
RASPA 2.0: Molecular Software Package for Adsorption and
Diffusion in (Flexible) Nanoporous Materials

David Dubbeldam1

Van ’t Hoff Institute of Molecular Sciences, University of Amsterdam,
Science Park 904, 1098XH, Amsterdam, The Netherlands

Sofia Calero2

Department of Physical, Chemical and Natural Systems, University Pablo de Olavide,
Sevilla 41013, Spain

Thijs J.H. Vlugt3

Engineering Thermodynamics, Process & Energy Department,
Faculty of Mechanical, Maritime and Materials Engineering,

Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands

Donald E. Ellis4

Department of Physics and Astronomy, Northwestern University,
2145 Sheridan Road, Evanston IL 60208 USA

Randall Q. Snurr5,
Chemical and Biological Engineering Department, Northwestern University,

2145 Sheridan Road, Evanston IL 60208, USA

January 27, 2020

1email: d.dubbeldam@uva.nl
2email: scalero@upo.es
3email: T.J.H.Vlugt@tudelft.nl
4email: don-ellis@northwestern.edu
5email: snurr@northwestern.edu

2

Contents

I RASPA 7

1. Introduction 9
1.1. Design philosophy . 9
1.2. Units and conventions . 10
1.3. Compiling and installing RASPA . 11

1.3.1. Requirements . 11
1.3.2. RASPA from ’git’ . 11
1.3.3. installing RASPA . 11
1.3.4. compiling RASPA . 11
1.3.5. Running RASPA . 12

1.4. Output from RASPA . 14
1.5. Citing RASPA . 14

2. Format of the Input Files 15
2.1. Introduction . 15
2.2. Simulation input . 16
2.3. Force field . 37

2.3.1. Force fields . 37
2.3.2. ‘pseudo atoms.def’ . 37
2.3.3. ‘force field mixing rules.def’ . 38
2.3.4. ‘force field.def’ . 39

2.4. Molecules . 40
2.4.1. Rigid molecule . 40
2.4.2. Flexible molecule . 41
2.4.3. Rigid/Flexible molecule . 41
2.4.4. Chiral molecules . 42

2.5. Framework . 43
2.5.1. Asymmetric unit cell . 43
2.5.2. Fractional occupancies in zeolites . 45
2.5.3. Format of the framework atoms . 47
2.5.4. Typing the atoms of the framework . 48

2.6. Using CIF-files . 52
2.6.1. Definition of CIF-files . 52
2.6.2. What charge definition is used? ‘pseudo atom.def’ or from the CIF-file? 53
2.6.3. How to choose atom-types? . 54

3. Potentials 67
3.1. Functional forms of force fields . 67
3.2. Bonded potentials diagonal terms . 68

3.2.1. Bond-stretching potentials . 68

3

3.2.2. Urey-Bradley potentials . 69
3.2.3. Bending potential . 71
3.2.4. Wilson inversion-bend potential . 72
3.2.5. Torsion potential . 74
3.2.6. Improper torsion potential . 76

3.3. Non-bonded potentials . 79
3.3.1. Van der Waals potentials . 79
3.3.2. Tail corrections . 82
3.3.3. Electrostatics . 83

3.4. Bonded potentials cross terms . 84
3.4.1. Bond-bond potential . 84
3.4.2. Bond-bend potential . 84
3.4.3. Bend-bend potential . 84
3.4.4. Bond-torsion potential . 85
3.4.5. Bend-torsion potential . 85

4. Examples 87
4.1. Introduction . 87
4.2. Basic examples . 88
4.3. Non-basic examples . 95
4.4. Advanced examples . 102
4.5. Auxiliary examples . 113

5. The source code 119
5.1. Introduction . 119
5.2. Data types . 119
5.3. Datastructures . 120
5.4. Modifying . 127

5.4.1. Monte Carlo . 127
5.4.2. Molecular Dynamics . 130

5.5. Debugging . 132
5.5.1. Linux . 132
5.5.2. Mac OSX . 132

6. Troubleshooting 135

II Utilities 139

7. Visualization 141
7.1. Making pictures using VTK . 141
7.2. Ball and stick . 141
7.3. Framework surface . 143
7.4. Density plots . 146
7.5. Determining blocking pockets . 149
7.6. Making movies . 149

7.6.1. Using VMD . 149
7.6.2. Combining pictures into a movie . 149

4

III Tutorial 151

8. Tutorial 153
8.1. Adsorption isotherm of N2 in a metal-organic framework (MOF), Henry coefficients, en-

thalpy of adsorption . 153
8.2. NPT density of super-critical CO2, RDF, diffusion . 156
8.3. Reaction-ensemble of ammonia . 158

5

6

Part I

RASPA

7

1
Introduction

1.1 Design philosophy

This software is a general purpose classical simulation package. It has been developed at Northwestern
University (Evanston, USA; group of Prof. Randall Q. Snurr) during 2006-2009 in active collaboration with
University Pablo de Olavide (Seville, Spain; group of Prof. Sofia Calero), and from 2010-2015 also at the Uni-
versity of Amsterdam (David Dubbeldam) and Technical University of Delft (group of Prof. T.J.H. Vlugt).
It can be used for the simulation of molecules in gases, fluids, zeolites, aluminosilicates, metal-organic
frameworks, and carbon nanotubes.

Programs can be written in various ways, but often it is true that the fastest codes are probably the hard-
est to read, while programs strictly based on readability lacks efficiency. RASPA is based on the following
ideas:

• Correctness and accuracy
For all the techniques and algorithms available in RASPA we have implemented the ’best’ ones avail-
able in literature. For example, RASPA uses Configurational-Bias Monte-Carlo, it uses the Ewald
summation for electrostatics, molecular dynamics is based on ’symplectic’ integrators, all Monte-
Carlo moves obey detailed balance etc.

• Functional design
Looking at the source, you will notice that there are not a lot of files. The program is split up according
to its function: ’grid.c’ contains the code to make and use a grid of a framework, ’ewald.c’ handles all
the electrostatic,’mc moves.c’ contains all the moves to be used in Monte-Carlo,’potentials.c’ contains
all the VDW potentials etc.

• Input made easy
The requirements for the input files is kept as minimal as possible. Only for more advanced options
extra commands in the input file are needed. Also the format of the input is straightforward. De-
fault settings are usually the best ones. Fugacity coefficients and excess adsorption are automatically
computed.

• Integrated simulation environment
The code is built up of many functions and routines which can be easily combined to do what you
want. Molecular dynamics can be used in Monte Carlo and visa versa. Extension and modification of
the code is relatively straightforward.

9

RASPA used three ’types’ or ’groups’ for the particles: 1) Framework atoms, 2) Adsorbates, and 3)
Cations. The advantage is that all the energies are split and the interactions can be examined (also the
energies are split in the Ewald Fourier part). Another example is when using thermostats in e.g. LTA5A
where a different thermostat operates in the framework atoms, the adsorbates, and the cations. These all
move at different length- and time scales. Note that it is not possible to exchange types during Identity-
change moves (if defined they are ignored).

1.2 Units and conventions

• The standard units in RASPA from which all other units are derived are:

quantity symbol unit value
length l Ångstrom 10−10 m
temperature T Kelvin K
mass m atomic mass 1.6605402× 10−27 kg
time t pico seconds 10−12 s
charge q atomic charge 1.60217733× 10−19 C/particle

Some examples of derived units:

quantity symbol units conversion value
energy U J = mass× length2/time2 1.66054× 10−23 (=10 J/mol)
pressure p Pa = mass/(length× time2) 1.66054× 107

diffusion constant D D = length2/time 1× 10−8

force f f = length/time2 1.66054× 10−13

.

A pressure input of 10 Pascal in the input file, is converted to ’internal units’ by dividing by 1.66054×
107. In the output any internal pressure is printed, multiplied by 1.66054× 107. It is not necessary
to convert units besides input and output, with a few exceptions. One of them is the Coulombic
conversion factor

qiqj
4πε0

=
charge2

4π× electric constant× length× energy
= 138935.4834964017 (1.1)

with the electric constant as 8.8541878176 × 10−12 in units of C2/(N.m2). This factor is needed to
convert the electrostatic energy to the internal units at every evaluation.

The Boltzmann’s constant kB is

kB = Boltzmann constant/energy = 0.8314464919 (1.2)

with the Boltzmann constant as 1.380650324× 10−23 in units of J/K, and kB = 0.8314464919 in internal
units.

• Numbering is based on the C-convention, i.e. starting from zero.

• Files in the current directory always have preference.
Sometimes one would like to try various parameters for force field fitting for example. In order to
avoid making a lot of directories for each force field it is more convenient to have the ’pseudo atoms.def’,
’force field mixing rule.def’ and ’force field.def’ files in the current directory.

10

1.3 Compiling and installing RASPA

1.3.1 Requirements

RASPA needs a C compiler, like ’gcc’ or intel’s ’icc’ compilers, and optionally the libraries ’fftw’, ’blas’, and
’lapack’.

1.3.2 RASPA from ’git’

Working with ’git’ and a remote repository means that you will have to distinguish between two locations
of the code:

1. The repository (visible to everyone)

2. your local copy (only visible to you)

To check-out the code for the first time do:

git clone https://github.com/iraspa/RASPA2

After that, you can update the code by using

git pull

1.3.3 installing RASPA

The RASPA DIR environment variable should be set to where you would like to install RASPA. A common
way of defining it is using the bash-shell

export RASPA DIR=${HOME}/RASPA/simulations/

or

setenv RASPA DIR ”${HOME}/RASPA/simulations/”

for ’csh’ and ’tcsh’ shells. It is possible to add this line to ”.bashrc”, ”/etc/bashrc”, ”/etc/profile” etc,
depending on the unix-version and shell version to automatically have the environment variable set at
login.

Note that the source-code of RASPA is kept separate from the installation data. RASPA needs the envi-
ronment variable to locate various files it needs, e.g. molecule definitions, framework definitions, force and
field definitions. It looks for these files relative to the RASPA DIR directory.

Before installing RASPA with

make install

from the top-directory, the code needs to be compiled.

1.3.4 compiling RASPA

RASPA uses the standard ’configure’ utilities (autoconf, automake, libtool, and make). The steps to install
from scratch, i.e. after a ’make distclean’ or ’git clone’ are

1. rm -rf autom4te.cache

2. mkdir m4

3. aclocal

11

4. autoreconf -i

5. automake --add-missing

6. autoconf

7. ./configure --prefix=${RASPA_DIR} or
./scripts/CompileScript/make-gcc-local

8. make

where ’${RASPA DIR}’ is the directory you would like to install RASPA, and the commands are executed
in the top directory.

Usually (when recent automake and autoconf versions are installed), it is enough to do

1. make clean

2. ./configure --prefix=${RASPA_DIR}

3. make

You can use the ’CFLAGS’ environment variable to set compiler options and ’CC’ to set the compiler.
For example, for a gcc compiler one could use

export CFLAGS="-Wall -O3 -ffast-math"

export CC="gcc"

1.3.5 Running RASPA

Running RASPA is based on two files:

• A ’run’ file to execute the program
an example file is:

#! /bin/sh -f

export RASPA_DIR=${HOME}/Research/simulations/

$RASPA_DIR/bin/simulate

This type of file is know as a ’shell script’. RASPA needs the variable ’RASPA DIR’ to be set in order
to look up the molecules, frameworks, etc. The scripts sets the variable and runs RASPA. RASPA can
then be run from any directory you would like.

• An ’input’-file describing the type of simulation and the parameters
In the same directory as the ’run’-file, there needs to be a file called ’simulation.input’. An example
file is:

SimulationType MonteCarlo

NumberOfCycles 100000

NumberOfInitializationCycles 10000

PrintEvery 1000

Box 0

BoxLengths 30 30 30

ExternalTemperature 300.0

12

component 0 methane

TranslationProbability 1.0

CreateNumberOfMolecules 100

This tells RASPA to run a Monte-Carlo simulation of 100 methane molecules in a 30× 30× 30 Å cubic
box (with 90◦ angles) at 300 Kelvin. It will start with 10000 cycles to equilibrate the system and will
use 100000 cycle to obtain thermodynamic properties of interest. Every 1000 cycles a status-report is
printed to the output. The Monte-Carlo program will use only the ’translation move’ where a particle
is given a random translation and the move is accepted or rejected based on the energy difference.

In order to run it on a cluster using a queuing system one needs an additional file ’bsub.job’ (arbitrary
name)

• ’gridengine’

#!/bin/csh

Serial sample script for Grid Engine

Replace items enclosed by {}

#$ -S /bin/csh

#$ -N Test

#$ -V

#$ -cwd

echo $PBS_JOBID > jobid

setenv RASPA_DIR ${HOME}/RASPA/simulations/

$RASPA_DIR/bin/simulate

The job can be submitted using ’qsub bsub.job’.

• ’torque’

#!/bin/bash

#PBS -N Test

#PBS -o pbs.out

#PBS -e pbs.err

#PBS -r n

#PBS -V

#PBS -mba

cd $PBS_O_WORKDIR

echo $PBS_JOBID > jobid

export RASPA_DIR=${HOME}/RASPA/simulations

${RASPA_DIR}/bin/simulate

The job can be submitted using ’qsub bsub.job’.

• ’slurm’

#!/bin/bash

#SBATCH -N 1

#SBATCH --job-name=Test

#SBATCH --export=ALL

echo $SLURM_JOBID > jobid

13

valhost=$SLURM_JOB_NODELIST

echo $valhost > hostname

module load slurm

${RASPA_DIR}/bin/simulate

The job can be submitted using ’sbatch bsub.job’.

1.4 Output from RASPA

RASPA generates output from the simulation. Some data is just information on the status, while other data
are written because you specifically asked the program to compute it for you. The output is written to be
used with other programs like:

• gnuplot

• VTK

• VMD

The main output is written to the directory ’Output/System 0/’, ’Output/System 1/’, . . . for each of the
simulated systems. Usually one simulates only a single system. However, the Gibbs ensemble requires
2 systems, one for vapor phase and one for the liquid phase, while n systems are used by the (hyper-)
parallel-tempering technique(s).

1.5 Citing RASPA

If you are using RASPA and would like to cite it in your journal articles or book-chapters, then for RASPA:

D. Dubbeldam, S. Calero, D.E. Ellis, and R.Q. Snurr, RASPA: Molecular Simulation Software
for Adsorption and Diffusion in Flexible Nanoporous Materials, Mol. Simulat., http://dx.doi.
org/10.1080/08927022.2015.1010082, 2015.

For the inner workings of Monte Carlo codes:

D. Dubbeldam, A. Torres-Knoop, and K.S. Walton, On the Inner Workings of Monte Carlo
Codes, http://dx.doi.org/10.1080/08927022.2013.819102 Mol. Simulat., 39(14-15), 1253-
1292, 2013.

For the the description of Molecular Dynamics and diffusion:

D. Dubbeldam and R.Q. Snurr, Recent Developments in the Molecular Modeling of Diffusion
in Nanoporous Materials, http://dx.doi.org/10.1080/08927020601156418, Mol. Simulat.,
33(4-5), 305-325, 2007.

14

http://dx.doi.org/10.1080/08927022.2015.1010082
http://dx.doi.org/10.1080/08927022.2015.1010082
http://dx.doi.org/10.1080/08927022.2013.819102
http://dx.doi.org/10.1080/08927020601156418

2
Format of the Input Files

2.1 Introduction

In order to run a simulation you need several input-files:

• ‘simulation.input’

This file contains the information on the type of simulation, the amount of steps, the framework name,
number of unit cells in each directions, the used molecules, the type of used Monte-Carlo moves etc.

• ‘structure-name.cif’

If a framework (e.g. a zeolite or MOF) is used, then the definition of the structure needs to be provided.
CIF-files are supported and the default input. The name of the file should be equal to the one provided
in ‘simulation.input’, e.g. IRMOF-1.cif if ‘Frameworkname IRMOF-1’ is listed in ‘simulation.input’.

• ‘pseudo_atoms.def’

The ‘pseudo_atoms.def’ file list all the information on used pseudo-atoms, e.g. charge, mass. Usu-
ally a pseudo-atom is an atom, but there are exceptions like united atoms (where CH3 is lumped into
one unit) and off-atom sites in Tip5p water that represent oxygen lone pairs. Because in CIF-files for
frameworks you can provide also information on atoms, there is no need to list framework atoms
here if a CIF-file is used. On reading the CIF-file these defined atoms are added to the pseudo-atoms.
If also provided in the ‘pseudo_atoms.def’ then the definition in the ‘pseudo_atoms.def’ file has
priority.

• ‘force_field_mxing_rules.def’,‘force_field.def’
The force field defined on the pseudo-atoms in ‘pseudo_atoms.def’. These files list the Van der
Waals potential types, the parameters, whether to use tail-corrections, whether to shift to zero at the
cutoff, and the type of mixing rule. Force fields in literature are usually published in two forms: 1)
a list of potentials parameters per atom and a mixing rule, or 2) pairs of atoms and parameters. The
first option corresponds to the file ‘force_field_mxing_rules.def’ and the latter option to the file
‘force_field.def’. You can use both at the same time, where ‘force_field.def’ has precedence
over ‘force_field_mxing_rules.def’.

• ‘molecule-name.def’

The definition of the used molecules. The name of the file should be equal to the one provided in
‘simulation.input’, e.g. propane.def if ‘MoleculeName propane’ is listed in ‘simulation.input’.

15

• zframework.def’

Used for a flexible framework to define all the bonds, bends, torsions, core-shells, etc.

The format of these files will be described in the remaining sections. Chapter 4 provides lots of examples
to see everything in action. In addition to the input-files you will need either a ‘run’ file that is executable,
or a queuing-script to submit the job to the queue (see 1.3.5).

2.2 Simulation input

Leading spaces and comments at the end of each line are omitted. Empty lines are skipped, and case is not
important except in file names (i.e. framework and molecule names).

Simulation types

• SimulationType MonteCarlo
Starts the Monte Carlo part of RASPA. The particular ensemble is not specified but implicitly deduced
from the specified Monte Carlo moves. Note that a MD-move can be used for hybrid MC/MD.

• SimulationType MolecularDynamics
Starts the Molecular Dynamics part of RASPA. The ensemble is explicitly specified.

• SimulationType Spectra
Starts the computation of the vibrational analysis. Possible options include infra red spectrum at zero
Kelvin, powder diffraction, and mode analysis.

• SimulationType Minimization
Starts the minimization routine. It produces configurations and crystal structures at zero Kelvin.

• SimulationType Visualization
Output VTK-files for snapshots and crystal structures, including energy surface pictures.

• SimulationType BarrierCrossing
Routine for the dynamical correction of dynamically corrected Transition State Theory.

• SimulationType Numerical
Computes all the forces numerically from the energy and compares them to the analytical expressions.
Also the strain-derivative tensor (related to the stress tensor), and the second derivative of the energy
with respect to strain, as well as the Hessian matrix can be checked.

• SimulationType MakeGrid
Creates pre-tabulated energy-grids for use in rigid frameworks.

Simulation duration

• NumberOfCycles [int]
The number of cycles for the production run. For Monte Carlo a cycle consists of N steps, where N is
the amount of molecules with a minimum of 20 steps. This means that on average during each cycle
on each molecule a Monte Carlo move has been attempted (either successful or unsuccessful). For
MD the number of cycles is simply the amount of integration steps.

• NumberOfInitializationCycles [int]
The number of cycles used to initialize the system using Monte Carlo. This can be used for both
Monte Carlo as well as Molecular Dynamics to quickly equilibrate the positions of the atoms in the
system.

16

• NumberOfEquilibrationCycles [int]
For Molecular Dynamics it is the number of MD steps to equilibrate the velocities in the systems.
After this equilibration the production run is started. For Monte Carlo, in particular CFMC, the
equilibration-phase is used to measure the biasing factors.

Restart and crash-recovery

• RestartFile [yes|no]
Reads the positions, velocities, and force from the directory ‘RestartInitial’. Any creation of molecules
in the ‘simulation.input’ file will be in addition and after this first read from file. This is useful to load
initial positions of cations for example, and after that create adsorbates. The restart file is written at
‘PrintEvery’ intervals.

• ContinueAfterCrash [yes|no]
Write a binary file containing the complete status of the program. The file name is ‘binary restart.dat’
and is located in the directory ‘CrashRestart’. With this option to ‘yes’ the presence of this file will
result in continuation from the point where the program was at the moment of outputting this file.
The file can be quite big (several hundreds of megabytes) and will be outputted every ‘WriteBina-
ryRestartFileEvery’ cycles.

• WriteBinaryRestartFileEvery [int]
The output frequency (i.e. every [int] cycles) of the crash-recovery file.

Printing options

• PrintEvery [int]
Prints the loadings (when a framework is present) and energies every [int] cycles. For MD information
like energy conservation and stress are printed.

• PrintPropertiesEvery [int]
Output running averages of many properties (i.e. Henry coefficients and elastic constants).

• PrintForcefieldToOutput [yes|no]
Prints the force field information to the output-file. Default: yes.

• PrintPseudoAtomsToOutput [yes|no]
Prints the pseudo-atom information to the output-file. Default: yes.

• PrintMoleculeDefinitionToOutput [yes|no]
Prints the molecule definition information to the output-file. Default: yes.

Force field definitions

• ChargeFromChargeEquilibration [yes|no]
Compute the charges of the framework using the ‘charge-equilibration’-method.

• SymmetrizeFrameworkCharges [yes|no]
All charges of the framework are made equivalent for equivalent framework atoms. Using regular
charge-equilibration the charges are different for symmtrically equivalent framework atoms, and this
options restores the symmetry.

• ForceField [string]
Reads in the force field [string], first the file ‘pseudo atoms.def’ is read, then ‘force field mixing rules.def’
and finally ‘force field.def’. The latter overwrites general settings for interactions based on mixing
rules with specific ones for individual interactions.

17

Note that if any of these files are in the working directory then these will read and used instead of the
ones in ‘${RASPA DIR}/simulations/share/raspa/forcefield/[string]’.

• CutOffVDW [real]
The cutoff of the Van der Waals potentials. Interactions longer then this distance are omitted from the
energy and force computations. The potential can either be shifted to zero at the cutoff, or interactions
can just neglected after the cut off, or the remainder of the potential energy can be approximated
using tail corrections. This is specified in the force field files and can be specified globally or for each
interaction individually.

• CutOffVDWSwitch [real]
The distance at which VDW switching will start. The smoothing will make sure the value and deriva-
tives are zero at the cutoff. The default: 0.9 times the CutOff.

• CutOffChargeCharge [real]
The cutoff of the charge-charge potential. The potential is truncated at the cutoff and only shifted
when ‘ChargeMethod CoulombShifted’ or ‘ChargeMethod CoulombSmoothed’ is used. No tail-corrections
are (or can be) applied. The only way to include the long-range part is to use ‘ChargeMethod Ewald’.
The parameter is also used in combination with the Ewald precision to compute the number of wave
vectors and Ewald parameter α. For the Ewald summation using rather large unit cells, a charge-
charge cutoff of about half the smallest box-length would be advisable in order to avoid the use of an
excessive amount of wave-vectors in Fourier space. For non-Ewald methods the cutoff should be as
large as possible (greater than about 30 Å).

• CutOffChargeChargeSwitch [real]
The distance at which charge-charge switching will start. The smoothing will make sure the value
and derivatives are zero at the cutoff. The default: 0.65 times the CutOff.

• CutOffChargeBondDipole [real]
The cutoff of the charge-bonddipole potential.

• CutOffChargeBondDipoleSwitch [real]
The distance at which charge-bonddipole switching will start. The smoothing will make sure the
value and derivatives are zero at the cutoff. The default: 0.70 times the CutOff.

• CutOffBondDipoleBondDipole [real]
The cutoff of the bonddipole-bonddipole potential.

• CutOffBondDipoleBondDipoleSwitch [real]
The distance at which bonddipole-bonddipole switching will start. The smoothing will make sure the
value and derivatives are zero at the cutoff. The default: 0.75 times the CutOff.

• OmitAdsorbateAdsorbateVDWInteractions [yes|no]
Omits the Van der Waals interactions between adsorbates.

• OmitAdsorbateAdsorbateCoulombInteractions [yes|no]
Omits the Coulombic (i.e. Ewald) interactions between adsorbates.

• OmitInterMolecularInteractions [yes|no]
Omits the interactions between all molecules (only interactions with the framework). This also works
with the Ewald summation on. The options implies the setting of both

– OmitAdsorbateAdsorbateVDWInteractions [yes|no]

– OmitAdsorbateAdsorbateCoulombInteractions [yes|no]

18

• InternalFrameworkLennardJonesInteractions [yes|no]
Compute the Van der Waals interaction of the flexible framework. The Demontis flexible model for
silicalite is defined with only bond, bend, and torsion for example. One can use this option and also
use ‘Charge None’.

•
RemoveBondNeighboursFromLongRangeInteraction [yes|no]
RemoveBendNeighboursFromLongRangeInteraction [yes|no]
RemoveTorsionNeighboursFromLongRangeInteraction [yes|no]

After construction of the connectivity table all interactions are removed from Van der Waals and
charge interactions that are defined as 1-2 (i.e. bonds), 1-3 (i.e. bends, Urey-Bradley) and 1-4 (i.e.
torsion, inversion-bend) respectively.

• Remove12NeighboursFromChargeChargeInteraction [yes|no]
Remove13NeighboursFromChargeChargeInteraction [yes|no]
Remove14NeighboursFromChargeChargeInteraction [yes|no]
Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range charge-charge
interaction within the flexible framework respectively.

• Remove12NeighboursFromChargeBondDipoleInteraction [yes|no]
Remove13NeighboursFromChargeBondDipoleInteraction [yes|no]
Remove14NeighboursFromChargeBondDipoleInteraction [yes|no]
Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range charge-bond
dipole interaction within the flexible framework respectively.

• Remove12NeighboursFromBondDipoleBondDipoleInteraction [yes|no]
Remove13NeighboursFromBondDipoleBondDipoleInteraction [yes|no]
Remove14NeighboursFromBondDipoleBondDipoleInteraction [yes|no]
Remove all 1-2, 1-3, and/or 1-4 interactions within the framework from the long-range bond dipole-
bond dipole interaction within the flexible framework respectively.

Thermostat and barostat parameters

• ExternalTemperature [list-of-reals]
The external temperature in Kelvin for each system. Because the system is in contact with this imagi-
nary reservoir the average temperature of the system can be controlled. Default: 298K.

• ExternalPressure [list-of-reals]
The external pressure in Pascal for each system. Because the system is in contact with this imaginary
reservoir the average pressure of the system can be controlled.

• ThermostatChainLength [int]
The length of the chain to thermostat the system. Default: 5.

• BarostatChainLength [int]
The length of the chain to thermostat the volume and/or cell parameters. Default 5.

• NumberOfYoshidaSuzukiSteps [int]
The number of Yoshida/Suzuki multiple timesteps.

• TimeScaleParameterThermostat [real]
The time scale on which the system thermostat evolves. Default: 0.15 ps.

• TimeScaleParameterBarostat [real]
The time scale on which the thermostat for the volume and/or cell parameters evolve. Default: 0.15
ps.

19

Molecular dynamics parameters

• TimeStep [real]
The time step in picoseconds for MD integration. Default value: 0.0005 ps (0.5 fs).

• Ensemble [list-of-NVE|NVT|NPT|NPH|NPTPR|NPHPR]
Sets the ensemble as a list of NVE,NVT, NPT, NPH, NPTPR, or NPHPR for each system. If only a sin-
gle ensemble is given, it is used for all systems. The given ensemble will be used for both initialization
as well as the production run.

– NVE
The micro canonical ensemble, the number of particle N , the volume V , and the energy E are
constant.

– NVT
The canonical ensemble, the number of particle N , the volume V , and the average temperature
〈P 〉 are constant. Instantaneous values for the temperature are fluctuating.

– NPT
The isobaric-isothermal ensemble, the number of particle N , the average pressure 〈P 〉, and the
average temperature 〈P 〉 are constant. Instantaneous values for the pressure and temperature
are fluctuating.

– NPH
The isoenthalpic-isobaric ensemble, the number of particle N , the average pressure 〈P 〉, and the
enthalpy H are constant. Instantaneous values for the pressure and temperature are fluctuating.

– NPTPR
The isobaric-isothermal ensemble with a fully flexible cell (Parrinello-Rahman).

• InitEnsemble [list-of-NVE|NVT|NPT|NPH|NPTPR|NPHPR]
Sets the ensemble as a list of NVE,NVT, NPH, NPTPR, or NPHPR for each system. If only a single
ensemble is given, it is used for all systems. The given ensemble will be only used for the initialization
run.

• RunEnsemble [list-of-NVE|NVT|NPT|NPH|NPTPR|NPHPR]
Set the ensemble as a list of NVE,NVT, NPH, NPTPR, or NPHPR for each system. If only a single
ensemble is given, it is used for all systems. The given ensemble will be only used for the production
run.

• NPTPRCellType [list-of-Regular|Monoclinic|RegularUpperTriangle|MonoclinicUpperTriangle|Isotropic|Anisotropic]
The type of constraints on the cell-matrix h. Default: RegularUpperTriangle.

– Regular
If the pressure tensor is asymmetric (Pαβ 6= Pβα) at a given instant of time, then there will be a net
torque acting on the cell that will cause it to rotate. Cell rotations can be eliminated by using the
symmetrized tensor Pαβ = (Pαβ + Pβα)/2 in the equations of motion and setting the initial total
angular momentum of the cell to zero. This approach is formally implemented by constraining
the force on the cell g = gT . All three angles α,β, γ are allowed to change, as well as the box
lengths a,b, c.

– Monoclinic
All three box lengths a,b, c are allowed to vary, as well as cell angle β, but α = γ = 90◦.

– RegularUpperTriangle
Only the upper triangular part of the cell matrix is used to eliminate rotation of the box. All three
angles α,β, γ are allowed to change, as well as the box lengths a,b, c.

20

– MonoclinicUpperTriangle
Only the upper triangular part of the cell matrix is used to eliminate rotation of the box. All three
box lengths a,b, c are allowed to vary, as well as cell angle β, but α = γ = 90◦.

– Isotropic
All three box lengths a = b = c are allowed to vary isotropically, and the angles remain fixed
α = β = γ = 90◦.

– Anisotropic
All three box lengths a,b, c are allowed to vary independently, but the angles remain fixed α =
β = γ = 90◦.

Box parameters

• Box [int]
[real] [real] [real]

Set the system [int] to type ‘Box’ (other option is ‘Framework’ when a framework is present). The cell
dimensions of rectangular box of system [int] in Angstroms. Default: 25 25 25 Å.

• BoxAngles [int]
[real] [real] [real]

Set the system [int] to type ‘Box’ (other option is ‘Framework’ when a framework is present). The cell
angles of rectangular box of system [int] in Angstroms. Default: 90◦ 90◦ 90◦.

•

BoxMatrix [int]
[real] [real] [real]
[real] [real] [real]
[real] [real] [real]

Set the system [int] to type ‘Box’ (other option is ‘Framework’ when a framework is present). The
3× 3 cell matrix of system [int], given as three vectors (as columns). This is the most general form and
any box can be specified in this way. Units of the vectors are Angstrom.

Framework parameters

• Framework [int]
Set the system [int] to type ‘Framework’ (other option is ‘Box’ when no framework is present). All
other options listed in the section framework parameters refer to this system, so make sure this is
before any other framework options.

• FrameworkName [string]
Loads the framework with name [string]. Several frameworks can be read per system, which is useful
for to study interpenetration of frameworks. Here the frameworks are allowed to move indepen-
dently from each other.

• HeliumVoidFraction [real]
The void fraction as measure by probing the structure with helium a room temperature. This quantity
has to be obtained from a separate simulation and is essential to compute the excess-adsorption during
the simulation.

• UnitCells [int] [int] [int]
The number of unit cells in x,y, and z direction for the system. The full cell will contain the unit cells,
and periodic boundary conditions will be applied on the box level (not on a unit cell level).

• ShiftUnitCells [real] [real] [real]
Shift the fractional positions so that the center of a framework can be altered.

21

• FlexibleFramework [yes|no]
Allow the current framework of the current system to be fully flexible. The name of the flexible model
is provided using the ‘FrameworkDefinitions [string]’ input option.

• FrameworkDefinitions [string]
The force field name [string] of the flexible framework. The file is read even when ‘FlexibleFramework
no’ is specified (the reason is that framework bond-dipoles are defined using the ‘framework.def’ file).

• ModifyFrameworkAtomConnectedTo [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4]
Modifies the atom-type-1 to atom-type-2, always if atom-type-3 and atom-type-4 are omitted, or only
it is connected to atom-type-3 when atom-type-3 is specified, or only when it is connected to both
atom-type-3 and atom-type-4 if both are specified.

• ModifyFrameworkDimer [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4]
Modifies the connected atom-type-1 and atom-type-2 dimer to atom-type-3 and atom-type-4.

• ModifyFrameworkTriple [atom-type-1] [atom-type-2] [atom-type-3] [atom-type-4] [atom-type-5] [atom-
type-6]
Modifies the connected triple atom-type-1,atom-type-2,atom-type-3 to atom-type-4,atom-type-5,atom-
type-6.

• RemoveAtomNumberCodeFromLabel [yes|no]
Reading structure-files: the number is removed from the framework atom-types, e.g. ‘O1’, ‘O2’, ‘O3’,
etc. are mapped to ‘O’.

• AddAtomNumberCodeToLabel [yes|no]
Writing structure-files: the number is added to the framework atom-types, e.g. ‘O’ are mapped to
‘O1’, ‘O2’, ‘O3’, etc.

• RestrictFrameworkAtomsToBox [yes|no]
Restricts (places back) atoms to the unit cell dimensions, i.e. fractional positions between 0 and 1.

• ReadCIFAsCartesian [yes|no]
Reads the position listed in the CIF-file as Cartesian. Only applicable to P1 systems (no symmetry).

System moves

• FrameworkChangeMoveProbability [real]
The probability per cycle to randomly translate a framework atom. During this move the number of
inner cycles is the amount of framework atoms, with a maximum of 500. This move is applicable to
relatively rigid structures like zeolites. For other structure where movement is caused by collective
behavior (for example, the rotation of a phenyl-ring in a metal-organic framework) the MC/MD move
is more convenient. Such movement is hardly sampled at all by individual MC translation moves.

• VolumeChangeProbability [real]
The probability per cycle to attempt a volume-change. Rigid molecules are scaled by center-of-mass,
while flexible molecules and the framework is atomically scaled.

• VolumeChangeDirection [A|B|C|AB|AC|BC|ABC]
Change the volume of the unit cell along a particular direction/directions in Monte Carlo. Default:
ABC.

• BoxShapeChangeProbability [real]
The probability per cycle to attempt a shape-change of the box. One of the 6 upper triangular elements
of the box matrix is randomly chosen. Rigid molecules are scaled by center-of-mass, while flexible
molecules and the framework is atomically scaled.

22

• GibbVolumeChangeProbability [real]
The probability per cycle to attempt a Gibbs volume-change MC move during a Gibbs ensemble
simulation. The total volume of the two boxes (usually one for the gas phase, one for the liquid phase)
remains constant, but the individual volume of the boxes are changed. The volumes are changed by
a random change in ln(VI/VII).

• HybridNVEMoveProbability [real]
The probability per cycle to attempt a hybrid Monte Carlo move using Molecular Dynamics in the
NVE-ensemble. The whole system is integrated using Newton’s equations of motion. The new con-
figuration is then accepted or rejected using the standard MC rule. Note that the difference in energy
∆U is the integration error. The integration time step is set using ‘TimeStep’.

• NumberOfHybridNVESteps [int]
The number of integration steps for the hybrid MC/MD NVE move. Default: 5.

• ParallelTemperingProbability [real]
A move where two neighboring systems are swapped that differ in their temperature.

• HyperParallelTemperingProbability [real]
A move where two neighboring systems are swapped that differ in their temperature and chemical
potentials.

• ParallelMolFractionProbability [real]
A move where two neighboring systems (similar to parallel tempering) are swapped that differ in
their mol-fraction of components A and B.

• ParallelMolFractionComponentA [int]
The identifier of the first component.

• ParallelMolFractionComponentB [int]
The identifier of the second component.

• ChiralInversionProbability [real]
A move specifically designed for systems with chiral molecules to change all S-molecules into R-
molecules and vica versa. Note that the spacegroup needs to be set. If you have a framework that is
P1 but has higher symmetry then use ‘CalculateSpaceGroup yes’ to determine the true space group
of the framework. An error will be given if this move is impossible for your system (e.g. when the
framework is chiral).

Component information

• Component [int] MoleculeName [string]
Reads in the definition of component [int] using the file ‘molecule-name-string.def’ from the directory
‘${RASPA DIR}/share/raspa/molecules/molecule-definitions-string’.

• MoleculeDefinitions [string]
The type of the molecule. For example, there could an OPLS version of the molecule, or a TraPPE
version, etc. This molecule-definitions-string is actually the directory name under which the molecule
file is found in ‘${RASPA DIR}/share/raspa/molecules/’.

• StartingBead [int]
The staring bead for the configurational bias Monte Carlo (CBMC). In CBMC the molecule is grown
bead by bead biasing the growth towards energetically favorable configurations. Certain operations,
like the rotation MC move and Widom particle insertion, use this bead as the center of rotation and
position of the probe molecule, respectively.

23

• BlockPockets [yes|no]
Block certain pockets in the simulation volume. The growth of a molecule is not allowed in a blocked
pocket. A typical example is the sodalite cages in FAU and LTA-type zeolites, these are not accessible
to molecules like methane and bigger.

• BlockPocketsFileName [string]
The file name for the definitions of all the blocking spheres.

• MolFraction [real]
The mol fraction of this component in the mixture. The values can be specified relative to other
components, as the fractions are normalized afterwards. The partial pressures for each component
are computed from the total pressure and the mol fraction per component.

• FugacityCoefficient [real]
The fugacity coefficient for the current component. For values 0 (or by not specifying this line), the
fugacity coefficients are automatically computed using the Peng-Robinson equation of state. Note the
critical pressure, critical temperature, and acentric factor need to be specified in the molecule file.

• Intra14VDWScalingValue [real]
The scaling factor for intra-molecular 1-4 van der Waals interactions. For example: OPLS uses a factor
of 1

2 .

• Intra14ChargeChargeScalingValue [real]
The scaling factor for intra-molecular 1-4 charge/charge interactions. For example: OPLS uses a factor
of 1

2 .

• IdealGasRosenbluthWeight [real]
The ideal Rosenbluth weight is the growth factor of the CBMC algorithm for a single chain in an empty
box. The value only depends on temperature and therefore needs to be computed only once. For
adsorption, specifying the value in advance is convenient because the applied pressure does not need
to be corrected afterwards (the Rosenbluth weight corresponds to a shift in the chemical potential
reference value, and the chemical potential is directly obtained from the fugacity). For equimolar
mixtures this is essential.

• GibbsSwapProbability [real]
The relative probability to attempt a Gibbs swap MC move for the current component. The ‘Gibb-
sSwapMove’ transfers a randomly selected particle from one box to the other (50% probability to
transfer a particle from box I to II, an 50% visa versa).

• TranslationProbability [real]
The relative probability to attempt a translation move for the current component. A random displace-
ment is chosen in the allowed directions (see ‘TranslationDirection’). Note that the internal configu-
ration of the molecule is unchanged by this move. The maximum displacement is scaled during the
simulation to achieve an acceptance ratio of 50%.

• TranslationDirection [X|Y|Z|XY|XZ|YZ|XYZ|A|B|C|AB|AC|BC|ABC|
ORTHOGONAL TO AB DIR|ORTHOGONAL TO AC DIR|ORTHOGONAL TO BC DIR|
ORTHOGONAL TO O AB DIR|ORTHOGONAL TO O AC DIR|ORTHOGONAL TO O BC DIR|
ORTHOGONAL TO A BC DIR|ORTHOGONAL TO B AC DIR|ORTHOGONAL TO C AB DIR|
ORTHOGONAL TO O ABC DIR]

Specifies the allowed translation direction for the current component. Useful to sampling configura-
tion with the starting bead restricted to a plane, i.e. see dcTST. Default: XYZ.

• RandomTranslationProbability [real]
The relative probability to attempt a random translation move for the current component. The dis-
placement is chosen such that any position in the box can reached. It is therefore similar as reinsertion,
but ‘reinsertion’ changes the internal conformation of a molecule and uses biasing.

24

• RotationProbability [real]
The relative probability to attempt a random rotation move for the current component. The rotation
is around the starting bead. A random vector on a sphere is generated, and the rotation is random
around this vector.

• CBMCProbability [real]
The relative probability to attempt a partial reinsertion move for the current component. Part of the
molecule is regrown, while part of the molecule can remain fixed. The list of partial reinsertion moves
is specified in the ‘molecule.def’ file.

• ReinsertionProbability [real]
The relative probability to attempt a full reinsertion move for the current component. Multiple first
beads are chosen, and one of these is selected according to its Boltzmann weight. The remaining part
of the molecule is grown using biasing. This move is very useful, and often necessary, to change the
internal configuration of flexible molecules.

• SwapProbability [real]
The relative probability to attempt a insertion or deletion move. Whether to insert or delete is de-
cided randomly with a probability of 50% for each. The swap move imposes a chemical equilibrium
between the system and an imaginary particle reservoir for the current component. The move starts
with multiple first bead, and grows the remainder of the molecule using biasing.

• WidomProbability [real]
The relative probability to attempt a Widom particle insertion move for the current component. The
Widom particle insertion moves measure the chemical potential and can be directly related to Henry
coefficients and heats of adsorption.

• SurfaceAreaProbability [real]
The relative probability to attempt a surface-area move for the current component.

• ReinsertionInPlaceProbability [real]
The relative probability to attempt a reinsertion-in-place move for the current component. The rein-
sertion position is the current position of the starting bead of the randomly selected molecule. Alter-
natively, one can use the partial reinsertion move leaving one bead fixed. The move is very useful to
sample configuration on a plane for dcTST to change the internal configuration, e.g. bonds, bends,
torsions, etc.

• IdentityChangeProbability [real]
The relative probability to attempt an identity-change move for the current component. A molecule of
type A is reinsertion, in the same place as the starting bead of A, as type B using the starting bead of
componentB. TheA−B list is defined using ‘IdentityChangesList’ definingB for each componentA,
i.e. the current component can be reinserted into any component defined in the ‘IdentityChangesList’
list, and from that list the component is chosen randomly.

• NumberOfIdentityChanges [int]
The number of ‘IdentityChangesList’ elements for the current component.

• IdentityChangesList [list-of-int]
The list of components that the current component can be changed into. The identity-change move
will randomly choose the new component from this list.

• GibbsIdentityChangeProbability [real]
The relative probability to attempt an identity change for the current component in the Gibbs en-
semble. It is a very useful move to for mixture of n components. Out of the n components, two
components i 6= j are selected at random. At random, it is selected to switch the identity of compo-
nent i in box I or in box II , and the identity of the component j in the other box. In each box, a
particle is selected at random which matches the desired identity.

25

• NumberOfGibbsIdentityChanges [int]
The number of ‘GibbsIdentityChangesList’ elements for the current component.

• GibbsIdentityChangesList [list-of-int]
The list of components that the current component can be changed into. The Gibbs-identity-change
move will randomly choose the new component from this list.

• ExtraFrameworkMolecule [yes|no]
There are two major types of molecules, ‘Adsorbates’ and ‘Cations’. The ‘ExtraFrameworkMolecule’
keyword sets whether the current component is a ‘Cation’ (yes) or a ‘Adsorbate’ (no). Energies in the
output as splitted in Host-Host, Host-Adsorbate, Host-Cation, Adsorbate-Adsorbate, Cation-Cation,
and Adsorbate-Cation. The distinction in two types of molecule is sometimes necessary. For exam-
ple, consider a mixture of components, where polarization needs to be neglected between certain
components (because they are parameterized without). The water model ‘rpol’ is defined including
polarization, but CO2 using TraPPE is not. One can define water as ‘Adsorbate’, CO2 as ‘Cation’ and
neglect polarization between cations.

• RestrictEnantionface [yes|no]
Restricts all MC-moves to the enantioface defined by ‘Enantioface’. Moves that result in an opposite
enantioface are rejected.

• Enantioface [Re|Si]
The enantioface of the component, either ‘Re’ or ‘Si’.

• EnantiofaceAtoms [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int]
The definition of the enantioface based on 5 atoms. The first 4 form a torsion, as well as the first 3 and
the last atom. These two torsions form the definition of the enantioface.

• CreateNumberOfMolecules [int]
The number of molecule to create for the current component. Note these molecules are in addition to
anything read in by using a restart-file. Usually, when the restart-file is used the amount here should
be put back to zero. A warning, putting this value unreasonably high results in an infinite loop.
The routine accepts molecules that are grown causing no overlap (energy smaller than ‘EnergyOver-
lapCriteria’). Also the initial starting configurations are far from optimal and substantial equilibration
is needed to reduce the energy. However, the CBMC growth is able to reach very high densities.

Options to measure properties

• ComputeDistanceHistograms [yes|no]
Sets whether or not to compute the histograms of specified distance pairs for the current system. A
directory ‘DistanceHistograms’ is created containing the histograms for each system.

– WriteDistanceHistogramEvery [int]
Output the distance histograms every [int] cycles.

– MaxRangeDistanceHistogram [real]
The range of the histograms.

– NumberOfElementsDistanceHistogram [int]
The number of elements of the histograms.

– DistanceHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int]
Define a distance histogram between two atoms.

• ComputeBendAngleHistograms [yes|no]
Sets whether or not to compute the bend-angle histograms of specified trimers of atoms for the current
system. A directory ‘BendAngleHistograms’ is created containing the histograms for each system.

26

– WriteBendAngleHistogramEvery [int]
Output the distance histograms every [int] cycles.

– MaxRangeBendAngleHistogram [real]

– NumberOfElementsBendAngleHistogram [int]

– BendAngleHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int]

• ComputeDihedralAngleHistograms [yes|no]
Sets whether or not to compute the dihedral-angle histograms of specified quads of atoms for the
current system. A directory ‘DihedralAngleHistograms’ is created containing the histograms for each
system.

