CVFF, DLPOLY) definition of the improper dihedral angle $\phi$ : the angle between the planes formed by atoms ' $a-c-d$ ' and ' $c-d-b$ '. On the left a positive improper dihedral angle, and on the right a negative improper dihedral angle. The atoms need to be listed in the order ' $a-c-d-b$ '. Note that an exchange of atoms ' $c$ ' and ' $d$ ' leads to a change of sign, but not in magntitude.


Figure 8: A second definition of the improper dihedral angle (CHARMM, AMBER). The central atom is ' $c$ ', and the improper torsion is enter as ' $a-b-c-d$ '. Howevere, an exchange of terminal atoms leads to a change in magntitude and the improper torsion needs to be symmetrized by adding two additional improper torsions ' $b-d-c-a$ ' and ' $d-a-c-b$ ' and rescaling the force constant by a factor of $1 / 3$.

- THREE_COSINE_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.62}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- MM3_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.63}
\end{equation*}
$$

3 arguments: $p_{0}, p_{1}, p_{2}$ in units of $\mathrm{kcal} / \mathrm{mol}$.

- CFF_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=p_{0}\left[1-\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1-\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.64}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- CFF_IMPROPER_DIHEDRAL2

$$
\begin{equation*}
U=p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1+\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.65}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- SIX_COSINE_IMPROPER_DIHEDRAL

The Ryckaert-Bellemans potentials is often used for alkanes, the use implies exclusion of VDWinteractions between the first and last atoms of the dihedral, and $\phi^{\prime}=\phi-\pi$ is defined according to the polymer convention $\phi^{\prime}($ trans $)=0$.

$$
\begin{align*}
U & =\sum_{n=0}^{5} p_{n} \cos ^{n}\left(\phi_{i j k l}^{\prime}\right)  \tag{3.66}\\
& =p_{0}+p_{1} \cos \left(\phi_{i j k l}^{\prime}\right)+p_{2} \cos ^{2}\left(\phi_{i j k l}^{\prime}\right)+p_{3} \cos ^{3}\left(\phi_{i j k l}^{\prime}\right) p_{4} \cos ^{4}\left(\phi_{i j k l}^{\prime}\right)+p_{5} \cos ^{5}\left(\phi_{i j k l}^{\prime}\right) \tag{3.67}
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, \ldots, p_{5} / k_{B}$ in units of $K$. Rewritten in terms of $\phi$ the potential reads

$$
\begin{equation*}
U=p_{0}-p_{1} \cos \left(\phi_{i j k l}\right)+p_{2} \cos ^{2}\left(\phi_{i j k l}\right)-p_{3} \cos ^{3}\left(\phi_{i j k l}\right)+p_{4} \cos ^{4}\left(\phi_{i j k l}\right)-p_{5} \cos ^{5}\left(\phi_{i j k l}\right) \tag{3.68}
\end{equation*}
$$

- TRAPPE_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=p_{0}+p_{1}\left[1+\cos \left(\phi_{i j k l}\right)\right]+p_{2}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+p_{3}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.69}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}$ in units of $K$.

- CVFF_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=p_{0}\left[1+\cos \left(p_{1} \phi_{i j k l}-p_{2}\right)\right] \tag{3.70}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ dimensionless, and $p_{2}$ in degrees.

- OPLS_IMPROPER_DIHEDRAL

$$
\begin{equation*}
U=\frac{1}{2} p_{0}+\frac{1}{2} p_{1}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{3}\left[1+\cos \left(3 \phi_{i j k l}\right)\right] \tag{3.71}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}$ in units of $K$.

- FOURIER_SERIES_IMPROPER_DIHEDRAL

The general form of a Fourier expansion is:

$$
\begin{equation*}
U=\sum_{n=1}^{6}\left[a_{n} \cos (n \phi)+b_{n} \sin (n \phi)\right] \tag{3.72}
\end{equation*}
$$

This form uses equilibrium angles of 0 for $n=1,3,5$ and 180 for $n=2,4,6$

$$
\begin{align*}
U= & \frac{1}{2} p_{0}[1+\cos \phi]+\frac{1}{2} p_{1}[1-\cos (2 \phi)]+\frac{1}{2} p_{2}[1+\cos (3 \phi)]+ \\
& \frac{1}{2} p_{3}[1-\cos (4 \phi)]+\frac{1}{2} p_{4}[1+\cos (5 \phi)]+\frac{1}{2} p_{5}[1-\cos (6 \phi)] \tag{3.73}
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}, p_{4} / k_{B}, p_{5} / k_{B}$ in units of $K$.

- FOURIER_SERIES_IMPROPER_DIHEDRAL_2

The general form of a Fourier expansion is:

$$
\begin{equation*}
U=\sum_{n=1}^{6}\left[a_{n} \cos (n \phi)+b_{n} \sin (n \phi)\right] \tag{3.74}
\end{equation*}
$$

This form uses equilibrium angles of 0 for $n=1,3,4,5,6$ and 180 for $n=2$

$$
\begin{align*}
U= & \frac{1}{2} p_{0}[1+\cos \phi]+\frac{1}{2} p_{1}[1-\cos (2 \phi)]+\frac{1}{2} p_{2}[1+\cos (3 \phi)]+  \tag{3.75}\\
& \frac{1}{2} p_{3}[1+\cos (4 \phi)]+\frac{1}{2} p_{4}[1+\cos (5 \phi)]+\frac{1}{2} p_{5}[1+\cos (6 \phi)]
\end{align*}
$$

6 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}, p_{3} / k_{B}, p_{4} / k_{B}, p_{5} / k_{B}$ in units of $K$.

- FIXED_IMPROPER_DIHEDRAL

Use for improper-dihedral-angle constraint using the 'SHAKE' and 'RATTLE'-algorithm. Applies to Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

### 3.3 Non-bonded potentials

### 3.3.1 Van der Waals potentials

The general expression for Van der Waals potentials when using a cutoff distance is

$$
U_{i j}^{\mathrm{VDW}}= \begin{cases}U_{i j}\left(r_{i j}\right) & \text { if } r_{i j} \leq r_{c}  \tag{3.76}\\ 0 & \text { otherwise }\end{cases}
$$

- NONE

$$
\begin{equation*}
U=0 \tag{3.77}
\end{equation*}
$$

zero parameters.
LENNARD_JONES

- LENNARD_JONES_SMOOTHED3

LENNARD_JONES_SMOOTHED5

$$
\begin{equation*}
U=4 p_{0}\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right] \tag{3.78}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of K , and $p_{1}$ in $\AA$.
FEYNMAN_HIBBS_LENNARD_JONES

- FEYNMAN_HIBBS_LENNARD_JONES_SMOOTHED3

FEYNMAN_HIBBS_LENNARD_JONES_SMOOTHED5

$$
\begin{equation*}
U=4 p_{0}\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right]+\frac{\hbar^{2}}{24 p_{2} k_{B} T} 4 p_{0}\left[132\left(\frac{p_{1}}{r}\right)^{12}-30\left(\frac{p_{1}}{r}\right)^{6}\right] \frac{1}{r^{2}} \tag{3.79}
\end{equation*}
$$

3 parameters: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA$, and $p_{2}$ is the reduced mass in unified atomic mass units.
FEYNMAN_HIBBS2_LENNARD_JONES

- FEYNMAN_HIBBS_LENNARD_JONES2_SMOOTHED3

FEYNMAN_HIBBS_LENNARD_JONES2_SMOOTHED5

$$
\begin{equation*}
U=4 p_{0}\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right]+4 p_{0}\left[132\left(\frac{p_{1}}{r}\right)^{12}-30\left(\frac{p_{1}}{r}\right)^{6}\right] \frac{p_{2}}{r^{2}} \tag{3.80}
\end{equation*}
$$

3 parameters: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in $\AA$, and $p_{2}$ in units of $\AA^{2}$.

- LENNARD_JONES_SHIFTED_FORCE

$$
\begin{equation*}
U=4 p_{0}\left\{\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right]-\left[\left(\frac{p_{1}}{r_{c}}\right)^{12}-\left(\frac{p_{1}}{r_{c}}\right)^{6}\right]+\left[12\left(\frac{p_{1}}{r_{c}}\right)^{12}-6\left(\frac{p_{1}}{r_{c}}\right)^{6}\right] \frac{\left(r-r_{c}\right)}{r_{c}}\right\} \tag{3.81}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of K , and $p_{1}$ in $\AA$.

- LENNARD_JONES_SHIFTED_FORCE2

$$
\begin{equation*}
4 p_{0}\left\{\left[\left(\frac{p_{1}}{r}\right)^{12}-\left(\frac{p_{1}}{r}\right)^{6}\right]+\left[6\left(\frac{p_{1}}{r_{c}}\right)^{12}-3\left(\frac{p_{1}}{r_{c}}\right)^{6}\right] \frac{r^{2}}{r_{c}^{2}}+7\left(\frac{p_{1}}{r_{c}}\right)^{12}+4\left(\frac{p_{1}}{r_{c}}\right)^{6}\right\} \tag{3.82}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of K , and $p_{1}$ in $\AA$.

POTENTIAL_12_6

- POTENTIAL_12_6_SMOOTHED3

POTENTIAL_12_6_SMOOTHED5

$$
\begin{equation*}
U=\frac{p_{0}}{r^{12}}-\frac{p_{1}}{r^{6}} \tag{3.83}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of $K \AA^{12}$, and $p_{1} / k_{B}$ in units of $K \AA^{6}$.
POTENTIAL_12_6_2_0

- POTENTIAL_12_6_2_0_SMOOTHED3 POTENTIAL_12_6_2_0_SMOOTHED5

$$
\begin{equation*}
U=\frac{p_{0}}{r^{12}}+\frac{p_{1}}{r^{6}}+\frac{p_{2}}{r^{2}}+p_{3} \tag{3.84}
\end{equation*}
$$

4 parameters: $p_{0} / k_{B}$ in units of $K \AA^{12}, p_{1} / k_{B}$ in units of $K \AA^{6}, p_{2} / k_{B}$ in units of $K \AA^{2}$, and $p_{3}$ in units of K.

MORSE

- MORSE_SMOOTHED3

MORSE_SMOOTHED5

$$
\begin{equation*}
U=p_{0}\left[\left(1-e^{-p_{1} *\left(r-p_{2}\right)}\right)^{2}-1\right] \tag{3.85}
\end{equation*}
$$

3 parameters: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in units of $\AA^{-1}$ and $p_{2}$ in units of $\AA$.
MORSE2

- MORSE2_SMOOTHED3

MORSE2_SMOOTHED5

$$
\begin{equation*}
U=p_{0}\left[e^{p_{1} *\left(1-r / p_{2}\right)}-2 e^{\left(p_{1} / 2\right) *\left(1-r / p_{2}\right)}\right] \tag{3.86}
\end{equation*}
$$

3 parameters: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in units of $\AA^{-1}$ and $p_{2}$ in units of $\AA$.
MORSE3

- MORSE3_SMOOTHED3

MORSE3_SMOOTHED5

$$
\begin{equation*}
U=p_{0}\left[\left(1-e^{\left(\frac{-\ln 2}{2^{1 / 6}-1}\right)\left(\frac{r}{p_{2}}-2^{1 / 6}\right)}\right)^{2}-1\right] \tag{3.87}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of $K p_{2}$ in units of $\AA$. This form of the Morse potential resembles the Lennard-Jones potential.

## CFF_9_6

- CFF_9_6_SMOOTHED3

CFF_9_6_SMOOTHED5

$$
\begin{equation*}
U=\frac{p_{0}}{r^{9}}-\frac{p_{1}}{r^{6}} \tag{3.88}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of $K \AA^{9}$, and $p_{1} / k_{B}$ in units of $K \AA^{6}$.
CFF_EPS_SIGMA

- CFF_EPS_SIGMA_SMOOTHED3 CFF_EPS_SIGMA_SMOOTHED5

$$
\begin{equation*}
U_{i j}=p_{0}\left[2\left(\frac{p_{1}}{r}\right)^{9}-3\left(\frac{p_{1}}{r}\right)^{6}\right] \tag{3.89}
\end{equation*}
$$

2 parameters: $p_{0} / k_{B}$ in units of K , and $p_{1}$ in $\AA$.

## BUCKINGHAM

- BUCKINGHAM_SMOOTHED3

BUCKINGHAM_SMOOTHED5

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{6}} \tag{3.90}
\end{equation*}
$$

3 parameters: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ in units of $\AA^{-1}$, and $p_{2}$ in $\mathrm{K} \AA^{6}$. Warning: in literature sometimes $\rho=\frac{1}{p_{1}}$ is given, $\rho$ is usually around 0.3-0.4 $\AA$, $p_{1}$ is usually around $2-4 \AA^{-1}$.
BUCKINGHAM2

- BUCKINGHAM2_SMOOTHED3

BUCKINGHAM2_SMOOTHED5

$$
U= \begin{cases}10^{10} & r<p_{3}  \tag{3.91}\\ p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{6}} & \text { otherwise }\end{cases}
$$

4 parameters: $p_{0} / k_{B}$ in units of $K, p_{1}$ in units of $\AA^{-1}, p_{2}$ in $K \AA^{6}$, and $p_{3}$ in [ $\left.\AA\right]$. Warning: in literature sometimes $\rho=\frac{1}{p_{1}}$ is given, $\rho$ is usually around 0.3-0.4 $\AA, p_{1}$ is usually around $2-4 \AA^{-1}$.
MM3_VDW

- MM3_VDW_SMOOTHED3

MM3_VDW_SMOOTHED5

$$
U_{i j}= \begin{cases}\sqrt{p_{0}^{i} p_{0}^{j}}\left[1.84 \times 10^{5} e^{-\frac{12}{P}}-2.25 P^{6}\right] & \text { if } P \geq 3.02  \tag{3.92}\\ \sqrt{p_{0}^{i} p_{0}^{j}} 192.27 P^{2} & \text { if } P<3.02\end{cases}
$$

with $P=\frac{p_{1}^{i}+p_{1}^{j}}{r_{i j}}$ and where $p_{1}^{i}$ and $p_{1}^{j}$ are the VDW radii of atoms $i$ and $j$, and $r_{i j}$ the separation distance in $\AA$ between atoms $i$ and $j$.
2 arguments: $p_{0}$ in units of $\mathrm{kcal} / \mathrm{mol}, p_{1}$ in units of $\AA$.
MATSUOKA_CLEMENTI_YOSHIMINE

- MATSUOKA_CLEMENTI_YOSHIMINE_SMOOTHED3

MATSUOKA_CLEMENTI_YOSHIMINE_SMOOTHED5

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r_{i j}}+p_{2} e^{-p_{3} r_{i j}} \tag{3.93}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $K, p_{1}$ in units of $\AA^{-1}, p_{2} / k_{B}$ in units of $K$, and $p_{3}$ in units of $\AA^{-1}$.

## GENERIC

- GENERIC_SMOOTHED3

GENERIC_SMOOTHED5

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{4}}-\frac{p_{3}}{r^{6}}-\frac{p_{4}}{r^{8}}-\frac{p_{5}}{r^{10}} \tag{3.94}
\end{equation*}
$$

6 arguments: $p_{0} / k_{B}$ in units of $K, p_{1}$ in units of $\AA^{-1}, p_{2} / k_{B}$ in units of $K \AA^{4}, p_{3} / k_{B}$ in units of $K \AA^{6}$, $p_{4} / k_{B}$ in units of $\mathrm{K} \AA^{8}$, and $p_{5} / k_{B}$ in units of $\mathrm{K} \AA^{10}$.

## PELLENQ_NICHOLSON

- PELLENQ_NICHOLSON_SMOOTHED3

PELLENQ_NICHOLSON_SMOOTHED5

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-f_{6} \frac{p_{2}}{r^{6}}-f_{8} \frac{p_{3}}{r^{8}}-f_{10} \frac{p_{4}}{r^{10}} \tag{3.95}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{2 n}=1-\sum_{k=0}^{2 n} \frac{\left(p_{1} r_{i j}\right)^{k}}{k!} e^{-p_{1} r_{i j}} \tag{3.96}
\end{equation*}
$$

5 arguments: $p_{0} / k_{B}$ in units of $K$, $p_{1}$ in units of $\AA^{-1}, p_{2} / k_{B}$ in units of $K \AA^{6}, p_{3} / k_{B}$ in units of $K \AA^{8}$, and $p_{4} / k_{B}$ in units of $K \AA^{10}$.

HYDRATED_ION_WATER

- HYDRATED_ION_WATER_SMOOTHED3

HYDRATED_ION_WATER_SMOOTHED5

$$
\begin{equation*}
U=p_{0} e^{-p_{1} r}-\frac{p_{2}}{r^{4}}-\frac{p_{3}}{r^{6}}-\frac{p_{4}}{r^{12}} \tag{3.97}
\end{equation*}
$$

5 arguments: $p_{0} / k_{B}$ in units of $K, p_{1}$ in units of $\AA^{-1}, p_{2} / k_{B}$ in units of $K \AA^{4}, p_{3} / k_{B}$ in units of $K \AA^{6}$, and $p_{4} / k_{B}$ in units of $K \AA^{12}$.

MIE

- MIE_SMOOTHED3

MIE_SMOOTHED5
The Mie-potential [? ]

$$
\begin{equation*}
U=\left(\frac{p_{0}}{r^{p_{1}}}-\frac{p_{2}}{r^{p_{3}}}\right) \tag{3.98}
\end{equation*}
$$

4 arguments: $p_{0} / k_{B}$ in units of $K \AA^{p_{1}}, p_{1}$ dimensionless, $p_{2} / k_{B}$ in units of $K \AA^{p_{3}}$, and $p_{3}$ dimensionless.
BORN_HUGGINS_MEYER

- BORN_HUGGINS_MEYER_SMOOTHED3

BORN_HUGGINS_MEYER_SMOOTHED5

$$
\begin{equation*}
U_{i j}=p_{0} e^{p_{1}\left(p_{2}-r_{i j}\right)}-\frac{p_{3}}{r_{i j}^{6}}-\frac{p_{4}}{r_{i j}^{8}} \tag{3.99}
\end{equation*}
$$

5 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K}, p_{1}$ dimensionless, $p_{2}$ in units of $\AA, p_{3} / k_{B}$ in units of $K \AA^{6}$, and $p_{4} / k_{B}$ in units of $K \AA^{8}$.
HYDROGEN

- HYDROGEN_SMOOTHED3 HYDROGEN_SMOOTHED5

$$
\begin{equation*}
U=\frac{p_{0}}{r^{12}}-\frac{p_{1}}{r^{10}} \tag{3.100}
\end{equation*}
$$

2 arguments: $p_{0} / k_{B}$ in units of $K \AA^{12}$, and $p_{1} / k_{B}$ in units of $K \AA^{10}$.

### 3.3.2 Tail corrections

energy

$$
\begin{equation*}
U^{\text {Tail }}=\frac{2 \pi}{V} \sum_{a} \sum_{b} N_{a} N_{b}\left[\int_{r_{c}}^{\infty} r^{2} U(r) d r\right] \tag{3.101}
\end{equation*}
$$

potential	$\int_{r_{c}}^{\infty} r^{2} U(r)$
LENNARD_JONES	$\frac{4}{3} p_{0} p_{1}^{3}\left[\frac{1}{3}\left(\frac{p_{1}}{r}\right)^{9}-\left(\frac{p_{1}}{r}\right)^{3}\right]$
LENNARD_JONES_SHIFTED_FORCE	-

## pressure

$$
\begin{align*}
P^{\text {Tail }} & =-\sum_{a} \sum_{b} \frac{2 \pi}{3 V} N_{a} N_{b}\left[\int_{r_{c}}^{\infty} r^{2} r \frac{\partial U(r)}{\partial r} d r\right]  \tag{3.102}\\
& =\sum_{a} \sum_{b}\left(\frac{2 \pi}{3 V} r_{c}^{3} N_{a} N_{b} U\left(r_{c}\right)+U^{\text {Tail }}\right) \tag{3.103}
\end{align*}
$$

chemical potential

$$
\begin{equation*}
\beta \mu^{\text {Tail }}=2 U^{\text {Tail }} \tag{3.104}
\end{equation*}
$$

### 3.3.3 Electrostatics

## Charge-charge interaction

- Ewald

The potential energy for a system of charges in a periodic system can be written as

$$
\begin{equation*}
U=U^{\text {real }}+U^{\text {rec }} \tag{3.105}
\end{equation*}
$$

where

$$
\begin{align*}
U^{\text {real }} & =\sum_{i<j} q_{i} q_{j} \frac{\operatorname{erfc}\left(\alpha r_{i j}\right)}{r_{i j}} \\
U^{\mathrm{rec}} & =\frac{2 \pi}{V} \sum_{\mathbf{k} \neq 0} \frac{1}{k^{2}} e^{-\frac{k^{2}}{4 \alpha^{2}}}\left(\left|\sum_{i=1}^{N} q_{i} \cos \left(\mathbf{k} \cdot \mathbf{r}_{i}\right)\right|^{2}+\left|\sum_{i=1}^{N} q_{i} \sin \left(\mathbf{k} \cdot \mathbf{r}_{i}\right)\right|^{2}\right)-\sum_{i} \frac{\alpha}{\sqrt{\pi}} q_{i}^{2} \tag{3.106}
\end{align*}
$$

where $q_{i}$ and $q_{j}$ are the charges of particle $i$ and $j$, respectively, $\mathbf{r}_{i}$ the position of atom $i, V$ the volume of the cell, $\alpha$ a damping factor, $k$ the wavelength, and 'erfc' the error function complement. The expression gives the exact solution for charges in a periodic system up to arbitrary precision. One part is computed in 'real' space, and the long-range part is more conveniently computed in Fourier space.

- CoulombTruncated

$$
U= \begin{cases}\sum_{i<j} \frac{1}{4 \pi \epsilon} \frac{q_{i} q_{j}}{r_{i j}} & \text { if } r_{i j} \leq r_{c}  \tag{3.107}\\ 0 & \text { otherwise }\end{cases}
$$

- CoulombShifted

$$
U= \begin{cases}\sum_{i<j} \frac{q_{i} q_{j}}{4 \pi \epsilon}\left(\frac{1}{r_{i j}}-\frac{1}{r_{c}}\right) & \text { if } r_{i j} \leq r_{c}  \tag{3.108}\\ 0 & \text { otherwise }\end{cases}
$$

- CoulombSmoothed
- Wolf


## Charge-dipole interaction

- Ewald
- CoulombTruncated

$$
U= \begin{cases}\sum_{i, j} \frac{1}{4 \pi \epsilon} \frac{-q_{i}}{r_{i j}^{2}}\left(\mu_{j} \cdot \mathbf{r}_{i j}\right) & \text { if } r_{i j} \leq r_{c}  \tag{3.109}\\ 0 & \text { otherwise }\end{cases}
$$

## Dipole-dipole interaction

- Ewald
- CoulombTruncated

$$
U= \begin{cases}\sum_{i, j} \frac{1}{4 \pi \epsilon} \frac{1}{r_{i j}^{3}}\left[\mu_{i} \cdot \mu_{j}-3 \frac{\left(\mu_{i} \cdot \mathbf{r}_{i j}\right)\left(\mathbf{r}_{i j} \cdot \mu_{j}\right)}{r_{i j}^{2}}\right] & \text { if } r_{i j} \leq r_{c}  \tag{3.110}\\ 0 & \text { otherwise }\end{cases}
$$

### 3.4 Bonded potentials cross terms

### 3.4.1 Bond-bond potential

- CFF_BOND_BOND_CROSS,CVFF_BOND_BOND_CROSS

$$
\begin{equation*}
U=p_{0}\left(r-p_{1}\right)\left(r^{\prime}-p_{2}\right) \tag{3.111}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $K / \AA^{2}, p_{0}$ and $p_{1}$ in $\AA$.