– WriteDihedralAngleHistogramEvery [int]
Output the distance histograms every [int] cycles.

– MaxRangeDihedralAngleHistogram [real]

– NumberOfElementsDihedralAngleHistogram [int]

– DihedralAngleHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int]
[int]

• ComputeAngleBetweenPlanesHistograms [yes|no]
Sets whether or not to compute the histograms of angles between specified planes for the current
system. A directory ‘AngleBetweenPlanesHistograms’ is created containing the histograms for each
system.

– WriteAngleBetweenPlanesHistogramEvery [int]
Output the distance histograms every [int] cycles.

– MaxRangeAngleBetweenPlanesHistogram [real]

– NumberOfElementsAngleBetweenPlanesHistogram [int]

– AngleBetweenPlanesHistogramDefinition [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int]
[F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int]

• ComputePSD [yes|no]
Sets whether or not to compute the pore-size distribution (PSD) for the current system. A direc-
tory ‘PoreSizeDistributionHistogram’ is created containing the output ‘HistogramPoreSizeDistribu-
tion.dat’ per system.

– WritePSDEvery [int]
Output the PSD every [int] cycles.

– PSDProbeDistance [Minimum|Sigma]
Sets whether to use the minimum of the potential σ1/6 as the probe distance or whether to use σ.

– HistogramSizePoreSizeDistribution [int]
default: 100.

27

– MaxRangePoreSizeDistribution [real]
default: 10.

• ComputeRDF [yes|no]
Sets whether or not to compute the radial distribution function (RDF) for the current system. A direc-
tory ‘RadialDistributionFunctions’ is created containing the output per system. The RDF is computed
for each atom type pair unless the option ‘print’ flag in ‘pseudo atoms.def’ is ‘no’.

– WriteRDFEvery [int]
Output the RDF every [int] cycles.

• ComputeMSD [yes|no]
Sets whether or not to compute the mean-squared displacement (MSD) for the current system using a
modified order-N algorithm. A directory ‘MSDOrderN’ is created containing the output per system.
The output consists of files containing self-msd data per component, the total self-msd, the Onsager
msd for each component pair, and the the total Onsager msd. The units in the files are Å2 for the msd,
and ps for time.

– WriteMSDEvery [int]
Output the MSD every [int] cycles.

– SampleMSDEvery [int]
Samples every [int] integration steps. Default: 1.

– ComputeIndividualMSD [yes|no]
Computes the msd, not only per component, but also per molecule.

– NumberOfBlocksMSD [int]
The number of blocks for the order-n correlation measurement. Each block represent a different
time-scale of sampling. Default: 25.

– NumberOfBlockElementsMSD [int]
The number of elements in each block. For example, if the number is 10, then the first block
samples: 1,2,3, . . . ,10, the second block 10,20,30, . . . ,100, the third block 100,200,300, . . . ,1000,
etc. Default: 25.

• ComputeVACF [yes|no]
Sets whether or not to compute the velocity autocorrelation function (VACF) for the current system
using a modified order-N algorithm. A directory ‘VACFOrderN’ is created containing the output
per system. The output consists of files containing self-vacf data per component, the total self-vacf,
the Onsager vacf for each component pair, and the the total Onsager vacf. The files start with the
integration diffusivity-values, computed using a generalization of the Simpson’s rule (in the sense
that it is exact for cubic polynomials and is valid for an odd as well as even number of intervals). The
units in the files are Å2/ps for velocity, and ps for time.

– WriteVACFEvery [int]
Output the VACF every [int] cycles.

– SampleVACFEvery [int]
Samples every [int] integration steps. Default: 5.

– ComputeIndividualVACF [yes|no]
Computes the vacf, not only per component, but also per molecule.

– NumberOfBlocksVACF [int]
The number of blocks for the order-n correlation measurement. Each block represent a different
time-scale of sampling. Default: 10.

28

– NumberOfBlockElementsVACF [int]
The number of elements in each block. For example, if the number is 10, then the first block
samples: 1,2,3, . . . ,10, the second block 10,20,30, . . . ,100, the third block 100,200,300, . . . ,1000,
etc. Default: 5000.

• ComputeRVACF [yes|no]
Sets whether or not to compute the rotational velocity autocorrelation function (RVACF) for the cur-
rent system using a modified order-N algorithm. A directory ‘RVACFOrderN’ is created containing
the output per system. The output consists of files containing self-rvacf data per component, the total
self-rvacf, the Onsager rvacf for each component pair, and the the total Onsager rvacf. The files start
with the integration diffusivity-values, computed using a generalization of the Simpson’s rule (in the
sense that it is exact for cubic polynomials and is valid for an odd as well as even number of intervals).
The units in the files are Å2/ps for velocity, and ps for time.

– WriteRVACFEvery [int]
Output the RVACF every [int] cycles.

– SampleRVACFEvery [int]
Samples every [int] integration steps. Default: 5.

– ComputeIndividualRVACF [yes|no]
Computes the vacf, not only per component, but also per molecule.

– NumberOfBlocksRVACF [int]
The number of blocks for the order-n correlation measurement. Each block represent a different
time-scale of sampling. Default: 10.

– NumberOfBlockElementsRVACF [int]
The number of elements in each block. For example, if the number is 10, then the first block
samples: 1,2,3, . . . ,10, the second block 10,20,30, . . . ,100, the third block 100,200,300, . . . ,1000,
etc. Default: 5000.

• ComputeMOACF [yes|no]
Sets whether or not to compute the molecular orientation velocity autocorrelation function (MOACF)
for the current system using a modified order-N algorithm. A directory ‘MOACFOrderN’ is created
containing the output per system. The output consists of files containing self-moacf data per compo-
nent and the total self-rvacf. The units in the files are rad2/ps for velocity, and ps for time.

– WriteMOACFEvery [int]
Output the MOACF every [int] cycles.

– SampleMOACFEvery [int]
Samples every [int] integration steps. Default: 5.

– ComputeIndividualMOACF [yes|no]
Computes the moacf, not only per component, but also per molecule.

– NumberOfBlocksMOACF [int]
The number of blocks for the order-n correlation measurement. Each block represent a different
time-scale of sampling. Default: 10.

– NumberOfBlockElementsMOACF [int]
The number of elements in each block. For example, if the number is 10, then the first block
samples: 1,2,3, . . . ,10, the second block 10,20,30, . . . ,100, the third block 100,200,300, . . . ,1000,
etc. Default: 5000.

• ComputeMSDConventional [yes|no]
Sets whether or not to compute the mean-squared displacement (MSD) for the current system using
the conventional algorithm. A directory ‘MSD’ is created containing the output per system. The
routine is available for legacy reasons, the same results can be obtained using the order-N method
and 1 block of size ‘BufferLengthMSD’. The units in the files are Å2 for the msd, and ps for time.

29

– WriteMSDConventionalEvery [int]
Output the MSD every [int] cycles. Default: 5000.

– SampleMSDConventionalEvery [int]
Samples every [int] integration steps. Default: 1.

– NumberOfBuffersMSDConventional [int]
The number of (overlapping) buffers with a different offset in time. Default: 20.

– BufferLengthMSDConventional [int]
The length of the buffers. Default: 5000.

• ComputeVACFConventional [yes|no]
Sets whether or not to compute the velocity autocorrelation function (VACF) for the current system
using the conventional algorithm. A directory ‘VACF’ is created containing the output per system.
The routine is available for legacy reasons, the same results can be obtained using the order-N method
and 1 block of size ‘BufferLengthVACF’. The units in the files are Å2/ps for velocity, and ps for time.

– WriteVACFConventionalEvery [int]
Output the VACF every [int] cycles. Default: 5000.

– SampleVACFConventionalEvery [int]
Samples every [int] integration steps. Default: 1.

– NumberOfBuffersVACFConventional [int]
The number of (overlapping) buffers with a different offset in time. Default: 20.

– BufferLengthVACFConventional [int]
The length of the buffers. Default: 5000.

• ComputeDensityHistograms [yes|no]
Sets whether or not to compute a density histogram for the current system. For example, during
adsorption it keeps track of the amount of molecules.

• ComputeEnergyHistogram [yes|no]
Sets whether or not to compute a histogram of the energy for the current system. For example, dur-
ing adsorption it keeps track of the total energy, the VDW energy, the Coulombic energy, and the
polarization energy. Output is written to the directory ‘EnergyHistograms’.

– WriteEnergyHistogramEvery [int]
Sets to print the energy histogram of the system every [int] cycles.

– EnergyHistogramSize [int]
Sets the number of elements of the histogram. Default: 1000.

– EnergyHistogramLowerLimit [real]
Sets the lower limit of the histogram. Default: -10000.

– EnergyHistogramUpperLimit [real]
Sets the upper limit of the histogram. Default: 0.

• ComputeThermoDynamicFactor [yes|no]
Sets whether or not to compute the thermodynamic factors of the energy for the current system. The
output is written to the directory ‘ThermoDynamicFactor’.

– WriteThermoDynamicFactorEvery [int]
Sets to print the thermodynamic factors every [int] cycles.

• ComputeEndToEndDistanceHistograms [yes|no]
Sets whether or not to compute a histogram for end-to-end distances of molecules for the current
system.

30

• ComputePrincipleMomentsOfInertia [yes|no]
Sets whether or not to compute the average principle moments of inertia of molecules for the current
system.

• ComputeSpectra [yes|no]
Sets whether or not to compute the Infra-Red (IR) spectra of molecules for the current system.

– WriteSpectraEvery [int]
Sets to print the spectra of molecules every [int] cycles.

• ComputeMoleculeProperties [yes|no]
Sets whether or not to compute properties of molecules like average bond-lengths, average bend-
angles etc. for the current system.

• PrintMoleculePropertiesEvery [int]
Sets to print the properties of molecules every [int] cycles.

• ComputeSurfaceArea [yes|no]
Sets whether or not to compute the surface.

– SurfaceAreaProbeAtom [string]

– SurfaceAreaSamplingPointsPerSphere [int]
Sets the number of points to sampling a sphere per iteration.

– SurfaceAreaProbeDistance [Minimum|Sigma]
Sets whether to use the minimum of the potential σ1/6 as the probe distance or whether to use σ.

• DensityProfile [yes|no]

• DensityProfileGridPoints [int] [int] [int]

• ComputeElasticConstants [yes|no]
Sets whether to compute elastic constants.

• ComputePowderDiffractionPattern [yes|no]
Sets whether to compute the powder diffraction pattern for the framework.

– DiffractionType [Xray|Neutron|Electron]
Sets the diffraction type as xray-scattering, neutron-scattering, or electron-scattering, respec-
tively.

– DiffractionRadiationType [chromium|iron|copper|molybdenum|silver|synchrotron]
Sets the type of the diffraction radiation as chromium, iron, copper, molybdenum, silver, or
synchrotron, respectively.

– WaveLengthType [Single|Double]
Set the type of the beam as single or as a doublet.

– PeakShape [Gaussian|Lorentzian|PseudoVoigt]
Sets the shape of the peaks as Gaussian, Lorentzian, or Pseudo-Voigt, respectively.

– WaveLength [real]
Sets the wavelength of the diffraction beam.

– TwoThetaMin [real]
Sets the minimum value of 2θ.

31

– TwoThetaMax [real]
Sets the maximum value of 2θ.

– TwoThetaStep [real]
Sets the step size of 2θ.

– PeakWidthModifierU [real]

– PeakWidthModifierV [real]

– PeakWidthModifierW [real]

• ComputerNormalModes [yes|no]
Sets whether to compute normal modes.

– MinimumMode [int]
Sets the minimum normal to compute.

– MaximumMode [int]
Sets the maximum normal to compute.

– ModeResolution [int]

Energy/force grid options

• UseTabularGrid [yes|no]
Use a pre-tabulated grid for the energy and forces. Default: no.

• SpacingVDWGrid [real]
The grid spacing of the Van der Waals potentials. Default: 0.15 Angstrom.

• SpacingCoulombGrid [real]
The grid spacing of the Coulomb potential. Default: 0.15 Angstrom.

• GridTypes [list-of-strings]
A list of atom-types for each of the used grids.

Minimization/Saddle point search

• MinimizationMethod [Baker]
The Baker minimization method uses the eigenvalues/vectors to find a true minimum where all
eigenvalues are positive. Newton-Raphson uses the first and second derivatives, but not the eigen-
values/vectors. The saddle point search can best be started from a minimum energy configuration.
The algorithm walks up hill along the softest eigen mode to find a first order saddle point.

• MinimizationVariables [Cartesian|Fractional]
Whether the minimization is performed in Cartesian or fractional positions. For some crystal mini-
mizations it might be more convenient to choose fractional positions. An example is when one wants
to keep a particular fractional position fixed during the minimization.

• MaximumNumberOfMinimizationSteps [int]
The maximum number of minimization steps after which the minimization is stopped. Default: 10000.

• RMSGradientTolerance [real]
Stopping criteria: the maximum allowed RMS gradient. Default: 10−6.

32

• MaxGradientTolerance [real]
Stopping criteria: the maximum allowed gradient for each and every atom (and the strain elements
for cell minimizations). Default: 10−6.

• MaximumStepLength [real]
The maximum length of a minimization step. The length is dependent on the problem at hand. A too
low value converges slowly (i.e. the minimization takes more steps), while a too high value might not
converge at all. Default value: 0.3.

• FrameworkFixedInitialization [free|fixed]
Sets all framework atoms as ‘free’ or ‘fixed’. This command must preceed individual overwrites and
applies to the current system.

• AdsorbateFixedInitialization [free|fixed]
Sets all adsorbate groups and atoms as ‘free’ or ‘fixed’. This command must preceed individual over-
writes and applies to the current system.

• CationFixedInitialization [free|fixed]
Sets all cation groups and atoms as ‘free’ or ‘fixed’. This command must preceed individual over-
writes and applies to the current system.

• ActiveFrameworkAtom [int]
Sets the atom of the current framework and system as ‘active’.

• ActiveFrameworkAtoms [int] [list-of-ints]
Sets the [int] atoms listed in [list-of-ints] of the current framework and system as ‘active’.

• FixedFrameworkAtom [int]
Sets the atom of the current framework and system as ‘fixed’.

• FixedFrameworkAtoms [int] [list-of-ints]
Sets the [int] atoms listed in [list-of-ints] of the current framework and system as ‘fixed’.

• ActiveAdsorbateMolecule [int]
Sets all atom and groups of the adsorbate molecule [int] as ‘active’. Applies to the current system.

• FixedAdsorbateMolecule [int]
Sets all atom and groups of the adsorbate molecule [int] as ‘fixed’. Applies to the current system.

• ActiveAdsorbateAtom [int] [int]
Sets an atom (second argument) of an adsorbate molecule (first argument) as ‘active’. Applies to the
current system.

• FixedAdsorbateAtom [int] [int]
Sets an atom (second argument) of an adsorbate molecule (first argument) as ‘fixed’. Applies to the
current system.

• ActiveAdsorbateGroup [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘active’. Applies to the
current system and both center of mass and the orientation are set as ‘active’.

• FixedAdsorbateGroup [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘fixed’. Applies to the
current system and both center of mass and the orientation are set as‘fixed’.

• ActiveAdsorbateGroupCenterOfMass [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘active’. Applies to the
current system and only the center of mass is set as ‘active’.

33

• FixedAdsorbateGroupCenterOfMass [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘fixed’. Applies to the
current system and only the center of mass is set as ‘fixed’.

• ActiveAdsorbateGroupOrientation [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘active’. Applies to the
current system and only the orientation is set as ‘active’.

• FixedAdsorbateGroupOrientation [int] [int]
Sets a group (second argument) of an adsorbate molecule (first argument) as ‘fixed’. Applies to the
current system and only the orientation is set as ‘fixed’.

• ActiveCationMolecule [int]
Sets all atom and groups of the cation molecule [int] as ‘active’. Applies to the current system.

• FixedCationMolecule [int]
Sets all atom and groups of the cation molecule [int] as ‘fixed’. Applies to the current system.

• ActiveCationAtom [int] [int]
Sets an atom (second argument) of an cation molecule (first argument) as ‘active’. Applies to the
current system.

• FixedCationAtom [int] [int]
Sets an atom (second argument) of an cation molecule (first argument) as ‘fixed’. Applies to the
current system.

• ActiveCationGroup [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘active’. Applies to the
current system and both center of mass and the orientation are set as ‘active’.

• FixedCationGroup [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘fixed’. Applies to the current
system and both center of mass and the orientation are set as ‘fixed’.

• ActiveCationGroupCenterOfMass [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘active’. Applies to the
current system and only the center of mass is set as ‘active’.

• FixedCationGroupCenterOfMass [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘fixed’. Applies to the current
system and only the center of mass is set as ‘fixed’.

• ActiveCationGroupOrientation [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘active’. Applies to the
current system and only the orientation is set as ‘active’.

• FixedCationGroupOrientation [int] [int]
Sets a group (second argument) of an cation molecule (first argument) as ‘fixed’. Applies to the current
system and only the orientation is set as ‘fixed’.

• FixAtomType [string]
FixAtomTypes [int] [list-of-strings]

The atom-types that are considered fixed during the minimization. All other atoms/groups will be
optimized. If the atom-type is contained in a rigid unit, the entire unit will be frozen.

• DistanceConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [real]
Defines a ‘hard’ distance constraint between two atoms and/or groups, and the distance.

34

• AngleConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real]
Defines a ‘hard’ angular constraint between three atoms and/or groups, and the constraint angle.

• DihedralConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real]
Defines a ‘hard’ dihedral constraint between four atoms and/or groups, and constraint dihedral.

• HarmonicDistanceConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real]
Defines a ‘hard’ distance constraint between two atoms and/or groups, and the distance.

• HarmonicAngleConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real]
Defines a ‘hard’ angular constraint between three atoms and/or groups, and the constraint angle.

• HarmonicDihedralConstraint [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [F|A|C] [int] [int] [real] [real]
Defines a ‘hard’ dihedral constraint between four atoms and/or groups, and constraint dihedral.

Monte Carlo settings

• MinimumInnerCycles [int]
The minimum number of inner cycles for each cycle. Default: 20.

• NumberOfTrialPositions [int]
The number of trial positions during the growth of a molecule. Default: 10.

• NumberOfTrialPositionsForTheFirstBead [int]
The number of trial positions for the first bead. Default: 10.

• NumberOfTrialPositionsTorsion [int]
The number of trial positions for torsions over a single bond. Default: 100.

• NumberOfTrialMovesPerOpenBead [int]
The number of trial moves per open bead during CBMC. Default: 200.

• TargetAccRatioSmallMCScheme [real]

• TargetAccRatioTranslation [real]

• EnergyOverlapCriteria [real]
The energy criteria to consider an energy as ‘overlap’. Default: 105 K.

• MinimumRosenbluthFactor [real]
The minimum Rosenbluth weight, values lower are consider to be ‘overlapping’. Default: 10−150.

Biasing options

• BiasingDirection [A|B|C|AB DIAGONAL|AC DIAGONAL|BC DIAGONAL|
A BC DIAGONAL|B AC DIAGONAL|C AB DIAGONAL|
O ABC DIAGONAL]

• BiasingMethod [UMBRELLA|RUIZMONTERO]

• BiasingProfile [string]
The name of the file containing the biasing profile.

35

• RuizMonteroFactor [real]

• UmbrellaFactor [real]
The biasing free energy is multiplied by the UmbrellaFactor. This is useful when the biasing free
energy goes to infity in certain regions. if the exact free energy would be used to biased, then the
histogram would be flat, even very close to atoms. To keep the repulsion one can lower the used free
energy biasing by e.g. multiplying by 0.9.

• RestrictMovesToUnitCell [yes|no]
Restrict the Monte-Carlo moves to the first unitcell for this component.

• BoxAxisABC Min [real]
When a particle is restricted in all Monte-Carlo moves (RestrictMovesToUnitCell or RestrictMovesTo-
Box) then do not allow trial moves with a fractional position smaller than BoxAxisABC Min.

• BoxAxisABC Max [real]
When a particle is restricted in all Monte-Carlo moves (RestrictMovesToUnitCell or RestrictMovesTo-
Box) then do not allow trial moves with a fractional position greater than BoxAxisABC Max.

Transition State Theory settings

•

FreeEnergyMappingType [A MAPPING|B MAPPING|C MAPPING|ABC MAPPING|
MAP AB DIAGONAL|MAP AC DIAGONAL|MAP BC DIAGONAL|
MAP A BC DIAGONAL|MAP B AC DIAGONAL|MAP C AB DIAGONAL|
MAP O ABC DIAGONAL]

Determines how the free energy profile is constructed from the contributions of points in the unit cell.
The free energy is computed using Widom insertion by inserting probe molecules at many random
position inside the unit cell. The ‘FreeEnergyMappingType’ maps a Cartesian position on a reaction
coordinate ‘q’. The mappings ‘A MAPPING’, ‘B MAPPING’, ‘C MAPPING’ map the Cartesian posi-
tion onto the ‘a’, ‘b’, ‘c’ lattice vectors. The diagonal mapping maps onto diagonal, either in 2D or in
3D. For example, ‘MAP A BC DIAGONAL’ maps onto the line from ‘A’ to ‘B+C’ where ‘A’,‘B’, and
‘C’ are the end points of the lattive vectors; and ‘MAP O ABC DIAGONAL’ maps onto the line from
the origin to the opposite point ‘A+B+C’ on the diagonal.

•

PositionHistogramMappingType [A MAPPING|B MAPPING|C MAPPING|ABC MAPPING|
MAP AB DIAGONAL|MAP AC DIAGONAL|MAP BC DIAGONAL|
MAP A BC DIAGONAL|MAP B AC DIAGONAL|MAP C AB DIAGONAL|
MAP O ABC DIAGONAL]

Determines how the position histogram is constructed from the contributions of points in the unit
cell. The free energy is computed from the histogram by using F (q) = − log [P (q)]. The ‘Position-
HistogramMappingType’ maps a Cartesian position on a reaction coordinate ‘q’. The mappings
‘A MAPPING’, ‘B MAPPING’, ‘C MAPPING’ map the Cartesian position onto the ‘a’, ‘b’, ‘c’ lattice
vectors. The diagonal mapping maps onto diagonal, either in 2D or in 3D. For example, ‘MAP A BC DIAGONAL’
maps onto the line from ‘A’ to ‘B+C’ where ‘A’,‘B’, and ‘C’ are the end points of the lattive vectors;
and ‘MAP O ABC DIAGONAL’ maps onto the line from the origin to the opposite point ‘A+B+C’ on
the diagonal.

• PutMoleculeOnBarrier [yes|no]
Places the first molecule of component 0 at the position given by ‘BarrierPosition’. This is used e.g. to
start sampling configuration on top of a free energy barrier.

• BarrierPosition [real] [real] [real]
The location of the free energy barrier in fractional units of the first unit cell.

• MaxBarrierDistance [real]
The maximum distance in Ångstrom of the dcTST trajectory.

36

• MaxBarrierTime [real]
The maximum time of the dcTST trajetory in picoseconds.

• NumberOfVelocities [int]
The number of times the same initial position of the sampled dcTST starting configurations is used
with different initial velocities.

• WritedcTSTSnapShotsToFile [yes|no]
Whether to write out sampled configuration to a file. The file is stored in the directory ‘dcTST starting configurations’
and used as the tarting point to compute the transmission coefficient in dcTST.

• WritedcTSTSnapShotsEvery [int]
The frequency in MC cycles of writing out the sampled configurations. Default: 1000.

2.3 Force field

2.3.1 Force fields

2.3.2 ‘pseudo atoms.def’
The ‘pseudo atoms.def’ files describes the (pseudo-)atoms to be used in the simulation. An example is is
the definitions for the tip5p water model:

#number of pseudo atoms
3
#type print as scat oxidation mass charge polarization B-factor radii connectivity anisotropic anisotropic-type tinker-type
Ow yes O O 0 15.9994 0.0 0.0 1.0 0.5 2 0.0 absolute 0
Hw yes H H 0 1.0008 0.241 0.0 1.0 1.00 1 0.0 absolute 0
L yes L - 0 0.0 -0.241 0.0 1.0 1.00 1 0.0 absolute 0

The first line is skipped, the second line is the number of (pseudo-)atoms, the third line is skipped again,
and next all the (pseudo-)atoms are specified. The format and meaning is:

name An unique string of character to be used to identify the atom. The same name has be
used in other files to refer to this atom.

print Whether or not this atom should be printed to movies. The dummy ‘L’ atoms of the
tip5p water model are an example where you would like them to be skipped, only the
‘O’ and ‘H’ atoms should be printed.

as The string to be printed to movies.
scat The chemical symbol, e.g. O, O−, O2−. They are defined in ‘scattering factors.c’ and are

used only in powder diffraction and spectra.
oxidation not used yet

mass The mass of the atom in atomic units.
charge The charge of the atom in atomic units.

polarization not used yet
B-factor The temperature factor of the atom, used only in powder diffraction.
radius The radius of the atom to be used to decide what atoms are considered as ‘neighbors’.

The current rule is that two atoms i and j are considered ‘bonded’ if the distance be-
tween the atoms is smaller then 0.56+Radiusi+Radiusj .

connectivity The connectivity of the atoms (not yet used).
anisotropic factor The magntitude of the anisotropy.
anisotropic-type The type of anisotropy, either ‘relative’ or ‘absolute’. For example, a relative anisotropic

factor of hydrogen of -0.077, used in the MM3 force field, means the site is pulled inward
by 7.7% (and located at 92.3% of the C-H bondlength). An absolute anisotropic factor
of e.g. 0.3 means the site is displaced outward by 0.3Å.

Tinker-type The type of the atom in other codes, e.g. Tinker. This is used for output-files in formats
used in other codes.

37

2.3.3 ‘force field mixing rules.def’

general rule for shifted vs truncated

shifted

general rule tailcorrections

no

number of defined interactions

9

type interaction

Zn1 lennard-jones 0.42 2.7

O1 lennard-jones 700.0 2.98

O2 lennard-jones 70.5 3.11

C1 lennard-jones 48.5 3.76

C2 lennard-jones 47.86 3.47

C3 lennard-jones 47.86 3.47

H1 lennard-jones 7.65 2.85

O_co2 lennard-jones 80.507 3.033

C_co2 lennard-jones 28.129 2.757

general mixing rule for Lennard-Jones

Jorgensen

The first line is skipped, the second line is the general cutoff rule for shifted vs truncated, the third line is
skipped, the fourth line is the general tule for tail corrections, the fifth line is skipped, the sixth line is the
number of defined self-interactions for the (pseudo-) atoms. The next line is skipped again followed by the
defined potentials for the (pseudo-)atoms. The file is ended with a skipped line and the general rule for the
mixing rule. Note all these interactions can be subsequently overwritten using the ‘force field.def’ file for
specific interactions.

For convenience, you can use pattern matching of the interactions. Any string s1 ending with an un-
derscore will match any string s2 that starts with the substring s1. Note that usually the ‘*’ symbol is used,
but this symbol has already a different meaning for CIF-files. Of course patterns can match more than one
atom, e.g. ‘C_’ matches ‘C1’ (a carbon atom) but also ‘Cl’ (chloride), and the rules are applied top to
bottom. Therefore, list the generic ones first and the more specific after the generic patterns.

Example of a generic UFF/TraPPE force field for united atom alkanes in MOFs:

general rule for shifted vs truncated

shifted

general rule tailcorrections

no

number of defined interactions

32

type interaction, parameters. IMPORTANT: define generic matches first

O_ lennard-jones 48.1581 3.03315

N_ lennard-jones 38.9492 3.26256

C_ lennard-jones 47.8562 3.47299

F_ lennard-jones 36.4834 3.0932

B_ lennard-jones 47.8058 3.58141

Cl_ lennard-jones 142.562 3.51932

Br_ lennard-jones 186.191 3.51905

H_ lennard-jones 7.64893 2.84642

Zn_ lennard-jones 62.3992 2.46155

Be_ lennard-jones 42.7736 2.44552

Cr_ lennard-jones 7.54829 2.69319

Fe_ lennard-jones 6.54185 2.5943

38

Mn_ lennard-jones 6.54185 2.63795

Cu_ lennard-jones 2.5161 3.11369

Co_ lennard-jones 7.04507 2.55866

Ga_ lennard-jones 208.836 3.90481

Ti_ lennard-jones 8.55473 2.8286

Sc_ lennard-jones 9.56117 2.93551

V_ lennard-jones 8.05151 2.80099

Ni_ lennard-jones 7.54829 2.52481

Zr_ lennard-jones 34.7221 2.78317

Mg_ lennard-jones 55.8574 2.69141

Ne_ lennard-jones 21.1352 2.88918

Ag_ lennard-jones 18.1159 2.80455

In_ lennard-jones 301.428 3.97608

Cd_ lennard-jones 114.734 2.53728

Sb_ lennard-jones 225.946 3.93777

Te_ lennard-jones 200.281 3.98232

He lennard-jones 10.9 2.64

CH4_sp3 lennard-jones 158.5 3.72

CH3_sp3 lennard-jones 108.0 3.76

CH2_sp3 lennard-jones 56.0 3.96

general mixing rule for Lennard-Jones

Lorentz-Berthelot

Here, ‘CH4_sp3’, ‘CH3_sp3’, and ‘CH4_sp3’ are first matched by ‘C_’ but later overwritten with the
correct values. However, carbon atoms listed in the MOF CIF-file, like ‘C1’, ‘C2’,‘C3’, etc. will be set to
the ‘C_’ value as intended.

general cutoff rule ‘shifted’ or ‘truncated’ ‘shifted’ shifts the potentials to
zero at the cutoff radius, ‘trun-
cated’ leaves them unchanged.

general tail corrections rule ‘yes’ or ‘no’ ‘yes’ applies the tail corrections to
all interactions, ‘no’ omits the tail
corrections for all interactions

general mixing-rule (only used for
Lennard-Jones)

‘Jorgensen’ or ‘Lorentz-Berthelot’ ‘Jorgensen’{
εij =

√
εiεj , σij =

√
σiσj

}
‘Lorentz-Berthelot’{
εij =

√
εiεj , σij = 1

2 (σi + σj)
}

self interaction type ‘zero-potential’,‘12-6’,‘Lennard-
Jones’, ‘Buckingham’, ‘MCY’,
‘generic’, ‘HIW’, ‘MIE’, ‘BHM’, or
‘Hydrogen’

the type of the potential deter-
mines the subsequent parame-
ters, i.e. Lennard-Jones expects a
strength parameter εii and a size
parameter σii.

2.3.4 ‘force field.def’

The ‘force field mixing rules.def’ file given above can be used for the flexible model of the metal-organic
framework IRMOF-1. It is defined using the Jorgensen mixing rule and uses shifted potentials cutoff at
12 Å. The EMP2-CO2 model however uses the Lorentz-Berthelot for CO2-CO2 interactions and uses a
truncated potential with tail corrections. Moreover, if we also want to use the DREIDING model for the
CO2-framework interactions the correction-file ‘force field.def’ would look like:

rules to overwrite

3

pair truncated/shifted tailcorrections

39

O_co2 O_co2 truncated yes

O_co2 C_co2 truncated yes

C_co2 C_co2 truncated yes

number of defined interactions

14

type type2 interaction

Zn1 C_co2 lennard-jones 27.34776042 3.420

Zn1 O_co2 lennard-jones 46.77926891 3.545

O1 C_co2 lennard-jones 36.07117963 2.915

O1 O_co2 lennard-jones 61.70097244 3.04

O2 C_co2 lennard-jones 36.07117963 2.915

O2 O_co2 lennard-jones 61.70097244 3.04

C1 C_co2 lennard-jones 35.94746166 3.135

C1 O_co2 lennard-jones 61.48934867 3.26

C2 C_co2 lennard-jones 35.94746166 3.135

C2 O_co2 lennard-jones 61.48934867 3.26

C3 C_co2 lennard-jones 35.94746166 3.135

C3 O_co2 lennard-jones 61.48934867 3.26

H1 C_co2 lennard-jones] 14.37184748 2.825

H1 O_co2 lennard-jones] 24.58353107 2.95

mixing rules to overwrite

1

#

O_co2 C_co2 Lorentz-Berthelot

Tip: always double check the complete interaction set printed in the output !

2.4 Molecules

The format of the molecules is designed to allow for a combination of flexible and rigid subunits. A
molecule is made up of ‘groups’, where a group is a collection of either rigid or flexible atoms.

2.4.1 Rigid molecule
An example of CO2 as a rigid molecule.

critical constants: Temperature [T], Pressure [Pa], and Acentric factor [-]

304.1282

7377300.0

0.22394

#Number Of Atoms

3

Number of groups

1

CO2-group

3

rigid

0 O_co2 0.0 0.0 1.16

1 C_co2 0.0 0.0 0.0

2 O_co2 0.0 0.0 -1.16

Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Bond stretch: atom n1-n2, type, parameters

0 1 RIGID_BOND

1 2 RIGID_BOND

Number of config moves

0

The first three numbers are the critical constants: the critical temperature, the critical pressure, and the
acentric factor. They are used to automatically compute the fugacity from the pressure using an equation of
state, e.g. Peng Robinson. Then the number of atoms and the number of groups. The groups are listed one
by one with first the number of atoms in the group, whether it is rigid or flexible, and the atoms as number,

40

type, and for a rigid molecule the relative positions. After the groups follows the bond, bend, torsion etc.
parameters. The file is ended with the config moves.

2.4.2 Flexible molecule
An example of a flexible molecule is the united-atom 2-methylbutane molecule. Note that for flexible units
there is not need to list relative positions. Bond-potentials are listed as the two atoms on which the potential
operates, the potential type and the corresponding parameters. At the end we have 2 config moves defined,
one where atoms 0,1,2 are kept fixed and the rest is regrown, and another config move where only atoms
2,3 are kept fixed.

critical constants: Temperature [T], Pressure [Pa], and Acentric factor [-]

460.35

3395700.0

0.2296

Number Of Atoms

5

Number Of Groups

1

Alkane-group

5

flexible

0 CH3_sp3

1 CH_sp3

2 CH2_sp3

3 CH3_sp3

4 CH3_sp3

Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb

0 4 0 4 0 0 2 0 0 0 0 0 0 0 0

Bond stretch: atom n1-n2, type, parameters

0 1 HARMONIC_BOND 96500 1.54

1 2 HARMONIC_BOND 96500 1.54

1 4 HARMONIC_BOND 96500 1.54

2 3 HARMONIC_BOND 96500 1.54

Bond bending: atom n1-n2-n3, type, parameters

0 1 2 HARMONIC_BEND 62500 112

0 1 4 HARMONIC_BEND 62500 112

4 1 2 HARMONIC_BEND 62500 112

1 2 3 HARMONIC_BEND 62500 114

Torsion n1-n2-n3-n4 type

0 1 2 3 OPLS_DIHEDRAL -251.06 428.73 -111.85 441.27

4 1 2 3 OPLS_DIHEDRAL -251.06 428.73 -111.85 441.27

Number of config moves

2

nr_fixed followed by a list

3 0 1 2

2 2 3

2.4.3 Rigid/Flexible molecule
Flexible and rigid units can easily be combined, as shown for the 1,4-benzenedicarboxylate (BDC) molecule.
Note that the relative positions in the rigid units are recomputed in the molecular reference frame.

critical constants: Temperature [T], Pressure [Pa], and Acentric factor [-]

0.0

0.0

0.0

#Number Of Atoms

16

Number of groups

3

carboxyl-group

3

flexible

0 Mof_Ob

1 Mof_Ca

2 Mof_Ob

phenyl-ring

10

rigid

3 Mof_Cb 6.458 6.458 11.526

4 Mof_Cc 7.308 7.308 12.221

5 Mof_Cc 5.608 5.608 12.221

6 Mof_H 7.876 7.876 11.759

7 Mof_H 5.04 5.04 11.759

8 Mof_Cc 7.308 7.308 13.611

9 Mof_Cc 5.608 5.608 13.611

10 Mof_H 7.876 7.876 14.073

11 Mof_H 5.04 5.04 14.073

12 Mof_Cb 6.458 6.458 14.306

carboxyl-group

3

flexible

13 Mof_Ca

14 Mof_Ob

15 Mof_Ob

Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb

0 16 0 10 0 0 16 0 0 0 0 0 0 80 80

Bond stretch: atom n1-n2, type, parameters

0 1 HARMONIC_BOND 543840.64928424 1.27

41

1 2 HARMONIC_BOND 543840.64928424 1.27

1 3 HARMONIC_BOND 353750.919316375 1.44

3 4 RIGID_BOND

3 5 RIGID_BOND

4 6 RIGID_BOND

5 7 RIGID_BOND

4 8 RIGID_BOND

5 9 RIGID_BOND

8 10 RIGID_BOND

9 11 RIGID_BOND

8 12 RIGID_BOND

9 12 RIGID_BOND

12 13 HARMONIC_BOND 353750.919316375 1.44

13 14 HARMONIC_BOND 543840.64928424 1.27

13 15 HARMONIC_BOND 543840.64928424 1.27

...

...

2.4.4 Chiral molecules
44methylethyloctane, the left-handed form:

critical constants: Temperature [T], Pressure [Pa], and Acentric factor [-]

535.6

2847232.5

0.325

Number Of Atoms

11

Number of groups

1

octane-group

11

flexible

0 CH3_sp3

1 CH2_sp3

2 CH2_sp3

3 C_sp3

4 CH2_sp3

5 CH2_sp3

6 CH2_sp3

7 CH3_sp3

8 CH3_sp3

9 CH2_sp3

10 CH3_sp3

Chiral centers Bond BondDipoles Bend UrayBradley InvBend Torsion Imp. Torsion Bond/Bond Stretch/Bend Bend/Bend Stretch/Torsion Bend/Torsion IntraVDW IntraCoulomb

1 10 0 12 0 0 6 0 0 0 0 0 0 21 0

chiral center

2 3 4 8 L

Bond stretch: atom n1-n2, type, parameters

0 1 HARMONIC_BOND 96500 1.54

1 2 HARMONIC_BOND 96500 1.54

2 3 HARMONIC_BOND 96500 1.54

3 4 HARMONIC_BOND 96500 1.54

4 5 HARMONIC_BOND 96500 1.54

5 6 HARMONIC_BOND 96500 1.54

6 7 HARMONIC_BOND 96500 1.54

3 8 HARMONIC_BOND 96500 1.54

3 9 HARMONIC_BOND 96500 1.54

9 10 HARMONIC_BOND 96500 1.54

Bond bending: atom n1-n2-n3, type, parameters

0 1 2 HARMONIC_BEND 62500 114

1 2 3 HARMONIC_BEND 62500 114

2 3 4 HARMONIC_BEND 62500 109.47

2 3 8 HARMONIC_BEND 62500 109.47

2 3 9 HARMONIC_BEND 62500 109.47

8 3 4 HARMONIC_BEND 62500 109.47

9 3 4 HARMONIC_BEND 62500 109.47

3 4 5 HARMONIC_BEND 62500 114

9 3 8 HARMONIC_BEND 62500 109.47

3 9 10 HARMONIC_BEND 62500 114

4 5 6 HARMONIC_BEND 62500 114

5 6 7 HARMONIC_BEND 62500 114

Torsion: atom n1-n2-n3-n4, type, parameters

0 1 2 3 TRAPPE_DIHEDRAL 0.0 355.03 -68.19 791.32

1 2 3 4 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

1 2 3 8 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

1 2 3 9 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

2 3 4 5 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

2 3 9 10 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

8 3 4 5 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

10 9 3 4 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

9 3 4 5 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

3 4 5 6 TRAPPE_DIHEDRAL 0.0 355.03 -68.19 791.32

10 9 3 8 TRAPPE_DIHEDRAL 0.0 0.0 0.0 461.29

4 5 6 7 TRAPPE_DIHEDRAL 0.0 355.03 -68.19 791.32

Intra VDW: atom n1-n2

0 4

0 5

0 6

0 7

0 8

0 9

0 10

1 5

1 6

1 7

1 10

2 6

2 7

42

3 7

5 10

6 8

6 9

6 10

7 8

7 9

7 10

Number of config moves

0

while the right-handed form has
chiral center

2 3 4 8 R

2.5 Framework

2.5.1 Asymmetric unit cell

Frameworks are often presented in literature using as much symmetry as possible to reduced the amount of
atoms needed to describe the structure. Usually only the fractional positions of the atoms in the asymmetric
unit cell are given. Given a space group and the unit cell parameters (length and angles) all other positions
in the full unit cell can be generated. For example, the isoreticular metal-organic framework IRMOF-1 is
published as 7 fractional positions, space group 225, a cubic unit cell with cell lengths of 25.832 Å, and
α = β = γ = 90◦. RASPA can read cif-files, and the structure can be put into a file (see ‘IRMOF-1.cif’ in
‘structures/mofs/cif’):

data_IRMOF-1

_cell_length_a 25.832

_cell_length_b 25.832

_cell_length_c 25.832

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

_cell_volume 17237.5

_symmetry_cell_setting cubic

_symmetry_space_group_name_Hall ’-F 4 2 3’

_symmetry_space_group_name_H-M ’F m -3 m’

_symmetry_Int_Tables_number 225

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Zn1 Zn 0.2934 0.2066 0.2066

O1 O 0.25 0.25 0.25

O2 O 0.2819 0.2181 0.134

C1 C 0.25 0.25 0.1113

C2 C 0.25 0.25 0.0538

C3 C 0.2829 0.2171 0.0269

H1 H 0.3049 0.1951 0.0448

RASPA can then be run using:

43

(a) The seven asymmetric atoms of IRMOF-1. (b) The full unit cell of IRMOF-1 has 424 atoms.

Figure 1: Asymmetric unit cells: the left figure shows the seven crystallographicly different atoms in the IRMOF-1 structure in
ball-and-stick format. The ‘copies’ (crystallographically identical atoms) are shown as lines. The right figure shows the full unit
cell of IRMOF-1 in ball-and-stick.

SimulationType MonteCarlo

NumberOfCycles 0

InitializationCycles 0

Forcefield GenericMOFs

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

and in the directory ‘Movies/System_0/i’ several files appear:

• ‘Framework_0_initial_1_1_1.cif’

The framework in CIF-format at the start of the simulation.

• ‘Framework_0_initial_1_1_1_P1.cif’

The framework in CIF-format at the start of the simulation converted to P1 (no symmetry).

• ‘Framework_0_initial.pdb’

The framework in PDB-format at the start of the simulation converted to P1 (no symmetry).

The files named ‘final’ are the structures at the end of the simulation. There are several programs that can
read and view CIF-files: e.g. Jmol (free), Mercury (free), Crystal Maker (commercial, free demo), Materials
Studio (commercial), and Gaussview (commercial). The PDB-files can be viewed in the freely available
VMD-program.

44

Tip: always double check the ‘Framework_0_initial_1_1_1_P1.cif’, if you see something strange then
check ‘_symmetry_space_group_name_Hall’ and the fractional positions.

Space group 225 has 192 elements and the first 10 elements look like (see the file ‘src/spacegroup.c’ for
the complete set):

x′ = x y′ = y z′ = z

x′ = −x y′ = −y z′ = z

x′ = −x y′ = y z′ = −z
x′ = x y′ = −y z′ = −z
x′ = z y′ = x z′ = y

x′ = z y′ = −x z′ = −y
x′ = −z y′ = −x z′ = y

x′ = −z y′ = x z′ = −y
x′ = y; y′ = z z′ = x

x′ = −y y′ = z z′ = −x
x′ = y y′ = −z z′ = −x
. . .

The procedure to generate a unit cell is to loop over the elements of the spacegroup and the atoms in the
asymmetric unit cell, and to apply simply all the rule. For each new x′, y′, z′ position a check is needed
whether the same position has already been added (doubles have to be removed). After this procedure the
7 positions have been expanded to 424 positions. The fractional positions are transformed in the final step
to Cartesian positions.

2.5.2 Fractional occupancies in zeolites

The procedure from asymmetric to full unit cell is rather simple when the fractional occupancies are unity.
However, quite often there is some disorder the type of atoms. For example, in zeolites like FAU the Si/Al
ratio is specified, but it is unknown where the aluminum actually is. Zeolite X is faujasite with a high
amount of aluminum. The FAU structure with a Si/Al ratio of unity is given by

data_NaX

_audit_creation_method RASPA-1.0

_audit_creation_date 2011-2-20

_audit_author_name ’David Dubbeldam’

_cell_length_a 25.099

_cell_length_b 25.099

_cell_length_c 25.099

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

_cell_volume 14273.9

_symmetry_cell_setting cubic

_symmetry_space_group_name_Hall ’-F 2uv 2vw 3’

_symmetry_space_group_name_H-M ’F d -3’

45

_symmetry_Int_Tables_number 203

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Si1 Si4+ -0.05381 0.12565 0.03508

Al1 Al3+ -0.05524 0.03639 0.12418

O1 O2- -0.1099 0.0003 0.1056

O2 O2- -0.0011 -0.0028 0.1416

O3 O2- -0.0346 0.0758 0.0711

O4 O2- -0.0693 0.0726 0.18

Now the aluminum and silicon are alternating and Löwestein rule is obeyed. For higher Si/Al ratios the
‘Al’ position is fractionally occupied and a certain percentage might actually be silicon. The procedure
here is to first generate the full unit cell of FAU with 96 aluminum (the maximum amount) and judiciously
replace aluminum by silicon in the full unit cell.

SimulationType MC

NumberOfCycles 0

NumberOfInitializationCycles 0

PrintEvery 10

Forcefield Local

Substitute 0 Al1 Si1

Substitute 5 Al1 Si1

Substitute 10 Al1 Si1

Substitute 15 Al1 Si1

Substitute 20 Al1 Si1

RandomlySubstitute 75 Al1 Si1

Framework 0

FrameworkName NaX

UnitCells 1 1 1

ExternalTemperature 300.0

It reads the CIF-file which is Nax with 96 aluminum. You can use two types of commands to replace an
atom:

• Substitute
For example. Substitute 10 Al1 Si1 means replace the 10th Al1 by Si1.

• RandomlySubstitute
For example, RandomlySubstitute 75 Al1 Si1 means randomly substitute 75 Al1 by Si1.