### 3.4.2 Bond-bend potential

- CFF_BOND_BEND_CROSS,CVFF_BOND_BEND_CROSS

$$
\begin{equation*}
U=\left(\theta-p_{0}\right)\left[p_{1}\left(r-p_{2}\right)+p_{3}\left(r^{\prime}-p_{4}\right)\right] \tag{3.112}
\end{equation*}
$$

5 arguments: $p_{0}$ in degrees, $p_{1} / k_{B}$ in units of $\mathrm{K} / \AA / \mathrm{rad}, p_{2}$ in $\AA, p_{3} / k_{B}$ in units of $\mathrm{K} / \AA / \mathrm{rad}, p_{4}$ in $\AA$.

- MM3_BOND_BEND_CROSS

$$
\begin{equation*}
U=p_{0}\left[\left(r-p_{1}\right)+\left(r^{\prime}-p_{2}\right)\right]\left(\theta-p_{3}\right) \tag{3.113}
\end{equation*}
$$

4 arguments: $p_{0}$ in mdyne/rad, $p_{1}$ and $p_{2}$ in $\AA$, and $p_{3}$ in degrees.

- TRUNCATED_HARMONIC

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\theta-p_{1}\right)^{2} e^{-\frac{r_{i j}^{8}+r_{i k}^{8}}{p_{2}^{8}}} \tag{3.114}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees, and $p_{2}$ in units of $\AA$.

- SCREENED_HARMONIC

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(\theta-p_{1}\right)^{2} e^{-\left(\frac{r_{i j}}{p_{2}}+\frac{r_{i k}}{p_{3}}\right)} \tag{3.115}
\end{equation*}
$$

4 arguments: $p_{0}$ in $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees, $p_{2}$ and $p_{3}$ in units of $\AA$.

- SCREENED_VESSAL

$$
\begin{equation*}
U=\frac{p_{0}}{8\left(\theta_{i j k}-\pi\right)^{2}}\left[\left(p_{1}-\pi\right)^{2}-\left(\theta_{i j k}-\pi\right)^{2}\right]^{2} e^{-\left(\frac{r_{i j}}{p_{2}}+\frac{r_{i k}}{p_{3}}\right)} \tag{3.116}
\end{equation*}
$$

4 arguments: $p_{0}$ in $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ in degrees, $p_{2}$ and $p_{3}$ in units of $\AA$.

- TRUNCATED_VESSAL

$$
\begin{equation*}
U=p_{0}\left[\theta_{i j k}^{p_{2}}\left(\theta_{i j k}-p_{1}\right)^{2}\left(\theta_{i j k}+p_{1}-2 \pi\right)^{2}-\frac{p_{2}}{2} \pi^{p_{2}-1}\left(\theta_{i j k}-p_{1}\right)^{2}\left(\pi-p_{1}\right)^{3} e^{-\frac{r_{i j}^{r_{i j}^{8}+r_{i k}^{8}}}{p_{3}^{8}}}\right] \tag{3.117}
\end{equation*}
$$

4 arguments: $p_{0}$ in $\mathrm{K} / \mathrm{rad}^{4+p_{2}}$, $p_{1}$ in degrees, $p_{2}$ dimensionless, and $p_{3}$ in $\AA$.

### 3.4.3 Bend-bend potential

- CFF_BEND_BEND_CROSS,CVFF_BEND_BEND_CROSS

$$
\begin{equation*}
U=p_{0}\left(\theta-p_{1}\right)\left(\theta^{\prime}-p_{2}\right) \tag{3.118}
\end{equation*}
$$

3 arguments: $p_{0}$ in units of $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ and $p_{2}$ in units of degrees.

- MM3_BEND_BEND_CROSS

$$
\begin{equation*}
U=-p_{0}\left(\theta-p_{1}\right)\left(\theta^{\prime}-p_{2}\right) \tag{3.119}
\end{equation*}
$$

3 arguments: $p_{0}$ in units of mdyne $/ \mathrm{rad}^{2}, p_{1}$ and $p_{2}$ in units of degrees.

### 3.4.4 Bond-torsion potential

The bond-torsions potential correlates the torsion $i-j-k-l$ with the central bond $j-k$, or with the two terminating bonds.

- MM3_BOND_TORSION_CROSS

The MM3 bond-torsion potential correlates the torsion $i-j-k-l$ with the central bond $j-k$

$$
\begin{equation*}
U=\frac{1}{2} p_{0}\left(r-p_{3}\right)(1+\cos \phi)+\frac{1}{2} p_{1}\left(r-p_{3}\right)(1+\cos 2 \phi)+\frac{1}{2} p_{2}\left(r-p_{3}\right)(1+\cos 3 \phi) \tag{3.120}
\end{equation*}
$$

4 arguments: $p_{0}, p_{1}, p_{2}$ in units of $\mathrm{kcal} / \mathrm{mol}, p_{3}$ the reference length of the central bond in $\AA$.

### 3.4.5 Bend-torsion potential

- CFF_BEND_TORSION_CROSS,CVFF_BEND_TORSION_CROSS

$$
\begin{equation*}
U=p_{0}\left(\theta-p_{1}\right)\left(\theta^{\prime}-p_{2}\right) \cos \phi \tag{3.121}
\end{equation*}
$$

3 arguments: $p_{0}$ in units of $\mathrm{K} / \mathrm{rad}^{3}, p_{1}$ and $p_{2}$ in units of degrees.

- SMOOTHED_DIHEDRAL

$$
\begin{equation*}
U=p_{0}\left(1+\cos \left(p_{1} \phi_{i j k l}-p_{2}\right) S\left(\theta_{i j k}\right) S\left(\theta_{j k l}\right)\right. \tag{3.122}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}^{2}, p_{1}$ dimensionless, and $p_{2}$ in degrees.

- SMOOTHED_THREE_COSINE_DIHEDRAL

$$
\begin{equation*}
U=\left\{\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right]\right\} S\left(\theta_{i j k}\right) S\left(\theta_{j k l}\right) \tag{3.123}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $K$.

- SMOOTHED_CFF_DIHEDRAL

$$
\begin{equation*}
U=\left\{p_{0}\left[1-\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1-\cos \left(3 \phi_{i j k l}\right)\right]\right\} S\left(\theta_{i j k}\right) S\left(\theta_{j k l}\right) \tag{3.124}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of K .

- SMOOTHED_CFF_DIHEDRAL2

$$
\begin{equation*}
U=\left\{p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+p_{1}\left[1+\cos \left(2 \phi_{i j k l}\right)\right]+p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right]\right\} S\left(\theta_{i j k}\right) S\left(\theta_{j k l}\right) \tag{3.125}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}$.

- NICHOLAS_DIHEDRAL

$$
\begin{equation*}
U=\left\{\frac{1}{2} p_{0}\left[1+\cos \left(\phi_{i j k l}\right)\right]+\frac{1}{2} p_{1}\left[1-\cos \left(2 \phi_{i j k l}\right)\right]+\frac{1}{2} p_{2}\left[1+\cos \left(3 \phi_{i j k l}\right)\right]\right\} S\left(\theta_{i j k}\right) \tag{3.126}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}, p_{1} / k_{B}, p_{2} / k_{B}$ in units of $\mathrm{K} / \mathrm{rad}$.

- SMOOTHED_CFF_BEND_TORSION_CROSS

$$
\begin{equation*}
U=S\left(\theta_{1}\right)\left[p_{0} *\left(\text { Theta }_{1}-p_{1}\right) *\left(\theta_{2}-p_{2}\right) \cos (\phi)\right] S\left(\theta_{2}\right) \tag{3.127}
\end{equation*}
$$

3 arguments: $p_{0} / k_{B}$ in units $\mathrm{K} / \mathrm{rad}^{3}, p_{1}$ and $p_{2}$ in units of degrees.
The smoothing function $S(\theta)$ is defined as

$$
S(\theta)= \begin{cases}1 & \theta<\theta_{\text {on }}  \tag{3.128}\\ \left(\theta_{\text {off }}-\theta\right)^{2} \frac{\theta_{\text {off }}+2 \theta-3 \theta_{\text {on }}}{\left(\theta_{\text {off }}-\theta_{\text {on }}\right)^{3}} & \theta \geq \theta_{\text {on }}\end{cases}
$$

with $\theta_{\text {on }}=170^{\circ}$ and $\theta_{\text {off }}=180^{\circ}$.


### 4.1 Introduction

Often the best way of learning a code is to look at various examples. Note these examples are just for that purpose and real simulation runs should be much longer, both in initialization time as well as production run time.

Tip: VMD is capable of showing pdb-files with several frames. This the way RASPA produces movies. Standard VMD does not show the box itself but some extension scripts have been written. To show the unit cell in VMD you can input into the console:

```
draw pbcbox -width 1.0 -style tubes -center unitcell
```

make sure the 'pbctools.tcl' and 'pbcbox.tcl' are in the current directory, they are located in the 'utils' directory of RASPA. For NPT simulations the box is properly updated.

The output-files begin with some essential data about the program: the version number, whether a 64 bits or 32-bits executable is run, the used compiler, when the output-file was generated and on which node and system.

```
Compiler and run-time data
===
RASPA 2.0
Compiled as a 64-bits application
Compiler: gcc 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.54)
Compile Date = Nov 23 2014, Compile Time = 11:43:26
Sun Nov 23 12:17:53 2014
Simulation started on Sunday, November 23.
The start time was 12:17 PM.
Cpu data: x86_64
Cpu Model: MacPro5,1
Host name: server.darkwing.nl
```

```
OS release: 14.0.0
OS type: Darwin
OS version: 14B25
```


### 4.2 Basic examples

## Example 1: Monte Carlo of methane in a box

A Monte Carlo run of 100 methane molecules in a $30 \times 30 \times 30 \AA$ box. After 1000 cycles of initialization the production run is started. A movie is written and every 10th configuration is appended to the movie. The movie is stored in 'Movies/System_0', and can be viewed with VMD: 'vmd AllComponents.pdb'.

SimulationType	MonteCarlo
NumberOfCycles	10000
NumberOfInitializationCycles	5000
PrintEvery	1000
Forcefield	GarciaPerez2006
Box 0	
BoxLengths 303030	
ExternalTemperature 300.0	
Movies yes	
WriteMoviesEvery 100	
Component 0 MoleculeName	methane
$\quad$ MoleculeDefinition	TraPPE
$\quad$ TranslationProbability	1.0
	CreateNumberOfMolecules
	100

In RASPA, the cycle is define as max $(20, N)$ steps, where $N$ is the number of molecules in the system. In every cycle, each of the molecules has on average been used for a Monte Carlo move (accepted or rejected). There is a minimum of 20 steps to avoid that low-density systems or not sampled well. The definition of a cycle is less dependent on the system size. The number of Monte carlo steps is roughly the the number of cycles times the average number of molecules.

In the output file the simulation writes an important check to the file


In Monte Carlo only difference in energies are computed. These differences are continously added to keep track of the current energies (from which average energies etc. are computed). Obviously, the current energy that is kept track off during the simulation should be equal to a full recalculation of the energies. The difference between the two signals an error. If the drift is higher than say $1 e-3$ or $1 e-4$ the results of the simulation are in error. This could be due to an error in one of the Monte Carlo moves or because the force field is "wrong" (a typical error is when one forgets to define required potentials).

The performance of Monte Carlo moves is monitored. Translation moves are usually scaled to achieve an acceptance rate of $50 \%$. Here, the move reached its upper limit of $1 \AA$ because of the low density of the system.

```
Performance of the translation move:
=============-==-
 total 333219.000000 332880.000000 333901.000000
 lotal lll
```

    \(\begin{array}{lr}\text { succesfull } & 284312.000000 \\ \text { accepted } & 0.853229 \\ 0.854740 & 0.852444\end{array}\)
    \(\begin{array}{lllll}\text { accepted } & 0.853229 & 0.854740 & 0.852444 \\ \text { displacement } & 1.000000 & 1.000000 & 1.000000\end{array}\)
    Averages are computed alonf with an error bar. The error is computed by dividing the simulation in 5 blocks and calulating the standard deviation. The errors in RASPA are computed as the $95 \%$ confidence interval.

Block[ 0]	-18796.35401 [K]	
Block[ 1]	-18152.23084 [K]	
Block[ 2]	-18396.77812 [K]	
Block[ 3]	-18450.64075 [K]	
Block[ 4]	-17933.42582 [K]	
Average	-18345.88591 [K] +/-	582.48483 [K]

## Example 2: Monte Carlo of CO2 in a box and N2 in another box (two independent simulations)

RASPA has a build-in structure of being able to simulate several systems at the same time. This has applications in Gibbs-ensembles and (hyper) parallel tempering for example. However, this capability can also be used for independent systems. The first box is $30 \times 30 \times 30 \AA$ with $90^{\circ}$ angles, containing $50 \mathrm{~N}_{2}$ and $25 \mathrm{CO}_{2}$ and molecules and moved around by translation, rotation and reinsertion. The second box is monoclinic and of size $25 \times 25 \times 25$ with $\beta=120^{\circ}, \alpha=\gamma=90^{\circ}$ containing $25 \mathrm{~N}_{2}$ and $50 \mathrm{CO}_{2}$ molecules. The first system is at 300 K , the second at 500 K .


One thing to note is that system-dependent statements apply to the current box, following 'Box [int]'. The initialization of the systems with molecules is done using the 'CreateNumberOfMolecules' which applies similarly to the current component specified using 'component [int]'. The list of integers represent the initial amount of molecules for each system. Note that when the 'BoxAngles' line is omitted, $\alpha=\beta=\gamma=90^{\circ}$ is assumed as the default.

## Example 3: Monte Carlo of a binary mixture in a box

A Monte Carlo run of 50 propane and 50 butane molecules in a $30 \times 30 \times 30 \AA$ box. The MC moves are translation, rotation, and full reinsertion. After 1000 steps of initialization the production run is started. A movie is written and every 10th configuration is appended to the movie. The movie is stored in 'Movies/System[0]', and can be viewed with VMD: 'vmd AllComponents.pdb'.

SimulationType		MonteCarlo
NumberOfCyc	cles 10000	
NumberOfInitializationCycles		2000
PrintEvery 100		
Forcefield GarciaPerez2006		
Box 0		
BoxLengths 303030		
ExternalTemperature 300.0		
Movies yes		
WriteMoviesEvery 10		
Component 0	MoleculeName	propane
	MoleculeDefinition	TraPPE
	TranslationProbability	1.0
	RotationProbability	1.0
	ReinsertionProbability	1.0
	CreateNumberOfMolecules	50
Component 1	1 MoleculeName	butane
	MoleculeDefinition	TraPPE
	TranslationProbability	1.0
	RotationProbability	1.0
	ReinsertionProbability	1.0
	CreateNumberOfMolecules	50

## Example 4: Monte Carlo of $\mathrm{CO}_{2}$ and $\mathrm{N}_{2}$ in two independent boxes

An example of a binary mixture of $\mathrm{CO}_{2}$ and $\mathrm{N}_{2}$ in two independent boxes. Box one contains $100 \mathrm{CO}_{2}$ molecules at 300 Kelvin, box two (monoclinic shape) contains $100 \mathrm{~N}_{2}$ molecules at 500 Kelvin. The movies for box one are appended every 10 cycles, the movie for box two every 5 cycles. Three types of Monte Carlo moves are used: translation, rotation, and reinsertion. The force field used is the TraPPE force field.

```
SimulationType MonteCarlo
NumberOfCycles
NumberOf InitializationCycles 1000
PrintEvery
Forcefield GarciaPerez2006
Box 0
BoxLengths 25 25 25
ExternalTemperature 300.0
Movies yes
WriteMoviesEvery 10
Box 1
BoxLengths 30 30 30
BoxAngles 90 120 90
ExternalTemperature 500.0
Movies yes
WriteMoviesEvery 5
Component O MoleculeName
 CleculeDefinition CO2
 TranslationProbability
 RotationProbability
 einsertionProbability 1.0
 reateNumberOfMolecules }10
Component 1 MoleculeName
 MoleculeDefinition TraPPE
 TranslationProbability
 TranslationProbability
 ReinsertionProbability 1.0
 CreateNumberOfMolecules 0 100
```


## Example 5: Molecular dynamics of methane in a box measuring the mean-square displacement

A molecular dynamics run of 100 methane molecules in a $25 \times 25 \times 25 \AA$ box at 300 K . The simulations starts with 1000 InitializationSteps using Monte Carlo, the only MC moves are translation and reinsertion. After 1000 steps of initialization the equilibration run is started. Here, the atoms are assigned a velocities, and during the equilibration run the distribution should attain the Maxwell-Boltzmann distribution. After the initialization and equilibration runs, the production is started. The mean-square displacement is measured and written to 'MSDOrderN/System_0' for both self-and collective diffusion (the slope of the mean square displacement is related to the diffusion coefficients). They can be plotted with 'gnuplot'. In contrast to Monte Carlo where the ensemble basically follows from the used MC moves, the ensemble for molecular dynamics needs to be explicitly specified using the 'Ensemble' keyword.

SimulationType		MolecularDynamics	
NumberOfCycles		1000000	
NumberOfInitializationCycles		1000	
NumberOfEquilibrationCycles		10000	
PrintEvery		100000	
PrintPropertiesEvery		100000	
Ensemble		nvt	
TimeStep		0.0005	
Forcefield		GarciaPerez2006	
Box 0			
BoxLengths 252525			
ExternalTemperature 300.0			
ComputeMSD yes			
PrintMSDEvery 5000			
Component 0	0 MoleculeName		methane
	MoleculeDefinitio		TraPPE
	TranslationProbab	ility	1.0
	ReinsertionProbab	ility	1.0
	CreateNumberOfMol	ecules	100

In MD, it is important to have good energy-conservation. This is monitored

The first number is the conserved quantity, the second the current relative energy drift, and the last number is the average energy drift. The latter two numbers need to be small, usually smaller than say $10^{-3}$. Here, the number is large which is due to the type of used potential in the TraPPE forcefield: unshifted, truncated Lennard-Jones with tail-corrections. Shifted potentials show much better energy conservation because they remove the discontinuity of the force at the cutoff boundary.

Using NVE, temperature control is difficult, the average temperature was $253.19590 \pm 0.77596$.

## Example 6: Adsorption isotherm of methane in MFI

Adsorption isotherms can be easily obtained by specifying a list of (increasing) pressures which will be subsequently run. If no 'FugacityCoefficient' keyword is specified these pressure are converted to fugacity using the Peng-Robinson equation of state. Important: it is essential to specify the 'ideal gas Rosenbluth weight' for a component. This value needs to be computed separately and depends only on temperature (see auxiliary examples). This value is the reference state of the ideal gas. It is convenient to specify it in advance, otherwise the correct pressure needs to deduced afterwards and is different from the specified input. For mixtures this becomes cumbersome when the ideal gas Rosenbluth weight of the components is different. It is also convenient to specify the 'void fraction' of the materials (probed with helium) in advance (see auxiliary examples). If you do, the excess adsorption is automatically computed properly. At high pressures and temperatures the excess adsorption can be substantially lower than absolute adsorption. In this example, $2 \times 2 \times 2$ unit cells are required to meet the required that all of the perpendicular cell lengths are larger than twice the cutoff distance. The default cutoff of $12 \AA$ means the perpendicular lengths should be larger than $24 \AA$.

```
SimulationType }\quad\mathrm{ MonteCarlo
NumberOfCycles 25000
NumberOfInitializationCycles 2000
ContinueAfterCrash no
WriteBinaryRestartFileEvery 2000
Forcefield GarciaPerez2006
RemoveAtomNumberCodeFromLabel yes
Framework 0
FrameworkName MFI_SI
UnitCells 2 2 2
HeliumVoidFraction 0.29
ExternalTemperature 300.0
ExternalPressure 1e4 1e5
ComputeNumberOfMoleculesHistogram yes
WriteNumberOfMoleculesHistogramEvery 5000
NumberOfMoleculesHistogramSize 1100
NumberOfMoleculesRange 80
ComputeEnergyHistogram yes
WriteEnergyHistogramEvery 5000
Mize 400
*)
EnergyHistogramUpperLimit -20000
Component O MoleculeName methane
 MoleculeDefinition TraPPE
 TranslationProbability 0.5
 lransertionProbability 0.5
 CreateNumberOfMolecules 0
```

The output-file shows the performance of the various Monte Carlo moves. For adsorption, a good check is that the acceptance ratio of the 'swap addition' and the 'swap deletion' should be close.

```
Performance of the swap addition move:
Component [methane] total tried: 124923.000000 succesfull growth: 110867.000000 (88.748269 [%]) accepted: 40933.000000 (32.766584 [%])
Performance of the swap deletion move:
===============================
Performance of the regrow move:
Component [methane] total tried: 123242.000000 succesfull growth: 109872.000000 (89.151426 [%]) accepted: 27049.000000 (21.947875 [%])
```

Adsorption results are displayed in various units for both absolute and excess adsorption.


## Example 7: Henry coefficient of $n$-hexane in mono-clinic ERI

The monoclinic version of erionite (ERI) is named 'ERI_mono', the orthorhombic version is 'ERI'. The monoclinic version needs at least $3 \times 3 \times 3$ unit cells to be larger than twice the cutoff, while the orthorhombic needs $2 \times 2 \times 2$ (the unit cell shapes and size are different). To compute the Henry coefficient of hexane in erionite two simulations need to be performed. First the ideal Rosenbluth gas value needs to be computed at the desired temperature (see Auxiliary examples). This value needs to be filled in first. Next the simulation is started and the Henry coefficient is listed in the output.

SimulationType	MonteCarlo
NumberOfCycles	20000
NumberOfInitializationCycles	
PrintEvery	1000
PrintPropertiesEvery	1000
Forcefield	GarciaPerez2006
Framework 0	
FrameworkName ERI_SI	
RemoveAtomNumberCodeFromLabel yes	
UnitCells 333	
ExternalTemperature 573.0	
Component 0 MoleculeName	hexane
MoleculeDefinition	TraPPE
IdealRosenbluthValu	lue 0.00312147
WidomProbability	1.0
CreateNumberOfMolec	cules

The average Widom Rosenbluth weight and Henry coefficient are printed:


## Example 8: Henry coefficient of $n$-pentane to $n$-nonane in MFI

By using multiple components several Henry coefficients can be computed simultaneously. The Widom insertion probe move never actually inserts the molecules, it just compute the energy at randomly chosen insertion positions. Note that the ideal gas Rosenbluth weights decrease with chain length.