When you do them both, first the fixed rules are substituted and next the random ones with the ‘left-
overs’. The first one ‘Substitute’ is useful to always have the same structure. You could make a random
structure once, look in the output which Al was substituted and use the next time the ‘Substitute’ com-
mand. In this way, you always work with the spacegroup NaX structure (not in P1) which is afterwards
change by specifying rules.

46

More problematic are when several atoms have fractional occupancies lower than unity. Consider
IRMOF-8 shown in Fig. 2. The linker molecules are disordered over two possible positions. One of these
needs to be selected per linker. First the unit cell is generated from the asymmetric unit cell and subse-
quently the unit cell needs to be edited. Program which can do just that are Materials Studio, Gaussview,
etc. After the cell has been created and edited, the file needs to be placed in ‘structures/mofs/cif’. Struc-
tures with disorder needs to be created at unit cell level (P1).

Even more difficult is MOF-1. Here the cif-file also contains several possibilities, but is not a priori
known which ones to choose, i.e. what is the structure of the Dabco unit (1,4-diazabicyclo[2.2.2]octane)
within the framework? One possibility is to choose a structure and use a quantum code and minimize the
periodic unit cell. The result is shown in Fig. 3.

Note that all these procedures are necessary, but it is still an open question, especially for MOFs, whether
you can keep the framework rigid or not. However, it is very hard to calibrate a flexible framework model
and for this a substantial amount of reliable experimental data is required.

2.5.3 Format of the framework atoms

The atom-types in CIF-files are constructed from the name of the element and an identifier, e.g. ‘C10’ carbon
type 10. Usually these carbon atoms are different because they have either different charges or different Van
der Waals parameters.

Sometimes a force field is defined to have interactions on an atom-type which depends on its neighbors.
For example, the oxygen atom is different whether it is connected to a silicon or to an aluminum atom.
Therefore the atom are labelled using

ModifyFrameworkAtomConnectedTo O1 Oa1 Al1

ModifyFrameworkAtomConnectedTo O2 Oa2 Al1

ModifyFrameworkAtomConnectedTo O3 Oa3 Al1

ModifyFrameworkAtomConnectedTo O4 Oa4 Al1

which modifies ‘O1’ to zOa1’ when connected to ‘Al1’, etc. In the CIF-file you can list the new framework
atom with unknown position ‘?’.

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Si1 Si4+ -0.05381 0.12565 0.03508

Al1 Al3+ -0.05524 0.03639 0.12418

O1 O2- -0.1099 0.0003 0.1056

O2 O2- -0.0011 -0.0028 0.1416

O3 O2- -0.0346 0.0758 0.0711

O4 O2- -0.0693 0.0726 0.18

Oa1 O2- ? ? ?

Oa2 O2- ? ? ?

Oa3 O2- ? ? ?

Oa4 O2- ? ? ?

Alternatively, you can list the atom types ‘Oa1’–‘Oa4’ in your ‘pseudo_atoms.def’ file.
Other times a force field is defined as

rules to overwrite

0

number of defined interactions

47

4

type type2 interaction

O O lennard-jones 29.4338257 3.062219744

O Si lennard-jones 49.05711264 3.483346249

Si Si lennard-jones 81.76308187 3.962387454

CH4_sp3 O lennard-jones 115.00 3.47

mixing rules to overwrite

0

Here, we have that all oxygens in the framework are of the same type, and all silicon is of the same type.
In this case, we would like to map ‘O1’, ‘O2’, ‘O3’, etc. to ‘O’, and ‘Si1’, ‘Si2’, etc. to ‘Si’. You can
acgieve this using

RemoveAtomNumberCodeFromLabel yes

Suppose you want to use MFI with only ‘O’ and ‘Si’. MFI is defined using

Si1 Si4+ 0.42238 0.0565 -0.33598

Si2 Si4+ 0.30716 0.02772 -0.1893

\dots

O1 O2- 0.3726 0.0534 -0.2442

O2 O2- 0.3084 0.0587 -0.0789

\dots

The force field in ‘force_field.def’

rules to overwrite

0

number of defined interactions

1

type type2 interaction

CH4_sp3 O lennard-jones 115.00 3.47

mixing rules to overwrite

0

The ‘pseudo_atom.def’

#number of pseudo atoms
3
#type print as scatt mass charge polarization B-factor radii connectivity anisotropic anisotropic-type tinker-type
O yes O O 15.9994 -1.025 0.0 1.0 0.5 2 0 absolute 0
Si yes Si Si 28.0855 2.05 0.0 1.0 1.18 4 0 absolute 0
CH4_sp3 yes C C 16.04246 0.0 0.0 1.0 1.00 0 0 absolute 0

and the output file will show:
Pseudo atoms: 2
===
Pseudo Atom[0] Name Si Oxydation: Element: Si4+ pdb-name: Si Scat. Types: 111 14 Mass=28.085498706 B-factor:0.000

Charge=2.050 Polarization=0.017 [A^3] (considered a charged atom and no polarization) Interactions: no
Anisotropic factor: 0.000 [-] (Absolute), Radius: 1.110 [A]

Pseudo Atom[1] Name O Oxydation: Element: O2- pdb-name: O Scat. Types: 105 8 Mass=15.999404927 B-factor:0.000
Charge=-1.025 Polarization=3.880 [A^3] (considered a charged atom and no polarization) Interactions: no
Anisotropic factor: 0.000 [-] (Absolute), Radius: 0.660 [A]

2.5.4 Typing the atoms of the framework
Atoms from a pdb- or cif-file are usually labeled e.g. ‘C’ for a carbon atom. In many force fields different
carbon types have different charges. It is necessary to ‘type’ the structure and RASPA contains tools to
do this. Let’s assume the original structure always contains elements like ‘H’, ‘C’, ‘N’, ‘O’, etc. and we
want to type them ‘Mof Ha’, ‘Mof Hb’, etc. A force field type called ‘Typing’ preexists. It only defines the
‘pseudo atoms.def’ file:

48

(a) The IRMOF-8 structure as directly computed
from the asymmetric positions and the space
group.

(b) The IRMOF-8 after making a selection, shown is
only one of the possibilities.

Figure 2: IRMOF-8 has linkers which are disordered, the linker atoms have a fractional occupancy of 0.5, The atoms however are
not individually disorder and there are two disordered linker, one out of two possibilities needs to be selected per linker position.

(a) The MOF-1 structure from the cif-file. (b) The MOF-1 structure edited and optimized with
the quantum program dmol (plane wave code).

Figure 3: The MOF-1 structure is synthesized as [Zn2(1,4-bdc)2(Dabco)]. The Dabco (1,4-diazabicyclo[2.2.2]octane) is very
disordered with occupancies of 0.38 for the carbon and 0.5 for the hydrogen. The cif-file shown on the left shows all possibilities on
top of each other. Here, just choosing one of the possibilities is difficult and it is not obvious which atoms to select. The brute force
method is to select one possible choice and use a quantum plane wave for periodic structures and optimize the full unit cell. In this
case it is feasible because of the low amount of atoms in the unit cell (only 54 atoms).

49

#number of pseudo atoms

43

#type print as scat mass charge polarization B-factor radii connectivity

UNIT no H H 1.0 1.0 0.0 1.0 1.0 0

He yes He He 4.002602 0.0 0.0 1.0 1.0 0

Zn yes Zn1 Zn 65.37 0.0 0.0 1.0 1.448 0

Zn1 yes Zn1 Zn 65.37 0.0 0.0 1.0 1.448 0

Cu yes Cu1 Cu 63.546 0.0 0.0 1.0 1.4 0

Cu1 yes Cu1 Cu 63.546 0.0 0.0 1.0 1.4 0

O yes O O 15.9994 0.0 0.0 1.0 0.68 2

O1 yes O1 O 15.9994 0.0 0.0 1.0 0.68 2

O2 yes O2 O 15.9994 0.0 0.0 1.0 0.68 2

O3 yes O3 O 15.9994 0.0 0.0 1.0 0.68 2

O4 yes O4 O 15.9994 0.0 0.0 1.0 0.68 2

C yes C C 12.0107 0.0 0.0 1.0 0.720 0

C1 yes C1 C 12.0107 0.0 0.0 1.0 0.720 0

C2 yes C2 C 12.0107 0.0 0.0 1.0 0.720 0

C3 yes C3 C 12.0107 0.0 0.0 1.0 0.720 0

C4 yes C4 C 12.0107 0.0 0.0 1.0 0.720 0

C5 yes C5 C 12.0107 0.0 0.0 1.0 0.720 0

C6 yes C6 C 12.0107 0.0 0.0 1.0 0.720 0

C7 yes C7 C 12.0107 0.0 0.0 1.0 0.720 0

C8 yes C8 C 12.0107 0.0 0.0 1.0 0.720 0

C9 yes C9 C 12.0107 0.0 0.0 1.0 0.720 0

C10 yes C10 C 12.0107 0.0 0.0 1.0 0.720 0

C11 yes C11 C 12.0107 0.0 0.0 1.0 0.720 0

C12 yes C12 C 12.0107 0.0 0.0 1.0 0.720 0

C13 yes C13 C 12.0107 0.0 0.0 1.0 0.720 0

C14 yes C14 C 12.0107 0.0 0.0 1.0 0.720 0

C15 yes C15 C 12.0107 0.0 0.0 1.0 0.720 0

C16 yes C16 C 12.0107 0.0 0.0 1.0 0.720 0

N yes N N 14.00674 0.0 0.0 1.0 0.68 0

N1 yes N1 N 14.00674 0.0 0.0 1.0 0.68 0

N2 yes N2 N 14.00674 0.0 0.0 1.0 0.68 0

N3 yes N3 N 14.00674 0.0 0.0 1.0 0.68 0

N4 yes N4 N 14.00674 0.0 0.0 1.0 0.68 0

H yes H H 1.00794 0.0 0.0 1.0 0.320 0

H1 yes H1 H 1.00794 0.0 0.0 1.0 0.320 0

H2 yes H2 H 1.00794 0.0 0.0 1.0 0.320 0

H3 yes H3 H 1.00794 0.0 0.0 1.0 0.320 0

H4 yes H4 H 1.00794 0.0 0.0 1.0 0.320 0

H5 yes H5 H 1.00794 0.0 0.0 1.0 0.320 0

H6 yes H6 H 1.00794 0.0 0.0 1.0 0.320 0

H7 yes H7 H 1.00794 0.0 0.0 1.0 0.320 0

H8 yes H8 H 1.00794 0.0 0.0 1.0 0.320 0

H9 yes H9 H 1.00794 0.0 0.0 1.0 0.320 0

As an example, let’s type the structure ‘NU-100’ [?]. Figure 4 shows the NU-100 cluster with linkers
and metal-corners. The pictures shows the different types of atoms and has been used to compute CHelpG
charges. In the RASPA input-file you can use the typing command:

ModifyFrameworkAtomConnectedTo C Mof_Ca O

Look for a ‘C’ atom, check if it is connect to an ‘O’ atom and if so, type it ‘Mof Ca’. It is also possible to
define two neighbors:

ModifyFrameworkAtomConnectedTo C Mof_Cc Mof_Cb Mof_Cb

50

Figure 4: Cluster used for deriving partial charges on atoms in NU-100SP [?].

Look for an ‘C’ atom, if it is connect to a ‘Mof Cb’ and to another ‘Mof Cb’ atom, then type is ‘Mof Cc’.
The input-file to type ‘NU-100’ is

SimulationType MC

NumberOfCycles 0

Forcefield Local

Framework 0

FrameworkName NU-100SP

UnitCells 1 1 1

InputFileType cssr

ExternalTemperature 298.0

ModifyFrameworkAtomConnectedTo C C1 O

ModifyFrameworkAtomConnectedTo C C2 C1

ModifyFrameworkAtomConnectedTo C C3 C2 C2

ModifyFrameworkAtomConnectedTo C C4 C2

ModifyFrameworkAtomConnectedTo C C5 C4

ModifyFrameworkAtomConnectedTo C C6 C5

ModifyFrameworkAtomConnectedTo C C7 C6

ModifyFrameworkAtomConnectedTo C C8 C7

51

ModifyFrameworkAtomConnectedTo C C9 C8

ModifyFrameworkAtomConnectedTo C C10 C9

ModifyFrameworkAtomConnectedTo C C11 C10

ModifyFrameworkAtomConnectedTo C C12 C11

ModifyFrameworkAtomConnectedTo C C13 C12

ModifyFrameworkAtomConnectedTo C C14 C13

ModifyFrameworkAtomConnectedTo C C15 C14

ModifyFrameworkAtomConnectedTo H H1 C3

ModifyFrameworkAtomConnectedTo H H2 C4

ModifyFrameworkAtomConnectedTo H H3 C9

ModifyFrameworkAtomConnectedTo H H4 C10

ModifyFrameworkAtomConnectedTo H H5 C15

ModifyFrameworkAtomConnectedTo O O2 C1

ModifyFrameworkAtomConnectedTo Cu Cu O2

For MOFs, the easiest start-point to type is the carboxylate group. The carbon connected to the oxygen is
typed ‘Mof Ca’, the carbon connected to ‘Mof Cb’ is typed ‘Mof Cc’. The third line is important: the carbon
should only be typed ‘Mof Cc’ when it is connected to an ‘Mof Cb’ and another ‘Mof Cb’. This must be
done like this, otherwise the atom which is above called ‘Mof Cd’ would also be wrongly labeled ‘Mof Cc’.
After running RASPA, the ‘Movie’-directory contains the file ‘Framework intitial.cssr’ which is the cssr-file
with complete typing. This file can be copied to ‘structures/mofs/cssr’ and given an appropriate name.
Each pseudatom type can now be assigned a different charge in the ‘psuedo atoms.def’ file of the ‘NU-100’
forcefield.

Note that the lines containing the typing-rules are performed top to bottom and in later rules one can
use the new names of the previous rules.

2.6 Using CIF-files

2.6.1 Definition of CIF-files

CIF files present crystallographic data in an human readable free format. Let’s look at an example:

data_FAU_SI

_audit_creation_method RASPA-1.0

_audit_creation_date 2011-2-19

_audit_author_name ’David Dubbeldam’

_citation_author_name ’J.J. Hriljac, M.M. Eddy, A.K. Cheetham, J.A. Donohue, and G.J. Ray’

_citation_title ’Powder Neutron Diffraction and Si-29 MAS NMR Studies of Siliceous Zeolite-Y’

_citation_journal_abbrev ’J. Solid State Chem.’

_citation_journal_volume 106

_citation_page_first 66

_citation_page_last 72

_citation_year 1993

_cell_length_a 24.2576

_cell_length_b 24.2576

_cell_length_c 24.2576

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

_cell_volume 14273.9

_symmetry_cell_setting cubic

_symmetry_space_group_name_Hall ’-F 4vw 2vw 3’

_symmetry_space_group_name_H-M ’F d -3 m’

52

_symmetry_Int_Tables_number 227

loop_

_symmetry_equiv_pos_as_xyz

’x,y,z’

’-x+3/4,-y+1/4,z+1/2’

................

................

................

’z,-y+3/4,-x+3/4’

’z+1/2,y+1/2,x’

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_charge

_atom_site_polarization

Si1 Si4+ -0.05392 0.1253 0.03589 2.05 0

O1 O2- 0 -0.10623 0.10623 -1.025 0

O2 O2- -0.00323 -0.00323 0.14066 -1.025 0

O3 O2- 0.0757 0.0757 -0.03577 -1.025 0

O4 O2- 0.07063 0.07063 0.32115 -1.025 0

The ‘data ’ string signal the start of a data block. Each data block corresponds to a different structures,
and typically only one structure is present (although it possible to combine more than one structure in a
single file). The CIF instructions are divided into data name categories, such as ‘ atom site ’ to describe atomic
site parameters, ‘ cell ’ to describe the cell parameters, ‘ symmetry ’ to specify space group symmetry, etc.
CIF data names begin with an underscore. For some data name the data can be provided using a list of data
items. Such data items are preceded by a ‘loop ’ string. The ‘ atom site ’ section is typical example. The
order of the data items correspond to the order in which the actual data is provided.

A nice feature of CIFs is that one can easily extend the syntax to include nom-standard data item. For ex-
ample. in the ‘ atom site ’ section, the data items ‘ atom site label’, ‘ atom site type symbol’, ‘ atom site fract x’,
‘ atom site fract y’, ‘ atom site charge’ belong to the official CIF specification, but ‘ atom site charge’, ‘ atom site polarization’,
‘ atom site anisotropic displacement’, ‘ atom site anisotropic type’, and ‘ atom site print to pdb’ have been
added in RASPA CIFs. Used in this fashion, they provide a replacement for the ‘pseudo atoms.def’ file.
Note that if a ‘pseudo atoms.def’ file is used, the value in that file will have preference over the CIF-file
values (if they both define the same atom-type).

2.6.2 What charge definition is used? ‘pseudo atom.def’ or from the CIF-file?

For adsorbates the charges are defined via the atom-type in the ‘pseudo atom.def’ file. For the framework,
there are several scenarios:

• define charges via the CIF-file
If you want a possibly different charge for each atom, then use the option:

UseChargesFromCIFFile yes

and define the charge using the field ‘ atom site charge’ in the CIF-file. Atom-types from the CIF-file
that are not defined in the ‘pseudo atom.def’ are automatically added, atoms that are already defined
as a type in the ‘pseudo atom.def’ get the charge from the CIF-file. In the output-file in the list of
pseudo-atoms you will see e.g.

Charge=0.111115012 (av)

53

which signals that for this atom-type the averages charge is listed (because each atom potentially can
have a different value in this case). This is a typical case for simulations based on CHelpG charges
from quantum.

• define charges via the ‘pseudo atom.def’ file
If you want the same charge for all atoms of the atom-type, then you can list all of these in the
‘pseudo atom.def’ file and use

UseChargesFromCIFFile no

which is the default. Any atoms with a type known in the CIF-file will get a charge given in the
‘pseudo atom.def’ file; atoms of unknown type will be added to the pseudo-atoms but with a charge
of zero. The latter is probably not what you want, so make sure you have listed all atom type in
‘pseudo atom.def’ file.

• Define charges using ‘Charge Equilibration’
No matter what you define in the ‘pseudo atom.def’ or CIF-file, the charges will be recompute using
the charge-equilbration scheme of Wilmer and Snurr.

Tip: the charges that are actually used in the simulation are listed as the column ‘ atom site charge’ in
the file ‘Movies/System 0/Framework 0 initial P1.cif’. Also, check the ouput-file for the net-charge of the
framework, and the smallest and largest charge it found, e.g.

Framework has net charge: 0.000000

largest charge : 0.931455

smallest charge: -0.626799

2.6.3 How to choose atom-types?

The FAU structure above was defined with atom types: ‘Si1’, ‘O1’, ‘O2’, ‘O3’, and ‘O4’. Using the option:

RemoveAtomNumberCodeFromLabel yes

these 5 types will be reduces to 2: ‘Si’ and ‘O’. There are advantages and disadvantages to each of the
options:

• Specific types
Use if

1. You want RDF between the adsorbate atoms and the specific framework atoms.

2. If you have different VDW parameters for each specific framework atom (so ‘O1’, ‘O2’, ‘O3’, ‘O4’
would have different VDW parameters).

• Reduced types
Use if you are not interested in the difference between ‘O1’, . . . , ‘O4’, but only have a single VDW
parameter set for that atom type ‘O’. Note: you can still list different charges for each of these atoms
in the CIF-file. This options avoid excessive number of pseudo-atoms, which can clutter the output,
and avoids having lots of different RDFs (and manually having to averages these afterwards).

54

Appendix: space group information

triclinic
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
1 1 P 1 P 1 cell choice 1 primitive 1 yes no no
2 2 P -1 -P 1 cell choice 1 primitive 2 yes no no

Table 2.1: Triclinic spacegroup information.

monoclinic
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
3 3 P 1 2 1 P 2y unique axis b primitive 2 no yes no
4 3 P 1 1 2 P 2 unique axis c primitive 2 no yes no
5 3 P 2 1 1 P 2x unique axis a primitive 2 no yes no
6 4 P 1 21 1 P 2yb unique axis b primitive 2 no yes no
7 4 P 1 1 21 P 2c unique axis c primitive 2 no yes no
8 4 P 21 1 1 P 2xa unique axis a primitive 2 no yes no
9 5 C 1 2 1 C 2y b, cell choice 1 c 4 no yes no
10 5 A 1 2 1 A 2y b, cell choice 2 a 4 no yes no
11 5 I 1 2 1 I 2y b, cell choice 3 body 4 no yes no
12 5 A 1 1 2 A 2 c, cell choice 1 a 4 no yes no
13 5 B 1 1 2 B 2 c, cell choice 2 b 4 no yes no
14 5 I 1 1 2 I 2 c, cell choice 3 body 4 no yes no
15 5 B 2 1 1 B 2x a, cell choice 1 b 4 no yes no
16 5 C 2 1 1 C 2x a, cell choice 2 c 4 no yes no
17 5 I 2 1 1 I 2x a, cell choice 3 body 4 no yes no
18 6 P 1 m 1 P -2y unique axis b primitive 2 no no no
19 6 P 1 1 m P -2 unique axis c primitive 2 no no no
20 6 P m 1 1 P -2x unique axis a primitive 2 no no no
21 7 P 1 c 1 P -2yc b, cell choice 1 primitive 2 no no no
22 7 P 1 n 1 P -2yac b, cell choice 2 primitive 2 no no no
23 7 P 1 a 1 P -2ya b, cell choice 3 primitive 2 no no no
24 7 P 1 1 a P -2a c, cell choice 1 primitive 2 no no no
25 7 P 1 1 n P -2ab c, cell choice 2 primitive 2 no no no
26 7 P 1 1 b P -2b c, cell choice 3 primitive 2 no no no
27 7 P b 1 1 P -2xb a, cell choice 1 primitive 2 no no no
28 7 P n 1 1 P -2xbc a, cell choice 2 primitive 2 no no no
29 7 P c 1 1 P -2xc a, cell choice 3 primitive 2 no no no
30 8 C 1 m 1 C -2y b, cell choice 1 c 4 no no no
31 8 A 1 m 1 A -2y b, cell choice 2 a 4 no no no
32 8 I 1 m 1 I -2y b, cell choice 3 body 4 no no no
33 8 A 1 1 m A -2 c, cell choice 1 a 4 no no no
34 8 B 1 1 m B -2 c, cell choice 2 b 4 no no no
35 8 I 1 1 m I -2 c, cell choice 3 body 4 no no no
36 8 B m 1 1 B -2x a, cell choice 1 b 4 no no no
37 8 B m 1 1 C -2x a, cell choice 2 c 4 no no no
38 8 I m 1 1 I -2x a, cell choice 3 body 4 no no no
39 9 C 1 c 1 C -2yc b, cell choice 1 c 4 no no no
40 9 A 1 n 1 A -2yab b, cell choice 2 a 4 no no no
41 9 I 1 a 1 I -2ya b, cell choice 3 body 4 no no no
42 9 A 1 a 1 A -2ya -b, cell choice 1 a 4 no no no
43 9 C 1 n 1 C -2yac -b, cell choice 2 c 4 no no no
44 9 I 1 c 1 I -2yc -b, cell choice 3 body 4 no no no

55

45 9 A 1 1 a A -2a c, cell choice 1 a 4 no no no
46 9 B 1 1 n B -2ab c, cell choice 2 b 4 no no no
47 9 I 1 1 b I -2b c, cell choice 3 body 4 no no no
48 9 B 1 1 b B -2b -c, cell choice 1 b 4 no no no
49 9 A 1 1 n A -2ab -c, cell choice 2 a 4 no no no
50 9 I 1 1 a I -2a -c, cell choice 3 body 4 no no no
51 9 B b 1 1 B -2xb a, cell choice 1 b 4 no no no
52 9 C n 1 1 C -2xac a, cell choice 2 c 4 no no no
53 9 I c 1 1 I -2xc a, cell choice 3 body 4 no no no
54 9 C c 1 1 C -2xc -a, cell choice 1 c 4 no no no
55 9 B n 1 1 B -2xab -a, cell choice 2 b 4 no no no
56 9 I b 1 1 I -2xb -a, cell choice 3 body 4 no no no
57 10 P 1 2/m 1 -P 2y unique axis b primitive 4 yes no no
58 10 P 1 1 2/m -P 2 unique axis c primitive 4 yes no no
59 10 P 2/m 1 1 -P 2x unique axis a primitive 4 yes no no
60 11 P 1 21/m 1 -P 2yb unique axis b primitive 4 yes no no
61 11 P 1 1 21/m -P 2c unique axis c primitive 4 yes no no
62 11 P 21/m 1 1 -P 2xa unique axis a primitive 4 yes no no
63 12 C 1 2/m 1 -C 2y b, cell choice 1 c 8 yes no no
64 12 A 1 2/m 1 -A 2y b, cell choice 2 a 8 yes no no
65 12 I 1 2/m 1 -I 2y b, cell choice 3 body 8 yes no no
66 12 A 1 1 2/m -A 2 c, cell choice 1 a 8 yes no no
67 12 B 1 1 2/m -B 2 c, cell choice 2 b 8 yes no no
68 12 I 1 1 2/m -I 2 c, cell choice 3 body 8 yes no no
69 12 B 2/m 1 1 -B 2x a, cell choice 1 b 8 yes no no
70 12 C 2/m 1 1 -C 2x a, cell choice 2 c 8 yes no no
71 12 I 2/m 1 1 -I 2x a, cell choice 3 body 8 yes no no
72 13 P 1 2/c 1 -P 2yc b, cell choice 1 primitive 4 yes no no
73 13 P 1 2/n 1 -P 2yac b, cell choice 2 primitive 4 yes no no
74 13 P 1 2/a 1 -P 2ya b, cell choice 3 primitive 4 yes no no
75 13 P 1 1 2/a -P 2a c, cell choice 1 primitive 4 yes no no
76 13 P 1 1 2/n -P 2ab c, cell choice 2 primitive 4 yes no no
77 13 P 1 1 2/b -P 2b c, cell choice 3 primitive 4 yes no no
78 13 P 2/b 1 1 -P 2xb a, cell choice 1 primitive 4 yes no no
79 13 P 2/n 1 1 -P 2xbc a, cell choice 2 primitive 4 yes no no
80 13 P 2/c 1 1 -P 2xc a, cell choice 3 primitive 4 yes no no
81 14 P 1 21/c 1 -P 2ybc b, cell choice 1 primitive 4 yes no no
82 14 P 1 21/n 1 -P 2yn b, cell choice 2 primitive 4 yes no no
83 14 P 1 21/a 1 -P 2yab b, cell choice 3 primitive 4 yes no no
84 14 P 1 1 21/a -P 2ac c, cell choice 1 primitive 4 yes no no
85 14 P 1 1 21/n -P 2n c, cell choice 2 primitive 4 yes no no
86 14 P 1 1 21/b -P 2bc c, cell choice 3 primitive 4 yes no no
87 14 P 21/b 1 1 -P 2xab a, cell choice 1 primitive 4 yes no no
88 14 P 21/n 1 1 -P 2xn a, cell choice 2 primitive 4 yes no no
89 14 P 21/c 1 1 -P 2xac a, cell choice 3 primitive 4 yes no no
90 15 C 1 2/c 1 -C 2yc b, cell choice 1 c 8 yes no no
91 15 A 1 2/n 1 -A 2yab b, cell choice 2 a 8 yes no no
92 15 I 1 2/a 1 -I 2ya b, cell choice 3 body 8 yes no no
93 15 A 1 2/a 1 -A 2ya -b, cell choice 1 a 8 yes no no
94 15 C 1 2/n 1 -C 2yac -b, cell choice 2 c 8 yes no no
95 15 I 1 2/c 1 -I 2yc -b, cell choice 3 body 8 yes no no
96 15 A 1 1 2/a -A 2a c, cell choice 1 a 8 yes no no
97 15 B 1 1 2/n -B 2ab c, cell choice 2 b 8 yes no no
98 15 I 1 1 2/b -I 2b c, cell choice 3 body 8 yes no no
99 15 B 1 1 2/b -B 2b -c, cell choice 1 b 8 yes no no
100 15 A 1 1 2/n -A 2ab -c, cell choice 2 a 8 yes no no

56

101 15 I 1 1 2/a -I 2a -c, cell choice 3 body 8 yes no no
102 15 B 2/b 1 1 -B 2xb a, cell choice 1 b 8 yes no no
103 15 C 2/n 1 1 -C 2xac a, cell choice 2 c 8 yes no no
104 15 I 2/c 1 1 -I 2xc a, cell choice 3 body 8 yes no no
105 15 C 2/c 1 1 -C 2xc -a, cell choice 1 c 8 yes no no
106 15 B 2/n 1 1 -B 2xab -a, cell choice 2 b 8 yes no no
107 15 I 2/b 1 1 -I 2xb -a, cell choice 3 body 8 yes no no

Table 2.2: Monoclinic spacegroup information.

orthorhombic
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
108 16 P 2 2 2 P 2 2 cell choice 1 primitive 4 yes yes no
109 17 P 2 2 21 P 2c 2 abc primitive 4 yes yes no
110 17 P 21 2 2 P 2a 2a cab primitive 4 yes yes no
111 17 P 2 21 2 P 2 2b bca primitive 4 yes yes no
112 18 P 21 21 2 P 2 2ab abc primitive 4 yes yes no
113 18 P 2 21 21 P 2bc 2 cab primitive 4 yes yes no
114 18 P 21 2 21 P 2ac 2ac bca primitive 4 yes yes no
115 19 P 21 21 21 P 2ac 2ab cell choice 1 primitive 4 yes yes no
116 20 C 2 2 21 C 2c 2 abc c 8 yes yes no
117 20 A 21 2 2 A 2a 2a cab a 8 yes yes no
118 20 B 2 21 2 B 2 2b bca b 8 yes yes no
119 21 C 2 2 2 C 2 2 abc c 8 no yes no
120 21 A 2 2 2 A 2 2 cab a 8 no yes no
121 21 B 2 2 2 B 2 2 bca b 8 no yes no
122 22 F 2 2 2 F 2 2 cell choice 1 face 16 no yes no
123 23 I 2 2 2 I 2 2 cell choice 1 body 8 no yes no
124 24 I 21 21 21 I 2b 2c cell choice 1 body 8 no yes no
125 25 P m m 2 P 2 -2 abc primitive 4 no no no
126 25 P 2 m m P -2 2 cab primitive 4 no no no
127 25 P m 2 m P -2 -2 bca primitive 4 no no no
128 26 P m c 21 P 2c -2 abc primitive 4 no no no
129 26 P c m 21 P 2c -2c ba-c primitive 4 no no no
130 26 P 21 m a P -2a 2a cab primitive 4 no no no
131 26 P 21 a m P -2 2a -cba primitive 4 no no no
132 26 P b 21 m P -2 -2b bca primitive 4 no no no
133 26 P m 21 b P -2b -2 a-cb primitive 4 no no no
134 27 P c c 2 P 2 -2c abc primitive 4 no no no
135 27 P 2 a a P -2a 2 cab primitive 4 no no no
136 27 P b 2 b P -2b -2b bca primitive 4 no no no
137 28 P m a 2 P 2 -2a abc primitive 4 no no no
138 28 P b m 2 P 2 -2b ba-c primitive 4 no no no
139 28 P 2 m b P -2b 2 cab primitive 4 no no no
140 28 P 2 c m P -2c 2 -cba primitive 4 no no no
141 28 P c 2 m P -2c -2c bca primitive 4 no no no
142 28 P m 2 a P -2a -2a a-cb primitive 4 no no no
143 29 P c a 21 P 2c -2ac abc primitive 4 no no no
144 29 P b c 21 P 2c -2b ba-c primitive 4 no no no
145 29 P 21 a b P -2b 2a cab primitive 4 no no no
146 29 P 21 c a P -2ac 2a -cba primitive 4 no no no
147 29 P c 21 b P -2bc -2c bca primitive 4 no no no
148 29 P b 21 a P -2a -2ab a-cb primitive 4 no no no
149 30 P n c 2 P 2 -2bc abc primitive 4 no no no
150 30 P c n 2 P 2 -2ac ba-c primitive 4 no no no

57

151 30 P 2 n a P -2ac 2 cab primitive 4 no no no
152 30 P 2 a n P -2ab 2 -cba primitive 4 no no no
153 30 P b 2 n P -2ab -2ab bca primitive 4 no no no
154 30 P n 2 b P -2bc -2bc a-cb primitive 4 no no no
155 31 P m n 21 P 2ac -2 abc primitive 4 no no no
156 31 P n m 21 P 2bc -2bc ba-c primitive 4 no no no
157 31 P 21 m n P -2ab 2ab cab primitive 4 no no no
158 31 P 21 n m P -2 2ac -cba primitive 4 no no no
159 31 P n 21 m P -2 -2bc bca primitive 4 no no no
160 31 P m 21 n P -2ab -2 a-cb primitive 4 no no no
161 32 P b a 2 P 2 -2ab abc primitive 4 no no no
162 32 P 2 c b P -2bc 2 cab primitive 4 no no no
163 32 P c 2 a P -2ac -2ac bca primitive 4 no no no
164 33 P n a 21 P 2c -2n abc primitive 4 no no no
165 33 P b n 21 P 2c -2ab ba-c primitive 4 no no no
166 33 P 21 n b P -2bc 2a cab primitive 4 no no no
167 33 P 21 c n P -2n 2a -cba primitive 4 no no no
168 33 P c 21 n P -2n -2ac bca primitive 4 no no no
169 33 P n 21 a P -2ac -2n a-cb primitive 4 no no no
170 34 P n n 2 P 2 -2n abc primitive 4 no no no
171 34 P 2 n n P -2n 2 cab primitive 4 no no no
172 34 P n 2 n P -2n -2n bca primitive 4 no no no
173 35 C m m 2 C 2 -2 abc c 8 no no no
174 35 A 2 m m A -2 2 cab a 8 no no no
175 35 B m 2 m B -2 -2 bca b 8 no no no
176 36 C m c 21 C 2c -2 abc c 8 no no no
177 36 C c m 21 C 2c -2c ba-c c 8 no no no
178 36 A 21 m a A -2a 2a cab a 8 no no no
179 36 A 21 a m A -2 2a -cba a 8 no no no
180 36 B b 21 m B -2 -2b bca b 8 no no no
181 36 B m 21 b B -2b -2 a-cb b 8 no no no
182 37 C c c 2 C 2 -2c abc c 8 no no no
183 37 A 2 a a A -2a 2 cab a 8 no no no
184 37 B b 2 b B -2b -2b bca b 8 no no no
185 38 A m m 2 A 2 -2 abc a 8 no no no
186 38 B m m 2 B 2 -2 ba-c b 8 no no no
187 38 B 2 m m B -2 2 cab b 8 no no no
188 38 C 2 m m C -2 2 -cba c 8 no no no
189 38 C m 2 m C -2 -2 bca c 8 no no no
190 38 A m 2 m A -2 -2 a-cb a 8 no no no
191 39 A b m 2 A 2 -2b abc a 8 no no no
192 39 B m a 2 B 2 -2a ba-c b 8 no no no
193 39 B 2 c m B -2a 2 cab b 8 no no no
194 39 C 2 m b C -2a 2 -cba c 8 no no no
195 39 C m 2 a C -2a -2a bca c 8 no no no
196 39 A c 2 m A -2b -2b a-cb a 8 no no no
197 40 A m a 2 A 2 -2a abc a 8 no no no
198 40 B b m 2 B 2 -2b ba-c b 8 no no no
199 40 B 2 m b B -2b 2 cab b 8 no no no
200 40 C 2 c m C -2c 2 -cba c 8 no no no
201 40 C c 2 m C -2c -2c bca c 8 no no no
202 40 A m 2 a A -2a -2a a-cb a 8 no no no
203 41 A b a 2 A 2 -2ab abc a 8 no no no
204 41 B b a 2 B 2 -2ab ba-c b 8 no no no
205 41 B 2 c b B -2ab 2 cab b 8 no no no
206 41 C 2 c b C -2ac 2 -cba c 8 no no no

58

207 41 C c 2 a C -2ac -2ac bca c 8 no no no
208 41 A c 2 a A -2ab -2ab a-cb a 8 no no no
209 42 F m m 2 F 2 -2 abc face 16 no no no
210 42 F 2 m m F -2 2 cab face 16 no no no
211 42 F m 2 m F -2 -2 bca face 16 no no no
212 43 F d d 2 F 2 -2d abc face 16 no no no
213 43 F 2 d d F -2d 2 cab face 16 no no no
214 43 F d 2 d F -2d -2d bca face 16 no no no
215 44 I m m 2 I 2 -2 abc body 8 no no no
216 44 I 2 m m I -2 2 cab body 8 no no no
217 44 I m 2 m I -2 -2 bca body 8 no no no
218 45 I b a 2 I 2 -2c abc body 8 no no no
219 45 I 2 c b I -2a 2 cab body 8 no no no
220 45 I c 2 a I -2b -2b bca body 8 no no no
221 46 I m a 2 I 2 -2a abc body 8 no no no
222 46 I b m 2 I 2 -2b ba-c body 8 no no no
223 46 I 2 m b I -2b 2 cab body 8 no no no
224 46 I 2 c m I -2c 2 -cba body 8 no no no
225 46 I c 2 m I -2c -2c bca body 8 no no no
226 46 I m 2 a I -2a -2a a-cb body 8 no no no
227 47 P 2/m 2/m 2/m -P 2 2 cell choice 1 primitive 8 yes no no
228 48 P 2/n 2/n 2/n:1 P 2 2 -1n cell choice 1 primitive 8 yes no no
229 48 P 2/n 2/n 2/n:2 -P 2ab 2bc cell choice 2 primitive 8 yes no no
230 49 P 2/c 2/c 2/m -P 2 2c abc primitive 8 yes no no
231 49 P 2/m 2/a 2/a -P 2a 2 cab primitive 8 yes no no
232 49 P 2/b 2/m 2/b -P 2b 2b bca primitive 8 yes no no
233 50 P 2/b 2/a 2/n:1 P 2 2 -1ab cell choice 1 primitive 8 yes no no
234 50 P 2/b 2/a 2/n:2 -P 2ab 2b cell choice 2 primitive 8 yes no no
235 50 P 2/n 2/c 2/b:1 P 2 2 -1bc cab primitive 8 yes no no
236 50 P 2/n 2/c 2/b:2 -P 2b 2bc cab, cell choice 2 primitive 8 yes no no
237 50 P 2/c 2/n 2/a:1 P 2 2 -1ac bca primitive 8 yes no no
238 50 P 2/c 2/n 2/a:2 -P 2a 2c bca, cell choice 2 primitive 8 yes no no
239 51 P 21/m 2/m 2/a -P 2a 2a abc primitive 8 yes no no
240 51 P 2/m 21/m 2/b -P 2b 2 ba-c primitive 8 yes no no
241 51 P 2/b 21/m 2/m -P 2 2b cab primitive 8 yes no no
242 51 P 2/c 2/m 21/m -P 2c 2c -cba primitive 8 yes no no
243 51 P 2/m 2/c 21/m -P 2c 2 bca primitive 8 yes no no
244 51 P 21/m 2/a 2/m -P 2 2a a-cb primitive 8 yes no no
245 52 P 2/n 21/n 2/a -P 2a 2bc abc primitive 8 yes no no
246 52 P 21/n 2/n 2/b -P 2b 2n ba-c primitive 8 yes no no
247 52 P 2/b 2/n 21/n -P 2n 2b cab primitive 8 yes no no
248 52 P 2/c 21/n 2/n -P 2ab 2c -cba primitive 8 yes no no
249 52 P 21/n 2/c 2/n -P 2ab 2n bca primitive 8 yes no no
250 52 P 2/n 2/a 21/n -P 2n 2bc a-cb primitive 8 yes no no
251 53 P 2/m 2/n 21/a -P 2ac 2 abc primitive 8 yes no no
252 53 P 2/n 2/m 21/b -P 2bc 2bc ba-c primitive 8 yes no no
253 53 P 21/b 2/m 2/n -P 2ab 2ab cab primitive 8 yes no no
254 53 P 21/c 2/n 2/m -P 2 2ac -cba primitive 8 yes no no
255 53 P 2/n 21/c 2/m -P 2 2bc bca primitive 8 yes no no
256 53 P 2/m 21/a 2/n -P 2ab 2 a-cb primitive 8 yes no no
257 54 P 21/c 2/c 2/a -P 2a 2ac abc primitive 8 yes no no
258 54 P 2/c 21/c 2/b -P 2b 2c ba-c primitive 8 yes no no
259 54 P 2/b 21/a 2/a -P 2a 2b cab primitive 8 yes no no
260 54 P 2/c 2/a 21/a -P 2ac 2c -cba primitive 8 yes no no
261 54 P 2/b 2/c 21/b -P 2bc 2b bca primitive 8 yes no no
262 54 P 21/b 2/a 2/b -P 2b 2ab a-cb primitive 8 yes no no

59

263 55 P 21/b 21/a 2/m -P 2 2ab abc primitive 8 yes no no
264 55 P 2/m 21/c 21/b -P 2bc 2 cab primitive 8 yes no no
265 55 P 21/c 2/m 21/a -P 2ac 2ac bca primitive 8 yes no no
266 56 P 21/c 21/c 2/n -P 2ab 2ac abc primitive 8 yes no no
267 56 P 2/n 21/a 21/a -P 2ac 2bc cab primitive 8 yes no no
268 56 P 21/b 2/n 21/b -P 2bc 2ab bca primitive 8 yes no no
269 57 P 2/b 21/c 21/m -P 2c 2b abc primitive 8 yes no no
270 57 P 21/c 2/a 21/m -P 2c 2ac ba-c primitive 8 yes no no
271 57 P 21/m 2/c 21/a -P 2ac 2a cab primitive 8 yes no no
272 57 P 21/m 21/a 2/b -P 2b 2a -cba primitive 8 yes no no
273 57 P 21/b 21/m 2/a -P 2a 2ab bca primitive 8 yes no no
274 57 P 2/c 21/m 21/b -P 2bc 2c a-cb primitive 8 yes no no
275 58 P 21/n 21n 2/m -P 2 2n abc primitive 8 yes no no
276 58 P 2/m 21/n 21/n -P 2n 2 cab primitive 8 yes no no
277 58 P 21/n 2/m 21/n -P 2n 2n bca primitive 8 yes no no
278 59 P 21/m 21/m 2/n:1 P 2 2ab -1ab cell choice 1 primitive 8 yes no no
279 59 P 21/m 21/m 2/n:2 -P 2ab 2a cell choice 2 primitive 8 yes no no
280 59 P 2/n 21/m 21/m:1 P 2bc 2 -1bc cab primitive 8 yes no no
281 59 P 2/n 21/m 21/m:2 -P 2c 2bc cab, cell choice 2 primitive 8 yes no no
282 59 P 21/m 2/n 21/m:1 P 2ac 2ac -1ac bca primitive 8 yes no no
283 59 P 21/m 2/n 21/m:2 -P 2c 2a bca, cell choice 2 primitive 8 yes no no
284 60 P 21/b 2/c 21/n -P 2n 2ab abc primitive 8 yes no no
285 60 P 2/c 21/a 21/n -P 2n 2c ba-c primitive 8 yes no no
286 60 P 21/n 21/a 2/b -P 2a 2n cab primitive 8 yes no no
287 60 P 21/n 2/a 21/b -P 2bc 2n -cba primitive 8 yes no no
288 60 P 2/b 21/n 21/a -P 2ac 2b bca primitive 8 yes no no
289 60 P 21/c 21/n 2/b -P 2b 2ac a-cb primitive 8 yes no no
290 61 P 21/b 21/c 21/a -P 2ac 2ab abc primitive 8 yes no no
291 61 P 21/c 21/a 21/b -P 2bc 2ac ba-c primitive 8 yes no no
292 62 P 21/n 21/m 21/a -P 2ac 2n abc primitive 8 yes no no
293 62 P 21/m 21/n 21/b -P 2bc 2a ba-c primitive 8 yes no no
294 62 P 21/b 21/n 21/m -P 2c 2ab cab primitive 8 yes no no
295 62 P 21/c 21/m 21/n -P 2n 2ac -cba primitive 8 yes no no
296 62 P 21/m 21/c 21/n -P 2n 2a bca primitive 8 yes no no
297 62 P 21/n 21/a 21/m -P 2c 2n a-cb primitive 8 yes no no
298 63 C 2/m 2/c 21/m -C 2c 2 abc c 16 yes no no
299 63 C 2/c 2/m 21/m -C 2c 2c ba-c c 16 yes no no
300 63 A 21/m 2/m 2/a -A 2a 2a cab a 16 yes no no
301 63 A 21/m 2/a 2/m -A 2 2a -cba a 16 yes no no
302 63 B 2/b 21/m 2/m -B 2 2b bca b 16 yes no no
303 63 B 2/m 21/m 2/b -B 2b 2 a-cb b 16 yes no no
304 64 C 2/m 2/c 21/a -C 2ac 2 abc c 16 yes no no
305 64 C 2/c 2/m 21/b -C 2ac 2ac ba-c c 16 yes no no
306 64 A 21/b 2/m 2/a -A 2ab 2ab cab a 16 yes no no
307 64 A 21/c 2/a 2/m -A 2 2ab -cba a 16 yes no no
308 64 B 2/b 21/c 2/m -B 2 2ab bca b 16 yes no no
309 64 B 2/m 21/a 2/b -B 2ab 2 a-cb b 16 yes no no
310 65 C 2/m 2/m 2/m -C 2 2 abc c 16 yes no no
311 65 A 2/m 2/m 2/m -A 2 2 cab a 16 yes no no
312 65 B 2/m 2/m 2/m -B 2 2 bca b 16 yes no no
313 66 C 2/c 2/c 2/m -C 2 2c abc c 16 yes no no
314 66 A 2/m 2/a 2/a -A 2a 2 cab a 16 yes no no
315 66 B 2/b 2/m 2/b -B 2b 2b bca b 16 yes no no
316 67 C 2/m 2/m 2/a -C 2a 2 abc c 16 yes no no
317 67 C 2/m 2/m 2/b -C 2a 2a ba-c c 16 yes no no
318 67 A 2/b 2/m 2/m -A 2b 2b cab a 16 yes no no

60

319 67 A 2/c 2/m 2/m -A 2 2b -cba a 16 yes no no
320 67 B 2/m 2/c 2/m -B 2 2a bca b 16 yes no no
321 67 B 2/m 2/a 2/m -B 2a 2 a-cb b 16 yes no no
322 68 C 2/c 2/c 2/a:1 C 2 2 -1ac cell choice 1 c 16 yes no no
323 68 C 2/c 2/c 2/a:2 -C 2a 2ac cell choice 2 c 16 yes no no
324 68 C 2/c 2/c 2/b:1 C 2 2 -1ac ba-c c 16 yes no no
325 68 C 2/c 2/c 2/b:2 -C 2a 2c ba-c, cell choice 2 c 16 yes no no
326 68 A 2/b 2/a 2/a:1 A 2 2 -1ab cab a 16 yes no no
327 68 A 2/b 2/a 2/a:2 -A 2a 2b cab, cell choice 2 a 16 yes no no
328 68 A 2/c 2/a 2/a:1 A 2 2 -1ab -cba a 16 yes no no
329 68 A 2/c 2/a 2/a:2 -A 2ab 2b -cba, cell choice 2 a 16 yes no no
330 68 B 2/b 2/c 2/b:1 B 2 2 -1ab bca b 16 yes no no
331 68 B 2/b 2/c 2/b:2 -B 2ab 2b bca, cell choice 2 b 16 yes no no
332 68 B 2/b 2/a 2/b:1 B 2 2 -1ab a-cb b 16 yes no no
333 68 B 2/b 2/a 2/b:2 -B 2b 2ab a-cb, cell choice 2 b 16 yes no no
334 69 F 2/m 2/m 2/m -F 2 2 cell choice 1 face 32 yes no no
335 70 F 2/d 2/d 2/d:1 F 2 2 -1d cell choice 1 face 32 yes no no
336 70 F 2/d 2/d 2/d:2 -F 2uv 2vw cell choice 2 face 32 yes no no
337 71 I 2/m 2/m 2/m -I 2 2 cell choice 1 body 16 yes no no
338 72 I 2/b 2/a 2/m -I 2 2c abc body 16 yes no no
339 72 I 2/m 2/c 2/b -I 2a 2 cab body 16 yes no no
340 72 I 2/c 2/m 2/a -I 2b 2b bca body 16 yes no no
341 73 I 21/b 21/c 21/a -I 2b 2c abc body 16 yes no no
342 73 I 21/c 21/a 21/b -I 2a 2b ba-c body 16 yes no no
343 74 I 21/m 21/m 21/a -I 2b 2 abc body 16 yes no no
344 74 I 21/m 21/m 21/b -I 2a 2a ba-c body 16 yes no no
345 74 I 21/b 21/m 21/m -I 2c 2c cab body 16 yes no no
346 74 I 21/c 21/m 21/m -I 2 2b -cba body 16 yes no no
347 74 I 21/m 21/c 21/m -I 2 2a bca body 16 yes no no
348 74 I 21/m 21/a 21/m -I 2c 2 a-cb body 16 yes no no

Table 2.3: Orthorhombic spacegroup information.

tetragonal
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
349 75 P 4 P 4 cell choice 1 primitive 4 no yes no
350 76 P 41 P 4w cell choice 1 primitive 4 no yes yes
351 77 P 42 P 4c cell choice 1 primitive 4 no yes no
352 78 P 43 P 4cw cell choice 1 primitive 4 no yes yes
353 79 I 4 I 4 cell choice 1 body 8 no yes no
354 80 I 41 I 4bw cell choice 1 body 8 no yes no
355 81 P -4 P -4 cell choice 1 primitive 4 no no no
356 82 I -4 I -4 cell choice 1 body 8 no no no
357 83 P 4/m -P 4 cell choice 1 primitive 8 yes no no
358 84 P 42/m -P 4c cell choice 1 primitive 8 yes no no
359 85 P 4/n:1 P 4ab -1ab cell choice 1 primitive 8 yes no no
360 85 P 4/n:2 -P 4a cell choice 2 primitive 8 yes no no
361 86 P 42/n:1 P 4n -1n cell choice 1 primitive 8 yes no no
362 86 P 42/n:2 -P 4bc cell choice 2 primitive 8 yes no no
363 87 I 4/m -I 4 cell choice 1 body 16 yes no no
364 88 I 41/a:1 I 4bw -1bw cell choice 1 body 16 yes no no
365 88 I 41/a:2 -I 4ad cell choice 2 body 16 yes no no
366 89 P 4 2 2 P 4 2 cell choice 1 primitive 8 no yes no
367 90 P 4 21 2 P 4ab 2ab cell choice 1 primitive 8 no yes no
368 91 P 41 2 2 P 4w 2c cell choice 1 primitive 8 no yes yes

61

369 92 P 41 21 2 P 4abw 2nw cell choice 1 primitive 8 no yes yes
370 93 P 42 2 2 P 4c 2 cell choice 1 primitive 8 no yes no
371 94 P 42 21 2 P 4n 2n cell choice 1 primitive 8 no yes no
372 95 P 43 2 2 P 4cw 2c cell choice 1 primitive 8 no yes yes
373 96 P 43 21 2 P 4nw 2abw cell choice 1 primitive 8 no yes yes
374 97 I 4 2 2 I 4 2 cell choice 1 body 16 no yes no
375 98 I 41 2 2 I 4bw 2bw cell choice 1 body 16 no yes no
376 99 P 4 m m P 4 -2 cell choice 1 primitive 8 no no no
377 100 P 4 b n P 4 -2ab cell choice 1 primitive 8 no no no
378 101 P 42 c m P 4c -2c cell choice 1 primitive 8 no no no
379 102 P 42 n m P 4n -2n cell choice 1 primitive 8 no no no
380 103 P 4 c c P 4 -2c cell choice 1 primitive 8 no no no
381 104 P 4 n c P 4 -2n cell choice 1 primitive 8 no no no
382 105 P 42 m c P 4c -2 cell choice 1 primitive 8 no no no
383 106 P 42 b c P 4c -2ab cell choice 1 primitive 8 no no no
384 107 I 4 m m I 4 -2 cell choice 1 body 16 no no no
385 108 I 4 c m I 4 -2c cell choice 1 body 16 no no no
386 109 I 41 m d I 4bw -2 cell choice 1 body 16 no no no
387 110 I 41 c d I 4bw -2c cell choice 1 body 16 no no no
388 111 P -4 2 m P -4 2 cell choice 1 primitive 8 no no no
389 112 P -4 2 c P -4 2c cell choice 1 primitive 8 no no no
390 113 P -4 21 m P -4 2ab cell choice 1 primitive 8 no no no
391 114 P -4 21 c P -4 2n cell choice 1 primitive 8 no no no
392 115 P -4 m 2 P -4 -2 cell choice 1 primitive 8 no no no
393 116 P -4 c 2 P -4 -2c cell choice 1 primitive 8 no no no
394 117 P -4 b 2 P -4 -2ab cell choice 1 primitive 8 no no no
395 118 P -4 n 2 P -4 -2n cell choice 1 primitive 8 no no no
396 119 I -4 m 2 I -4 -2 cell choice 1 body 16 no no no
397 120 I -4 c 2 I -4 -2c cell choice 1 body 16 no no no
398 121 I -4 2 m I -4 2 cell choice 1 body 16 no no no
399 122 I -4 2 d I -4 2bw cell choice 1 body 16 no no no
400 123 P 4/m 2/m 2/m -P 4 2 cell choice 1 primitive 16 yes no no
401 124 P 4/m 2/c 2/c -P 4 2c cell choice 1 primitive 16 yes no no
402 125 P 4/n 2/b 2/m:1 P 4 2 -1ab cell choice 1 primitive 16 yes no no
403 125 P 4/n 2/b 2/m:2 -P 4a 2b cell choice 2 primitive 16 yes no no
404 126 P 4/n 2/n 2/c:1 P 4 2 -1n cell choice 1 primitive 16 yes no no
405 126 P 4/n 2/n 2/c:2 -P 4a 2bc cell choice 2 primitive 16 yes no no
406 127 P 4/m 21/b 2/m -P 4 2ab cell choice 1 primitive 16 yes no no
407 128 P 4/m 21/n 2/c -P 4 2n cell choice 1 primitive 16 yes no no
408 129 P 4/n 21/m 2/m:1 P 4ab 2ab -1ab cell choice 1 primitive 16 yes no no
409 129 P 4/n 21/m 2/m:2 -P 4a 2a cell choice 2 primitive 16 yes no no
410 130 P 4/n 21/c 2/c:1 P 4ab 2n -1ab cell choice 1 primitive 16 yes no no
411 130 P 4/n 21/c 2/c:2 -P 4a 2ac cell choice 2 primitive 16 yes no no
412 131 P 42/m 2/m 2/c -P 4c 2 cell choice 1 primitive 16 yes no no
413 132 P 42/m 2/c 2/m -P 4c 2c cell choice 1 primitive 16 yes no no
414 133 P 42/n 2/b 2/c:1 P 4n 2c -1n cell choice 1 primitive 16 yes no no
415 133 P 42/n 2/b 2/c:2 -P 4ac 2b cell choice 2 primitive 16 yes no no
416 134 P 42/n 2/n 2/m:1 P 4n 2 -1n cell choice 1 primitive 16 yes no no
417 134 P 42/n 2/n 2/m:2 -P 4ac 2bc cell choice 2 primitive 16 yes no no
418 135 P 42/m 21/b 2/c -P 4c 2ab cell choice 1 primitive 16 yes no no
419 136 P 42/m 21/n 2/m -P 4n 2n cell choice 1 primitive 16 yes no no
420 137 P 42/n 21/m 2/c:1 P 4n 2n -1n cell choice 1 primitive 16 yes no no
421 137 P 42/n 21/m 2/c:2 -P 4ac 2a cell choice 2 primitive 16 yes no no
422 138 P 42/n 21/c 2/m:1 P 4n 2ab -1n cell choice 1 primitive 16 yes no no
423 138 P 42/n 21/c 2/m:2 -P 4ac 2ac cell choice 2 primitive 16 yes no no
424 139 I 4/m 2/m 2/m -I 4 2 cell choice 1 primitive 32 yes no no

62

425 140 I 4/m 2/c 2/m -I 4 2c cell choice 1 primitive 32 yes no no
426 141 I 41/a 2/m 2/d:1 I 4bw 2bw -1bw cell choice 1 body 32 yes no no
427 141 I 41/a 2/m 2/d:2 -I 4bd 2 cell choice 2 body 32 yes no no
428 142 I 41/a 2/c 2/d:1 I 4bw 2aw -1bw cell choice 1 body 32 yes no no
429 142 I 41/a 2/c 2/d:2 -I 4bd 2c cell choice 2 body 32 yes no no

Table 2.4: Tetragonal spacegroup information.

trigonal
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
430 143 P 3 P 3 cell choice 1 primitive 3 no yes no
431 144 P 31 P 31 cell choice 1 primitive 3 no yes yes
432 145 P 32 P 32 cell choice 1 primitive 3 no yes no
433 146 R 3:H R 3 hexagonal rhombohedral 9 no yes no
434 146 R 3:R P 3* Rhombohedral primitive 3 no yes no
435 147 P -3 -P 3 cell choice 1 primitive 6 yes no no
436 148 R -3:H -R 3 hexagonal rhombohedral 18 yes no no
437 148 R -3:R -P 3* Rhombohedral primitive 6 yes no no
438 149 P 3 1 2 P 3 2 cell choice 1 primitive 6 no yes no
439 150 P 3 2 1 P 3 2” cell choice 1 primitive 6 no yes no
440 151 P 31 1 2 P 31 2 (0 0 4) cell choice 1 primitive 6 no yes yes
441 152 P 31 2 1 P 31 2” cell choice 1 primitive 6 no yes yes
442 153 P 32 1 2 P 32 2 (0 0 2) cell choice 1 primitive 6 no yes yes
443 154 P 32 2 1 P 32 2” cell choice 1 primitive 6 no yes yes
444 155 R 3 2:H R 3 2” hexagonal rhombohedral 18 no yes no
445 155 R 3 2:R P 3* 2 Rhombohedral primitive 6 no yes no
446 156 P 3 m 1 P 3 -2” cell choice 1 primitive 6 no no no
447 157 P 3 1 m P 3 -2 cell choice 1 primitive 6 no no no
448 158 P 3 c 1 P 3 -2”c cell choice 1 primitive 6 no no no
449 159 P 3 1 c P 3 -2c cell choice 1 primitive 6 no no no
450 160 R 3 m:H R 3 -2” hexagonal rhombohedral 18 no no no
451 160 R 3 m:R P 3* -2 Rhombohedral primitive 6 no no no
452 161 R 3 c:H R 3 -2”c hexagonal rhombohedral 18 no no no
453 161 R 3 c:R P 3* -2n Rhombohedral primitive 6 no no no
454 162 P -3 1 2/m -P 3 2 cell choice 1 primitive 12 yes no no
455 163 P -3 1 2/c -P 3 2c cell choice 1 primitive 12 yes no no
456 164 P -3 2/m 1 -P 3 2” cell choice 1 primitive 12 yes no no
457 165 P -3 2/c 1 -P 3 2”c cell choice 1 primitive 12 yes no no
458 166 R -3 2/m:H -R 3 2” hexagonal rhombohedral 36 yes no no
459 166 R -3 2/m:R -P 3* 2 Rhombohedral primitive 12 yes no no
460 167 R -3 2/c:H -R 3 2”c hexagonal rhombohedral 36 yes no no
461 167 R -3 2/c:R -P 3* 2n Rhombohedral primitive 12 yes no no

Table 2.5: Trigonal spacegroup information.

hexagonal
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
462 168 P 6 P 6 cell choice 1 primitive 6 no yes no
463 169 P 61 P 61 cell choice 1 primitive 6 no yes yes
464 170 P 65 P 65 cell choice 1 primitive 6 no yes yes
465 171 P 62 P 62 cell choice 1 primitive 6 no yes yes
466 172 P 64 P 64 cell choice 1 primitive 6 no yes yes
467 173 P 63 P 6c cell choice 1 primitive 6 no yes no

63

468 174 P -6 P -6 cell choice 1 primitive 6 no no no
469 175 P 6/m -P 6 cell choice 1 primitive 6 yes no no
470 176 P 63/m -P 6c cell choice 1 primitive 12 yes no no
471 177 P 6 2 2 P 6 2 cell choice 1 primitive 12 no yes no
472 178 P 61 2 2 P 61 2 (0 0 5) cell choice 1 primitive 12 no yes yes
473 179 P 65 2 2 P 65 2 (0 0 1) cell choice 1 primitive 12 no yes yes
474 180 P 62 2 2 P 62 2 (0 0 4) cell choice 1 primitive 12 no yes yes
475 181 P 64 2 2 P 64 2 (0 0 2) cell choice 1 primitive 12 no yes yes
476 182 P 63 2 2 P 6c 2c cell choice 1 primitive 12 no yes no
477 183 P 6 m m P 6 -2 cell choice 1 primitive 12 no no no
478 184 P 6 c c P 6 -2c cell choice 1 primitive 12 no no no
479 185 P 63 c m P 6c -2 cell choice 1 primitive 12 no no no
480 186 P 63 m c P 6c -2c cell choice 1 primitive 12 no no no
481 187 P -6 m 2 P -6 2 cell choice 1 primitive 12 no no no
482 188 P -6 c 2 P -6c 2 cell choice 1 primitive 12 no no no
483 189 P -6 2 m P -6 -2 cell choice 1 primitive 12 no no no
484 190 P -6 2 c P -6c -2c cell choice 1 primitive 12 no no no
485 191 P 6/m 2/m 2/m -P 6 2 cell choice 1 primitive 24 yes no no
486 192 P 6/m 2/c 2/c -P 6 2c cell choice 1 primitive 24 yes no no
487 193 P 63/m 2/c 2/m -P 6c 2 cell choice 1 primitive 24 yes no no
488 194 P 63/m 2/m 2/c -P 6c 2c cell choice 1 primitive 24 yes no no

Table 2.6: Hexagonal spacegroup information.

cubic
id Int. Nr. long Hermann- Hall name cell choice centered # Chiral Centric Enantio-

Mauguin name morphic
489 195 P 2 3 P 2 2 3 cell choice 1 primitive 12 no yes no
490 196 F 2 3 F 2 2 3 cell choice 1 face 48 no yes no
491 197 I 2 3 I 2 2 3 cell choice 1 body 24 no yes no
492 198 P 21 3 P 2ac 2ab 3 cell choice 1 primitive 12 no yes no
493 199 I 21 3 I 2b 2c 3 cell choice 1 body 24 no yes no
494 200 P 2/m -3 -P 2 2 3 cell choice 1 primitive 24 yes no no
495 201 P 2/n -3:1 P 2 2 3 -1n cell choice 1 primitive 24 yes no no
496 201 P 2/n -3:2 -P 2ab 2bc 3 cell choice 2 primitive 24 yes no no
497 202 F 2/m -3 -F 2 2 3 cell choice 1 face 96 yes no no
498 203 F 2/d -3:1 F 2 2 3 -1d cell choice 1 face 96 yes no no
499 203 F 2/d -3:2 -F 2uv 2vw 3 cell choice 2 face 96 yes no no
500 204 I 2/m -3 -I 2 2 3 cell choice 1 body 48 yes no no
501 205 P 21/a -3 -P 2ac 2ab 3 cell choice 1 primitive 24 yes no no
502 206 I 21/a -3 -I 2b 2c 3 cell choice 1 body 48 yes no no
503 207 P 4 3 2 P 4 2 3 cell choice 1 primitive 24 no yes no
504 208 P 42 3 2 P 4n 2 3 cell choice 1 primitive 24 no yes no
505 209 F 4 3 2 F 4 2 3 cell choice 1 face 96 no yes no
506 210 F 41 3 2 F 4d 2 3 cell choice 1 face 96 no yes no
507 211 I 4 3 2 I 4 2 3 cell choice 1 body 48 no yes no
508 212 P 43 3 2 P 4acd 2ab 3 cell choice 1 primitive 24 no yes yes
509 213 P 41 3 2 P 4bd 2ab 3 cell choice 1 primitive 24 no yes yes
510 214 I 41 3 2 I 4bd 2c 3 cell choice 1 body 48 no yes no
511 215 P -4 3 m P -4 2 3 cell choice 1 primitive 24 no no no
512 216 F -4 3 m F -4 2 3 cell choice 1 face 96 no no no
513 217 I -4 3 m I -4 2 3 cell choice 1 body 48 no no no
514 218 P -4 3 n P -4n 2 3 cell choice 1 primitive 24 no no no
515 219 F -4 3 c F -4a 2 3 cell choice 1 face 96 no no no
516 220 I -4 3 d I -4bd 2c 3 cell choice 1 body 48 no no no
517 221 P 4/m -3 2/m -P 4 2 3 cell choice 1 primitive 48 yes no no

64

518 222 P 4/n -3 2/n:1 P 4 2 3 -1n cell choice 1 primitive 48 yes no no
519 222 P 4/n -3 2/n:2 -P 4a 2bc 3 cell choice 2 primitive 48 yes no no
520 223 P 42/m -3 2/n -P 4n 2 3 cell choice 1 primitive 48 yes no no
521 224 P 42/n -3 2/m:1 P 4n 2 3 -1n cell choice 1 primitive 48 yes no no
522 224 P 42/n -3 2/m:2 -P 4bc 2bc 3 cell choice 2 primitive 48 yes no no
523 225 F 4/m -3 2/m -F 4 2 3 cell choice 1 face 192 yes no no
524 226 F 4/m -3 2/c -F 4a 2 3 cell choice 1 face 192 yes no no
525 227 F 41/d -3 2/m:1 F 4d 2 3 -1d cell choice 1 face 192 yes no no
526 227 F 41/d -3 2/m:2 -F 4vw 2vw 3 cell choice 2 face 192 yes no no
527 228 F 41/d -3 2/c F 4d 2 3 -1ad cell choice 1 face 192 yes no no
528 228 F 41/d -3 2/c -F 4ud 2vw 3 cell choice 2 face 192 yes no no
529 229 I 4/m -3 2/m -I 4 2 3 cell choice 1 body 96 yes no no
530 230 I 41/a -3 2/d -I 4bd 2c 3 cell choice 1 body 96 yes no no

Table 2.7: Cubic spacegroup information.

65

66

3
Potentials

3.1 Functional forms of force fields

The molecular energy can be described as an Taylor expansion in bonds, bends, torsions, etc.

U =
∑

bonds

Ur (r) +
∑

bends

Uθ (θ) +
∑

torsions

Uφ (φ) +
∑

out-of-plane bends

Uχ (χ) +
∑

non-bonded

Unb (r)

+
∑

bond-bond

Ubb′ (r, r
′) +

∑
bond-bend

Ubθ′ (r, θ) +
∑

bend-bend

Uθθ′ (θ, θ
′)

+
∑

bond-torsion

Urφ (r,φ, r′) +
∑

bend-torsion

Uθφ (θ,φ, θ′) + . . .

(3.1)

This expansion is believed to capture all the chemical entities we can think of, such as atoms, bonds, angles,
etc, and physical properties like equilibrium structures, vibrational spectra, etc. The cross terms are not
ad-hoc functions, but arise naturally from this expansion. For example, bonds and bends interact, as the
bend angle becomes smaller the bond lengths tend to increase. Their inclusion leads to two advantages:
1) they increase the accuracy of the force field (especially the vibrational frequencies), and 2) they increase
the transferability of the diagonal terms Ur (r) ,Uθ (θ) ,Uφ (φ) ,Uχ (χ). On top of the terms in Eq. 3.1 one can
add ad hoc terms, such as hydrogen bonding, that are not adequately accounted for otherwise.

Eq. 3.1 is historically referred to as an force field. The name arose from the lowest order approximation
using only springs with force constants. Force fields have matured and have become quite accurate and
many parameters exists for a wide range of structure. These parameters are crucial and determine the
quality of the force field. Unfortunately, deriving high quality parameters remains more than a art rather
than a science. However, some progress has been made and in the end of the chapter some algorithms are
described how to obtain them.

The terms in Eq. 3.1 consists of a functional form, force constants (a resistance against a change from the
optimum value), and a reference value. The functional form is chosen such as to be an accurate description
of the true potential energy (either known from experiment or from quantum mechanics), although one
can simplify the functional form to decrease computational evaluation time of the energy at the cost of
diminished accuracy. This tradeoff has almost vanished for intra-molecular potentials but is still an issue
for the non-bonded terms. The reference value is not the equilibrium value (except by chance). For example,
bond lengths are affected by all other terms in the force field and the more strained a molecule the farther

67

the bond equilibrium length will deviate from its reference value. This means that one can not simply take
the equilibrium values from known experiment.

3.2 Bonded potentials diagonal terms

3.2.1 Bond-stretching potentials

The bond stretching potential describes the change in energy as the bond stretches and contracts. The
simplest functional form would be Hook’s law:

U =
1

2
k (r− r0)

2 (3.2)

where k is the force constant and r0 the reference value for the bond. This form is computationally very
fast, but not very realistic. It is well known that it is easier to stretch a bond than it is to compress a bond.
The ‘Morse’ potential is an-harmonic and provides a much better description of the energy

U = D
(

1− e−α(r−r0)
)2

(3.3)

Expanding around the equilibrium value leads to

U = Dα2 (r− r0)
2

[
1− α (r− r0) +

7

12
α2 (r− r0)

2
. . .

]
(3.4)

The first terms is the harmonic potential (with k = 2Dα2) and for organic structures where distortions
from equilibrium are small the difference between the potentials are small. However, for larger deviations
the Morse potential provides a significantly better description. The Morse potential provides a restoring
force which goes to zero at long distances. For minimizations starting far equilibrium could result in non-
convergence. Some force fields solved this problem by using modification of Hook’s law. MM2 added a
cubic term making the bond an-harmonic. However, this leads to large negative energies for poor initial
geometries with large distortions. MM3 added the quartic term to solve this. Note the 7/12 terms in the
MM2/3 functional forms originate from the Taylor expansion of the Morse potential, and the cubic and
quartic terms are chosen to mimic the Morse potentials for moderate distortions. Dinur and Hagler pro-
posed a functional form based on inverse bond lengths which follows the true potential energy compared
to QM over an even wider range

U = U0 +C2

(
1

r
− 1

r0

)2

+C3

(
1

r
− 1

r0

)3

(3.5)

The implemented bond-potentials:

• HARMONIC BOND
U =

1

2
p0 (r− p1)

2 (3.6)

2 arguments: p0/kB in units of K/Å2, p1 in Å.

• CORE SHELL SPRING
U =

1

2
p0r

2 (3.7)

1 argument: p0/kB in units of K/Å2.

• MORSE BOND

U = p0

[(
1− e−p1(r−p2)

)2
− 1

]
(3.8)

3 arguments: p0/kB in units of K, p1 in Å−1, and p2 in Å.

68

• LJ 12 6 BOND
U =

p0
r12
− p1
r6

(3.9)

2 arguments: p0/kB in units of K Å12, and p1/kB in units of K Å6.

• LENNARD JONES BOND

U = 4p0

[(p1
r

)12
−
(p1
r

)6]
(3.10)

2 arguments: p0/kB in units of K, p1 in Å.

• BUCKINGHAM BOND
U = p0e

−p1r − p2
r6

(3.11)

3 arguments: p0/kB in units of K, p1 in units of Å−1, and p2/kB in K Å6.

• RESTRAINED HARMONIC BOND

U =

{
1
2p0 (r− p1)

2 |r− p1| ≤ p2
1
2p0p

2
2 + p0p2 (|r− p1| − p2) |r− p1| > p2

(3.12)

3 arguments: p0/kB in units of K/Å2, p1 in Å, and p2 in Å.

• QUARTIC BOND

U =
1

2
p0 (r− p1)

2
+

1

3
p2 (r− p1)

3
+

1

4
p3 (r− p1)

4 (3.13)

4 arguments: p0/kB in units of K/Å2, p1 in Å, p2/kB in K/Å3, and p3/kB in K/Å4.

• CFF QUARTIC BOND
U = p0 (r− p1)

2
+ p2 (r− p1)

3
+ p3 (r− p1)

4 (3.14)

4 arguments: p0/kB in units of K/Å2, p1 in Å, p2/kB in K/Å3, and p3/kB in K/Å4.

• MM3 BOND

U = p0 (r− p1)
2

(
1− 2.55 (r− p1) +

7

12
2.552 (r− p1)

2

)
(3.15)

2 arguments: p0 in units of mdyne/Å molecule, p1 in Å.

• RIGID BOND
Use for connections between rigid units.

• FIXED BOND
Use for bonds constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to Monte-Carlo,
Molecular Dynamics, and minimization.

• MEASURE BOND
A histogram of the bond-distance can be computed.

3.2.2 Urey-Bradley potentials

The Urey-Bradley potential is sometimes used to account for the repulsion between two atoms bound to a
common atom. In more modern force field they are replaced by bond/bend cross potentials. Urey-Bradley
are essentially just bonds between 1-3 nearest neighbor atoms and the same range of potentials is offered
as for 1-2 bonds in RASPA.

69

• HARMONIC UREYBRADLEY
U =

1

2
p0 (r− p1)

2 (3.16)

2 arguments: p0/kB in units of K/Å2, p1 in Å.

• MORSE UREYBRADLEY

U = p0

[(
1− e−p1(r−p2)

)2
− 1

]
(3.17)

3 arguments: p0/kB in units of K, p1 in Å−1, and p2 in Å.

• LJ 12 6 UREYBRADLEY
U =

p0
r12
− p1
r6

(3.18)

2 arguments: p0/kB in units of K Å12, and p1/kB in units of K Å6.

• LENNARD JONES UREYBRADLEY

U = 4p0

[(p1
r

)12
−
(p1
r

)6]
(3.19)

2 arguments: p0/kB in units of K, p1 in Å.

• BUCKINGHAM UREYBRADLEY
U = p0e

−p1r − p2
r6

(3.20)

3 arguments: p0/kB in units of K, p1 in units of Å−1, and p2/kB in K Å6.

• RESTRAINED HARMONIC UREYBRADLEY

U =

{
1
2p0 (r− p1)

2 |r− p1| ≤ p2
1
2p0p

2
2 + p0p2 (|r− p1| − p2) |r− p1| > p2

(3.21)

3 arguments: p0/kB in units of K/Å2, p1 in Å, and p2 in Å.

• QUARTIC UREYBRADLEY

U =
1

2
p0 (r− p1)

2
+

1

3
p2 (r− p1)

3
+

1

4
p3 (r− p1)

4 (3.22)

4 arguments: p0/kB in units of K/Å2, p1 in Å, p2/kB in K/Å3, and p3/kB in K/Å4.

• CFF QUARTIC UREYBRADLEY

U = p0 (r− p1)
2

+ p2 (r− p1)
3

+ p3 (r− p1)
4 (3.23)

4 arguments: p0/kB in units of K/Å2, p1 in Å, p2/kB in K/Å3, and p3/kB in K/Å4.

• MM3 UREYBRADLEY

U = p0 (r− p1)
2

(
1− 2.55 (r− p1) +

7

12
2.552 (r− p1)

2

)
(3.24)

2 arguments: p0 in units of mdyne/Å molecule, p1 in Å.

• RIGID UREYBRADLEY
Use for connections between rigid units.

• FIXED UREYBRADLEY
Use for bonds constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to Monte-Carlo,
Molecular Dynamics, and minimization.

• MEASURE UREYBRADLEY
A histogram of the Urey-Bradley distance can be computed.

70

3.2.3 Bending potential

The simplest approach for an angle potential is the harmonic potential

U =
1

2
k (θ− θ0)

2 (3.25)

Angles are much softer than bonds, especially in zeolites where a Si-O-Si angle ranges between 135 and
180 degrees. A problem with all polynomial representations of angles is that angles of 180 degrees results
in singular point (unless the reference angle is 180 degrees). The case of 0 degree is not possible due to
repulsion of the i and k atoms in the i-j-k bend. The singularity is due to the fact that the force expression
of such a polynomial contains a factor 1/ sin (θ). A common solution is to use a trigonometric function

U =
1

2
k [cos (θ)− cos (θ0)]

2 (3.26)

Note that close to the maximum these potentials have no restoring force, but for small distortions this is not
a problem. The MM force fields use higher order terms. A six power term was needed to describe the highly
bent bicyclo[1.1.1]pentane. Cubic terms and higher become desirable when the bending is more then 10-15
degrees. MM3 angle bending has been divided into in-plane and out-of-plane bending for planar trigonal
centers.

• HARMONIC BEND,CORE SHELL BEND

U =
1

2
p0 (θijk − p1)

2 (3.27)

2 arguments: p0/kB in units of K/rad2 and p1 in degrees.

• QUARTIC BEND

U =
1

2
p0 (θijk − p1)

2
+

1

3
p2 (θijk − p1)

3
+

1

4
p3 (θijk − p1)

4 (3.28)

4 arguments: p0/kB in units of K/rad2, p1 in degrees, p2/kB in K/rad3, and p3/kB in K/rad4.

• CFF QUARTIC BEND

U = p0 (θijk − p1)
2

+ p2 (θijk − p1)
3

+ p3 (θijk − p1)
4 (3.29)

4 arguments: p0/kB in units of K/rad2, p1 in degrees, p2/kB in K/rad3, and p3/kB in K/rad4.

• HARMONIC COSINE BEND

U =
1

2
p0 (cosθijk − cosp1)

2 (3.30)

2 arguments: p0/kB in units of K and p1 in degrees.

• COSINE BEND

U = p0 (1 + cos (p1θijk − p2)) (3.31)

3 arguments: p0/kB in units of K, p1 dimensionless, and p2 in degrees.

• MM3 BEND

U =
1

2
p0 (θijk − p1)

2
(

1− 0.014 (θijk − p1) + 5.6× 10−5 (θijk − p1)
2 − 7× 10−7 (θijk − p1)

3

+ 2.2× 10−8 (θijk − p1)
4
) (3.32)

2 arguments: p0 in units of mdyne Å/rad2, p1 in degrees.

71

Figure 5: The definition of the Wilson inversion-bend angle χ. On the left a positive Wilson angle, and on the right a negative
Wilson angle.

• MM3 IN PLANE BEND

U =
1

2
p0 (θijk − p1)

2
(

1− 0.014 (θijk − p1) + 5.6× 10−5 (θijk − p1)
2 − 7× 10−7 (θijk − p1)

3

+ 2.2× 10−8 (θijk − p1)
4
) (3.33)

2 arguments: p0 in units of mdyne Å/rad2, p1 in degrees. The bend is ‘in-plane’ and only applicable to
bends in a defined planar trigonal centers. The bend is dependend on the fourth atom of the trigonal
center.

• FIXED BEND
Use for bend-angle constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to Molecular
Dynamics and minimization. Does not work (yet) in Monte-Carlo.

• MEASURE BEND
A histogram of the bend angle can be computed.

3.2.4 Wilson inversion-bend potential

Common planar molecule that contain a double bond or sp2 hybridization form planar groups with trigonal
centers. For example: the carbon and nitrogen centers in formamide, and the carbon centers in benzene. The
mode of motion is different from bond stretching, bending, and internal rotation. The associated harmonic
potential is

U =
1

2
k (χ)

2 (3.34)

with χ the out-of-plane angle. Two possible definitions are in use

1. the distance of the central atom from the plane defined by the other three atoms (pyramid height),

2. the average angle between any bond that extends from the central atom and the plane defined by the
other two bonds.

Note that an alternative to the out-of-plane angle is the improper torsion using

U =
1

2
k (1− cos 2χ) (3.35)

The out-of-plane potential can also be used for non-planar structure, for example in united-atom for chiral
centers to avoid inversion of the chiral center. Another example of its use is coordination complexes where

72

Figure 6: The definition of the dihedral angle φ: the angle between the planes formed by atoms a-b-c and b-c-d. On the left a
positive dihedral angle, and on the right a negative dihedral angle.

now the plane of the ligands need no longer be defined exactly. In square planar complexes it is necessary
to define an average plane through the ligands (usually the least-square plane). Note that the definition
include one central atom which is listed as the second in a− b− c− d: a, c, and d are bonded to the central
atom b. The inversion angle potential is the average of the three possible inversion angle terms.

• HARMONIC INVERSION

U =
1

2
p0 (χijk − p1)

2 (3.36)

2 arguments: p0/kB in units of K/rad2 and p1 in degrees.

• HARMONIC COSINE INVERSION

U =
1

2
p0 (cos (χijk)− cos (p1))

2 (3.37)

2 arguments: p0/kB in units of K and p1 in degrees.

• PLANAR INVERSION

U = p0 (1− cos (χ)) (3.38)

1 argument: p0/kB in units of K.

• MM3 INVERSION

U =
1

2
p0 (χ− p1)

2
(

1− 0.014 (χ− p1) + 5.6× 10−5 (χ− p1)
2 − 7× 10−7 (χ− p1)

3

+ 2.2× 10−8 (χ− p1)
4
) (3.39)

2 arguments: p0 in units of mdyne Å/rad2, p1 in degrees.

• FIXED INVERSION BEND
Use for inversion bend-angle constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to
Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

73

3.2.5 Torsion potential

Intramolecular rotations about bonds do not occur freely. A possible description with a physical interpre-
tation is the three-term Fourier expansion

U =
V1
2

[1 + cosφ] +
V2
2

[1− cos 2φ] +
V3
2

[1 + cos 3φ] (3.40)

1. the 1 fold-term has been attributed to residual dipole-dipole interactions, to Van der Waal interactions,
or to any other direct interaction between atoms not accounted for otherwise,

2. the 2-fold arises from conjugation or hyper conjugation, being geometrically related to p orbitals,

3. and the 3-fold term has a steric (or bonding/anti-bonding) origin.

The values for 4-fold or higher are small and it is not known whether these are essential to include. It may
be that Van der Waals and dipole interactions already take care of these effects. Torsions are even softer than
bond angles. All possible values can be found in structures. Therefore, the energy function must be valid
over the entire range, the function must be periodic, and for reasons of symmetry have stationary points at
0 and 180 degrees. The periodicity is the number of minima for the potential, usually 3 for an sp3-sp3 bond
and 2 for a conjugate bond.

The definition of a torsion includes two central and two terminal atoms. The term ‘torsional’ means an
internal rigid rotation and ‘dihedral’ means a rotation of two vicinal bonds about a middle bond.

• HARMONIC DIHEDRAL

U =
1

2
p0 (φijkl − p1)

2 (3.41)

2 arguments: p0/kB in units of K/rad2, p1 in degrees.

• HARMONIC COSINE DIHEDRAL

U =
1

2
p0 [cos (φijkl)− cos (p1)]

2 (3.42)

2 arguments: p0/kB in units of K, p1 in degrees.

• THREE COSINE DIHEDRAL

U =
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)] (3.43)

3 arguments: p0/kB , p1/kB , p2/kB in units of K

• MM3 DIHEDRAL

U =
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)] (3.44)

3 arguments: p0, p1, p2 in units of kcal/mol.

• CFF DIHEDRAL

U = p0 [1− cos (φijkl)] + p1 [1− cos (2φijkl)] + p2 [1− cos (3φijkl)] (3.45)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

• CFF DIHEDRAL2

U = p0 [1 + cos (φijkl)] + p1 [1 + cos (2φijkl)] + p2 [1 + cos (3φijkl)] (3.46)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

74

• SIX COSINE DIHEDRAL
The Ryckaert-Bellemans potentials is often used for alkanes, the use implies exclusion of VDW-
interactions between the first and last atoms of the dihedral, and φ′ = φ − π is defined according
to the polymer convention φ′(trans) = 0.

U =

5∑
n=0

pn cosn
(
φ′ijkl

)
(3.47)

=p0 + p1 cos
(
φ′ijkl

)
+ p2 cos2

(
φ′ijkl

)
+ p3 cos3

(
φ′ijkl

)
p4 cos4

(
φ′ijkl

)
+ p5 cos5

(
φ′ijkl

)
(3.48)

6 arguments: p0/kB , . . . , p5/kB in units of K. Rewritten in terms of φ the potential reads

U = p0 − p1 cos (φijkl) + p2 cos2 (φijkl)− p3 cos3 (φijkl) + p4 cos4 (φijkl)− p5 cos5 (φijkl) (3.49)

• TRAPPE DIHEDRAL

U = p0 + p1 [1 + cos (φijkl)] + p2 [1− cos (2φijkl)] + p3 [1 + cos (3φijkl)] (3.50)

4 arguments: p0/kB , p1/kB , p2/kB , p3/kB in units of K.

• CVFF DIHEDRAL

U = p0 [1 + cos (p1φijkl − p2)] (3.51)

3 arguments: p0/kB in units of K, p1 dimensionless, and p2 in degrees.

• OPLS DIHEDRAL

U =
1

2
p0 +

1

2
p1 [1 + cos (φijkl)] +

1

2
p2 [1− cos (2φijkl)] +

1

2
p3 [1 + cos (3φijkl)] (3.52)

4 arguments: p0/kB , p1/kB , p2/kB , p3/kB in units of K.

• FOURIER SERIES DIHEDRAL
The general form of a Fourier expansion is:

U =

6∑
n=1

[an cos (nφ) + bn sin (nφ)] (3.53)

This form uses equilibrium angles of 0 for n = 1,3,5 and 180 for n = 2,4,6

U =
1

2
p0 [1 + cosφ] +

1

2
p1 [1− cos (2φ)] +

1

2
p2 [1 + cos (3φ)] +

1

2
p3 [1− cos (4φ)] +

1

2
p4 [1 + cos (5φ)] +

1

2
p5 [1− cos (6φ)]

(3.54)

6 arguments: p0/kB , p1/kB , p2/kB , p3/kB , p4/kB , p5/kB in units of K.

• FOURIER SERIES DIHEDRAL 2
The general form of a Fourier expansion is:

U =

6∑
n=1

[an cos (nφ) + bn sin (nφ)] (3.55)

This form uses equilibrium angles of 0 for n = 1,3,4,5,6 and 180 for n = 2

U =
1

2
p0 [1 + cosφ] +

1

2
p1 [1− cos (2φ)] +

1

2
p2 [1 + cos (3φ)] +

1

2
p3 [1 + cos (4φ)] +

1

2
p4 [1 + cos (5φ)] +

1

2
p5 [1 + cos (6φ)]

(3.56)

6 arguments: p0/kB , p1/kB , p2/kB , p3/kB , p4/kB , p5/kB in units of K.

75

• FIXED DIHEDRAL
Use for dihedral-angle constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to Molecular
Dynamics and minimization. Does not work (yet) in Monte-Carlo.

The following identities are convenient when dealing with torsions:

cos 1x = cosx

cos 2x = −1 + 2 cos2 x

cos 3x = −3 cosx+ 4 cos3 x

cos 4x = 1− 8 cos2 x+ 8 cos4 x

cos 5x = 5 cosx− 20 cos3 x+ 16 cos5 x

cos 6x = −1 + 18 cos2 x− 48 cos4 x+ 32 cos6 x

(3.57)

sin 1x = sinx

sin 2x = (sinx)(2 cosx)

sin 3x = (sinx)(−1 + 4 cos2 x)

sin 4x = (sinx)(−4 cosx+ 8 cos3 x)

sin 5x = (sinx)(1− 12 cos2 x+ 16 cos4 x)

sin 6x = (sinx)(6 cosx− 32 cos3 x+ 32 cos5 x)

(3.58)

3.2.6 Improper torsion potential

The improper torsion is an alternative for the out-of-plane angle, and a possible definition is

U =
1

2
k (1− cos 2χ) (3.59)

It is termed ‘improper torsion’ because it simply treats the four atoms in the plane as if they were bonded in
the same way as in a true torsional angle. Note that the definition include one central atom which is listed
as the second in a− b− c− d: a, c, and d are bonded to the central atom b. Improper torsions are often used
to keep sp2 atoms planar and sp3 atoms in a tetrahedral geometry.

The CHARMM convention is to list the central atom first, while there are no rules how to order the other
three atoms. Hence, six possibilities exist for the definition of an improper torsion. The AMBER convention
is that the out-of-plane atom is listed in the third position and the order of the other atoms is determined
alphabetically by atom type, and by the atom number (i.e. the order in the molecule) when atom types are
identical.

• HARMONIC IMPROPER DIHEDRAL

U =
1

2
p0 (φijkl − p2)

2 (3.60)

2 arguments: p0/kB in units of K/rad2, p1 in degrees.

• HARMONIC COSINE IMPROPER DIHEDRAL

U =
1

2
p0 [cos (φijkl)− cos (p1)]

2 (3.61)

2 arguments: p0/kB in units of K, p1 in degrees.

76

Figure 7: The most common (CVFF, DLPOLY) definition of the improper dihedral angle φ: the angle between the planes formed
by atoms ‘a-c-d’ and ‘c-d-b’. On the left a positive improper dihedral angle, and on the right a negative improper dihedral angle.
The atoms need to be listed in the order ‘a-c-d-b’. Note that an exchange of atoms ‘c’ and ‘d’ leads to a change of sign, but not in
magntitude.

Figure 8: A second definition of the improper dihedral angle (CHARMM, AMBER). The central atom is ‘c’, and the improper
torsion is enter as ‘a-b-c-d’. Howevere, an exchange of terminal atoms leads to a change in magntitude and the improper torsion
needs to be symmetrized by adding two additional improper torsions ‘b-d-c-a’ and ‘d-a-c-b’ and rescaling the force constant by a
factor of 1/3.

• THREE COSINE IMPROPER DIHEDRAL

U =
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)] (3.62)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

• MM3 IMPROPER DIHEDRAL

U =
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)] (3.63)

3 arguments: p0, p1, p2 in units of kcal/mol.

• CFF IMPROPER DIHEDRAL

U = p0 [1− cos (φijkl)] + p1 [1− cos (2φijkl)] + p2 [1− cos (3φijkl)] (3.64)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

• CFF IMPROPER DIHEDRAL2

U = p0 [1 + cos (φijkl)] + p1 [1 + cos (2φijkl)] + p2 [1 + cos (3φijkl)] (3.65)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

77

• SIX COSINE IMPROPER DIHEDRAL
The Ryckaert-Bellemans potentials is often used for alkanes, the use implies exclusion of VDW-
interactions between the first and last atoms of the dihedral, and φ′ = φ − π is defined according
to the polymer convention φ′(trans) = 0.

U =

5∑
n=0

pn cosn
(
φ′ijkl

)
(3.66)

=p0 + p1 cos
(
φ′ijkl

)
+ p2 cos2

(
φ′ijkl

)
+ p3 cos3

(
φ′ijkl

)
p4 cos4

(
φ′ijkl

)
+ p5 cos5

(
φ′ijkl

)
(3.67)

6 arguments: p0/kB , . . . , p5/kB in units of K. Rewritten in terms of φ the potential reads

U = p0 − p1 cos (φijkl) + p2 cos2 (φijkl)− p3 cos3 (φijkl) + p4 cos4 (φijkl)− p5 cos5 (φijkl) (3.68)

• TRAPPE IMPROPER DIHEDRAL

U = p0 + p1 [1 + cos (φijkl)] + p2 [1− cos (2φijkl)] + p3 [1 + cos (3φijkl)] (3.69)

4 arguments: p0/kB , p1/kB , p2/kB , p3/kB in units of K.

• CVFF IMPROPER DIHEDRAL

U = p0 [1 + cos (p1φijkl − p2)] (3.70)

3 arguments: p0/kB in units of K, p1 dimensionless, and p2 in degrees.

• OPLS IMPROPER DIHEDRAL

U =
1

2
p0 +

1

2
p1 [1 + cos (φijkl)] +

1

2
p2 [1− cos (2φijkl)] +

1

2
p3 [1 + cos (3φijkl)] (3.71)

4 arguments: p0/kB , p1/kB , p2/kB , p3/kB in units of K.