SimulationType	MonteCarlo
NumberOfCycles	10000
Numberof InitializationCycles	0
PrintEvery	1000



Figure 9: The radial distribution function of water at 298K.
PrintPropertiesEvery
Forcefield
Framework 0 $\quad$ GarciaPerez2006

The resulting Henry coefficients are:
Average Henry coefficient:
[C5] Average Henry coefficient: $2.98386 \mathrm{e}-06+/-4.36063 \mathrm{e}-08$ [mol/kg/Pa]
[C6] Average Henry coefficient: $5.90253 \mathrm{e}-06+/-7.2814 \mathrm{e}-08[\mathrm{~mol} / \mathrm{kg} / \mathrm{Pa}]$
[C8] Average Henry coefficient: $1.17407 \mathrm{e}-05+/-2.48425 \mathrm{e}-07$ [mol $/ \mathrm{kg} / \mathrm{Pa}]$
[c9] Averal Henry coefficient. 2.28771e-05 +/- 1.62704e-06 [mol/kg/Pa]

## Example 9: Computing the radial distribution function of a methane/ethane-mixture

The radial distribution function (RDF) is a good indication of the status of the fluid: solid, liquid or gas. RASPA computes the RDF for all (pseudo-)atoms pairs, unless you specified 'no' to the 'PrintToPDB'-field of the 'pseudo_atoms' file. For example, the $L$-atoms of water should not be printed to movie-files, and there would be little point generating the RDF for interactions with these 'dummy' interaction sites.

SimulationType	MolecularDynamics
NumberOfCycles	1000000
NumberOf InitializationCycles	10000
NumberOfEquilibrationCycles	5000
PrintEvery	5000

```
ContinueAfterCrash
WriteBinaryRestartFileEvery 5000
Ensemble NVT
Forcefield
GarciaPerez2006
Box 0
BoxLengths 24.0 24.0 24.0
ComputeRDF yes
WriteRDFEvery 10000
RDFHistogramSize 300
RDFRange 12.0
ExternalTemperature 300.0
Component 0 MoleculeName
```

We used the NVT ensemble and therefore we have good temperature control

```
Temperature: 289.880 (avg. 299.641), Translational (avg. 299.641), Rotational (avg. nan)
Temperature Adsorbates: 289.880 (avg. 299.641), Translational (avg. 299.641), Rotational (avg. nan)
```

Shifted potentials are used and the relative energy conservation is 0.0000918675 (excellent).

## Example 10: measuring bond/bend/dihedral angle distributions MD



## Example 11: measuring bond/bend/dihedral angle distributions MC

SimulationType	MonteCarlo
NumberOfCycles	5000000
NumberOfInitializationCycles	10000
PrintEvery	50000
RestartFile	no
ContinueAfterCrash	no
WriteBinaryRestartFileEvery	50000
Forcefield	GarciaPerez2006
Box 0	
BoxLengths 252525	
ExternalTemperature 298.0	
ExternalPressure 0.0	
ComputeMoleculeProperties yes	
component 0 MoleculeName	2-methylbutane
StartingBead	0
FugacityCoefficient	1.0
MoleculeDefinition	TraPPE
TranslationProbability	$y \quad 1.0$
RotationProbability	1.0



Figure 10: The torsion potential for united atom linear alkanes $\mathrm{X}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{X}$.

### 4.3 Non-basic examples

## Example 1: Adsorption of a binary $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ (1:3) mixture in IRMOF-1

Appreciable adsorption in MOF materials occurs at higher pressure than zeolites, usually in the range up to 10 bar. At these high pressures absolute and excess adsorption are different, and excess adsorption eventually even goes down. This is due to the fact that excess adsorption is relative to what would have been in the free pore volume at these conditions. So one can compress the outside fluid but eventually the pores are filled up. At that maximum absolute loading the excess adsorption will go down.

SimulationType		MonteCarlo
NumberOfCycles		50000
NumberOfInitializationCycles		5000
PrintEvery		1000
Forcefield		Dubbeldam2007FlexibleIRMOF-1
Framework 0		
FrameworkName IRMOF-1		
UnitCells 111		
HeliumVoidFraction 0.81		
ExternalTemperature 300.0		
ExternalPressure 10e5		
Component 0	0 MoleculeName	C02
	MoleculeDefinition	TraPPE
	MolFraction	0.25
	TranslationProbability	0.5
	RegrowProbability	0.5
	IdentityChangeProbability	1.0
	NumberOfIdentityChanges	2
	IdentityChangesList	01
	SwapProbability	1.0
	CreateNumberOfMolecules	0
Component 1	1 MoleculeName	methane
	MoleculeDefinition	TraPPE
	MolFraction	0.75
	TranslationProbability	0.5
	RegrowProbability	0.5
	IdentityChangeProbability	1.0
	NumberOfIdentityChanges	2
	IdentityChangesList	01
	SwapProbability	1.0
	CreateNumberOfMolecules	0

To compute the excess adsorption the void fraction of a structure needs to be specified using 'HeliumVoidFraction [real]'. RASPA automatically uses an equation of state (default: Peng-Robinson) to compute the fugacities from the pressure and mol-fraction as is done here for a mixture of $\mathrm{CO}_{2}$ and $\mathrm{CH}_{4}$. It also computes the amount of excess molecules from this equation of state.

```
Component O [CO2] (Adsorbate molecule)
 Critical temparure [K]: 304.128200
 Critical pressure [Pa]: 7377300.000000
 Acentric factor [-]: 0.223940
 RXMC partition factor [-]: 0.000000
 Fluid is a vapour
```



```
 Density of the bulk fluid phase: 18.1580726483 [kg/m^3]
 Binary mixture EOS parameters: (0): 0.000000 (1): 0.000000
 Amount of excess molecules: 0.8675190741 [-]
 Conversion factor molecules/unit cell -> mol/kg: 0.1623747175 [-]
 Conversion factor molecules/unit cell -> gr/gr: 7.1442927209 [-]
 Conversion factor molecules/unit cell l> cm^3 STP/gr: 3.6394629804 [-]
 Conversion factor molecules/unit cell h> cm^3 STP/cm^3: 2.1592046669 [-]
 Conversion factor mol/kg -> cm 3 STP/gr: }22.4139:57476 [-] [-]
 Partial pressure: 250000.00000000000000 [Pa]
 1875.00000000000000 [Torr]
 2.50000000000000 [bar]
 0.9503504709 [-]
 0.95587.61773457148229 [Pa]
 1781.90713300928610 [Torr]
 2.37587617734571 [bar]
Component 1 [methane] (Adsorbate molecule)
 Critical temparure [K]: 190.564000
 Critical pressure [Pa]: 4599200.000000
 Acentric factor [-]: 0.011420
 RXMC partition factor [-]: 0.000000
 Fluid is a vapour
 MolFraction: }\quad0.7500000000[-
 Density of the bulk fluid phase: 6.6206386115 [kg/m^3]
 Binary mixture EOS parameters: (0): 0.000000 (1): 0.000000
 Amount of excess molecules: 2.6025572224 [-]
 Conversion factor molecules/unit cell -> mol/kg: 0.1623747175 [-]
 Conversion factor molecules/unit cell -> gr/gr: 2.6048899107 [-]
 Conversion factor molecules/unit cell >> cm`3 STP/gr: 3.6394629804 [-]
 Conversion factor molecules/unit cell -> cm^3 STP/cm^3: 2.1592046669 [-]
 Conversion factor mol/kg -> cm`3 STP/gr: 22.4139757476 [-]
 Conversion factor mol/kg -> cm`3 STP/cm`3: 13.2976654244 [-]
 Partial pressure: 750000.00000000011642 [Pa]
 5625.00000000000091 [Torr]
 7.50000000000000 [bar]
 7.40192450037010 [atm]
 Fugacity coefficient: 0.9790119494 [-]
 Partial fugacity: 734258.96201743301935 [Pa]
 06.94221513074717 [Torr]
 7.34258962017433 [bar]
```

Also noteworthy is the use of the identity-change move for mixtures. A molecule of a certain type can be changed at the same position into a molecule of another type. It is specified per component as a list of other components that are allowed for this move. The identity-change move is highly recommended at high loadings.

At each 'PrintEvery' steps the loadings are shown in a variety of units for both excess and absolute adsorption:

```
Loadings per component:
Component O (CO2), current number of integer/fractional/reaction molecules: 16/0/0 (avg. 12.68484), density: 67.81662 (avg. 53.76520) [kg/m^3]
 absolute adsorption: 16.00000 (avg. 12.68484) [mol/uc], 2.5979954802 (avg. 2.0596978259) [mol/kg], 114.3086835349 (avg. 90.6242327003) [mg/g]
 58.2314076859 (avg. 46.1660171161) [cm`3 STP/g], 34.5472746700 (avg. 27.3891725636) [cm`3 STP/cm`3]
 excess adsorption: 15.1324809259 (avg. 11.8173240923) [mol/uc], 2.4571323156 (avg. 1.9188346613) [mol/kg], 108.1108733282 (avg. 84.4264224936) [mg/g]
 55.0741041308 (avg. 43.0087135610) [cm^3 STP/g], 32.6741234365 (avg. 25.5160213301) [cm^3 STP/cm^3]
Component 1 (methane), current number of integer/fractional/reaction molecules: 19/0/0 (avg. 19.21646), density: 29.36296 (avg. 29.69749) [kg/m^3]
 absolute adsorption: 19.00000 (avg. 19.21646) [mol/uc], 3.0851196328 (avg. 3.1202680711) [mol/kg], 49.4929083037 (avg. 50.0567757203) [mg/g]
 69.1497966270 (avg. 69.9376128722) [cm^3 STP/g], 41.0248886706 (avg. 41.4922808443) [cm^3 STP/cm`3]
 excess adsorption: }\begin{array}{llllll}{16.3974427776 (avg. 16.6139077477) [mol/uc], 2.6625301390 (avg. 2.6976785773) [mol/kg], 42.7135332529 (avg. 43.2774006695) [mg/g]}
```

and at the end error bars are computed for all properties:


## Example 2: NPT Monte Carlo of propane

The density of propane at 250 K and 10 bar is about $559.53 \mathrm{~kg} / \mathrm{m}^{3}$ (NIST database). In this example the density is computed using Monte Carlo in the NPT-ensemble. Given the pressure $P$, the temperature $T$, and the amount of molecules $N$, the density is computed.


The TraPPE model for propane gives for our simulation of 25000 cycles $568.2 \pm 4.1 \mathrm{~kg} / \mathrm{m}^{3}$. The measured pressure is $9.75 \pm 2.2$ bar.

## Example 3: NPT molecular dynamics of water

A molecular dynamics simulation of water in the NPT-ensemble (constant amount of particles $N$, constant average pressure $P$, and constant average temperature $T$ ). Many water models are defined, but most are defined with simple Coulombic potentials using cutoffs of $9 \AA$. None are optimized with the Ewaldsummation except for the recalibrated Tip5p-Ew model. Unfortunately, that model is defined using a cutoff always equal to half the box size, while RASPA uses a fixed cutoff (default: 12 Angstrom). A fixed cutoff is more realistic, but requires the shortest perpendicular width to be twice the cutoff, thus here larger than $24 \AA$. All this results in having to simulate more than 512 water molecules. The tip5p models use 5 fixed
charges placed in the water geometry, so for each step 2560 charge sites needs to be computed with Ewald. Conclusion: liquid water is computationally expensive to compute when done properly.

In MD-NPT the average pressure $\langle P\rangle$ and average temperature $\langle T\rangle$ are imposed. The instantaneous values, especially for the pressure, are different. RASPA uses the Nose-Hoover chain method, and NPTMD methods of Martyna and Tuckermann.

Several options are introduced here: "TimeStep [real]" to set the time step. For rigid molecules the time step can be a bit larger because the high frequency movement is removed (the O-H is around 3000 $\mathrm{cm}^{-1}$ ). The cutoff can be set with 'CutOff [real]'. The method to compute charge interactions is set with 'ChargeMethod [Ewald|None]', although Ewald is the default. The precision can specified using 'EwaldPrecision [real]' from which the Ewald parameters $\kappa$ and the amount of wave vectors is inferred. The initial positions of the water are read from file ('RestartFile yes'), the file is located in directory 'RestartInitial/System[int]'.

The experimental density of water at 300 K and 1 bar is about $996.56 \mathrm{~kg} / \mathrm{m}^{3}$ (NIST database).


The output shows some details of intermediate status during the run: the time run, the current box and average box, etc. The total linear momentum is conserved and zero (the center of mass movement of the system is removed at initialization). For this relatively short run, the average pressure of 1.26 bar is already quite close to the applied 1 bar. Also, the temperature of the water, and of the simulation cell (it is a degree of freedom and has therefore an associated temperature) can also been seen to converge to the applied value of 300 K . Energy conservation is adequate with a 0.001 ps time step.

## Example 4: Adsorption of $\mathrm{CO}_{2}$ in Na -LTA

The Linde Type A structure LTA-4A has 96 aluminum per unit cell. A common 4A sample has 96 charge balancing sodium ions. The ions are small enough to access the sodalite cages, but the bigger methane molecules are exclusively in the big $\alpha$-cages and not in the sodalite cages. They need to be artificially blocked. Because the adsorption is dependent on the positions of the ions it is important to start from the crystallographic positions and use only translation for the ions. Reinsertion moves may transport the ions to positions in the windows and this is especially important for diffusion (the next example).

SimulationType	MonteCarlo
NumberOfCycles	25000
NumberOfInitializationCycles	10000
RestartFile	no
PrintEvery	1000
Forcefield	GarciaPerez2006
ModifyOxgensConnectedToAluminium yes	
Framework 0	
FrameworkName LTA4A	
RemoveAtomNumberCodeFromLabel yes	
UnitCells 1 1 1	
ExternalTemperature 298.0	

ExternalPressure 10000.0

Component	0 MoleculeName	sodium
	MoleculeDefinition	TraPPE
	TranslationProbability	1.0
	RandomTranslationProbability	1.0
	ExtraFrameworkMolecule	yes
	CreateNumberOfMolecules	96
Component 1	1 MoleculeName	C02
	MoleculeDefinition	TraPPE
	BlockPockets	yes
	BlockPocketsFilename	LTA
	TranslationProbability	1.0
	ReinsertionProbability	1.0
	SwapProbability	1.0
	ExtraFrameworkMolecule	no
	CreateNumberOfMolecules	0

## Example 5: Diffusion of $\mathrm{CO}_{2}$ in Na-LTA

An example of molecular dynamics of an adsorbate $\left(\mathrm{CO}_{2}\right)$ diffusing through the pores of LTA 4A loaded with ions. The ions are read from the restart-file. The mean-square displacement is computed during the run.


## Example 6: Diffusion of benzene in rigid IRMOF-1

Benzene (and aromatic molecules in general) are usually kept rigid. RASPA uses quaternions for the description of the orientation of the molecules. The integration schemes of Martyna and Tuckermann are symplectic and conserve energy very well. Even though the molecule is described as a center of mass and a orientation, the forces are still computed atomically. In this example the diffusivity the mean-square displacement of benzene at 298K in IRMOF-1 is computed. The forcefield is 'FlexibleIRMOF-1' which is also perfectly suitable for rigid structures. It has been specifically optimized for iso-reticular metal-organic frameworks.

SimulationType	MolecularDynamics
NumberOfCycles	100000
NumberOfEquilibrationCycles	10000
NumberOfInitializationCycles	1000
PrintEvery	5000
RestartFile	no
Ensemble	NVT
ChargeMethod	Ewald
CutOff	12.0
TimeStep	0.0005
Forcefield	Dubbeldam2007FlexibleIRMOF-1



Figure 11: Gibbs ensemble simulation of CO2 at 250K. Two simulation boxes are used: one for the gas-branch and one for the liquid branch. The simulation can only be conducted below a certain temperature because otherwise the boxes can swap between gas and liquid. At 250 K , the boxes are initialized with an equal amount of molecules, but soon split into gas and liquid. The average densities are straightforward to measure. As shown, the TraPPE model for CO2 does a good job when compare to experimental data (NIST database).
EwaldPrecision $\quad 1 \mathrm{e}-6$

Framework 0
FrameworkName IRMOF-1
UnitCells 111
ExternalTemperature 298.0

Component 0	MoleculeName	benzene
	StartingBead	0
	MoleculeDefinition	TraPPE
	IdealGasRosenbluthWeight	1.0
	TranslationProbability	1.0
	RotationProbability	1.0
	RegrowProbability	1.0
	CreateNumberOfMolecules	16

## Example 7: Gibbs ensemble simulation of $\mathrm{CO}_{2}$

The Gibbs ensemble is way of computing coexistence without interfaces. It is one the most used methods to study vapor-liquid and liquid-liquid equilibria, it is not suitable for very dense systems. The conditions for coexistence of two or more phases I, II, ... is that the pressure and temperature of all the phases must be equal, as well as the chemical potential of all the species. The Gibbs ensemble example for the single component $\mathrm{CO}_{2}$ is listed below. two boxes will be used, one will correspond to the liquid phase, the other one to the gas phase. The 'GibbsVolumeChange' move changes the individual volume leaving the total volume in tact, the 'GibbsSwap' move swaps particles from one box to the other. One of the practical problems is to make sure both boxes remain larger than twice the cutoff length. If not, the program will exit with an error message, and the simulation should be restarted with a bigger volume. Note that RASPA uses orientational biased insertions for small rigid molecules like $\mathrm{CO}_{2}$. For this example about 10000-20000 cycles are needed to equilibrate properly.

SimulationType	MonteCarlo
NumberOfCycles	25000
NumberOfInitializationCycles	10000
PrintEvery	1000
RestartFile	no
Forcefield	TraPPE
Box 0	
BoxLengths 303030	
BoxAngles 909090	
ExternalTemperature 240.0	
Box 1	
BoxLengths 30 30 30	
BoxAngles 909090	
ExternalTemperature 240.0	
GibbsVolumeChangeProbability	0.1



## Example 8: Minimization of a flexible framework (fixed volume)

Physically, energy minimization corresponds to an instantaneous freezing of the system; a static structure in which no atom feels a net force corresponds to a temperature of 0 K . In the early 1980's, energy minimization was about all one could afford to do and was dubbed 'molecular mechanics.' Here, a difficult optimization problem: a flexible framework, IRMOF-1, in a periodic unit cell, with many low energy modes. The energy landscape of a framework is very complex. A true minimum is characterized by all positive eigenvalues of the Hessian matrix (the matrix of second derivatives with respect to position). A zero eigenvalue means that moving in the direction of the associated eigenvector does not result in a change in energy. Likewise, a negative en positive eigenvalue means an decrease and increase in energy, respectively. Most of the optimization time is spent on reaching a zero curvature structure, i.e. all positive eigenvalues.

```
SimulationType Minimization
NumberOfCycles 1
RestartFile no
PrintEvery
MaximumNumberOfMinimizationSteps }100
MSGradientTolerance 1e-6
Ensemble NVT
Forcefield Dubbeldam2007FlexibleIRMOF-1
ChargeMethod
EwaldPrecision 1e-10
InternalFrameworkLennardJonesInteractions yes
Framework 0
FrameworkName IRMOF-1
UnitCells 1 1 1
ExternalTemperature 298.0
Movies yes
WriteMoviesEvery 1
FlexibleFramework
FrameworkDefinitions lubbeldam2007FlexibleIRMOF-1
```

The minimization needs 119 cycles to optimize IRMOF-1, the last steps are shown here. The convergence is very rapid (quadratic) near the minimum, and the minimum energy can be reached up to arbitrary precision (the forces on all the atoms are $1 \times 10^{-8} \mathrm{~K} / \AA^{2}$ or smaller). To compute spectra, frequencies and/or eigenmodes a high precision is needed.



The shifting values are always lower than the lowest eigenvalues, both are negative and approach zero. At iteration 2, the lowest eigenvalues is closer to zero, but still the amount of negative eigenvalues is 6 higher. Also increases in energy can occur. However, eventually the system is driven to all positive eigenvalues (a true energy minimum without saddle points) and the lowest energy. Note that minimization the structure in constant volume results in a finite (non-zero) stress. Minimization taking volume and shape changes into account are usually easier, because the system is less constrained. If one would like to also minimize the cell volume (isotropicly) use

Ensemble
NPT
or use for a change in cell-lengths and cell-angles
Ensemble
NPTPR

### 4.4 Advanced examples

## Example 1: Adsorption of $\mathrm{CO}_{2}$ in fully-flexible IRMOF-1 ( $\mu V T$-ensemble)

Flexibility in MOFs is more important than in zeolites. A very efficient move to change the whole framework (and actually also the adsorbates) is have a short NVE MD-run and accept or reject the new configuration. This hybrid MD/MC move can be switched on using 'HybridMCMDMoveProbability [real]', where [real] is the fraction of the move at each cycle.


## Example 2: $\mathrm{CO}_{2}$ adsorption in flexible IRMOF-1 (osmotic ensemble).

Adsorption simulations using a flexible framework are very computationally demanding, the current example will probably run about a week. The equilibration is very important and it is best to start with a restart-file obtained from the previous example at the same temperature. The directory 'Restart' produced
in the previous example should be copied to 'RestartInitial' and the option 'RestartFile' should be set to 'yes'.


## Example 3: NPT molecular dynamics of flexible IRMOF-1

An NPT-ensemble simulation of a flexible framework IRMOF-1. This type of simulation can be used to compute the average unit cell size at the desired temperature and pressure (and properties like the 'volumetric expansion coefficient' etc). The equilibration, although slow, is very much faster than Monte Carlo. The example show the code for flexible IRMOF-1 at 298 K and 1 atm .

```
SimulationType MolecularDynamics
NumberOfCycles 500000
NumberOfEquilibrationCycles }
PrintEvery
RestartFile
Ensemble NPT
Forcefield Dubbeldam2007FlexibleIRMOF-1
CutOff
 12.0
Framework 0
FrameworkName IRMOF-1
UnitCells 1 1
ExternalTemperature 298.0
ExternalPressure 101325.0
FlexibleFramework yes
FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1
```


## Example 4: Benzene diffusion in flexible IRMOF-10

Molecules with a phenyl-ring are usually quite rigid. In Monte Carlo rigid units are not a problem, because the MC moves can be developed in such a way that the constraints remain satisfied, i.e. translation and rotation of the whole rigid unit. In molecular dynamics, there are two general approaches. The first is to integrate the molecules atomically and afterwards satisfy the constraints iteratively using for example the shake algorithm. For bigger molecules complications arise, convergence becomes more difficult, and for a planar molecule like benzene additional sites above the molecule are needed. Therefore, the second approach has become more popular. Using quaternions (or Euler angles) one can describe the configurations of the molecule as a center-of-mass position and an orientation. The translation and rotation are integrated and when the forces are needed the atoms positions are computed from the com position and the orientation. The forces are then summed to the center of mass and the torque is computed. Miller et al. have developed an integration algorithm for rigid units (using quaternions) that is symplectic.