• FOURIER SERIES IMPROPER DIHEDRAL
The general form of a Fourier expansion is:

U =

6∑
n=1

[an cos (nφ) + bn sin (nφ)] (3.72)

This form uses equilibrium angles of 0 for n = 1,3,5 and 180 for n = 2,4,6

U =
1

2
p0 [1 + cosφ] +

1

2
p1 [1− cos (2φ)] +

1

2
p2 [1 + cos (3φ)] +

1

2
p3 [1− cos (4φ)] +

1

2
p4 [1 + cos (5φ)] +

1

2
p5 [1− cos (6φ)]

(3.73)

6 arguments: p0/kB , p1/kB , p2/kB , p3/kB , p4/kB , p5/kB in units of K.

• FOURIER SERIES IMPROPER DIHEDRAL 2
The general form of a Fourier expansion is:

U =

6∑
n=1

[an cos (nφ) + bn sin (nφ)] (3.74)

This form uses equilibrium angles of 0 for n = 1,3,4,5,6 and 180 for n = 2

U =
1

2
p0 [1 + cosφ] +

1

2
p1 [1− cos (2φ)] +

1

2
p2 [1 + cos (3φ)] +

1

2
p3 [1 + cos (4φ)] +

1

2
p4 [1 + cos (5φ)] +

1

2
p5 [1 + cos (6φ)]

(3.75)

6 arguments: p0/kB , p1/kB , p2/kB , p3/kB , p4/kB , p5/kB in units of K.

78

• FIXED IMPROPER DIHEDRAL
Use for improper-dihedral-angle constraint using the ‘SHAKE’ and ‘RATTLE’-algorithm. Applies to
Molecular Dynamics and minimization. Does not work (yet) in Monte-Carlo.

3.3 Non-bonded potentials

3.3.1 Van der Waals potentials

The general expression for Van der Waals potentials when using a cutoff distance is

UVDW
ij =

{
Uij (rij) if rij ≤ rc
0 otherwise

(3.76)

• NONE

U = 0 (3.77)

zero parameters.

•
LENNARD JONES
LENNARD JONES SMOOTHED3
LENNARD JONES SMOOTHED5

U = 4p0

[(p1
r

)12
−
(p1
r

)6]
(3.78)

2 parameters: p0/kB in units of K, and p1 in Å.

•
FEYNMAN HIBBS LENNARD JONES
FEYNMAN HIBBS LENNARD JONES SMOOTHED3
FEYNMAN HIBBS LENNARD JONES SMOOTHED5

U = 4p0

[(p1
r

)12
−
(p1
r

)6]
+

~2

24p2kBT
4p0

[
132

(p1
r

)12
− 30

(p1
r

)6] 1

r2
(3.79)

3 parameters: p0/kB in units of K, p1 in Å, and p2 is the reduced mass in unified atomic mass units.

•
FEYNMAN HIBBS2 LENNARD JONES
FEYNMAN HIBBS LENNARD JONES2 SMOOTHED3
FEYNMAN HIBBS LENNARD JONES2 SMOOTHED5

U = 4p0

[(p1
r

)12
−
(p1
r

)6]
+ 4p0

[
132

(p1
r

)12
− 30

(p1
r

)6] p2
r2

(3.80)

3 parameters: p0/kB in units of K, p1 in Å, and p2 in units of Å2.

• LENNARD JONES SHIFTED FORCE

U = 4p0

{[(p1
r

)12
−
(p1
r

)6]
−

[(
p1
rc

)12

−
(
p1
rc

)6
]

+

[
12

(
p1
rc

)12

− 6

(
p1
rc

)6
]

(r− rc)
rc

}
(3.81)

2 parameters: p0/kB in units of K, and p1 in Å.

• LENNARD JONES SHIFTED FORCE2

4p0

{[(p1
r

)12
−
(p1
r

)6]
+

[
6

(
p1
rc

)12

− 3

(
p1
rc

)6
]
r2

r2c
+ 7

(
p1
rc

)12

+ 4

(
p1
rc

)6
}

(3.82)

2 parameters: p0/kB in units of K, and p1 in Å.

79

•
POTENTIAL 12 6
POTENTIAL 12 6 SMOOTHED3
POTENTIAL 12 6 SMOOTHED5

U =
p0
r12
− p1
r6

(3.83)

2 parameters: p0/kB in units of K Å12, and p1/kB in units of K Å6.

•
POTENTIAL 12 6 2 0
POTENTIAL 12 6 2 0 SMOOTHED3
POTENTIAL 12 6 2 0 SMOOTHED5

U =
p0
r12

+
p1
r6

+
p2
r2

+ p3 (3.84)

4 parameters: p0/kB in units of K Å12, p1/kB in units of K Å6, p2/kB in units of K Å2, and p3 in units
of K.

•
MORSE
MORSE SMOOTHED3
MORSE SMOOTHED5

U = p0

[
(1− e−p1∗(r−p2))2 − 1

]
(3.85)

3 parameters: p0/kB in units of K, p1 in units of Å−1 and p2 in units of Å.

•
MORSE2
MORSE2 SMOOTHED3
MORSE2 SMOOTHED5

U = p0

[
ep1∗(1−r/p2) − 2e(p1/2)∗(1−r/p2)

]
(3.86)

3 parameters: p0/kB in units of K, p1 in units of Å−1 and p2 in units of Å.

•
MORSE3
MORSE3 SMOOTHED3
MORSE3 SMOOTHED5

U = p0

(1− e

(
− ln 2

2
1/6−1

)(
r
p2
−21/6

))2

− 1

 (3.87)

2 parameters: p0/kB in units of K p2 in units of Å. This form of the Morse potential resembles the
Lennard-Jones potential.

•
CFF 9 6
CFF 9 6 SMOOTHED3
CFF 9 6 SMOOTHED5

U =
p0
r9
− p1
r6

(3.88)

2 parameters: p0/kB in units of K Å9, and p1/kB in units of K Å6.

•
CFF EPS SIGMA
CFF EPS SIGMA SMOOTHED3
CFF EPS SIGMA SMOOTHED5

Uij = p0

[
2
(p1
r

)9
− 3

(p1
r

)6]
(3.89)

2 parameters: p0/kB in units of K, and p1 in Å.

80

•
BUCKINGHAM
BUCKINGHAM SMOOTHED3
BUCKINGHAM SMOOTHED5

U = p0e
−p1r − p2

r6
(3.90)

3 parameters: p0/kB in units of K, p1 in units of Å−1, and p2 in K Å6. Warning: in literature sometimes
ρ = 1

p1
is given, ρ is usually around 0.3-0.4 Å, p1 is usually around 2-4 Å−1.

•
BUCKINGHAM2
BUCKINGHAM2 SMOOTHED3
BUCKINGHAM2 SMOOTHED5

U =

{
1010 r < p3

p0e
−p1r − p2

r6 otherwise
(3.91)

4 parameters: p0/kB in units of K, p1 in units of Å−1, p2 in K Å6, and p3 in [Å]. Warning: in literature
sometimes ρ = 1

p1
is given, ρ is usually around 0.3-0.4 Å, p1 is usually around 2-4 Å−1.

•
MM3 VDW
MM3 VDW SMOOTHED3
MM3 VDW SMOOTHED5

Uij =


√
pi0p

j
0

[
1.84× 105e−

12
P − 2.25P 6

]
if P ≥ 3.02√

pi0p
j
0192.27P 2 if P < 3.02

(3.92)

with P =
pi1+p

j
1

rij
and where pi1 and pj1 are the VDW radii of atoms i and j, and rij the separation

distance in Å between atoms i and j.
2 arguments: p0 in units of kcal/mol, p1 in units of Å.

•
MATSUOKA CLEMENTI YOSHIMINE
MATSUOKA CLEMENTI YOSHIMINE SMOOTHED3
MATSUOKA CLEMENTI YOSHIMINE SMOOTHED5

U = p0e
−p1rij + p2e

−p3rij (3.93)

4 arguments: p0/kB in units of K, p1 in units of Å−1, p2/kB in units of K, and p3 in units of Å−1.

•
GENERIC
GENERIC SMOOTHED3
GENERIC SMOOTHED5

U = p0e
−p1r − p2

r4
− p3
r6
− p4
r8
− p5
r10

(3.94)

6 arguments: p0/kB in units of K, p1 in units of Å−1, p2/kB in units of K Å4, p3/kB in units of K Å6,
p4/kB in units of K Å8, and p5/kB in units of K Å10.

•
PELLENQ NICHOLSON
PELLENQ NICHOLSON SMOOTHED3
PELLENQ NICHOLSON SMOOTHED5

U = p0e
−p1r − f6

p2
r6
− f8

p3
r8
− f10

p4
r10

(3.95)

with

f2n = 1−
2n∑
k=0

(p1rij)
k

k!
e−p1rij (3.96)

5 arguments: p0/kB in units of K, p1 in units of Å−1, p2/kB in units of K Å6, p3/kB in units of K Å8,
and p4/kB in units of K Å10.

81

•
HYDRATED ION WATER
HYDRATED ION WATER SMOOTHED3
HYDRATED ION WATER SMOOTHED5

U = p0e
−p1r − p2

r4
− p3
r6
− p4
r12

(3.97)

5 arguments: p0/kB in units of K, p1 in units of Å−1, p2/kB in units of K Å4, p3/kB in units of K Å6,
and p4/kB in units of K Å12.

•
MIE
MIE SMOOTHED3
MIE SMOOTHED5

The Mie-potential [?]
U =

(p0
rp1
− p2
rp3

)
(3.98)

4 arguments: p0/kB in units of K Åp1 , p1 dimensionless, p2/kB in units of K Åp3 , and p3 dimensionless.

•
BORN HUGGINS MEYER
BORN HUGGINS MEYER SMOOTHED3
BORN HUGGINS MEYER SMOOTHED5

Uij = p0e
p1(p2−rij) − p3

r6ij
− p4
r8ij

(3.99)

5 arguments: p0/kB in units of K, p1 dimensionless, p2 in units of Å, p3/kB in units of K Å6, and p4/kB
in units of K Å8.

•
HYDROGEN
HYDROGEN SMOOTHED3
HYDROGEN SMOOTHED5

U =
p0
r12
− p1
r10

(3.100)

2 arguments: p0/kB in units of K Å12, and p1/kB in units of K Å10.

3.3.2 Tail corrections

energy

UTail =
2π

V

∑
a

∑
b

NaNb

[∫ ∞
rc

r2U (r) dr

]
(3.101)

potential
∫∞
rc
r2U (r)

LENNARD JONES 4
3 p0 p

3
1

[
1
3

(
p1
r

)9 − (p1r)3]
LENNARD JONES SHIFTED FORCE -

pressure

P Tail =−
∑
a

∑
b

2π

3V
NaNb

[∫ ∞
rc

r2 r
∂U (r)

∂r
dr

]
(3.102)

=
∑
a

∑
b

(
2π

3V
r3cNaNbU (rc) +UTail

)
(3.103)

chemical potential

βµTail = 2UTail (3.104)

82

3.3.3 Electrostatics

Charge-charge interaction

• Ewald
The potential energy for a system of charges in a periodic system can be written as

U = U real +U rec (3.105)

where

U real =
∑
i<j

qiqj
erfc (αrij)

rij

U rec =
2π

V

∑
k 6=0

1

k2
e−

k2

4α2

∣∣∣∣∣
N∑
i=1

qi cos (k · ri)

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=1

qi sin (k · ri)

∣∣∣∣∣
2
−∑

i

α√
π
q2i

(3.106)

where qi and qj are the charges of particle i and j, respectively, ri the position of atom i, V the volume
of the cell, α a damping factor, k the wavelength, and ‘erfc’ the error function complement. The
expression gives the exact solution for charges in a periodic system up to arbitrary precision. One part
is computed in ‘real’ space, and the long-range part is more conveniently computed in Fourier space.

• CoulombTruncated

U =

{∑
i<j

1
4πε

qiqj
rij

if rij ≤ rc
0 otherwise

(3.107)

• CoulombShifted

U =

{∑
i<j

qiqj
4πε

(
1
rij
− 1

rc

)
if rij ≤ rc

0 otherwise
(3.108)

• CoulombSmoothed

• Wolf

Charge-dipole interaction

• Ewald

• CoulombTruncated

U =

{∑
i,j

1
4πε
−qi
r2ij

(
µj · rij

)
if rij ≤ rc

0 otherwise
(3.109)

Dipole-dipole interaction

• Ewald

• CoulombTruncated

U =


∑
i,j

1
4πε

1
r3ij

[
µi · µj − 3

(µi·rij)(rij ·µj)
r2ij

]
if rij ≤ rc

0 otherwise
(3.110)

83

3.4 Bonded potentials cross terms

3.4.1 Bond-bond potential

• CFF BOND BOND CROSS,CVFF BOND BOND CROSS

U = p0 (r− p1) (r′ − p2) (3.111)

3 arguments: p0/kB in units of K/Å2, p0 and p1 in Å.

3.4.2 Bond-bend potential

• CFF BOND BEND CROSS,CVFF BOND BEND CROSS

U = (θ− p0) [p1 (r− p2) + p3 (r′ − p4)] (3.112)

5 arguments: p0 in degrees, p1/kB in units of K/Å/rad, p2 in Å, p3/kB in units of K/Å/rad, p4 in Å.

• MM3 BOND BEND CROSS
U = p0 [(r− p1) + (r′ − p2)] (θ− p3) (3.113)

4 arguments: p0 in mdyne/rad, p1 and p2 in Å, and p3 in degrees.

• TRUNCATED HARMONIC

U =
1

2
p0 (θ− p1)

2
e
−
r8ij+r

8
ik

p82 (3.114)

3 arguments: p0/kB in K/rad2, p1 in degrees, and p2 in units of Å.

• SCREENED HARMONIC
U =

1

2
p0 (θ− p1)

2
e
−
(
rij
p2

+
rik
p3

)
(3.115)

4 arguments: p0 in K/rad2, p1 in degrees, p2 and p3 in units of Å.

• SCREENED VESSAL

U =
p0

8 (θijk − π)
2

[
(p1 − π)

2 − (θijk − π)
2
]2
e
−
(
rij
p2

+
rik
p3

)
(3.116)

4 arguments: p0 in K/rad2, p1 in degrees, p2 and p3 in units of Å.

• TRUNCATED VESSAL

U = p0

[
θp2ijk (θijk − p1)

2
(θijk + p1 − 2π)

2 − p2
2
πp2−1 (θijk − p1)

2
(π− p1)

3
e
−
r8ij+r

8
ik

p83

]
(3.117)

4 arguments: p0 in K/rad4+p2 , p1 in degrees, p2 dimensionless, and p3 in Å.

3.4.3 Bend-bend potential

• CFF BEND BEND CROSS,CVFF BEND BEND CROSS

U = p0 (θ− p1) (θ′ − p2) (3.118)

3 arguments: p0 in units of K/rad2, p1 and p2 in units of degrees.

• MM3 BEND BEND CROSS
U = −p0 (θ− p1) (θ′ − p2) (3.119)

3 arguments: p0 in units of mdyne/rad2, p1 and p2 in units of degrees.

84

3.4.4 Bond-torsion potential

The bond-torsions potential correlates the torsion i− j − k− l with the central bond j − k, or with the two
terminating bonds.

• MM3 BOND TORSION CROSS
The MM3 bond-torsion potential correlates the torsion i− j − k− l with the central bond j − k

U =
1

2
p0 (r− p3) (1 + cosφ) +

1

2
p1 (r− p3) (1 + cos 2φ) +

1

2
p2 (r− p3) (1 + cos 3φ) (3.120)

4 arguments: p0, p1, p2 in units of kcal/mol, p3 the reference length of the central bond in Å.

3.4.5 Bend-torsion potential

• CFF BEND TORSION CROSS,CVFF BEND TORSION CROSS

U = p0 (θ− p1) (θ′ − p2) cosφ (3.121)

3 arguments: p0 in units of K/rad3, p1 and p2 in units of degrees.

• SMOOTHED DIHEDRAL

U = p0 (1 + cos(p1φijkl − p2)S (θijk)S (θjkl) (3.122)

3 arguments: p0/kB in units of K/rad2, p1 dimensionless, and p2 in degrees.

• SMOOTHED THREE COSINE DIHEDRAL

U =

{
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)]

}
S (θijk)S (θjkl) (3.123)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

• SMOOTHED CFF DIHEDRAL

U = {p0 [1− cos (φijkl)] + p1 [1− cos (2φijkl)] + p2 [1− cos (3φijkl)]}S (θijk)S (θjkl) (3.124)

3 arguments: p0/kB , p1/kB , p2/kB in units of K.

• SMOOTHED CFF DIHEDRAL2

U = {p0 [1 + cos (φijkl)] + p1 [1 + cos (2φijkl)] + p2 [1 + cos (3φijkl)]}S (θijk)S (θjkl) (3.125)

3 arguments: p0/kB , p1/kB , p2/kB in units of K/rad.

• NICHOLAS DIHEDRAL

U =

{
1

2
p0 [1 + cos (φijkl)] +

1

2
p1 [1− cos (2φijkl)] +

1

2
p2 [1 + cos (3φijkl)]

}
S (θijk) (3.126)

3 arguments: p0/kB , p1/kB , p2/kB in units of K/rad.

• SMOOTHED CFF BEND TORSION CROSS

U = S (θ1) [p0 ∗ (Theta1 − p1) ∗ (θ2 − p2) cos(φ)]S (θ2) (3.127)

3 arguments: p0/kB in units K/rad3, p1 and p2 in units of degrees.

The smoothing function S (θ) is defined as

S (θ) =

{
1 θ < θon

(θoff − θ)2 θoff+2θ−3θon
(θoff−θon)

3 θ ≥ θon
(3.128)

with θon = 170◦ and θoff = 180◦.

85

86

4
Examples

4.1 Introduction

Often the best way of learning a code is to look at various examples. Note these examples are just for that
purpose and real simulation runs should be much longer, both in initialization time as well as production
run time.

Tip: VMD is capable of showing pdb-files with several frames. This the way RASPA produces
movies. Standard VMD does not show the box itself but some extension scripts have been
written. To show the unit cell in VMD you can input into the console:

draw pbcbox -width 1.0 -style tubes -center unitcell

make sure the ‘pbctools.tcl’ and ‘pbcbox.tcl’ are in the current directory, they are located in the
’utils’ directory of RASPA. For NPT simulations the box is properly updated.

The output-files begin with some essential data about the program: the version number, whether a 64-
bits or 32-bits executable is run, the used compiler, when the output-file was generated and on which node
and system.

Compiler and run-time data

===

RASPA 2.0

Compiled as a 64-bits application

Compiler: gcc 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.54)

Compile Date = Nov 23 2014, Compile Time = 11:43:26

Sun Nov 23 12:17:53 2014

Simulation started on Sunday, November 23.

The start time was 12:17 PM.

Cpu data: x86_64

Cpu Model: MacPro5,1

Host name: server.darkwing.nl

87

OS release: 14.0.0

OS type: Darwin

OS version: 14B25

4.2 Basic examples

Example 1: Monte Carlo of methane in a box

A Monte Carlo run of 100 methane molecules in a 30× 30× 30 Å box. After 1000 cycles of initialization the
production run is started. A movie is written and every 10th configuration is appended to the movie. The
movie is stored in ‘Movies/System 0’, and can be viewed with VMD: ‘vmd AllComponents.pdb’.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 5000

PrintEvery 1000

Forcefield GarciaPerez2006

Box 0

BoxLengths 30 30 30

ExternalTemperature 300.0

Movies yes

WriteMoviesEvery 100

Component 0 MoleculeName methane

MoleculeDefinition TraPPE

TranslationProbability 1.0

CreateNumberOfMolecules 100

In RASPA, the cycle is define as max(20,N) steps, where N is the number of molecules in the system. In
every cycle, each of the molecules has on average been used for a Monte Carlo move (accepted or rejected).
There is a minimum of 20 steps to avoid that low-density systems or not sampled well. The definition of a
cycle is less dependent on the system size. The number of Monte carlo steps is roughly the the number of
cycles times the average number of molecules.

In the output file the simulation writes an important check to the file
Energy-drift status

===

Adsorbate/Adsorbate energy-drift: -6.3007e-10

Adsorbate/Adsorbate VDW energy-drift: -6.3007e-10

===

Total energy-drift: -6.3007e-10

In Monte Carlo only difference in energies are computed. These differences are continously added to keep
track of the current energies (from which average energies etc. are computed). Obviously, the current
energy that is kept track off during the simulation should be equal to a full recalculation of the energies.
The difference between the two signals an error. If the drift is higher than say 1e− 3 or 1e− 4 the results of
the simulation are in error. This could be due to an error in one of the Monte Carlo moves or because the
force field is “wrong” (a typical error is when one forgets to define required potentials).

The performance of Monte Carlo moves is monitored. Translation moves are usually scaled to achieve
an acceptance rate of 50%. Here, the move reached its upper limit of 1 Å because of the low density of the
system.

Performance of the translation move:

======================================

Component 0 [methane]

total 333219.000000 332880.000000 333901.000000

succesfull 284312.000000 284526.000000 284632.000000

accepted 0.853229 0.854740 0.852444

displacement 1.000000 1.000000 1.000000

Averages are computed alonf with an error bar. The error is computed by dividing the simulation in
5 blocks and calulating the standard deviation. The errors in RASPA are computed as the 95% confidence
interval.

Total energy:

=============

Block[0] -18796.35401 [K]

Block[1] -18152.23084 [K]

Block[2] -18396.77812 [K]

Block[3] -18450.64075 [K]

Block[4] -17933.42582 [K]

--

Average -18345.88591 [K] +/- 582.48483 [K]

88

Example 2: Monte Carlo of CO2 in a box and N2 in another box (two independent
simulations)

RASPA has a build-in structure of being able to simulate several systems at the same time. This has ap-
plications in Gibbs-ensembles and (hyper) parallel tempering for example. However, this capability can
also be used for independent systems. The first box is 30× 30× 30 Å with 90 ◦ angles, containing 50 N2

and 25 CO2 and molecules and moved around by translation, rotation and reinsertion. The second box is
monoclinic and of size 25× 25× 25 with β = 120◦, α= γ = 90◦ containing 25 N2 and 50 CO2 molecules. The
first system is at 300K, the second at 500K.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 1000

PrintEvery 100

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 300.0

Movies yes

WriteMoviesEvery 10

Box 1

BoxLengths 30 30 30

BoxAngles 90 120 90

ExternalTemperature 500.0

Movies yes

WriteMoviesEvery 10

Component 0 MoleculeName N2

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

RegrowProbability 1.0

CreateNumberOfMolecules 50 25

Component 1 MoleculeName CO2

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

RegrowProbability 1.0

CreateNumberOfMolecules 25 50

One thing to note is that system-dependent statements apply to the current box, following ‘Box [int]’. The
initialization of the systems with molecules is done using the ‘CreateNumberOfMolecules’ which applies
similarly to the current component specified using ‘component [int]’. The list of integers represent the initial
amount of molecules for each system. Note that when the ‘BoxAngles’ line is omitted, α = β = γ = 90◦ is
assumed as the default.

Example 3: Monte Carlo of a binary mixture in a box

A Monte Carlo run of 50 propane and 50 butane molecules in a 30× 30× 30 Å box. The MC moves are trans-
lation, rotation, and full reinsertion. After 1000 steps of initialization the production run is started. A movie
is written and every 10th configuration is appended to the movie. The movie is stored in ‘Movies/System[0]’,
and can be viewed with VMD: ‘vmd AllComponents.pdb’.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 2000

PrintEvery 100

Forcefield GarciaPerez2006

Box 0

BoxLengths 30 30 30

ExternalTemperature 300.0

Movies yes

WriteMoviesEvery 10

Component 0 MoleculeName propane

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 50

Component 1 MoleculeName butane

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 50

89

Example 4: Monte Carlo of CO2 and N2 in two independent boxes

An example of a binary mixture of CO2 and N2 in two independent boxes. Box one contains 100 CO2

molecules at 300 Kelvin, box two (monoclinic shape) contains 100 N2 molecules at 500 Kelvin. The movies
for box one are appended every 10 cycles, the movie for box two every 5 cycles. Three types of Monte Carlo
moves are used: translation, rotation, and reinsertion. The force field used is the TraPPE force field.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 1000

PrintEvery 100

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 300.0

Movies yes

WriteMoviesEvery 10

Box 1

BoxLengths 30 30 30

BoxAngles 90 120 90

ExternalTemperature 500.0

Movies yes

WriteMoviesEvery 5

Component 0 MoleculeName CO2

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 100 0

Component 1 MoleculeName N2

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 0 100

Example 5: Molecular dynamics of methane in a box measuring the mean-square dis-
placement

A molecular dynamics run of 100 methane molecules in a 25× 25× 25 Å box at 300 K. The simulations starts
with 1000 InitializationSteps using Monte Carlo, the only MC moves are translation and reinsertion. After
1000 steps of initialization the equilibration run is started. Here, the atoms are assigned a velocities, and
during the equilibration run the distribution should attain the Maxwell-Boltzmann distribution. After the
initialization and equilibration runs, the production is started. The mean-square displacement is measured
and written to ‘MSDOrderN/System 0’ for both self-and collective diffusion (the slope of the mean square
displacement is related to the diffusion coefficients). They can be plotted with ‘gnuplot’. In contrast to
Monte Carlo where the ensemble basically follows from the used MC moves, the ensemble for molecular
dynamics needs to be explicitly specified using the ‘Ensemble’ keyword.

SimulationType MolecularDynamics

NumberOfCycles 1000000

NumberOfInitializationCycles 1000

NumberOfEquilibrationCycles 10000

PrintEvery 100000

PrintPropertiesEvery 100000

Ensemble NVT

TimeStep 0.0005

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 300.0

ComputeMSD yes

PrintMSDEvery 5000

Component 0 MoleculeName methane

MoleculeDefinition TraPPE

TranslationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 100

In MD, it is important to have good energy-conservation. This is monitored

Conserved energy: 42052.7322089638 Energy drifts: 0.0000054515 0.0000038092

90

The first number is the conserved quantity, the second the current relative energy drift, and the last number
is the average energy drift. The latter two numbers need to be small, usually smaller than say 10−3. Here,
the number is large which is due to the type of used potential in the TraPPE forcefield: unshifted, truncated
Lennard-Jones with tail-corrections. Shifted potentials show much better energy conservation because they
remove the discontinuity of the force at the cutoff boundary.

Using NVE, temperature control is difficult, the average temperature was 253.19590± 0.77596.

Example 6: Adsorption isotherm of methane in MFI

Adsorption isotherms can be easily obtained by specifying a list of (increasing) pressures which will be
subsequently run. If no ‘FugacityCoefficient’ keyword is specified these pressure are converted to fugacity
using the Peng-Robinson equation of state. Important: it is essential to specify the ‘ideal gas Rosenbluth
weight’ for a component. This value needs to be computed separately and depends only on temperature
(see auxiliary examples). This value is the reference state of the ideal gas. It is convenient to specify it in
advance, otherwise the correct pressure needs to deduced afterwards and is different from the specified
input. For mixtures this becomes cumbersome when the ideal gas Rosenbluth weight of the components
is different. It is also convenient to specify the ‘void fraction’ of the materials (probed with helium) in
advance (see auxiliary examples). If you do, the excess adsorption is automatically computed properly. At
high pressures and temperatures the excess adsorption can be substantially lower than absolute adsorption.
In this example, 2×2×2 unit cells are required to meet the required that all of the perpendicular cell lengths
are larger than twice the cutoff distance. The default cutoff of 12 Å means the perpendicular lengths should
be larger than 24 Å.

SimulationType MonteCarlo

NumberOfCycles 25000

NumberOfInitializationCycles 2000

PrintEvery 1000

ContinueAfterCrash no

WriteBinaryRestartFileEvery 2000

Forcefield GarciaPerez2006

RemoveAtomNumberCodeFromLabel yes

Framework 0

FrameworkName MFI_SI

UnitCells 2 2 2

HeliumVoidFraction 0.29

ExternalTemperature 300.0

ExternalPressure 1e4 1e5

ComputeNumberOfMoleculesHistogram yes

WriteNumberOfMoleculesHistogramEvery 5000

NumberOfMoleculesHistogramSize 1100

NumberOfMoleculesRange 80

ComputeEnergyHistogram yes

WriteEnergyHistogramEvery 5000

EnergyHistogramSize 400

EnergyHistogramLowerLimit -110000

EnergyHistogramUpperLimit -20000

Component 0 MoleculeName methane

MoleculeDefinition TraPPE

TranslationProbability 0.5

ReinsertionProbability 0.5

SwapProbability 1.0

CreateNumberOfMolecules 0

The output-file shows the performance of the various Monte Carlo moves. For adsorption, a good check
is that the acceptance ratio of the ‘swap addition’ and the ‘swap deletion’ should be close.

Performance of the swap addition move:

======================================

Component [methane] total tried: 124923.000000 succesfull growth: 110867.000000 (88.748269 [%]) accepted: 40933.000000 (32.766584 [%])

Performance of the swap deletion move:

======================================

Component [methane] total tried: 125017.000000 succesfull growth: 123392.000000 (98.700177 [%]) accepted: 40933.000000 (32.741947 [%])

Performance of the regrow move:

===============================

Component [methane] total tried: 123242.000000 succesfull growth: 109872.000000 (89.151426 [%]) accepted: 27049.000000 (21.947875 [%])

Adsorption results are displayed in various units for both absolute and excess adsorption.

Component 0 [methane]

91

Block[0] 4.19820 [-]

Block[1] 4.13440 [-]

Block[2] 4.18060 [-]

Block[3] 4.12800 [-]

Block[4] 4.21160 [-]

--

Average 4.1705600000 +/- 0.0673376685 [-]

Average loading absolute [molecules/unit cell] 0.5213200000 +/- 0.0084172086 [-]

Average loading absolute [mol/kg framework] 0.0903799606 +/- 0.0014592707 [-]

Average loading absolute [milligram/gram framework] 1.4499169027 +/- 0.0234102911 [-]

Average loading absolute [cm^3 (STP)/gr framework] 2.0257742450 +/- 0.0327080571 [-]

Average loading absolute [cm^3 (STP)/cm^3 framework] 3.6389836628 +/- 0.0587548616 [-]

Block[0] 4.19820 [-]

Block[1] 4.13440 [-]

Block[2] 4.18060 [-]

Block[3] 4.12800 [-]

Block[4] 4.21160 [-]

--

Average 4.1406876026 +/- 0.0673376685 [-]

Average loading excess [molecules/unit cell] 0.5175859503 +/- 0.0084172086 [-]

Average loading excess [mol/kg framework] 0.0897325976 +/- 0.0014592707 [-]

Average loading excess [milligram/gram framework] 1.4395316082 +/- 0.0234102911 [-]

Average loading excess [cm^3 (STP)/gr framework] 2.0112642671 +/- 0.0327080571 [-]

Average loading excess [cm^3 (STP)/cm^3 framework] 3.6129187779 +/- 0.0587548616 [-]

Example 7: Henry coefficient of n-hexane in mono-clinic ERI

The monoclinic version of erionite (ERI) is named ‘ERI mono’, the orthorhombic version is ‘ERI’. The mon-
oclinic version needs at least 3× 3× 3 unit cells to be larger than twice the cutoff, while the orthorhombic
needs 2× 2× 2 (the unit cell shapes and size are different). To compute the Henry coefficient of hexane
in erionite two simulations need to be performed. First the ideal Rosenbluth gas value needs to be com-
puted at the desired temperature (see Auxiliary examples). This value needs to be filled in first. Next the
simulation is started and the Henry coefficient is listed in the output.

SimulationType MonteCarlo

NumberOfCycles 20000

NumberOfInitializationCycles 0

PrintEvery 1000

PrintPropertiesEvery 1000

Forcefield GarciaPerez2006

Framework 0

FrameworkName ERI_SI

RemoveAtomNumberCodeFromLabel yes

UnitCells 3 3 3

ExternalTemperature 573.0

Component 0 MoleculeName hexane

MoleculeDefinition TraPPE

IdealRosenbluthValue 0.00312147

WidomProbability 1.0

CreateNumberOfMolecules 0

The average Widom Rosenbluth weight and Henry coefficient are printed:
Average Widom Rosenbluth factor:

================================

Block[0] 1.00749 [-]

Block[1] 0.996774 [-]

Block[2] 1.00742 [-]

Block[3] 0.995992 [-]

Block[4] 1.01246 [-]

--

[hexane] Average Widom: 1.00403 +/- 0.013018 [-]

Average Henry coefficient:

==========================

Block[0] 1.35128e-07 [mol/kg/Pa]

Block[1] 1.33692e-07 [mol/kg/Pa]

Block[2] 1.3512e-07 [mol/kg/Pa]

Block[3] 1.33587e-07 [mol/kg/Pa]

Block[4] 1.35796e-07 [mol/kg/Pa]

--

[hexane] Average Henry coefficient: 1.34664e-07 +/- 1.746e-09 [mol/kg/Pa]

Example 8: Henry coefficient of n-pentane to n-nonane in MFI

By using multiple components several Henry coefficients can be computed simultaneously. The Widom
insertion probe move never actually inserts the molecules, it just compute the energy at randomly chosen
insertion positions. Note that the ideal gas Rosenbluth weights decrease with chain length.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 0

PrintEvery 1000

92

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12
R

D
F

 [−
]

Radial distance [Å]

O−O
O−H
H−H

Figure 9: The radial distribution function of water at 298K.

PrintPropertiesEvery 1000

Forcefield GarciaPerez2006

Framework 0

FrameworkName MFI_SI

RemoveAtomNumberCodeFromLabel yes

UnitCells 2 2 2

ExternalTemperature 573.0

Component 0 MoleculeName C5

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 0.064

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 1 MoleculeName C6

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 0.0164423

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 2 MoleculeName C7

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 0.00425143

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 3 MoleculeName C8

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 0.0011068

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 4 MoleculeName C9

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 0.000289648

WidomProbability 1.0

CreateNumberOfMolecules 0

The resulting Henry coefficients are:
Average Henry coefficient:

==========================

[C5] Average Henry coefficient: 2.98386e-06 +/- 4.36063e-08 [mol/kg/Pa]

[C6] Average Henry coefficient: 5.90253e-06 +/- 7.2814e-08 [mol/kg/Pa]

[C7] Average Henry coefficient: 1.17407e-05 +/- 2.48425e-07 [mol/kg/Pa]

[C8] Average Henry coefficient: 2.27983e-05 +/- 7.43978e-07 [mol/kg/Pa]

[C9] Average Henry coefficient: 4.28771e-05 +/- 1.62704e-06 [mol/kg/Pa]

Example 9: Computing the radial distribution function of a methane/ethane-mixture

The radial distribution function (RDF) is a good indication of the status of the fluid: solid, liquid or gas.
RASPA computes the RDF for all (pseudo-)atoms pairs, unless you specified ‘no’ to the ‘PrintToPDB’-field
of the ‘pseudo atoms’ file. For example, the L-atoms of water should not be printed to movie-files, and
there would be little point generating the RDF for interactions with these ‘dummy’ interaction sites.

SimulationType MolecularDynamics

NumberOfCycles 1000000

NumberOfInitializationCycles 10000

NumberOfEquilibrationCycles 5000

PrintEvery 5000

93

ContinueAfterCrash no

WriteBinaryRestartFileEvery 5000

Ensemble NVT

Forcefield GarciaPerez2006

Box 0

BoxLengths 24.0 24.0 24.0

ComputeRDF yes

WriteRDFEvery 10000

RDFHistogramSize 300

RDFRange 12.0

ExternalTemperature 300.0

Component 0 MoleculeName methane

MoleculeDefinition TraPPE

TranslationProbability 0.5

RotationProbability 0.5

ReinsertionProbability 1.0

CreateNumberOfMolecules 50

Component 1 MoleculeName ethane

MoleculeDefinition TraPPE

TranslationProbability 0.5

RotationProbability 0.5

ReinsertionProbability 1.0

CreateNumberOfMolecules 50

We used the NVT ensemble and therefore we have good temperature control

Temperature: 289.880 (avg. 299.641), Translational (avg. 299.641), Rotational (avg. nan)

Temperature Adsorbates: 289.880 (avg. 299.641), Translational (avg. 299.641), Rotational (avg. nan)

Shifted potentials are used and the relative energy conservation is 0.0000918675 (excellent).

Example 10: measuring bond/bend/dihedral angle distributions MD
SimulationType MolecularDynamics

NumberOfCycles 10000000000

NumberOfInitializationCycles 5000

NumberOfEquilibrationCycles 10000

PrintEvery 10000

RestartFile no

Ensemble NVT

ContinueAfterCrash no

WriteBinaryRestartFileEvery 5000

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 298.0

ExternalPressure 0.0

ComputeMoleculeProperties yes

component 0 MoleculeName 2-methylbutane

StartingBead 0

FugacityCoefficient 1.0

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

RegrowProbability 1.0

CBMCProbability 1.0

CreateNumberOfMolecules 32

Example 11: measuring bond/bend/dihedral angle distributions MC
SimulationType MonteCarlo

NumberOfCycles 5000000

NumberOfInitializationCycles 10000

PrintEvery 50000

RestartFile no

ContinueAfterCrash no

WriteBinaryRestartFileEvery 50000

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 298.0

ExternalPressure 0.0

ComputeMoleculeProperties yes

component 0 MoleculeName 2-methylbutane

StartingBead 0

FugacityCoefficient 1.0

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

94

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
E

n
e
rg

y
 U

 [
k
J
/m

o
l]

Dihedral angle [°]

U=355.03*(1+cos(x))−68.19*(1−cos(2*x))+791.32*(1+cos(3*x))

Figure 10: The torsion potential for united atom linear alkanes X-CH2-CH2-X.

RegrowProbability 1.0

CBMCProbability 1.0

CreateNumberOfMolecules 32

4.3 Non-basic examples

Example 1: Adsorption of a binary CO2/CH4 (1:3) mixture in IRMOF-1
Appreciable adsorption in MOF materials occurs at higher pressure than zeolites, usually in the range up
to 10 bar. At these high pressures absolute and excess adsorption are different, and excess adsorption
eventually even goes down. This is due to the fact that excess adsorption is relative to what would have
been in the free pore volume at these conditions. So one can compress the outside fluid but eventually the
pores are filled up. At that maximum absolute loading the excess adsorption will go down.

SimulationType MonteCarlo

NumberOfCycles 50000

NumberOfInitializationCycles 5000

PrintEvery 1000

Forcefield Dubbeldam2007FlexibleIRMOF-1

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

HeliumVoidFraction 0.81

ExternalTemperature 300.0

ExternalPressure 10e5

Component 0 MoleculeName CO2

MoleculeDefinition TraPPE

MolFraction 0.25

TranslationProbability 0.5

RegrowProbability 0.5

IdentityChangeProbability 1.0

NumberOfIdentityChanges 2

IdentityChangesList 0 1

SwapProbability 1.0

CreateNumberOfMolecules 0

Component 1 MoleculeName methane

MoleculeDefinition TraPPE

MolFraction 0.75

TranslationProbability 0.5

RegrowProbability 0.5

IdentityChangeProbability 1.0

NumberOfIdentityChanges 2

IdentityChangesList 0 1

SwapProbability 1.0

CreateNumberOfMolecules 0

To compute the excess adsorption the void fraction of a structure needs to be specified using ‘Heli-
umVoidFraction [real]’. RASPA automatically uses an equation of state (default: Peng-Robinson) to com-
pute the fugacities from the pressure and mol-fraction as is done here for a mixture of CO2 and CH4. It also
computes the amount of excess molecules from this equation of state.

95

Component 0 [CO2] (Adsorbate molecule)

Critical temparure [K]: 304.128200

Critical pressure [Pa]: 7377300.000000

Acentric factor [-]: 0.223940

RXMC partition factor [-]: 0.000000

Fluid is a vapour

MolFraction: 0.2500000000 [-]

Compressibility: 0.9714389725 [-]

Density of the bulk fluid phase: 18.1580726483 [kg/m^3]

Binary mixture EOS parameters: (0): 0.000000 (1): 0.000000

Amount of excess molecules: 0.8675190741 [-]

Conversion factor molecules/unit cell -> mol/kg: 0.1623747175 [-]

Conversion factor molecules/unit cell -> gr/gr: 7.1442927209 [-]

Conversion factor molecules/unit cell -> cm^3 STP/gr: 3.6394629804 [-]

Conversion factor molecules/unit cell -> cm^3 STP/cm^3: 2.1592046669 [-]

Conversion factor mol/kg -> cm^3 STP/gr: 22.4139757476 [-]

Conversion factor mol/kg -> cm^3 STP/cm^3: 13.2976654244 [-]

Partial pressure: 250000.00000000000000 [Pa]

1875.00000000000000 [Torr]

2.50000000000000 [bar]

2.46730816679003 [atm]

Fugacity coefficient: 0.9503504709 [-]

Partial fugacity: 237587.61773457148229 [Pa]

1781.90713300928610 [Torr]

2.37587617734571 [bar]

2.34480747825879 [atm]

Component 1 [methane] (Adsorbate molecule)

Critical temparure [K]: 190.564000

Critical pressure [Pa]: 4599200.000000

Acentric factor [-]: 0.011420

RXMC partition factor [-]: 0.000000

Fluid is a vapour

MolFraction: 0.7500000000 [-]

Compressibility: 0.9714389725 [-]

Density of the bulk fluid phase: 6.6206386115 [kg/m^3]

Binary mixture EOS parameters: (0): 0.000000 (1): 0.000000

Amount of excess molecules: 2.6025572224 [-]

Conversion factor molecules/unit cell -> mol/kg: 0.1623747175 [-]

Conversion factor molecules/unit cell -> gr/gr: 2.6048899107 [-]

Conversion factor molecules/unit cell -> cm^3 STP/gr: 3.6394629804 [-]

Conversion factor molecules/unit cell -> cm^3 STP/cm^3: 2.1592046669 [-]

Conversion factor mol/kg -> cm^3 STP/gr: 22.4139757476 [-]

Conversion factor mol/kg -> cm^3 STP/cm^3: 13.2976654244 [-]

Partial pressure: 750000.00000000011642 [Pa]

5625.00000000000091 [Torr]

7.50000000000000 [bar]

7.40192450037010 [atm]

Fugacity coefficient: 0.9790119494 [-]

Partial fugacity: 734258.96201743301935 [Pa]

5506.94221513074717 [Torr]

7.34258962017433 [bar]

7.24657253409754 [atm]

Also noteworthy is the use of the identity-change move for mixtures. A molecule of a certain type can be
changed at the same position into a molecule of another type. It is specified per component as a list of
other components that are allowed for this move. The identity-change move is highly recommended at
high loadings.

At each ‘PrintEvery’ steps the loadings are shown in a variety of units for both excess and absolute
adsorption:

Loadings per component:

--

Component 0 (CO2), current number of integer/fractional/reaction molecules: 16/0/0 (avg. 12.68484), density: 67.81662 (avg. 53.76520) [kg/m^3]

absolute adsorption: 16.00000 (avg. 12.68484) [mol/uc], 2.5979954802 (avg. 2.0596978259) [mol/kg], 114.3086835349 (avg. 90.6242327003) [mg/g]

58.2314076859 (avg. 46.1660171161) [cm^3 STP/g], 34.5472746700 (avg. 27.3891725636) [cm^3 STP/cm^3]

excess adsorption: 15.1324809259 (avg. 11.8173240923) [mol/uc], 2.4571323156 (avg. 1.9188346613) [mol/kg], 108.1108733282 (avg. 84.4264224936) [mg/g]

55.0741041308 (avg. 43.0087135610) [cm^3 STP/g], 32.6741234365 (avg. 25.5160213301) [cm^3 STP/cm^3]

Component 1 (methane), current number of integer/fractional/reaction molecules: 19/0/0 (avg. 19.21646), density: 29.36296 (avg. 29.69749) [kg/m^3]

absolute adsorption: 19.00000 (avg. 19.21646) [mol/uc], 3.0851196328 (avg. 3.1202680711) [mol/kg], 49.4929083037 (avg. 50.0567757203) [mg/g]

69.1497966270 (avg. 69.9376128722) [cm^3 STP/g], 41.0248886706 (avg. 41.4922808443) [cm^3 STP/cm^3]

excess adsorption: 16.3974427776 (avg. 16.6139077477) [mol/uc], 2.6625301390 (avg. 2.6976785773) [mol/kg], 42.7135332529 (avg. 43.2774006695) [mg/g]

59.6778859617 (avg. 60.4657022069) [cm^3 STP/g], 35.4054349701 (avg. 35.8728271438) [cm^3 STP/cm^3]

--

and at the end error bars are computed for all properties:

96

Component 0 [CO2]

Block[0] 12.55000 [-]

Block[1] 12.79110 [-]

Block[2] 12.75510 [-]

Block[3] 12.73990 [-]

Block[4] 12.58240 [-]

--

Average 12.6837000000 +/- 0.1958132580 [-]

Average loading absolute [molecules/unit cell] 12.6837000000 +/- 0.1958132580 [-]

Average loading absolute [mol/kg framework] 2.0595122045 +/- 0.0317951224 [-]

Average loading absolute [milligram/gram framework] 90.6160655845 +/- 1.3989472336 [-]

Average loading absolute [cm^3 (STP)/gr framework] 46.1618566041 +/- 0.7126551035 [-]

Average loading absolute [cm^3 (STP)/cm^3 framework] 27.3867042332 +/- 0.4228009005 [-]

Average loading excess [molecules/unit cell] 11.8161809259 +/- 0.1958132580 [-]

Average loading excess [mol/kg framework] 1.9186490399 +/- 0.0317951224 [-]

Average loading excess [milligram/gram framework] 84.4182553778 +/- 1.3989472336 [-]

Average loading excess [cm^3 (STP)/gr framework] 43.0045530490 +/- 0.7126551035 [-]

Average loading excess [cm^3 (STP)/cm^3 framework] 25.5135529997 +/- 0.4228009005 [-]

Component 1 [methane]

Block[0] 19.23430 [-]

Block[1] 19.30250 [-]

Block[2] 19.22250 [-]

Block[3] 19.11980 [-]

Block[4] 19.19560 [-]

--

Average 19.2149400000 +/- 0.1184039594 [-]

Average loading absolute [molecules/unit cell] 19.2149400000 +/- 0.1184039594 [-]

Average loading absolute [mol/kg framework] 3.1200204545 +/- 0.0192258095 [-]

Average loading absolute [milligram/gram framework] 50.0528033411 +/- 0.3084292792 [-]

Average loading absolute [cm^3 (STP)/gr framework] 69.9320628000 +/- 0.4309268269 [-]

Average loading absolute [cm^3 (STP)/cm^3 framework] 41.4889881217 +/- 0.2556583817 [-]

Average loading excess [molecules/unit cell] 16.6123827776 +/- 0.1184039594 [-]

Average loading excess [mol/kg framework] 2.6974309607 +/- 0.0192258095 [-]

Average loading excess [milligram/gram framework] 43.2734282903 +/- 0.3084292792 [-]

Average loading excess [cm^3 (STP)/gr framework] 60.4601521347 +/- 0.4309268269 [-]

Average loading excess [cm^3 (STP)/cm^3 framework] 35.8695344212 +/- 0.2556583817 [-]

Example 2: NPT Monte Carlo of propane

The density of propane at 250K and 10 bar is about 559.53 kg/m3 (NIST database). In this example the
density is computed using Monte Carlo in the NPT-ensemble. Given the pressure P , the temperature T ,
and the amount of molecules N , the density is computed.

SimulationType MonteCarlo

NumberOfCycles 50000

NumberOfInitializationCycles 10000

PrintEvery 1000

RestartFile no

Forcefield GarciaPerez2006

Box 0

BoxLengths 30 30 30

ExternalTemperature 250.0

ExternalPressure 1e6

ComputeMolecularPressure yes

VolumeChangeProbability 0.05

Component 0 MoleculeName propane

MoleculeDefinition TraPPE

TranslationProbability 0.5

RotationProbability 0.5

RegrowProbability 0.5

CreateNumberOfMolecules 256

The TraPPE model for propane gives for our simulation of 25000 cycles 568.2±4.1 kg/m3. The measured
pressure is 9.75± 2.2 bar.

Example 3: NPT molecular dynamics of water

A molecular dynamics simulation of water in the NPT-ensemble (constant amount of particles N , con-
stant average pressure P , and constant average temperature T). Many water models are defined, but most
are defined with simple Coulombic potentials using cutoffs of 9Å. None are optimized with the Ewald-
summation except for the recalibrated Tip5p-Ew model. Unfortunately, that model is defined using a cutoff
always equal to half the box size, while RASPA uses a fixed cutoff (default: 12 Angstrom). A fixed cutoff
is more realistic, but requires the shortest perpendicular width to be twice the cutoff, thus here larger than
24 Å. All this results in having to simulate more than 512 water molecules. The tip5p models use 5 fixed

97

charges placed in the water geometry, so for each step 2560 charge sites needs to be computed with Ewald.
Conclusion: liquid water is computationally expensive to compute when done properly.

In MD-NPT the average pressure 〈P 〉 and average temperature 〈T 〉 are imposed. The instantaneous
values, especially for the pressure, are different. RASPA uses the Nose-Hoover chain method, and NPT-
MD methods of Martyna and Tuckermann.

Several options are introduced here: ”TimeStep [real]” to set the time step. For rigid molecules the
time step can be a bit larger because the high frequency movement is removed (the O-H is around 3000
cm−1). The cutoff can be set with ‘CutOff [real]’. The method to compute charge interactions is set with
‘ChargeMethod [Ewald|None]’, although Ewald is the default. The precision can specified using ‘Ewald-
Precision [real]’ from which the Ewald parameters κ and the amount of wave vectors is inferred. The
initial positions of the water are read from file (‘RestartFile yes’), the file is located in directory ‘RestartIni-
tial/System[int]’.

The experimental density of water at 300K and 1 bar is about 996.56 kg/m3 (NIST database).
SimulationType MolecularDynamics

NumberOfCycles 100000

NumberOfInitializationCycles 0

NumberOfEquilibrationCycles 1000

PrintEvery 100

RestartFile yes

Ensemble NPT

TimeStep 0.001

ChargeMethod Ewald

CutOff 10.0

Forcefield Tip5p-Ew

EwaldPrecision 1e-6

Box 0

BoxLengths 24.83 24.83 24.83

ExternalTemperature 300.0

ExternalPressure 1.0e5

ComputeMSD yes

PrintMSDEvery 5000

Component 0 MoleculeName Tip5p

StartingBead 0

MoleculeDefinition Water

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 0

The output shows some details of intermediate status during the run: the time run, the current box and
average box, etc. The total linear momentum is conserved and zero (the center of mass movement of the
system is removed at initialization). For this relatively short run, the average pressure of 1.26 bar is already
quite close to the applied 1 bar. Also, the temperature of the water, and of the simulation cell (it is a degree
of freedom and has therefore an associated temperature) can also been seen to converge to the applied value
of 300K. Energy conservation is adequate with a 0.001 ps time step.
TODO

Example 4: Adsorption of CO2 in Na-LTA

The Linde Type A structure LTA-4A has 96 aluminum per unit cell. A common 4A sample has 96 charge
balancing sodium ions. The ions are small enough to access the sodalite cages, but the bigger methane
molecules are exclusively in the big α-cages and not in the sodalite cages. They need to be artificially
blocked. Because the adsorption is dependent on the positions of the ions it is important to start from the
crystallographic positions and use only translation for the ions. Reinsertion moves may transport the ions
to positions in the windows and this is especially important for diffusion (the next example).

SimulationType MonteCarlo

NumberOfCycles 25000

NumberOfInitializationCycles 10000

RestartFile no

PrintEvery 1000

Forcefield GarciaPerez2006

ModifyOxgensConnectedToAluminium yes

Framework 0

FrameworkName LTA4A

RemoveAtomNumberCodeFromLabel yes

UnitCells 1 1 1

ExternalTemperature 298.0

98

ExternalPressure 10000.0

Component 0 MoleculeName sodium

MoleculeDefinition TraPPE

TranslationProbability 1.0

RandomTranslationProbability 1.0

ExtraFrameworkMolecule yes

CreateNumberOfMolecules 96

Component 1 MoleculeName CO2

MoleculeDefinition TraPPE

BlockPockets yes

BlockPocketsFilename LTA

TranslationProbability 1.0

ReinsertionProbability 1.0

SwapProbability 1.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 0

Example 5: Diffusion of CO2 in Na-LTA

An example of molecular dynamics of an adsorbate (CO2) diffusing through the pores of LTA 4A loaded
with ions. The ions are read from the restart-file. The mean-square displacement is computed during the
run.

SimulationType MolecularDynamics

NumberOfCycles 250000

NumberOfInitializationCycles 5000

NumberOfEquilibrationCycles 10000

PrintEvery 5000

RestartFile no

Ensemble NVT

Forcefield GarciaPerez2006

ModifyOxgensConnectedToAluminium yes

TimeStep 0.0005

Framework 0

FrameworkName LTA4A

RemoveAtomNumberCodeFromLabel yes

UnitCells 1 1 1

ExternalTemperature 600.0

ComputeMSD yes

PrintMSDEvery 5000

component 0 MoleculeName sodium

MoleculeDefinition TraPPE

TranslationProbability 1.0

ReinsertionProbability 1.0

ExtraFrameworkMolecule yes

CreateNumberOfMolecules 96

component 1 MoleculeName CO2

MoleculeDefinition TraPPE

BlockPockets yes

BlockPocketsFilename LTA

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 64

Example 6: Diffusion of benzene in rigid IRMOF-1

Benzene (and aromatic molecules in general) are usually kept rigid. RASPA uses quaternions for the de-
scription of the orientation of the molecules. The integration schemes of Martyna and Tuckermann are
symplectic and conserve energy very well. Even though the molecule is described as a center of mass
and a orientation, the forces are still computed atomically. In this example the diffusivity the mean-square
displacement of benzene at 298K in IRMOF-1 is computed. The forcefield is ‘FlexibleIRMOF-1’ which is
also perfectly suitable for rigid structures. It has been specifically optimized for iso-reticular metal-organic
frameworks.

SimulationType MolecularDynamics

NumberOfCycles 100000

NumberOfEquilibrationCycles 10000

NumberOfInitializationCycles 1000

PrintEvery 5000

RestartFile no

Ensemble NVT

ChargeMethod Ewald

CutOff 12.0

TimeStep 0.0005

Forcefield Dubbeldam2007FlexibleIRMOF-1

99

 210

 220

 230

 240

 250

 260

 270

 280

 290

 300

 310

 0 200 400 600 800 1000 1200

T
em

pe
ra

tu
re

 [K
]

Density [kg/m3]

Figure 11: Gibbs ensemble simulation of CO2 at 250K. Two simulation boxes are used: one for the gas-branch and one for the
liquid branch. The simulation can only be conducted below a certain temperature because otherwise the boxes can swap between gas
and liquid. At 250K, the boxes are initialized with an equal amount of molecules, but soon split into gas and liquid. The average
densities are straightforward to measure. As shown, the TraPPE model for CO2 does a good job when compare to experimental data
(NIST database).

EwaldPrecision 1e-6

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

ExternalTemperature 298.0

Component 0 MoleculeName benzene

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

TranslationProbability 1.0

RotationProbability 1.0

RegrowProbability 1.0

CreateNumberOfMolecules 16

Example 7: Gibbs ensemble simulation of CO2

The Gibbs ensemble is way of computing coexistence without interfaces. It is one the most used methods
to study vapor-liquid and liquid-liquid equilibria, it is not suitable for very dense systems. The conditions
for coexistence of two or more phases I, II, . . . is that the pressure and temperature of all the phases must
be equal, as well as the chemical potential of all the species. The Gibbs ensemble example for the single
component CO2 is listed below. two boxes will be used, one will correspond to the liquid phase, the other
one to the gas phase. The ‘GibbsVolumeChange’ move changes the individual volume leaving the total
volume in tact, the ‘GibbsSwap’ move swaps particles from one box to the other. One of the practical
problems is to make sure both boxes remain larger than twice the cutoff length. If not, the program will
exit with an error message, and the simulation should be restarted with a bigger volume. Note that RASPA
uses orientational biased insertions for small rigid molecules like CO2. For this example about 10000-20000
cycles are needed to equilibrate properly.

SimulationType MonteCarlo

NumberOfCycles 25000

NumberOfInitializationCycles 10000

PrintEvery 1000

RestartFile no

Forcefield TraPPE

Box 0

BoxLengths 30 30 30

BoxAngles 90 90 90

ExternalTemperature 240.0

Box 1

BoxLengths 30 30 30

BoxAngles 90 90 90

ExternalTemperature 240.0

GibbsVolumeChangeProbability 0.1

100

Component 0 MoleculeName CO2

StartingBead 1

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

GibbsSwapProbability 1.0

CreateNumberOfMolecules 150 150

Example 8: Minimization of a flexible framework (fixed volume)

Physically, energy minimization corresponds to an instantaneous freezing of the system; a static structure in
which no atom feels a net force corresponds to a temperature of 0 K. In the early 1980’s, energy minimization
was about all one could afford to do and was dubbed ‘molecular mechanics.’ Here, a difficult optimization
problem: a flexible framework, IRMOF-1, in a periodic unit cell, with many low energy modes. The energy
landscape of a framework is very complex. A true minimum is characterized by all positive eigenvalues
of the Hessian matrix (the matrix of second derivatives with respect to position). A zero eigenvalue means
that moving in the direction of the associated eigenvector does not result in a change in energy. Likewise,
a negative en positive eigenvalue means an decrease and increase in energy, respectively. Most of the
optimization time is spent on reaching a zero curvature structure, i.e. all positive eigenvalues.

SimulationType Minimization

NumberOfCycles 1

RestartFile no

PrintEvery 1

MaximumNumberOfMinimizationSteps 1000

RMSGradientTolerance 1e-6

MaxGradientTolerance 1e-6

Ensemble NVT

Forcefield Dubbeldam2007FlexibleIRMOF-1

ChargeMethod Ewald

EwaldPrecision 1e-10

InternalFrameworkLennardJonesInteractions yes

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

ExternalTemperature 298.0

Movies yes

WriteMoviesEvery 1

FlexibleFramework yes

FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1

The minimization needs 119 cycles to optimize IRMOF-1, the last steps are shown here. The convergence
is very rapid (quadratic) near the minimum, and the minimum energy can be reached up to arbitrary
precision (the forces on all the atoms are 1 × 10−8 K/Å2 or smaller). To compute spectra, frequencies
and/or eigenmodes a high precision is needed.

Starting configuration:

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: 129316.6369463501 0.0000000016 0.0000000015

0.0000000000 25.8320000000 0.0000000000 0.0000000015 129316.6369463478 0.0000000016

0.0000000000 0.0000000000 25.8320000000 0.0000000016 0.0000000015 129316.6369463608

Beginning Baker minimization:

Shifting parameter: -144554.0050033366 Lowest eigenvalue: -1933.2972944159

Iteration: 0 Energy: -4210346.0956447003 RMS gradient: 254.796 Max gradient: 16621.7 Number of negative eigenvalues: 30 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: 129316.6369463581 0.0000000016 0.0000000015

0.0000000000 25.8320000000 0.0000000000 0.0000000016 129316.6369463568 0.0000000016

0.0000000000 0.0000000000 25.8320000000 0.0000000015 0.0000000016 129316.6369463690

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

Shifting parameter: -54112.0433245863 Lowest eigenvalue: -942.0341042027

Iteration: 1 Energy: -4291359.2884553447 RMS gradient: 132.811 Max gradient: 9119.05 Number of negative eigenvalues: 30 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: -131739.2152028512 0.0000000004 0.0000000008

0.0000000000 25.8320000000 0.0000000000 0.0000000004 -131739.2152028439 0.0000000010

0.0000000000 0.0000000000 25.8320000000 0.0000000008 0.0000000011 -131739.2152028617

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

Shifting parameter: -6990.6349276451 Lowest eigenvalue: -218.9092550725

Iteration: 2 Energy: -4325503.0430874182 RMS gradient: 38.7491 Max gradient: 2721.14 Number of negative eigenvalues: 36 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: -282155.2863533634 0.0000000002 0.0000000007

0.0000000000 25.8320000000 0.0000000000 0.0000000002 -282155.2863533496 -0.0000000021

0.0000000000 0.0000000000 25.8320000000 0.0000000008 -0.0000000021 -282155.2863533603

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

..

Iteration: 117 Energy: -4331364.7259515934 RMS gradient: 0.00439145 Max gradient: 0.600384 Number of negative eigenvalues: 0 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: -99169.3483007069 0.0011594244 0.0002624505

0.0000000000 25.8320000000 0.0000000000 0.0011594245 -99108.1188463482 -0.0004447560

0.0000000000 0.0000000000 25.8320000000 0.0002624506 -0.0004447560 -99128.0909746577

101

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

Iteration: 118 Energy: -4331364.6575047411 RMS gradient: 7.06135e-05 Max gradient: 0.0204619 Number of negative eigenvalues: 0 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: -99208.8822655176 0.0000019593 -0.0000031410

0.0000000000 25.8320000000 0.0000000000 0.0000019594 -99184.4522480669 -0.0000004895

0.0000000000 0.0000000000 25.8320000000 -0.0000031410 -0.0000004895 -99202.7818375186

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

Iteration: 119 Energy: -4331364.6575191850 RMS gradient: 6.91407e-07 Max gradient: 8.83309e-05 Number of negative eigenvalues: 0 Number of zero eigenvalues: 3

Box: 25.8320000000 0.0000000000 0.0000000000 Strain derivative: -99195.5973070737 0.0000000048 -0.0000030267

0.0000000000 25.8320000000 0.0000000000 0.0000000047 -99195.5991107764 0.0000000006

0.0000000000 0.0000000000 25.8320000000 -0.0000030267 0.0000000006 -99195.6111130547

Lengths: 25.8320000000 25.8320000000 25.8320000000, Angles: 90.0000000000 90.0000000000 90.0000000000

SUCCES: RMS Gradient tolerance 0.0001 reached (6.91407e-07)

Max Gradient tolerance 0.0001 reached (8.83309e-05)

The shifting values are always lower than the lowest eigenvalues, both are negative and approach zero. At
iteration 2, the lowest eigenvalues is closer to zero, but still the amount of negative eigenvalues is 6 higher.
Also increases in energy can occur. However, eventually the system is driven to all positive eigenvalues (a
true energy minimum without saddle points) and the lowest energy. Note that minimization the structure
in constant volume results in a finite (non-zero) stress. Minimization taking volume and shape changes into
account are usually easier, because the system is less constrained. If one would like to also minimize the
cell volume (isotropicly) use

Ensemble NPT

or use for a change in cell-lengths and cell-angles
Ensemble NPTPR

4.4 Advanced examples

Example 1: Adsorption of CO2 in fully-flexible IRMOF-1 (µV T -ensemble)

Flexibility in MOFs is more important than in zeolites. A very efficient move to change the whole frame-
work (and actually also the adsorbates) is have a short NVE MD-run and accept or reject the new configu-
ration. This hybrid MD/MC move can be switched on using ‘HybridMCMDMoveProbability [real]’, where
[real] is the fraction of the move at each cycle.

SimulationType MonteCarlo

NumberOfCycles 50000

NumberOfInitializationCycles 20000

PrintEvery 5000

RestartFile no

ChargeMethod Ewald

CutOff 12.0

Forcefield Dubbeldam2007FlexibleIRMOF-1

EwaldPrecision 1e-6

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

HeliumVoidFraction 0.801937

FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1

ExternalTemperature 233.0

ExternalPressure 1e5

FlexibleFramework yes

HybridMCMDMoveProbability 1.0

Component 0 MoleculeName CO2

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

SwapProbability 1.0

CreateNumberOfMolecules 0

Example 2: CO2 adsorption in flexible IRMOF-1 (osmotic ensemble).

Adsorption simulations using a flexible framework are very computationally demanding, the current ex-
ample will probably run about a week. The equilibration is very important and it is best to start with a
restart-file obtained from the previous example at the same temperature. The directory ‘Restart’ produced

102

in the previous example should be copied to ‘RestartInitial’ and the option ‘RestartFile’ should be set to
‘yes’.

SimulationType MonteCarlo

NumberOfCycles 50000

NumberOfInitializationCycles 10000

PrintEvery 5000

RestartFile no

ChargeMethod Ewald

CutOff 12.0

Forcefield Dubbeldam2007FlexibleIRMOF-1

EwaldPrecision 1e-6

TimeStep 0.0005

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

HeliumVoidFraction 0.801937

ExternalTemperature 298.0

ExternalPressure 100e3

FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1

FlexibleFramework yes

HybridNVEMoveProbability 1.0

NumberOfHybridNVESteps 5

VolumeChangeProbability 1.0

Component 0 MoleculeName CO2

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

SwapProbability 1.0

CreateNumberOfMolecules 0

Example 3: NPT molecular dynamics of flexible IRMOF-1

An NPT-ensemble simulation of a flexible framework IRMOF-1. This type of simulation can be used to
compute the average unit cell size at the desired temperature and pressure (and properties like the ‘volu-
metric expansion coefficient’ etc). The equilibration, although slow, is very much faster than Monte Carlo.
The example show the code for flexible IRMOF-1 at 298K and 1 atm.

SimulationType MolecularDynamics

NumberOfCycles 500000

NumberOfEquilibrationCycles 5000

PrintEvery 5000

RestartFile no

Ensemble NPT

Forcefield Dubbeldam2007FlexibleIRMOF-1

CutOff 12.0

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

ExternalTemperature 298.0

ExternalPressure 101325.0

FlexibleFramework yes

FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-1

Example 4: Benzene diffusion in flexible IRMOF-10

Molecules with a phenyl-ring are usually quite rigid. In Monte Carlo rigid units are not a problem, because
the MC moves can be developed in such a way that the constraints remain satisfied, i.e. translation and
rotation of the whole rigid unit. In molecular dynamics, there are two general approaches. The first is to
integrate the molecules atomically and afterwards satisfy the constraints iteratively using for example the
shake algorithm. For bigger molecules complications arise, convergence becomes more difficult, and for
a planar molecule like benzene additional sites above the molecule are needed. Therefore, the second ap-
proach has become more popular. Using quaternions (or Euler angles) one can describe the configurations
of the molecule as a center-of-mass position and an orientation. The translation and rotation are integrated
and when the forces are needed the atoms positions are computed from the com position and the orien-
tation. The forces are then summed to the center of mass and the torque is computed. Miller et al. have
developed an integration algorithm for rigid units (using quaternions) that is symplectic.

103

All these techniques are combined in the example of diffusion of benzene in IRMOF-10. The integration
is performed in the NVT ensemble using the Nose-Hoover thermostats. Three separate NH chains are
operating on (i) the translation, (ii) the rotation of the molecules, and (iii) on the framework.

SimulationType MolecularDynamics

NumberOfCycles 1000000

NumberOfEquilibrationCycles 10000

NumberOfInitializationCycles 100

PrintEvery 5000

RestartFile no

Ensemble NVT

ChargeMethod Ewald

CutOff 12.0

TimeStep 0.0005

Forcefield Dubbeldam2007FlexibleIRMOF-10

EwaldPrecision 1e-6

Framework 0

FrameworkName IRMOF-10

UnitCells 1 1 1

ExternalTemperature 298.0

Movies no

WriteMoviesEvery 1000

FrameworkDefinitions Dubbeldam2007FlexibleIRMOF-10

FlexibleFramework yes

Component 0 MoleculeName benzene

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 16

Example 5: Continuous Fractional Component Monte Carlo

A mixture simulation of CO2 and N2 in DMOF. The charges of DMOF are listed in the CIF-File using the
‘ atom site charge’ keyword, and RASPA makes use of these usinf the keyword ‘UseChargesFromCIFFile
yes’. The CFCMC method is switched on by using ‘CFSwapLambdaProbability’ (instead of ‘SwapProbabil-
ity’) to swap molecules in and out of the system at a fixed fugacity. The biasing factors are measured using
Wang-Landau sampling during ‘NumberOfEquilibrationCycles 50000’.

SimulationType MonteCarlo

NumberOfCycles 250000

NumberOfEquilibrationCycles 50000

PrintEvery 5000

RestartFile no

ContinueAfterCrash no

WriteBinaryRestartFileEvery 5000

ChargeMethod Ewald

Forcefield local

CutOffVDW 11.5

RemoveAtomNumberCodeFromLabel no

Framework 0

FrameworkName DMOF

UseChargesFromCIFFile yes

UnitCells 1 1 1

HeliumVoidFraction 0.614

ExternalTemperature 300

ExternalPressure 1e5

Component 0 MoleculeName CO2

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1

FugacityCoefficient 1.0

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CBMCProbability 0.0

IdentityChangeProbability 1.0

NumberOfIdentityChanges 2

IdentityChangesList 0 1

SwapProbability 0.0

CFSwapLambdaProbability 1.0

CreateNumberOfMolecules 0

Component 1 MoleculeName N2

StartingBead 0

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1

FugacityCoefficient 1.0

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

104

CBMCProbability 0.0

IdentityChangeProbability 1.0

NumberOfIdentityChanges 2

IdentityChangesList 0 1

SwapProbability 0.0

CFSwapLambdaProbability 1.0

CreateNumberOfMolecules 0

The performance of the CFCMC is written at the end of the output file (after the run has finished). The
biasing factors have lead to relatively flat distribution of Lambda. The efficiency of insertion is much higher
(sometimes dramatically higher) than using conventional MC or even CBMC.

Performance of the CFMC swap lambda move:

===

Component [CO2] total tried: 609238.000000 constant-lambda accepted: 378163.000000 (62.071473 [%])

total tried: 306306.000000 insert-lambda accepted: 75081.000000 (24.511763 [%])

total tried: 303052.000000 remove-lambda accepted: 75005.000000 (24.749878 [%])

Lambda probabilities:

Lambda [0.000000 - 0.047619]: 4.6286053786 (biasing factor: 0.0000000000)

Lambda [0.047619 - 0.095238]: 4.8557520294 (biasing factor: -0.0382812500)

Lambda [0.095238 - 0.142857]: 4.5367783909 (biasing factor: -0.1300000000)

Lambda [0.142857 - 0.190476]: 4.8916129710 (biasing factor: -0.1393750000)

Lambda [0.190476 - 0.238095]: 5.0546694721 (biasing factor: -0.1734375000)

Lambda [0.238095 - 0.285714]: 4.5641049207 (biasing factor: -0.3854687500)

Lambda [0.285714 - 0.333333]: 4.7402092244 (biasing factor: -0.4912500000)

Lambda [0.333333 - 0.380952]: 4.7959290856 (biasing factor: -0.6443750000)

Lambda [0.380952 - 0.428571]: 4.8145570804 (biasing factor: -0.8160937500)

Lambda [0.428571 - 0.476190]: 4.5662385237 (biasing factor: -1.0582812500)

Lambda [0.476190 - 0.523810]: 4.7369267583 (biasing factor: -1.2257812500)

Lambda [0.523810 - 0.571429]: 4.6820275136 (biasing factor: -1.4496875000)

Lambda [0.571429 - 0.619048]: 4.7426710739 (biasing factor: -1.6581250000)

Lambda [0.619048 - 0.666667]: 4.8326106437 (biasing factor: -1.8906250000)

Lambda [0.666667 - 0.714286]: 4.5595094683 (biasing factor: -2.1996875000)

Lambda [0.714286 - 0.761905]: 4.7041020978 (biasing factor: -2.4212500000)

Lambda [0.761905 - 0.809524]: 4.9031016022 (biasing factor: -2.6934375000)

Lambda [0.809524 - 0.857143]: 4.7744289330 (biasing factor: -3.0331250000)

Lambda [0.857143 - 0.904762]: 4.8093051348 (biasing factor: -3.3956250000)

Lambda [0.904762 - 0.952381]: 4.7984729968 (biasing factor: -3.8495312500)

Lambda [0.952381 - 1.000000]: 5.0083867008 (biasing factor: -4.3439062500)

Component [N2] total tried: 609131.000000 constant-lambda accepted: 416943.000000 (68.448823 [%])

total tried: 308180.000000 insert-lambda accepted: 94913.000000 (30.797910 [%])

total tried: 303197.000000 remove-lambda accepted: 94992.000000 (31.330125 [%])

Lambda probabilities:

Lambda [0.000000 - 0.047619]: 4.5778479125 (biasing factor: 0.0000000000)

Lambda [0.047619 - 0.095238]: 4.6920626493 (biasing factor: 0.0130468750)

Lambda [0.095238 - 0.142857]: 4.5589213672 (biasing factor: 0.0173437500)

Lambda [0.142857 - 0.190476]: 4.5372090965 (biasing factor: 0.0282812500)

Lambda [0.190476 - 0.238095]: 4.7957080167 (biasing factor: 0.0900781250)

Lambda [0.238095 - 0.285714]: 4.8075063826 (biasing factor: 0.0614062500)

Lambda [0.285714 - 0.333333]: 4.8118488367 (biasing factor: 0.0159375000)

Lambda [0.333333 - 0.380952]: 4.8087353790 (biasing factor: -0.0679687500)

Lambda [0.380952 - 0.428571]: 4.7098421313 (biasing factor: -0.1794531250)

Lambda [0.428571 - 0.476190]: 4.8561746420 (biasing factor: -0.2247656250)

Lambda [0.476190 - 0.523810]: 4.9319627565 (biasing factor: -0.3290625000)

Lambda [0.523810 - 0.571429]: 4.7724390172 (biasing factor: -0.4631250000)

Lambda [0.571429 - 0.619048]: 4.7635083097 (biasing factor: -0.5971093750)

Lambda [0.619048 - 0.666667]: 4.5849760919 (biasing factor: -0.7748437500)

Lambda [0.666667 - 0.714286]: 4.8377396953 (biasing factor: -0.8583593750)

Lambda [0.714286 - 0.761905]: 4.8470800683 (biasing factor: -0.9987500000)

Lambda [0.761905 - 0.809524]: 4.7574452605 (biasing factor: -1.1678125000)

Lambda [0.809524 - 0.857143]: 4.8400338220 (biasing factor: -1.3005468750)

Lambda [0.857143 - 0.904762]: 4.8914058736 (biasing factor: -1.4714062500)

Lambda [0.904762 - 0.952381]: 4.9600658087 (biasing factor: -1.6489843750)

Lambda [0.952381 - 1.000000]: 4.6574868825 (biasing factor: -1.8750000000)

The computed loadings are averages of integer molecules.

Example 6: Reaction ensemble

As an example, the industrially important propene metathesis is described by three equilibrium reactions

• 2 C3H6↔ C2H4 + trans-C4H8

• 2 C3H6↔ C2H4 + cis-C4H8

• cis-C4H8↔ trans-C4H8

Only two reactions are independent and need to be included. In addition to the MC moves associated with
simulating a chosen ensemble, also “reaction” moves are performed:

1. randomly choose a reaction,

105

2. randomly choose whether to do a forward or backward reaction (this determines the “reactant” and
“product” molecule types),

3. randomly select the reactant molecules and remove them from the system,

4. insert the product molecules at random positions,

5. accept or reject the reaction step with the appropriate acceptance probability.

SimulationType MC

NumberOfCycles 100000

NumberOfInitializationCycles 0

NumberOfEquilibrationCycles 25000

RestartFile no

PrintEvery 1000

ContinueAfterCrash no

WriteBinaryRestartFileEvery 500

ChargeMethod none

Forcefield local

CutOff 12.0

EwaldPrecision 1e-6

Box 0

BoxLengths 150 150 150

ExternalTemperature 450.0

ExternalPressure 101300.0

CutOff 14.0

ComputeNumberOfMoleculesHistogram yes

WriteNumberOfMoleculesHistogramEvery 5000

Reaction 2 0 0 0 0 1 0 1

Reaction 0 0 0 1 0 0 1 0

ProbabilityCFCRXMCLambdaChangeMove 1.0

VolumeChangeProbability 0.1

Component 0 MoleculeName propene

MoleculeDefinition TraPPE

LnPartitionFunction 87.1384

TranslationProbability 35.0

RotationProbability 53.9

ReinsertionProbability 10.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 400

Component 1 MoleculeName ethene

MoleculeDefinition TraPPE

LnPartitionFunction 82.0298

TranslationProbability 35.0

RotationProbability 53.9

ReinsertionProbability 10.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 0

Component 2 MoleculeName cis-2-butene

MoleculeDefinition TraPPE

LnPartitionFunction 89.0386

TranslationProbability 35.0

RotationProbability 53.9

ReinsertionProbability 10.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 0

Component 3 MoleculeName trans-2-butene

MoleculeDefinition TraPPE

LnPartitionFunction 89.4937

TranslationProbability 35.0

RotationProbability 53.9

ReinsertionProbability 10.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 0

Reactions are given as a list of stoichometries for the reactants and then the products, so there should two
times the number-of-components integer numbers.

In the output you will see for each PrintEvery the number of integer, fractional, and reaction molecules.
For each reaction the biasing factors are listed.

Reactions:

--

Reaction 0, current Lambda: 0.7426373180, maximum Lambda-change: 1.0000000000

Fractional molecules: 338 (ethene) 389 (trans-2-butene) <--> 375 (propene) 291 (propene)

Biasing Factors: 0.000000 0.011875 0.040000 0.024375 0.014375 0.036250 -0.039375 0.008125 0.019375 -0.013750

0.002500 -0.011875 0.052500 0.013750 0.000625 -0.021250 -0.017500 -0.016250 -0.063125 -0.034375

-0.060625

Reaction 1, current Lambda: 0.6428890080, maximum Lambda-change: 1.0000000000

Fractional molecules: 236 (cis-2-butene) <--> 243 (trans-2-butene)

Biasing Factors: 0.000000 0.014375 -0.023125 0.027500 -0.007500 0.038750 -0.004375 0.062500 0.016250 0.019375

-0.020000 0.065625 0.074375 0.006250 0.023125 0.054375 0.017500 0.038750 0.005000 0.037500

-0.054375

Amount of molecules per component:

106

−1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

F
re

e
 e

n
e
rg

y
 /
 −

Dimensionless position / −

gA gB

qA*

(a)

 0 0.2 0.4 0.6 0.8 1

H
is

to
g
ra

m
 /
 −

Dimensionless position / −

A
B
C

(b)

Figure 12: Umbrelle sampling: (a) free energy profile from Widom insertion (the inverse will be used as a biasing potential), (b)
the histograms of the position of the tagged particle in the direction A (biasing direction), B, and C.

Component 0 (propene), current number of integer/fractional/reaction molecules: 240/0/2 (average 243.80499), density: 0.70559 (average 0.68615) kg/m^3]

Component 1 (ethene), current number of integer/fractional/reaction molecules: 80/0/1 (average 78.09750), density: 0.15680 (average 0.14652) kg/m^3]

Component 2 (cis-2-butene), current number of integer/fractional/reaction molecules: 32/0/1 (average 30.20586), density: 0.12544 (average 0.11333) kg/m^3]

Component 3 (trans-2-butene), current number of integer/fractional/reaction molecules: 48/0/2 (average 47.89165), density: 0.18816 (average 0.17970) kg/m^3]

At the end of the output, after the run has finished, the statistics of the RXMC are printed:
Performance of the Reaction MC lambda move:

===

Reaction [0] total tried: 524722.000000 constant-lambda accepted: 508906.000000 (96.985832 [%])

total tried: 242207.000000 forward-reaction accepted: 219761.000000 (90.732720 [%])

total tried: 247919.000000 backward-reaction accepted: 219688.000000 (88.612813 [%])

Reaction [1] total tried: 524439.000000 constant-lambda accepted: 509833.000000 (97.214929 [%])

total tried: 244749.000000 forward-reaction accepted: 219887.000000 (89.841838 [%])

total tried: 245258.000000 backward-reaction accepted: 219863.000000 (89.645598 [%])

Example 7: Umbrella sampling

In Umbrelle sampling we can tag one particle and add a biasing potential to it. Figure 12(a) shows the used
biasing potential, which is directly obtained from Widom insertion of methane in LTA. Any profile will do
as long as it close enough. As can be seen in Figure 12(b), if we do a MC simulation with only this particle
(second component zero particles), then the resulting histogram will be flat in the direction that we bias.
The other directions are unbiased. Using this profile, we can easily obtain the free energy at higher loadings.
Here is the input for methane in LTA at 4 methane/cage. The output will have a directory ’Histograms’
containg the histograms for each component in the A, B, C directions. Also, it automatically computes the
true free energy (from the biasing-spline plus the histograms) in file starting with ’FreeEnergy’.

SimulationType MonteCarlo

NumberOfCycles 10000000000

NumberOfInitializationCycles 1000

PrintEvery 5000

Forcefield GenericZeolites

Framework 0

FrameworkName LTA_SI

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

ComputePositionHistogram yes

WritePositionHistogramEvery 10000

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

BiasingProfile Profile.dat

BiasingMethod Umbrella

BiasingDirection A

BlockPockets yes

107

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 1

component 1 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 31

The biasing spline (here called ’Profile.dat’) has a header describing the spline:

1801

0.5

0.25 0.75 12.2775

0.0 0.5

0 5.87638 0.0919053

0.000555556 5.79087 0.0924271

...

The lines have the following meaning:

• the number of data points in the file,

• the dimensionless position of the barrier q∗A

• the dimensionless position of the minimum of the free energy gA and gB , and the distance d between
gA and gB in Angstrom

• the left and right boundary of gA

followed by the actual data points:

• dimensionless position

• dimensionless free energy βF or F in unit of kBT

• error in the free energy

Example 8: dcTST diffusivities

The first step for dcTST is to compute the free energy profile as a function of a one-dimensional reaction
coordinate. In general this mapping is complex, but for certain zeolites the mapping is trivial. As an
example, we use the LTA-type zeolite with a cubic unit cell of 24.555 Å. For this structure, the mapping can
be dan in x, y, or z and all three give identical results. We can define a reaction coordinate from x = 0 to
x = 1 with several key values:

• x=0: the window on the left.

• x=0.25 the center of the left cage A.

• x=0.5: the window in the middle seperating the left cage A from the right cage B.

• x=0.75 the center of the right cage A.

• x=1: the window on the right.

108

Figure 13: The reaction coordinate mapping for the LTA-type structure.

Computing the free energy profile

The first step is to compute the free energy profile. A convenient way at low loading is to use Widom
insertion.

SimulationType MonteCarlo

NumberOfCycles 1000000000000000

NumberOfInitializationCycles 1000

PrintEvery 10000

Forcefield GenericZeolites

Framework 0

FrameworkName LTA_SI

RemoveAtomNumberCodeFromLabel yes

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

WriteFreeEnergyProfileEvery 5000

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

ComputeFreeEnergyProfile yes

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 0

The result converge slowly to a nice profile. The scatter is the highest at places where the free energy
is high, and the scatter in the data is low at places of low free energy. We can now define the diffusion in
terms of figure 14: we compute the diffusion of a molecule from gA in cage A to gB in cage B across barrier
q∗A. To input this information we make a ”biasing profile”-file (Profile.dat) with this data at the top

1801

0.5

0.25 0.75 12.2775

0.0 0.5

......

First line is the number of data points (here 1801), then the position of the barrier q∗A (here 0.5), then gA,
gB , and the distance in Angstrom between them (here 0.25, 0.75, and 12.2775, respectively). and lastly the
range of cage A (here from 0.0 to 0.5).

109

−1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1
F

re
e
 e

n
e
rg

y
 /
 −

Dimensionless position / −

gA gB

qA*

Figure 14: The free energy obtained with Widom insertion.

Computing TST-estimates

We can now use this file

BiasingProfile Profile.dat

BiasingMethod Umbrella

BiasingDirection A

to for example perform Umbrella sampling. In addition, it will create a spline-file BiasingSpline_methane_0.dat,
that contains a lot of information and a fitting spline.

Dividing surfaces: 0.500000000000 [-]

Free energy minima: 0.250000000000 [-] 0.750000000000 [-] lattice distance: 12.277500000000 [A]

Left and right boundary: 0.000000000000 [-] 0.500000000000 [-]

F(QstarA): 5.794749230708

Exp(-Beta QStarA): 0.00304349354572

Integral Exp(-Beta q) over region left boundary (0) to q* (0.5): 1.10187629401e-09

Mass reaction bead: 16.042460000000 [au]

|v|=Sqrt(k_B T/(2.0*PI*Mass)): 222.467902978164 [m/s]

P(q*) dq: 2762100.93845 [1/m]

k^TST= |v| P(q*) dq, i.e. the TST hopping rate: 614478803.59 [1/s]

D^TST: 9.26246952572e-10 [m^2/s]

RM Int1, Integral Exp(Beta q) over region gA to gB: 18.077489357418

RM Int2, Integral Exp(-Beta q) over full region: 0.448738054981

RM Int1*Int2: 8.112057413187

RM 1/(Int1*Int2): 0.123273289261

<n_A>: 24.555000000000

1/<n_A>: 0.040724903278

It uses the computed smoothed spline that fits the data to calculate the integrals and dcTST information.
The kTST is 614478803.59 events per second, and DTST = 9.26246952572e− 10 m2/s. The spline (column 1
and 2) is convenient as it is continuous and smooth.

Computing free energies at finite loading with brute-force MD

Of course, one can try to compute the free energy using brute-force MD, for example at an average of 8
molecules per cage.

110

SimulationType MD

NumberOfCycles 100000000

NumberOfInitializationCycles 5000

NumberOfEquilibrationCycles 10000

PrintEvery 10000

Forcefield GenericZeolites

Framework 0

FrameworkName LTA_SI

RemoveAtomNumberCodeFromLabel yes

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

ComputePositionHistogram yes

WritePositionHistogramEvery 10000

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 64

However, this only works for low free energy barriers.

Computing free energies at finite loading using Umbrella sampling

With Umbrelle samplign we can bias the movement of a single tagged molecule at the proper chosen load-
ing. We therefore need two components: component one is a single biased molecule, and component two
are the other (unbiased) particles. We can compute the histogram of the positions and for component one,
recomputed the actual free energy taking the biasing into account.

SimulationType MonteCarlo

NumberOfCycles 1000000000000000

NumberOfInitializationCycles 1000

PrintEvery 1000

Forcefield GenericZeolites

Framework 0

FrameworkName LTA_SI

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

ComputePositionHistogram yes

WritePositionHistogramEvery 10000

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

BiasingProfile Profile.dat

BiasingMethod Umbrella

BiasingDirection A

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 1

component 1 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 63

Computing the dynamical correction

The TST estimates are . . . estimates. In reality, not all particles at the dividing surface actually cross the
boundary. We have to explicitly compute this property using many short MD trajectories. Step one is to
compute initial state for these trajectories:
SimulationType MonteCarlo

NumberOfCycles 100000000

NumberOfInitializationCycles 1000

PrintEvery 100

Forcefield GenericZeolites

111

Framework 0

FrameworkName LTA_SI

RemoveAtomNumberCodeFromLabel yes

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

WritedcTSTSnapShotsToFile yes

PutMoleculeOnBarrier yes

BarrierPosition 0.5 0.25 0.25

WritedcTSTSnapShotsEvery 100

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

TranslationProbability 1.0

TranslationDirection bc

RotationProbability 1.0

RegrowInPlaceProbability 1.0

CreateNumberOfMolecules 0

component 1 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

ComputeFreeEnergyProfile yes

BlockPockets yes

BlockPocketsFileName LTA_SI

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 63

To sample configurations, we need to write out ”snapshots”, but with some sampling in between to
diminish the correlation between the snapshots. We also need to place the particle at the barrier and define
the barrier position.

WritedcTSTSnapShotsToFile yes

PutMoleculeOnBarrier yes

BarrierPosition 0.5 0.25 0.25

WritedcTSTSnapShotsEvery 100

Also note, that the particle on the barrier is restricted to only move one the barrier plane.

TranslationProbability 1.0

TranslationDirection bc

We can do uses the sampled snapshots to run many barrier-recrossing MD trajectories.

SimulationType BarrierRecrossing

Forcefield GenericZeolites

Framework 0

FrameworkName LTA_SI

RemoveAtomNumberCodeFromLabel yes

ShiftUnitCells 0.0 0.0 0.0

UnitCells 1 1 1

ExternalTemperature 600.0

PutMoleculeOnBarrier yes

FreeEnergyMappingType A

BarrierPosition 0.5 0.25 0.25

MaxBarrierDistance 4.0

MaxBarrierTime 10.0

NumberOfVelocities 1

component 0 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

CreateNumberOfMolecules 0

112

component 1 MoleculeName methane

StartingBead 0

MoleculeDefinition TraPPE

CreateNumberOfMolecules 63

4.5 Auxiliary examples

Example 1: Computing the ideal gas Rosenbluth weight of a molecule

To compare simulation values to experiments a reference state should be chosen. A convenient reference
state is the ideal gas. The reference Rosenbluth value can be computed from a simulation of a single chain at
the desired temperature. Note that for Rosenbluth weights several chains can be computed simultaneously,
since they are computed from Widom insertions where the molecule is never actually inserted in the system.

SimulationType MonteCarlo

NumberOfCycles 25000

PrintEvery 1000

PrintPropertiesEvery 1000

Forcefield GarciaPerez2006

Box 0

BoxLengths 30 30 30

ExternalTemperature 573.0

Component 0 MoleculeName C5

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 1 MoleculeName C6

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 2 MoleculeName C7

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 3 MoleculeName C8

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

Component 4 MoleculeName C9

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

The output contains
Average Widom Rosenbluth factor:

================================

[C5] Average Widom: 0.0668555 +/- 0.000131 [-]

[C6] Average Widom: 0.0175062 +/- 0.000067 [-]

[C7] Average Widom: 0.00462547 +/- 0.000010 [-]

[C8] Average Widom: 0.00122842 +/- 0.000005 [-]

[C9] Average Widom: 0.000328228 +/- 0.000001 [-]

which is printed every ‘PrintPropertiesEvery’ cycles. The ‘Rosenbluth factor new’ are the values of interest.
The average and error estimated from block averages is printed at the end of the simulation.

Example 2: Computing the helium void-fraction of a structure (pore volume)
The void fraction is the empty space of a structure divided by the total volume. In experiment it is measured
using helium, because helium does (almost) not adsorb. It would be consistent to also measure this fraction
using helium at room temperature. In practice it is easily computed from Widom particle insertion as the
void fraction corresponds to the new Rosenbluth weight.

SimulationType MonteCarlo

NumberOfCycles 500000

PrintEvery 1000

PrintPropertiesEvery 1000

Forcefield GenericMOFs

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

113

ExternalTemperature 298.0

Component 0 MoleculeName helium

MoleculeDefinition TraPPE

WidomProbability 1.0

CreateNumberOfMolecules 0

The Rosenbluth weight, and therefore the helium void fraction of IRMOF-1 is approximately 0.80. The
pore volume is the void fraction times the unit cell volume. Note that the values dependent slightly on the
cutoff, and shifted vs. truncated potentials.

Average Widom Rosenbluth factor:

================================

Block[0] 0.803749 [-]

Block[1] 0.803741 [-]

Block[2] 0.803497 [-]

Block[3] 0.803818 [-]

Block[4] 0.803536 [-]

--

[helium] Average Widom: 0.803668 +/- 0.000255 [-]

Example 3: Computing the surface area of IRMOF-1

The geometric surface area can easily be computed by ‘rolling an atom over the surface’ and measure the
surface. In practice, for each framework atom points are generate on a sphere around the framework atom,
and the amount of overlap with other framework atoms is determined. The fraction of overlap is multiplied
times the area of the sphere. The summation over all framework atoms gives the geometric surface area.
This example shows how to compute the surface area of IRMOF-1. ‘SurfaceAreaSamplingPointsPerShere’
is the amount of points generated on sphere at a distance dependent on the mixing rule, the probe-atom
and the current framework atom type. The more points the higher the accuracy. The simulation usually
takes between 5 and 30 minutes.

In this example the structure is probed with hydrogen using the second bead (‘H com’ with σ = 2.958
Å). The option ‘SurfaceAreaProbeDistance Sigma’ sets the overlap criteria to σ instead of the default σ1/6.