All these techniques are combined in the example of diffusion of benzene in IRMOF-10. The integration is performed in the NVT ensemble using the Nose-Hoover thermostats. Three separate NH chains are operating on (i) the translation, (ii) the rotation of the molecules, and (iii) on the framework.

SimulationType	MolecularDynamics	
NumberOfCycles	1000000	
NumberOfEquilibrationCycles	10000	
NumberOfInitializationCycles	100	
PrintEvery	5000	
RestartFile	no	
Ensemble	NVT	
ChargeMethod	Ewald	
Cut0ff	12.0	
TimeStep	0.0005	
Forcefield	Dubbeldam2007FlexibleIRMOF-10	
EwaldPrecision	$1 \mathrm{e}-6$	
Framework 0		
FrameworkName IRMOF-10		
UnitCells 111		
ExternalTemperature 298.0		
Movies no		
WriteMoviesEvery 1000		
FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1		
FlexibleFramework yes		
Component 0 MoleculeName		benzene
StartingBead		
MoleculeDefinitio		TraPPE
IdealGasRosenblut	hWeight	1.0
TranslationProbab	ility	1.0
RotationProbabili		1.0
ReinsertionProbab	ility	1.0
CreateNumberOfMol	ecules	16

## Example 5: Continuous Fractional Component Monte Carlo

A mixture simulation of CO2 and N2 in DMOF. The charges of DMOF are listed in the CIF-File using the '_atom_site_charge' keyword, and RASPA makes use of these usinf the keyword 'UseChargesFromCIFFile yes'. The CFCMC method is switched on by using 'CFSwapLambdaProbability' (instead of 'SwapProbability') to swap molecules in and out of the system at a fixed fugacity. The biasing factors are measured using Wang-Landau sampling during 'NumberOfEquilibrationCycles 50000'.

			MonteCarlo
NumberOfCycles			250000
NumberOfEquilibrationCycles			50000
PrintEvery			5000
RestartFile no			
ContinueAfterCrash no			
WriteBinaryRestartFileEvery 5000			
ChargeMethod			Ewald
Forcefield			local
Cutoffviw			11.5
RemoveAtomNumberCodeFromLabel no			
Framework		0	
FrameworkName		DMOF	
UseChargesFromCIFFile yes			
UnitCells		111	
HeliumVoidFraction		0.614	
ExternalTemperature		300	
ExternalPressure 1e5			
Component 0	MoleculeNameStartingBead		C02
			0
	MoleculeDefinition		TraPPE
	IdealGasRosenbluthWeight		1
	FugacityCoefficient		1.0
	TranslationProbability		1.0
	RotationProbability		1.0
	ReinsertionProbability		1.0
	CBMCProbability		0.0
	IdentityChangeProbability		1.0
	NumberOf IdentityChanges		2
	IdentityChangesList		01
	SwapProbability		0.0
	CFSwapLambdaProbability		1.0
	CreateNumberOfMolecules		0
Component 1	1 MoleculeName		N2
	StartingBead   MoleculeDefinition		0
			TraPPE
	IdealGasRosenbluthWeight		1
	FugacityCoefficient		1.0
	TranslationProbability		1.0
	RotationProbability		1.0
	Reinsertio	onProbability	1.0

```
CBMCProbability
 IdentityChangeProbability 1.0
 NumberOfIdentityChanges 2
 SwapProbability %
NapPrambLaProbability 0.0
CrateNumberOfMolecules 0
```

The performance of the CFCMC is written at the end of the output file (after the run has finished). The biasing factors have lead to relatively flat distribution of Lambda. The efficiency of insertion is much higher (sometimes dramatically higher) than using conventional MC or even CBMC.


The computed loadings are averages of integer molecules.

## Example 6: Reaction ensemble

As an example, the industrially important propene metathesis is described by three equilibrium reactions

- $2 \mathrm{C}_{3} \mathrm{H}_{6} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+$ trans $-\mathrm{C}_{4} \mathrm{H}_{8}$
- $2 \mathrm{C}_{3} \mathrm{H}_{6} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+$ cis- $\mathrm{C}_{4} \mathrm{H}_{8}$
- cis- $\mathrm{C}_{4} \mathrm{H}_{8} \leftrightarrow$ trans- $\mathrm{C}_{4} \mathrm{H}_{8}$

Only two reactions are independent and need to be included. In addition to the MC moves associated with simulating a chosen ensemble, also "reaction" moves are performed:

1. randomly choose a reaction,
2. randomly choose whether to do a forward or backward reaction (this determines the "reactant" and "product" molecule types),
3. randomly select the reactant molecules and remove them from the system,
4. insert the product molecules at random positions,
5. accept or reject the reaction step with the appropriate acceptance probability.

SimulationType	MC
NumberofCycles	100000
NumberOfInitializationCycles	0
NumberOfEquilibrationCycles	25000
RestartFile	no
PrintEvery	1000

ContinueAfterCrash no
WriteBinaryRestartFileEvery 500

ChargeMethod	none
Forcefield	local
CutOff	12.0
EwaldPrecision	$1 \mathrm{e}-6$

Box 0
BoxLengths 150150150
ExternalTemperature 450.0
ExternalPressure 101300.0
CutOff 14.0
ComputeNumberOfMoleculesHistogram yes
WriteNumberOfMoleculesHistogramEvery 5000
Reaction 2000001101
Reaction 0000100010
ProbabilityCFCRXMCLambdaChangeMove 1.0
VolumeChangeProbability 0.1
Component $0 \begin{aligned} & \text { MoleculeName } \\ & \text { MoleculeDefinition }\end{aligned} \quad$ propene
MoleculeDefinition TraPPE
$\begin{array}{ll}\text { LnPartitionFunction } & 87.1384\end{array}$
TranslationProbability
$\begin{array}{ll}\text { RotationProbability } & 53.9 \\ \text { ReinsertionProbability } & 10.0\end{array}$
$\begin{array}{lll}\text { ExtraFrameworkMolecule } & \text { no } \\ \text { CreateNumberOfMolecules } & 400\end{array}$

Component 1 MoleculeName
MoleculeDefinition $\quad \begin{aligned} & \text { ethene } \\ & \text { TraPPE }\end{aligned}$ LnPartitionFunction 82.0298
TranslationProbability 35.
RotationProbability 53.9
ReinsertionProbability 10.0
ExtraFrameworkMolecule
CreateNumberOfMolecules 0
$\begin{array}{cll}\text { Component } 2 & \text { MoleculeName } & \text { cis-2-bute } \\ & \text { MoleculeDefinition } & \text { TraPPE } \\ & \text { LnPartitionFunction } & 89.0386\end{array}$
$\begin{array}{ll}\text { LnPartitionFunction } & 89.038 \\ \text { TranslationProbability } & 35.0\end{array}$
RotationProbability 53.
$\begin{array}{lll}\text { ReinsertionProbability } & 10.0 \\ \text { ExtraFrameworkMolecule } & \text { no }\end{array}$
$\begin{array}{ll}\text { ExtraFrameworkMolecule } & \text { no } \\ \text { CreateNumberOfMolecules } & 0\end{array}$
Component 3 MoleculeName trans-2-butene
MoleculeDefinition TraPPE
LnPartitionFunction 89.4937
ranslationProbability
RotationProbability
ExtraFrameworkMolecule no
CreateNumberOfMolecules 0
Reactions are given as a list of stoichometries for the reactants and then the products, so there should two times the number-of-components integer numbers.

In the output you will see for each PrintEvery the number of integer, fractional, and reaction molecules. For each reaction the biasing factors are listed.

```
Reactions:
Reaction 0, current Lambda: 0.7426373180, maximum Lambda-change: 1.0000000000
 Fractional molecules: 338 (ethene) 389 (trans-2-butene) <--> 375 (propene) 291 (propene)
 Biasing Factors: 0.000000 0.011875 0.040000 0.024375 0.014375 0.036250-0.039375 0.008125 0.019375 -0.013750
 0.002500-0.011875 0.052500 0.013750 0.000625 -0.021250-0.017500 -0.016250 -0.063125 -0.034375
 -0.060625
Reaction 1, current Lambda: 0.6428890080, maximum Lambda-change: 1.0000000000
 Fractional molecules: 236 (cis-2-butene) <--> 243 (trans-2-butene)
 Biasing Factors: 0.000000 0.014375 -0.023125 0.027500 -0.007500 0.038750-0.004375 0.062500 0.016250 0.019375
 0.020000}00.065625 0.074375 0.006250 0.023125 0.054375 0.017500 0.038750 0.005000 0.037500
 -0.054375

Figure 12: Umbrelle sampling: (a) free energy profile from Widom insertion (the inverse will be used as a biasing potential), (b) the histograms of the position of the tagged particle in the direction \(A\) (biasing direction), \(B\), and \(C\).
```

Component 0 (propene), current number of integer/fractional/reaction molecules: 240/0/2 (average 243.80499), density: 0.70559 (average 0.68615) kg/m^3]

```


At the end of the output, after the run has finished, the statistics of the RXMC are printed:
```

Performance of the Reaction MC lambda move:
Reaction [0] total tried: 524722.000000 constant-lambda accepted: 508906.000000 (96.985832 [%])
total tried: 242207.000000 forward-reaction accepted: 219761.000000 (90.732720 [%])
Reaction [1] total tried: 524439.000000 constant-lambda accepted: 509833.000000 (97.214929 [%])
total tried: 244749.000000 forward-reaction accepted: 219887.000000 (89.841838 [%])
total tried: 245258.000000 backward-reaction accepted: 219863.000000 (89.645598 [%])

```

\section*{Example 7: Umbrella sampling}

In Umbrelle sampling we can tag one particle and add a biasing potential to it. Figure 12(a) shows the used biasing potential, which is directly obtained from Widom insertion of methane in LTA. Any profile will do as long as it close enough. As can be seen in Figure 12(b), if we do a MC simulation with only this particle (second component zero particles), then the resulting histogram will be flat in the direction that we bias. The other directions are unbiased. Using this profile, we can easily obtain the free energy at higher loadings. Here is the input for methane in LTA at 4 methane/cage. The output will have a directory 'Histograms' containg the histograms for each component in the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) directions. Also, it automatically computes the true free energy (from the biasing-spline plus the histograms) in file starting with 'FreeEnergy'.
\begin{tabular}{|c|c|}
\hline SimulationType & MonteCarlo \\
\hline NumberOfCycles & 10000000000 \\
\hline NumberOfInitializationCycles & 1000 \\
\hline PrintEvery & 5000 \\
\hline Forcefield & GenericZeolites \\
\hline Framework & 0 \\
\hline FrameworkName & LTA_SI \\
\hline ShiftUnitCells & 0.00 .00 .0 \\
\hline UnitCells & 111 \\
\hline ExternalTemperature & 600.0 \\
\hline ComputePositionHistogram & yes \\
\hline WritePositionHistogramEvery & 10000 \\
\hline component 0 MoleculeName & methane \\
\hline StartingBead & 0 \\
\hline MoleculeDefinition & TraPPE \\
\hline BiasingProfile & Profile.dat \\
\hline BiasingMethod & Umbrella \\
\hline BiasingDirection & A \\
\hline BlockPockets & yes \\
\hline
\end{tabular}
\begin{tabular}{lll}
& BlockPocketsFileName & LTA_SI \\
& TranslationProbability & 1.0 \\
& RotationProbability & 1.0 \\
& ReinsertionProbability & 1.0 \\
& CreateNumberOfMolecules & 1 \\
& & \\
component & 1 & MoleculeName
\end{tabular}

The biasing spline (here called 'Profile.dat') has a header describing the spline:
\# 1801
\(\# 0.5\)
\(\begin{array}{llll}\text { \# } 0.25 & 0.75 & 12.2775\end{array}\)
\(\begin{array}{lll}\text { \# } & 0.25 & 0.75 \\ \# & 0.0 & 0.5\end{array}\)
05.876380 .0919053
0.0005555565 .790870 .0924271

The lines have the following meaning:
- the number of data points in the file,
- the dimensionless position of the barrier \(q_{A}^{*}\)
- the dimensionless position of the minimum of the free energy \(g_{A}\) and \(g_{B}\), and the distance \(d\) between \(g_{A}\) and \(g_{B}\) in Angstrom
- the left and right boundary of \(g_{A}\)
followed by the actual data points:
- dimensionless position
- dimensionless free energy \(\beta F\) or \(F\) in unit of \(k_{B} T\)
- error in the free energy

\section*{Example 8: dcTST diffusivities}

The first step for dcTST is to compute the free energy profile as a function of a one-dimensional reaction coordinate. In general this mapping is complex, but for certain zeolites the mapping is trivial. As an example, we use the LTA-type zeolite with a cubic unit cell of \(24.555 \AA\). For this structure, the mapping can be dan in \(x, y\), or \(z\) and all three give identical results. We can define a reaction coordinate from \(x=0\) to \(x=1\) with several key values:
- \(\mathrm{x}=0\) : the window on the left.
- x=0.25 the center of the left cage \(A\).
- \(\mathrm{x}=0.5\) : the window in the middle seperating the left cage \(A\) from the right cage \(B\).
- \(\mathrm{x}=0.75\) the center of the right cage \(A\).
- \(x=1\) : the window on the right.

Figure 13: The reaction coordinate mapping for the LTA-type structure.

\section*{Computing the free energy profile}

The first step is to compute the free energy profile. A convenient way at low loading is to use Widom insertion.

The result converge slowly to a nice profile. The scatter is the highest at places where the free energy is high, and the scatter in the data is low at places of low free energy. We can now define the diffusion in terms of figure 14: we compute the diffusion of a molecule from \(g_{A}\) in cage \(A\) to \(g_{B}\) in cage \(B\) across barrier \(q_{A}^{*}\). To input this information we make a "biasing profile"-file (Profile.dat) with this data at the top
```


# 1801

# 0.5

# 0.25 0.75 12.2775

# 0.0 0.5

```

First line is the number of data points (here 1801), then the position of the barrier \(q_{A}^{*}\) (here 0.5), then \(g_{A}\), \(g_{B}\), and the distance in Angstrom between them (here \(0.25,0.75\), and 12.2775 , respectively). and lastly the range of cage \(A\) (here from 0.0 to 0.5).

Figure 14: The free energy obtained with Widom insertion.

\section*{Computing TST-estimates}

We can now use this file
```

BiasingProfile Profile.dat
BiasingMethod Umbrella
BiasingDirection A

```
to for example perform Umbrella sampling. In addition, it will create a spline-file BiasingSpline_methane_0.dat, that contains a lot of information and a fitting spline.
```


# Dividing surfaces: 0.500000000000 [-]

# Free energy minima: 0.250000000000 [-] 0.750000000000 [-] lattice distance: 12.277500000000 [A]

# Left and right boundary: 0.000000000000 [-] 0.500000000000 [-]

# F(QstarA): 5.794749230708

# Exp(-Beta QStarA): 0.00304349354572

# Integral Exp(-Beta q) over region left boundary (0) to q* (0.5): 1.10187629401e-09

# Mass reaction bead: 16.042460000000 [au]

# |v|=Sqrt(k_B T/(2.0*PI*Mass)): 222.467902978164 [m/s]

# P(q*) dq: 2762100.93845 [1/m]

# k^TST= |v| P(q*) dq, i.e. the TST hopping rate: 614478803.59 [1/s]

# D^TST: 9.26246952572e-10 [m^2/s]

# RM Int1, Integral Exp(Beta q) over region gA to gB: 18.077489357418

# RM Int2, Integral Exp(-Beta q) over full region: 0.448738054981

# RM Int1*Int2: 8.112057413187

# RM 1/(Int1*Int2): 0.123273289261

# <n_A>: 24.555000000000

# 1/<n_A>: 0.040724903278

```

It uses the computed smoothed spline that fits the data to calculate the integrals and dcTST information. The \(k^{\text {TST }}\) is 614478803.59 events per second, and \(D^{\text {TST }}=9.26246952572 e-10 \mathrm{~m}^{2} / \mathrm{s}\). The spline (column 1 and 2) is convenient as \(i t\) is continuous and smooth.

\section*{Computing free energies at finite loading with brute-force MD}

Of course, one can try to compute the free energy using brute-force MD, for example at an average of 8 molecules per cage.

However, this only works for low free energy barriers.

\section*{Computing free energies at finite loading using Umbrella sampling}

With Umbrelle samplign we can bias the movement of a single tagged molecule at the proper chosen loading. We therefore need two components: component one is a single biased molecule, and component two are the other (unbiased) particles. We can compute the histogram of the positions and for component one, recomputed the actual free energy taking the biasing into account.

\section*{Computing the dynamical correction}

The TST estimates are ...estimates. In reality, not all particles at the dividing surface actually cross the boundary. We have to explicitly compute this property using many short MD trajectories. Step one is to compute initial state for these trajectories:
\begin{tabular}{ll}
SimulationType & MonteCarlo \\
NumberOfCycles & 100000000 \\
NumberOfInitializationCycles & 1000 \\
PrintEvery & 100 \\
& \\
Forcefield & GenericZeolites
\end{tabular}

To sample configurations, we need to write out "snapshots", but with some sampling in between to diminish the correlation between the snapshots. We also need to place the particle at the barrier and define the barrier position.
```

WritedcTSTSnapShotsToFile yes
PutMoleculeOnBarrier yes
BarrierPosition 0.5 0.25 0.25
WritedcTSTSnapShotsEvery 100

```

Also note, that the particle on the barrier is restricted to only move one the barrier plane.
\begin{tabular}{ll}
TranslationProbability & 1.0 \\
TranslationDirection & bc
\end{tabular}

We can do uses the sampled snapshots to run many barrier-recrossing MD trajectories.
\begin{tabular}{|c|c|}
\hline SimulationType & BarrierRecrossing \\
\hline Forcefield & GenericZeolites \\
\hline Framework & 0 \\
\hline FrameworkName & LTA_SI \\
\hline RemoveAtomNumberCodeFromLabel & yes \\
\hline ShiftUnitCells & 0.00 .00 .0 \\
\hline UnitCells & 111 \\
\hline ExternalTemperature & 600.0 \\
\hline PutMoleculeOnBarrier & yes \\
\hline FreeEnergyMappingType & A \\
\hline BarrierPosition & 0.50 .250 .25 \\
\hline MaxBarrierDistance & 4.0 \\
\hline MaxBarrierTime & 10.0 \\
\hline NumberOfVelocities & 1 \\
\hline component 0 MoleculeName & methane \\
\hline StartingBead & 0 \\
\hline MoleculeDefinition & TraPPE \\
\hline CreateNumber0fMole & es 0 \\
\hline
\end{tabular}
```

component 1 MoleculeName methane
StartingBead 0
MoleculeDefinition TraPPE
CreateNumberOfMolecules 63

```

\subsection*{4.5 Auxiliary examples}

\section*{Example 1: Computing the ideal gas Rosenbluth weight of a molecule}

To compare simulation values to experiments a reference state should be chosen. A convenient reference state is the ideal gas. The reference Rosenbluth value can be computed from a simulation of a single chain at the desired temperature. Note that for Rosenbluth weights several chains can be computed simultaneously, since they are computed from Widom insertions where the molecule is never actually inserted in the system.
```

SimulationType
Number0fCycl
25000
PrintEvery
PrintPropertiesEvery 1000
Forcefield GarciaPerez2006
Box 0
l
ExternalTemperature 573.0
Component O MoleculeName C5
WidomProbability 1.0
CreateNumberOfMolecules 0
Component 1 MoleculeName C6
MoleculeDefinition TraPPE
WidomProbability
CreateNumberOfMolecules
Component 2 MoleculeName
MoleculeDefinition }\quad\mathrm{ TraPPE
WidomProbability 1.0
CreateNumberOfMolecules 0
Component 3 MoleculeName C8
MoleculeDefinition TraPPE
WidomProbability 1.0
Component 4 MoleculeName MoleculeDefinition C9
WidomProbability
CreateNumberOfMolecules 0

```

The output contains
Average Widom Rosenbluth factor:
[C5] Average Widom: 0.0668555 +/- 0.000131 [-]
[C6] Average Widom: \(0.0175062+/-0.000067\) [-]
[C7] Average Widom: \(0.00462547+/-0.000010\) [-]
\(\begin{array}{lll}\text { [C8] Average Widom: } & 0.00122842+/-0.000005[-] \\ \text { [C9] Average Widom: } & 0.000328228+/-0.000001[-]\end{array}\)
which is printed every 'PrintPropertiesEvery' cycles. The 'Rosenbluth factor new' are the values of interest. The average and error estimated from block averages is printed at the end of the simulation.

\section*{Example 2: Computing the helium void-fraction of a structure (pore volume)}

The void fraction is the empty space of a structure divided by the total volume. In experiment it is measured using helium, because helium does (almost) not adsorb. It would be consistent to also measure this fraction using helium at room temperature. In practice it is easily computed from Widom particle insertion as the void fraction corresponds to the new Rosenbluth weight.
\begin{tabular}{ll}
SimulationType & MonteCarlo \\
NumberOfCycles & 500000 \\
PrintEvery & 1000 \\
PrintPropertiesEvery & 1000 \\
Forcefield & GenericMOFs \\
& \\
Framework 0 & \\
FrameworkName & IRMOF-1 \\
UnitCells 1 1 1 & \\
\hline
\end{tabular}

ExternalTemperature 298.0

Component 0 MoleculeName
```

    MoleculeDefinition helium
    TraPPE
    idomProbability
        l.0
    ```

The Rosenbluth weight, and therefore the helium void fraction of IRMOF-1 is approximately 0.80 . The pore volume is the void fraction times the unit cell volume. Note that the values dependent slightly on the cutoff, and shifted vs. truncated potentials.
```

Average Widom Rosenbluth factor:
Block[ 0] 0.803749 [-]
lock[ 1] 0.803741 [-
lock[ 2] 0.803497 [-
Block[ 3] 0.803818 [-]
Block[ 4] 0.803536 [-]
[helium] Average Widom: 0.803668 +/- 0.000255 [-]

```

\section*{Example 3: Computing the surface area of IRMOF-1}

The geometric surface area can easily be computed by 'rolling an atom over the surface' and measure the surface. In practice, for each framework atom points are generate on a sphere around the framework atom, and the amount of overlap with other framework atoms is determined. The fraction of overlap is multiplied times the area of the sphere. The summation over all framework atoms gives the geometric surface area. This example shows how to compute the surface area of IRMOF-1. 'SurfaceAreaSamplingPointsPerShere' is the amount of points generated on sphere at a distance dependent on the mixing rule, the probe-atom and the current framework atom type. The more points the higher the accuracy. The simulation usually takes between 5 and 30 minutes.