SimulationType MonteCarlo

NumberOfCycles 10000

PrintEvery 100

PrintPropertiesEvery 100

Forcefield Dubbeldam2007FlexibleIRMOF-1

CutOff 12.8

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

SurfaceAreaProbeDistance Sigma

Component 0 MoleculeName hydrogen

StartingBead 1

MoleculeDefinition TraPPE

SurfaceAreaProbability 1.0

CreateNumberOfMolecules 0

The area depends on the probe atom and on whether the well-depth at 21/6σ (≈ 1.12246σ) is used (‘Sur-
faceAreaProbeDistance Minimum’)

Surface area: 2082.509853 [m^2/cm^3]

Surface area: 3510.189484 [m^2/g]

or σ is used as the distance criteria (‘SurfaceAreaProbeDistance Sigma’):
Surface area: 2266.243128 [m^2/cm^3]

Surface area: 3819.882429 [m^2/g]

Example 4: Powder diffraction pattern
Powder diffraction is a scientific technique using X-Ray or neutron diffraction on powder or microcrys-
talline samples for structural characterization of materials. The most widespread use of powder diffraction
is in the identification and characterization of crystalline solids, each of which produces a distinctive diffrac-
tion pattern. Both the positions (corresponding to lattice spacings) and the relative intensity of the lines are
indicative of a particular phase and material, providing a ”fingerprint” for comparison. The database of
IZA for zeolite has the option to generate the powder diffraction pattern:

http://izasc.ethz.ch/fmi/xsl/IZA-SC/xrd.xsl

114

Here, an example of the powder diffraction pattern for the TON-type zeolite. Only one unit cell is suf-
ficient for the computation (interactions are not needed in the computation, just the position and types of
the atoms and the shape and size of the unit cell). The diffraction pattern usually takes a few seconds of
computation, and the result is written to ‘PowderDiffraction/System[0]/’. It contains two files: ‘PeakInfor-
mation.dat’ and ‘Spectrum.dat’.

SimulationType MonteCarlo

NumberOfCycles 0

Forcefield ElenaSodiumCalcium

Framework 0

FrameworkName TON

UnitCells 1 1 1

ComputePowderDiffractionPattern yes

DiffractionType Xray

DiffractionRadiationType Copper

WaveLengthType single

TwoThetaMin 1

TwoThetaMax 50

TwoThetaStep 0.02

PeakShape PseudoVoigt

PeakWidthModifierU 0.005

The first elements of the file ‘PeakInformation.dat’ look like:
2-theta d h k l Mult Lp Scat. Factor Intensity

8.15213 0.09220 [1, 1, 0] 4 392.85927 19014.2044440544 100.000000

10.15550 0.11481 [0,-2, 0] 2 252.33302 12381.2641234081 20.911920

12.77464 0.14431 [2, 0, 0] 2 158.63285 19714.5657150741 20.933178

16.34589 0.18441 [2, 2, 0] 4 96.01738 6730.9888808237 8.651941

16.55216 0.18672 [-1,-3, 0] 4 93.58434 739.8429009358 0.926889

19.42690 0.21886 [-1,-1,-1] 4 67.33674 3040.0925085839 2.740461

.......................................

So, the elements are the angle 2θ, the d-spacing, the Miller indices h,k, and l, the multiplicity, the Lorentz-
Polarization factor, the scattering factor (including anomalous scattering), and the relative intensity (where
the largest intensity is set to 100). The second file ‘Spectrum.dat’ can be plotted using gnuplot, the first
column is 2θ, the second column the intensity. The shape of the peaks can be influenced with ‘PeakShape’,
and the peak width modifiers ‘PeakWidthModifierU’, ‘PeakWidthModifierV’, and ‘PeakWidthModifierW’.

Example 5: Making and using ‘grids’

For rigid frameworks one can precompute the energy-grid, because the potential energy field induces
by the framework does not evolve in time. For each of the pseudo atoms one can generate a 3D grid
where the spacing can be defined. In the example the grid points are 0.1 Å spaced apart (a=b=c=25.832Å,
258× 258× 258 = 17173512 points). A shorter distance results in more points, more accuracy, but also a big-
ger grid (more memory is needed). Note that RASPA can handle a ‘mixture’ of grids and fully computed
interactions. The table stores U, ∂U∂x , ∂U

∂y , ∂U
∂z , ∂2U

∂x∂y , ∂2U
∂x∂z , ∂2U

∂y∂z , and ∂3U
∂x∂y∂z at each grid point. The inter-

polation can handle non-orthorhombic cells and can also be used for molecular dynamics (i.e. the force
interpolation is consistent with the energy interpolation).

SimulationType MakeGrid

Forcefield FlexibleIRMOF-1

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

NumberOfGrids 2

GridTypes C_co2 O_co2

SpacingVDWGrid 0.1

SpacingCoulombGrid 0.1

The grids are stored in ‘/share/raspa/grids/FlexibleIRMOF-1/IRMOF-1/0.100000’ and the names are ‘IRMOF-
1 C co2 shifted.grid’, ‘IRMOF-1 O co2 shifted.grid’, and ‘IRMOF-1 Electrostatics Ewald.grid’. The last grid
is the real part of the Ewald summation, i.e. erfc(r)/r using a probe charge of +1. They can be used like:

SimulationType MonteCarlo

NumberOfCycles 5000

NumberOfInitializationCycles 5000

PrintEvery 100

Forcefield FlexibleIRMOF-1

ChargeMethod Ewald

EwaldPrecision 1e-6

115

Framework 0

FrameworkName IRMOF-1

UnitCells 1 1 1

ExternalTemperature 298.0

ExternalPressure 5000000.0

NumberOfGrids 2

GridTypes C_co2 O_co2

SpacingVDWGrid 0.1

SpacingCoulombGrid 0.1

UseTabularGrid yes

Component 0 MoleculeName CO2

MoleculeDefinition TraPPE

TranslationProbability 1.0

RotationProbability 1.0

ReinsertionProbability 1.0

SwapProbability 1.0

CreateNumberOfMolecules 0

In the output file, in the framework section, the used grids are tested one by one. Make sure the relative
error is smaller than about 0.001 for the energies. If not, either the wrong grid is used (the current settings
for the force field, cutoff etc. are different from what the grid has been made with) or the structure requires
a higher interpolation density.

PseudoAtom 17 Framework-[C_co2]

===

Boltzmann average energy VDW (table) : -156.339634664283

Boltzmann average energy VDW (full) : -156.338313481496

Boltzmann relative error VDW : 0.000053898154

Boltzmann average energy Coulomb (table) : -162.513089693416

Boltzmann average energy Coulomb (full) : -162.506443012736

Boltzmann relative error Coulomb : 0.000043629350

===

Boltzmann average Force[x] VDW (table) : 21.192078655566

Boltzmann average Force[x] VDW (full) : 21.189556572402

Boltzmann relative error VDW : 0.000372564644

Boltzmann average Force[x] Coulomb (table) : -18.377488985660

Boltzmann average Force[x] Coulomb (full) : -18.400340940728

Boltzmann relative error Coulomb : 0.001062521118

===

Boltzmann average Force[y] VDW (table) : 11.482227555716

Boltzmann average Force[y] VDW (full) : 11.471251864189

Boltzmann relative error VDW : 0.000613518208

Boltzmann average Force[y] Coulomb (table) : -9.127387761179

Boltzmann average Force[y] Coulomb (full) : -9.116110451771

Boltzmann relative error Coulomb : 0.001224593420

===

Boltzmann average Force[z] VDW (table) : 15.563260207643

Boltzmann average Force[z] VDW (full) : 15.564130944046

Boltzmann relative error VDW : 0.000679317971

Boltzmann average Force[z] Coulomb (table) : -1.488503262903

Boltzmann average Force[z] Coulomb (full) : -1.495510408023

Boltzmann relative error Coulomb : 0.001035710819

PseudoAtom 18 Framework-[O_co2]

===

Boltzmann average energy VDW (table) : -369.207117377703

Boltzmann average energy VDW (full) : -369.204503904417

Boltzmann relative error VDW : 0.000026948884

Boltzmann average energy Coulomb (table) : 89.951068190157

Boltzmann average energy Coulomb (full) : 89.951352829264

Boltzmann relative error Coulomb : 0.000045972426

===

Boltzmann average Force[x] VDW (table) : 11.109322726989

Boltzmann average Force[x] VDW (full) : 11.096831498576

Boltzmann relative error VDW : 0.000516197616

Boltzmann average Force[x] Coulomb (table) : -0.340130177955

Boltzmann average Force[x] Coulomb (full) : -0.327666240972

Boltzmann relative error Coulomb : 0.001244675144

===

Boltzmann average Force[y] VDW (table) : 30.619340781954

Boltzmann average Force[y] VDW (full) : 30.622572369859

Boltzmann relative error VDW : 0.000543276034

Boltzmann average Force[y] Coulomb (table) : -0.935937742873

Boltzmann average Force[y] Coulomb (full) : -0.945257821376

Boltzmann relative error Coulomb : 0.001176433253

===

Boltzmann average Force[z] VDW (table) : 1.461304712846

Boltzmann average Force[z] VDW (full) : 1.467027686101

Boltzmann relative error VDW : 0.000601547053

Boltzmann average Force[z] Coulomb (table) : 5.220361913531

Boltzmann average Force[z] Coulomb (full) : 5.220055714404

Boltzmann relative error Coulomb : 0.001308536873

Example 6: Writing and using binary restart ”crash-recovery” files

Usually, and unfortunately sometimes often, computers crash, are rebooted to upgrade software or the
”walltime”-limit on the cluster has been reached etc. One can force RASPA to write a ”binary-restart-
file” from which the program can exactly recover and continued where it left off. The results are identical

116

because the data has been written in binary format and even the random number generator picks up where
it left off. One has to add two lines to the ‘simulation.input’ file:

ContinueAfterCrash no

WriteBinaryRestartFileEvery 1000

The second line tells the program to write the file every 1000 cycles. Initially, the ‘ContinueAfterCrash’ is
‘no’. For example, the adsorption of methane in MFI (Basic example 6) should be change to

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 1000

PrintEvery 100

ContinueAfterCrash no

WriteBinaryRestartFileEvery 1000

Forcefield ElenaSodiumCalcium

Framework 0

FrameworkName MFI

UnitCells 2 2 2

HeliumVoidFraction 0.29

ExternalTemperature 300.0

ExternalPressure 10000.0 20000.0 30000.0 40000.0

Component 0 MoleculeName methane

MoleculeDefinition TraPPE

TranslationProbability 0.5

ReinsertionProbability 0.5

SwapProbability 1.0

CreateNumberOfMolecules 0

It will write a file ‘binary restart.dat’ in the directory ‘CrashRestart’. The size of the file is usually small (a
few MB). To restart the code, simply change ‘ContinueAfterCrash no’ to ‘ContinueAfterCrash yes’

ContinueAfterCrash yes

WriteBinaryRestartFileEvery 1000

117

118

5
The source code

5.1 Introduction

5.2 Data types

There are several new types, the two most important ones are

• REAL
REAL is a floating point number. It is defined in ‘src/constants.h’ as

#define REAL double

but if one needs higher precision one could use

#define REAL long double

and using the ‘qd’ library it is even possible to use arbitrary precision.

• VECTOR
An structure with three elements ‘x’, ‘y’, and ‘z’.

typedef struct point

{

REAL x;

REAL y;

REAL z;

} POINT,VECTOR;

• REAL MATRIX3x3
A 3× 3 matrix, used as transformations on vectors (like ‘strain’) and for the three cell-vectors making
up the cell matrix. It is defined in ‘src/matrix.h’.

119

typedef struct real_matrix3x3

{

REAL ax;

REAL ay;

REAL az;

REAL bx;

REAL by;

REAL bz;

REAL cx;

REAL cy;

REAL cz;

} REAL_MATRIX3x3;

5.3 Datastructures

Box properties and periodic boundaries

For each system, a cell box and other properties are defined in ‘src/simulation.h’

REAL_MATRIX3x3 *Box; // the cell matrix

REAL_MATRIX3x3 *InverseBox; // the inverse of the cell matrix

REAL_MATRIX3x3 *ReplicaBox; // the cell matrix of the replica system

REAL_MATRIX3x3 *InverseReplicaBox; // the inverse of the the cell matrix of the replica system

INT_VECTOR3 *NumberOfReplicaCells; // the integere number of replicas in each direction a,b,c

int *TotalNumberOfReplicaCells; // the total number of replica cells

VECTOR *ReplicaShift; // the shift in a,b,c for each replica cell

int *UseReplicas; // whether or not to use replicas

REAL_MATRIX3x3 *BoxProperties; // properties of the cell matrix (i.e. perpendicular lengths)

REAL_MATRIX3x3 *InverseBoxProperties; // properties of the inverse cell matrix

REAL *Volume; // the volume

REAL *AlphaAngle; // the alpha-angle of the cell

REAL *BetaAngle; // the beta-angle of the cell

REAL *GammaAngle; // the gamma-angle of the cell

int *BoundaryCondition; // the boundary condition (i.e. ‘RECTANGULAR’ or ‘TRICLINIC’)

These are dynamically allocated arrays and have the same length as the amount of systems present. For
example, in a Gibbs simulation two systems are needed, one for the gas-phase and one for the liquid phase.
‘Volume[0]’ would give the volume of the first cell, and ‘Volume[1]’ would give the volume of the second
cell.

Periodic boundaries are applied after each distance computation calling the function ‘ApplyBound-
aryCondition’ (defined in ‘src/potentials.h’) It operates on a ‘VECTOR’ and give the corrected vector back.
The system is specified with the global variable ‘CurrentSystem’.

VECTOR ApplyBoundaryCondition(VECTOR dr)

{

VECTOR s,t;

switch(BoundaryCondition[CurrentSystem])

{

case FINITE:

break;

case RECTANGULAR:

case CUBIC:

dr.x-=Box[CurrentSystem].ax*(REAL)NINT(dr.x*InverseBox[CurrentSystem].ax);

dr.y-=Box[CurrentSystem].by*(REAL)NINT(dr.y*InverseBox[CurrentSystem].by);

dr.z-=Box[CurrentSystem].cz*(REAL)NINT(dr.z*InverseBox[CurrentSystem].cz);

break;

120

case TRICLINIC:

// convert from xyz to abc

s.x=InverseBox[CurrentSystem].ax*dr.x+InverseBox[CurrentSystem].bx*dr.y+InverseBox[CurrentSystem].cx*dr.z;

s.y=InverseBox[CurrentSystem].ay*dr.x+InverseBox[CurrentSystem].by*dr.y+InverseBox[CurrentSystem].cy*dr.z;

s.z=InverseBox[CurrentSystem].az*dr.x+InverseBox[CurrentSystem].bz*dr.y+InverseBox[CurrentSystem].cz*dr.z;

// apply boundary condition

t.x=s.x-(REAL)NINT(s.x);

t.y=s.y-(REAL)NINT(s.y);

t.z=s.z-(REAL)NINT(s.z);

// convert from abc to xyz

dr.x=Box[CurrentSystem].ax*t.x+Box[CurrentSystem].bx*t.y+Box[CurrentSystem].cx*t.z;

dr.y=Box[CurrentSystem].ay*t.x+Box[CurrentSystem].by*t.y+Box[CurrentSystem].cy*t.z;

dr.z=Box[CurrentSystem].az*t.x+Box[CurrentSystem].bz*t.y+Box[CurrentSystem].cz*t.z;

break;

default:

fprintf(stderr,"Error: Unkown boundary condition....\n");

exit(0);

break;

}

return dr;

}

The function ‘NINT’ is faster version of ‘rint’ (or ‘floor’).

#define NINT(x) ((int)((x)>=0.0?((x)+0.5):((x)-0.5)))

A common occurrence of the boundary conditions application is for two positions of atoms ‘posA’ and
‘posB’ (of type ‘VECTOR’)

dr.x=posA.x-posB.x;

dr.y=posA.y-posB.y;

dr.z=posA.z-posB.z;

dr=ApplyBoundaryCondition(dr);

rr=SQR(dr.x)+SQR(dr.y)+SQR(dr.z);

r=sqrt(rr);

There are functions you can use to transform from Cartesian to fractional coordinates (defined in ‘src/potentials.h’)

VECTOR ConvertFromXYZtoABC(VECTOR t)

{

VECTOR s;

s.x=InverseBox[CurrentSystem].ax*t.x+InverseBox[CurrentSystem].bx*t.y+InverseBox[CurrentSystem].cx*t.z;

s.y=InverseBox[CurrentSystem].ay*t.x+InverseBox[CurrentSystem].by*t.y+InverseBox[CurrentSystem].cy*t.z;

s.z=InverseBox[CurrentSystem].az*t.x+InverseBox[CurrentSystem].bz*t.y+InverseBox[CurrentSystem].cz*t.z;

return s;

}

and from fractional coordinates to Cartesian

VECTOR ConvertFromABCtoXYZ(VECTOR t)

{

VECTOR dr;

dr.x=Box[CurrentSystem].ax*t.x+Box[CurrentSystem].bx*t.y+Box[CurrentSystem].cx*t.z;

dr.y=Box[CurrentSystem].ay*t.x+Box[CurrentSystem].by*t.y+Box[CurrentSystem].cy*t.z;

dr.z=Box[CurrentSystem].az*t.x+Box[CurrentSystem].bz*t.y+Box[CurrentSystem].cz*t.z;

return dr;

}

(Pseudo-)atoms

The data structure ‘PSEUDO ATOM’ contains information on atoms, either real atoms or united atoms
where several atoms are lumped together (for example: CH3).

121

// Pseudoatoms

typedef struct PseudoAtom

{

char Name[256]; // the Name of the pseudo-atom (‘CH3’,‘H’,‘O’ etc).

char PrintToPDBName[256]; // the string to print to a pdb-file as name

int PrintToPDB; // whether to write this atom to the pdf-file or not

char ChemicalElement[256]; // the chemical element (‘O’, ‘H’, etc)

int ScatteringType; // the scattering type (powder diffraction)

int AnomalousScatteringType; // the anmalous scattering type (powder diffraction)

REAL TemperatureFactor; // the temperature factor (powder diffraction)

REAL Mass; // the mass of the pseudo-atom

REAL Charge; // the charge of the pseudo-atom

REAL Polarization; // the polarization of the atom

int HasCharges; // whether or not the atom has atoms with charges

int IsPolarizable; // whether or not the atom has a induced point dipole

int Interaction; // whether or not the atom has interactions

REAL Radius; // the radius (used for calculating Bonds in the zeolite)

int Connectivity; // the connectivity (used for calculating Bonds/Bends/Torsion in the framework)

} PSEUDO_ATOM;

A typical use is, once the type is known, to retrieve the charge for a pseudo-atoms:

REAL q;

q=PseudoAtom[type].Charge;

Use the following to find out to what pseudoatom a string corresponds to

int type;

type=ReturnPseudoAtomNumber("CH4");

However, usually the type is a property of each of the atoms of a molecule.

int type;

type=Framework[1].Atoms[0][10].Type;

and ‘type’ can then be used to get the mass, charge, polarization, etc. Here, the type is retrieve for atom
number 11 (c is starting from 0, unlike Fortran) of the first framework of the second system.

Framework
Atoms make up a framework, several frameworks can make up 1 system. The definition of a framework
atom ‘FRAMEWORK ATOM’ is

typedef struct framework_atom

{

int Type; // the pseudo-atom type of the atom

int AssymetricType; // the ‘asymmetric’ type

// MC/MD properties

POINT Position; // the position of the atom

POINT ReferencePosition; // the ‘reference’ position of the atom

// MD properties

VECTOR Velocity; // the velocity of the atom

VECTOR ReferenceVelocity; // the ‘reference’ velocity of the atom

VECTOR Force; // the force acting on the atom

VECTOR ElectricField; // the electricfield vector

VECTOR ReferenceElectricField; // the ‘reference’ electricfield vector

VECTOR InducedElectricField; // the induced electric field

VECTOR InducedDipole; // the induced dipole moment on this atom

int HessianIndex; // the index in the Hessian matrix for this atom

} FRAMEWORK_ATOM;

122

It contains the properties you’d expect, like type, position, velocity, and force. For polarization, also electric
field, induced electric field, and induced dipole are needed. For many applications, one needs to backup
the positions and/or velocities. The field ‘ReferencePosition’ and ‘ReferenceVelocity’ are useful for that.
Also they can be used for some algorithms which need the ‘old’ values to. An example is the numerical
computation of stress. First all positions are copied to the ‘ReferencePosition’, then the positions ‘Position’
are generated from the strain at infinite small strain difference and the finite difference scheme is applied.
A framework-structure ‘FRAMEWORK COMPONENT’ is defined per system

FRAMEWORK_COMPONENT *Framework;

with

typedef struct FrameworkComponent

{

char (*Name)[256]; // the name of the frameworks

int TotalNumberOfAtoms; // the total number of atoms of the frameworks

int TotalNumberOfUnitCellAtoms; // the total number of atoms of the unit cell

REAL FrameworkDensity; // the total density of the frameworks

REAL FrameworkMass; // the total mass of the frameworks

int NumberOfFrameworks; // the number of frameworks

REAL *FrameworkDensityPerComponent; // the density per framework

REAL *FrameworkMassPerComponent; // the mass per framework

int *NumberOfAtoms; // the number of atoms per framework

int *NumberOfUnitCellAtoms; // the number of unit cell atoms per framework

FRAMEWORK_ATOM **Atoms; // list of framework-atoms per framework

..................

..................

} FRAMEWORK_COMPONENT;

The structure had the element ‘Atoms’ which is a list of framework-atoms per framework. So, to get the
type of the 11 atom of the first framework of the second system, use

int type;

type=Framework[1].Atoms[0][10].Type;

Finally, a small example where we print out the positions of all the framework atoms for all frameworks
and systems

int i,j,f1;

for(i=0;i<NumberOfSystem;i++)

{

for(f1=0;f1<Framework[i].NumberOfSystems;f1++)

{

for(j=0;j<Framework[i].NumberOfAtoms[f1];j++)

printf("system: %d framework: %d atom: %d -> position: %g %g %g\n",

i,f1,j,

Framework[i].Atoms[f1][j].Position.x,

Framework[i].Atoms[f1][j].Position.y,

Framework[i].Atoms[f1][j].Position.z);

}

}

Components

Everything that is independent of a molecule’s positions but still a property of molecules is stored in the
structure ‘COMPONENT’. Here you find the number of atoms for this type of molecule per system, the

123

mass for the component etc. Also computed values for densities of the bulk fluid, compressibility, and the
amount of excess molecules are stored. These are computed from the mol fraction, pressure, and critical
pressure/temperature and acentric factor. After these properties there are data on the potentials defined
for the component: bond, Urey-Bradley, bends, torsions, cross-terms, intra Van der Waals etc. For Monte
Carlo the structure contains the probability of all the moves.

typedef struct Component

{

char Name[256]; // the name of the component ("methane","C12","propane" etc).

int NumberOfAtoms; // the number of atoms in the component

int StartingBead; // the bead of the molecule used for starting the growing process in CBMC

REAL Mass; // the mass of the component

int *NumberOfMolecules; // the number of molecules of the component for each system

int *Type; // the pseudo-atom Type of each atom

int *Connectivity; // the connectivity of each atom

int HasCharges; // whether the molecule contains charges or not

int IsPolarizable; // whether the molecule has point dipoles or not

int ExtraFrameworkMolecule; // TRUE: Cation, FALSE: Adsorbate

int Swapable; // whether or not the number of molecules is fluctuating (i.e. GCMC)

int Widom; // whether this component is used for Widom insertions

REAL *IdealGasRosenbluthWeight; // the Rosenbluth weight of an ideal-chain per system

REAL *IdealGasTotalEnergy; // the total energy of an ideal-chain per system

REAL *PartialPressure; // the partial pressure of the component per system

REAL *FugacityCoefficient; // the fugacity coefficient of the component per system

REAL *BulkFluidDensity; // the bulkfluid-density of the component per system

REAL *Compressibility; // the compresibility of the fluid-fase per system

REAL *MolFraction; // the mol-fraction of the component per system

REAL *AmountOfExcessMolecules; // the amount of excess molecules per syste,

REAL CriticalTemperature; // the critical temperature of the component

REAL CriticalPressure; // the critical pressure of the component

REAL AcentricFactor; // the acentric factor of the component

int NumberOfGroups; // the number of groups

GROUP_DEFINITION *Groups; // the definition of the groups

int *group; // to which group an atom belongs

VECTOR *Positions; // the positions in the body-fixed frame

..................

..................

int NumberOfBonds; // the number of bonds of the component

PAIR *Bonds; // the list of bond-pairs

int *BondType; // the type of the bond for each bond-pair

REAL (*BondArguments)[MAX_BOND_POTENTIAL_ARGUMENTS]; // the arguments needed for this bond-pair

..................

..................

REAL ProbabilityTranslationMove; // the probability of the translation MC-move for the component

REAL ProbabilityRotationMove; // the probability of the rotation MC-move for the component

REAL ProbabilityCBMCMove; // the probability of the partial-regrow MC-move for the component

REAL ProbabilityReinsertionMove; // the probability of the reinsertion MC-move for the component

..................

..................

} COMPONENT;

A component consists of ‘groups’, which is a collection of atoms that are either treated as rigid or as
flexible. The component has elements that lists how many of these groups there are, the definition of the
group, and the positions of all the atoms in the body-fixed frame. The definition of the group is the structure
‘GROUP DEFINITION’. Important elements are whether or not the group is rigid, the number of atoms in
the group, and the list of atom number present in the groups.

typedef struct group_definitions

{

124

int Rigid; // whether or not the group is rigid

int Type; // the type, NONLINEAR_MOLECULE, LINEAR_MOLECULE, or POINT_PARTICLE

REAL Mass; // the mass of the group

int NumberOfGroupAtoms; // the numer of atoms in the group

int *Atoms; // the atoms in the group

REAL_MATRIX3x3 InertiaTensor; // the inertia tensor

VECTOR InertiaVector; // the inertia vector

VECTOR InverseInertiaVector; // the inverse of inertia vector

REAL_MATRIX3x3 RotationalMatrix; // the rotational matrix

TRIPLE orientation; // three atoms A,B,C to compute quaternions

REAL rot_min;

int RotationalDegreesOfFreedom; // the rotational degrees of freedom

} GROUP_DEFINITION;

The inertia tensor, vector and rotational matrix etc. are the same for a certain type of molecule. Together
with the actually atom positions, the orientations can be computed for all the rigid units (i.e. the quaternions
are computed).

Adsorbate and cations
The definition of an adsorbate atom ‘ADSORBATE ATOM’ is very similar to a framework atom

typedef struct adsorbate_atom

{

int Type; // the pseudo-atom type of the atom

// MC/MD properties

POINT Position; // the position of the atom

POINT ReferencePosition; // the ‘reference’ position of the atom

// MD properties

VECTOR Velocity; // the velocity of the atom

VECTOR ReferenceVelocity; // the ‘reference’ velocity of the atom

VECTOR Force; // the force acting on the atom

VECTOR ElectricField; // the electricfield vector

VECTOR ReferenceElectricField; // the ‘reference’ electricfield vector

VECTOR InducedElectricField; // the induced electric field

VECTOR InducedDipole; // the induced dipole moment on this atom

int HessianIndex; // the index in the Hessian matrix for this atom

} ADSORBATE_ATOM;

The definition for cations is identical except it is called ‘CATION ATOM’. The definition of an adsorbate
molecule is

typedef struct adsorbate

{

int Type; // the component type of the molecule

int NumberOfAtoms; // the number of atoms in the molecule

GROUP *Groups; // data of the rigid groups

ADSORBATE_ATOM *Atoms; // list of atoms

} ADSORBATE_MOLECULE;

The definition of a cation is called ‘CATION MOLECULE’. Note that a molecule can consists of atoms,
but also can contain rigid units. The atoms are accessible through the ‘Atoms’ field, and rigid units are
accessible through the ‘Groups’ field. A ‘GROUP’ consists of

typedef struct group

{

REAL Mass; // mass of the rigid unit

125

QUATERNION Quaternion; // orientation of the unit

QUATERNION QuaternionMomentum; // quaternion momentum

QUATERNION QuaternionForce; // quaternion force

VECTOR Torque; // torque vector

VECTOR CenterOfMassPosition; // the center of mass position

VECTOR CenterOfMassReferencePosition; // the reference position for the center of mass

VECTOR CenterOfMassVelocity; // the center of mass velocity

VECTOR CenterOfMassForce; // the center of mass force

VECTOR AngularVelocity; // the angular velocity of the rigid unit

} GROUP;

which contains elements like position and orientation, and fields for the integration of rigid units, i.e.
QuaternionMomentum etc.
Molecules are stored as a list of molecules for each system

ADSORBATE_MOLECULE **Adsorbates;

To get the type of the 5th atom of the 11th adsorbate of the first system, use

int type;

type=Adsorbates[0][10].Atoms[4].Type;

As an example, here a function to measure the velocity drift of all the adsorbates in the current system

VECTOR MeasureVelocityDrift(void)

{

int i,k,l,Type,A,f;

REAL Mass,TotalMass;

VECTOR com;

TotalMass=0.0;

com.x=com.y=com.z=0.0;

for(i=0;i<NumberOfAdsorbateMolecules[CurrentSystem];i++)

{

Type=Adsorbates[CurrentSystem][i].Type;

for(l=0;l<Components[Type].NumberOfGroups;l++)

{

if(Components[Type].Groups[l].Rigid)

{

Mass=Components[Type].Groups[l].Mass;

TotalMass+=Mass;

com.x+=Mass*Adsorbates[CurrentSystem][i].Groups[l].CenterOfMassVelocity.x;

com.y+=Mass*Adsorbates[CurrentSystem][i].Groups[l].CenterOfMassVelocity.y;

com.z+=Mass*Adsorbates[CurrentSystem][i].Groups[l].CenterOfMassVelocity.z;

}

else

{

for(k=0;k<Components[Type].Groups[l].NumberOfGroupAtoms;k++)

{

A=Components[Type].Groups[l].Atoms[k];

Mass=PseudoAtoms[Adsorbates[CurrentSystem][i].Atoms[A].Type].Mass;

TotalMass+=Mass;

com.x+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.x;

com.y+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.y;

com.z+=Mass*Adsorbates[CurrentSystem][i].Atoms[A].Velocity.z;

}

}

}

}

com.x/=TotalMass;

com.y/=TotalMass;

com.z/=TotalMass;

return com;

}

126

It loops over all the adsorbate molecules, and asks for the type. The component-type is important to get the
number of groups for the current molecule. Then, there is a inner loop over all of the groups of the current
molecule. If the group is rigid, then the center of mass velocity is used, otherwise it is flexible and it loops
over all the atoms of the flexible group. In general, if something is the same for a type of molecule then it is
a property of the component. If it is different for each molecule, it is a property of a molecule.

5.4 Modifying

5.4.1 Monte Carlo

Selecting MC moves

The file ‘src/monte carlo.c’ is the main Monte Carlo simulation routine. The bulk of the code deals with
how to select a particular Monte carlo move. Some requirements and conveniences:

• The moves should be chosen in random order

• System move should be chosen much less frequent than particle moves. The particles need to be able
to adapt to the new system.

• For n systems, the amount of steps should be n times larger.

• For n times as many molecules, the amount of steps should be n times larger.

• For multi-component systems one needs more steps.

• For systems at low loadings, the sampling lengths should be increase a bit (i.e. set a minimum amount
of inner steps).

• The relative probabilities of particle moves should be taken into account.

A code which achieves all the above is listed here (there are many other ways of doing this). For each MC
‘cycle’

for(i=0;i<NumberOfSystems;i++)

{

// choose system at random

CurrentSystem=(int)(RandomNumber()*(REAL)NumberOfSystems);

NumberOfSystemMoves=9;

NumberOfMolecules=NumberOfAdsorbateMolecules[CurrentSystem]+NumberOfCationMolecules[CurrentSystem];

NumberOfParticleMoves=MAX(MinimumInnerCycles,NumberOfMolecules);

NumberOfSteps=(NumberOfSystemMoves+NumberOfParticleMoves)*NumberOfComponents;

// loop over the MC ‘steps’ per MC ‘cycle’

for(j=0;j<NumberOfSteps;j++)

{

// choose any of the MC moves randomly

ran_int=(int)(RandomNumber()*NumberOfSteps);

switch(ran_int)

{

case 0: if(RandomNumber()<ProbabilityParallelTemperingMove) ParallelTemperingMove(); break;

case 1: if(RandomNumber()<ProbabilityHybridNVEMove) HybridNVEMove(); break;

case 2: if(RandomNumber()<ProbabilityHybridNPHMove) HybridNPHMove(); break;

case 3: if(RandomNumber()<ProbabilityHybridNPHPRMove) HybridNPHPRMove(); break;

case 4: if(RandomNumber()<ProbabilityVolumeChangeMove) VolumeMove(); break;

case 5: if(RandomNumber()<ProbabilityBoxShapeChangeMove) BoxShapeChangeMove(); break;

case 6: if(RandomNumber()<ProbabilityGibbsVolumeChangeMove) GibbsVolumeMove(); break;

case 7: if(RandomNumber()<ProbabilityFrameworkChangeMove) FrameworkChangeMove(); break;

case 8: if(RandomNumber()<ProbabilityFrameworkShiftMove) FrameworkShiftMove(); break;

default:

127

// choose component at random

CurrentComponent=(int)(RandomNumber()*(REAL)NumberOfComponents);

// choose the Monte Carlo move at random

ran=RandomNumber();

if(ran<Components[CurrentComponent].ProbabilityTranslationMove) TranslationMove();

else if(ran<Components[CurrentComponent].ProbabilityRandomTranslationMove) RandomTranslationMove();

else if(ran<Components[CurrentComponent].ProbabilityRotationMove) RotationMove();

else if(ran<Components[CurrentComponent].ProbabilityCBMCMove) CBMCMove();

else if(ran<Components[CurrentComponent].ProbabilityReinsertionMove) ReinsertionMove();

else if(ran<Components[CurrentComponent].ProbabilityReinsertionInPlaceMove) ReinsertionInPlaceMove();

else if(ran<Components[CurrentComponent].ProbabilityReinsertionInPlaneMove) ReinsertionInPlaneMove();

else if(ran<Components[CurrentComponent].ProbabilityIdentityChangeMove) IdentityChangeMove();

else if(ran<Components[CurrentComponent].ProbabilitySwapMove)

{

if(RandomNumber()<0.5) SwapAddMove();

else SwapRemoveMove();

}

else if(ran<Components[CurrentComponent].ProbabilityWidomMove) WidomMove();

else if(ran<Components[CurrentComponent].ProbabilitySurfaceAreaMove) SurfaceAreaMove();

else if(ran<Components[CurrentComponent].ProbabilityGibbsSwapChangeMove) GibbsParticleTransferMove();

else if(ran<Components[CurrentComponent].ProbabilityGibbsIdentityChangeMove) GibbsIdentityChangeMove();

break;

}

}

}

First is a loop over the amount of systems, and a random system is chosen. Suppose we have 200 single
component molecules in this system, then each of the system move is chosen with 1/209 probability (case
0-8), and there is a 200/209 chance to select a particle move (case 9-209). The probability of the particle
moves are scaled in such a way that the proper relative occurrence is obeyed (as specified in the input).
Note that the swap-move has 50% to be swap insertion and 50% to be swap remove. This is necessary to
obey detailed balance. For multi-components more moves are performed.

Sampling properties during Monte Carlo

The Monte Carlo routine has two parts:

• The initialization part. Here, no properties are computed and MC moves are performed just to reach
equilibrium.

• The production run, where properties are computed.

The basic outline of the production run is

// initialize sampling-routines at the start of the production run

SampleInfraRedSpectra(INITIALIZE);

SampleMeanSquareDisplacementOrderN(INITIALIZE);

SampleOnsagerMeanSquareDisplacementOrderN(INITIALIZE);

SampleRadialDistributionFunction(INITIALIZE);

SampleFrameworkSpacingHistogram(INITIALIZE);

SamplePositionHistogram(INITIALIZE);

SampleNumberOfMoleculesHistogram(INITIALIZE);

SampleEnergyHistogram(INITIALIZE);

SampleDensityProfile3DVTKGrid(INITIALIZE);

SampleEndToEndDistanceHistogram(INITIALIZE);

SampleMoleculePropertyHistogram(INITIALIZE);

SamplePDBMovies(INITIALIZE);

SampleDcTSTConfigurationFiles(INITIALIZE);

SampleFreeEnergyProfile(INITIALIZE);

SampleCationAndAdsorptionSites(INITIALIZE);

for(CurrentCycle=0;CurrentCycle<NumberOfCycles;CurrentCycle++)

128

{

// sample energy average and system/particle properties

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

UpdateEnergyAveragesCurrentSystem();

SampleRadialDistributionFunction(SAMPLE);

SampleFrameworkSpacingHistogram(SAMPLE);

SamplePositionHistogram(SAMPLE);

SampleNumberOfMoleculesHistogram(SAMPLE);

SampleEnergyHistogram(SAMPLE);

SampleDensityProfile3DVTKGrid(SAMPLE);

SampleEndToEndDistanceHistogram(SAMPLE);

SampleMoleculePropertyHistogram(SAMPLE);

SampleFreeEnergyProfile(SAMPLE);

SampleCationAndAdsorptionSites(SAMPLE);

}

// SELECTION OF MC-MOVES (SEE CODE OF THE PREVIOUS SECTION)

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

SampleRadialDistributionFunction(PRINT);

SampleFrameworkSpacingHistogram(PRINT);

SamplePositionHistogram(PRINT);

SampleNumberOfMoleculesHistogram(PRINT);

SampleEnergyHistogram(PRINT);

SampleDensityProfile3DVTKGrid(PRINT);

SampleEndToEndDistanceHistogram(PRINT);

SampleMoleculePropertyHistogram(PRINT);

SamplePDBMovies(PRINT);

SampleDcTSTConfigurationFiles(PRINT);

SampleFreeEnergyProfile(PRINT);

SampleCationAndAdsorptionSites(PRINT);

}

}

// finalize output

SampleRadialDistributionFunction(FINALIZE);

SampleFrameworkSpacingHistogram(FINALIZE);

SamplePositionHistogram(FINALIZE);

SampleNumberOfMoleculesHistogram(FINALIZE);

SampleEnergyHistogram(FINALIZE);

SampleDensityProfile3DVTKGrid(FINALIZE);

SampleEndToEndDistanceHistogram(FINALIZE);

SampleMoleculePropertyHistogram(FINALIZE);

SamplePDBMovies(FINALIZE);

SampleDcTSTConfigurationFiles(FINALIZE);

SampleFreeEnergyProfile(FINALIZE);

SampleCationAndAdsorptionSites(FINALIZE);

Each of the sampling routine (in ‘src/sample.c’) has 5 scaling options:

• ALLOCATE to allocate memory needed for the sampling.

• INITIALIZE to initialized the routine if needed.

• SAMPLE to sample the properties.

• PRINT to periodically write the output to file.

• FINALIZE to free the requested memory and clean up.

Adding your own sampling routines requires an additional routine in ‘src/sample.c’, the definition in
‘src/sample.h’ and addition to calls to ‘src/monte carlo.c’.

129

5.4.2 Molecular Dynamics

A molecular dynamics simulation is performed in several steps:

• The proper amount of molecules are created and they are inserted as as no overlaps occurred with the
framework or other particles.

• Initialization: during the initialization period an NVT Monte-Carlo (MC) simulation is performed to
rapidly achieve an equilibrium molecular arrangement.

• After the initialization period, velocities are assigned, drawn from the Maxwell-Boltzmann distribu-
tion at the desired average temperature to all the atoms. The total momentum of the system can be
set to zero.

• Equilibration: Next, the system is further equilibrated by performing an NVT MD simulation using a
specified ensemble.

• Production run: the simulation is performed in the requested ensemble and properties are measured.

The amount of cycles for each of these steps can be specified. For example, when starting from a restart-file
there is no need for the Monte Carlo initialization, and if also the velocities are used from the restart-file then
also the MD equilibration could be skipped. Moreover, the equilibration can be done in a different ensemble
as the production run. This is most useful for NVE simulations, where the equilibration could be done using
NVT. The final temperature of the NVE production run is then quite close the desired temperature (in NVE
the temperature is not imposed).

The initialization part is not shown here, as it is very similar to regular Monte Carlo. The basic outline
for the equilibration and production run are listed below. The most important lines are the ‘Integration();’
ones, which evolve the system a single time step. This routine is implemented in ‘src/integration.c’ and
makes use of ‘src/thermo baro stats.c’ for temperature and pressure control.

// initialize

InitializesEnergiesAllSystems();

InitializeSmallMCStatisticsAllSystems();

InitializeMCMovesStatisticsAllSystems();

// compute initial energy

InitializeNoseHooverAllSystems();

InitializeForcesAllSystems();

// set the current ensemble to the initialization ensemble

for(i=0;i<NumberOfSystems;i++)

Ensemble[i]=InitEnsemble[i];

InitializesEnergyAveragesAllSystems();

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

ReferenceEnergy[CurrentSystem]=ConservedEnergy[CurrentSystem];

Drift[CurrentSystem]=0.0;

}

// Molecular-Dynamics initializing period to achieve a rapid equilibration of the velocities

for(CurrentCycle=0;CurrentCycle<NumberOfEquilibrationCycles;CurrentCycle++)

{

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

// regularly output system status and restart files

if(CurrentCycle%PrintEvery==0)

{

PrintIntervalStatusEquilibration(CurrentCycle,NumberOfEquilibrationCycles,OutputFilePtr[CurrentSystem]);

PrintRestartFile();

130

}

// evolve the system a full time-step

Integration();

// update the current energy-drift

Drift[CurrentSystem]+=fabs((ConservedEnergy[CurrentSystem]-ReferenceEnergy[CurrentSystem])/

ReferenceEnergy[CurrentSystem]);

}

}

// initialize sampling-routines at the start of the production run

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

Ensemble[CurrentSystem]=RunEnsemble[CurrentSystem];

ReferenceEnergy[CurrentSystem]=ConservedEnergy[CurrentSystem];

Drift[CurrentSystem]=0.0;

}

SampleInfraRedSpectra(INITIALIZE);

SampleEndToEndDistanceHistogram(INITIALIZE);

SampleMeanSquareDisplacementOrderN(INITIALIZE);

SampleOnsagerMeanSquareDisplacementOrderN(INITIALIZE);

SampleEnergyHistogram(INITIALIZE);

SamplePositionHistogram(INITIALIZE);

SampleRadialDistributionFunction(INITIALIZE);

SamplePositionHistogram(INITIALIZE);

SampleMoleculePropertyHistogram(INITIALIZE);

SamplePDBMovies(INITIALIZE);

SampleCationAndAdsorptionSites(INITIALIZE);

// Molecular-Dynamics production run

// loop over the amount of production cycles (MD integration steps)

for(CurrentCycle=0;CurrentCycle<NumberOfCycles;CurrentCycle++)

{

// loop over all the systems and handle one by one

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

SampleInfraRedSpectra(SAMPLE);

SampleEndToEndDistanceHistogram(SAMPLE);

SampleMeanSquareDisplacementOrderN(SAMPLE);

SampleOnsagerMeanSquareDisplacementOrderN(SAMPLE);

SampleEnergyHistogram(SAMPLE);

SamplePositionHistogram(SAMPLE);

SampleRadialDistributionFunction(SAMPLE);

SamplePositionHistogram(SAMPLE);

SampleMoleculePropertyHistogram(SAMPLE);

SampleCationAndAdsorptionSites(SAMPLE);

// update all the average energies

UpdateEnergyAveragesCurrentSystem();

if(CurrentCycle%PrintPropertiesEvery==0)

PrintPropertyStatus(CurrentCycle,NumberOfCycles,OutputFilePtr[CurrentSystem]);

if(CurrentCycle%PrintEvery==0)

{

PrintIntervalStatus(CurrentCycle,NumberOfCycles,OutputFilePtr[CurrentSystem]);

PrintRestartFile();

}

// regulary output radial distribution function

SampleInfraRedSpectra(PRINT);

SampleEndToEndDistanceHistogram(PRINT);

131

SampleMeanSquareDisplacementOrderN(PRINT);

SampleOnsagerMeanSquareDisplacementOrderN(PRINT);

SampleEnergyHistogram(PRINT);

SamplePositionHistogram(PRINT);

SampleRadialDistributionFunction(PRINT);

SamplePositionHistogram(PRINT);

SampleMoleculePropertyHistogram(PRINT);

SamplePDBMovies(PRINT);

SampleCationAndAdsorptionSites(PRINT);

// evolve the current system a full time step

Integration();

// update the current energy-drift

Drift[CurrentSystem]+=fabs((ConservedEnergy[CurrentSystem]-ReferenceEnergy[CurrentSystem])/

ReferenceEnergy[CurrentSystem]);

}

}

// finalize and clean up

for(CurrentSystem=0;CurrentSystem<NumberOfSystems;CurrentSystem++)

{

SampleInfraRedSpectra(FINALIZE);

SampleEndToEndDistanceHistogram(FINALIZE);

SampleMeanSquareDisplacementOrderN(FINALIZE);

SampleOnsagerMeanSquareDisplacementOrderN(FINALIZE);

SampleEnergyHistogram(FINALIZE);

SamplePositionHistogram(FINALIZE);

SampleRadialDistributionFunction(FINALIZE);

SamplePositionHistogram(FINALIZE);

SampleMoleculePropertyHistogram(FINALIZE);

SamplePDBMovies(FINALIZE);

SampleCationAndAdsorptionSites(FINALIZE);

}

Adding your own sampling routines requires an additional routine in ‘src/sample.c’, the definition in
‘src/sample.h’ and addition to calls to ‘src/molecular dynamics.c’.

5.5 Debugging

5.5.1 Linux

There are several debuggers like ‘gdb’, and memory check utilities available, i.e. valgrind.

5.5.2 Mac OSX

Debugging memory error under Max OsX is easy. One can replace the standard library to allocate memory
by different ones that check memory allocation and use. It can catch a lot of array out-of-bound error, even
for dynamically allocated memory. See

man libgmalloc

An example, export ‘RASPA DIR’ to the installation directory, start the debugger, load the debugging
libraries and start running the code.

export RASPA_DIR=${HOME}/RASPA/simulations/

gdb ~/RASPA/simulations/bin/simulate

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC 2007)

132

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-apple-darwin"...Reading symbols for shared libraries ... done

(gdb) set env DYLD_INSERT_LIBRARIES /usr/lib/libgmalloc.dylib

(gdb) r

133

134

6
Troubleshooting

The numerical value computed from finite differences is not equal to the analytical expression Using
’SimulationType Numerical’ the analytical expression for the force, stress etc. are compared to numerical
values from finite differences. If just one (or at the most a few values) are different, then this might be an
artifact arising from a finite cutoff in the Van der Waals potential. This can be checked by changing the
value of the cutoff by about 10−3 Å. This is a very small change, but larger than the displacements used in
the finite differences. The problem is that for a finite difference scheme like:

f ′ (x) =
f (x−∆)− 8f

(
x− 1

2∆
)

+ 8f
(
x+ 1

2∆
)
− f (x+ ∆)

6∆
(6.1)

it is possible that one of the displacements ∆ places the particle outside of the cutoff, while the original
position was inside (or visa versa). For a force-shifted Van der Waals potential there is no problem, but for
shifted potentials, or potentials with a simple truncation, the divergence becomes a problem.

Excess loading is negative This usually happens when computing an isotherm and the next pressure is
above the vapor pressure. The boundary from gas to liquid adsorption has been crossed and the amount
of excess molecules increases by orders of magnitude. There is a reason why experimental gas-phase
isotherms are of finite range, they usually stop at the vapor pressure. Also, if the pressure is very high
the fluid outside the crystal is compressed more and more while the loading inside the crystal remains the
same (at maximum loading). Hence, excess adsorption evantually becomes negative.

Large drift in Monte Carlo energies This should not happen and signals an error in (one of) the Monte
Carlo routines. During the Monte Carlo simulations, the running-energies are stored. These are starting
energy, and all the added energy differences. At the final stage, the energy is recomputed again, and these
should match within an error of about 10−5 or lower. If you have added your own MC move, check whether
you have properly added the energy differences to the running energies.

Energy is not conserved in molecular dynamics Usually, this happens because the time step is too large.
Also, at initialization, the system can be far from equilibrated and a smaller time step is needed.

135

RASPA ”hangs” at initialization Put ’CreateNumberOfMolecules 0’ and check if that solves the problem.
If so, then you have tried to add too many molecules in the system (i.e. more than actually fit in the system).
For systems without a framework, one can also increase the size of the box.

Segmentation fault A memory access that is not allowed has occured. This could happen when the input
is incorrect. For example, if it is listed that there are 4 bonds, but you put in 5 lines, then all bends and what
follows next will be read in wrong. This is the most common cause of segmentation faults.

Mean-square displacement is not linear There are several known causes:

• Your system is one-dimensional and particles are unable to pass each other. This is known as ’single-
file-diffusion’ and the mean square displacement is propertial to the square root of time,

• You did not simulate long enough. In some systems it can take up to several nanoseoconds before the
msd becomes linear in time,

• You forgot to specify interactions between the molecules and they are not interacting.

Minimization does not converge A likely cause is that you minimize a system that would like to change
angles, but you do not allow it to. In such a system, there is a non-vanishing stress. Try to minimize using
NPT-PR with cell type ’Regular’ or ’RegularUppertriangle’. Another reason could be that the electrostatics
are not computed accurate enough. Increase the precision to 1e-10, using ’EwaldPrecision 1e-10’.

Output is not written to file Check with ’df -k’ whether the disk is full.

Molecule can not be grown Check if the connectivity, i.e. the bonds, are correct.

Framework flies apart Check bonds for the framework and whether electrostatics and intra framework
Van der Waals interactions are computed.

Energy during molecular dynamics with a flexible framework is not well conserved In zeolites, a com-
mon problem is that the the angle of a Si-O-Si bend can become 180 degrees. This leads to a undefined
torsion angle. If this occures, try to use a smoothing function that slowly switches of the energy and force
contributions for these 3 atoms as the angle approaches 180 degrees. See Bend/Torsion cross potentials.

Amount of detected bonds/bends/torsions etc. for a flexible framework is wrong For the detection
of intra-framework potentials a connectivity tabls is made, where two are considered bonded when their
length is smaller than 0.56 + ri + rj , where ri and rj are the covalent radii for the two atoms. The radii
are specified in ’pseudo atoms.def’. The most likely cause is a wrong value for the radius. Note that even
when starting from a restart-file, the connectivity table is based on the crystal structure.

Oxgens connected to aluminum type ’O’ are not automatically converted to ’Oa’ Use the option

ModifyOxgensConnectedToAluminium yes

Strange behaviour when using cations The problem could be related to CBMC of net-charged molecules.
The Rosenbluth weights can become very large or very small, because the energy difference when displac-
ing an ion is large. This can lead to numerical problems for ratio’s of combination of small/large, for
example in the reinsertion move. To see whether this is the cause use ’RandomTranslationProbability’ and
set ’ReinsertionProbability’ to zero.

136

Minimization does not converge Minimization code and algorithms are complex. Due to the harmonic
approximation the jumps through the energy landscape can not be too large. A possible remedy therefore
is to decrease the maximum step-length (default 0.3) using

MaximumStepLength 0.1

Another issue is the rotational degrees of freedom of the system. For periodic systems the system is invari-
ant with respect to translation but not with respect to rotation, i.e. the energy changes for rotation of the
whole system. In contrast, a molecule in a finite system is invariant with respect to both translation and
rotation. However, for periodic systems at low loading with molecules without charges, groups/clusters of
molecules can occur that do not have interactions with their images. In effect this has reduced the periodic
system to a non-periodic one. If this occurs one can remove the system rotation explicitly with

RemoveRotationFromHessian yes

Note that this option should not be used on a truly periodic system. In addition to these algorithm settings,
it is possible that the definition of the molecule and/or framework contains errors.

Parallel tempering does not work for systems with cations The problem is physical, it is just that all the
energy distributions are more ’spiked’ and overlap between the energies of the systems is rare. The only
solution is to use more systems (and smaller temperature differences) to increase the acceptance rates of
swapped between neighboring system. The same problem happens when one increases the system size.

Results do not match data from literature Common reasons include difference in simulation length, sys-
tem size, cutoff value, tail-corrections vs shifted potentials, and handling of electrostatics. For adsorption, is
the crystal structure that you used the same? Another very often made error, is comparing against different
units, or an error in the conversion of units.

Error during compiling The ’gcc’ and ’icc’ compilers are tested. These compilers have C extensions that
other C compilers could potentially lack.

Error during linking Make sure that the ’blas’ and ’lapack’ libraries are installed on your system.

The results are different on different machines We have come across one compiler-error: gcc 4.3.0 using
optimizations ”-O3” and ”-O4” generated wrong code. Gcc 4.3.2 has resolved this bug.

The program crashes with a ’segmentation fault’ Usually caused by wrong input-files, for example sup-
plying 3 arguments to a torsion when 4 are expected. This causes all input to have strange values. To
identify the cause make sure the job will use the same random number sequence are written in the output.

RandomSeed [int]

This will generate exactly the same sequence of events. Make sure the program is allowed to ’dump a core’
(See the unix ’ulimit’ command). Also, the executable needs to be compiled with the ’-g’ option which
includes debugger information into the exectubale. Now restart the program and when it crashes, it will
write a ’core-dump-file’. Start the debugger using a command similar to

gdb ~/RASPA/simulate/bin/simulate core

and type ’where’ to obtain the line where the code crashed. It is also possible to just run the code inside the
debugger.

137

138

Part II

Utilities

139

7
Visualization

7.1 Making pictures using VTK

VTK is a nice visualization toolkit tailored for scientific purposes. It builds on top of OpenGL and is avail-
able for most platforms. One of the most useful features is the ability to define scientific data in e.g. grid
form (”structured points”) and to manipulate that data. Each grid point can contain various data forms:
scalars like temperature and pressure, but also vector data like velocity or fields.

There are several ways to visualize frameworks in RASPA using VTK:

• Ball and stick
RASPA will output vtk-files for all the molecules in the system as well as the framework itself.

• Volume rendered surface area
RASPA will output a ”structured point” grid of the adsorption energy. The structure is probed using
Widom insertion at random positions and the result is averaged. The lowest and highest values are
recorded and then scaled between 0 and 216.

• Volume rendered density plots of adsorbates
RASPA computes a 3D histogram of the positions of adsobates per component and for the total fluid.
This type of plots are very useful to find out where and how the molecules adsorb.

7.2 Ball and stick

At the start of any run, RASPA outputs the current state in VTK files, located in ‘VTK/System[int]’. The
files are ‘FrameworkAtoms.vtk’, ‘AdsorbateAtoms.vtk’, ‘CationAtoms.vtk’, and ‘Frame.vtk’. In ‘Exam-
ple/Visualization/BallStickRASPA’ the example for erionite is shown.

SimulationType MC

NumberOfCycles 0

Forcefield ElenaSodiumCalcium

Framework 0

141

(a) (b)

Figure 15: Ball and stick picture of erionite (ERI): (a) front view, (b) side view. The erionite structure is monoclinic: a= b= 13.27
Å and c = 15.05 Å, α = β = 90◦ and γ = 120◦.

FrameworkName ERI_mono

UnitCells 1 1 1

After copying the vtk-files to ‘Examples/Visualization/ERI/VTK’ one can run the VTK code. The VTK
program will produce a picture ‘Picture.jpg’ and looks like Figure 15. The file ‘Frame.vtk’ looks like:

vtk DataFile Version 1.0

Frame

ASCII

DATASET POLYDATA

POINTS 8 float

50.000000 -0.000000 -0.000000

150.000000 0.000000 0.000000

100.000000 86.602540 0.000000

0.000000 86.602540 0.000000

50.000000 0.000000 113.413715

150.000000 0.000000 113.413715

100.000000 86.602540 113.413715

0.000000 86.602540 113.413715

LINES 6 36

5 0 1 2 3 0

5 4 5 6 7 4

5 0 1 5 4 0

5 2 3 7 6 2

5 0 4 7 3 0

5 1 2 6 5 1

It contains 8 points: the corners of the frame, and 6 closed poly-lines that form the ribbons. Using the ‘vtk-
TubeFilter’ we can use these lines to turn them into bigger tubes and color the tubes white. The coordinate
system is chosen as 150× 150× 150 to be compatible with structure grids (for the density and surface). The
information about the framework is listed in ‘FrameworkAtoms.vtk’:

vtk DataFile Version 1.0

142

Cube

ASCII

DATASET POLYDATA

POINTS 108 float

38.346000 20.221693 11.847197

38.125000 36.762778 28.353429

35.205000 30.250267 18.259608

....

....

LINES 232 696

2 0 2

2 0 3

2 0 13

....

....

POINT_DATA 108

SCALARS my_scalars float

LOOKUP_TABLE default

2.1

2.1

1.52

....

....

VECTORS vectors float

0.125 0 0

0.125 0 0

0.03125 0 0

....

....

The first points are the 108 framework atoms, next the lines section describes the bonding between them.
The last two sections denote the size and color of the atoms (Note that the VECTORS section is a trick to
allow the VTK ‘glyphs’, here spheres, to be scaled by the scalar data, but colored by the magnitude of the
VECTOR data. Hopefully this will be easier in future versions of VTK).

The VTK program is also interactive, one can zoom in and out (scroll button) and rotate (click on the
canvas, closer to the center rotates less then further away). In computer graphics, a sphere is not a sphere,
but a collection of polygons. More polygons means a smoother surface but less responsive in the interactive
mode. For final pictures, one should use many polygons and anti-aliasing, which really improve the quality
of the picture.

The VTK files are written in ‘src/movies.c’ in the routine ‘void WriteVTK(int system)’. The top of this
file also defines the colors. This same color definition is also used in the VTK ‘main.c’.

7.3 Framework surface

The ball and stick pictures are useful, but still do not provide information about pore shape and connec-
tivity. A more suitable approach is to visualize the energy landscape for a certain probe atom. For energy
landscape pictures, we divide the unit cell into e.g. 150×150×150 voxels (volume-elements). At millions of
random positions in the unit cell the free energy of a test-particle (usually a helium or methane unit atom) is
calculated and assigned to the appropriate voxel. To visualize this energy landscape the three-dimensional
dataset is volume rendered, removing the parts that generate overlap (the structure itself) by making it
completely transparent. Low energy values are rendered with medium transparency, allowing the inside

143

of the pores/cages to be viewed as voids. Higher energy values are rendered less and less transparent until
the energy approaches a cutoff energy and is regarded as part of the zeolite wall. Also color is assigned
according to the energy value (green for the outside view of a cage).

To speed up computation of surface and density pictures it is advisable to use energy-grids. For the
upcoming example we need grids for CO2-atoms and helium:

SimulationType MakeGrid

Forcefield ElenaSodiumCalcium

Framework 0

FrameworkName ERI_mono

UnitCells 3 3 2

ExternalTemperature 300.0

NumberOfGrids 3

GridTypes O_co2 C_co2 He

SpacingVDWGrid 0.1

SpacingCoulombGrid 0.1

We need 3× 3× 2 unit cells to obey the minimum-image convention.
Next we are going to generate the VTK ‘FrameworkatomsSurface.vtk’ that contains data on the energy-

grid for a chosen probe atom. Here, we use helium. An example input to generate the surface-grid is listed
here (‘Example/Visualization/ERI/SurfaceRASPA’)

SimulationType Visualization

NumberOfCycles 10000000000

PrintEvery 100000

Forcefield ElenaSodiumCalcium

ChargeMethod None

Framework 0

FrameworkName ERI_mono

UnitCells 3 3 2

ExternalTemperature 300.0

NumberOfGrids 1

GridTypes He

SpacingVDWGrid 0.1

SpacingCoulombGrid 0.1

UseTabularGrid yes

component 0 MoleculeName helium

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

BlockPockets no

BlockPocketsFileName ERI_mono

CreateNumberOfMolecules 0

Even though the grid is generated for a single unit, in general one still needs 3× 3× 2 unit cells because
the charge interaction is dependent on the amount of chosen unit cells. The grid file ‘FrameworkSurface.vtk’
is located in ‘VTK/System[int]’.

144

(a) (b)

Figure 16: Picture of ERI: (a) surface picture, (b) density picture (1 CO2 at 300K).

To visualize the pore-shape, copy the ‘FrameworkSurface.vtk’ to ‘Examples/Visualization/ERI/VTK’.
Do not copy the other VTK files because they are generated for a 3× 3× 2 grid, and we need the framework-
atoms and frame- VTK files for a 1× 1× 1 structure. Running the VTK-program now shows the surface
inside the structure, as shown in Figure 16(a). If we compare Figure 16(a) to Figure 15 we see that we have
visualized the pore structure itself. Also note, that small “pockets” have shown up that are not a part of the
main pore system. These pockets should be blocked (See next section).

The ERI-case by default offers a nice view inside the cage. This is not always the case. Using

ShiftUnitCells 0.25 0 0

one can change the LTA case to a outside-cage-view to an inside-cage-view. (TODO, check whether grids
takes this into account.)

The ‘FrameworkSurface.vtk’ is a structured points VTK-file. It is rectangular grid of, in this case, 150×
150× 150 points (a total of 3375000 points). All these values are listed sequentially, but one can convert
between 1D and 3D by using

index = x+ y ∗ SIZEY + z ∗ SIZEX ∗ SIZEY (7.1)

Note that the proper aspect ratios can be used. The VTK file looks like

vtk DataFile Version 1.0

Free energy zeolite: ERI_mono (300.000000 K)

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 150 150 150

ASPECT_RATIO 1.000000 0.577350 0.756091

ORIGIN 0.0 0.0 0.0

POINT_DATA 3375000

SCALARS scalars unsigned_short

LOOKUP_TABLE default

0

0

....

....

The stored values are ‘unsigned short’, so between 0 and 65536 (216). The value are always clipped to this
region using the minimum and maximum values of the simulation data.

145

(a) (b)

Figure 17

7.4 Density plots

During a Monte Carlo simulation a 3-dimensional histogram of the positions of all atoms of the molecules
is collected (per component). The unit cell is divided into 150x150x150 ”voxels”. During the simulation the
molecules move around in the box, and every cycle data is collected for the histogram. First a position is
mapped back from the full simulation box (3x3x2 unit cells) to the main unit cell, and for every atom the
voxel corresponding to the mapped position is incremented. At certain intervals the histogram is written
to file so that it can be visualized using VTK. The data is always normalized using the highest occurring
voxel value. However, the overall brightness is still influenced by the loading of the specific adsorbate in
the mixture.

In VTK the data is ”volume rendered”, more dense regions are less transparent, less dense regions are
more transparent. In addition the color changes, less dense regions are grey, more dense are orange, then
yellow, and the highest is rendered light blue. The original framework is placed in the picture as a ball-and-
stick model, and every position can be related to the framework. We can therefore e.g. decipher a molecular
picture of why selectivity occurs.

An example input for RASPA is

SimulationType MC

NumberOfCycles 100000000

NumberOfInitializationCycles 100

PrintEvery 100

PrintPropertiesEvery 10000

Forcefield ElenaSodiumCalcium

Framework 0

FrameworkName ERI_mono

UnitCells 3 3 2

ExternalTemperature 300.0

ComputeDensityProfile3DVTKGrid yes

WriteDensityProfile3DVTKGridEvery 10000

DensityProfile3DVTKGridPoints 150 150 150

146

NumberOfGrids 2

GridTypes C_co2 O_co2

SpacingVDWGrid 0.1

SpacingCoulombGrid 0.1

UseTabularGrid yes

component 0 MoleculeName CO2

MoleculeDefinition TraPPE

IdealGasRosenbluthWeight 1.0

TranslationProbability 1.0

RegrowProbability 1.0

SwapProbability 0.0

CreateNumberOfMolecules 1

Copy the ‘VTK/System[int]/DensityProfile methane.vtk’ to ‘Examples/Visualization/ERI/VTK’ as ‘Den-
sity.vtk’, rename the surface VTK-file, and run the vtk-code. It will now produce a picture like Figure 16(b).
If you did not rename the file (or rename it again to ‘FrameworkatomsSurface.vtk’), a picture with the
frameworks atoms, the pore surface and the density of CO2 is produced. It is now easy to show that CO2

preferentially adsorbs in the 8-ring windows separating the erionite cages (in contrast to an alkane which
prefers the cages).

Of course, one is not restricted to a unit cell and it is possible to make pictures of bigger volumes. The
first way is to use 3× 3× 2 unit cells, and use the file ‘Movies/System[int]/Framework initial.cssr’. Copy
this file as ‘structure name 3x3x2.cssr’ and from then on use 1× 1× 1 using this new enlarged unit cell. The
second method is to use 3× 3× 2 unit cell but copy the surface and density in the x, y, z directions in the
picture. You have to edit the ‘main.c’ file of the VTK directory and recompile. The relevant settings are:

// the resolution of spheres and tubes, the higher the more smooth

// use 10, but 50 for the final picture

const int Resolution=10;

// anti-aliasing, use 1, but 16 for final picture

const int AA=1;

// control the transparancy of framework, adsorbates, and cations

const double FrameworkOpacity=1.0;

const double AdsorbateOpacity=1.0;

const double CationOpacity=1.0;

// zoom in or out by increasing/decreasing the zoom-factor

const double ZoomFactor=2.0;

// scale the size of the atoms and bonds

const double ScaleFactor=1.0;

// control the view-point of the oject (input in degrees)

const double Azimuth=0.0;

const double Elevation=0.0;

const double Roll=0.0;

// the size of the image in pixels

const int ImageSizeX=800;

const int ImageSizeY=500;

147

(a) (b) (c)

Figure 18: Blocking pockets in DDR. The DDR structure is converted to a orthorhombic unit cell of a = 24.006, b = 13.86, and
c = 40.892 Å. In (a) we show the ball-and-stick structure, in (b) the structure and the pore surface probed with helium, and (c) the
structure with proper blocking of the small disconnected pockets.

// the number of duplicates in x,y,z (same as the number of unit cells)

const int NrDuplicatesX=3;

const int NrDuplicatesY=3;

const int NrDuplicatesZ=2;

// the lengths of the edge-vectors

const double A=13.27;

const double B=13.27;

const double C=15.05;

// the angles of the unit cell

const double AlphaAngle=90*M_PI/180.0;

const double BetaAngle=90*M_PI/180.0;

const double GammaAngle=120*M_PI/180.0;

This can then be used to make a ‘snapshot’ of molecules. For the 3 × 3 × 2 structure we need the file
‘VTK/System[int]/AdsorbateAtoms.vtk’ from a simulation. This file is generated at the start of a simula-
tion. After a sufficiently long run to equilibrate the molecules, one could copy the ‘Restart’ to ‘RestartInitial’,
put the amount of created molecules at zero and restart from the restart-files using zero cycles to generate
the new ‘AdsorbateAtoms.vtk’ file. The picture of a snapshot of 64 CO2 in the 3× 3× 2 ERI-structure is
shown in Figure 17(b). Note the many CO2 molecules that occupy the barrier. Conclusions are hard to
draw based on snapshots. The ‘density’-plots give average information and therefore the same for each
unit cell (because each unit cell is the same [using a rigid structure]). The density plots are based on atoms,
and one can clearly see the orientation of CO2 on the barrier. The 3 ‘blobs’ corresponds to the oxygen,
carbon, and oxygen of CO2.

148

7.5 Determining blocking pockets

Some structures have inaccessible parts, i.e. areas that are not reachable from the main pore system. Exam-
ples are the sodalite cages in FAU- and LTA-type zeolites. The surface pictures allow us to visualize these
pockets, locate the position, and construct a ‘blocking-file’.

The unit cell of the DDR structure has edge lengths of a=24.006 Angstrom, b=13.86 Angstrom, 40.892
Angstrom with cell angles of 90 degrees. The atomic structure is shown in Figure 18(a). It is difficult to envi-
sion the details of the pore structure from this picture. One can obtain more insight from energy-landscapes.
In Figure 18(b) we show the same structure with the energy landscape a helium atom would feel. In prac-
tice, the simulation cell is divided into 150x150x150 bins and during a Monte-Carlo simulation one keeps
track of the average energy a molecule feels inside that bin. Here we volume-rendered the resulting energy
grid making very high energies transparent, i.e. the part that overlaps with the framework, as well as very
favorable energies, i.e. the positions inside the cage. The resulting surface layer can be viewed as the ”wall”
of the pores. Alternatively, one can make a isocontour (a surface representing a constant, high value of the
energy). In Figure 18(b) the main pore structure is apparent, but also some disconnect pockets show up. It is
very important to artificially block these pockets for Monte-Carlo simulations. Also, in Molecular Dynamic
simulations, initial positions should be chosen in the main channel system. The blocking procedure can be
a simple distance-check from the center of the small pockets and a rejection of all Monte-Carlo trial moves
that would place a molecule inside a certain radius. This radius should not be chosen to small or too big,
because otherwise one would block not enough, or block parts of the main channel system. In Figure 18(c)
we show the structure with the appropriate blocking centers and radii; all small pockets have disappeared
but the main channel system is unchanged.

The blocking procedure is dependent on the type of probe atom. Helium is a good procedure to find
small pockets and therefore to obtain the proper unit cell pore volume. This accessible pore volume is in
simulation usually obtained via a helium-probe procedure. Helium can also be used to find pockets that
could be occupied by other small molecule like CO2, N2, H2, methane, etc. The adsorption results can be
dramatically different with or without blocking. Whether the selectivity of mixtures changes to higher or
lower depends on the match of the molecule with the small pockets. The small pockets are very favorable
for the small molecules because they tend to have a very surface high curvature, i.e.. a very favorable
interaction energy).

7.6 Making movies

7.6.1 Using VMD

7.6.2 Combining pictures into a movie

Using “ffmpeg”, from png-files to a mov-file with h264-encoding

ffmpeg -i %03d.png -s:v 1280x720 -acodec aac -ac 2 -strict experimental -ab 160k

-vcodec libx264 -preset slow -profile:v baseline -level 30 -maxrate 10000000

-bufsize 10000000 -b 1200k -f mp4 -threads 0 -crf 23 -pix_fmt yuv420p -r 30 Movie.mov

or using “mencoder” with settings

export opt="vbitrate=1280000:mbd=2:keyint=132:vqblur=1.0:cmp=2:subcmp=2:dia=2:mv0:last_pred=3"

mencoder -ovc lavc -lavcopts vcodec=msmpeg4v2:vpass=1:$opt -mf type=jpg:fps=25 -nosound -o /dev/null mf://*.jpg

mencoder -ovc lavc -lavcopts vcodec=msmpeg4v2:vpass=2:$opt -mf type=jpg:fps=25 -nosound -o output.avi mf://*.jpg

149

150

Part III

Tutorial

151

8
Tutorial

8.1 Adsorption isotherm of N2 in a metal-organic framework (MOF),
Henry coefficients, enthalpy of adsorption

(a) (b)

Figure 19: (left) The MIL-47 unit cell, 6.8179× 16.1430× 13.9390 Å, α = β = γ = 90◦, (right) the 4× 2× 2 supercell.

We are going to look at adsorption properties of methane in MIL-47 [1]. The MIL-47 structure is shown in
Fig. 19. The first step is to select the size of the system. We are going to choose a VDW cutoff of 12 Å. This
implies that all perpendicular lengths of the unit cell should be larger than twice the cutoff, i.e. 24 Å. So, as a
minimum, we should use at least a 4× 2× 2 unit cells. This requirement follows from the ”minimum-image
convention” where the interactions are computed with only the closest periodic image.

153

type V0+ V2+ V4+ DFT
V 2.67677 1.45833 1.83592 1.68
O1 -0.986909 -0.527963 -0.661157 -0.6
O2 -0.712381 -0.439958 -0.516643 -0.52
O3 -0.693279 -0.427135 -0.501819 -0.52
C1 0.00680379 -0.0146643 -0.0110838 -0.15
H1 0.0434488 0.0574796 0.055858 0.12
C2 0.0116383 -0.0118276 -0.00782077 -0.15
H2 0.0444475 0.0586772 0.0570134 0.12
C3 -0.150672 -0.0720208 -0.083311 0.0
C4 0.605064 0.384265 0.420426 0.56

Table 8.1: Obtaining charges for MIL-47: charge equilibration vs. DFT-derived charges.

The positions of the atoms are usually known from experiments, or alternatively can be obtained from
QM optimizations. Using the atomic information of the framework only, we can compute the frameworks-
mass as 14787.6 g mol−1, and we can already compute a few interesting properties. The first is a measure-
ment of how void the structure is.

Exercise 1: go to the sub-directory ’1-Helium-void-fraction’. Compute the helium void-fraction
(look for ‘Rosenbluth factor new: 0.608 [-]’ in the output file).

About 61% of the structure is empty!

Exercise 2: go to the sub-directory ’1-Helium-void-fraction’. Add a line
’HeliumVoidFraction 0.61’ below ’Framework 0’, use zero cycles, and check the structural
properties (i.e. accesible pore volume and loading conversion factors) of the system.’

We see that the available pore volume is 0.60977519 cm3 g−1. This density is important to know, because,
using the liquid density, it gives a first approximation of the ”maximum” number of molecules in the pore.

Two other very useful properties are the accessible surface and pore-size distribution.

Exercise 3: go to the sub-directory ’3-Surface-area’. Run and compute the surface area.

The nitrogen surface area of MIL-47 is about 1650 m2 g−1. This is much larger than most zeolites, but
smaller than most large pore MOFs which can go up to an incredible 5000-7000 m2 g−1.

Exercise 4: go to the sub-directory ’4-Pore-size-distribution’. Run and compute the pore-size-
distribution. Plot the output-file in ’PoreSizeDistributionHistogram’ in gnuplot using column
1 vs. 3 (plot ’PoreSizeDistributionHistogram’ us 1:3 with lines) to see what the typical
pore sizes are.

In general, the individual framework atoms are charged, but the overall framework should be charge
neutral (or compensated by cations when the framework itself has a net-charge). For the charges there is
ambiguity, since charge is not an ab-initio observable. That means that different methods to obtain charges
give different answers. For adsorption however, we are not really interested in the charges themselves
but rather of their influence on the electrostatic potential energy field inside the cavities. The CHELPG-
type methods aim to do just that: they optimize the classical point charges on the framework work atoms
to match the PES (potential energy surface) computed with ab-initio methods. For crystals, the REPEAT
method is a very nice variant taking the periodicity into account [2]. However, such computations can take
several hours (or even days). A fast alternative is ”charge-equilibration” [3, 4, 5].

154

Exercise 5: go to the sub-directory ’5-ChargeEquilibration’. Compute the charges using charge-
equilibration for various oxidation states of vanadium (edit the ’pseudo_atoms.def’-file). The
output-charges are written to ’Movies/System_0/Framework_0_final_1_1_1.cif’.

In Table 8.1 we summarize the results: charge-equilibration can give a good approximation in a matter
of seconds (or minutes) provided the charge-expansion is performed around the appropriate oxidation state
[5].

Next we are going to choose N2 as the adsorbate molecule. Since this is a small molecule, it is probably
fine to use the small 4× 2× 2 supercell. For much larger molecules finite-size effects occur and a larger
system should be used. For example, a long chain-molecule could even interacts with itself if the system
was small, which obviously leads to erroneous results. In order to compute an adsorption isotherm we need
the framework positions and charges, a force field for the adsorbate and interactions with the framework.
Here we will use a generic force field based on DREIDING and UFF [6, 7].

An adsorption isotherm describes the adsorption at a fixed (chosen) temperature as a function of pres-
sure. The first question is to examine the appropriate pressure range for adsorption.

Exercise 6: go to the sub-directory ’6-Adsorption’. Use a few thousand cycles and determine at
what pressure adsorption starts to occur (pressures units are Pascal). Do this for 600K (and if time
permits 600K).

Exercise 7: go to the sub-directory ’6-Adsorption’. Use 10000 cycles initialization, a few ten-
thousand cycles for production and compute 5 to 10 points from the starting pressure to 1000 bar.
Put the data in a file and plot the loading vs. pressure in normal scale and in log-scale.

SimulationType MonteCarlo

NumberOfCycles 10000

NumberOfInitializationCycles 10000

PrintEvery 100

RestartFile no

Forcefield GenericMOFs

UseChargesFromCIFFile yes

Framework 0

FrameworkName MIL-47

UnitCells 4 2 2

HeliumVoidFraction 0.61

ExternalTemperature 300.0

ExternalPressure 100000.0

Component 0 MoleculeName N2

MoleculeDefinition TraPPE

TranslationProbability 0.5

RotationProbability 0.5

ReinsertionProbability 0.5

SwapProbability 1.0

CreateNumberOfMolecules 0

By examing the isotherm, the slope of the curve can be related to the Henry’s coefficient. This property
can also be conveniently computed by Widom’s insertion using a single probe adsorbate and is directly

155

related to the excess chemical potential and the free energy [8]. The Henry coefficient can be computed by

KH =
1

RTρf

〈W 〉
〈W IG〉

(8.1)

where ρf is the density of the framework, and 〈W 〉 is the Rosenbluth weight. This weight is in general the
Rosenbluth weight when configurational bias is used, and reduces to the Boltzmann factor 〈exp (−β∆U)〉
without biasing. The ideal Rosenbluth weight

〈
W IG

〉
is the value for a single molecule in the ideal gas

phase and serves as the reference state.

Exercise 8: go to the sub-directory ’7-Henry coefficient’. Compute the Henry coefficient and
compare it to the value you obtain from the isotherm at low loading.

Similarly, the limit of the enthalpy of adsorption can be computed from the limit of using a single
adsorbate in the NVT-ensemble The affinity of a molecule with the framework can be expressed as the
binding energy, or more general, as the enthalpy of adsorption at infinite dilution ∆H :

∆H = ∆U −RT = 〈Uhg〉 − 〈Uh〉 − 〈Ug〉 −RT (8.2)

where ∆U is the internal energy, and 〈Uhg〉, 〈Uh〉, and 〈Ug〉 are the average energy of the guest molecule
inside the host-framework, the average energy of the host-framework, and the average energy of the guest-
molecule, respectively. In simulations a common approximation is to assume the framework is rigid, and
in this case the enthalpy of adsorption at infinite dilution can be understood to be the difference in internal
energy of a single molecule outside and inside the confinement of the host framework. In the limit of zero
temperature, the enthalpy of adsorption becomes the binding energy. Note: for rigid molecules 〈Ug〉 = 0.

Exercise 9: go to the sub-directory ’8-Heat of adsorption’. Compute the limit of the enthalphy
of adsorption at zero loading. Compare this value to the values from the fluctuation formula
computed during the isotherm.

Infinite dilution enthalpy of adsorption ∆H is related to the Henry’s coefficient KH as

∆H = −∂ lnKH

∂β
(8.3)

where β = 1/ (kBT) is the inverse temperature, and kB the Boltzmann’s constant. The Henry’s coefficient
is the slope of the isotherm at zero pressure/loading.

Exercise 10 (optional): check relation Eq. 8.3 with Henry’s coefficient simulations as a function of
temperature.

8.2 NPT density of super-critical CO2, RDF, diffusion

The density of CO2 at 400 and 100 bar is about 161.53 kg m−3, at 500 bar 745.45 kg m−3 and at 1000 bar the
density is 932.81 kg m−3 (NIST chemical database). In this example the density is computed using Monte
Carlo in the NPT-ensemble. Given the pressure P , the temperature T , and the amount of molecules N , the
density is computed.

SimulationType MonteCarlo

NumberOfCycles 50000

NumberOfInitializationCycles 10000

PrintEvery 1000

156

RestartFile no

Forcefield GarciaPerez2006

Box 0

BoxLengths 30 30 30

ExternalTemperature 400.0

ExternalPressure 10e5

ComputeMolecularPressure yes

VolumeChangeProbability 0.05

Component 0 MoleculeName CO2

MoleculeDefinition TraPPE

TranslationProbability 0.5

RotationProbability 0.5

RegrowProbability 0.5

CreateNumberOfMolecules 256

Exercise 1: go to the sub-directory ’FluidCO2/MC_NPT’. Verify the three densities listed from NIST
experimental data.

Next we are going to compute two important fluid properties that give inside in the structure of the
fluid: the radial distribution function (RDF) and the self-diffusion.

Exercise 2: go to the sub-directory ’FluidCO2/MC_NPT’. Set the volume to the average of the
previous step and switch off the volume move, e.g. remove ’VolumeChangeProbability 0.05’.
Also replace ’ComputeMolecularPressure yes’ by
ComputeRDF yes
WriteRDFEvery 1000
Plot and analyze the output rdf’s that can be found in the directory
’RadialDistributionFunctions’. Analyze what the peaks mean.

Finally, we are going to compute a dynamic property. Therefore, we change ’SimulationType MonteCarlo’
to ’SimulationType MolecularDynamics’ and we are going to use Molecular Dynamics.

SimulationType MolecularDynamics

NumberOfCycles 1000000

NumberOfInitializationCycles 1000

NumberOfEquilibrationCycles 10000

PrintEvery 10000

PrintPropertiesEvery 10000

Ensemble NVT

TimeStep 0.0005

Forcefield GarciaPerez2006

Box 0

BoxLengths 25 25 25

ExternalTemperature 400.0

157

ComputeMSD yes

PrintMSDEvery 5000

Component 0 MoleculeName CO2

MoleculeDefinition TraPPE

TranslationProbability 1.0

ReinsertionProbability 1.0

CreateNumberOfMolecules 100

Exercise 3: Compute the diffusion via the mean-square displacement. Using gnuplot, plot the file
’MSDOrderN/System_0/msd_self_methane_0.dat’. Use the slope to extract the diffusion coeffi-
cient.

8.3 Reaction-ensemble of ammonia

We are going to study the ammonia synthesis reaction

N2 + 3H2↔ 2NH3 (8.4)

Ammonia ranks second among synthesis chemicals in amount produced, and there has been a great deal
of experimental and theoretical research into the ammonia synthesis reaction over the past 100 years. Thus
there is an abundance of experimental reference data on this reaction, allowing an accurate check of simu-
lation models [9].

One of the most commonly used approaches in molecular simulation is to simulate reaction equilibria
in the reaction ensemble (RxMC). In this approach, the chemical reaction is carried out by a Monte Carlo
(MC) trial move. Beside thermalization (translation, rotation, etc), trial moves are carried out in which
reactants are removed and reaction products are inserted in the system, in such a way that an equilibrium
distribution of reactants and reaction products is obtained. The mechanism and the transition state of the
reaction are not considered as this approach is purely thermodynamic. As a result, the efficiency of this
simulation technique is not affected by the height of the activation energy barrier of the reaction as reaction
kinetics are not considered. The RxMC method requires the ideal gas partition functions of all reactant and
reaction product molecules, a list of all possible chemical reactions in the system, and an appropriate force
field accurately describing interactions between molecules.

Figure 20 shows a snapshot of the N2-3H3-2NH3 system. To efficiently perform the reaction we use
the reaction-ensemble using continuous fractional component MC. The reaction is performed along a λ-
parameter from 0 to 1, where 0 denotes the full N2-3H3 reactant state for the fractional components and 1
the full product state 2NH3. Using fractional molecules for each component the reaction can be performed
gradually. In addition to the usual thermalization moves we have a λ-move that attempts to change λ with
three possible outcomes:

1. λ remains between 0 and 1.

2. λ goes beyond 1.
We have formed real 2NH3 molecules and choose new fractional molecule (randomly) with a value
λ− 1.

3. λ goes below 0.
We have formed real N2-3H3 molecules and choose new fractional molecule (randomly) with a value
λ+ 1.

The λ-moves are switched on by the ’ProbabilityCFCRXMCLambdaChangeMove’ input-parameter. We also
perform volume moves to impose the pressure using ’VolumeChangeProbability’ option. The example
input below defines the box, the 3 components, and the reaction using

158

(a) (b)

Figure 20: (left) the N2-3H3-2NH3 system, (right) the fractional molecules involved in the reaction.

Reaction 1 3 0 0 0 2

which list the stoichiometry of the reactants and the product. So, 1 of component 0 and 3 of component 1
forms 2 molecules of component 2.

SimulationType MC

NumberOfCycles 15000

NumberOfInitializationCycles 10000

NumberOfEquilibrationCycles 20000

RestartFile no

PrintEvery 500

ChargeMethod Ewald

Forcefield local

CutOffVDW 9.0

CutOffCoulomb 9.0

EwaldPrecision 1e-5

Box 0

BoxLengths 38 38 38

ExternalTemperature 573.0

ExternalPressure 3e7

Reaction 1 3 0 0 0 2

ProbabilityCFCRXMCLambdaChangeMove 1.0

VolumeChangeProbability 0.1

159

Component 0 MoleculeName N2

MoleculeDefinition local

LnPartitionFunction 208.188

TranslationProbability 40.0

RotationProbability 53.9

ReinsertionProbability 5.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 13

Component 1 MoleculeName H2

MoleculeDefinition local

LnPartitionFunction 93.9084

TranslationProbability 40.0

RotationProbability 53.9

ReinsertionProbability 5.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 39

Component 2 MoleculeName NH3

MoleculeDefinition local

LnPartitionFunction 253.69

TranslationProbability 40.0

RotationProbability 53.9

ReinsertionProbability 5.0

ExtraFrameworkMolecule no

CreateNumberOfMolecules 134

P [bar] 573K 673K 773K 873K
100 0.53 0.25 0.10 0.05
200 0.67 0.39 0.18 0.09
300 0.75 0.48 0.25 0.13
400 0.80 0.55 0.32 0.16
500 0.84 0.61 0.37 0.20
600 0.87 0.66 0.42 0.24
700 0.89 0.70 0.47 0.27
800 0.91 0.74 0.51 0.31
900 0.93 0.77 0.55 0.34
1000 0.94 0.80 0.58 0.37

(a) Experiments

P [bar] 573K 673K 773K 873K
100 0.56 0.27 0.12 0.05
200 0.69 0.41 0.20 0.09
300 0.78 0.49 0.26 0.14
400 0.82 0.57 0.32 0.17
500 0.86 0.62 0.37 0.20
600 0.88 0.66 0.42 0.24
700 0.90 0.69 0.45 0.27
800 0.91 0.73 0.50 0.30
900 0.93 0.77 0.53 0.33
1000 0.94 0.79 0.56 0.35

(b) Simulations

Figure 21: Mol-fractions of the NH3 in the ammonio bulk phase reaction of N2 and H2 computed from simulation compared to
experiments over a wide range of temperatures and pressures.

160

T [K] N2 H2 NH3 Eq. constant Kp

573 2.60E+90 6.08E+40 1.50E+110 0.006327104
673 6.89E+77 1.28E+35 5.42E+94 0.000244159
773 3.44E+68 8.28E+30 2.12E+83 2.06653E-05
873 2.42E+61 5.08E+27 3.65E+74 2.97405E-06

Table 8.2: Input partition function in units of Å3 and the equilibrium constant Kp. The partition functions are computed based
on the vibrational and rotational constants reported in the book by McQuarrie [10].

Exercise 1: go to the sub-directory ’Tutorial/ReactionEnsembleAmmonia’. Using the input-
parameters of Table 8.2 reproduce the simulation results.

Bibliography

[1] Barthelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem. Int. Ed. 2002, 41, 281.

[2] Campana, C.; Mussard, B.; Woo, T.K. J. Chem. Theory Comput. 2009, 5, 2866-2878.

[3] Rappe, A.K.; Goddard, W.A. J. Phys. Chem. 1991, 95, 3358-3363.

[4] Wilmer, C.E.; Snurr, R.Q. Chem. Eng. J. 2011, 171, 775-781.

[5] Wilmer, C.E.; Kim, K.C.; Snurr, R.Q. J. Phys. Chem. Lett. 2012, 3, 2506-2511.

[6] Mayo, S.L.; Olafson, B.D.; Goddard, W.A. J. Phys. Chem. 1990, 94, 8897-8909.

[7] Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M.J. J. Am. Chem. Soc. 1992, 114,
10024-10035.

[8] Frenkel, D.; Smit, B., Understanding Molecular Simulation, 2nd ed. Academic Press; London, UK, 2002.

[9] Turner, C.H.; Johnson, J.K.; Gubbins, K.E. J. Chem. Phys. 2001, 114, 1851-1859.

[10] McQuarrie, D.A., Statistical Mechanics University Science Books; Mill Valley, California, 2000.

161

162

Appendix

Random numbers

32-bits version

A C-program for MT19937, with initialization improved 2002/1/26.

Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

64-bits version

A C-program for MT19937-64 (2004/9/29 version).

Coded by Takuji Nishimura and Makoto Matsumoto.

163

This is a 64-bit version of Mersenne Twister pseudorandom number

generator.

Before using, initialize the state by using init_genrand64(seed)

Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

References:

T. Nishimura, ‘‘Tables of 64-bit Mersenne Twisters’’

ACM Transactions on Modeling and

Computer Simulation 10. (2000) 348--357.

M. Matsumoto and T. Nishimura,

‘‘Mersenne Twister: a 623-dimensionally equidistributed

uniform pseudorandom number generator’’

ACM Transactions on Modeling and

Computer Simulation 8. (Jan. 1998) 3--30.

164

Acknowledgements

We would like to thank the following people for their help and input to improve the program and for
the very helpful discussions about the algorithms: Sayee Prasaad Balaji, Youn-Sang Bae, Xiaoying Bao,
Rocı́o Bueno Pérez, Tim Becker, Nicholas C. Burtch, Tom Caremans, Ana Martı́n Calvo, Yamil Colon, Juan
Manuel Castillo Sanchez, Allison Dickey, Tina Düren, Titus van Erp, Denise Ford, Houston Frost, Rachel
Getman, Pritha Ghosh, Seyed H. Jamali, Jurn Heinen, Remco Hens, Elena Garcı́a Pérez, Gloria Oxford, Ali
Poursaeidesfahani, Sudeep Punnathanam, Reza Rahbari, Almudena Garcia Sanchez, Juan Jose Gutierrez
Sevillano, John J. Low, Patrick Merkling, Mahinder Ramdin, Patrick Ryan, Lev Sarkisov, Ben Sikora, Ariana
Torres Knoop, Krista S. Walton, Chris Wilmer, Ozgur Yazaydin, and Decai Yu.

165

	I RASPA
	Introduction
	Design philosophy
	Units and conventions
	Compiling and installing RASPA
	Requirements
	RASPA from 'git'
	installing RASPA
	compiling RASPA
	Running RASPA

	Output from RASPA
	Citing RASPA

	Format of the Input Files
	Introduction
	Simulation input
	Force field
	Force fields
	`pseudo_atoms.def'
	`force_field_mixing_rules.def'
	`force_field.def'

	Molecules
	Rigid molecule
	Flexible molecule
	Rigid/Flexible molecule
	Chiral molecules

	Framework
	Asymmetric unit cell
	Fractional occupancies in zeolites
	Format of the framework atoms
	Typing the atoms of the framework

	Using CIF-files
	Definition of CIF-files
	What charge definition is used? `pseudo_atom.def' or from the CIF-file?
	How to choose atom-types?

	Potentials
	Functional forms of force fields
	Bonded potentials diagonal terms
	Bond-stretching potentials
	Urey-Bradley potentials
	Bending potential
	Wilson inversion-bend potential
	Torsion potential
	Improper torsion potential

	Non-bonded potentials
	Van der Waals potentials
	Tail corrections
	Electrostatics

	Bonded potentials cross terms
	Bond-bond potential
	Bond-bend potential
	Bend-bend potential
	Bond-torsion potential
	Bend-torsion potential

	Examples
	Introduction
	Basic examples
	Non-basic examples
	Advanced examples
	Auxiliary examples

	The source code
	Introduction
	Data types
	Datastructures
	Modifying
	Monte Carlo
	Molecular Dynamics

	Debugging
	Linux
	Mac OSX

	Troubleshooting

	II Utilities
	Visualization
	Making pictures using VTK
	Ball and stick
	Framework surface
	Density plots
	Determining blocking pockets
	Making movies
	Using VMD
	Combining pictures into a movie

	III Tutorial
	Tutorial
	Adsorption isotherm of N2 in a metal-organic framework (MOF), Henry coefficients, enthalpy of adsorption
	NPT density of super-critical CO2, RDF, diffusion
	Reaction-ensemble of ammonia