In this example the structure is probed with hydrogen using the second bead ('H_com' with \(\sigma=2.958\) \(\AA\)). The option 'SurfaceAreaProbeDistance Sigma' sets the overlap criteria to \(\sigma\) instead of the default \(\sigma^{1 / 6}\).
```

SimulationType MonteCarlo
NumberOfCycles
PrintEvery
PrintPropertiesEvery
00
Forcefield Dubbeldam2007FlexibleIRMOF-1
CutOff 12.8
Framework 0
UnitCells 1 1 1 1
SurfaceAreaProbeDistance Sigma
Component O MoleculeName hydrogen
StartingBead
SurfaceAreaProbability 1.0
CreateNumberOfMolecules 0

```

The area depends on the probe atom and on whether the well-depth at \(2^{1 / 6} \sigma(\approx 1.12246 \sigma)\) is used ('SurfaceAreaProbeDistance Minimum')
```

Surface area: 2082.509853 [m`2/cm`3]
Surface area: 3510.189484 [m^2/g]

```
or \(\sigma\) is used as the distance criteria ('SurfaceAreaProbeDistance Sigma'):
```

Surface area: 2266.243128 [m`2/cm`3]
Surface area: 3819.882429 [m^2/g]

```

\section*{Example 4: Powder diffraction pattern}

Powder diffraction is a scientific technique using X-Ray or neutron diffraction on powder or microcrystalline samples for structural characterization of materials. The most widespread use of powder diffraction is in the identification and characterization of crystalline solids, each of which produces a distinctive diffraction pattern. Both the positions (corresponding to lattice spacings) and the relative intensity of the lines are indicative of a particular phase and material, providing a "fingerprint" for comparison. The database of IZA for zeolite has the option to generate the powder diffraction pattern:

\footnotetext{
http://izasc.ethz.ch/fmi/xsl/IZA-SC/xrd.xsl
}

Here, an example of the powder diffraction pattern for the TON-type zeolite. Only one unit cell is sufficient for the computation (interactions are not needed in the computation, just the position and types of the atoms and the shape and size of the unit cell). The diffraction pattern usually takes a few seconds of computation, and the result is written to 'PowderDiffraction/System[0]/'. It contains two files: 'PeakInformation.dat' and 'Spectrum.dat'.
```

SimulationType MonteCarlo
NumberOfCycles O
Forcefield ElenaSodiumCalcium
Framework 0
FrameworkName TON
UnitCells 1 1 1
ComputePowderDiffractionPattern yes
DiffractionType Xray
DiffractionRadiationType Copper
WaveLengthType single
TwoThetaMin 1
TwoThetaStep 0.02
PeakShape PseudoVoigt
PeakWidthModifierU 0.005

```

The first elements of the file 'PeakInformation.dat' look like:

So, the elements are the angle \(2 \theta\), the \(d\)-spacing, the Miller indices \(h, k\), and \(l\), the multiplicity, the LorentzPolarization factor, the scattering factor (including anomalous scattering), and the relative intensity (where the largest intensity is set to 100). The second file 'Spectrum.dat' can be plotted using gnuplot, the first column is \(2 \theta\), the second column the intensity. The shape of the peaks can be influenced with 'PeakShape', and the peak width modifiers 'PeakWidthModifierU', 'PeakWidthModifierV', and 'PeakWidthModifierW'.

\section*{Example 5: Making and using 'grids'}

For rigid frameworks one can precompute the energy-grid, because the potential energy field induces by the framework does not evolve in time. For each of the pseudo atoms one can generate a 3D grid where the spacing can be defined. In the example the grid points are \(0.1 \AA\) spaced apart (\(a=b=c=25.832 \AA\), \(258 \times 258 \times 258=17173512\) points). A shorter distance results in more points, more accuracy, but also a bigger grid (more memory is needed). Note that RASPA can handle a 'mixture' of grids and fully computed interactions. The table stores \(U, \frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}, \frac{\partial^{2} U}{\partial x \partial y}, \frac{\partial^{2} U}{\partial x \partial z}, \frac{\partial^{2} U}{\partial y \partial z}\), and \(\frac{\partial^{3} U}{\partial x \partial y \partial z}\) at each grid point. The interpolation can handle non-orthorhombic cells and can also be used for molecular dynamics (i.e. the force interpolation is consistent with the energy interpolation).
```

SimulationType MakeGrid
Forcefield FlexibleIRMOF-1
Framework 0
FrameworkName IRMOF-1
UnitCells 1 1 1
NumberOfGrids 2
GridTypes C_co2 O_co2
SpacingVDWGrid 0.1
SpacingCoulombGrid 0.1

```

The grids are stored in '/share/raspa/grids/FlexibleIRMOF-1/IRMOF-1/0.100000' and the names are 'IRMOF1_C_co2_shifted.grid', 'IRMOF-1_O_co2_shifted.grid', and 'IRMOF-1_Electrostatics_Ewald.grid'. The last grid is the real part of the Ewald summation, i.e. erfc(r)/r using a probe charge of +1 . They can be used like:
\begin{tabular}{ll}
SimulationType & MonteCarlo \\
NumberOfCycles & 5000 \\
NumberOfInitializationCycles & 5000 \\
PrintEvery & 100 \\
& \\
Forcefield & FlexibleIRMOF-1 \\
\begin{tabular}{l}
ChargeMethod \\
EwaldPrecision
\end{tabular} & Ewald \\
& \(1 \mathrm{e}-6\)
\end{tabular}
```

Framework 0
rameworkName IRMOF-
UnitCells 1 1
xternalTemperature 298.0
ExternalPressure 5000000.0
NumberOfGrids 2
GridTypes C_co2 O_co2
SpacingVDWGrid 0.1
SpacingCoulombGrid 0:
UseTabularGrid yes
Component O MoleculeName
MoleculeDefinition
TranslationProbabilit
RotationProbability
ReinsertionProbability
SwapProbability
CreateNumberOfMolecules

```
```

C02

```
C02
TraPPE
TraPPE
TraPP
```

TraPP

```

In the output file, in the framework section, the used grids are tested one by one. Make sure the relative error is smaller than about 0.001 for the energies. If not, either the wrong grid is used (the current settings for the force field, cutoff etc. are different from what the grid has been made with) or the structure requires a higher interpolation density.

\section*{Example 6: Writing and using binary restart "crash-recovery" files}

Usually, and unfortunately sometimes often, computers crash, are rebooted to upgrade software or the "walltime"-limit on the cluster has been reached etc. One can force RASPA to write a "binary-restartfile" from which the program can exactly recover and continued where it left off. The results are identical
because the data has been written in binary format and even the random number generator picks up where it left off. One has to add two lines to the 'simulation.input' file:
```

ContinueAfterCrash
WriteBinaryRestartFileEvery

```

The second line tells the program to write the file every 1000 cycles. Initially, the 'ContinueAfterCrash' is 'no'. For example, the adsorption of methane in MFI (Basic example 6) should be change to

It will write a file 'binary_restart.dat' in the directory 'CrashRestart'. The size of the file is usually small (a few MB). To restart the code, simply change 'ContinueAfterCrash no' to 'ContinueAfterCrash yes'

\footnotetext{
ContinueAfterCrash
WriteBinaryRestartFileEvery 1000
}

\section*{The source code}

\subsection*{5.1 Introduction}

\subsection*{5.2 Data types}

There are several new types, the two most important ones are
- REAL

REAL is a floating point number. It is defined in 'src/constants.h' as
\#define REAL double
but if one needs higher precision one could use
\#define REAL long double
and using the ' \(q d\) ' library it is even possible to use arbitrary precision.
- VECTOR

An structure with three elements ' \(x\) ', ' \(y\) ', and ' \(z\) '.
```

typedef struct point
{
REAL x;
REAL y;
REAL z;
} POINT,VECTOR;

```
- REAL_MATRIX3x3

A \(3 \times 3\) matrix, used as transformations on vectors (like 'strain') and for the three cell-vectors making up the cell matrix. It is defined in 'src/matrix.h'.
```

typedef struct real_matrix3x3
{
REAL ax;
REAL ay;
REAL az;
REAL bx;
REAL by;
REAL bz;
REAL cx;
REAL cy;
REAL cz;
} REAL_MATRIX3x3;

```

\subsection*{5.3 Datastructures}

\section*{Box properties and periodic boundaries}

For each system, a cell box and other properties are defined in 'src/simulation.h'
```

REAL_MATRIX3x3 *Box; // the cell matrix
REAL_MATRIX3x3 *InverseBox; // the inverse of the cell matrix
REAL_MATRIX3x3 *ReplicaBox; // the cell matrix of the replica system
REAL_MATRIX3x3 *InverseReplicaBox; // the inverse of the the cell matrix of the replica system
INT_VECTOR3 *NumberOfReplicaCells; // the integere number of replicas in each direction a,b,c
int *TotalNumberOfReplicaCells; // the total number of replica cells
VECTOR *ReplicaShift; // the shift in a,b,c for each replica cell
int *UseReplicas; // whether or not to use replicas
REAL_MATRIX3x3 *BoxProperties; // properties of the cell matrix (i.e. perpendicular lengths)
REAL_MATRIX3x3 *InverseBoxProperties; // properties of the inverse cell matrix
REAL *Volume; // the volume
REAL *AlphaAngle; // the alpha-angle of the cell
REAL *BetaAngle; // the beta-angle of the cell
REAL *GammaAngle; // the gamma-angle of the cell
int *BoundaryCondition; // the boundary condition (i.e. 'RECTANGULAR' or 'TRICLINIC')

```

These are dynamically allocated arrays and have the same length as the amount of systems present. For example, in a Gibbs simulation two systems are needed, one for the gas-phase and one for the liquid phase. 'Volume[0]' would give the volume of the first cell, and 'Volume[1]' would give the volume of the second cell.

Periodic boundaries are applied after each distance computation calling the function 'ApplyBoundaryCondition' (defined in 'src/potentials.h') It operates on a 'VECTOR' and give the corrected vector back. The system is specified with the global variable 'CurrentSystem'.
```

VECTOR ApplyBoundaryCondition(VECTOR dr)
{
VECTOR s,t;
switch(BoundaryCondition[CurrentSystem])
{
case FINITE:
break;
case RECTANGULAR:
case CUBIC:
dr.x-=Box[CurrentSystem].ax*(REAL)NINT(dr.x*InverseBox[CurrentSystem].ax);
dr.y-=Box[CurrentSystem].by*(REAL)NINT(dr.y*InverseBox[CurrentSystem].by);
dr.z-=Box[CurrentSystem].cz*(REAL)NINT(dr.z*InverseBox[CurrentSystem].cz);
break;

```
```

        case TRICLINIC:
            // convert from xyz to abc
            s.x=InverseBox[CurrentSystem].ax*dr.x+InverseBox[CurrentSystem].bx*dr.y+InverseBox[CurrentSystem].cx*dr.z;
            s.y=InverseBox[CurrentSystem].ay*dr.x+InverseBox[CurrentSystem].by*dr.y+InverseBox[CurrentSystem].cy*dr.z;
            s.z=InverseBox[CurrentSystem].az*dr.x+InverseBox[CurrentSystem].bz*dr.y+InverseBox[CurrentSystem].cz*dr.z;
            // apply boundary condition
            t.x=s.x-(REAL)NINT(s.x);
            t.y=s.y-(REAL)NINT (s.y);
            t.z=s.z-(REAL)NINT(s.z);
            // convert from abc to xyz
            dr.x=Box[CurrentSystem].ax*t.x+Box[CurrentSystem].bx*t.y+Box[CurrentSystem].cx*t.z;
            dr.y=Box[CurrentSystem].ay*t.x+Box[CurrentSystem].by*t.y+Box[CurrentSystem].cy*t.z;
            dr.z=Box[CurrentSystem].az*t.x+Box[CurrentSystem].bz*t.y+Box[CurrentSystem].cz*t.z;
            break;
        default:
            fprintf(stderr,"Error: Unkown boundary condition....\n");
            exit(0);
            break;
    }
    return dr;
    }

```

The function 'NINT' is faster version of 'rint' (or 'floor').
\#define NINT(x) ((int) ((x)>=0.0?((x)+0.5):((x)-0.5)))
A common occurrence of the boundary conditions application is for two positions of atoms 'posA' and 'posB' (of type 'VECTOR')
```

dr.x=posA.x-posB.x;
dr.y=posA.y-posB.y;
dr.z=posA.z-posB.z;
dr=ApplyBoundaryCondition(dr);
rr=SQR(dr.x)+SQR(dr.y)+SQR(dr.z);
r=sqrt(rr);

```

There are functions you can use to transform from Cartesian to fractional coordinates (defined in 'src/potentials.h')
```

VECTOR ConvertFromXYZtoABC(VECTOR t)
{
VECTOR s;
s.x=InverseBox[CurrentSystem].ax*t.x+InverseBox[CurrentSystem].bx*t.y+InverseBox[CurrentSystem].cx*t.z;
s.y=InverseBox[CurrentSystem].ay*t.x+InverseBox[CurrentSystem].by*t.y+InverseBox[CurrentSystem].cy*t.z;
s.z=InverseBox[CurrentSystem].az*t.x+InverseBox[CurrentSystem].bz*t.y+InverseBox[CurrentSystem].cz*t.z;
return s;
}

```
and from fractional coordinates to Cartesian
```

VECTOR ConvertFromABCtoXYZ(VECTOR t)
{
VECTOR dr;
dr.x=Box[CurrentSystem].ax*t.x+Box[CurrentSystem].bx*t.y+Box[CurrentSystem].cx*t.z;
dr.y=Box[CurrentSystem].ay*t.x+Box[CurrentSystem].by*t.y+Box[CurrentSystem].cy*t.z;
dr.z=Box[CurrentSystem].az*t.x+Box[CurrentSystem].bz*t.y+Box[CurrentSystem].cz*t.z;
return dr;
}

```

\section*{(Pseudo-)atoms}

The data structure 'PSEUDO_ATOM' contains information on atoms, either real atoms or united atoms where several atoms are lumped together (for example: CH 3).
```

// Pseudoatoms
typedef struct PseudoAtom
{
char Name[256]; // the Name of the pseudo-atom ('CH3','H','O' etc).
char PrintToPDBName[256]; // the string to print to a pdb-file as name
int PrintToPDB; // whether to write this atom to the pdf-file or not
char ChemicalElement[256]; // the chemical element ('O', 'H', etc)
int ScatteringType; // the scattering type (powder diffraction)
int AnomalousScatteringType; // the anmalous scattering type (powder diffraction)
REAL TemperatureFactor; // the temperature factor (powder diffraction)
REAL Mass; // the mass of the pseudo-atom
REAL Charge; // the charge of the pseudo-atom
REAL Polarization; // the polarization of the atom
int HasCharges; // whether or not the atom has atoms with charges
int IsPolarizable; // whether or not the atom has a induced point dipole
int Interaction; // whether or not the atom has interactions
REAL Radius; // the radius (used for calculating Bonds in the zeolite)
int Connectivity; // the connectivity (used for calculating Bonds/Bends/Torsion in the framework)
} PSEUDO_ATOM;

```

A typical use is, once the type is known, to retrieve the charge for a pseudo-atoms:
```

REAL q;
q=PseudoAtom[type].Charge;

```

Use the following to find out to what pseudoatom a string corresponds to
```

int type;
type=ReturnPseudoAtomNumber("CH4");

```

However, usually the type is a property of each of the atoms of a molecule.
```

int type;
type=Framework[1].Atoms [0] [10] .Type;

```
and 'type' can then be used to get the mass, charge, polarization, etc. Here, the type is retrieve for atom number 11 (c is starting from 0 , unlike Fortran) of the first framework of the second system.

\section*{Framework}

Atoms make up a framework, several frameworks can make up 1 system. The definition of a framework atom 'FRAMEWORK_ATOM' is
```

typedef struct framework_atom
{
int Type; // the pseudo-atom type of the atom
int AssymetricType; // the 'asymmetric' type
// MC/MD properties
POINT Position; // the position of the atom
POINT ReferencePosition; // the 'reference' position of the atom
// MD properties
VECTOR Velocity; // the velocity of the atom
VECTOR ReferenceVelocity; // the 'reference' velocity of the atom
VECTOR Force; // the force acting on the atom
VECTOR ElectricField; // the electricfield vector
VECTOR ReferenceElectricField; // the 'reference' electricfield vector
VECTOR InducedElectricField; // the induced electric field
VECTOR InducedDipole; // the induced dipole moment on this atom
int HessianIndex; // the index in the Hessian matrix for this atom
} FRAMEWORK_ATOM;

```

It contains the properties you'd expect, like type, position, velocity, and force. For polarization, also electric field, induced electric field, and induced dipole are needed. For many applications, one needs to backup the positions and/or velocities. The field 'ReferencePosition' and 'ReferenceVelocity' are useful for that. Also they can be used for some algorithms which need the 'old' values to. An example is the numerical computation of stress. First all positions are copied to the 'ReferencePosition', then the positions 'Position' are generated from the strain at infinite small strain difference and the finite difference scheme is applied. A framework-structure 'FRAMEWORK_COMPONENT' is defined per system
```

FRAMEWORK_COMPONENT *Framework;

```
with
typedef struct FrameworkComponent
\{
 char (*Name) [256]; // the name of the frameworks
 int TotalNumberOfAtoms; // the total number of atoms of the frameworks
 int TotalNumberOfUnitCellAtoms; // the total number of atoms of the unit cell
 REAL FrameworkDensity; // the total density of the frameworks
 REAL FrameworkMass; // the total mass of the frameworks
 int NumberOfFrameworks; // the number of frameworks
 REAL *FrameworkDensityPerComponent; // the density per framework
 REAL *FrameworkMassPerComponent;
// the mass per framework
 int *NumberOfAtoms; // the number of atoms per framework
 int *NumberOfUnitCellAtoms; // the number of unit cell atoms per framework
 FRAMEWORK_ATOM **Atoms; // list of framework-atoms per framework
\} FRAMEWORK_COMPONENT;

The structure had the element 'Atoms' which is a list of framework-atoms per framework. So, to get the type of the 11 atom of the first framework of the second system, use
```

int type;
type=Framework[1].Atoms [0] [10].Type;

```

Finally, a small example where we print out the positions of all the framework atoms for all frameworks and systems
```

int i,j,f1;
for(i=0;i<NumberOfSystem;i++)
{
for(f1=0;f1<Framework[i].NumberOfSystems;f1++)
{
for(j=0;j<Framework[i].NumberOfAtoms[f1] ;j++)
printf("system: %d framework: %d atom: %d -> position: %g %g %g\n",
i,f1,j,
Framework[i].Atoms[f1][j].Position.x,
Framework[i].Atoms[f1][j].Position.y,
Framework[i].Atoms[f1][j].Position.z);
}
}

```

\section*{Components}

Everything that is independent of a molecule's positions but still a property of molecules is stored in the structure 'COMPONENT'. Here you find the number of atoms for this type of molecule per system, the
mass for the component etc. Also computed values for densities of the bulk fluid, compressibility, and the amount of excess molecules are stored. These are computed from the mol fraction, pressure, and critical pressure/temperature and acentric factor. After these properties there are data on the potentials defined for the component: bond, Urey-Bradley, bends, torsions, cross-terms, intra Van der Waals etc. For Monte Carlo the structure contains the probability of all the moves.
```

typedef struct Component
{
char Name[256]; // the name of the component ("methane","C12","propane" etc).
int NumberOfAtoms; // the number of atoms in the component
int StartingBead; // the bead of the molecule used for starting the growing process in CBMC
REAL Mass;
int *NumberOfMolecules;
int *Type;
int *Connectivity;
int HasCharges;
int IsPolarizable;
int ExtraFrameworkMolecule;
int Swapable;
int Widom;
REAL *IdealGasRosenbluthWeight; // the Rosenbluth weight of an ideal-chain per system
REAL *IdealGasTotalEnergy; // the total energy of an ideal-chain per system
REAL *PartialPressure; // the partial pressure of the component per system
REAL *FugacityCoefficient; // the fugacity coefficient of the component per system
REAL *BulkFluidDensity; // the bulkfluid-density of the component per system
REAL *Compressibility; // the compresibility of the fluid-fase per system
REAL *MolFraction; // the mol-fraction of the component per system
REAL *AmountOfExcessMolecules; // the amount of excess molecules per syste,
REAL CriticalTemperature; // the critical temperature of the component
REAL CriticalPressure; // the critical pressure of the component
REAL AcentricFactor; // the acentric factor of the component
int NumberOfGroups; // the number of groups
GROUP_DEFINITION *Groups; // the definition of the groups
int *group; // to which group an atom belongs
VECTOR *Positions; // the positions in the body-fixed frame
...................
nt NumberOfBonds; // the number of bonds of the component
PAIR *Bonds; // the list of bond-pairs
int *BondType; // the type of the bond for each bond-pair
REAL (*BondArguments) [MAX_BOND_POTENTIAL_ARGUMENTS]; // the arguments needed for this bond-pair
....................
......................
REAL ProbabilityTranslationMove; // the probability of the translation MC-move for the component
REAL ProbabilityRotationMove; // the probability of the rotation MC-move for the component
REAL ProbabilityCBMCMove; // the probability of the partial-regrow MC-move for the component
REAL ProbabilityReinsertionMove; // the probability of the reinsertion MC-move for the component
..................
.....................
} COMPONENT;

```

A component consists of 'groups', which is a collection of atoms that are either treated as rigid or as flexible. The component has elements that lists how many of these groups there are, the definition of the group, and the positions of all the atoms in the body-fixed frame. The definition of the group is the structure 'GROUP_DEFINITION'. Important elements are whether or not the group is rigid, the number of atoms in the group, and the list of atom number present in the groups.
```

typedef struct group_definitions

```
\{
```

    int Rigid; // whether or not the group is rigid
    int Type; // the type, NONLINEAR_MOLECULE, LINEAR_MOLECULE, or POINT_PARTICLE
    REAL Mass; // the mass of the group
    int NumberOfGroupAtoms; // the numer of atoms in the group
    int *Atoms; // the atoms in the group
    REAL_MATRIX3x3 InertiaTensor; // the inertia tensor
    VECTOR InertiaVector; // the inertia vector
    VECTOR InverseInertiaVector; // the inverse of inertia vector
    REAL_MATRIX3x3 RotationalMatrix; // the rotational matrix
    TRIPLE orientation; // three atoms A,B,C to compute quaternions
    REAL rot_min;
    int RotationalDegreesOfFreedom; // the rotational degrees of freedom
    } GROUP_DEFINITION;

```

The inertia tensor, vector and rotational matrix etc. are the same for a certain type of molecule. Together with the actually atom positions, the orientations can be computed for all the rigid units (i.e. the quaternions are computed).

\section*{Adsorbate and cations}

The definition of an adsorbate atom 'ADSORBATE_ATOM' is very similar to a framework atom
```

typedef struct adsorbate_atom
{
int Type; // the pseudo-atom type of the atom
// MC/MD properties
POINT Position; // the position of the atom
POINT ReferencePosition; // the 'reference' position of the atom
// MD properties
VECTOR Velocity; // the velocity of the atom
VECTOR ReferenceVelocity; // the 'reference' velocity of the atom
VECTOR Force; // the force acting on the atom
VECTOR ElectricField; // the electricfield vector
VECTOR ReferenceElectricField; // the 'reference' electricfield vector
VECTOR InducedElectricField; // the induced electric field
VECTOR InducedDipole; // the induced dipole moment on this atom
int HessianIndex; // the index in the Hessian matrix for this atom
} ADSORBATE_ATOM;

```

The definition for cations is identical except it is called 'CATION_ATOM'. The definition of an adsorbate molecule is
```

typedef struct adsorbate
{
int Type; // the component type of the molecule
int NumberOfAtoms; // the number of atoms in the molecule
GROUP *Groups; // data of the rigid groups
ADSORBATE_ATOM *Atoms; // list of atoms
} ADSORBATE_MOLECULE;

```

The definition of a cation is called 'CATION_MOLECULE'. Note that a molecule can consists of atoms, but also can contain rigid units. The atoms are accessible through the 'Atoms' field, and rigid units are accessible through the 'Groups' field. A 'GROUP' consists of
```

typedef struct group
\{
REAL Mass; // mass of the rigid unit

```
```

    QUATERNION Quaternion; // orientation of the unit
    QUATERNION QuaternionMomentum; // quaternion momentum
    QUATERNION QuaternionForce; // quaternion force
    VECTOR Torque;
    VECTOR CenterOfMassPosition; // the center of mass position
    VECTOR CenterOfMassReferencePosition; // the reference position for the center of mass
    VECTOR CenterOfMassVelocity; // the center of mass velocity
    VECTOR CenterOfMassForce; // the center of mass force
    VECTOR AngularVelocity; // the angular velocity of the rigid unit
    } GROUP;

```
which contains elements like position and orientation, and fields for the integration of rigid units, i.e. QuaternionMomentum etc.
Molecules are stored as a list of molecules for each system
ADSORBATE_MOLECULE **Adsorbates;
To get the type of the 5th atom of the 11th adsorbate of the first system, use
```

int type;
type=Adsorbates [0] [10].Atoms [4] .Type;

```

As an example, here a function to measure the velocity drift of all the adsorbates in the current system
```

VECTOR MeasureVelocityDrift(void)
{
int i,k,l,Type,A,f;
REAL Mass,TotalMass;
VECTOR com;
TotalMass=0.0;
com.x=com.y=com.z=0.0;
for(i=0;i<NumberOfAdsorbateMolecules[CurrentSystem] ;i++)
{
Type=Adsorbates[CurrentSystem][i].Type;
for(l=0;l<Components[Type].NumberOfGroups;l++)
{
if(Components [Type].Groups [l].Rigid)
{
Mass=Components[Type].Groups[l].Mass;
TotalMass+=Mass;
com.x+=Mass*Adsorbates[CurrentSystem] [i].Groups[l].CenterOfMassVelocity.x;
com.y+=Mass*Adsorbates [CurrentSystem] [i].Groups [l].CenterOfMassVelocity.y;
com.z+=Mass*Adsorbates[CurrentSystem][i].Groups[l].CenterOfMassVelocity.z;
}
else
{
for(k=0;k<Components[Type].Groups[l].NumberOfGroupAtoms;k++)
{
A=Components[Type].Groups [l].Atoms [k];
Mass=PseudoAtoms[Adsorbates[CurrentSystem][i].Atoms[A].Type].Mass;
TotalMass+=Mass;
com.x+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.x;
com.y+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.y;
com.z+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.z;
}
}
}
}
com.x/=TotalMass;
com.y/=TotalMass;
com.z/=TotalMass;
return com;
}

```

It loops over all the adsorbate molecules, and asks for the type. The component-type is important to get the number of groups for the current molecule. Then, there is a inner loop over all of the groups of the current molecule. If the group is rigid, then the center of mass velocity is used, otherwise it is flexible and it loops over all the atoms of the flexible group. In general, if something is the same for a type of molecule then it is a property of the component. If it is different for each molecule, it is a property of a molecule.

\subsection*{5.4 Modifying}

\subsection*{5.4.1 Monte Carlo}

\section*{Selecting MC moves}

The file 'src/monte_carlo.c' is the main Monte Carlo simulation routine. The bulk of the code deals with how to select a particular Monte carlo move. Some requirements and conveniences:
- The moves should be chosen in random order
- System move should be chosen much less frequent than particle moves. The particles need to be able to adapt to the new system.
- For \(n\) systems, the amount of steps should be \(n\) times larger.
- For \(n\) times as many molecules, the amount of steps should be \(n\) times larger.
- For multi-component systems one needs more steps.
- For systems at low loadings, the sampling lengths should be increase a bit (i.e. set a minimum amount of inner steps).
- The relative probabilities of particle moves should be taken into account.

A code which achieves all the above is listed here (there are many other ways of doing this). For each MC 'cycle'
```

for(i=0;i<NumberOfSystems;i++)
{
// choose system at random
CurrentSystem=(int)(RandomNumber()*(REAL)NumberOfSystems);
NumberOfSystemMoves=9;
NumberOfMolecules=NumberOfAdsorbateMolecules[CurrentSystem]+NumberOfCationMolecules [CurrentSystem] ;
NumberOfParticleMoves=MAX(MinimumInnerCycles,NumberOfMolecules);
NumberOfSteps=(NumberOfSystemMoves+NumberOfParticleMoves)*NumberOfComponents;
// loop over the MC 'steps' per MC 'cycle'
for(j=0;j<NumberOfSteps;j++)
{
// choose any of the MC moves randomly
ran_int=(int) (RandomNumber()*NumberOfSteps);
switch(ran_int)
{
case 0: if(RandomNumber()<ProbabilityParallelTemperingMove) ParallelTemperingMove(); break;
case 1: if(RandomNumber()<ProbabilityHybridNVEMove) HybridNVEMove(); break;
case 2: if(RandomNumber()<ProbabilityHybridNPHMove) HybridNPHMove(); break;
case 3: if(RandomNumber()<ProbabilityHybridNPHPRMove) HybridNPHPRMove(); break;
case 4: if(RandomNumber()<ProbabilityVolumeChangeMove) VolumeMove(); break;
case 5: if(RandomNumber()<ProbabilityBoxShapeChangeMove) BoxShapeChangeMove(); break;
case 6: if(RandomNumber()<ProbabilityGibbsVolumeChangeMove) GibbsVolumeMove(); break;
case 7: if(RandomNumber()<ProbabilityFrameworkChangeMove) FrameworkChangeMove(); break;
case 8: if(RandomNumber()<ProbabilityFrameworkShiftMove) FrameworkShiftMove(); break;
default:

```
```

        // choose component at random
        CurrentComponent=(int)(RandomNumber()*(REAL)NumberOfComponents);
        // choose the Monte Carlo move at random
        ran=RandomNumber();
        if(ran<Components[CurrentComponent].ProbabilityTranslationMove) TranslationMove();
        else if(ran<Components[CurrentComponent].ProbabilityRandomTranslationMove) RandomTranslationMove();
        else if(ran<Components[CurrentComponent].ProbabilityRotationMove) RotationMove();
        else if(ran<Components[CurrentComponent].ProbabilityCBMCMove) CBMCMove();
        else if(ran<Components[CurrentComponent].ProbabilityReinsertionMove) ReinsertionMove();
        else if(ran<Components[CurrentComponent].ProbabilityReinsertionInPlaceMove) ReinsertionInPlaceMove();
        else if(ran<Components[CurrentComponent].ProbabilityReinsertionInPlaneMove) ReinsertionInPlaneMove();
        else if(ran<Components[CurrentComponent].ProbabilityIdentityChangeMove) IdentityChangeMove();
        else if(ran<Components[CurrentComponent].ProbabilitySwapMove)
        {
        if(RandomNumber()<0.5) SwapAddMove();
        else SwapRemoveMove();
        }
        else if(ran<Components[CurrentComponent].ProbabilityWidomMove) WidomMove();
        else if(ran<Components[CurrentComponent].ProbabilitySurfaceAreaMove) SurfaceAreaMove();
        else if(ran<Components[CurrentComponent].ProbabilityGibbsSwapChangeMove) GibbsParticleTransferMove();
        else if(ran<Components[CurrentComponent].ProbabilityGibbsIdentityChangeMove) GibbsIdentityChangeMove();
        break;
    }
    }
    }

```

First is a loop over the amount of systems, and a random system is chosen. Suppose we have 200 single component molecules in this system, then each of the system move is chosen with \(1 / 209\) probability (case \(0-8\)), and there is a \(200 / 209\) chance to select a particle move (case 9-209). The probability of the particle moves are scaled in such a way that the proper relative occurrence is obeyed (as specified in the input). Note that the swap-move has \(50 \%\) to be swap insertion and \(50 \%\) to be swap remove. This is necessary to obey detailed balance. For multi-components more moves are performed.

\section*{Sampling properties during Monte Carlo}

The Monte Carlo routine has two parts:
- The initialization part. Here, no properties are computed and MC moves are performed just to reach equilibrium.
- The production run, where properties are computed.

The basic outline of the production run is
```

// initialize sampling-routines at the start of the production run
SampleInfraRedSpectra(INITIALIZE);
SampleMeanSquareDisplacementOrderN(INITIALIZE);
SampleOnsagerMeanSquareDisplacementOrderN(INITIALIZE);
SampleRadialDistributionFunction(INITIALIZE);
SampleFrameworkSpacingHistogram(INITIALIZE);
SamplePositionHistogram(INITIALIZE);
SampleNumberOfMoleculesHistogram(INITIALIZE);
SampleEnergyHistogram(INITIALIZE);
SampleDensityProfile3DVTKGrid(INITIALIZE);
SampleEndToEndDistanceHistogram(INITIALIZE);
SampleMoleculePropertyHistogram(INITIALIZE);
SamplePDBMovies(INITIALIZE);
SampleDcTSTConfigurationFiles(INITIALIZE);
SampleFreeEnergyProfile(INITIALIZE);
SampleCationAndAdsorptionSites(INITIALIZE);
for(CurrentCycle=0;CurrentCycle<NumberOfCycles;CurrentCycle++)

```
```

{
// sample energy average and system/particle properties
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
UpdateEnergyAveragesCurrentSystem();
SampleRadialDistributionFunction(SAMPLE);
SampleFrameworkSpacingHistogram(SAMPLE);
SamplePositionHistogram(SAMPLE);
SampleNumberOfMoleculesHistogram(SAMPLE);
SampleEnergyHistogram(SAMPLE);
SampleDensityProfile3DVTKGrid(SAMPLE);
SampleEndToEndDistanceHistogram(SAMPLE);
SampleMoleculePropertyHistogram(SAMPLE);
SampleFreeEnergyProfile(SAMPLE);
SampleCationAndAdsorptionSites(SAMPLE);
}
// SELECTION OF MC-MOVES (SEE CODE OF THE PREVIOUS SECTION)
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
SampleRadialDistributionFunction(PRINT);
SampleFrameworkSpacingHistogram(PRINT);
SamplePositionHistogram(PRINT);
SampleNumberOfMoleculesHistogram(PRINT);
SampleEnergyHistogram(PRINT);
SampleDensityProfile3DVTKGrid(PRINT);
SampleEndToEndDistanceHistogram(PRINT);
SampleMoleculePropertyHistogram(PRINT);
SamplePDBMovies(PRINT);
SampleDcTSTConfigurationFiles(PRINT);
SampleFreeEnergyProfile(PRINT);
SampleCationAndAdsorptionSites(PRINT);
}
}
// finalize output
SampleRadialDistributionFunction(FINALIZE);
SampleFrameworkSpacingHistogram(FINALIZE);
SamplePositionHistogram(FINALIZE);
SampleNumberOfMoleculesHistogram(FINALIZE);
SampleEnergyHistogram(FINALIZE);
SampleDensityProfile3DVTKGrid(FINALIZE);
SampleEndToEndDistanceHistogram(FINALIZE);
SampleMoleculePropertyHistogram(FINALIZE);
SamplePDBMovies(FINALIZE);
SampleDcTSTConfigurationFiles(FINALIZE);
SampleFreeEnergyProfile(FINALIZE);
SampleCationAndAdsorptionSites(FINALIZE);

```

Each of the sampling routine (in 'src/sample.c') has 5 scaling options:
- ALLOCATE to allocate memory needed for the sampling.
- INITIALIZE to initialized the routine if needed.
- SAMPLE to sample the properties.
- PRINT to periodically write the output to file.
- FINALIZE to free the requested memory and clean up.

Adding your own sampling routines requires an additional routine in 'src/sample.c', the definition in 'src/sample.h' and addition to calls to 'src/monte_carlo.c'.

\subsection*{5.4.2 Molecular Dynamics}

A molecular dynamics simulation is performed in several steps:
- The proper amount of molecules are created and they are inserted as as no overlaps occurred with the framework or other particles.
- Initialization: during the initialization period an NVT Monte-Carlo (MC) simulation is performed to rapidly achieve an equilibrium molecular arrangement.
- After the initialization period, velocities are assigned, drawn from the Maxwell-Boltzmann distribution at the desired average temperature to all the atoms. The total momentum of the system can be set to zero.
- Equilibration: Next, the system is further equilibrated by performing an NVT MD simulation using a specified ensemble.
- Production run: the simulation is performed in the requested ensemble and properties are measured.

The amount of cycles for each of these steps can be specified. For example, when starting from a restart-file there is no need for the Monte Carlo initialization, and if also the velocities are used from the restart-file then also the MD equilibration could be skipped. Moreover, the equilibration can be done in a different ensemble as the production run. This is most useful for NVE simulations, where the equilibration could be done using NVT. The final temperature of the NVE production run is then quite close the desired temperature (in NVE the temperature is not imposed).

The initialization part is not shown here, as it is very similar to regular Monte Carlo. The basic outline for the equilibration and production run are listed below. The most important lines are the 'Integration();' ones, which evolve the system a single time step. This routine is implemented in 'src/integration.c' and makes use of 'src/thermo_baro_stats.c' for temperature and pressure control.
```

// initialize
InitializesEnergiesAllSystems();
InitializeSmallMCStatisticsAllSystems();
InitializeMCMovesStatisticsAllSystems();
// compute initial energy
InitializeNoseHooverAllSystems();
InitializeForcesAllSystems();
// set the current ensemble to the initialization ensemble
for(i=0;i<NumberOfSystems;i++)
Ensemble[i]=InitEnsemble[i];
InitializesEnergyAveragesAllSystems();
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
ReferenceEnergy [CurrentSystem]=ConservedEnergy [CurrentSystem];
Drift[CurrentSystem]=0.0;
}
// Molecular-Dynamics initializing period to achieve a rapid equilibration of the velocities
for(CurrentCycle=0;CurrentCycle<NumberOfEquilibrationCycles;CurrentCycle++)
{
for(CurrentSystem=0;CurrentSystem<NumberDfSystems;CurrentSystem++)
{
// regularly output system status and restart files
if(CurrentCycle%PrintEvery==0)
{
PrintIntervalStatusEquilibration(CurrentCycle,NumberOfEquilibrationCycles,OutputFilePtr[CurrentSystem]);
PrintRestartFile();

```
```

        }
        // evolve the system a full time-step
        Integration();
        // update the current energy-drift
        Drift[CurrentSystem]+=fabs((ConservedEnergy [CurrentSystem]-ReferenceEnergy [CurrentSystem])/
                ReferenceEnergy[CurrentSystem]);
    }
    }
// initialize sampling-routines at the start of the production run
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
Ensemble[CurrentSystem]=RunEnsemble[CurrentSystem];
ReferenceEnergy[CurrentSystem]=ConservedEnergy [CurrentSystem];
Drift[CurrentSystem]=0.0;
}
SampleInfraRedSpectra(INITIALIZE);
SampleEndToEndDistanceHistogram(INITIALIZE);
SampleMeanSquareDisplacementOrderN(INITIALIZE);
SampleOnsagerMeanSquareDisplacementOrderN(INITIALIZE);
SampleEnergyHistogram(INITIALIZE);
SamplePositionHistogram(INITIALIZE);
SampleRadialDistributionFunction(INITIALIZE);
SamplePositionHistogram(INITIALIZE);
SampleMoleculePropertyHistogram(INITIALIZE);
SamplePDBMovies(INITIALIZE);
SampleCationAndAdsorptionSites(INITIALIZE);
// Molecular-Dynamics production run
// loop over the amount of production cycles (MD integration steps)
for(CurrentCycle=0;CurrentCycle<NumberOfCycles;CurrentCycle++)
{
// loop over all the systems and handle one by one
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
SampleInfraRedSpectra(SAMPLE);
SampleEndToEndDistanceHistogram(SAMPLE);
SampleMeanSquareDisplacementOrderN(SAMPLE);
SampleOnsagerMeanSquareDisplacementOrderN(SAMPLE);
SampleEnergyHistogram(SAMPLE);
SamplePositionHistogram(SAMPLE);
SampleRadialDistributionFunction(SAMPLE);
SamplePositionHistogram(SAMPLE);
SampleMoleculePropertyHistogram(SAMPLE);
SampleCationAndAdsorptionSites(SAMPLE);
// update all the average energies
UpdateEnergyAveragesCurrentSystem();
if(CurrentCycle%PrintPropertiesEvery==0)
PrintPropertyStatus(CurrentCycle,NumberOfCycles,OutputFilePtr[CurrentSystem]);
if(CurrentCycle%PrintEvery==0)
{
PrintIntervalStatus(CurrentCycle,NumberOfCycles,OutputFilePtr[CurrentSystem]);
PrintRestartFile();
}
// regulary output radial distribution function
SampleInfraRedSpectra(PRINT);
SampleEndToEndDistanceHistogram(PRINT);

```
```

        SampleMeanSquareDisplacementOrderN(PRINT);
        SampleOnsagerMeanSquareDisplacementOrderN(PRINT);
        SampleEnergyHistogram(PRINT);
        SamplePositionHistogram(PRINT);
        SampleRadialDistributionFunction(PRINT);
        SamplePositionHistogram(PRINT);
        SampleMoleculePropertyHistogram(PRINT);
        SamplePDBMovies(PRINT);
        SampleCationAndAdsorptionSites(PRINT);
        // evolve the current system a full time step
        Integration();
        // update the current energy-drift
        Drift[CurrentSystem]+=fabs((ConservedEnergy [CurrentSystem]-ReferenceEnergy[CurrentSystem])/
        ReferenceEnergy[CurrentSystem]);
    }
    }
// finalize and clean up
for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)
{
SampleInfraRedSpectra(FINALIZE);
SampleEndToEndDistanceHistogram(FINALIZE);
SampleMeanSquareDisplacementOrderN(FINALIZE);
SampleOnsagerMeanSquareDisplacementOrderN(FINALIZE);
SampleEnergyHistogram(FINALIZE);
SamplePositionHistogram(FINALIZE);
SampleRadialDistributionFunction(FINALIZE);
SamplePositionHistogram(FINALIZE);
SampleMoleculePropertyHistogram(FINALIZE);
SamplePDBMovies(FINALIZE);
SampleCationAndAdsorptionSites(FINALIZE);
}

```

Adding your own sampling routines requires an additional routine in 'src/sample.c', the definition in 'src/sample.h' and addition to calls to 'src/molecular_dynamics.c'.

\subsection*{5.5 Debugging}

\subsection*{5.5.1 Linux}

There are several debuggers like ' gdb ', and memory check utilities available, i.e. valgrind.

\subsection*{5.5.2 Mac OSX}

Debugging memory error under Max OsX is easy. One can replace the standard library to allocate memory by different ones that check memory allocation and use. It can catch a lot of array out-of-bound error, even for dynamically allocated memory. See
```

man libgmalloc

```

An example, export 'RASPA_DIR' to the installation directory, start the debugger, load the debugging libraries and start running the code.
```

export RASPA_DIR=\${HOME}/RASPA/simulations/
gdb ~/RASPA/simulations/bin/simulate
GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC 2007)

```

Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-apple-darwin"...Reading symbols for shared libraries ... done
(gdb) set env DYLD_INSERT_LIBRARIES /usr/lib/libgmalloc.dylib
(gdb) r

\section*{Troubleshooting}

The numerical value computed from finite differences is not equal to the analytical expression Using 'SimulationType Numerical' the analytical expression for the force, stress etc. are compared to numerical values from finite differences. If just one (or at the most a few values) are different, then this might be an artifact arising from a finite cutoff in the Van der Waals potential. This can be checked by changing the value of the cutoff by about \(10^{-3} \AA\). This is a very small change, but larger than the displacements used in the finite differences. The problem is that for a finite difference scheme like:
\[
\begin{equation*}
f^{\prime}(x)=\frac{f(x-\Delta)-8 f\left(x-\frac{1}{2} \Delta\right)+8 f\left(x+\frac{1}{2} \Delta\right)-f(x+\Delta)}{6 \Delta} \tag{6.1}
\end{equation*}
\]
it is possible that one of the displacements \(\Delta\) places the particle outside of the cutoff, while the original position was inside (or visa versa). For a force-shifted Van der Waals potential there is no problem, but for shifted potentials, or potentials with a simple truncation, the divergence becomes a problem.

Excess loading is negative This usually happens when computing an isotherm and the next pressure is above the vapor pressure. The boundary from gas to liquid adsorption has been crossed and the amount of excess molecules increases by orders of magnitude. There is a reason why experimental gas-phase isotherms are of finite range, they usually stop at the vapor pressure. Also, if the pressure is very high the fluid outside the crystal is compressed more and more while the loading inside the crystal remains the same (at maximum loading). Hence, excess adsorption evantually becomes negative.

Large drift in Monte Carlo energies This should not happen and signals an error in (one of) the Monte Carlo routines. During the Monte Carlo simulations, the running-energies are stored. These are starting energy, and all the added energy differences. At the final stage, the energy is recomputed again, and these should match within an error of about \(10^{-5}\) or lower. If you have added your own MC move, check whether you have properly added the energy differences to the running energies.

Energy is not conserved in molecular dynamics Usually, this happens because the time step is too large. Also, at initialization, the system can be far from equilibrated and a smaller time step is needed.

RASPA "hangs" at initialization Put 'CreateNumberOfMolecules 0 ' and check if that solves the problem. If so, then you have tried to add too many molecules in the system (i.e. more than actually fit in the system). For systems without a framework, one can also increase the size of the box.

Segmentation fault A memory access that is not allowed has occured. This could happen when the input is incorrect. For example, if it is listed that there are 4 bonds, but you put in 5 lines, then all bends and what follows next will be read in wrong. This is the most common cause of segmentation faults.

Mean-square displacement is not linear There are several known causes:
- Your system is one-dimensional and particles are unable to pass each other. This is known as 'single-file-diffusion' and the mean square displacement is propertial to the square root of time,
- You did not simulate long enough. In some systems it can take up to several nanoseoconds before the msd becomes linear in time,
- You forgot to specify interactions between the molecules and they are not interacting.

Minimization does not converge A likely cause is that you minimize a system that would like to change angles, but you do not allow it to. In such a system, there is a non-vanishing stress. Try to minimize using NPT-PR with cell type 'Regular' or 'RegularUppertriangle'. Another reason could be that the electrostatics are not computed accurate enough. Increase the precision to \(1 \mathrm{e}-10\), using 'EwaldPrecision \(1 \mathrm{e}-10\) '.

Output is not written to file Check with 'df \(-\mathrm{k}^{\prime}\) whether the disk is full.

Molecule can not be grown Check if the connectivity, i.e. the bonds, are correct.

Framework flies apart Check bonds for the framework and whether electrostatics and intra framework Van der Waals interactions are computed.

Energy during molecular dynamics with a flexible framework is not well conserved In zeolites, a common problem is that the the angle of a Si-O-Si bend can become 180 degrees. This leads to a undefined torsion angle. If this occures, try to use a smoothing function that slowly switches of the energy and force contributions for these 3 atoms as the angle approaches 180 degrees. See Bend/Torsion cross potentials.

Amount of detected bonds/bends/torsions etc. for a flexible framework is wrong For the detection of intra-framework potentials a connectivity tabls is made, where two are considered bonded when their length is smaller than \(0.56+r_{i}+r_{j}\), where \(r_{i}\) and \(r_{j}\) are the covalent radii for the two atoms. The radii are specified in 'pseudo_atoms.def'. The most likely cause is a wrong value for the radius. Note that even when starting from a restart-file, the connectivity table is based on the crystal structure.

Oxgens connected to aluminum type ' \(\mathrm{O}^{\prime}\) are not automatically converted to ' Oa ' Use the option
ModifyOxgensConnectedToAluminium yes

Strange behaviour when using cations The problem could be related to CBMC of net-charged molecules. The Rosenbluth weights can become very large or very small, because the energy difference when displacing an ion is large. This can lead to numerical problems for ratio's of combination of small/large, for example in the reinsertion move. To see whether this is the cause use 'RandomTranslationProbability' and set 'ReinsertionProbability' to zero.

Minimization does not converge Minimization code and algorithms are complex. Due to the harmonic approximation the jumps through the energy landscape can not be too large. A possible remedy therefore is to decrease the maximum step-length (default 0.3) using

MaximumStepLength 0.1
Another issue is the rotational degrees of freedom of the system. For periodic systems the system is invariant with respect to translation but not with respect to rotation, i.e. the energy changes for rotation of the whole system. In contrast, a molecule in a finite system is invariant with respect to both translation and rotation. However, for periodic systems at low loading with molecules without charges, groups/clusters of molecules can occur that do not have interactions with their images. In effect this has reduced the periodic system to a non-periodic one. If this occurs one can remove the system rotation explicitly with

RemoveRotationFromHessian yes
Note that this option should not be used on a truly periodic system. In addition to these algorithm settings, it is possible that the definition of the molecule and/or framework contains errors.

Parallel tempering does not work for systems with cations The problem is physical, it is just that all the energy distributions are more 'spiked' and overlap between the energies of the systems is rare. The only solution is to use more systems (and smaller temperature differences) to increase the acceptance rates of swapped between neighboring system. The same problem happens when one increase the system size.

Results do not match data from literature Common reasons include difference in simulation length, system size, cutoff value, tail-corrections vs shifted potentials, and handling of electrostatics. For adsorption, is the crystal structure that you used the same? Another very often made error, is comparing against different units, or an error in the conversion of units.

Error during compiling The 'gcc' and 'icc' compilers are tested. These compilers have C extensions that other \(C\) compilers could potentially lack.

Error during linking Make sure that the 'blas' and 'lapack' libraries are installed on your system.

The results are different on different machines We have come across one compiler-error: gcc 4.3 .0 using optimizations "-O3" and "-O4" generated wrong code. Gcc 4.3.2 has resolved this bug.

The program crashes with a 'segmentation fault' Usually caused by wrong input-files, for example supplying 3 arguments to a torsion when 4 are expected. This causes all input to have strange values. To identify the cause make sure the job will use the same random number sequence are written in the output.

RandomSeed [int]
This will generate exactly the same sequence of events. Make sure the program is allowed to 'dump a core' (See the unix 'ulimit' command). Also, the executable needs to be compiled with the '-g' option which includes debugger information into the exectubale. Now restart the program and when it crashes, it will write a 'core-dump-file'. Start the debugger using a command similar to
```

gdb ~/RASPA/simulate/bin/simulate core

```
and type 'where' to obtain the line where the code crashed. It is also possible to just run the code inside the debugger.

\section*{Part II}

\section*{Utilities}

\section*{Visualization}

\subsection*{7.1 Making pictures using VTK}

VTK is a nice visualization toolkit tailored for scientific purposes. It builds on top of OpenGL and is available for most platforms. One of the most useful features is the ability to define scientific data in e.g. grid form ("structured points") and to manipulate that data. Each grid point can contain various data forms: scalars like temperature and pressure, but also vector data like velocity or fields.

There are several ways to visualize frameworks in RASPA using VTK:
- Ball and stick

RASPA will output vtk-files for all the molecules in the system as well as the framework itself.
- Volume rendered surface area

RASPA will output a "structured point" grid of the adsorption energy. The structure is probed using Widom insertion at random positions and the result is averaged. The lowest and highest values are recorded and then scaled between 0 and \(2^{16}\).
- Volume rendered density plots of adsorbates

RASPA computes a 3D histogram of the positions of adsobates per component and for the total fluid. This type of plots are very useful to find out where and how the molecules adsorb.

\subsection*{7.2 Ball and stick}

At the start of any run, RASPA outputs the current state in VTK files, located in 'VTK/System[int]'. The files are 'FrameworkAtoms.vtk', 'AdsorbateAtoms.vtk', 'CationAtoms.vtk', and 'Frame.vtk'. In 'Example/Visualization/BallStickRASPA' the example for erionite is shown.
```

SimulationType MC
NumberOfCycles 0
Forcefield ElenaSodiumCalcium
Framework 0

```


Figure 15: Ball and stick picture of erionite (ERI): (a) front view, (b) side view. The erionite structure is monoclinic: \(a=b=13.27\) \(\AA\) and \(c=15.05 \AA, \alpha=\beta=90^{\circ}\) and \(\gamma=120^{\circ}\).

FrameworkName ERI_mono
UnitCells 111
After copying the vtk-files to 'Examples/Visualization/ERI/VTK' one can run the VTK code. The VTK program will produce a picture 'Picture.jpg' and looks like Figure 15. The file 'Frame.vtk' looks like:
```


# vtk DataFile Version 1.0

Frame
ASCII
DATASET POLYDATA
POINTS 8 float
50.000000 -0.000000-0.000000
150.000000 0.000000 0.000000
100.000000 86.602540 0.000000
0.000000 86.602540 0.000000
50.000000 0.000000 113.413715
150.000000 0.000000 113.413715
100.000000 86.602540 113.413715
0.000000 86.602540 113.413715
LINES 6 36
501230
545674
5 0 1 5 4 0
5 2 3 7 6 2
5 0 4 7 3 0
512651

```

It contains 8 points: the corners of the frame, and 6 closed poly-lines that form the ribbons. Using the 'vtkTubeFilter' we can use these lines to turn them into bigger tubes and color the tubes white. The coordinate system is chosen as \(150 \times 150 \times 150\) to be compatible with structure grids (for the density and surface). The information about the framework is listed in 'FrameworkAtoms.vtk':
```


# vtk DataFile Version 1.0

```
```

Cube
ASCII
DATASET POLYDATA
POINTS 108 float
38.346000 20.221693 11.847197
38.125000 36.762778 28.353429
35.205000 30.250267 18.259608
....
LINES 232 696
20 2
203
2 0 13
....
...
POINT_DATA 108
SCALARS my_scalars float
LOOKUP_TABLE default
2.1
2.1
1.52
....
VECTORS vectors float
0.125 0 0
0.125 0 0
0.03125 0 0
....

```

The first points are the 108 framework atoms, next the lines section describes the bonding between them. The last two sections denote the size and color of the atoms (Note that the VECTORS section is a trick to allow the VTK 'glyphs', here spheres, to be scaled by the scalar data, but colored by the magnitude of the VECTOR data. Hopefully this will be easier in future versions of VTK).

The VTK program is also interactive, one can zoom in and out (scroll button) and rotate (click on the canvas, closer to the center rotates less then further away). In computer graphics, a sphere is not a sphere, but a collection of polygons. More polygons means a smoother surface but less responsive in the interactive mode. For final pictures, one should use many polygons and anti-aliasing, which really improve the quality of the picture.

The VTK files are written in 'src/movies.c' in the routine 'void WriteVTK(int system)'. The top of this file also defines the colors. This same color definition is also used in the VTK 'main.c'.

\subsection*{7.3 Framework surface}

The ball and stick pictures are useful, but still do not provide information about pore shape and connectivity. A more suitable approach is to visualize the energy landscape for a certain probe atom. For energy landscape pictures, we divide the unit cell into e.g. \(150 \times 150 \times 150\) voxels (volume-elements). At millions of random positions in the unit cell the free energy of a test-particle (usually a helium or methane unit atom) is calculated and assigned to the appropriate voxel. To visualize this energy landscape the three-dimensional dataset is volume rendered, removing the parts that generate overlap (the structure itself) by making it completely transparent. Low energy values are rendered with medium transparency, allowing the inside
of the pores/cages to be viewed as voids. Higher energy values are rendered less and less transparent until the energy approaches a cutoff energy and is regarded as part of the zeolite wall. Also color is assigned according to the energy value (green for the outside view of a cage).

To speed up computation of surface and density pictures it is advisable to use energy-grids. For the upcoming example we need grids for \(\mathrm{CO}_{2}\)-atoms and helium:
\begin{tabular}{ll}
SimulationType & MakeGrid \\
Forcefield & ElenaSodiumCalcium \\
& \\
Framework 0 & \\
FrameworkName ERI_mono & \\
UnitCells 3 3 2 & \\
ExternalTemperature 300.0 & \\
& \\
NumberOfGrids 3 & \\
GridTypes 0_co2 C_co2 He & \\
SpacingVDWGrid 0.1 & \\
SpacingCoulombGrid 0.1 &
\end{tabular}

We need \(3 \times 3 \times 2\) unit cells to obey the minimum-image convention.
Next we are going to generate the VTK 'FrameworkatomsSurface.vtk' that contains data on the energygrid for a chosen probe atom. Here, we use helium. An example input to generate the surface-grid is listed here ('Example/Visualization/ERI/SurfaceRASPA')

Even though the grid is generated for a single unit, in general one still needs \(3 \times 3 \times 2\) unit cells because the charge interaction is dependent on the amount of chosen unit cells. The grid file 'FrameworkSurface.vtk' is located in 'VTK/System[int]'.

Figure 16: Picture of ERI: (a) surface picture, (b) density picture (1 \(\mathrm{CO}_{2}\) at 300 K).

To visualize the pore-shape, copy the 'FrameworkSurface.vtk' to 'Examples/Visualization/ERI/VTK'. Do not copy the other VTK files because they are generated for a \(3 \times 3 \times 2\) grid, and we need the frameworkatoms and frame- VTK files for a \(1 \times 1 \times 1\) structure. Running the VTK-program now shows the surface inside the structure, as shown in Figure 16(a). If we compare Figure 16(a) to Figure 15 we see that we have visualized the pore structure itself. Also note, that small "pockets" have shown up that are not a part of the main pore system. These pockets should be blocked (See next section).

The ERI-case by default offers a nice view inside the cage. This is not always the case. Using
```

ShiftUnitCells 0.25 0 0

```
one can change the LTA case to a outside-cage-view to an inside-cage-view. (TODO, check whether grids takes this into account.)

The 'FrameworkSurface.vtk' is a structured points VTK-file. It is rectangular grid of, in this case, \(150 \times\) \(150 \times 150\) points (a total of 3375000 points). All these values are listed sequentially, but one can convert between 1D and 3D by using
\[
\begin{equation*}
\text { index }=x+y * \operatorname{SIZEY}+z * \operatorname{SIZEX} * \operatorname{SIZEY} \tag{7.1}
\end{equation*}
\]

Note that the proper aspect ratios can be used. The VTK file looks like
```


# vtk DataFile Version 1.0

Free energy zeolite: ERI_mono (300.000000 K)
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 150 150 150
ASPECT_RATIO 1.000000 0.577350 0.756091
ORIGIN 0.0 0.0 0.0
POINT_DATA 3375000
SCALARS scalars unsigned_short
LOOKUP_TABLE default
O
0
.

```

The stored values are 'unsigned short', so between 0 and \(65536\left(2^{16}\right)\). The value are always clipped to this region using the minimum and maximum values of the simulation data.

Figure 17

\subsection*{7.4 Density plots}

During a Monte Carlo simulation a 3-dimensional histogram of the positions of all atoms of the molecules is collected (per component). The unit cell is divided into \(150 \times 150 \times 150\) "voxels". During the simulation the molecules move around in the box, and every cycle data is collected for the histogram. First a position is mapped back from the full simulation box (\(3 \times 3 \times 2\) unit cells) to the main unit cell, and for every atom the voxel corresponding to the mapped position is incremented. At certain intervals the histogram is written to file so that it can be visualized using VTK. The data is always normalized using the highest occurring voxel value. However, the overall brightness is still influenced by the loading of the specific adsorbate in the mixture.

In VTK the data is "volume rendered", more dense regions are less transparent, less dense regions are more transparent. In addition the color changes, less dense regions are grey, more dense are orange, then yellow, and the highest is rendered light blue. The original framework is placed in the picture as a ball-andstick model, and every position can be related to the framework. We can therefore e.g. decipher a molecular picture of why selectivity occurs.

An example input for RASPA is
\begin{tabular}{ll}
SimulationType & MC \\
NumberOfCycles & 100000000 \\
NumberOfInitializationCycles & 100 \\
PrintEvery & 100 \\
PrintPropertiesEvery & 10000 \\
& \\
Forcefield & ElenaSodiumCalcium
\end{tabular}

\section*{Framework 0}

FrameworkName ERI_mono
UnitCells 332
ExternalTemperature 300.0
ComputeDensityProfile3DVTKGrid
WriteDensityProfile3DVTKGridEvery 10000
DensityProfile3DVTKGridPoints 150150150
```

NumberOfGrids 2
GridTypes C_co2 O_co2
SpacingVDWGrid 0.1
SpacingCoulombGrid 0.1
UseTabularGrid yes

| component 0 | MoleculeName | CO2 |
| :--- | :--- | :--- |
|  | MoleculeDefinition | TraPPE |
|  | IdealGasRosenbluthWeight | 1.0 |
|  | TranslationProbability | 1.0 |
|  | RegrowProbability | 1.0 |
|  | SwapProbability | 0.0 |
|  | CreateNumberOfMolecules | 1 |

```

Copy the 'VTK/System[int]/DensityProfile_methane.vtk' to 'Examples/Visualization/ERI/VTK' as 'Density.vtk', rename the surface VTK-file, and run the vtk-code. It will now produce a picture like Figure 16(b). If you did not rename the file (or rename it again to 'FrameworkatomsSurface.vtk'), a picture with the frameworks atoms, the pore surface and the density of \(\mathrm{CO}_{2}\) is produced. It is now easy to show that \(\mathrm{CO}_{2}\) preferentially adsorbs in the 8 -ring windows separating the erionite cages (in contrast to an alkane which prefers the cages).

Of course, one is not restricted to a unit cell and it is possible to make pictures of bigger volumes. The first way is to use \(3 \times 3 \times 2\) unit cells, and use the file 'Movies/System[int]/Framework initial.cssr'. Copy this file as 'structure_name \(3 \times 3 \times 2\).cssr' and from then on use \(1 \times 1 \times 1\) using this new enlarged unit cell. The second method is to use \(3 \times 3 \times 2\) unit cell but copy the surface and density in the \(x, y, z\) directions in the picture. You have to edit the 'main.c' file of the VTK directory and recompile. The relevant settings are:
```

// the resolution of spheres and tubes, the higher the more smooth
// use 10, but 50 for the final picture
const int Resolution=10;
// anti-aliasing, use 1, but 16 for final picture
const int AA=1;
// control the transparancy of framework, adsorbates, and cations
const double FrameworkOpacity=1.0;
const double AdsorbateOpacity=1.0;
const double CationOpacity=1.0;
// zoom in or out by increasing/decreasing the zoom-factor
const double ZoomFactor=2.0;
// scale the size of the atoms and bonds
const double ScaleFactor=1.0;
// control the view-point of the oject (input in degrees)
const double Azimuth=0.0;
const double Elevation=0.0;
const double Roll=0.0;
// the size of the image in pixels
const int ImageSizeX=800;
const int ImageSizeY=500;

```


Figure 18: Blocking pockets in DDR. The DDR structure is converted to a orthorhombic unit cell of \(a=24.006, b=13.86\), and \(c=40.892 \AA\). In (a) we show the ball-and-stick structure, in \((b)\) the structure and the pore surface probed with helium, and (c) the structure with proper blocking of the small disconnected pockets.
```

// the number of duplicates in x,y,z (same as the number of unit cells)
const int NrDuplicatesX=3;
const int NrDuplicatesY=3;
const int NrDuplicatesZ=2;
// the lengths of the edge-vectors
const double A=13.27;
const double B=13.27;
const double C=15.05;
// the angles of the unit cell
const double AlphaAngle=90*M_PI/180.0;
const double BetaAngle=90*M_PI/180.0;
const double GammaAngle=120*M_PI/180.0;

```

This can then be used to make a 'snapshot' of molecules. For the \(3 \times 3 \times 2\) structure we need the file 'VTK/System[int]/AdsorbateAtoms.vtk' from a simulation. This file is generated at the start of a simulation. After a sufficiently long run to equilibrate the molecules, one could copy the 'Restart' to 'RestartInitial', put the amount of created molecules at zero and restart from the restart-files using zero cycles to generate the new 'AdsorbateAtoms.vtk' file. The picture of a snapshot of \(64 \mathrm{CO}_{2}\) in the \(3 \times 3 \times 2\) ERI-structure is shown in Figure 17(b). Note the many \(\mathrm{CO}_{2}\) molecules that occupy the barrier. Conclusions are hard to draw based on snapshots. The 'density'-plots give average information and therefore the same for each unit cell (because each unit cell is the same [using a rigid structure]). The density plots are based on atoms, and one can clearly see the orientation of \(\mathrm{CO}_{2}\) on the barrier. The 3 'blobs' corresponds to the oxygen, carbon, and oxygen of \(\mathrm{CO}_{2}\).

\subsection*{7.5 Determining blocking pockets}

Some structures have inaccessible parts, i.e. areas that are not reachable from the main pore system. Examples are the sodalite cages in FAU- and LTA-type zeolites. The surface pictures allow us to visualize these pockets, locate the position, and construct a 'blocking-file'.

The unit cell of the DDR structure has edge lengths of \(a=24.006\) Angstrom, \(b=13.86\) Angstrom, 40.892 Angstrom with cell angles of 90 degrees. The atomic structure is shown in Figure 18(a). It is difficult to envision the details of the pore structure from this picture. One can obtain more insight from energy-landscapes. In Figure 18(b) we show the same structure with the energy landscape a helium atom would feel. In practice, the simulation cell is divided into \(150 \times 150 \times 150\) bins and during a Monte-Carlo simulation one keeps track of the average energy a molecule feels inside that bin. Here we volume-rendered the resulting energy grid making very high energies transparent, i.e. the part that overlaps with the framework, as well as very favorable energies, i.e. the positions inside the cage. The resulting surface layer can be viewed as the "wall" of the pores. Alternatively, one can make a isocontour (a surface representing a constant, high value of the energy). In Figure 18(b) the main pore structure is apparent, but also some disconnect pockets show up. It is very important to artificially block these pockets for Monte-Carlo simulations. Also, in Molecular Dynamic simulations, initial positions should be chosen in the main channel system. The blocking procedure can be a simple distance-check from the center of the small pockets and a rejection of all Monte-Carlo trial moves that would place a molecule inside a certain radius. This radius should not be chosen to small or too big, because otherwise one would block not enough, or block parts of the main channel system. In Figure 18(c) we show the structure with the appropriate blocking centers and radii; all small pockets have disappeared but the main channel system is unchanged.

The blocking procedure is dependent on the type of probe atom. Helium is a good procedure to find small pockets and therefore to obtain the proper unit cell pore volume. This accessible pore volume is in simulation usually obtained via a helium-probe procedure. Helium can also be used to find pockets that could be occupied by other small molecule like CO2, N2, H2, methane, etc. The adsorption results can be dramatically different with or without blocking. Whether the selectivity of mixtures changes to higher or lower depends on the match of the molecule with the small pockets. The small pockets are very favorable for the small molecules because they tend to have a very surface high curvature, i.e.. a very favorable interaction energy).

\subsection*{7.6 Making movies}

\subsection*{7.6.1 Using VMD}

\subsection*{7.6.2 Combining pictures into a movie}

Using "ffmpeg", from png-files to a mov-file with h264-encoding
```

ffmpeg -i %03d.png -s:v 1280x720 -acodec aac -ac 2 -strict experimental -ab 160k
-vcodec libx264 -preset slow -profile:v baseline -level 30 -maxrate 10000000
-bufsize 10000000 -b 1200k -f mp4 -threads 0 -crf 23 -pix_fmt yuv420p -r 30 Movie.mov

```
or using "mencoder" with settings
```

export opt="vbitrate=1280000:mbd=2:keyint=132:vqblur=1.0:cmp=2:subcmp=2:dia=2:mv0:last_pred=3"
mencoder -ovc lavc -lavcopts vcodec=msmpeg4v2:vpass=1:$opt -mf type=jpg:fps=25 -nosound -o /dev/null mf://*.jpg
mencoder -ovc lavc -lavcopts vcodec=msmpeg4v2:vpass=2:$opt -mf type=jpg:fps=25 -nosound -o output.avi mf://*.jpg

```

\section*{Part III}

\section*{Tutorial}

\section*{8}

\section*{Tutorial}

\subsection*{8.1 Adsorption isotherm of \(\mathbf{N}_{2}\) in a metal-organic framework (MOF), Henry coefficients, enthalpy of adsorption}

Figure 19: (left) The MIL-47 unit cell, \(6.8179 \times 16.1430 \times 13.9390 \AA, \alpha=\beta=\gamma=90^{\circ}\), (right) the \(4 \times 2 \times 2\) supercell.
We are going to look at adsorption properties of methane in MIL-47 [1]. The MIL-47 structure is shown in Fig. 19. The first step is to select the size of the system. We are going to choose a VDW cutoff of \(12 \AA\). This implies that all perpendicular lengths of the unit cell should be larger than twice the cutoff, i.e. \(24 \AA\). So, as a minimum, we should use at least a \(4 \times 2 \times 2\) unit cells. This requirement follows from the "minimum-image convention" where the interactions are computed with only the closest periodic image.
\begin{tabular}{l|l|l|l|l}
type & \(\mathrm{V}^{0+}\) & \(\mathrm{V}^{2+}\) & \(\mathrm{V}^{4+}\) & DFT \\
\hline V & 2.67677 & 1.45833 & 1.83592 & 1.68 \\
O1 & -0.986909 & -0.527963 & -0.661157 & -0.6 \\
O2 & -0.712381 & -0.439958 & -0.516643 & -0.52 \\
O3 & -0.693279 & -0.427135 & -0.501819 & -0.52 \\
C1 & 0.00680379 & -0.0146643 & -0.0110838 & -0.15 \\
H1 & 0.0434488 & 0.0574796 & 0.055858 & 0.12 \\
C2 & 0.0116383 & -0.0118276 & -0.00782077 & -0.15 \\
H2 & 0.0444475 & 0.0586772 & 0.0570134 & 0.12 \\
C3 & -0.150672 & -0.0720208 & -0.083311 & 0.0 \\
C4 & 0.605064 & 0.384265 & 0.420426 & 0.56
\end{tabular}

Table 8.1: Obtaining charges for MIL-47: charge equilibration vs. DFT-derived charges.

The positions of the atoms are usually known from experiments, or alternatively can be obtained from QM optimizations. Using the atomic information of the framework only, we can compute the frameworksmass as \(14787.6 \mathrm{~g} \mathrm{~mol}^{-1}\), and we can already compute a few interesting properties. The first is a measurement of how void the structure is.

Exercise 1: go to the sub-directory '1-Helium-void-fraction'. Compute the helium void-fraction (look for 'Rosenbluth factor new: 0.608 [-]' in the output file).

About 61\% of the structure is empty!
Exercise 2: go to the sub-directory '1-Helium-void-fraction'. Add a line 'HeliumVoidFraction 0.61 ' below 'Framework 0 ', use zero cycles, and check the structural properties (i.e. accesible pore volume and loading conversion factors) of the system.'

We see that the available pore volume is \(0.60977519 \mathrm{~cm}^{3} \mathrm{~g}^{-1}\). This density is important to know, because, using the liquid density, it gives a first approximation of the "maximum" number of molecules in the pore.

Two other very useful properties are the accessible surface and pore-size distribution.
Exercise 3: go to the sub-directory '3-Surface-area'. Run and compute the surface area.

The nitrogen surface area of MIL-47 is about \(1650 \mathrm{~m}^{2} \mathrm{~g}^{-1}\). This is much larger than most zeolites, but smaller than most large pore MOFs which can go up to an incredible \(5000-7000 \mathrm{~m}^{2} \mathrm{~g}^{-1}\).

Exercise 4: go to the sub-directory '4-Pore-size-distribution'. Run and compute the pore-sizedistribution. Plot the output-file in 'PoreSizeDistributionHistogram' in gnuplot using column 1 vs. 3 (plot 'PoreSizeDistributionHistogram' us 1:3 with lines) to see what the typical pore sizes are.

In general, the individual framework atoms are charged, but the overall framework should be charge neutral (or compensated by cations when the framework itself has a net-charge). For the charges there is ambiguity, since charge is not an ab-initio observable. That means that different methods to obtain charges give different answers. For adsorption however, we are not really interested in the charges themselves but rather of their influence on the electrostatic potential energy field inside the cavities. The CHELPGtype methods aim to do just that: they optimize the classical point charges on the framework work atoms to match the PES (potential energy surface) computed with ab-initio methods. For crystals, the REPEAT method is a very nice variant taking the periodicity into account [2]. However, such computations can take several hours (or even days). A fast alternative is "charge-equilibration" [3, 4, 5].

Exercise 5: go to the sub-directory '5-ChargeEquilibration'. Compute the charges using chargeequilibration for various oxidation states of vanadium (edit the 'pseudo_atoms.def'-file). The output-charges are written to 'Movies/System_0/Framework_0_final_1_1_1.cif'.

In Table 8.1 we summarize the results: charge-equilibration can give a good approximation in a matter of seconds (or minutes) provided the charge-expansion is performed around the appropriate oxidation state [5].

Next we are going to choose \(\mathrm{N}_{2}\) as the adsorbate molecule. Since this is a small molecule, it is probably fine to use the small \(4 \times 2 \times 2\) supercell. For much larger molecules finite-size effects occur and a larger system should be used. For example, a long chain-molecule could even interacts with itself if the system was small, which obviously leads to erroneous results. In order to compute an adsorption isotherm we need the framework positions and charges, a force field for the adsorbate and interactions with the framework. Here we will use a generic force field based on DREIDING and UFF [6, 7].

An adsorption isotherm describes the adsorption at a fixed (chosen) temperature as a function of pressure. The first question is to examine the appropriate pressure range for adsorption.

Exercise 6: go to the sub-directory '6-Adsorption'. Use a few thousand cycles and determine at what pressure adsorption starts to occur (pressures units are Pascal). Do this for 600K (and if time permits 600 K).

Exercise 7: go to the sub-directory '6-Adsorption'. Use 10000 cycles initialization, a few tenthousand cycles for production and compute 5 to 10 points from the starting pressure to 1000 bar. Put the data in a file and plot the loading vs. pressure in normal scale and in log-scale.
\begin{tabular}{ll}
SimulationType & MonteCarlo \\
NumberOfCycles & 10000 \\
NumberOfInitializationCycles & 10000 \\
PrintEvery & 100 \\
RestartFile & no \\
& \\
Forcefield & GenericMOFs \\
UseChargesFromCIFFile & yes \\
& \\
Framework 0 & \\
FrameworkName MIL-47 & \\
UnitCells 4 2 2 & \\
HeliumVoidFraction 0.61 & \\
ExternalTemperature 300.0 & \\
ExternalPressure 100000.0 & \\
& \\
Component 0 MoleculeName & \\
\(\quad\) MoleculeDefinition & TraPPE \\
\(\quad\) TranslationProbability & 0.5 \\
RotationProbability & 0.5 \\
ReinsertionProbability & 0.5 \\
SwapProbability & 1.0 \\
CreateNumberOfMolecules & 0
\end{tabular}

By examing the isotherm, the slope of the curve can be related to the Henry's coefficient. This property can also be conveniently computed by Widom's insertion using a single probe adsorbate and is directly
related to the excess chemical potential and the free energy [8]. The Henry coefficient can be computed by
\[
\begin{equation*}
K_{H}=\frac{1}{R T \rho_{f}} \frac{\langle W\rangle}{\left\langle W^{I G}\right\rangle} \tag{8.1}
\end{equation*}
\]
where \(\rho_{f}\) is the density of the framework, and \(\langle W\rangle\) is the Rosenbluth weight. This weight is in general the Rosenbluth weight when configurational bias is used, and reduces to the Boltzmann factor \(\langle\exp (-\beta \Delta U)\rangle\) without biasing. The ideal Rosenbluth weight \(\left\langle W^{I G}\right\rangle\) is the value for a single molecule in the ideal gas phase and serves as the reference state.

Exercise 8: go to the sub-directory '7-Henry coefficient'. Compute the Henry coefficient and compare it to the value you obtain from the isotherm at low loading.

Similarly, the limit of the enthalpy of adsorption can be computed from the limit of using a single adsorbate in the NVT-ensemble The affinity of a molecule with the framework can be expressed as the binding energy, or more general, as the enthalpy of adsorption at infinite dilution \(\Delta H\) :
\[
\begin{equation*}
\Delta H=\Delta U-R T=\left\langle U_{h g}\right\rangle-\left\langle U_{h}\right\rangle-\left\langle U_{g}\right\rangle-R T \tag{8.2}
\end{equation*}
\]
where \(\Delta U\) is the internal energy, and \(\left\langle U_{h g}\right\rangle,\left\langle U_{h}\right\rangle\), and \(\left\langle U_{g}\right\rangle\) are the average energy of the guest molecule inside the host-framework, the average energy of the host-framework, and the average energy of the guestmolecule, respectively. In simulations a common approximation is to assume the framework is rigid, and in this case the enthalpy of adsorption at infinite dilution can be understood to be the difference in internal energy of a single molecule outside and inside the confinement of the host framework. In the limit of zero temperature, the enthalpy of adsorption becomes the binding energy. Note: for rigid molecules \(\left\langle U_{g}\right\rangle=0\).

Exercise 9: go to the sub-directory '8-Heat of adsorption'. Compute the limit of the enthalphy of adsorption at zero loading. Compare this value to the values from the fluctuation formula computed during the isotherm.

Infinite dilution enthalpy of adsorption \(\Delta H\) is related to the Henry's coefficient \(K_{H}\) as
\[
\begin{equation*}
\Delta H=-\frac{\partial \ln K_{H}}{\partial \beta} \tag{8.3}
\end{equation*}
\]
where \(\beta=1 /\left(k_{B} T\right)\) is the inverse temperature, and \(k_{B}\) the Boltzmann's constant. The Henry's coefficient is the slope of the isotherm at zero pressure/loading.

Exercise 10 (optional): check relation Eq. 8.3 with Henry's coefficient simulations as a function of temperature.

\subsection*{8.2 NPT density of super-critical \(\mathrm{CO}_{2}\), RDF, diffusion}

The density of CO2 at 400 and 100 bar is about \(161.53 \mathrm{~kg} \mathrm{~m}^{-3}\), at 500 bar \(745.45 \mathrm{~kg} \mathrm{~m}^{-3}\) and at 1000 bar the density is \(932.81 \mathrm{~kg} \mathrm{~m}^{-3}\) (NIST chemical database). In this example the density is computed using Monte Carlo in the NPT-ensemble. Given the pressure \(P\), the temperature \(T\), and the amount of molecules \(N\), the density is computed.
\begin{tabular}{ll}
SimulationType & MonteCarlo \\
NumberOfCycles & 50000 \\
NumberOfInitializationCycles & 10000 \\
PrintEvery & 1000
\end{tabular}
```

RestartFile no
Forcefield GarciaPerez2006
Box 0
BoxLengths 30 30 30
ExternalTemperature 400.0
ExternalPressure 10e5
ComputeMolecularPressure yes
VolumeChangeProbability 0.05
Component O MoleculeName CO2
MoleculeDefinition TraPPE
TranslationProbability 0.5
RotationProbability 0.5
RegrowProbability 0.5
CreateNumberOfMolecules 256

```

Exercise 1: go to the sub-directory 'FluidCO2/MC_NPT'. Verify the three densities listed from NIST experimental data.

Next we are going to compute two important fluid properties that give inside in the structure of the fluid: the radial distribution function (RDF) and the self-diffusion.

Exercise 2: go to the sub-directory 'FluidCO2/MC_NPT'. Set the volume to the average of the previous step and switch off the volume move, e.g. remove 'VolumeChangeProbability 0.05 '. Also replace 'ComputeMolecularPressure yes' by
ComputeRDF yes
WriteRDFEvery 1000
Plot and analyze the output rdf's that can be found in the directory 'RadialDistributionFunctions'. Analyze what the peaks mean.

Finally, we are going to compute a dynamic property. Therefore, we change 'SimulationType MonteCarlo' to 'SimulationType MolecularDynamics' and we are going to use Molecular Dynamics.
\begin{tabular}{ll}
SimulationType & MolecularDynamics \\
NumberOfCycles & 1000000 \\
NumberOfInitializationCycles & 1000 \\
NumberOfEquilibrationCycles & 10000 \\
PrintEvery & 10000 \\
PrintPropertiesEvery & 10000 \\
& \\
Ensemble & NVT \\
TimeStep & 0.0005 \\
& \\
Forcefield & GarciaPerez2006 \\
& \\
Box 0 & \\
BoxLengths 25 25 25 & \\
ExternalTemperature 400.0 &
\end{tabular}
```

ComputeMSD yes
PrintMSDEvery 5000
Component O MoleculeName CO2
MoleculeDefinition TraPPE
TranslationProbability 1.0
ReinsertionProbability 1.0
CreateNumberOfMolecules 100

```

Exercise 3: Compute the diffusion via the mean-square displacement. Using gnuplot, plot the file 'MSDOrderN/System_0/msd_self_methane_0.dat'. Use the slope to extract the diffusion coefficient.

\subsection*{8.3 Reaction-ensemble of ammonia}

We are going to study the ammonia synthesis reaction
\[
\begin{equation*}
\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3} \tag{8.4}
\end{equation*}
\]

Ammonia ranks second among synthesis chemicals in amount produced, and there has been a great deal of experimental and theoretical research into the ammonia synthesis reaction over the past 100 years. Thus there is an abundance of experimental reference data on this reaction, allowing an accurate check of simulation models [9].

One of the most commonly used approaches in molecular simulation is to simulate reaction equilibria in the reaction ensemble (RxMC). In this approach, the chemical reaction is carried out by a Monte Carlo (MC) trial move. Beside thermalization (translation, rotation, etc), trial moves are carried out in which reactants are removed and reaction products are inserted in the system, in such a way that an equilibrium distribution of reactants and reaction products is obtained. The mechanism and the transition state of the reaction are not considered as this approach is purely thermodynamic. As a result, the efficiency of this simulation technique is not affected by the height of the activation energy barrier of the reaction as reaction kinetics are not considered. The RxMC method requires the ideal gas partition functions of all reactant and reaction product molecules, a list of all possible chemical reactions in the system, and an appropriate force field accurately describing interactions between molecules.

Figure 20 shows a snapshot of the \(\mathrm{N}_{2}-3 \mathrm{H}_{3}-2 \mathrm{NH}_{3}\) system. To efficiently perform the reaction we use the reaction-ensemble using continuous fractional component MC. The reaction is performed along a \(\lambda\) parameter from 0 to 1 , where 0 denotes the full \(\mathrm{N}_{2}-3 \mathrm{H}_{3}\) reactant state for the fractional components and 1 the full product state \(2 \mathrm{NH}_{3}\). Using fractional molecules for each component the reaction can be performed gradually. In addition to the usual thermalization moves we have a \(\lambda\)-move that attempts to change \(\lambda\) with three possible outcomes:
1. \(\lambda\) remains between 0 and 1 .
2. \(\lambda\) goes beyond 1 .

We have formed real \(2 \mathrm{NH}_{3}\) molecules and choose new fractional molecule (randomly) with a value \(\lambda-1\).
3. \(\lambda\) goes below 0 .

We have formed real \(\mathrm{N}_{2}-3 \mathrm{H}_{3}\) molecules and choose new fractional molecule (randomly) with a value \(\lambda+1\).

The \(\lambda\)-moves are switched on by the 'ProbabilityCFCRXMCLambdaChangeMove' input-parameter. We also perform volume moves to impose the pressure using 'VolumeChangeProbability' option. The example input below defines the box, the 3 components, and the reaction using

Figure 20: (left) the \(\mathrm{N}_{2}-3 \mathrm{H}_{3}-2 \mathrm{NH}_{3}\) system, (right) the fractional molecules involved in the reaction.

Reaction 130002
which list the stoichiometry of the reactants and the product. So, 1 of component 0 and 3 of component 1 forms 2 molecules of component 2.
\begin{tabular}{ll}
SimulationType & MC \\
NumberOfCycles & 15000 \\
NumberOfInitializationCycles & 10000 \\
NumberOfEquilibrationCycles & 20000 \\
RestartFile & no \\
PrintEvery & 500 \\
& \\
ChargeMethod & Ewald \\
Forcefield & local \\
CutOffVDW & 9.0 \\
CutOffCoulomb & 9.0 \\
EwaldPrecision & \(1 e-5\)
\end{tabular}

Box 0
BoxLengths \(38 \quad 3838\)
ExternalTemperature 573.0
ExternalPressure 3e7

Reaction 130002

ProbabilityCFCRXMCLambdaChangeMove 1.0
VolumeChangeProbability 0.1
\begin{tabular}{lll}
Component 0 & MoleculeName & N2 \\
& MoleculeDefinition & local \\
& LnPartitionFunction & 208.188 \\
& TranslationProbability & 40.0 \\
& RotationProbability & 53.9 \\
& ReinsertionProbability & 5.0 \\
& ExtraFrameworkMolecule & no \\
& CreateNumberOfMolecules & 13 \\
& & \\
Component 1 & MoleculeName & H2 \\
& MoleculeDefinition & \(10 c a l\) \\
& LnPartitionFunction & 93.9084 \\
& TranslationProbability & 40.0 \\
& RotationProbability & 53.9 \\
& ReinsertionProbability & 5.0 \\
& ExtraFrameworkMolecule & no \\
& CreateNumberOfMolecules & 39 \\
& & \\
Component & MoleculeName & NH3 \\
& MoleculeDefinition & \(10 c a l\) \\
& LnPartitionFunction & 253.69 \\
& TranslationProbability & 40.0 \\
& RotationProbability & 53.9 \\
& ReinsertionProbability & 5.0 \\
& ExtraFrameworkMolecule & no \\
& CreateNumberOfMolecules & 134
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline P [bar] & 573K & 673K & 773K & 873K & P [bar] & 573K & 673K & 773K & 873K \\
\hline 100 & 0.53 & 0.25 & 0.10 & 0.05 & 100 & 0.56 & 0.27 & 0.12 & 0.05 \\
\hline 200 & 0.67 & 0.39 & 0.18 & 0.09 & 200 & 0.69 & 0.41 & 0.20 & 0.09 \\
\hline 300 & 0.75 & 0.48 & 0.25 & 0.13 & 300 & 0.78 & 0.49 & 0.26 & 0.14 \\
\hline 400 & 0.80 & 0.55 & 0.32 & 0.16 & 400 & 0.82 & 0.57 & 0.32 & 0.17 \\
\hline 500 & 0.84 & 0.61 & 0.37 & 0.20 & 500 & 0.86 & 0.62 & 0.37 & 0.20 \\
\hline 600 & 0.87 & 0.66 & 0.42 & 0.24 & 600 & 0.88 & 0.66 & 0.42 & 0.24 \\
\hline 700 & 0.89 & 0.70 & 0.47 & 0.27 & 700 & 0.90 & 0.69 & 0.45 & 0.27 \\
\hline 800 & 0.91 & 0.74 & 0.51 & 0.31 & 800 & 0.91 & 0.73 & 0.50 & 0.30 \\
\hline 900 & 0.93 & 0.77 & 0.55 & 0.34 & 900 & 0.93 & 0.77 & 0.53 & 0.33 \\
\hline 1000 & 0.94 & 0.80 & 0.58 & 0.37 & 1000 & 0.94 & 0.79 & 0.56 & 0.35 \\
\hline
\end{tabular}
(a) Experiments
(b) Simulations

Figure 21: Mol-fractions of the \(\mathrm{NH}_{3}\) in the ammonio bulk phase reaction of \(\mathrm{N}_{2}\) and \(\mathrm{H}_{2}\) computed from simulation compared to experiments over a wide range of temperatures and pressures.
\begin{tabular}{l|l|l|l|l}
\(\mathrm{T}[\mathrm{K}]\) & \(\mathrm{N}_{2}\) & \(\mathrm{H}_{2}\) & \(\mathrm{NH}_{3}\) & Eq. constant \(\mathrm{K}_{p}\) \\
\hline 573 & \(2.60 \mathrm{E}+90\) & \(6.08 \mathrm{E}+40\) & \(1.50 \mathrm{E}+110\) & 0.006327104 \\
673 & \(6.89 \mathrm{E}+77\) & \(1.28 \mathrm{E}+35\) & \(5.42 \mathrm{E}+94\) & 0.000244159 \\
773 & \(3.44 \mathrm{E}+68\) & \(8.28 \mathrm{E}+30\) & \(2.12 \mathrm{E}+83\) & \(2.06653 \mathrm{E}-05\) \\
873 & \(2.42 \mathrm{E}+61\) & \(5.08 \mathrm{E}+27\) & \(3.65 \mathrm{E}+74\) & \(2.97405 \mathrm{E}-06\) \\
\hline
\end{tabular}

Table 8.2: Input partition function in units of \(\AA^{3}\) and the equilibrium constant \(K_{p}\). The partition functions are computed based on the vibrational and rotational constants reported in the book by McQuarrie [10].

Exercise 1: go to the sub-directory 'Tutorial/ReactionEnsembleAmmonia'. Using the inputparameters of Table 8.2 reproduce the simulation results.

\section*{Bibliography}
[1] Barthelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem. Int. Ed. 2002, 41, 281.
[2] Campana, C.; Mussard, B.; Woo, T.K. J. Chem. Theory Comput. 2009, 5, 2866-2878.
[3] Rappe, A.K.; Goddard, W.A. J. Phys. Chem. 1991, 95, 3358-3363.
[4] Wilmer, C.E.; Snurr, R.Q. Chem. Eng. J. 2011, 171, 775-781.
[5] Wilmer, C.E.; Kim, K.C.; Snurr, R.Q. J. Phys. Chem. Lett. 2012, 3, 2506-2511.
[6] Mayo, S.L.; Olafson, B.D.; Goddard, W.A. J. Phys. Chem. 1990, 94, 8897-8909.
[7] Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M.J. J. Am. Chem. Soc. 1992, 114, 10024-10035.
[8] Frenkel, D.; Smit, B., Understanding Molecular Simulation, 2nd ed. Academic Press; London, UK, 2002.
[9] Turner, C.H.; Johnson, J.K.; Gubbins, K.E. J. Chem. Phys. 2001, 114, 1851-1859.
[10] McQuarrie, D.A., Statistical Mechanics University Science Books; Mill Valley, California, 2000.

\title{
Appendix
}

\section*{Random numbers}

\section*{32-bits version}

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

\section*{64-bits version}

A C-program for MT19937-64 (2004/9/29 version).
Coded by Takuji Nishimura and Makoto Matsumoto.

This is a 64-bit version of Mersenne Twister pseudorandom number generator.

Before using, initialize the state by using init_genrand64(seed)
Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

\section*{References:}
T. Nishimura, ''Tables of 64-bit Mersenne Twisters')

ACM Transactions on Modeling and
Computer Simulation 10. (2000) 348--357.
M. Matsumoto and T. Nishimura,
''Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator',
ACM Transactions on Modeling and
Computer Simulation 8. (Jan. 1998) 3--30.

\section*{Acknowledgements}

We would like to thank the following people for their help and input to improve the program and for the very helpful discussions about the algorithms: Sayee Prasaad Balaji, Youn-Sang Bae, Xiaoying Bao, Rocío Bueno Pérez, Tim Becker, Nicholas C. Burtch, Tom Caremans, Ana Martín Calvo, Yamil Colon, Juan Manuel Castillo Sanchez, Allison Dickey, Tina Düren, Titus van Erp, Denise Ford, Houston Frost, Rachel Getman, Pritha Ghosh, Seyed H. Jamali, Jurn Heinen, Remco Hens, Elena García Pérez, Gloria Oxford, Ali Poursaeidesfahani, Sudeep Punnathanam, Reza Rahbari, Almudena Garcia Sanchez, Juan Jose Gutierrez Sevillano, John J. Low, Patrick Merkling, Mahinder Ramdin, Patrick Ryan, Lev Sarkisov, Ben Sikora, Ariana Torres Knoop, Krista S. Walton, Chris Wilmer, Ozgur Yazaydin, and Decai Yu.```

[^0]: ${ }^{1}$ email: d.dubbeldam@uva.nl
 ${ }^{2}$ email: scalero@upo.es
 ${ }^{3}$ email: T.J.H.Vlugt@tudelft.nl
 ${ }^{4}$ email: don-ellis@northwestern.edu
 ${ }^{5}$ email: snurr@northwestern.edu

